WorldWideScience

Sample records for stress generates ros

  1. Blue light irradiation-induced oxidative stress in vivo via ROS generation in rat gingival tissue.

    Science.gov (United States)

    Yoshida, Ayaka; Shiotsu-Ogura, Yukako; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Toyama, Toshizo; Yoshino, Fumihiko

    2015-10-01

    It has been reported that oxidative stress with reactive oxygen species (ROS) generation is induced by blue light irradiation to a living body. Only limited research has been reported in dental field on the dangers of blue light, mostly focusing on cytotoxicity associated with heat injury of dental pulp. We thus performed an in vivo study on oral tissue exposed to blue light. ROS generated upon blue light irradiation of flavin adenine dinucleotide were measured by electron spin resonance spectroscopy. After blue light irradiation, the palatal gingiva of Wistar rats were isolated. Collected samples were subjected to biochemical analysis of lipid peroxidation and glutathione. Singlet oxygen was generated by blue light irradiation, but was significantly quenched in an N-acetyl-L-cysteine (NAC) concentration-dependent manner. Blue light significantly accelerated oxidative stress and increased the oxidized glutathione levels in gingival tissue. These effects were also inhibited by NAC pre-administration. The results suggest that blue light irradiation at clinical levels of tooth bleaching treatment may enhance lipid peroxidation by the induction of oxidative stress and the consumption of a significant amount of intracellular glutathione. In addition, NAC might be an effective supplement for the protection of oral tissues against blue light irradiation-induced oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Endoplasmic Reticulum Stress and Associated ROS

    Directory of Open Access Journals (Sweden)

    Hafiz Maher Ali Zeeshan

    2016-03-01

    Full Text Available The endoplasmic reticulum (ER is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS. Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI-endoplasmic reticulum oxidoreductin (ERO-1, glutathione (GSH/glutathione disuphide (GSSG, NADPH oxidase 4 (Nox4, NADPH-P450 reductase (NPR, and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.

  3. Chelerythrine induced cell death through ROS-dependent ER stress in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Wu S

    2018-05-01

    Full Text Available Songjiang Wu, Yanying Yang, Feiping Li, Lifu Huang, Zihua Han, Guanfu Wang, Hongyuan Yu, Haiping Li Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group, Taizhou, China Introduction: Prostate cancer is the most common noncutaneous cancer and the second leading cause of cancer-related mortality worldwide and the third in USA in 2017. Chelerythrine (CHE, a naturalbenzo[c]phenanthridine alkaloid, formerly identified as a protein kinase C inhibitor, has also shown anticancer effect through a number of mechanisms. Herein, effect and mechanism of the CHE-induced apoptosis via reactive oxygen species (ROS-mediated endoplasmic reticulum (ER stress in prostate cancer cells were studied for the first time. Methods: In our present study, we investigated whether CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a dose-dependent manner in PC-3 cells. In addition, we showed that CHE increases intracellular ROS and leads to ROS-dependent ER stress and cell apoptosis. Results: Pre-treatment with N-acetyl cysteine, an ROS scavenger, totally reversed the CHE-induced cancer cell apoptosis as well as ER stress activation, suggesting that the ROS generation was responsible for the anticancer effects of CHE. Conclusion: Taken together, our findings support one of the anticancer mechanisms by which CHE increased ROS accumulation in prostate cancer cells, thereby leading to ER stress and caused intrinsic apoptotic signaling. The study reveals that CHE could be a potential candidate for application in the treatment of prostate cancer. Keywords: chelerythrine, reactive oxygen species, endoplasmic reticulum stress, apoptosis, prostate cancer

  4. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seung Min, E-mail: smjeong@catholic.ac.kr [Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Hwang, Sunsook; Seong, Rho Hyun [School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-03-11

    The transferrin receptor (TfR1) is upregulated in malignant cells and its expression is associated with cancer progression. Because of its pre-eminent role in cell proliferation, TfR1 has been an important target for the development of cancer therapy. Although TfR1 is highly expressed in pancreatic cancers, what it carries out in these refractory cancers remains poorly understood. Here we report that TfR1 supports mitochondrial respiration and ROS production in human pancreatic ductal adenocarcinoma (PDAC) cells, which is required for their tumorigenic growth. Elevated TfR1 expression in PDAC cells contributes to oxidative phosphorylation, which allows for the generation of ROS. Importantly, mitochondrial-derived ROS are essential for PDAC growth. However, exogenous iron supplement cannot rescue the defects caused by TfR1 knockdown. Moreover, we found that TfR1 expression determines PDAC cells sensitivity to oxidative stress. Together, our findings reveal that TfR1 can contribute to the mitochondrial respiration and ROS production, which have essential roles in growth and survival of pancreatic cancer. - Highlights: • Pancreatic ductal adenocarcinoma (PDAC) exhibits an elevated transferrin receptor (TfR1) expression in comparison with non-transformed pancreatic cells. • TfR1 is required for PDAC growth by regulating mitochondrial respiration and ROS production. • TfR1 functions as a determinant of cell viability to oxidative stress in PDAC cells.

  5. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation

    International Nuclear Information System (INIS)

    Jeong, Seung Min; Hwang, Sunsook; Seong, Rho Hyun

    2016-01-01

    The transferrin receptor (TfR1) is upregulated in malignant cells and its expression is associated with cancer progression. Because of its pre-eminent role in cell proliferation, TfR1 has been an important target for the development of cancer therapy. Although TfR1 is highly expressed in pancreatic cancers, what it carries out in these refractory cancers remains poorly understood. Here we report that TfR1 supports mitochondrial respiration and ROS production in human pancreatic ductal adenocarcinoma (PDAC) cells, which is required for their tumorigenic growth. Elevated TfR1 expression in PDAC cells contributes to oxidative phosphorylation, which allows for the generation of ROS. Importantly, mitochondrial-derived ROS are essential for PDAC growth. However, exogenous iron supplement cannot rescue the defects caused by TfR1 knockdown. Moreover, we found that TfR1 expression determines PDAC cells sensitivity to oxidative stress. Together, our findings reveal that TfR1 can contribute to the mitochondrial respiration and ROS production, which have essential roles in growth and survival of pancreatic cancer. - Highlights: • Pancreatic ductal adenocarcinoma (PDAC) exhibits an elevated transferrin receptor (TfR1) expression in comparison with non-transformed pancreatic cells. • TfR1 is required for PDAC growth by regulating mitochondrial respiration and ROS production. • TfR1 functions as a determinant of cell viability to oxidative stress in PDAC cells.

  6. Protective effects of andrographolide analogue AL-1 on ROS-induced RIN-mβ cell death by inducing ROS generation.

    Directory of Open Access Journals (Sweden)

    Guang-Rong Yan

    Full Text Available Oxidative stress is considered to be a major factor contributing to pathogenesis and progression of many diseases. A novel andrographolide-lipoic acid conjugate (AL-1 could protect pancreatic β-cells from reactive oxygen species (ROS-induced oxidative injury. However, its protective mechanism is still unclear. In this work, we used proteomics to identify AL-1-regulated proteins in β-cells and found that 13 of the 71 proteins regulated by AL-1 were closely associated with antioxidation. These differential proteins were mainly involved in the ERK1/2 and AKT1 signaling pathways. Functional investigation demonstrated that AL-1 exerted its protective effects on H2O2-induced cell death of β-cells by generating NADPH oxidase-dependent ROS to activate ERK1/2 and AKT1 signaling pathways. As a consequence, the expressions of antioxidant proteins including Trx1, Prx1 and Prx5, and anti-apoptotic proteins including PDCD6IP, prohibitin, galectin-1 and HSP were upregulated. AL-1 probably worked as a "vaccinum" to activate the cellular antioxidant system by inducing the generation of low concentration ROS which then reciprocally protected β-cells from oxidative damage caused by high-level ROS from H2O2. To the best of our knowledge, this is the first comprehensive proteomic analysis illustrating a novel molecular mechanism for the protective effects of antioxidants on β-cells from H2O2-induced cell death.

  7. Auranofin induces apoptosis by ROS-mediated ER stress and mitochondrial dysfunction and displayed synergistic lethality with piperlongumine in gastric cancer.

    Science.gov (United States)

    Zou, Peng; Chen, Minxiao; Ji, Jiansong; Chen, Weiqian; Chen, Xi; Ying, Shilong; Zhang, Junru; Zhang, Ziheng; Liu, Zhiguo; Yang, Shulin; Liang, Guang

    2015-11-03

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world. In addressing the need of treatments for relapsed disease, we report the identification of an existing U.S. Food and Drug Administration-approved small-molecule drug to repurpose for GC treatment. Auranofin (AF), clinically used to treat rheumatic arthritis, but it exhibited preclinical efficacy in GC cells. By increasing intracellular reactive oxygen species (ROS) levels, AF induces a lethal endoplasmic reticulum stress response and mitochondrial dysfunction in cultured GC cells. Blockage of ROS production reversed AF-induced ER stress and mitochondrial pathways activation as well as apoptosis. In addition, AF displays synergistic lethality with an ROS-generating agent piperlongumine, which is a natural product isolated from the long pepper Piper longum L. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer. More importantly, it reveals that increased ROS generation might be an effective strategy in treating human gastric cancer.

  8. Under fungal attack on a metalliferous soil: ROS or not ROS? Insights from Silene paradoxa L. growing under copper stress

    International Nuclear Information System (INIS)

    Taiti, Cosimo; Giorni, Elisabetta; Colzi, Ilaria; Pignattelli, Sara; Bazihizina, Nadia; Buccianti, Antonella; Luti, Simone; Pazzagli, Luigia; Mancuso, Stefano; Gonnelli, Cristina

    2016-01-01

    We investigated how the adaptation to metalliferous environments can influence the plant response to biotic stress. In a metallicolous and a non-metallicolous population of Silene paradoxa the induction of oxidative stress and the production of callose and volatiles were evaluated in the presence of copper and of the PAMP fungal protein cerato-platanin, separately and in combination. Our results showed incompatibility between the ordinary ROS-mediated response to fungal attack and the acquired mechanisms of preventing oxidative stress in the tolerant population. A similar situation was also demonstrated by the sensitive population growing in the presence of copper but, in this case, with a lack of certain responses, such as callose production. In addition, in terms of the joint behaviour of emitted volatiles, multivariate statistics showed that not only did the populations respond differently to the presence of copper or biotic stress, but also that the biotic and abiotic stresses interacted in different ways in the two populations. Our results demonstrated that the same incompatibility of hyperaccumulators in ROS-mediated biotic stress signals also seemed to be exhibited by the excluder metallophyte, but without the advantage of being able to rely on the elemental defence for plant protection from natural enemies. - Highlights: • Silene paradoxa plants from metalliferous and nonmetalliferous soil were studied. • Plants were exposed to Cerato-platanin in presence/absence of Cu in culture media. • ROS response was fully present in nonmetallicolous plants only in the absence of Cu. • Similar ROS response in metallicolous plants with or without Cu. - The adaptation to high concentrations of copper was found to interfere with the ordinary ROS-mediated response to fungal attack in an excluder metallophyte.

  9. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.

    Science.gov (United States)

    Klumpen, Eva; Hoffschröer, Nadine; Zeis, Bettina; Gigengack, Ulrike; Dohmen, Elias; Paul, Rüdiger J

    2017-01-01

    Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H 2 O 2 ) stress. Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H 2 O 2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1

  10. Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system.

    LENUS (Irish Health Repository)

    Bhatt, Lavinia

    2010-01-01

    that both rods and cones generated ROS in response to the stress of serum deprivation. Nox4 was the most abundantly expressed Nox in the photoreceptor layer, but Duox1 and Duox2 were also present at detectable levels, and as apocynin reduced the levels of ROS produced, this implied that these proteins may play some role in this production.

  11. ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack.

    Science.gov (United States)

    Qi, Junsheng; Song, Chun-Peng; Wang, Baoshan; Zhou, Jianmin; Kangasjärvi, Jaakko; Zhu, Jian-Kang; Gong, Zhizhong

    2018-04-16

    Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO 2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors including water status, light, CO 2 levels and pathogen attack, as well as endogenous signals such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO 2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. This article is protected by copyright. All rights reserved.

  12. Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yanping eWang

    2015-11-01

    Full Text Available Cytokinins in plants are crucial for numerous biological processes, including seed germination, cell division and differentiation, floral initiation and adaptation to abiotic stresses. The salt stress can promote reactive oxygen species (ROS production in plants which are highly toxic and ultimately results in oxidative stress. However, the correlation between endogenous cytokinin production and ROS homeostasis in responding to salt stress is poorly understood. In this study, we analyzed the correlation of overexpressing the cytokinin biosynthetic gene AtIPT8 (adenosine phosphate-isopentenyl transferase 8 and the response of salt stress in Arabidopsis. Overproduction of cytokinins, which was resulted by the inducible overexpression of AtIPT8, significantly inhibited the primary root growth and true leaf emergence, especially under the conditions of exogenous salt, glucose and mannitol treatments. Upon cytokinin overproduction, the salt stress resistance was declined, and resulted in less survival rates and chlorophyll content. Interestingly, ROS production was obviously increased with the salt treatment, accompanied by endogenously overproduced cytokinins. The activities of CAT and SOD, which are responsible for scavenging ROS, were also affected. Transcription profiling revealed that the differential expressions of ROS-producing and scavenging related genes, the photosynthesis-related genes and stress responsive genes were existed in transgenic plants of overproducing cytokinins. Our results suggested that broken in the homeostasis of cytokinins in plant cells could modulate the salt stress responses through a ROS-mediated regulation in Arabidopsis.

  13. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs.

    Science.gov (United States)

    Smith, Samson W; Latta, Leigh C; Denver, Dee R; Estes, Suzanne

    2014-07-24

    The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.

  14. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition.

    Science.gov (United States)

    Nath, Manoj; Bhatt, Deepesh; Prasad, Ram; Gill, Sarvajeet S; Anjum, Naser A; Tuteja, Narendra

    2016-01-01

    A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant-microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant-microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/ P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  15. Unravelling how plants benefit from ROS and NO reactions, while resisting oxidative stress.

    Science.gov (United States)

    Considine, Michael J; Sandalio, Luisa Maria; Foyer, Christine Helen

    2015-09-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as nitric oxide (NO), play crucial roles in the signal transduction pathways that regulate plant growth, development and defence responses, providing a nexus of reduction/oxidation (redox) control that impacts on nearly every aspect of plant biology. Here we summarize current knowledge and concepts that lay the foundations of a new vision for ROS/RNS functions – particularly through signalling hubs – for the next decade. Plants have mastered the art of redox control using ROS and RNS as secondary messengers to regulate a diverse range of protein functions through redox-based, post-translational modifications that act as regulators of molecular master-switches. Much current focus concerns the impact of this regulation on local and systemic signalling pathways, as well as understanding how such reactive molecules can be effectively used in the control of plant growth and stress responses. The spectre of oxidative stress still overshadows much of our current philosophy and understanding of ROS and RNS functions. While many questions remain to be addressed – for example regarding inter-organellar regulation and communication, the control of hypoxia and how ROS/RNS signalling is used in plant cells, not only to trigger acclimation responses but also to create molecular memories of stress – it is clear that ROS and RNS function as vital signals of living cells.

  16. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Diabetes mellitus and fine particulate matter from diesel exhaust (DEP are both important contributors to the development of cardiovascular disease (CVD. Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml, and/or high glucose (HG, 25.5 mM. Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS, time-to-90% shortening (TPS(90, time-to-90% relengthening (TR(90 and maximal velocities of shortening/relengthening (±dL/dt, using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR(90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated

  17. Asperlin induces G2/M arrest through ROS generation and ATM pathway in human cervical carcinoma cells

    International Nuclear Information System (INIS)

    He, Long; Nan, Mei-Hua; Oh, Hyun Cheol; Kim, Young Ho; Jang, Jae Hyuk; Erikson, Raymond Leo; Ahn, Jong Seog; Kim, Bo Yeon

    2011-01-01

    Highlights: → A new anti-cancer effect of an antibiotics, asperlin, is exploited. → Asperlin induced human cervical cancer cell apoptosis through ROS generation. → Asperlin activated DNA-damage related ATM protein and cell cycle associated proteins. → Asperlin could be developed as a new anti-cancer therapeutics. -- Abstract: We exploited the biological activity of an antibiotic agent asperlin isolated from Aspergillus nidulans against human cervical carcinoma cells. We found that asperlin dramatically increased reactive oxygen species (ROS) generation accompanied by a significant reduction in cell proliferation. Cleavage of caspase-3 and PARP and reduction of Bcl-2 could also be detected after asperlin treatment to the cells. An anti-oxidant N-acetyl-L-cysteine (NAC), however, blocked all the apoptotic effects of asperlin. The involvement of oxidative stress in asperlin induced apoptosis could be supported by the findings that ROS- and DNA damage-associated G2/M phase arrest and ATM phosphorylation were increased by asperlin. In addition, expression and phosphorylation of cell cycle proteins as well as G2/M phase arrest in response to asperlin were significantly blocked by NAC or an ATM inhibitor KU-55933 pretreatment. Collectively, our study proved for the first time that asperlin could be developed as a potential anti-cancer therapeutics through ROS generation in HeLa cells.

  18. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    Science.gov (United States)

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  19. Asperlin induces G{sub 2}/M arrest through ROS generation and ATM pathway in human cervical carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    He, Long; Nan, Mei-Hua [Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Oh, Hyun Cheol [College of Medical and Life Sciences, Silla University, 100 Silladaehak-gil, Sasang-gu, Busan 617-736 (Korea, Republic of); Kim, Young Ho [College of Pharmacy, ChungNam National University, Yuseong, Daejeon, 305-764 (Korea, Republic of); Jang, Jae Hyuk [Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Erikson, Raymond Leo [Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 (United States); Ahn, Jong Seog, E-mail: jsahn@kribb.re.kr [Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Kim, Bo Yeon, E-mail: bykim@kribb.re.kr [Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); World Class Institute, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of)

    2011-06-10

    Highlights: {yields} A new anti-cancer effect of an antibiotics, asperlin, is exploited. {yields} Asperlin induced human cervical cancer cell apoptosis through ROS generation. {yields} Asperlin activated DNA-damage related ATM protein and cell cycle associated proteins. {yields} Asperlin could be developed as a new anti-cancer therapeutics. -- Abstract: We exploited the biological activity of an antibiotic agent asperlin isolated from Aspergillus nidulans against human cervical carcinoma cells. We found that asperlin dramatically increased reactive oxygen species (ROS) generation accompanied by a significant reduction in cell proliferation. Cleavage of caspase-3 and PARP and reduction of Bcl-2 could also be detected after asperlin treatment to the cells. An anti-oxidant N-acetyl-L-cysteine (NAC), however, blocked all the apoptotic effects of asperlin. The involvement of oxidative stress in asperlin induced apoptosis could be supported by the findings that ROS- and DNA damage-associated G2/M phase arrest and ATM phosphorylation were increased by asperlin. In addition, expression and phosphorylation of cell cycle proteins as well as G2/M phase arrest in response to asperlin were significantly blocked by NAC or an ATM inhibitor KU-55933 pretreatment. Collectively, our study proved for the first time that asperlin could be developed as a potential anti-cancer therapeutics through ROS generation in HeLa cells.

  20. Ny forskning: Derfor virker ros ikke mod stress

    DEFF Research Database (Denmark)

    Pedersen, Pernille

    2015-01-01

    Ny forskning peger på, at stressede medarbejdere overhører din ros og anerkendelse, hvis de føler skam. Skam over ikke at kunne slå til på arbejdet. Vil du hjælpe en stresset medarbejder, skal du forebygge, at de føler sig skamfulde. Læs her anbefalinger til, hvordan du bedst hjælper din stressed...

  1. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing.

    Science.gov (United States)

    Janda, Jaroslav; Nfonsam, Valentine; Calienes, Fernanda; Sligh, James E; Jandova, Jana

    2016-05-01

    Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ(0) fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.

  2. Targeting TRPM2 in ROS-Coupled Diseases

    Directory of Open Access Journals (Sweden)

    Shinichiro Yamamoto

    2016-09-01

    Full Text Available Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP melastatin subfamily, TRPM2, is a Ca2+-permeable non-selective cation channel, activated by ROS in an ADP-ribose mediated fashion. In other words, TRPM2 functions as a transducer that converts oxidative stress into Ca2+ signaling. There is good evidence that TRPM2 plays an important role in ROS-coupled diseases. For example, in monocytes the influx of Ca2+ through TRPM2 activated by ROS contributes to the aggravation of inflammation via chemokine production. In this review, the focus is on TRPM2 as a molecular linker between ROS and Ca2+ signaling in ROS-coupled diseases.

  3. Targeting TRPM2 in ROS-Coupled Diseases.

    Science.gov (United States)

    Yamamoto, Shinichiro; Shimizu, Shunichi

    2016-09-07

    Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS) are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP) melastatin subfamily, TRPM2, is a Ca(2+)-permeable non-selective cation channel, activated by ROS in an ADP-ribose mediated fashion. In other words, TRPM2 functions as a transducer that converts oxidative stress into Ca(2+) signaling. There is good evidence that TRPM2 plays an important role in ROS-coupled diseases. For example, in monocytes the influx of Ca(2+) through TRPM2 activated by ROS contributes to the aggravation of inflammation via chemokine production. In this review, the focus is on TRPM2 as a molecular linker between ROS and Ca(2+) signaling in ROS-coupled diseases.

  4. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release

    Science.gov (United States)

    Zorov, Dmitry B.; Juhaszova, Magdalena; Sollott, Steven J.

    2014-01-01

    Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo. PMID:24987008

  5. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    International Nuclear Information System (INIS)

    Pi Jingbo; Zhang Qiang; Fu Jingqi; Woods, Courtney G.; Hou Yongyong; Corkey, Barbara E.; Collins, Sheila; Andersen, Melvin E.

    2010-01-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H 2 O 2 , act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.

  6. The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Selenium (Se is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO in the root of Brassica rapa under Se(IV stress. Se(IV-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR- and nitric oxide synthase (NOS-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.

  7. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress.

    Science.gov (United States)

    Kim, Jinhwan; Choi, Tae Gyu; Ding, Yan; Kim, Yeonghwan; Ha, Kwon Soo; Lee, Kyung Ho; Kang, Insug; Ha, Joohun; Kaufman, Randal J; Lee, Jinhwa; Choe, Wonchae; Kim, Sung Soo

    2008-11-01

    Prolonged accumulation of misfolded proteins in the endoplasmic reticulum (ER) results in ER stress-mediated apoptosis. Cyclophilins are protein chaperones that accelerate the rate of protein folding through their peptidyl-prolyl cis-trans isomerase (PPIase) activity. In this study, we demonstrated that ER stress activates the expression of the ER-localized cyclophilin B (CypB) gene through a novel ER stress response element. Overexpression of wild-type CypB attenuated ER stress-induced cell death, whereas overexpression of an isomerase activity-defective mutant, CypB/R62A, not only increased Ca(2+) leakage from the ER and ROS generation, but also decreased mitochondrial membrane potential, resulting in cell death following exposure to ER stress-inducing agents. siRNA-mediated inhibition of CypB expression rendered cells more vulnerable to ER stress. Finally, CypB interacted with the ER stress-related chaperones, Bip and Grp94. Taken together, we concluded that CypB performs a crucial function in protecting cells against ER stress via its PPIase activity.

  8. Production of Superoxide in Bacteria Is Stress- and Cell State-Dependent: A Gating-Optimized Flow Cytometry Method that Minimizes ROS Measurement Artifacts with Fluorescent Dyes.

    Science.gov (United States)

    McBee, Megan E; Chionh, Yok H; Sharaf, Mariam L; Ho, Peiying; Cai, Maggie W L; Dedon, Peter C

    2017-01-01

    The role of reactive oxygen species (ROS) in microbial metabolism and stress response has emerged as a major theme in microbiology and infectious disease. Reactive fluorescent dyes have the potential to advance the study of ROS in the complex intracellular environment, especially for high-content and high-throughput analyses. However, current dye-based approaches to measuring intracellular ROS have the potential for significant artifacts. Here, we describe a robust platform for flow cytometric quantification of ROS in bacteria using fluorescent dyes, with ROS measurements in 10s-of-1000s of individual cells under a variety of conditions. False positives and variability among sample types (e.g., bacterial species, stress conditions) are reduced with a flexible four-step gating scheme that accounts for side- and forward-scattered light (morphological changes), background fluorescence, DNA content, and dye uptake to identify cells producing ROS. Using CellROX Green dye with Escherichia coli, Mycobacterium smegmatis , and Mycobacterium bovis BCG as diverse model bacteria, we show that (1) the generation of a quantifiable CellROX Green signal for superoxide, but not hydrogen peroxide-induced hydroxyl radicals, validates this dye as a superoxide detector; (2) the level of dye-detectable superoxide does not correlate with cytotoxicity or antibiotic sensitivity; (3) the non-replicating, antibiotic tolerant state of nutrient-deprived mycobacteria is associated with high levels of superoxide; and (4) antibiotic-induced production of superoxide is idiosyncratic with regard to both the species and the physiological state of the bacteria. We also show that the gating method is applicable to other fluorescent indicator dyes, such as the 5-carboxyfluorescein diacetate acetoxymethyl ester and 5-cyano-2,3-ditolyl tetrazolium chloride for cellular esterase and reductive respiratory activities, respectively. These results demonstrate that properly controlled flow cytometry coupled

  9. Curcumin enhances the effects of irinotecan on colorectal cancer cells through the generation of reactive oxygen species and activation of the endoplasmic reticulum stress pathway.

    Science.gov (United States)

    Huang, Yan-Feng; Zhu, Da-Jian; Chen, Xiao-Wu; Chen, Qi-Kang; Luo, Zhen-Tao; Liu, Chang-Chun; Wang, Guo-Xin; Zhang, Wei-Jie; Liao, Nv-Zhu

    2017-06-20

    Although initially effective against metastatic colorectal cancer (CRC), irinotecan-based chemotherapy leads to resistance and adverse toxicity. Curcumin is well known for its anti-cancer effects in many cancers, including CRC. Here, we describe reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress as important mechanisms by which curcumin enhances irinotecan's effects on CRC cells. CRC cell lines were treated with curcumin and/or irinotecan for 24 h, and then evaluated using cell proliferation assays, cell apoptosis assays, cell cycle analysis, intracellular Ca2+ measurements, ROS measurements and immunoblotting for key ER stress-related proteins. We found that cell viability was inhibited and apoptosis was increased, accompanied by ROS generation and ER stress activation in CRC cells treated with curcumin alone or in combination with irinotecan. Blocking ROS production attenuated the expression of two markers of ER stress: binding of immunoglobulin protein (BIP) and CCAAT/enhancer-binding protein homologous protein (CHOP). Blocking CHOP expression using RNA interference also inhibited ROS generation. These results demonstrated that curcumin could enhance the effects of irinotecan on CRC cells by inhibiting cell viability and inducing cell cycle arrest and apoptosis, and that these effects may be mediated, in part, by ROS generation and activation of the ER stress pathway.

  10. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans.

    Science.gov (United States)

    Yu, Qilin; Zhang, Bing; Li, Jianrong; Zhang, Biao; Wang, Honggang; Li, Mingchun

    2016-10-01

    The cell wall is an important cell structure in both fungi and bacteria, and hence becomes a common antimicrobial target. The cell wall-perturbing agents disrupt synthesis and function of cell wall components, leading to cell wall stress and consequent cell death. However, little is known about the detailed mechanisms by which cell wall stress renders fungal cell death. In this study, we found that ROS scavengers drastically attenuated the antifungal effect of cell wall-perturbing agents to the model fungal pathogen Candida albicans, and these agents caused remarkable ROS accumulation and activation of oxidative stress response (OSR) in this fungus. Interestingly, cell wall stress did not cause mitochondrial dysfunction and elevation of mitochondrial superoxide levels. Furthermore, the iron chelator 2,2'-bipyridyl (BIP) and the hydroxyl radical scavengers could not attenuate cell wall stress-caused growth inhibition and ROS accumulation. However, cell wall stress up-regulated expression of unfold protein response (UPR) genes, enhanced protein secretion and promoted protein folding-related oxidation of Ero1, an important source of ROS production. These results indicated that oxidation of Ero1 in the endoplasmic reticulum (ER), rather than mitochondrial electron transport and Fenton reaction, contributed to cell wall stress-related ROS accumulation and consequent growth inhibition. Our findings uncover a novel link between cell wall integrity (CWI), ER function and ROS production in fungal cells, and shed novel light on development of strategies promoting the antifungal efficacy of cell wall-perturbing agents against fungal infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. ROS signalling - specificity is required

    DEFF Research Database (Denmark)

    Møller, Ian M; Sweetlove, Lee J

    2010-01-01

    Reactive oxygen species (ROS) production increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H2O2 might induce a general stress response, but it does not have...... the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g. in chloroplasts or mitochondria. Here we argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS messengers...... and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. Likewise, unmodified peptides deriving from the breakdown of redundant proteins could help coordinate organellar and nuclear gene expression...

  12. Generation of ROS mediated by mechanical waves (ultrasound) and its possible applications.

    Science.gov (United States)

    Duco, Walter; Grosso, Viviana; Zaccari, Daniel; Soltermann, Arnaldo T

    2016-10-15

    The thermal decomposition of 9,10 diphenylanthracene peroxide (DPAO 2 ) generates DPA and a mix of triplet and singlet molecular oxygen. For DPAO 2 the efficiency to produce singlet molecular oxygen is 0.35. On the other hand, it has shown that many thermal reactions can be carried out through the interaction of molecules with ultrasound. Ultrasound irradiation can create hydrodynamic stress (sonomechanical process), inertial cavitation (pyrolitic process) and long range effects mediated by radicals or ROS. Sonochemical reactions can be originated by pyrolytic like process, shock mechanical waves, thermal reactions and radical and ROS mediated reactions. Sonolysis of pure water can yield hydrogen or hydroxyl radicals and hydrogen peroxide (ROS). When DPAO 2 in 1,4 dioxane solution is treated with 20 or 24kHz and different power intensity the production of molecular singlet oxygen is observed. Specific scavengers like tetracyclone (TC) are used to demonstrate it. The efficiency now is 0.85 showing that the sonochemical process is much more efficient that the thermal one. Another endoperoxide, artemisinin was also studied. Unlike the concept of photosensitizer of photodynamic therapy, in spite of large amount of reported results in literature, the term sonosensitizer and the sonosensitization process are not well defined. We define sonosensitized reaction as one in which a chemical species decompose as consequence of cavitation phenomena producing ROS or other radicals and some other target species does undergo a chemical reaction. The concept could be reach rapidly other peroxides which are now under experimental studies. For artemisinin, an important antimalarian and anticancer drug, was established that ultrasound irradiation increases the effectiveness of the treatment but without any explanation. We show that artemisinin is an endoperoxide and behaves as a sonosensitizer in the sense of our definition. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Plant responses to water stress

    Science.gov (United States)

    Kar, Rup Kumar

    2011-01-01

    Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  14. ROS signalling – Specificity is required

    DEFF Research Database (Denmark)

    Møller, Ian Max; Sweetlove, Lee J

    2011-01-01

    The production of reactive oxygen species (ROS) increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H2O2 may induce a general stress response, but it does...... messengers and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. (This is a new project funded by FNU) References: Møller, I.M. & Sweetlove, L.J. 2010. ROS signalling – Specificity is required. Trends Plant Sci. 15: 370-374...... not have the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g., in chloroplasts or mitochondria. We here argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS...

  15. Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture

    International Nuclear Information System (INIS)

    Eblin, K.E.; Bowen, M.E.; Cromey, D.W.; Bredfeldt, T.G.; Mash, E.A.; Lau, S.S.; Gandolfi, A.J.

    2006-01-01

    Arsenicals have commonly been seen to induce reactive oxygen species (ROS) which can lead to DNA damage and oxidative stress. At low levels, arsenicals still induce the formation of ROS, leading to DNA damage and protein alterations. UROtsa cells, an immortalized human urothelial cell line, were used to study the effects of arsenicals on the human bladder, a site of arsenical bioconcentration and carcinogenesis. Biotransformation of As(III) by UROtsa cells has been shown to produce methylated species, namely monomethylarsonous acid [MMA(III)], which has been shown to be 20 times more cytotoxic. Confocal fluorescence images of UROtsa cells treated with arsenicals and the ROS sensing probe, DCFDA, showed an increase of intracellular ROS within five min after 1 μM and 10 μM As(III) treatments. In contrast, 50 and 500 nM MMA(III) required pretreatment for 30 min before inducing ROS. The increase in ROS was ameliorated by preincubation with either SOD or catalase. An interesting aspect of these ROS detection studies is the noticeable difference between concentrations of As(III) and MMA(III) used, further supporting the increased cytotoxicity of MMA(III), as well as the increased amount of time required for MMA(III) to cause oxidative stress. These arsenical-induced ROS produced oxidative DNA damage as evidenced by an increase in 8-hydroxyl-2'-deoxyguanosine (8-oxo-dG) with either 50 nM or 5 μM MMA(III) exposure. These findings provide support that MMA(III) cause a genotoxic response upon generation of ROS. Both As(III) and MMA(III) were also able to induce Hsp70 and MT protein levels above control, showing that the cells recognize the ROS and respond. As(III) rapidly induces the formation of ROS, possibly through it oxidation to As(V) and further metabolism to MMA(III)/(V). These studies provide evidence for a different mechanism of MMA(III) toxicity, one that MMA(III) first interacts with cellular components before an ROS response is generated, taking longer to

  16. Curcumin Induced Human Gastric Cancer BGC-823 Cells Apoptosis by ROS-Mediated ASK1-MKK4-JNK Stress Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Tao Liang

    2014-09-01

    Full Text Available The signaling mediated by stress-activated MAP kinases (MAPK, c-Jun N-terminal kinase (JNK has well-established importance in cancer. In the present report, we investigated the effects of curcumin on the signaling pathway in human gastric cancer BGC-823 cells. Curcumin induced reactive oxygen species (ROS production and BGC-823 cells apoptosis. Inhibition of ROS generation by antioxidant (NAC or Trion significantly prevented curcumin-mediated apoptosis. Notably, we observed that curcumin activated ASK1, a MAPKKK that is oxidative stress sensitive and responsible to phosphorylation of JNK via triggering cascades, up-regulated an upstream effector of the JNK, MKK4, and phosphorylated JNK protein expression in BGC-823 cells. However, curcumin induced ASK1-MKK4-JNK signaling was attenuated by NAC. All the findings confirm the possibility that oxidative stress-activated ASK1-MKK4-JNK signaling cascade promotes the apoptotic response in curcumin-treated BGC-823 cells.

  17. Jolkinolide B induces apoptosis of colorectal carcinoma through ROS-ER stress-Ca2+-mitochondria dependent pathway.

    Science.gov (United States)

    Zhang, Jing; Wang, Yang; Zhou, Ye; He, Qing-Yu

    2017-10-31

    Colorectal carcinoma (CRC) remains one of the leading causes of death in cancer-related diseases. In this study, we aimed to investigate the anticancer effect of Jolkinolide B (JB), a bioactive diterpenoid component isolated from the dried roots of Euphorbia fischeriana Steud, on CRC cells and its underlying mechanisms. We found that JB suppressed the cell viability and colony formation of CRC cells, HT29 and SW620. Annexin V/PI assay revealed that JB induced apoptosis in CRC cells, which was further confirmed by the increased expression of cleaved-caspase3 and cleaved-PARP. iTRAQ-based quantitative proteomics was performed to identify JB-regulated proteins in CRC cells. Gene Ontology (GO) analysis revealed that these JB-regulated proteins were mainly involved in ER stress response, which was evidenced by the expression of ER stress marker proteins, HSP90, Bip and PDI. Moreover, we found that JB provoked the generation of reactive oxygen species (ROS), and that inhibition of the ROS generation with N-acetyl L-cysteine could reverse the JB-induced apoptosis. Confocal microscopy and flow cytometry showed that JB treatment enhanced intracellular and mitochondrial Ca 2+ level and JC-1 assay revealed a loss of mitochondrial membrane potential in CRC after JB treatment. The mitochondrial Ca 2+ uptake and depolarization can be blocked by Ruthenium Red (RuRed), an inhibitor of mitochondrial Ca 2+ uniporter. Taken together, we demonstrated that JB exerts its anticancer effect by ER stress-Ca 2+ -mitochondria signaling, suggesting the promising chemotherapeutic potential of JB for the treatment of CRC.

  18. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    Directory of Open Access Journals (Sweden)

    Sheikh Hasna Habib

    2016-01-01

    Full Text Available Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR containing 1-aminocyclopropane-1-carboxylate (ACC deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

  19. PERK pathway is involved in oxygen-glucose-serum deprivation-induced NF-kB activation via ROS generation in spinal cord astrocytes.

    Science.gov (United States)

    Liu, Jinbo; Du, Lijian

    2015-11-13

    Mitochondrial dysfunction is a direct target of hypoxic/ischemic stress in astrocytes, which results in the increased production of reactive oxygen species (ROS). Previous reports showed that ROS can activate NF-kB in spinal cord astrocytes, which occurs as a secondary injury during the pathological process of spinal cord injury (SCI). Protein kinase RNA (PKR)-like ER kinase (PERK) plays an important role in mitochondrial dysfunction. To elucidate the specific role of PERK in hypoxic/ischemic-induced NF-kB activation in spinal astrocytes, we utilized an in vitro oxygen-glucose deprivation (OGD) model, which showed an enhanced formation of ROS and NF-kB activation. Knockdown of PERK resulted in reduced activation of PERK and ROS generation in astrocytes under OGD conditions. Notably, the knockdown of PERK also induced NF-kB activation in astrocytes. These data suggest that PERK is required for the hypoxic/ischemic-induced-dependent regulation of ROS and that it is involved in NF-kB activation in the astrocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes.

    Science.gov (United States)

    Fandy, Tamer E; Jiemjit, Anchalee; Thakar, Manjusha; Rhoden, Paulette; Suarez, Lauren; Gore, Steven D

    2014-03-01

    Azanucleoside DNA methyltransferase (DNMT) inhibitors are currently approved by the U.S. Food and Drug Administration for treatment of myelodysplastic syndrome. The relative contributions of DNMT inhibition and other off-target effects to their clinical efficacy remain unclear. Data correlating DNA methylation reversal and clinical response have been conflicting. Consequently, it is necessary to investigate so-called off-target effects and their impact on cell survival and differentiation. Flow cytometry was used for cell cycle, apoptosis, and reactive oxygen species (ROS) accumulation analysis. Gene expression analysis was performed using real-time PCR. DNA methylation was detected by methylation-specific PCR. Mitochondrial membrane potential was analyzed using JC-1 dye staining. Western blotting was used for quantitative protein expression analysis. 5-Aza-2'-deoxycytidine (DAC) induced cell-cycle arrest and apoptosis in leukemia cells. p53 expression was dispensable for DAC-induced apoptosis. DAC induced delayed ROS accumulation in leukemia cells but not in solid tumor cells and p53 expression was dispensable for ROS increase. ROS increase was deoxycytidine kinase dependent, indicating that incorporation of DAC into nuclear DNA is required for ROS generation. ROS accumulation by DAC was caspase-independent and mediated the dissipation of the mitochondrial membrane potential. Concordantly, ROS scavengers diminished DAC-induced apoptosis. DAC induced the expression of different NADPH oxidase isoforms and upregulated Nox4 protein expression in an ATM-dependent manner, indicating the involvement of DNA damage signaling in Nox4 upregulation. These data highlight the importance of mechanisms other than DNA cytosine demethylation in modulating gene expression and suggest investigating the relevance of ROS accumulation to the clinical activity of DAC. ©2014 AACR

  1. ROS and ROS-Mediated Cellular Signaling

    Directory of Open Access Journals (Sweden)

    Jixiang Zhang

    2016-01-01

    Full Text Available It has long been recognized that an increase of reactive oxygen species (ROS can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt, ion channels and transporters (Ca2+ and mPTP, and modifying protein kinase and Ubiquitination/Proteasome System.

  2. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells

    International Nuclear Information System (INIS)

    Zhang, Xiuhua; Chen, Minxiao; Zou, Peng; Kanchana, Karvannan; Weng, Qiaoyou; Chen, Wenbo; Zhong, Peng; Ji, Jiansong; Zhou, Huiping; He, Langchong; Liang, Guang

    2015-01-01

    Prostate cancer is the most commonly diagnosed malignancy among men. The Discovery of new agents for the treatment of prostate cancer is urgently needed. Compound WZ35, a novel analog of the natural product curcumin, exhibited good anti-prostate cancer activity, with an IC 50 of 2.2 μM in PC-3 cells. However, the underlying mechanism of WZ35 against prostate cancer cells is still unclear. Human prostate cancer PC-3 cells and DU145 cells were treated with WZ35 for further proliferation, apoptosis, cell cycle, and mechanism analyses. NAC and CHOP siRNA were used to validate the role of ROS and ER stress, respectively, in the anti-cancer actions of WZ35. Our results show that WZ35 exhibited much higher cell growth inhibition than curcumin by inducing ER stress-dependent cell apoptosis in human prostate cells. The reduction of CHOP expression by siRNA partially abrogated WZ35-induced cell apoptosis. WZ35 also dose-dependently induced cell cycle arrest in the G2/M phase. Furthermore, we found that WZ35 treatment for 30 min significantly induced reactive oxygen species (ROS) production in PC-3 cells. Co-treatment with the ROS scavenger NAC completely abrogated the induction of WZ35 on cell apoptosis, ER stress activation, and cell cycle arrest, indicating an upstream role of ROS generation in mediating the anti-cancer effect of WZ35. Taken together, this work presents the novel anticancer candidate WZ35 for the treatment of prostate cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human prostate cancer treatment. The online version of this article (doi:10.1186/s12885-015-1851-3) contains supplementary material, which is available to authorized users

  3. Cadmium-induced teratogenicity: Association with ROS-mediated endoplasmic reticulum stress in placenta

    International Nuclear Information System (INIS)

    Wang, Zhen; Wang, Hua; Xu, Zhong Mei; Ji, Yan-Li; Chen, Yuan-Hua; Zhang, Zhi-Hui; Zhang, Cheng; Meng, Xiu-Hong; Zhao, Mei; Xu, De-Xiang

    2012-01-01

    The placenta is essential for sustaining the growth of the fetus. An increased endoplasmic reticulum (ER) stress has been associated with the impaired placental and fetal development. Cadmium (Cd) is a potent teratogen that caused fetal malformation and growth restriction. The present study investigated the effects of maternal Cd exposure on placental and fetal development. The pregnant mice were intraperitoneally injected with CdCl 2 (4.5 mg/kg) on gestational day 9. As expected, maternal Cd exposure during early limb development significantly increased the incidences of forelimb ectrodactyly in fetuses. An obvious impairment in the labyrinth, a highly developed tissue of blood vessels, was observed in placenta of mice treated with CdCl 2 . In addition, maternal Cd exposure markedly repressed cell proliferation and increased apoptosis in placenta. An additional experiment showed that maternal Cd exposure significantly upregulated the expression of GRP78, an ER chaperone. Moreover, maternal Cd exposure induced the phosphorylation of placental eIF2α, a downstream molecule of PERK signaling. In addition, maternal Cd exposure significantly increased the level of placental CHOP, another target of PERK signaling, indicating that the unfolded protein response (UPR) signaling was activated in placenta of mice treated with CdCl 2 . Interestingly, alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, significantly alleviated Cd-induced placental ER stress and UPR. Taken together, these results suggest that reactive oxygen species (ROS)-mediated ER stress might be involved in Cd-induced impairment on placental and fetal development. Antioxidants may be used as pharmacological agents to protect against Cd-induced fetal malformation and growth restriction. -- Highlights: ► Cd induces fetal malformation and growth restriction. ► Cd induced placental ER stress and UPR. ► PBN alleviates Cd-induced ER stress and UPR in placenta. ► ROS-mediated ER stress might

  4. ROS-mediated abiotic stress-induced programmed cell death in plants

    Directory of Open Access Journals (Sweden)

    Veselin ePetrov

    2015-02-01

    Full Text Available During the course of their ontogenesis, plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD. This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help to develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.

  5. Detection of ROS Induced Proteomic Signatures by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2017-07-01

    Full Text Available Reversible and irreversible post-translational modifications (PTMs induced by endogenously generated reactive oxygen species (ROS in regulatory enzymes and proteins plays an essential role in cellular signaling. Almost all cellular processes including metabolism, transcription, translation and degradation have been identified as containing redox regulated proteins. Specific redox modifications of key amino acids generated by ROS offers a dynamic and versatile means to rapidly alter the activity or functional structure of proteins in response to biochemical, environmental, genetic and pathological perturbations. How the proteome responds to these stimuli is of critical importance in oxidant physiology, as it can regulate the cell stress response by reversible and irreversible PTMs, affecting protein activity and protein-protein interactions. Due to the highly labile nature of many ROS species, applying redox proteomics can provide a signature footprint of the ROS species generated. Ideally redox proteomic approaches would allow; (1 the identification of the specific PTM, (2 identification of the amino acid residue that is modified and (3 the percentage of the protein containing the PTM. New developments in MS offer the opportunity of a more sensitive targeted proteomic approach and retrospective data analysis. Subsequent bioinformatics analysis can provide an insight into the biochemical and physiological pathways or cell signaling cascades that are affected by ROS generation. This mini-review will detail current redox proteomic approaches to identify and quantify ROS induced PTMs and the subsequent effects on cellular signaling.

  6. Activation of the Small GTPase Rap1 Inhibits Choroidal Neovascularization by Regulating Cell Junctions and ROS Generation in Rats.

    Science.gov (United States)

    Li, Jiajia; Zhang, Rong; Wang, Caixia; Wang, Xin; Xu, Man; Ma, Jingxue; Shang, Qingli

    2018-03-30

    Choroidal neovascularization (CNV) is a common vision-threatening complication associated with many  fundus diseases. The retinal pigment epithelial (RPE) cell junction barrier has critical functions in preventing CNV, and oxidative stress can cause compromise of barrier integrity and induce angiogenesis. Rap1, a small guanosine triphosphatase (GTPase), is involved in regulating endothelial and epithelial cell junctions. In this work, we explored the function and mechanism of Rap1 in CNV in vivo. A laser-induced rat CNV model was developed. Rap1 was activated through intravitreal injection of the Rap1 activator 8CPT-2'-O-Me-cAMP (8CPT). At 14 days after laser treatment, CNV size in RPE/choroid flat mounts was measured by fluorescein isothiocyanate-dextran staining. Expression of vascular endothelial growth factor (VEGF) and cell junction proteins in RPE/choroid tissues were analyzed by western blots and quantitative real-time PCR assays. Reactive oxygen species (ROS) in RPE cells were detectedbydichloro-dihydro-fluorescein diacetate assays. The antioxidant apocynin was intraperitoneally injected into rats. Activating Rap1 by 8CPT significantly reduced CNV size and VEGF expression in the rat CNV model. Rap1 activation enhanced protein and mRNA levels of ZO-1 and occludin, two tight junction proteins in the RPE barrier. In addition, reducing ROS generation by injection of apocynin, a NADPH oxidase inhibitor, inhibited CNV formation. Rap1 activation reduced ROS generation and expression of NADPH oxidase 4. Rap1 activation inhibits CNV through regulating barrier integrity and ROS generation of RPE in vivo, and selectively activating Rap1 may be a way to reduce vision loss from CNV.

  7. ROS and RNS in plant physiology: an overview.

    Science.gov (United States)

    Del Río, Luis A

    2015-05-01

    The production of reactive oxygen species (ROS) is the unavoidable consequence of aerobic life. ROS is a collective term that includes both oxygen radicals, like superoxide (O 2. -) and hydroxyl (·OH) radicals, and other non-radicals such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2 or (1)Δg), etc. In plants, ROS are produced in different cell compartments and are oxidizing species, particularly hydroxyl radicals and singlet oxygen, that can produce serious damage in biological systems (oxidative stress). However, plant cells also have an array of antioxidants which, normally, can scavenge the excess oxidants produced and so avoid deleterious effects on the plant cell bio-molecules. The concept of 'oxidative stress' was re-evaluated in recent years and the term 'oxidative signalling' was created. This means that ROS production, apart from being a potentially harmful process, is also an important component of the signalling network that plants use for their development and for responding to environmental challenges. It is known that ROS play an important role regulating numerous biological processes such as growth, development, response to biotic and environmental stresses, and programmed cell death. The term reactive nitrogen species (RNS) includes radicals like nitric oxide (NO· ) and nitric dioxide (NO2.), as well as non-radicals such as nitrous acid (HNO2) and dinitrogen tetroxide (N2O4), among others. RNS are also produced in plants although the generating systems have still not been fully characterized. Nitric oxide (NO·) has an important function as a key signalling molecule in plant growth, development, and senescence, and RNS, like ROS, also play an important role as signalling molecules in the response to environmental (abiotic) stress. Similarly, NO· is a key mediator, in co-operation with ROS, in the defence response to pathogen attacks in plants. ROS and RNS have been demonstrated to have an increasingly important role in biology and medicine

  8. Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease

    Directory of Open Access Journals (Sweden)

    Filippo Scialò

    2017-06-01

    Full Text Available Reactive Oxygen Species (ROS can cause oxidative damage and have been proposed to be the main cause of aging and age-related diseases including cancer, diabetes and Parkinson's disease. Accordingly, mitochondria from old individuals have higher levels of ROS. However, ROS also participate in cellular signaling, are instrumental for several physiological processes and boosting ROS levels in model organisms extends lifespan. The current consensus is that low levels of ROS are beneficial, facilitating adaptation to stress via signaling, whereas high levels of ROS are deleterious because they trigger oxidative stress. Based on this model the amount of ROS should determine the physiological effect. However, recent data suggests that the site at which ROS are generated is also instrumental in determining effects on cellular homeostasis. The best example of site-specific ROS signaling is reverse electron transport (RET. RET is produced when electrons from ubiquinol are transferred back to respiratory complex I, reducing NAD+ to NADH. This process generates a significant amount of ROS. RET has been shown to be instrumental for the activation of macrophages in response to bacterial infection, re-organization of the electron transport chain in response to changes in energy supply and adaptation of the carotid body to changes in oxygen levels. In Drosophila melanogaster, stimulating RET extends lifespan. Here, we review what is known about RET, as an example of site-specific ROS signaling, and its implications for the field of redox biology.

  9. Endogenous mechanisms of reactive oxygen species (ROS generation

    Directory of Open Access Journals (Sweden)

    Agata Sarniak

    2016-11-01

    Full Text Available The main cellular source of reactive oxygen species (ROS is mitochondrial respiratory chain and active NADPH responsible for “respiratory burst” of phagocytes. Whatsmore ROS are produced in endoplasmic reticulum, peroxisomes, with the participation of xanthine and endothelial oxidase and during autoxidation process of small molecules. Mitochondrial respiratory chain is the main cellular source of ROS. It is considered that in aerobic organisms ROS are mainly formed during normal oxygen metabolism, as byproducts of oxidative phosphorylation, during the synthesis of ATP. The intermembranous phagocyte enzyme – activated NADPH oxidase, responsible for the “respiratory burst” of phagocytes, which is another source of ROS, plays an important role in defense of organism against infections.The aim of this article is to resume actuall knowledge about structure and function of the mitochondrial electron transport chain in which ROS are the byproducts and about NADPH oxidase as well as the function of each of its components in the “respiratory burst” of phagocytes.

  10. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model

    Science.gov (United States)

    Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo

    2016-02-01

    In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide

  11. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging.

    Science.gov (United States)

    Zang, Xinshan; Geng, Xiaoli; Wang, Fei; Liu, Zhenshan; Zhang, Liyuan; Zhao, Yue; Tian, Xuejun; Ni, Zhongfu; Yao, Yingyin; Xin, Mingming; Hu, Zhaorong; Sun, Qixin; Peng, Huiru

    2017-01-14

    The yield of wheat (Triticum aestivum L.), an important crop, is adversely affected by heat stress in many regions of the world. However, the molecular mechanisms underlying thermotolerance are largely unknown. A novel ferritin gene, TaFER, was identified from our previous heat stress-responsive transcriptome analysis of a heat-tolerant wheat cultivar (TAM107). TaFER was mapped to chromosome 5B and named TaFER-5B. Expression pattern analysis revealed that TaFER-5B was induced by heat, polyethylene glycol (PEG), H 2 O 2 and Fe-ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA). To confirm the function of TaFER-5B in wheat, TaFER-5B was transformed into the wheat cultivar Jimai5265 (JM5265), and the transgenic plants exhibited enhanced thermotolerance. To examine whether the function of ferritin from mono- and dico-species is conserved, TaFER-5B was transformed into Arabidopsis, and overexpression of TaFER-5B functionally complemented the heat stress-sensitive phenotype of a ferritin-lacking mutant of Arabidopsis. Moreover, TaFER-5B is essential for protecting cells against heat stress associated with protecting cells against ROS. In addition, TaFER-5B overexpression also enhanced drought, oxidative and excess iron stress tolerance associated with the ROS scavenging. Finally, TaFER-5B transgenic Arabidopsis and wheat plants exhibited improved leaf iron content. Our results suggest that TaFER-5B plays an important role in enhancing tolerance to heat stress and other abiotic stresses associated with the ROS scavenging.

  12. Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS Production

    Directory of Open Access Journals (Sweden)

    Abrar Ul Haq Khan

    2016-01-01

    Full Text Available Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS generate reactive oxygen species (ROS through mitochondrial activity. To limit the deleterious effects of excess ROS, certain gene promoters contain antioxidant response elements (ARE, e.g. the genes NQO-1 and HO-1. ROS induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and also the MAPK ERK5 and decreases KEAP1 mRNA. ERK5 activates the transcription factor MEF2, which binds to the promoter of the miR-23a–27a–24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding to its 3′UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1. Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant response to protect themselves from ROS.

  13. Macranthoidin B Modulates Key Metabolic Pathways to Enhance ROS Generation and Induce Cytotoxicity and Apoptosis in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Xing Fan

    2018-04-01

    Full Text Available Background/Aims: Induction of oxidative stress and reactive oxygen species (ROS mediated-apoptosis have been utilized as effective strategies in anticancer therapy. Macranthoidin B (MB is a potent inducer of ROS-mediated apoptosis in cancer, but its mechanism of action is poorly understood. Method: Superoxide production with MB exposure in colorectal cancer (CRC cells was measured using lucigenin chemiluminescence and real-time PCR. MB’s inhibitory effect on proliferation and viability of CRC cells was determined by proliferation assays. MB’s effect on apoptosis of CRC cells was determined by Western blotting and annexin V-FITC/PI staining. MB’s effect on the growth of CRC xenografts in mice was assessed. An established metabolomics profiling platform combining ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS with gas chromatography-mass spectrometry (GC-MS was performed to determine MB’s effect on total metabolite variation in CRC cells. Results: We found that MB increases ROS generation via modulating key metabolic pathways. Using metabolomics profiling platform combining LC-MS with GC-MS, a total of 236 metabolites were identified in HCT-116 cells in which 31 metabolites were determined to be significantly regulated (p ≤ 0.05 after MB exposure. A number of key metabolites revealed by metabolomics analysis include glucose, fructose, citrate, arginine, phenylalanine, and S-adenosylhomocysteine (SAH, suggesting specific modulation of metabolism on carbohydrates, amino acids and peptides, lipids, nucleotide, cofactors and vitamins in HCT-116 CRC cells with MB treatment highly associated with apoptosis triggered by enhanced ROS and activated caspase-3. Conclusion: Our results demonstrate that MB represses CRC cell proliferation by inducing ROS-mediated apoptosis.

  14. Macranthoidin B Modulates Key Metabolic Pathways to Enhance ROS Generation and Induce Cytotoxicity and Apoptosis in Colorectal Cancer.

    Science.gov (United States)

    Fan, Xing; Rao, Jun; Zhang, Ziwei; Li, Dengfeng; Cui, Wenhao; Zhang, Jun; Wang, Hua; Tou, Fangfang; Zheng, Zhi; Shen, Qiang

    2018-01-01

    Induction of oxidative stress and reactive oxygen species (ROS) mediated-apoptosis have been utilized as effective strategies in anticancer therapy. Macranthoidin B (MB) is a potent inducer of ROS-mediated apoptosis in cancer, but its mechanism of action is poorly understood. Superoxide production with MB exposure in colorectal cancer (CRC) cells was measured using lucigenin chemiluminescence and real-time PCR. MB's inhibitory effect on proliferation and viability of CRC cells was determined by proliferation assays. MB's effect on apoptosis of CRC cells was determined by Western blotting and annexin V-FITC/PI staining. MB's effect on the growth of CRC xenografts in mice was assessed. An established metabolomics profiling platform combining ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS) with gas chromatography-mass spectrometry (GC-MS) was performed to determine MB's effect on total metabolite variation in CRC cells. We found that MB increases ROS generation via modulating key metabolic pathways. Using metabolomics profiling platform combining LC-MS with GC-MS, a total of 236 metabolites were identified in HCT-116 cells in which 31 metabolites were determined to be significantly regulated (p ≤ 0.05) after MB exposure. A number of key metabolites revealed by metabolomics analysis include glucose, fructose, citrate, arginine, phenylalanine, and S-adenosylhomocysteine (SAH), suggesting specific modulation of metabolism on carbohydrates, amino acids and peptides, lipids, nucleotide, cofactors and vitamins in HCT-116 CRC cells with MB treatment highly associated with apoptosis triggered by enhanced ROS and activated caspase-3. Our results demonstrate that MB represses CRC cell proliferation by inducing ROS-mediated apoptosis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  15. Oxidative stress activates the TRPM2-Ca2+-CaMKII-ROS signaling loop to induce cell death in cancer cells.

    Science.gov (United States)

    Wang, Qian; Huang, Lihong; Yue, Jianbo

    2017-06-01

    High intracellular levels of reactive oxygen species (ROS) cause oxidative stress that results in numerous pathologies, including cell death. Transient potential receptor melastatin-2 (TRPM2), a Ca 2+ -permeable cation channel, is mainly activated by intracellular adenosine diphosphate ribose (ADPR) in response to oxidative stress. Here we studied the role and mechanisms of TRPM2-mediated Ca 2+ influx on oxidative stress-induced cell death in cancer cells. We found that oxidative stress activated the TRPM2-Ca 2+ -CaMKII cascade to inhibit early autophagy induction, which ultimately led to cell death in TRPM2 expressing cancer cells. On the other hand, TRPM2 knockdown switched cells from cell death to autophagy for survival in response to oxidative stress. Moreover, we found that oxidative stress activated the TRPM2-CaMKII cascade to further induce intracellular ROS production, which led to mitochondria fragmentation and loss of mitochondrial membrane potential. In summary, our data demonstrated that oxidative stress activates the TRPM2-Ca 2+ -CaMKII-ROS signal loop to inhibit autophagy and induce cell death. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The effect of artichoke (Cynara scolymus L.) extract on ROS generation in HUVEC cells.

    Science.gov (United States)

    Juzyszyn, Z; Czerny, B; Pawlik, A; Droździk, M

    2008-09-01

    The effect of an artichoke extract on induced reactive oxygen species (ROS) generation in cultured human umbilical endothelial cells (HUVECs) and its reductive properties were evaluated. Preincubation of HUVEC cells with the artichoke extract at concentrations of 25-100 microg/mL for 24 h abolished ROS generation induced by LPS and oxyLDL as evaluated by the fluorescence intensity of 2',7'-dichlorofluorescein (DCF). Potent, concentration-dependent reductive properties of the artichoke extract were demonstrated by the reduction kinetics of cytochrome c in reference to ascorbate were also revealed. The results of the present study the warrant application of artichoke extracts as endothelium protecting agents.

  17. Muramyl dipeptide (MDP) induces reactive oxygen species (ROS) generation via the NOD2/COX-2/NOX4 signaling pathway in human umbilical vein endothelial cells (HUVECs).

    Science.gov (United States)

    Kong, Ling-Jun; Liu, Xiao-Qian; Xue, Ying; Gao, Wei; Lv, Qian-Zhou

    2018-03-20

    Vascular endothelium dysfunction caused by oxidative stress accelerates the pathologic process of cardiovascular diseases. NOD2, an essential receptor of innate immune system, has been demonstrated to play a critical role in atherosclerosis. Here, the aim of our study was to investigate the effect and underlying molecular mechanism of muramyl dipeptide (MDP) on NOX4-mediated ROS generation in human umbilical vein endothelial cells (HUVECs). 2,7-dichlorofluorescein diacetate staining was to measure the intracellular ROS level and showed MDP promoted ROS production in a time- and dose-dependent manner. The mRNA and protein levels of NOX4 and COX-2 were detected by real-time PCR and western blot. Small interfering RNA (siRNA) was used to silence NOD2 or COX-2 gene expression and investigate the mechanism of NOD2-mediated signaling pathway in HUVECs. Data showed that MDP induced NOX4 and COX-2 expression in a time- and dose-dependent manner. NOD2 knock-down suppressed up-regulation of COX-2 and NOX4 in HUVECs treated with MDP. Furthermore, silence of COX-2 in HUVECs down-regulated the NOX4 expression after MDP stimulation. Collectively, we indicated that NOD2 played a leading role in MDP-induced COX-2/NOX4/ROS signaling pathway in HUVECs, which was a novel regulatory mechanism in the progress of ROS generation.

  18. Shift in aggregation, ROS generation, antioxidative defense, lysozyme and acetylcholinesterase activities in the cells of an Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2016-09-01

    Washing soda, chemically identified as anhydrous sodium carbonate, is a popular cleaning agent among the rural and urban populations of India which often contaminates the freshwater ponds and lakes, the natural habitat of sponge Eunapius carteri. Present investigation deals with estimation of cellular aggregation, generation of ROS and activities of antioxidant enzymes, lysozyme and acetylcholinesterase in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Prolonged treatment of washing soda inhibited the degree of cellular aggregation. Experimental exposure of 8 and 16mg/l of sodium carbonate for 48h elevated the physiological level of reactive oxygen species (ROS) generation in the agranulocytes, semigranulocytes and granulocytes of E. carteri, whereas, treatment of 192h inhibited the ROS generation in three cellular morphotypes. Activities of superoxide dismutase, catalase and glutathione-S-transferase were recorded to be inhibited under prolonged exposure of washing soda. Washing soda mediated inhibition of ROS generation and depletion in the activities of antioxidant enzymes were indicative to an undesirable shift in cytotoxic status and antioxidative defense in E. carteri. Inhibition in the activity of lysozyme under the treatment of sodium carbonate was suggestive to a severe impairment of the innate immunological efficiency of E. carteri distributed in the washing soda contaminated habitat. Washing soda mediated inhibition in the activity of acetylcholinesterase indicated its neurotoxicity in E. carteri. Washing soda, a reported environmental contaminant, affected adversely the immunophysiological status of E. carteri with reference to cellular aggregation, oxidative stress, antioxidative defense, lysozyme and acetylcholinesterase activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF.

    Science.gov (United States)

    Xiao, Weihua; Chen, Peijie; Wang, Ru; Dong, Jingmei

    2013-01-01

    We tested the hypothesis that overload training inhibits the phagocytosis and the reactive oxygen species (ROS) generation of peritoneal macrophages (Mϕs), and that insulin-like growth factor-1(IGF-1) and mechano-growth factor (MGF) produced by macrophages may contribute to this process. Rats were randomized to two groups, sedentary control group (n = 10) and overload training group (n = 10). The rats of overload training group were subjected to 11 weeks of experimental training protocol. Blood sample was used to determine the content of hemoglobin, testosterone, and corticosterone. The phagocytosis and the ROS generation of Mϕs were measured by the uptake of neutral red and the flow cytometry, respectively. IGF-1 and MGF mRNA levels in Mϕs were determined by real-time PCR. In addition, we evaluated the effects of IGF-1 and MGF peptide on phagocytosis and ROS generation of Mϕs in vitro. The data showed that overload training significantly decreased the body weight (19.3 %, P overload training significantly decreased the phagocytosis (27 %, P overload training group increased significantly compared with the control group (21-fold and 92-fold, respectively; P overload training inhibits the phagocytosis and the ROS generation of peritoneal macrophages, and that MGF produced by macrophages may play a key role in this process. This may represent a novel mechanism of immune suppression induced by overload training.

  20. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage.

    Science.gov (United States)

    Chen, Chung-Yi; Yen, Ching-Yu; Wang, Hui-Ru; Yang, Hui-Ping; Tang, Jen-Yang; Huang, Hurng-Wern; Hsu, Shih-Hsien; Chang, Hsueh-Wei

    2016-11-05

    The development of drugs that selectively kill oral cancer cells but are less harmful to normal cells still provide several challenges. In this study, the antioral cancer effects of tenuifolide B (TFB), extracted from the stem of the plant Cinnamomum tenuifolium are evaluated in terms of their effects on cancer cell viability, cell cycle analysis, apoptosis, oxidative stress, and DNA damage. Cell viability of oral cancer cells (Ca9-22 and CAL 27) was found to be significantly inhibited by TFB in a dose-responsive manner in terms of ATP assay, yielding IC 50 = 4.67 and 7.05 μM (24 h), but are less lethal to normal oral cells (HGF-1). Dose-responsive increases in subG1 populations as well as the intensities of flow cytometry-based annexin V/propidium iodide (PI) analysis and pancaspase activity suggested that apoptosis was inducible by TFB in these two types of oral cancer cells. Pretreatment with the apoptosis inhibitor (Z-VAD-FMK) reduced the annexin V intensity of these two TFB-treated oral cancer cells, suggesting that TFB induced apoptosis-mediated cell death to oral cancer cells. Cleaved-poly (ADP-ribose) polymerase (PARP) and cleaved-caspases 3, 8, and 9 were upregulated in these two TFB-treated oral cancer cells over time but less harmful for normal oral HGF-1 cells. Dose-responsive and time-dependent increases in reactive oxygen species (ROS) and decreases in mitochondrial membrane potential (MitoMP) in these two TFB-treated oral cancer cells suggest that TFB may generate oxidative stress as measured by flow cytometry. N -acetylcysteine (NAC) pretreatment reduced the TFB-induced ROS generation and further validated that ROS was relevant to TFB-induced cell death. Both flow cytometry and Western blotting demonstrated that the DNA double strand marker γH2AX dose-responsively increased in TFB-treated Ca9-22 cells and time-dependently increased in two TFB-treated oral cancer cells. Taken together, we infer that TFB can selectively inhibit cell proliferation of

  1. Causation by Diesel Exhaust Particles of Endothelial Dysfunctions in Cytotoxicity, Pro-inflammation, Permeability, and Apoptosis Induced by ROS Generation.

    Science.gov (United States)

    Tseng, Chia-Yi; Wang, Jhih-Syuan; Chao, Ming-Wei

    2017-10-01

    Epidemiological studies suggest that an increase of diesel exhaust particles (DEP) in ambient air corresponds to an increase in hospital-recorded myocardial infarctions within 48 h after exposure. Among the many theories to explain this data are endothelial dysfunction and translocation of DEP into vasculature. The mechanisms for such DEP-induced vascular permeability remain unknown. One of the major mechanisms underlying the effects of DEP is suggested to be oxidative stress. Experiments have shown that DEP induce the generation of reactive oxygen species (ROS), such as superoxide anion and H 2 O 2 in the HUVEC tube cells. Transcription factor Nrf2 is translocated to the cell nucleus, where it activates transcription of the antioxidative enzyme HO-1 and sequentially induces the release of vascular permeability factor VEGF-A. Furthermore, a recent study shows that DEP-induced intracellular ROS may cause the release of pro-inflammatory TNF-α and IL-6, which may induce endothelial permeability as well by promoting VEGF-A secretion independently of HO-1 activation. These results demonstrated that the adherens junction molecule, VE-cadherin, becomes redistributed from the membrane at cell-cell borders to the cytoplasm in response to DEP, separating the plasma membranes of adjacent cells. DEP were occasionally found in endothelial cell cytoplasm and in tube lumen. In addition, the induced ROS is cytotoxic to the endothelial tube-like HUVEC. Acute DEP exposure stimulates ATP depletion, followed by depolarization of their actin cytoskeleton, which sequentially inhibits PI3K/Akt activity and induces endothelial apoptosis. Nevertheless, high-dose DEP augments tube cell apoptosis up to 70 % but disrupts the p53 negative regulator Mdm2. In summary, exposure to DEP affects parameters influencing vasculature permeability and viability, i.e., oxidative stress and its upregulated antioxidative and pro-inflammatory responses, which sequentially induce vascular permeability

  2. Chemically Regulated ROS Generation from Gold Nanoparticles for Enzyme-Free Electrochemiluminescent Immunosensing.

    Science.gov (United States)

    Higashi, Yui; Mazumder, Joyotu; Yoshikawa, Hiroyuki; Saito, Masato; Tamiya, Eiichi

    2018-04-17

    In the present work, we report on an enzyme-free electrochemiluminescent (ECL) immunosensing scheme utilizing the catalytic generation of reactive oxygen species (ROS) from gold nanoparticles (AuNPs) (diameter ≥5 nm) dispersed in aqueous solutions of trishydroxymethylaminomethane (Tris). First, to examine this catalytic pathway in detail, the effects of various factors such as the AuNP size and concentration, dispersant type and concentration, and dissolved oxygen were investigated using the electrochemiluminescence (ECL) of luminol. It was found that the catalytic generation of ROS from AuNPs can be regulated chemically by altering conditions such as the type, concentration, and pH of the solution that the AuNPs are dispersed in. Under the best conditions studied in this work, the AuNPs displayed high catalytic activity toward ROS generation, with an estimated apparent turnover number per AuNP of 0.1 s -1 , comparable to those of several common peroxide-producing enzymes. Following these studies, this phenomenon was applied to develop a one-step enzyme-free ECL immunosensor based on sandwiching the target analyte using antibody-conjugated magnetic beads (MB) and AuNPs. Using IgA as a model analyte, the developed immunosensor was able to detect the target in the range of 1 ng/mL to 10 μg/mL, with the lower detection limit being comparable to those of commercial assays for the same target. Altering the antibodies used to modify the MB and AuNPs could further improve the detection limit as well as expand the applicability of this immunoassay to the detection of other analytes.

  3. A novel copper complex induces ROS generation in doxorubicin resistant Ehrlich ascitis carcinoma cells and increases activity of antioxidant enzymes in vital organs in vivo

    International Nuclear Information System (INIS)

    Mookerjee, Ananda; Roy, Syamal; Choudhuri, Soumitra K; Basu, Jayati Mookerjee; Majumder, Surajit; Chatterjee, Shilpak; Panda, Gouri S; Dutta, Pranabananda; Pal, Smarajit; Mukherjee, Pratima; Efferth, Thomas

    2006-01-01

    In search of a suitable GSH-depleting agent, a novel copper complex viz., copper N-(2-hydroxyacetophenone) glycinate (CuNG) has been synthesized, which was initially found to be a potential resistance modifying agent and later found to be an immunomodulator in mice model in different doses. The objective of the present work was to decipher the effect of CuNG on reactive oxygen species (ROS) generation and antioxidant enzymes in normal and doxorubicin-resistant Ehrlich ascites carcinoma (EAC/Dox)-bearing Swiss albino mice. The effect of CuNG has been studied on ROS generation, multidrug resistance-associated protein1 (MRP1) expression and on activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). CuNG increased ROS generation and reduced MRP1 expression in EAC/Dox cells while only temporarily depleted glutathione (GSH) within 2 h in heart, kidney, liver and lung of EAC/Dox bearing mice, which were restored within 24 h. The level of liver Cu was observed to be inversely proportional to the level of GSH. Moreover, CuNG modulated SOD, CAT and GPx in different organs and thereby reduced oxidative stress. Thus nontoxic dose of CuNG may be utilized to reduce MRP1 expression and thus sensitize EAC/Dox cells to standard chemotherapy. Moreover, CuNG modulated SOD, CAT and and GPx activities to reduce oxidative stress in some vital organs of EAC/Dox bearing mice. CuNG treatment also helped to recover liver and renal function in EAC/Dox bearing mice. Based on our studies, we conclude that CuNG may be a promising candidate to sensitize drug resistant cancers in the clinic

  4. ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-β1 pathway.

    Science.gov (United States)

    Jiang, Mingxia; Zhang, Haifen; Zhai, Lijie; Ye, Bianliang; Cheng, Yin; Zhai, Chengkai

    2017-11-16

    Growing evidence indicates that oxidative stress (OS) plays a pivotal role in Diabetic nephropathy (DN). In a previous study we demonstrated that ALA/LA protected HK-2 cells against high glucose-induced cytotoxicity. So we aimed to establish the glucose injury model of HK-2 cells and investigate the beneficial effects of ALA/LA on high glucose-induced excessive production of TGF-β1 and the possible mechanisms mediating the effects. The expression of OS markers in high glucose-induced HK-2 cells treated with ALA/LA., including the antioxidant enzymes and reactive oxygen species (ROS) production, as well as the apoptosis rate were assayed by ELISA and flow cytometry. The p38/transforming growth factor β 1 (TGF-β 1 ) signal pathway were measured by real-time RT-PCR and western blot. The modeling condition of glucose toxicity on HK-2 cells was at the glucose concentration of 40.9 mM. ALA/LA can significantly increase the activities of antioxidant enzymes and decrease ROS production stimulated by high glucose. The study also found that ALA/LA caused a decrease in the apoptosis rate and TGF-β 1 level of HK-2 cells under high glucose stress through the ROS/p38 pathway. ALA/LA exerts protective effects in vitro through inhibition of ROS generation, down regulation of the activation of the p38MAPK pathway and the expression of TGF-β 1 in HK-2 cells.

  5. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    International Nuclear Information System (INIS)

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2012-01-01

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A 2 and protein kinase C-α, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-α and cPLA 2 -α in this pathway. -- Highlights: ► Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. ► The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. ► NADPH oxidase lies downstream of cPLA 2 -α and PKC-α in this pathway. ► ROS generation is essential for the stimulation of macrophage proliferation by C1P.

  6. Non-thermal plasma induces mitochondria-mediated apoptotic signaling pathway via ROS generation in HeLa cells.

    Science.gov (United States)

    Li, Wei; Yu, K N; Ma, Jie; Shen, Jie; Cheng, Cheng; Zhou, Fangjian; Cai, Zhiming; Han, Wei

    2017-11-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. Although increasing evidence suggests that NTP selectively induces apoptosis in some types of tumor cells, the molecular mechanisms underlying this phenomenon remain unclear. In this study, we further investigated possible molecular mechanisms for NTP-induced apoptosis of HeLa cells. The results showed that NTP exposure significantly inhibited the growth and viability of HeLa cells. Morphological observation and flow cytometry analysis demonstrated that NTP exposure induced HeLa cell apoptosis. NTP exposure also activated caspase-9 and caspase-3, which subsequently cleaved poly (ADP- ribose) polymerase. Furthermore, NTP exposure suppressed Bcl-2 expression, enhanced Bax expression and translocation to mitochondria, activated mitochondria-mediated apoptotic pathway, followed by the release of cytochrome c. Further studies showed that NTP treatment led to ROS generation, whereas blockade of ROS generation by N-acetyl-l-cysteine (NAC, ROS scavengers) significantly prevented NTP-induced mitochondrial alteration and subsequent apoptosis of HeLa cells via suppressing Bax translocation, cytochrome c and caspase-3 activation. Taken together, our results indicated that NTP exposure induced mitochondria-mediated intrinsic apoptosis of HeLa cells was activated by ROS generation. These findings provide insights to the therapeutic potential and clinical research of NTP as a novel tool in cervical cancer treatment. Copyright © 2017. Published by Elsevier Inc.

  7. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes.

    Science.gov (United States)

    Mehterov, Nikolay; Balazadeh, Salma; Hille, Jacques; Toneva, Valentina; Mueller-Roeber, Bernd; Gechev, Tsanko

    2012-10-01

    The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ, which stimulate the intracellular formation of H₂O₂ or superoxide anions, respectively, trigger cell death in loh2 but do not lead to visible damage in atr7. To study gene expression during oxidative stress and ROS-induced programmed cell death, two platforms for multi-parallel quantitative real-time PCR (qRT-PCR) analysis of 217 antioxidant and 180 ROS marker genes were employed. The qRT-PCR analyses revealed AT- and PQ-induced expression of many ROS-responsive genes mainly in loh2, confirming that an oxidative burst plays a role in the activation of the cell death in this mutant. Some of the genes were specifically regulated by either AT or PQ, serving as markers for particular types of ROS. Genes significantly induced by both AT and PQ in loh2 included transcription factors (ANAC042/JUB1, ANAC102, DREB19, HSFA2, RRTF1, ZAT10, ZAT12, ethylene-responsive factors), signaling compounds, ferritins, alternative oxidases, and antioxidant enzymes. Many of these genes were upregulated in atr7 compared to loh2 under non-stress conditions at the first time point, indicating that higher basal levels of ROS and higher antioxidant capacity in atr7 are responsible for the enhanced tolerance to oxidative stress and suggesting a possible tolerance against multiple stresses of this mutant. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential......Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems...... investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...

  9. Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes.

    Science.gov (United States)

    Livanos, Pantelis; Galatis, Basil; Apostolakos, Panagiotis

    2016-07-01

    Subsidiary cell generation in Poaceae is an outstanding example of local intercellular stimulation. An inductive stimulus emanates from the guard cell mother cells (GMCs) towards their laterally adjacent subsidiary cell mother cells (SMCs) and triggers the asymmetrical division of the latter. Indole-3-acetic acid (IAA) immunolocalization in Zea mays protoderm confirmed that the GMCs function as local sources of auxin and revealed that auxin is polarly accumulated between GMCs and SMCs in a timely-dependent manner. Besides, staining techniques showed that reactive oxygen species (ROS) exhibit a closely similar, also time-dependent, pattern of appearance suggesting ROS implication in subsidiary cell formation. This phenomenon was further investigated by using the specific NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, menadione which leads to ROS overproduction, and H2O2. Treatments with diphenylene iodonium, N-acetyl-cysteine, and menadione specifically blocked SMC polarization and asymmetrical division. In contrast, H2O2 promoted the establishment of SMC polarity and subsequently subsidiary cell formation in "younger" protodermal areas. Surprisingly, H2O2 favored the asymmetrical division of the intervening cells of the stomatal rows leading to the creation of extra apical subsidiary cells. Moreover, H2O2 altered IAA localization, whereas synthetic auxin analogue 1-napthaleneacetic acid enhanced ROS accumulation. Combined treatments with ROS modulators along with 1-napthaleneacetic acid or 2,3,5-triiodobenzoic acid, an auxin efflux inhibitor, confirmed the crosstalk between ROS and auxin functioning during subsidiary cell generation. Collectively, our results demonstrate that ROS are critical partners of auxin during development of Z. mays stomatal complexes. The interplay between auxin and ROS seems to be spatially and temporarily regulated.

  10. A Role of Fluoride on Free Radical Generation and Oxidative Stress in BV-2 Microglia Cells

    Directory of Open Access Journals (Sweden)

    Xi Shuhua

    2012-01-01

    Full Text Available The generation of ROS and lipid peroxidation has been considered to play an important role in the pathogenesis of chronic fluoride toxicity. In the present study, we observed that fluoride activated BV-2 microglia cell line by observing OX-42 expression in immunocytochemistry. Intracellular superoxide dismutase (SOD, glutathione (GSH, malondialdehyde (MDA, reactive oxygen species (ROS, superoxide anions (O2∙-, nitric oxide synthase (NOS, nitrotyrosine (NT and nitric oxide (NO, NOS in cell medium were determined for oxidative stress assessment. Our study found that NaF of concentration from 5 to 20 mg/L can stimuli BV-2 cells to change into activated microglia displaying upregulated OX-42 expression. SOD activities significantly decreased in fluoride-treated BV-2 cells as compared with control, and MDA concentrations and contents of ROS and O2∙- increased in NaF-treated cells. Activities of NOS in cells and medium significantly increased with fluoride concentrations in a dose-dependent manner. NT concentrations also increased significantly in 10 and 50 mg/L NaF-treated cells compared with the control cells. Our present study demonstrated that toxic effects of fluoride on the central nervous system possibly partly ascribed to activiting of microglia, which enhanced oxidative stress induced by ROS and reactive nitrogen species.

  11. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?

    NARCIS (Netherlands)

    de Vries, H.E.; Witte, M.; Hondius, D.; Rozemuller, A.J.M.; Drukarch, B.; Hoozemans, J.J.M.; van Horssen, J.

    2008-01-01

    Neurodegenerative diseases share various pathological features, such as accumulation of aberrant protein aggregates, microglial activation, and mitochondrial dysfunction. These pathological processes are associated with generation of reactive oxygen species (ROS), which cause oxidative stress and

  12. Increased Expression of the Innate Immune Receptor TLR10 in Obesity and Type-2 Diabetes: Association with ROS-Mediated Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sardar Sindhu

    2018-01-01

    Full Text Available Background/Aims: Metabolic diseases such as obesity and type-2 diabetes (T2D are known to be associated with chronic low-grade inflammation called metabolic inflammation together with an oxidative stress milieu found in the expanding adipose tissue. The innate immune Toll-like receptors (TLR such as TLR2 and TLR4 have emerged as key players in metabolic inflammation; nonetheless, TLR10 expression in the adipose tissue and its significance in obesity/T2D remain unclear. Methods: TLR10 gene expression was determined in the adipose tissue samples from healthy non-diabetic and T2D individuals, 13 each, using real-time RT-PCR. TLR10 protein expression was determined by immunohistochemistry, confocal microscopy, and flow cytometry. Regarding in vitro studies, THP-1 cells, peripheral blood mononuclear cells (PBMC, or primary monocytes were treated with hydrogen peroxide (H2O2 for induction of reactive oxygen species (ROS-mediated oxidative stress. Superoxide dismutase (SOD activity was measured using a commercial kit. Data (mean±SEM were compared using unpaired student’s t-test and P<0.05 was considered significant. Results: The adipose tissue TLR10 gene/protein expression was found to be significantly upregulated in obesity as well as T2D which correlated with body mass index (BMI. ROS-mediated oxidative stress induced high levels of TLR10 gene/protein expression in monocytic cells and PBMC. In these cells, oxidative stress induced a time-dependent increase in SOD activity. Pre-treatment of cells with anti-oxidants/ROS scavengers diminished the expression of TLR10. ROS-induced TLR10 expression involved the nuclear factor-kappaB (NF-κB/mitogen activated protein kinase (MAPK signaling as well as endoplasmic reticulum (ER stress. H2O2-induced oxidative stress interacted synergistically with palmitate to trigger the expression of TLR10 which associated with enhanced expression of proinflammatory cytokines/chemokine. Conclusion: Oxidative stress

  13. Increased Expression of the Innate Immune Receptor TLR10 in Obesity and Type-2 Diabetes: Association with ROS-Mediated Oxidative Stress.

    Science.gov (United States)

    Sindhu, Sardar; Akhter, Nadeem; Kochumon, Shihab; Thomas, Reeby; Wilson, Ajit; Shenouda, Steve; Tuomilehto, Jaakko; Ahmad, Rasheed

    2018-01-01

    Metabolic diseases such as obesity and type-2 diabetes (T2D) are known to be associated with chronic low-grade inflammation called metabolic inflammation together with an oxidative stress milieu found in the expanding adipose tissue. The innate immune Toll-like receptors (TLR) such as TLR2 and TLR4 have emerged as key players in metabolic inflammation; nonetheless, TLR10 expression in the adipose tissue and its significance in obesity/T2D remain unclear. TLR10 gene expression was determined in the adipose tissue samples from healthy non-diabetic and T2D individuals, 13 each, using real-time RT-PCR. TLR10 protein expression was determined by immunohistochemistry, confocal microscopy, and flow cytometry. Regarding in vitro studies, THP-1 cells, peripheral blood mononuclear cells (PBMC), or primary monocytes were treated with hydrogen peroxide (H2O2) for induction of reactive oxygen species (ROS)-mediated oxidative stress. Superoxide dismutase (SOD) activity was measured using a commercial kit. Data (mean±SEM) were compared using unpaired student's t-test and Pobesity as well as T2D which correlated with body mass index (BMI). ROS-mediated oxidative stress induced high levels of TLR10 gene/protein expression in monocytic cells and PBMC. In these cells, oxidative stress induced a time-dependent increase in SOD activity. Pre-treatment of cells with anti-oxidants/ROS scavengers diminished the expression of TLR10. ROS-induced TLR10 expression involved the nuclear factor-kappaB (NF-κB)/mitogen activated protein kinase (MAPK) signaling as well as endoplasmic reticulum (ER) stress. H2O2-induced oxidative stress interacted synergistically with palmitate to trigger the expression of TLR10 which associated with enhanced expression of proinflammatory cytokines/chemokine. Oxidative stress induces the expression of TLR10 which may represent an immune marker for metabolic inflammation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Wang, Feng; Zhou, Xixi; Liu, Wenlan; Sun, Xi; Chen, Chen; Hudson, Laurie G; Jian Liu, Ke

    2013-08-01

    Arsenic enhances the genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic cocarcinogenesis, and DNA repair proteins such as poly(ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlying arsenic inhibition of DNA repair. We report herein that arsenite-generated ROS/RNS inhibits PARP-1 activity in cells. Cellular exposure to arsenite, as well as hydrogen peroxide and NONOate (nitric oxide donor), decreased PARP-1 zinc content, enzymatic activity, and PARP-1 DNA binding. Furthermore, the effects of arsenite on PARP-1 activity, DNA binding, and zinc content were partially reversed by the antioxidant ascorbic acid, catalase, and the NOS inhibitor, aminoguanidine. Most importantly, arsenite incubation with purified PARP-1 protein in vitro did not alter PARP-1 activity or DNA-binding ability, whereas hydrogen peroxide or NONOate retained PARP-1 inhibitory activity. These results strongly suggest that cellular generation of ROS/RNS plays an important role in arsenite inhibition of PARP-1 activity, leading to the loss of PARP-1 DNA-binding ability and enzymatic activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Oxygen Consumption and Usage During Physical Exercise: The Balance Between Oxidative Stress and ROS-Dependent Adaptive Signaling

    Science.gov (United States)

    Zhao, Zhongfu; Koltai, Erika; Ohno, Hideki; Atalay, Mustafa

    2013-01-01

    Abstract The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein–protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling. Antioxid. Redox Signal. 18, 1208–1246. PMID:22978553

  16. ROS dependent copper toxicity in Hydra-biochemical and molecular study.

    Science.gov (United States)

    Zeeshan, Mohammed; Murugadas, Anbazhagan; Ghaskadbi, Surendra; Rajendran, Ramasamy Babu; Akbarsha, Mohammad Abdulkader

    2016-01-01

    Copper, an essential microelement, is known to be toxic to aquatic life at concentrations higher than that could be tolerated. Copper-induced oxidative stress has been documented in vitro, yet the in vivo effects of metal-induced oxidative stress have not been extensively studied in the lower invertebrates. The objective of the present study has been to find the effect of ROS-mediated toxicity of environmentally relevant concentrations of copper at organismal and cellular levels in Hydra magnipapillata. Exposure to copper at sublethal concentrations (0.06 and 0.1mg/L) for 24 or 48h resulted in generation of significant levels of intracellular reactive oxygen species (ROS). We infer that the free radicals here originate predominantly at the lysosomes but partly at the mitochondria also as visualized by H2-DHCFDA staining. Quantitative real-time PCR of RNA extracted from copper-exposed polyps revealed dose-dependent up-regulation of all antioxidant response genes (CAT, SOD, GPx, GST, GR, G6PD). Concurrent increase of Hsp70 and FoxO genes suggests the ability of polyps to respond to stress, which at 48h was not the same as at 24h. Interestingly, the transcript levels of all genes were down-regulated at 48h as compared to 24h incubation period. Comet assay indicated copper as a powerful genotoxicant, and the DNA damage was dose- as well as duration-dependent. Western blotting of proteins (Bax, Bcl-2 and caspase-3) confirmed ROS-mediated mitochondrial cell death in copper-exposed animals. These changes correlated well with changes in morphology, regeneration and aspects of reproduction. Taken together, the results indicate increased production of intracellular ROS in Hydra on copper exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Kwiatkowska, Aleksandra; Potocki, Leszek; Rawska, Ewa; Pabian, Sylwia; Kaplan, Jakub; Lewinska, Anna; Wnuk, Maciej

    2016-05-24

    Industrial yeast strains of economic importance used in winemaking and beer production are genomically diverse and subjected to harsh environmental conditions during fermentation. In the present study, we investigated wine yeast adaptation to chronic mild alcohol stress when cells were cultured for 100 generations in the presence of non-cytotoxic ethanol concentration. Ethanol-induced reactive oxygen species (ROS) and superoxide signals promoted growth rate during passages that was accompanied by increased expression of sirtuin proteins, Sir1, Sir2 and Sir3, and DNA-binding transcription regulator Rap1. Genome-wide array-CGH analysis revealed that yeast genome was shaped during passages. The gains of chromosomes I, III and VI and significant changes in the gene copy number in nine functional gene categories involved in metabolic processes and stress responses were observed. Ethanol-mediated gains of YRF1 and CUP1 genes were the most accented. Ethanol also induced nucleolus fragmentation that confirms that nucleolus is a stress sensor in yeasts. Taken together, we postulate that wine yeasts of different origin may adapt to mild alcohol stress by shifts in intracellular redox state promoting growth capacity, upregulation of key regulators of longevity, namely sirtuins and changes in the dosage of genes involved in the telomere maintenance and ion detoxification.

  18. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems

    Directory of Open Access Journals (Sweden)

    DINAKAR eCHALLABATHULA

    2016-02-01

    Full Text Available The present study reveals the importance of alternative oxidase (AOX pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 µmoles m-2 s-1 at 25 oC under a range of sorbitol concentrations from 0.4 M to 1.0M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 oC to 10 oC to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25 OC, the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation, under both hyper-osmotic (1.0 M sorbitol and sub-optimal temperature stress conditions (10 OC, while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG related to antioxidative system during hyper-osmotic stress. Nevertheless, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD and sub-optimal temperature (NADPH/NADP stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM, the observed changes in NaHCO3 dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(PH/NAD(P and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the

  19. Free radicals, reactive oxygen species, oxidative stress and its classification.

    Science.gov (United States)

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    Science.gov (United States)

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  1. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes.

    Directory of Open Access Journals (Sweden)

    Chia-Yi Tseng

    Full Text Available Exposure to diesel exhaust particles (DEP is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione.

  2. Optimal ROS Signaling Is Critical for Nuclear Reprogramming

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-05-01

    Full Text Available Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox-inducible mouse embryonic fibroblasts (MEFs carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM] into induced pluripotent stem cells (iPSCs. ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22phox—a critical subunit of the Nox (1–4 complex—decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency.

  3. Potential Use of Spin Traps to Control ROS in Antipollution Cosmetics—A Review

    Directory of Open Access Journals (Sweden)

    Prashant D. Sawant

    2018-01-01

    Full Text Available Pollution from air and sunlight has adverse effects on human health, particularly skin health. It creates oxidative stress, which results in skin diseases, including skin cancer and aging. Different types of antioxidants are used as preventative actives in skin-care products. However, they have some limitations as they also scavenge oxygen. Recently, spin traps are being explored to trap free radicals before these radicals generating more free radicals (cascading effect and not the oxygen molecules. However, not all spin traps can be used in the topical cosmetic skin-care products due to their toxicity and regulatory issues. The present review focuses on the different pathways of reactive oxygen species (ROS generation due to pollution and the potential use of spin traps in anti-pollution cosmetics to control ROS.

  4. High-fat diet induces an initial adaptation of mitochondrial bioenergetics in the kidney despite evident oxidative stress and mitochondrial ROS production

    Science.gov (United States)

    Ruggiero, Christine; Ehrenshaft, Marilyn; Cleland, Ellen

    2011-01-01

    Obesity and metabolic syndrome are associated with an increased risk for several diabetic complications, including diabetic nephropathy and chronic kidney diseases. Oxidative stress and mitochondrial dysfunction are often proposed mechanisms in various organs in obesity models, but limited data are available on the kidney. Here, we fed a lard-based high-fat diet to mice to investigate structural changes, cellular and subcellular oxidative stress and redox status, and mitochondrial biogenesis and function in the kidney. The diet induced characteristic changes, including glomerular hypertrophy, fibrosis, and interstitial scarring, which were accompanied by a proinflammatory transition. We demonstrate evidence for oxidative stress in the kidney through 3-nitrotyrosine and protein radical formation on high-fat diet with a contribution from iNOS and NOX-4 as well as increased generation of mitochondrial oxidants on carbohydrate- and lipid-based substrates. The increased H2O2 emission in the mitochondria suggests altered redox balance and mitochondrial ROS generation, contributing to the overall oxidative stress. No major derailments were observed in respiratory function or biogenesis, indicating preserved and initially improved bioenergetic parameters and energy production. We suggest that, regardless of the oxidative stress events, the kidney developed an adaptation to maintain normal respiratory function as a possible response to an increased lipid overload. These findings provide new insights into the complex role of oxidative stress and mitochondrial redox status in the pathogenesis of the kidney in obesity and indicate that early oxidative stress-related changes, but not mitochondrial bioenergetic dysfunction, may contribute to the pathogenesis and development of obesity-linked chronic kidney diseases. PMID:21386058

  5. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS

    Directory of Open Access Journals (Sweden)

    Javier Egea

    2017-10-01

    Full Text Available The European Cooperation in Science and Technology (COST provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.

  6. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria - An amazing defence tool against hyperosmotic stress

    Directory of Open Access Journals (Sweden)

    Daniela eTrono

    2015-12-01

    hyperosmotic stress (mannitol or NaCl, PmitoKATP was found to be activated by ROS, so inhibiting further large-scale ROS production according to a feedback mechanism; moreover, a stress-activated phospholipase A2 may generate FFAs, further activating the channel. In conclusion, a main property of PmitoKATP is the ability to keep in balance the control of harmful ROS with the mitochondrial/cellular bioenergetics, thus preserving ATP for energetic needs of cell defence under stress.

  7. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly (ADP-ribose) polymerase-1

    OpenAIRE

    Wang, Feng; Zhou, Xixi; Liu, Wenlan; Sun, Xi; Chen, Chen; Hudson, Laurie G.; Liu, Ke Jian

    2013-01-01

    Arsenic enhances genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic co-carcinogenesis, and DNA repair proteins such as poly (ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlyi...

  8. ROS generation and MAPKs activation contribute to the Ni-induced testosterone synthesis disturbance in rat Leydig cells.

    Science.gov (United States)

    Han, Aijie; Zou, Lingyue; Gan, Xiaoqin; Li, Yu; Liu, Fangfang; Chang, Xuhong; Zhang, Xiaotian; Tian, Minmin; Li, Sheng; Su, Li; Sun, Yingbiao

    2018-06-15

    Nickel (Ni) can disorder testosterone synthesis in rat Leydig cells, whereas the mechanisms remain unclear. The aim of this study was to investigate the role of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) in Ni-induced disturbance of testosterone synthesis in rat Leydig cells. The testosterone production and ROS levels were detected in Leydig cells. The mRNA and protein levels of testosterone synthetase, including StAR, CYP11A1, 3β-HSD, CYP17A1 and 17β-HSD, were determined. Effects of Ni on the ERK1/2, p38 and JNK MAPKs were also investigated. The results showed that Ni triggered ROS generation, consequently resulted in the decrease of testosterone synthetase expression and testosterone production in Leydig cells, which were then attenuated by ROS scavengers of N-acetylcysteine (NAC) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), indicating that ROS are involved in the Ni-induced testosterone biosynthesis disturbance. Meanwhile Ni activated the ERK1/2, p38 and JNK MAPKs. Furthermore, Ni-inhibited testosterone synthetase expression levels and testosterone secretion were all alleviated by co-treatment with MAPK specific inhibitors (U0126 and SB203580, respectively), implying that Ni inhibited testosterone synthesis through activating ERK1/2 and p38 MAPK signal pathways in Leydig cells. In conclusion, these findings suggest that Ni causes testosterone synthesis disorder, partly, via ROS and MAPK signal pathways. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances.

    Science.gov (United States)

    Nash, Kevin M; Ahmed, Salahuddin

    2015-11-01

    Reactive oxygen species (ROS) are important in regulating normal cell physiological functions, but when produced in excess lead to the augmented pathogenesis of various diseases. Among these, ischemia reperfusion injury, Alzheimer's disease and rheumatoid arthritis are particularly important. Since ROS can be counteracted by a variety of antioxidants, natural and synthetic antioxidants have been developed. However, due to the ubiquitous production of ROS in living systems, poor in vivo efficiency of these agents and lack of target specificity, the current clinical modalities to treat oxidative stress damage are limited. Advances in the developing field of nanomedicine have yielded nanoparticles that can prolong antioxidant activity, and target specificity of these agents. This article reviews recent advances in antioxidant nanoparticles and their applications to manage oxidative stress-mediated diseases. Production of reactive oxygen species (ROS) is a purely physiological process in many disease conditions. However, excessive and uncontrolled production will lead to oxidative stress and further tissue damage. Advances in nanomedicine have provided many novel strategies to try to combat and counteract ROS. In this review article, the authors comprehensively highlighted the current status and future developments in using nanotechnology for providing novel therapeutic options in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Literature-based discovery of diabetes- and ROS-related targets

    Directory of Open Access Journals (Sweden)

    Pande Manjusha

    2010-10-01

    Full Text Available Abstract Background Reactive oxygen species (ROS are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/. Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.

  11. Role of oxidative stress in cadmium toxicity and carcinogenesis

    International Nuclear Information System (INIS)

    Liu Jie; Qu Wei; Kadiiska, Maria B.

    2009-01-01

    Cadmium (Cd) is a toxic metal, targeting the lung, liver, kidney, and testes following acute intoxication, and causing nephrotoxicity, immunotoxicity, osteotoxicity and tumors after prolonged exposures. Reactive oxygen species (ROS) are often implicated in Cd toxicology. This minireview focused on direct evidence for the generation of free radicals in intact animals following acute Cd overload and discussed the association of ROS in chronic Cd toxicity and carcinogenesis. Cd-generated superoxide anion, hydrogen peroxide, and hydroxyl radicals in vivo have been detected by the electron spin resonance spectra, which are often accompanied by activation of redox sensitive transcription factors (e.g., NF-κB, AP-1 and Nrf2) and alteration of ROS-related gene expression. It is generally agreed upon that oxidative stress plays important roles in acute Cd poisoning. However, following long-term Cd exposure at environmentally-relevant low levels, direct evidence for oxidative stress is often obscure. Alterations in ROS-related gene expression during chronic exposures are also less significant compared to acute Cd poisoning. This is probably due to induced adaptation mechanisms (e.g., metallothionein and glutathione) following chronic Cd exposures, which in turn diminish Cd-induced oxidative stress. In chronic Cd-transformed cells, less ROS signals are detected with fluorescence probes. Acquired apoptotic tolerance renders damaged cells to proliferate with inherent oxidative DNA lesions, potentially leading to tumorigenesis. Thus, ROS are generated following acute Cd overload and play important roles in tissue damage. Adaptation to chronic Cd exposure reduces ROS production, but acquired Cd tolerance with aberrant gene expression plays important roles in chronic Cd toxicity and carcinogenesis.

  12. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).

    Science.gov (United States)

    Egea, Javier; Fabregat, Isabel; Frapart, Yves M; Ghezzi, Pietro; Görlach, Agnes; Kietzmann, Thomas; Kubaichuk, Kateryna; Knaus, Ulla G; Lopez, Manuela G; Olaso-Gonzalez, Gloria; Petry, Andreas; Schulz, Rainer; Vina, Jose; Winyard, Paul; Abbas, Kahina; Ademowo, Opeyemi S; Afonso, Catarina B; Andreadou, Ioanna; Antelmann, Haike; Antunes, Fernando; Aslan, Mutay; Bachschmid, Markus M; Barbosa, Rui M; Belousov, Vsevolod; Berndt, Carsten; Bernlohr, David; Bertrán, Esther; Bindoli, Alberto; Bottari, Serge P; Brito, Paula M; Carrara, Guia; Casas, Ana I; Chatzi, Afroditi; Chondrogianni, Niki; Conrad, Marcus; Cooke, Marcus S; Costa, João G; Cuadrado, Antonio; My-Chan Dang, Pham; De Smet, Barbara; Debelec-Butuner, Bilge; Dias, Irundika H K; Dunn, Joe Dan; Edson, Amanda J; El Assar, Mariam; El-Benna, Jamel; Ferdinandy, Péter; Fernandes, Ana S; Fladmark, Kari E; Förstermann, Ulrich; Giniatullin, Rashid; Giricz, Zoltán; Görbe, Anikó; Griffiths, Helen; Hampl, Vaclav; Hanf, Alina; Herget, Jan; Hernansanz-Agustín, Pablo; Hillion, Melanie; Huang, Jingjing; Ilikay, Serap; Jansen-Dürr, Pidder; Jaquet, Vincent; Joles, Jaap A; Kalyanaraman, Balaraman; Kaminskyy, Danylo; Karbaschi, Mahsa; Kleanthous, Marina; Klotz, Lars-Oliver; Korac, Bato; Korkmaz, Kemal Sami; Koziel, Rafal; Kračun, Damir; Krause, Karl-Heinz; Křen, Vladimír; Krieg, Thomas; Laranjinha, João; Lazou, Antigone; Li, Huige; Martínez-Ruiz, Antonio; Matsui, Reiko; McBean, Gethin J; Meredith, Stuart P; Messens, Joris; Miguel, Verónica; Mikhed, Yuliya; Milisav, Irina; Milković, Lidija; Miranda-Vizuete, Antonio; Mojović, Miloš; Monsalve, María; Mouthuy, Pierre-Alexis; Mulvey, John; Münzel, Thomas; Muzykantov, Vladimir; Nguyen, Isabel T N; Oelze, Matthias; Oliveira, Nuno G; Palmeira, Carlos M; Papaevgeniou, Nikoletta; Pavićević, Aleksandra; Pedre, Brandán; Peyrot, Fabienne; Phylactides, Marios; Pircalabioru, Gratiela G; Pitt, Andrew R; Poulsen, Henrik E; Prieto, Ignacio; Rigobello, Maria Pia; Robledinos-Antón, Natalia; Rodríguez-Mañas, Leocadio; Rolo, Anabela P; Rousset, Francis; Ruskovska, Tatjana; Saraiva, Nuno; Sasson, Shlomo; Schröder, Katrin; Semen, Khrystyna; Seredenina, Tamara; Shakirzyanova, Anastasia; Smith, Geoffrey L; Soldati, Thierry; Sousa, Bebiana C; Spickett, Corinne M; Stancic, Ana; Stasia, Marie José; Steinbrenner, Holger; Stepanić, Višnja; Steven, Sebastian; Tokatlidis, Kostas; Tuncay, Erkan; Turan, Belma; Ursini, Fulvio; Vacek, Jan; Vajnerova, Olga; Valentová, Kateřina; Van Breusegem, Frank; Varisli, Lokman; Veal, Elizabeth A; Yalçın, A Suha; Yelisyeyeva, Olha; Žarković, Neven; Zatloukalová, Martina; Zielonka, Jacek; Touyz, Rhian M; Papapetropoulos, Andreas; Grune, Tilman; Lamas, Santiago; Schmidt, Harald H H W; Di Lisa, Fabio; Daiber, Andreas

    2017-10-01

    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Impact physiologique et pathologique du stress oxydant chez le cheval

    OpenAIRE

    De Moffarts, Brieuc; Kirschvink, Nathalie; Pincemail, Joël; Lekeux, Pierre

    2005-01-01

    Oxidative stress has become of increasing interest in research and in equine and human medicine. If the pro-oxidant burden overwhelms the endogenous antioxidant defence of the organism, the arising imbalance between pro- and antioxidants is defined as oxidative stress. Different pathways might increase the generation of reactive oxygen species ( ROS) and results in oxidative stress. In physiological conditions, like during moderated exercise, the balance between ROS production and antioxidant...

  14. Ganoderma atrum polysaccharide ameliorates ROS generation and apoptosis in spleen and thymus of immunosuppressed mice.

    Science.gov (United States)

    Li, Wen-Juan; Li, Lu; Zhen, Weng-Ya; Wang, Le-Feng; Pan, Meng; Lv, Jia-Qian; Wang, Fan; Yao, Yu-Fei; Nie, Shao-Ping; Xie, Ming-Yong

    2017-01-01

    Ganoderma atrum polysaccharide (PSG-1) is a bioactive compound with antioxidant and immunomodulatory activities. The aim of this study was to determine the effect of PSG-1 on reactive oxygen species (ROS) generation and apoptosis in spleen and thymus of cyclophosphamide (CTX)-induced immunosuppressed mice. The results showed that PSG-1 protected mice against CTX-mediated immunosuppression, as evidenced by enhancing the ratios of thymus and spleen weights to body weight, promoting T cell and B cell survival, and increasing levels of TNF-α and IL-2. Apoptosis, ROS generation and lipid peroxidation in the immune organs of the immunosuppressed animals were ameliorated by PSG-1. The immune benefits of PSG-1 were associated with the enhancement of the activities of glutathione peroxidase, superoxide dismutase and catalase in the immune organs, implying that antioxidant activities of PSG-1 may play an important role in PSG-1-evoked immune protection. Taken together, these findings have demonstrated that PSG-1 may ameliorate CTX-induced immunosuppression through reducing apoptosis and oxidative damage in immunological system. Copyright © 2016. Published by Elsevier Ltd.

  15. The role of mitochondrial ROS in the aging brain.

    Science.gov (United States)

    Stefanatos, Rhoda; Sanz, Alberto

    2018-03-01

    The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging. © 2017 Federation of European Biochemical Societies.

  16. [Cell surface peroxidase--generator of superoxide anion in wheat root cells under wound stress].

    Science.gov (United States)

    Chasov, A V; Gordon, L Kh; Kolesnikov, O P; Minibaeva, F V

    2002-01-01

    Development of wound stress in excised wheat roots is known to be accompanied with an increase in reactive oxygen species (ROS) production, fall of membrane potential, release of K+ from cells, alkalization of extracellular solution, changes in respiration and metabolism of structural lipids. Dynamics of superoxide release correlates with changes in other physiological parameters, indicating the cross-reaction of these processes. Activity of peroxidase in extracellular solution after a 1 h incubation and removal of roots was shown to be stimulated by the range of organic acids, detergents, metals, and to be inhibited by cyanide. Superoxide production was sensitive to the addition of Mn2+ and H2O2. Increase in superoxide production correlates with the enhancement of peroxidase activity at the application of organic acids and detergents. The results obtained indicate that cell surface peroxidase is one of the main generators of superoxide in wounded wheat root cells. Different ways of stimulation of the ROS producing activity in root cells is supposed. By controlling superoxide and hydrogen peroxide formation, the cell surface peroxidase can control the adaptation processes in stressed plant cells.

  17. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation.

    Science.gov (United States)

    Choi, Yong-Min; Kim, Han-Kyul; Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun

    2015-01-01

    The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.

  18. Etiologies of sperm oxidative stress

    Directory of Open Access Journals (Sweden)

    Parvin Sabeti

    2016-04-01

    Full Text Available Sperm is particularly susceptible to reactive oxygen species (ROS during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions

  19. Edaravone, an ROS Scavenger, Ameliorates Photoreceptor Cell Death after Experimental Retinal Detachment

    Science.gov (United States)

    Roh, Mi In; Murakami, Yusuke; Thanos, Aristomenis; Miller, Joan W.

    2011-01-01

    Purpose. To investigate whether edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, would be neuroprotective against photoreceptor cell death in a rat model of retinal detachment (RD). Methods. RD was induced in adult Brown Norway rats by subretinal injection of sodium hyaluronate. Edaravone (3, 5, or 10 mg/kg) or physiologic saline was administered intraperitoneally once a day until death on day 3 or 5. Oxidative stress in the retina was assessed by 4-hydroxynonenal staining or ELISA for protein carbonyl content. Photoreceptor death was assessed by TUNEL and measurement of the outer nuclear layer thickness. Western blot analysis and caspase activity assays were performed. Inflammatory cytokine secretion and inflammatory cell infiltration were evaluated by ELISA and immunostaining, respectively. Results. RD resulted in increased generation of ROS. Treatment with 5 mg/kg edaravone significantly reduced the ROS level, along with a decrease in TUNEL-positive cells in the photoreceptor layer. A caspase assay also confirmed decreased activation of caspase-3, -8, and -9 in RD treated with edaravone. The level of the antiapoptotic Bcl-2 was increased in detached retinas after edaravone treatment, whereas the levels of the stress-activated p-ERK1/2 were decreased. In addition, edaravone treatment resulted in a significant decrease in the levels of TNF-α, MCP-1, and macrophage infiltration. Conclusions. Oxidative stress plays an important role in photoreceptor cell death after RD. Edaravone treatment may aid in preventing photoreceptor cell death after RD by suppressing ROS-induced photoreceptor damage. PMID:21310909

  20. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation.

    Science.gov (United States)

    Zhang, Xinxin; Tang, Xuexi; Wang, Ming; Zhang, Wei; Zhou, Bin; Wang, You

    2017-08-01

    UV-B ray has been addressed to trigger common metabolic responses on marine microalgae, however, the upstream events responsible for these changes in marine microalgae are poorly understood. In the present study, a species of marine green microalgae Dunaliella salina was exposed to a series of enhanced UV-B radiation ranging from 0.25 to 1.00 KJ·m -2 per day. The role of ROS and calcium signaling in the D. salina responses to UV-B was discussed. Results showed that enhanced UV-B radiation markedly decreased the cell density in a dose-dependent manner, but the contents of protein and glycerol that were essential for cell growth increased. It suggested that it was cell division instead of cell growth that UV-B exerted negative effects on. The subcellular damages on nuclei and plasmalemma further evidenced the hypothesis. The nutrient absorption was affected with UV-B exposure, and the inhibition on PO 4 3- uptake was more serious compared to NO 3 - uptake. UV-B radiation promoted reactive oxygen species (ROS) formation and thiobarbituric acid reactive substances (TBARS) contents, decreased the redox status and altered the antioxidant enzyme activities. The addition of the ROS scavenger and the glutathione biosynthesis precursor N-acetyl-l-cysteine (NAC) alleviated the stress degree, implying ROS-mediated pathway was involved in the stress response to UV-B radiation. Transient increase in Ca 2+ -ATPase was triggered simultaneously with UV-B exposure. Meanwhile, the addition of an intracellular free calcium chelator aggravated the damage of cell division, but exogenous calcium and ion channel blocker applications did not, inferring that endogenously initiated calcium signaling played roles in response to UV-B. Cross-talk analysis showed a relatively clear relationship between ROS inhibition and Ca 2+ -ATPase suppression, and a relation between Ca 2+ inhibition and GPx activity change was also observed. It was thus presumed that ROS-coupled calcium signaling via the

  1. Radiation oxidative stress in cancer induction and prevention

    International Nuclear Information System (INIS)

    Meher, Prabodha Kumar; Mishra, Kaushala Prasad

    2017-01-01

    Exposure of cells to ionizing radiation causes generation of intracellular reactive oxygen species (ROS) which are implicated in the mechanism of carcinogenesis. Molecular steps involved in the transformation of normal cells to cancer cells have been enigmatic but generally believed to arise from aberration in cellular redox homeostasis. In normal cell function, a delicate balance is maintained between ROS generated in the metabolic process and level of endogenous antioxidant defense. ROS are known to regulate various cellular functions, such as cell division, signal transduction, and apoptosis. Cells experience oxidative stress when excess production of ROS occurs inside a cell upon exposure to external stress or agents. This redox imbalance affects the cellular functions due to DNA strand breaks, chromosomal aberrations, gene mutations, alteration in signal transduction, and inhibition of apoptosis leading to induction of cancer and other diseases. Radiation-induced ROS are involved in initiation and promotion of carcinogenesis. Therefore, detoxification of ROS by exogenous antioxidants including dietary polyphenols offers an important strategy for cancer prevention. Recent research results have shown that resistance of cancer stem cells to therapies is linked to low level of ROS. Interestingly, in vitro and in vivo experiments have reported that radiotherapy- and chemotherapy-induced ROS in cytosol sensitize the tumor cells to death, resulting in tumor growth retardation. This review is an attempt to delineate mechanisms of ROS in carcinogenesis and prevention by dietary compounds. Natural polyphenols and dietary antioxidants hold potential to prevent cancer. Interventions in ROS-mediated signal alteration, apoptosis activation, and modulation of epigenetic processes may offer effective cancer prevention strategy. (author)

  2. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  3. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Md Sultan Ahamad

    Full Text Available A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01 with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001 dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation.

  4. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes.

    Science.gov (United States)

    González, Antonio; Pariente, José A; Salido, Ginés M

    2007-10-31

    We have employed rat hippocampal astrocytes in culture to investigate the effect of ethanol on reactive oxygen species (ROS) production as well as its effect on [Ca2+]c and GFAP expression. Cells were loaded with the fluorescent probes fura-2 and H2DCFDA for the determination of changes in [Ca2+]c and ROS production respectively, employing spectrofluorimetry. GFAP content was determined by immunocytochemistry and confocal scanning microscopy. Our results show ROS production in response to 50 mM ethanol, that was reduced in Ca2+-free medium (containing 0.5 mM EGTA) and in the presence of the intracellular Ca2+ chelator BAPTA (10 microM). The effect of ethanol on ROS production was significantly reduced in the presence of the alcohol dehydrogenase inhibitor 4-methylpyrazole (1 mM), and the antioxidants resveratrol (100 microM) or catalase (300 U/ml). Preincubation of astrocytes in the presence of 10 microM antimycin plus 10 microM oligomycin to inhibit mitochondria completely blocked ethanol-evoked ROS production. In addition, ethanol led to a sustained increase in [Ca2+]c that reached a constant level over the prestimulation values. Finally, incubation of astrocytes in the presence of ethanol increased the content of GFAP that was significantly reduced in the absence of extracellular Ca2+ and by resveratrol and catalase pretreatment. The data obtained in the present study suggest that astrocytes are able to metabolize ethanol, which induces two effects on intracellular homeostasis: an immediate response (Ca2+ release and ROS generation) and later changes involving GFAP expression. Both effects may underline various signaling pathways which are important for cell proliferation, differentiation and function.

  5. Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377.

    Science.gov (United States)

    Kim, Il-Sup; Sohn, Ho-Yong; Jin, Ingnyol

    2011-10-01

    The molecular mechanisms involved in the ability of yeast cells to adapt and respond to oxidative stress are of great interest to the pharmaceutical, medical, food, and fermentation industries. In this study, we investigated the time-dependent, cellular redox homeostasis ability to adapt to menadione-induced oxidative stress, using biochemical and proteomic approaches in Saccharomyces cerevisiae KNU5377. Time-dependent cell viability was inversely proportional to endogenous amounts of ROS measured by a fluorescence assay with 2',7'-dichlorofluorescin diacetate (DCFHDA), and was hypersensitive when cells were exposed to the compound for 60 min. Morphological changes, protein oxidation and lipid peroxidation were also observed. To overcome the unfavorable conditions due to the presence of menadione, yeast cells activated a variety of cell rescue proteins including antioxidant enzymes, molecular chaperones, energy-generating metabolic enzymes, and antioxidant molecules such as trehalose. Thus, these results show that menadione causes ROS generation and high accumulation of cellular ROS levels, which affects cell viability and cell morphology and there is a correlation between resistance to menadione and the high induction of cell rescue proteins after cells enter into this physiological state, which provides a clue about the complex and dynamic stress response in yeast cells.

  6. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper.

    Science.gov (United States)

    Chowra, Umakanta; Yanase, Emiko; Koyama, Hiroyuki; Panda, Sanjib Kumar

    2017-01-01

    Aluminium-induced oxidative damage caused by excessive ROS production was evaluated in black gram pulse crop. Black gram plants were treated with different aluminium (Al 3+ ) concentrations (10, 50 and 100 μM with pH 4.7) and further the effects of Al 3+ were characterised by means of root growth inhibition, histochemical assay, ROS content analysis, protein carbonylation quantification and 1 H-NMR analysis. The results showed that aluminium induces excessive ROS production which leads to cellular damage, root injury, stunt root growth and other metabolic shifts. In black gram, Al 3+ induces cellular damage at the earliest stage of stress which was characterised from histochemical analysis. From this study, it was observed that prolonged stress can activate certain aluminium detoxification defence mechanism. Probably excessive ROS triggers such defence mechanism in black gram. Al 3+ can induce excessive ROS initially in the root region then transported to other parts of the plant. As much as the Al 3+ concentration increases, the rate of cellular injury and ROS production also increases. But after 72 h of stress, plants showed a lowered ROS level and cellular damage which indicates the upregulation of defensive mechanisms. Metabolic shift analysis also showed that the black gram plant under stress has less metabolic content after 24 h of treatment, but gradually, it was increased after 72 h of treatment. It was assumed that ROS played the most important role as a signalling molecule for aluminium stress in black gram.

  7. ROS-related redox regulation and signaling in plants.

    Science.gov (United States)

    Noctor, Graham; Reichheld, Jean-Philippe; Foyer, Christine H

    2017-07-18

    As sessile oxygenic organisms with a plastic developmental programme, plants are uniquely positioned to exploit reactive oxygen species (ROS) as powerful signals. Plants harbor numerous ROS-generating pathways, and these oxidants and related redox-active compounds have become tightly embedded into plant function and development during the course of evolution. One dominant view of ROS-removing systems sees them as beneficial antioxidants battling to keep damaging ROS below dangerous levels. However, it is now established that ROS are a necessary part of subcellular and intercellular communication in plants and that some of their signaling functions require ROS-metabolizing systems. For these reasons, it is suggested that "ROS processing systems" would be a more accurate term than "antioxidative systems" to describe cellular components that are most likely to interact with ROS and, in doing so, transmit oxidative signals. Within this framework, our update provides an overview of the complexity and compartmentation of ROS production and removal. We place particular emphasis on the importance of ROS-interacting systems such as the complex cellular thiol network in the redox regulation of phytohormone signaling pathways that are crucial for plant development and defense against external threats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Upregulated ROS production induced by the proteasome inhibitor MG-132 on XBP1 gene expression and cell apoptosis in Tca-8113 cells.

    Science.gov (United States)

    Chen, Hai-ying; Ren, Xiao-yan; Wang, Wei-hua; Zhang, Ying-xin; Chen, Shuang-feng; Zhang, Bin; Wang, Le-xin

    2014-07-01

    Exposure of Tca-8113 cells to proteasome inhibitor carbobenzoxy-Leu-Leu-leucinal (MG-132) causing apoptosis is associated with endoplasmic reticulum (ER) stress. X-box-binding protein-1 (XBP1) is an important regulator of a subset of genes active during ER stress, which is related to cell survival and is required for tumor growth. The present study is to evaluate the effect of MG-132 on ROS production, XBP1 gene expression, tumor necrosis factor receptor-associated factor 2 (TRAF2), ASK1 and c-jun protein expression in tongue squamous cell carcinoma cell line Tca-8113 cells. ROS production was measured by reactive oxygen species assay. X-box binding protein-1 (XBP1) mRNA was analyzed by real-time-PCR, TRAF2, ASK1 and c-jun protein were investigated by western blot and immunocytochemistry respectively. The result indicated that ROS production, TRAF2, ASK1 and c-jun were elevated in MG-132 treated cells. Giving ROS scavenger N-acetyl-L-cysteine (NAC) largely prevented the effects of MG-132. Furthermore, treating with MG-132 lead to decreased XBP1 mRNA expression but could not completely block the expression of XBP1. Taken together, these findings provide the evidence that MG-132 induced ER stress lead to Tca-8113 cells apoptosis through ROS generation and TRAF2-ASK1-JNK signal pathway activation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications.

    Science.gov (United States)

    Balasubramanyam, M; Koteswari, A Adaikala; Kumar, R Sampath; Monickaraj, S Finny; Maheswari, J Uma; Mohan, V

    2003-12-01

    There is evidence for increased levels of circulating reactive oxygen species (ROS) in diabetics, as indirectly inferred by the findings of increased lipid peroxidation and decreased antioxidant status. Direct measurements of intracellular generation of ROS using fluorescent dyes also demonstrate an association of oxidative stress with diabetes. Although phenolic compounds attenuate oxidative stress-related tissue damage, there are concerns over toxicity of synthetic phenolic antioxidants and this has considerably stimulated interest in investigating the role of natural phenolics in medicinal applications. Curcumin (the primary active principle in turmeric, Curcuma longa Linn.) has been claimed to represent a potential antioxidant and antiinflammatory agent with phytonutrient and bioprotective properties. However there are lack of molecular studies to demonstrate its cellular action and potential molecular targets. In this study the antioxidant effect of curcumin as a function of changes in cellular ROS generation was tested. Our results clearly demonstrate that curcumin abolished both phorbol-12 myristate-13 acetate (PMA) and thapsigargin-induced ROS generation in cells from control and diabetic subjects. The pattern of these ROS inhibitory effects as a function of dose-dependency suggests that curcumin mechanistically interferes with protein kinase C (PKC) and calcium regulation. Simultaneous measurements of ROS and Ca2+ influx suggest that a rise in cytosolic Ca2+ may be a trigger for increased ROS generation. We suggest that the antioxidant and antiangeogenic actions of curcumin, as a mechanism of inhibition of Ca2+ entry and PKC activity, should be further exploited to develop suitable and novel drugs for the treatment of diabetic retinopathy and other diabetic complications.

  10. Oxidative stress drivers and modulators in obesity and cardiovascular disease: from biomarkers to therapeutic approach.

    Science.gov (United States)

    Santilli, F; Guagnano, M T; Vazzana, N; La Barba, S; Davi, G

    2015-01-01

    This review article is intended to describe how oxidative stress regulates cardiovascular disease development and progression. Epigenetic mechanisms related to oxidative stress, as well as more reliable biomarkers of oxidative stress, are emerging over the last years as potentially useful tools to design therapeutic approaches aimed at modulating enhanced oxidative stress "in vivo", thereby mitigating the consequent atherosclerotic burden. As a paradigm, we describe the case of obesity, in which the intertwining among oxidative stress, due to caloric overload, chronic low-grade inflammation induced by adipose tissue dysfunction, and platelet activation represents a vicious cycle favoring the progression of atherothrombosis. Oxidative stress is a major player in the pathobiology of cardiovascular disease (CVD). Reactive oxygen species (ROS)- dependent signaling pathways prompt transcriptional and epigenetic dysregulation, inducing chronic low-grade inflammation, platelet activation and endothelial dysfunction. In addition, several oxidative biomarkers have been proposed with the potential to improve current understanding of the mechanisms underlying CVD. These include ROS-generating and/or quenching molecules, and ROS-modified compounds, such as F2-isoprostanes. There is also increasing evidence that noncoding micro- RNA (mi-RNA) are critically involved in post- transcriptional regulation of cell functions, including ROS generation, inflammation, regulation of cell proliferation, adipocyte differentiation, angiogenesis and apoptosis. These molecules have promising translational potential as both markers of disease and site of targeted interventions. Finally, oxidative stress is a critical target of several cardioprotective drugs and nutraceuticals, including antidiabetic agents, statins, renin-angiotensin system blockers, polyphenols and other antioxidants. Further understanding of ROS-generating mechanisms, their biological role as well as potential therapeutic

  11. Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Zhao, Xiaomin; Huang, Yong; Du, Qian; Dong, Feng; Zhang, Hongling; Song, Xiangjun; Zhang, Wenlong [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-06

    Highlights: •TGEV infection induced ROS accumulation. •ROS accumulation is involved in TGEV-induced mitochondrial integrity impairment. •ROS is associated with p53 activation and apoptosis occurrence in TGEV-infected cells. -- Abstract: Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, causes severe lethal watery diarrhea and dehydration in piglets. Previous studies indicate that TGEV infection induces cell apoptosis in host cells. In this study, we investigated the roles and regulation of reactive oxygen species (ROS) in TGEV-activated apoptotic signaling. The results showed that TGEV infection induced ROS accumulation, whereas UV-irradiated TGEV did not promote ROS accumulation. In addition, TGEV infection lowered mitochondrial transmembrane potential in PK-15 cell line, which could be inhibited by ROS scavengers, pyrrolidinedithiocarbamic (PDTC) and N-acetyl-L-cysteine (NAC). Furthermore, the two scavengers significantly inhibited the activation of p38 MAPK and p53 and further blocked apoptosis occurrence through suppressing the TGEV-induced Bcl-2 reduction, Bax redistribution, cytochrome c release and caspase-3 activation. These results suggest that oxidative stress pathway might be a key element in TGEV-induced apoptosis and TGEV pathogenesis.

  12. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Chaturvedi

    Full Text Available Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13 showed significantly enhanced salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  13. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Science.gov (United States)

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  14. Effects of ultrafine diesel exhaust particles on oxidative stress generation and dopamine metabolism in PC-12 cells.

    Science.gov (United States)

    Kim, Yong-Dae; Lantz-McPeak, Susan M; Ali, Syed F; Kleinman, Michael T; Choi, Young-Sook; Kim, Heon

    2014-05-01

    A major constituent of urban air pollution is diesel exhaust, a complex mixture of gases, chemicals, and particles. Recent evidence suggests that exposure to air pollution can increase the risk of a fatal stroke, cause cerebrovascular damage, and induce neuroinflammation and oxidative stress that may trigger neurodegenerative diseases, such as Parkinson's disease. The specific aim of this study was to determine whether ultrafine diesel exhaust particles (DEPs), the particle component of exhaust from diesel engines, can induce oxidative stress and effect dopamine metabolism in PC-12 cells. After 24 h exposure to DEPs of 200 nm or smaller, cell viability, ROS and nitric oxide (NO(2)) generation, and levels of dopamine (DA) and its metabolites, (dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)), were evaluated. Results indicated cell viability was not significantly changed by DEP exposure. However, ROS showed dramatic dose-dependent changes after DEP exposure (2.4 fold increase compared to control at 200 μg/mL). NO(2) levels were also dose-dependently increased after DEP exposure. Although not in a dose-dependent manner, upon DEP exposure, intracellular DA levels were increased while DOPAC and HVA levels decreased when compared to control. Results suggest that ultrafine DEPs lead to dopamine accumulation in the cytoplasm of PC-12 cells, possibly contributing to ROS formation. Further studies are warranted to elucidate this mechanism. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis.

    Science.gov (United States)

    Loor, Gabriel; Kondapalli, Jyothisri; Schriewer, Jacqueline M; Chandel, Navdeep S; Vanden Hoek, Terry L; Schumacker, Paul T

    2010-12-15

    Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-X(L) protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. The Role of Reactive Oxygen Species (ROS in the Biological Activities of Metallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed Abdal Dayem

    2017-01-01

    Full Text Available Nanoparticles (NPs possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS. The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.

  17. The p66(Shc adaptor protein controls oxidative stress response in early bovine embryos.

    Directory of Open Access Journals (Sweden)

    Dean H Betts

    Full Text Available The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  18. Possible involvement of ROS generation in vorinostat pretreatment induced enhancement of the antibacterial activity of ciprofloxacin

    Directory of Open Access Journals (Sweden)

    Masadeh MM

    2017-10-01

    Full Text Available Majed M Masadeh,1 Karem H Alzoubi,2 Sayer I Al-azzam,2 Ahlam M Al-buhairan3 1Department of Pharmaceutical Technology, 2Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan; 3Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia Abstract: The mechanism underlying ciprofloxacin action involves interference with transcription and replication of bacterial DNA and, thus, the induction of double-strand breaks in DNA. It also involves elevated oxidative stress, which might contribute to bacterial cell death. Vorinostat was shown to induce oxidative DNA damage. The current work investigated a possible interactive effect of vorinostat on ciprofloxacin-induced cytotoxicity against a number of reference bacteria. Standard bacterial strains were Escherichia coli ATCC 35218, Staphylococcus aureus ATCC29213, Pseudomonas aeruginosa ATCC 9027, Staphylococcus epidermidis ATCC 12228, Acinetobacter baumannii ATCC 17978, Proteus mirabilis ATCC 12459, Klebsiella pneumoniae ATCC 13883, methicillin-resistant Staphylococcus aureus (MRSA (ATCC 43300, and Streptococcus pneumoniae (ATCC 25923. The antibacterial activity of ciprofloxacin, with or without pretreatment of bacterial cells by vorinostat, was examined using the disc diffusion procedure and determination of the minimum inhibitory concentration (MIC and zones of inhibition of bacterial growth. All tested bacterial strains showed sensitivity to ciprofloxacin. When pretreated with vorinostat, significantly larger zones of inhibition and smaller MIC values were observed in all bacterial strains compared to those treated with ciprofloxacin alone. In correlation, generation of reactive oxygen species (ROS induced by the antibacterial action of ciprofloxacin was enhanced by treatment of bacterial cells with vorinostat. Results showed the possible agonistic properties of vorinostat when used together with ciprofloxacin. This could be related to the

  19. ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Mráček, Tomáš; Holzerová, Eliška; Drahota, Zdeněk; Kovářová, Nikola; Vrbacký, Marek; Ješina, Pavel; Houštěk, Josef

    2014-01-01

    Roč. 1837, č. 1 (2014), s. 98-111 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GPP303/10/P227; GA MŠk(CZ) LL1204 Grant - others:Univerzita Karlova(CZ) 750213 Institutional support: RVO:67985823 Keywords : mitochondrial glycerol-3-phosphate dehydrogenase * ROS production * supercomplex * in-gel ROS detection Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.353, year: 2014

  20. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Shyh-Shin, E-mail: chiouss@kmu.edu.tw [Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Pediatrics, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China); Wang, Sophie Sheng-Wen; Wu, Deng-Chyang [Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Lin, Ying-Chu [School of Dentistry, College of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Kao, Li-Pin [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China)

    2013-07-26

    We report here that the Jun dimerization protein 2 (JDP2) plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS). JDP2 associates with Nrf2 and MafK (Nrf2-MafK) to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC)-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  1. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Directory of Open Access Journals (Sweden)

    Naoto Yamaguchi

    2013-07-01

    Full Text Available We report here that the Jun dimerization protein 2 (JDP2 plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2 and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS. JDP2 associates with Nrf2 and MafK (Nrf2-MafK to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  2. Strawberry-Tree Honey Induces Growth Inhibition of Human Colon Cancer Cells and Increases ROS Generation: A Comparison with Manuka Honey.

    Science.gov (United States)

    Afrin, Sadia; Forbes-Hernandez, Tamara Y; Gasparrini, Massimiliano; Bompadre, Stefano; Quiles, José L; Sanna, Gavino; Spano, Nadia; Giampieri, Francesca; Battino, Maurizio

    2017-03-11

    Honey is a natural product known to modulate several biological activities including cancer. The aim of the present study was to examine the phytochemical content and the antioxidant activity of Strawberry tree ( Arbutus unedo ) honey (STH) and its cytotoxic properties against human colon adenocarcinoma (HCT-116) and metastatic (LoVo) cell lines in comparison with Manuka ( Leptospermum scoparium ) honey (MH). Several unifloral STH and MH were analyzed for their phenolic, flavonoid, amino acid and protein contents, as well as their radical scavenging activities. STH from the Berchidda area showed the highest amount of phenolic, flavonoid, amino acid and protein content, and antioxidant capacity compared to MH. Both STH and MH induced cytotoxicity and cell death in a dose- and time-dependent manner in HCT-116 and LoVo cells, with less toxicity on non-cancer cells. Compared to MH, STH showed more effect at lower concentrations on HCT-116 and LoVo cells. In addition, both honeys increased intracellular reactive oxygen species (ROS) generation. In HCT-116 cells, STH and MH induced similar ROS production but in LoVo cells STH induced a higher percentage of ROS compared to MH. Our results indicate that STH and MH can induce cell growth inhibition and ROS generation in colon adenocarcinoma and metastatic cells, which could be due to the presence of phytochemicals with antioxidant properties. These preliminary results are interesting and suggest a potential chemopreventive action which could be useful for further studies in order to develop chemopreventive agents for colon cancer.

  3. Strawberry-Tree Honey Induces Growth Inhibition of Human Colon Cancer Cells and Increases ROS Generation: A Comparison with Manuka Honey

    Directory of Open Access Journals (Sweden)

    Sadia Afrin

    2017-03-01

    Full Text Available Honey is a natural product known to modulate several biological activities including cancer. The aim of the present study was to examine the phytochemical content and the antioxidant activity of Strawberry tree (Arbutus unedo honey (STH and its cytotoxic properties against human colon adenocarcinoma (HCT-116 and metastatic (LoVo cell lines in comparison with Manuka (Leptospermum scoparium honey (MH. Several unifloral STH and MH were analyzed for their phenolic, flavonoid, amino acid and protein contents, as well as their radical scavenging activities. STH from the Berchidda area showed the highest amount of phenolic, flavonoid, amino acid and protein content, and antioxidant capacity compared to MH. Both STH and MH induced cytotoxicity and cell death in a dose- and time-dependent manner in HCT-116 and LoVo cells, with less toxicity on non-cancer cells. Compared to MH, STH showed more effect at lower concentrations on HCT-116 and LoVo cells. In addition, both honeys increased intracellular reactive oxygen species (ROS generation. In HCT-116 cells, STH and MH induced similar ROS production but in LoVo cells STH induced a higher percentage of ROS compared to MH. Our results indicate that STH and MH can induce cell growth inhibition and ROS generation in colon adenocarcinoma and metastatic cells, which could be due to the presence of phytochemicals with antioxidant properties. These preliminary results are interesting and suggest a potential chemopreventive action which could be useful for further studies in order to develop chemopreventive agents for colon cancer.

  4. A deficiency of apoptosis inducing factor (AIF in Harlequin mouse heart mitochondria paradoxically reduces ROS generation during ischemia-reperfusion

    Directory of Open Access Journals (Sweden)

    Qun eChen

    2014-07-01

    Full Text Available Background and Aims: AIF (apoptosis inducing factor is a flavin and NADH containing protein located within mitochondria required for optimal function of the respiratory chain. AIF may function as an antioxidant within mitochondria, yet when released from mitochondria it activates caspase-independent cell death. The Harlequin (Hq mouse has a markedly reduced content of AIF, providing an experimental model to query if the main role of AIF in the exacerbation of cell death is enhanced mitochondrial generation of reactive oxygen species (ROS or the activation of cell death programs. We asked if the ROS generation is altered in Hq heart mitochondria at baseline or following ischemia-reperfusion (IR.Methods: Buffer perfused mouse hearts underwent 30 min ischemia and 30 min reperfusion. Mitochondrial function including oxidative phosphorylation and H2O2 generation was measured. Immunoblotting was used to determine the contents of AIF and PAR [poly(ADP-ribose] in cell fractions.Results: There were no differences in the release of H2O2 between wild type (WT and Hq heart mitochondria at baseline. IR increased H2O2 generation from WT but not from Hq mitochondria compared to corresponding time controls. The complex I activity was decreased in WT but not in Hq mice following IR. The relocation of AIF from mitochondria to nucleus was increased in WT but not in Hq mice. IR activated PARP-1 only in WT mice. Cell injury was decreased in Hq mouse heart following in vitro IR.Conclusion: A deficiency of AIF within mitochondria does not increase ROS production during IR, indicating that AIF functions less as an antioxidant within mitochondria. The decreased cardiac injury in Hq mouse heart accompanied by less AIF translocation to the nucleus suggests that AIF relocation, rather than the AIF content within mitochondria, contributes to cardiac injury during IR.

  5. Middleware Interoperability for Robotics: A ROS-YARP Framework

    Directory of Open Access Journals (Sweden)

    Plinio Moreno

    2016-10-01

    Full Text Available Middlewares are fundamental tools for progress in research and applications in robotics. They enable the integration of multiple heterogeneous sensing and actuation devices, as well as providing general purpose modules for key robotics functions (kinematics, navigation, planning. However, no existing middleware yet provides a complete set of functionalities for all robotics applications, and many robots may need to rely on more than one framework. This paper focuses on the interoperability between two of the most prevalent middleware in robotics: YARP and ROS. Interoperability between middlewares should ideally allow users to execute existing software without the necessity of: (i changing the existing code, and (ii writing hand-coded ``bridges'' for each use-case. We propose a framework enabling the communication between existing YARP modules and ROS nodes for robotics applications in an automated way. Our approach generates the ``bridging gap'' code from a configuration file, connecting YARP ports and ROS topics through code-generated YARP Bottles. %%The configuration file must describe: (i the sender entities, (ii the way to group and convert the information read from the sender, (iii the structure of the output message and (iv the receiving entity. Our choice for the many inputs to one output is the most common use-case in robotics applications, where examples include filtering, decision making and visualization. %We support YARP/ROS and ROS/YARP sender/receiver configurations, which are demonstrated in a humanoid on wheels robot that uses YARP for upper body motor control and visual perception, and ROS for mobile base control and navigation algorithms.

  6. Androgen receptor requires JunD as a coactivator to switch on an oxidative stress generation pathway in prostate cancer cells.

    Science.gov (United States)

    Mehraein-Ghomi, Farideh; Basu, Hirak S; Church, Dawn R; Hoffmann, F Michael; Wilding, George

    2010-06-01

    Relatively high oxidative stress levels in the prostate are postulated to be a major factor for prostate carcinogenesis and prostate cancer (CaP) progression. We focused on elucidating metabolic pathways of oxidative stress generation in CaP cells. Previously, we showed that the transcription factor JunD is essential for androgen-induced reactive oxygen species (ROS) production in androgen-dependent human CaP cells. We also recently showed that androgen induces the first and regulatory enzyme spermidine/spermine N1-acetyltransferase (SSAT) in a polyamine catabolic pathway that produces copious amounts of metabolic ROS. Here, we present coimmunoprecipitation and Gaussia luciferase reconstitution assay data that show that JunD forms a complex with androgen-activated androgen receptor (AR) in situ. Our chromatin immunoprecipitation assay data show that JunD binds directly to a specific SSAT promoter sequence only in androgen-treated LNCaP cells. Using a vector containing a luciferase reporter gene connected to the SSAT promoter and a JunD-silenced LNCaP cell line, we show that JunD is essential for androgen-induced SSAT gene expression. The elucidation of JunD-AR complex inducing SSAT expression leading to polyamine oxidation establishes the mechanistic basis of androgen-induced ROS production in CaP cells and opens up a new prostate-specific target for CaP chemopreventive/chemotherapeutic drug development. Copyright 2010 AACR.

  7. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Directory of Open Access Journals (Sweden)

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  8. 7-ketocholesterol induces apoptosis of MC3T3-E1 cells associated with reactive oxygen species generation, endoplasmic reticulum stress and caspase-3/7 dependent pathway

    Directory of Open Access Journals (Sweden)

    Yuta Sato

    2017-03-01

    Full Text Available Type 2 diabetes mellitus (T2DM is associated with an increased risk of bone fractures without reduction of bone mineral density. The cholesterol oxide 7-ketocholesterol (7KCHO has been implicated in numerous diseases such as atherosclerosis, Alzheimer's disease, Parkinson's disease, cancer, age-related macular degeneration and T2DM. In the present study, 7KCHO decreased the viability of MC3T3-E1 cells, increased reactive oxygen species (ROS production and apoptotic rate, and upregulated the caspase-3/7 pathway. Furthermore, these effects of 7KCHO were abolished by pre-incubation of the cells with N-acetylcysteine (NAC, an ROS inhibitor. Also, 7KCHO enhanced the mRNA expression of two endoplasmic reticulum (ER stress markers; CHOP and GRP78, in MC3T3-E1 cells. Pre-incubation of the cells with NAC suppressed the 7KCHO-induced upregulation of CHOP, but not GRP78. In conclusion, we demonstrated that 7KCHO induced apoptosis of MC3T3-E1 cells associated with ROS generation, ER stress, and caspase-3/7 activity, and the effects of 7KCHO were abolished by the ROS inhibitor NAC. These findings may provide new insight into the relationship between oxysterol and pathophysiology of osteoporosis seen in T2DM.

  9. ROS Hexapod

    Science.gov (United States)

    Davis, Kirsch; Bankieris, Derek

    2016-01-01

    As an intern project for NASA Johnson Space Center (JSC), my job was to familiarize myself and operate a Robotics Operating System (ROS). The project outcome converted existing software assets into ROS using nodes, enabling a robotic Hexapod to communicate to be functional and controlled by an existing PlayStation 3 (PS3) controller. Existing control algorithms and current libraries have no ROS capabilities within the Hexapod C++ source code when the internship started, but that has changed throughout my internship. Conversion of C++ codes to ROS enabled existing code to be compatible with ROS, and is now controlled using an existing PS3 controller. Furthermore, my job description was to design ROS messages and script programs that enabled assets to participate in the ROS ecosystem by subscribing and publishing messages. Software programming source code is written in directories using C++. Testing of software assets included compiling code within the Linux environment using a terminal. The terminal ran the code from a directory. Several problems occurred while compiling code and the code would not compile. So modifying code to where C++ can read the source code were made. Once the code was compiled and ran, the code was uploaded to Hexapod and then controlled by a PS3 controller. The project outcome has the Hexapod fully functional and compatible with ROS and operates using the PlayStation 3 controller. In addition, an open source software (IDE) Arduino board will be integrated into the ecosystem with designing circuitry on a breadboard to add additional behavior with push buttons, potentiometers and other simple elements in the electrical circuitry. Other projects with the Arduino will be a GPS module, digital clock that will run off 22 satellites to show accurate real time using a GPS signal and an internal patch antenna to communicate with satellites. In addition, this internship experience has led me to pursue myself to learn coding more efficiently and

  10. Dehydrins Impart Protection against Oxidative Stress in Transgenic Tobacco Plants.

    Science.gov (United States)

    Halder, Tanmoy; Upadhyaya, Gouranga; Basak, Chandra; Das, Arup; Chakraborty, Chandrima; Ray, Sudipta

    2018-01-01

    Environmental stresses generate reactive oxygen species (ROS) which might be detrimental to the plants when produced in an uncontrolled way. However, the plants ameliorate such stresses by synthesizing antioxidants and enzymes responsible for the dismutation of ROS. Additionally, the dehydrins were also able to protect the inactivation of the enzyme lactate dehydrogenase against hydroxyl radicals (OH ⋅ ) generated during Fenton's reaction. SbDhn1 and SbDhn2 overexpressing transgenic tobacco plants were able to protect against oxidative damage. Transgenic tobacco lines showed better photosynthetic efficiency along with high chlorophyll content, soluble sugar and proline. However, the malonyl dialdehyde (MDA) content was significantly lower in transgenic lines. Experimental evidence demonstrates the protective effect of dehydrins on electron transport chain in isolated chloroplast upon methyl viologen (MV) treatment. The transgenic tobacco plants showed significantly lower superoxide radical generation () upon MV treatment. The accumulation of the H 2 O 2 was also lower in the transgenic plants. Furthermore, in the transgenic plants the expression of ROS scavenging enzymes was higher compared to non-transformed (NT) or vector transformed (VT) plants. Taken together these data, during oxidative stress dehydrins function by scavenging the () directly and also by rendering protection to the enzymes responsible for the dismutation of () thereby significantly reducing the amount of hydrogen peroxides formed. Increase in proline content along with other antioxidants might also play a significant role in stress amelioration. Dehydrins thus function co-operatively with other protective mechanisms under oxidative stress conditions rendering protection in stress environment.

  11. ROS Are Required for Mouse Spermatogonial Stem Cell Self-Renewal

    OpenAIRE

    Morimoto, Hiroko; Iwata, Kazumi; Ogonuki, Narumi; Inoue, Kimiko; Ogura, Atsuo; Kanatsu-Shinohara, Mito; Morimoto, Takeshi; Yabe-Nishimura, Chihiro; Shinohara, Takashi

    2013-01-01

    Reactive oxygen species (ROS) generation is implicated in stem cell self-renewal in several tissues but is thought to be detrimental for spermatogenesis as well as spermatogonial stem cells (SSCs). Using cultured SSCs, we show that ROS are generated via the AKT and MEK signaling pathways under conditions where the growth factors glial cell line-derived neurotrophic factor and fibroblast growth factor 2 drive SSC self-renewal and, instead, stimulate self-renewal at physiological levels. SSCs d...

  12. Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum.

    Science.gov (United States)

    Arfaoui, Arbia; El Hadrami, Abdelbasset; Daayf, Fouad

    2018-01-01

    Considering the high incidence of white mold caused by Sclerotinia sclerotiorum in a variety of field crops and vegetables, different control strategies are needed to keep the disease under economical threshold. This study assessed the effect of foliar application of a calcium formulation on disease symptoms, oxalic acid production, and on the oxidative stress metabolism in soybean plants inoculated with each of two isolates of the pathogen that have contrasting aggressiveness (HA, highly-aggressive versus WA, weakly-aggressive). Changes in reactive oxygen species (ROS) levels in soybean plants inoculated with S. sclerotiorum isolates were assessed at 6, 24, 48 and 72 h post inoculation (hpi). Generation of ROS including hydrogen peroxide (H 2 O 2 ), anion superoxide (O 2 - ) and hydroxyl radical (OH) was evaluated. Inoculation with the WA isolate resulted in more ROS accumulation compared to the HA isolate. Pre-treatment with the calcium formulation restored ROS production in plants inoculated with the HA isolate. We also noted a marked decrease in oxalic acid content in the leaves inoculated with the HA isolate in presence of calcium, which coincided with an increase in plant ROS production. The expression patterns of genes involved in ROS detoxification in response to the calcium treatments and/or inoculation with S. Sclerotiorum isolates were monitored by RT-qPCR. All of the tested genes showed a higher expression in response to inoculation with the WA isolate. The expression of most genes tested peaked at 6 hpi, which preceded ROS accumulation in the soybean leaves. Overall, these data suggest that foliar application of calcium contributes to a decrease in oxalic acid production and disease, arguably via modulation of the ROS metabolism. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium.

    Science.gov (United States)

    Harijith, Anantha; Pendyala, Srikanth; Ebenezer, David L; Ha, Alison W; Fu, Panfeng; Wang, Yue-Ting; Ma, Ke; Toth, Peter T; Berdyshev, Evgeny V; Kanteti, Prasad; Natarajan, Viswanathan

    2016-08-01

    Hyperoxia-induced lung injury adversely affects ICU patients and neonates on ventilator assisted breathing. The underlying culprit appears to be reactive oxygen species (ROS)-induced lung damage. The major contributor of hyperoxia-induced ROS is activation of the multiprotein enzyme complex NADPH oxidase. Sphingosine-1-phosphate (S1P) signaling is known to be involved in hyperoxia-mediated ROS generation; however, the mechanism(s) of S1P-induced NADPH oxidase activation is unclear. Here, we investigated various steps in the S1P signaling pathway mediating ROS production in response to hyperoxia in lung endothelium. Of the two closely related sphingosine kinases (SphKs)1 and 2, which synthesize S1P from sphingosine, only Sphk1(-/-) mice conferred protection against hyperoxia-induced lung injury. S1P is metabolized predominantly by S1P lyase and partial deletion of Sgpl1 (Sgpl1(+/-)) in mice accentuated lung injury. Hyperoxia stimulated S1P accumulation in human lung microvascular endothelial cells (HLMVECs), and downregulation of S1P transporter spinster homolog 2 (Spns2) or S1P receptors S1P1&2, but not S1P3, using specific siRNA attenuated hyperoxia-induced p47(phox) translocation to cell periphery and ROS generation in HLMVECs. These results suggest a role for Spns2 and S1P1&2 in hyperoxia-mediated ROS generation. In addition, p47(phox) (phox:phagocyte oxidase) activation and ROS generation was also reduced by PF543, a specific SphK1 inhibitor in HLMVECs. Our data indicate a novel role for Spns2 and S1P1&2 in the activation of p47(phox) and production of ROS involved in hyperoxia-mediated lung injury in neonatal and adult mice. Copyright © 2016 the American Physiological Society.

  14. Beyond the polymerase-γ theory: Production of ROS as a mode of NRTI-induced mitochondrial toxicity.

    Directory of Open Access Journals (Sweden)

    Reuben L Smith

    Full Text Available Use of some HIV-1 nucleoside reverse transcriptase inhibitors (NRTI is associated with severe adverse events. However, the exact mechanisms behind their toxicity has not been fully understood. Mitochondrial dysfunction after chronic exposure to specific NRTIs has predominantly been assigned to mitochondrial polymerase-γ inhibition by NRTIs. However, an increasing amount of data suggests that this is not the sole mechanism. Many NRTI induced adverse events have been linked to the incurrence of oxidative stress, although the causality of events leading to reactive oxygen species (ROS production and their role in toxicity is unclear. In this study we show that short-term effects of first generation NRTIs, which are rarely discussed in the literature, include inhibition of oxygen consumption, decreased ATP levels and increased ROS production. Collectively these events affect fitness and longevity of C. elegans through mitohormetic signalling events. Furthermore, we demonstrate that these effects can be normalized by addition of the anti-oxidant N-acetylcysteine (NAC, which suggests that ROS likely influence the onset and severity of adverse events upon drug exposure.

  15. Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS.

    Science.gov (United States)

    Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko

    2009-03-31

    Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development.

  16. Impact of oxidative stress on exercising skeletal muscle.

    Science.gov (United States)

    Steinbacher, Peter; Eckl, Peter

    2015-04-10

    It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS) in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced during exercise also have positive effects by influencing cellular processes that lead to increased expression of antioxidants. These molecules are particularly elevated in regularly exercising muscle to prevent the negative effects of ROS by neutralizing the free radicals. In addition, ROS also seem to be involved in the exercise-induced adaptation of the muscle phenotype. This review provides an overview of the evidences to date on the effects of ROS in exercising muscle. These aspects include the sources of ROS, their positive and negative cellular effects, the role of antioxidants, and the present evidence on ROS-dependent adaptations of muscle cells in response to physical exercise.

  17. A novel synthetic analog of militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells

    International Nuclear Information System (INIS)

    Yoon, Deok Hyo; Lim, Mi-Hee; Lee, Yu Ran; Sung, Gi-Ho; Lee, Tae-Ho; Jeon, Byeong Hwa; Cho, Jae Youl; Song, Won O.; Park, Haeil; Choi, Sunga; Kim, Tae Woong

    2013-01-01

    A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC 50 of 5 μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G 0 /G 1 -DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer. - Highlights: • We report a novel synthesized derivative, militarin analog-1 (MA-1). • MA-1-induced cancer cell death was triggered by the ROS

  18. A novel synthetic analog of militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Deok Hyo; Lim, Mi-Hee [Department of Biochemistry, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Lee, Yu Ran [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Sung, Gi-Ho [Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 404-707 (Korea, Republic of); Lee, Tae-Ho [R and D Center, Dong-A Pharmaceutical Co, Ltd, Yongin 446-905 (Korea, Republic of); Jeon, Byeong Hwa [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Cho, Jae Youl [Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Song, Won O. [Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States); Park, Haeil [College of Pharmacy, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Choi, Sunga, E-mail: sachoi@cnu.ac.kr [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Kim, Tae Woong, E-mail: tawkim@kangwon.ac.kr [Department of Biochemistry, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2013-12-15

    A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC{sub 50} of 5 μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G{sub 0}/G{sub 1}-DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer. - Highlights: • We report a novel synthesized derivative, militarin analog-1 (MA-1). • MA-1-induced cancer cell death was triggered by

  19. The role of 12/15-lipoxygenases in ROS-mediated neuronal cell death

    OpenAIRE

    Tobaben, Svenja

    2011-01-01

    Oxidative stress has been established as a key trigger of neuronal dysfunction and death in age-related neurodegenerative diseases and in delayed neuronal death after acute brain injury by ischemic stroke or brain trauma. Despite increasing knowledge on the toxicity of reactive oxygen species (ROS) and oxidized reaction products that may further accelerate neuronal cell death, the major sources of ROS formation and the mechanisms ...

  20. The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAPK signaling pathway.

    Science.gov (United States)

    Hseu, You-Cheng; Lee, Meng-Shiou; Wu, Chi-Rei; Cho, Hsin-Ju; Lin, Kai-Yuan; Lai, Guan-Hua; Wang, Sheng-Yang; Kuo, Yueh-Hsiung; Kumar, K J Senthil; Yang, Hsin-Ling

    2012-03-07

    Chalcones have been described to represent cancer chemopreventive food components that are rich in fruits and vegetables. In this study, we examined the anti-oral cancer effect of flavokawain B (FKB), a naturally occurring chalcone isolated from Alpinia pricei (shell gingers), and revealed its molecular mechanism of action. Treatment of human oral carcinoma (HSC-3) cells with FKB (1.25-10 μg/mL; 4.4-35.2 μM) inhibited cell viability and caused G(2)/M arrest through reductions in cyclin A/B1, Cdc2, and Cdc25C levels. Moreover, FKB treatment resulted in the induction of apoptosis, which was associated with DNA fragmentation, mitochondria dysfunction, cytochrome c and AIF release, caspase-3 and caspase-9 activation, and Bcl-2/Bax dysregulation. Furthermore, increased Fas activity and procaspase-8, procaspase-4, and procaspase-12 cleavages were accompanied by death receptor and ER-stress, indicating the involvement of mitochondria, death-receptor, and ER-stress signaling pathways. FKB induces apoptosis through ROS generation as evidenced by the upregulation of oxidative-stress markers HO-1/Nrf2. This mechanism was further confirmed by the finding that the antioxidant N-acetylcysteine (NAC) significantly blocked ROS generation and consequently inhibited FKB-induced apoptosis. Moreover, FKB downregulated the phosphorylation of Akt and p38 MAPK, while their inhibitors LY294002 and SB203580, respectively, induced G(2)/M arrest and apoptosis. The profound reduction in cell number was observed in combination treatment with FKB and Akt/p38 MAPK inhibitors, indicating that the disruption of Akt and p38 MAPK cascades plays a functional role in FKB-induced G(2)/M arrest and apoptosis in HSC-3 cells.

  1. Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines.

    Directory of Open Access Journals (Sweden)

    Azhar R Hussain

    Full Text Available BACKGROUND: We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL. In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4', 5-trihydroxystilbene, a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL cells in causing inhibition of cell viability and inducing apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS. Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect. CONCLUSION/SIGNIFICANCE: Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.

  2. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution

    Science.gov (United States)

    The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiatio...

  3. Potential hepatic toxicity of buprofezin at sublethal concentrations: ROS-mediated conversion of energy metabolism.

    Science.gov (United States)

    Ji, Xiaotong; Ku, Tingting; Zhu, Na; Ning, Xia; Wei, Wei; Li, Guangke; Sang, Nan

    2016-12-15

    Buprofezin is known for its broad-spectrum action and environmental safety. The popularity of buprofezin has raised concerns about its potentially adverse effects on human health and risk to the environment. In this study, we first identified the liver as one of the major organs in which buprofezin accumulated, and we detected a severe oxidative stress response. Next, we demonstrated that sublethal concentrations of buprofezin promoted the conversion of energy metabolism from the aerobic tricarboxylic acid (TCA) cycle and oxidative phosphorylation to anaerobic glycolysis. Importantly, reactive oxygen species (ROS) generation partially accounted for the shunting of the energy metabolism through the buprofezin-mediated inhibition of cytochrome c oxidase activity. ROS directly perturbed the activities of several key TCA cycle enzymes, stimulated glycolysis, and indirectly disturbed the activity of the respiratory chain complex by altering mitochondrial DNA (mtDNA). These findings clarify the potential mechanisms of buprofezin toxicity and provide biomarkers for buprofezin-mediated hepatotoxicity at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  5. Oxidative stress in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Shyamal K Goswami

    2015-01-01

    Full Text Available Oxidative stress caused by various oxygen containing free radicals and reactive species (collectively called "Reactive Oxygen Species" or ROS has long been attributed to cardiovascular diseases. In human body, major oxidizing species are super oxide, hydrogen peroxide, hydroxyl radical, peroxy nitrite etc. ROS are produced from distinct cellular sources, enzymatic and non-enzymatic; have specific physicochemical properties and often have specific cellular targets. Although early studies in nineteen sixties and seventies highlighted the deleterious effects of these species, later it was established that they also act as physiological modulators of cellular functions and diseases occur only when ROS production is deregulated. One of the major sources of cellular ROS is Nicotinamide adenine dinucleotide phosphate oxidases (Noxes that are expressed in almost all cell types. Superoxide and hydrogen peroxide generated from them under various conditions act as signal transducers. Due to their immense importance in cellular physiology, various Nox inhibitors are now being developed as therapeutics. Another free radical of importance in cardiovascular system is nitric oxide (a reactive nitrogen species generated from nitric oxide synthase(s. It plays a critical role in cardiac function and its dysregulated generation along with superoxide leads to the formation of peroxynitrite a highly deleterious agent. Despite overwhelming evidences of association between increased level of ROS and cardiovascular diseases, antioxidant therapies using vitamins and omega 3 fatty acids have largely been unsuccessful till date. Also, there are major discrepancies between studies with laboratory animals and human trials. It thus appears that the biology of ROS is far complex than anticipated before. A comprehensive understanding of the redox biology of diseases is thus needed for developing targeted therapeutics.

  6. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions.

    Directory of Open Access Journals (Sweden)

    Keith D Rochfort

    Full Text Available Blood-brain barrier (BBB dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization.The present study employs human brain microvascular endothelial cells (HBMvECs to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5 to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated.In response to treatment with either TNF-α or IL-6 (0-100 ng/ml, 0-24 hrs, our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766.A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the

  7. Bartter/Gitelman syndromes as a model to study systemic oxidative stress in humans.

    Science.gov (United States)

    Maiolino, Giuseppe; Azzolini, Matteo; Rossi, Gian Paolo; Davis, Paul A; Calò, Lorenzo A

    2015-11-01

    Reactive oxygen species (ROS) are intermediates in reduction-oxidation reactions that begin with the addition of one electron to molecular oxygen, generating the primary ROS superoxide, which in turn interacts with other molecules to produce secondary ROS, such as hydrogen peroxide, hydroxyl radical, and peroxynitrite. ROS are continuously produced during metabolic processes and are deemed to play an important role in cardiovascular diseases, namely, myocardial hypertrophy and fibrosis and atherosclerosis, via oxidative damage of lipids, proteins, and deoxyribonucleic acid. Angiotensin II (Ang II) is a potent vasoactive agent that also exerts mitogenic, proinflammatory, and profibrotic effects through several signaling pathways, in part involving ROS, particularly superoxide and hydrogen peroxide. Moreover, Ang II stimulates NADPH oxidases, leading to higher ROS generation and oxidative stress. Bartter/Gitelman syndrome patients, despite elevated plasma renin activity, Ang II, and aldosterone levels, exhibit reduced peripheral resistance, normal/low blood pressure, and blunted pressor effect of vasoconstrictors. In addition, notwithstanding the activation of the renin-angiotensin system and the increased plasma levels of Ang II, these patients display decreased production of ROS, reduced oxidative stress, and increased antioxidant defenses. In fact, Bartter/Gitelman syndrome patients are characterized by reduced levels of p22(phox) gene expression and undetectable plasma peroxynitrite levels, while showing increased plasma antioxidant power and expression of antioxidant enzymes, such as heme oxygenase-1. In conclusion, multifarious data suggest that Bartter and Gitelman syndrome patients are a model of low oxidative stress and high antioxidant defenses. The contribution offered by the study of these syndromes in elucidating the molecular mechanisms underlying this favorable status could offer chances for new therapeutic targets in disease characterized by high

  8. ROS and RNS Signaling in Heart Disorders: Could Antioxidant Treatment Be Successful?

    Directory of Open Access Journals (Sweden)

    Igor Afanas'ev

    2011-01-01

    Full Text Available There is not too much success in the antioxidant treatment of heart deceases in humans. However a new approach is now developed that suggests that depending on their structures and concentrations antioxidants can exhibit much more complicated functions in many pathological disorders. It is now well established that physiological free radicals superoxide and nitric oxide together with their derivatives hydrogen peroxide and peroxynitrite (all are named reactive oxygen species (ROS and reactive nitrogen species (RNS play a more important role in heart diseases through their signaling functions. Correspondingly this work is dedicated to the consideration of damaging signaling by ROS and RNS in various heart and vascular disorders: heart failure (congestive heart failure or CHF, left ventricular hypertrophy (LVH, coronary heart disease, cardiac arrhythmias, and so forth. It will be demonstrated that ROS overproduction (oxidative stress is a main origin of the transformation of normal physiological signaling processes into the damaging ones. Furthermore the favorable effects of low/moderate oxidative stress through preconditioning mechanisms in ischemia/reperfusion will be considered. And in the last part we will discuss the possibility of efficient application of antioxidants and enzyme/gene inhibitors for the regulation of damaging ROS signaling in heart disorders.

  9. CO-releasing molecules CORM2 attenuates angiotensin II-induced human aortic smooth muscle cell migration through inhibition of ROS/IL-6 generation and matrix metalloproteinases-9 expression

    Directory of Open Access Journals (Sweden)

    Ming-Horng Tsai

    2017-08-01

    Full Text Available Ang II has been involved in the pathogenesis of cardiovascular diseases, and matrix metalloproteinase-9 (MMP-9 induced migration of human aortic smooth muscle cells (HASMCs is the most common and basic pathological feature. Carbon monoxide (CO, a byproduct of heme breakdown by heme oxygenase, exerts anti-inflammatory effects in various tissues and organ systems. In the present study, we aimed to investigate the effects and underlying mechanisms of carbon monoxide releasing molecule-2 (CORM-2 on Ang II-induced MMP-9 expression and cell migration of HASMCs. Ang II significantly up-regulated MMP-9 expression and cell migration of HASMCs, which was inhibited by transfection with siRNA of p47phox, Nox2, Nox4, p65, angiotensin II type 1 receptor (AT1R and pretreatment with the inhibitors of NADPH oxidase, ROS, and NF-κB. In addition, Ang II also induced NADPH oxidase/ROS generation and p47phox translocation from the cytosol to the membrane. Moreover, Ang II-induced oxidative stress and MMP-9-dependent cell migration were inhibited by pretreatment with CORM-2. Finally, we observed that Ang II induced IL-6 release in HASMCs via AT1R, but not AT2R, which could further caused MMP-9 secretion and cell migration. Pretreatment with CORM-2 reduced Ang II-induced IL-6 release. In conclusion, CORM-2 inhibits Ang II-induced HASMCs migration through inactivation of suppression of NADPH oxidase/ROS generation, NF-κB inactivation and IL-6/MMP-9 expression. Thus, application of CO, especially CORM-2, is a potential countermeasure to reverse the pathological changes of various cardiovascular diseases. Further effects aimed at identifying novel antioxidant and anti-inflammatory substances protective for heart and blood vessels that targeting CO and establishment of well-designed in vivo models properly evaluating the efficacy of these agents are needed. Keywords: Angiotensin II, Carbon monoxide, Human aortic smooth muscle cell, Inflammation, Matrix metallopeptidase

  10. Oxidative stress in NSC-741909-induced apoptosis of cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2010-04-01

    Full Text Available Abstract Background NSC-741909 is a novel anticancer agent that can effectively suppress the growth of several cell lines derived from lung, colon, breast, ovarian, and kidney cancers. We recently showed that NSC-741909-induced antitumor activity is associated with sustained Jun N-terminal kinase (JNK activation, resulting from suppression of JNK dephosphorylation associated with decreased protein levels of MAPK phosphatase-1. However, the mechanisms of NSC-741909-induced antitumor activity remain unclear. Because JNK is frequently activated by oxidative stress in cells, we hypothesized that reactive oxygen species (ROS may be involved in the suppression of JNK dephosphorylation and the cytotoxicity of NSC-741909. Methods The generation of ROS was measured by using the cell-permeable nonfluorescent compound H2DCF-DA and flow cytometry analysis. Cell viability was determined by sulforhodamine B assay. Western blot analysis, immunofluorescent staining and flow cytometry assays were used to determine apoptosis and molecular changes induced by NSC-741909. Results Treatment with NSC-741909 induced robust ROS generation and marked MAPK phosphatase-1 and -7 clustering in NSC-741909-sensitive, but not resistant cell lines, in a dose- and time-dependent manner. The generation of ROS was detectable as early as 30 min and ROS levels were as high as 6- to 8-fold above basal levels after treatment. Moreover, the NSC-741909-induced ROS generation could be blocked by pretreatment with antioxidants, such as nordihydroguaiaretic acid, aesculetin, baicalein, and caffeic acid, which in turn, inhibited the NSC-741909-induced JNK activation and apoptosis. Conclusion Our results demonstrate that the increased ROS production was associated with NSC-741909-induced antitumor activity and that ROS generation and subsequent JNK activation is one of the primary mechanisms of NSC-741909-mediated antitumor cell activity.

  11. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation.

    Science.gov (United States)

    Noctor, Graham; Mhamdi, Amna; Foyer, Christine H

    2016-05-01

    Oxidative stress and reactive oxygen species (ROS) are common to many fundamental responses of plants. Enormous and ever-growing interest has focused on this research area, leading to an extensive literature that documents the tremendous progress made in recent years. As in other areas of plant biology, advances have been greatly facilitated by developments in genomics-dependent technologies and the application of interdisciplinary techniques that generate information at multiple levels. At the same time, advances in understanding ROS are fundamentally reliant on the use of biochemical and cell biology techniques that are specific to the study of oxidative stress. It is therefore timely to revisit these approaches with the aim of providing a guide to convenient methods and assisting interested researchers in avoiding potential pitfalls. Our critical overview of currently popular methodologies includes a detailed discussion of approaches used to generate oxidative stress, measurements of ROS themselves, determination of major antioxidant metabolites, assays of antioxidative enzymes and marker transcripts for oxidative stress. We consider the applicability of metabolomics, proteomics and transcriptomics approaches and discuss markers such as damage to DNA and RNA. Our discussion of current methodologies is firmly anchored to future technological developments within this popular research field. © 2016 John Wiley & Sons Ltd.

  12. Polymorphic ROS scavenging revealed by CCCP in a lizard

    Science.gov (United States)

    Olsson, Mats; Wilson, Mark; Isaksson, Caroline; Uller, Tobias

    2009-07-01

    Ingestion of antioxidants has been argued to scavenge circulating reactive molecules (e.g., free radicals), play a part in mate choice (by mediating access to this important resource), and perhaps increase life span. However, recent work has come to question these relationships. We have shown elsewhere in the polychromatic lizard, Ctenophorus pictus, that diet supplementation of carotenoids as antioxidants does not depress circulating natural reactive oxygen species (ROS) levels and leads to no corresponding improvement of color traits. However, a much stronger test would be to experimentally manipulate the ROS levels themselves and assess carotenoid-induced ROS depression. Here, we achieve this by using carbonyl cyanide 3-chlorophenylhydrazone, which elevates superoxide (SO) formation approximately threefold at 10 μM in this model system. We then look for depressing effects on ROS of the carotenoids in order to assess whether ‘super-production’ of SO makes carotenoid effects on elevated ROS levels detectable. The rationale for this treatment was that if not even such elevated levels of SO are reduced by carotenoid supplementation, the putative link carotenoids, ROS depression, and mate quality (in terms of antioxidant capacity) is highly questionable. We conclude that there is no significant effect of carotenoids on mean SO levels even at the induced ROS levels. However, our results showed a significant interaction effect between carotenoid treatment and male color, with red males having higher ROS levels than yellow males. We suggest that this may be because different pigments are differently involved in the generation of the integumental colors in the two morphs with concomitant effects on ROS depletion depending on carotenoid uptake or allocation to coloration and antioxidation.

  13. On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid.

    Science.gov (United States)

    Aitken, R J; Smith, T B; Lord, T; Kuczera, L; Koppers, A J; Naumovski, N; Connaughton, H; Baker, M A; De Iuliis, G N

    2013-03-01

    Oxidative stress is known to have a major impact on human sperm function and, as a result, there is a need to develop sensitive methods for measuring reactive oxygen species (ROS) generation by these cells. A variety of techniques have been developed for this purpose including chemiluminescence (luminol and lucigenin), flow cytometry (MitoSOX Red, dihydroethidium, 4,5-diaminofluorescein diacetate and 2',7'-dichlorodihydrofluorescein diacetate) and spectrophotometry (nitroblue tetrazolium). The relative sensitivity of these assays and their comparative ability to detect ROS generated in different subcellular compartments of human spermatozoa, have not previously been investigated. To address this issue, we have compared the performance of these assays when ROS generation was triggered with a variety of reagents including 2-hydroxyestradiol, menadione, 4-hydroxynonenal and arachidonic acid. The results revealed that menadione predominantly induced release of ROS into the extracellular space where these metabolites could be readily detected by luminol-peroxidase and, to a lesser extent, 2',7'-dichlorodihydrofluorescein. However, such sensitivity to extracellular ROS meant that these assays were particularly vulnerable to interference by leucocytes. The remaining reagents predominantly elicited ROS generation by the sperm mitochondria and could be optimally detected by MitoSOX Red and DHE. Examination of spontaneous ROS generation by defective human spermatozoa revealed that MitoSOX Red was the most effective indicator of oxidative stress, thereby emphasizing the general importance of mitochondrial dysregulation in the aetiology of defective sperm function. © 2013 American Society of Andrology and European Academy of Andrology.

  14. Calcium and ROS: A mutual interplay

    Science.gov (United States)

    Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga

    2015-01-01

    Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072

  15. Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells

    NARCIS (Netherlands)

    Forkink, M.; Basit, F.; Teixeira, J.; Swarts, H.G.; Koopman, W.J.H.; Willems, P.H.G.M.

    2015-01-01

    Inhibitor studies with isolated mitochondria demonstrated that complex I (CI) and III (CIII) of the electron transport chain (ETC) can act as relevant sources of mitochondrial reactive oxygen species (ROS). Here we studied ROS generation and oxidative stress induction during chronic (24h) inhibition

  16. Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system.

    Science.gov (United States)

    Saibi, Walid; Feki, Kaouthar; Ben Mahmoud, Rihem; Brini, Faiçal

    2015-11-01

    The wheat dehydrin (DHN-5) gives birth to salinity tolerance to transgenic Arabidopsis plants by the regulation of proline metabolism and the ROS scavenging system. Dehydrins (DHNs) are involved in plant abiotic stress tolerance. In this study, we reported that salt tolerance of transgenic Arabidopsis plants overexpressing durum wheat dehydrin (DHN-5) was closely related to the activation of the proline metabolism enzyme (P5CS) and some antioxidant biocatalysts. Indeed, DHN-5 improved P5CS activity in the transgenic plants generating a significant proline accumulation. Moreover, salt tolerance of Arabidopsis transgenic plants was accompanied by an excellent activation of antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and peroxide dismutase (POD) and generation of a lower level of hydrogen peroxide (H2O2) in leaves compared to the wild-type plants. The enzyme activities were enhanced in these transgenic plants in the presence of exogenous proline. Nevertheless, proline accumulation was slightly reduced in transgenic plants promoting chlorophyll levels. All these results suggest the crucial role of DHN-5 in response to salt stress through the activation of enzymes implicated in proline metabolism and in ROS scavenging enzymes.

  17. Artemisinin induces ROS-mediated caspase3 activation in ASTC-a-1 cells

    Science.gov (United States)

    Xiao, Feng-Lian; Chen, Tong-Sheng; Qu, Jun-Le; Liu, Cheng-Yi

    2010-02-01

    Artemisinin (ART), an antimalarial phytochemical from the sweet wormwood plant or a naturally occurring component of Artemisia annua, has been shown a potential anticancer activity by apoptotic pathways. In our report, cell counting kit (CCK-8) assay showed that treatment of human lung adenocarcinoma (ASTC-a-1) cells with ART effectively increase cell death by inducing apoptosis in a time- and dose-dependent fashion. Hoechst 33258 staining was used to detect apoptosis as well. Reactive oxygen species (ROS) generation was observed in cells exposed to ART at concentrations of 400 μM for 48 h. N-acetyl-L-cysteine (NAC), an oxygen radical scavenger, suppressed the rate of ROS generation and inhibited the ART-induced apoptosis. Moreover, AFC assay (Fluorometric assay for Caspase3 activity) showed that ROS was involved in ART-induced caspase3 acitvation. Taken together, our data indicate that ART induces ROS-mediated caspase3 activation in a time-and dose-dependent way in ASCT-a-1 cells.

  18. Oxidative stress and CCN1 protein in human skin connective tissue aging

    Directory of Open Access Journals (Sweden)

    Zhaoping Qin

    2016-06-01

    Full Text Available Reactive oxygen species (ROS is an important pathogenic factor involved in human aging. Human skin is a primary target of oxidative stress from ROS generated from both extrinsic and intrinsic sources, like ultraviolet irradiation (UV and endogenous oxidative metabolism. Oxidative stress causes the alterations of collagen-rich extracellular matrix (ECM, the hallmark of skin connective tissue aging. Age-related alteration of dermal collagenous ECM impairs skin structural integrity and creates a tissue microenvironment that promotes age-related skin diseases, such as poor wound healing and skin cancer. Here, we review recent advances in our understanding of oxidative stress and CCN1 protein (first member of CCN family proteins, a critical mediator of oxidative stress-induced skin connective tissue aging.

  19. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  20. Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsuo, Ryo; Mizobuchi, Shogo; Nakashima, Maya; Miki, Kensuke; Ayusawa, Dai; Fujii, Michihiko

    2017-10-01

    Oxygen is essential for aerobic organisms but causes cytotoxicity probably through the generation of reactive oxygen species (ROS). In this study, we screened for the genes that regulate oxidative stress in the yeast Saccharomyces cerevisiae, and found that expression of CTH2/TIS11 caused an increased resistance to ROS. CTH2 is up-regulated upon iron starvation and functions to remodel metabolism to adapt to iron starvation. We showed here that increased resistance to ROS by CTH2 would likely be caused by the decreased ROS production due to the decreased activity of mitochondrial respiration, which observation is consistent with the fact that CTH2 down-regulates the mitochondrial respiratory proteins. We also found that expression of CTH1, a paralog of CTH2, also caused an increased resistance to ROS. This finding supported the above view, because mitochondrial respiratory proteins are the common targets of CTH1 and CTH2. We further showed that supplementation of iron in medium augmented the growth of S. cerevisiae under oxidative stress, and expression of CTH2 and supplementation of iron collectively enhanced its growth under oxidative stress. Since CTH2 is regulated by iron, these findings suggested that iron played crucial roles in the regulation of oxidative stress in S. cerevisiae.

  1. Genome-wide association for sensitivity to chronic oxidative stress in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Katherine W Jordan

    Full Text Available Reactive oxygen species (ROS are a common byproduct of mitochondrial energy metabolism, and can also be induced by exogenous sources, including UV light, radiation, and environmental toxins. ROS generation is essential for maintaining homeostasis by triggering cellular signaling pathways and host defense mechanisms. However, an imbalance of ROS induces oxidative stress and cellular death and is associated with human disease, including age-related locomotor impairment. To identify genes affecting sensitivity and resistance to ROS-induced locomotor decline, we assessed locomotion of aged flies of the sequenced, wild-derived lines from the Drosophila melanogaster Genetics Reference Panel on standard medium and following chronic exposure to medium supplemented with 3 mM menadione sodium bisulfite (MSB. We found substantial genetic variation in sensitivity to oxidative stress with respect to locomotor phenotypes. We performed genome-wide association analyses to identify candidate genes associated with variation in sensitivity to ROS-induced decline in locomotor performance, and confirmed the effects for 13 of 16 mutations tested in these candidate genes. Candidate genes associated with variation in sensitivity to MSB-induced oxidative stress form networks of genes involved in neural development, immunity, and signal transduction. Many of these genes have human orthologs, highlighting the utility of genome-wide association in Drosophila for studying complex human disease.

  2. Phytoextract of Indian mustard seeds acts by suppressing the generation of ROS against acetaminophen-induced hepatotoxicity in HepG2 cells.

    Science.gov (United States)

    Parikh, Harita; Pandita, Nancy; Khanna, Aparna

    2015-07-01

    Indian mustard [Brassica juncea (L.) Czern. & Coss. (Brassicaceae)] is reported to possess diverse pharmacological properties. However, limited information is available concerning its hepatoprotective activity and mechanism of action. To study the protective mechanism of mustard seed extract against acetaminophen (APAP) toxicity in a hepatocellular carcinoma (HepG2) cell line. Hepatotoxicity models were established using APAP (2.5-22.5 mM) based on the cytotoxicity profile. An antioxidant-rich fraction from mustard seeds was extracted and evaluated for its hepatoprotective potential. The mechanism of action was elucidated using various in vitro antioxidant assays, the detection of intracellular generation of reactive oxygen species (ROS), and cell cycle analysis. The phytoconstituents isolated via HPLC-DAD were also evaluated for hepatoprotective activity. Hydromethanolic seed extract exhibited hepatoprotective activity in post- and pre-treatment models of 20 mM APAP toxicity and restored the elevated levels of liver indices to normal values (p DAD analysis revealed the presence quercetin, vitamin E, and catechin, which exhibited hepatoprotective activity. A phytoextract of mustard seeds acts by suppressing the generation of ROS in response to APAP toxicity.

  3. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    International Nuclear Information System (INIS)

    Hong, Sung-Ha; Jenkins, A Toby A; Szili, Endre J; Short, Robert D

    2014-01-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine. (fast track communication)

  4. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    Science.gov (United States)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  5. UPP mediated Diabetic Retinopathy via ROS/PARP and NF-κB inflammatory factor pathways.

    Science.gov (United States)

    Luo, D-W; Zheng, Z; Wang, H; Fan, Y; Chen, F; Sun, Y; Wang, W-J; Sun, T; Xu, X

    2015-01-01

    Diabetic retinopathy (DR) is a leading cause of blindness in adults at working age. Human diabetic retinopathy is characterized by the basement membrane thick, pericytes loss, microaneurysms formation, retina neovascularization and vitreous hemorrhage. To investigate whether UPP activated ROS/PARP and NF-κB inflammatory factor pathways in Diabetic Retinopathy, human retinal endothelial cells (HRECs) and rats with streptozotocin-induced diabetes were used to determine the effect of UPP on ROS generation, cell apoptosis, mitochondrial membrane potential (ΔΨm) and inflammatory factor protein expression, through flow cytometry assay, immunohistochemistry, Real-time PCR, Western blot analysis and ELISA. The levels of ROS and apoptosis and the expressions of UPP (Ub and E3) and inflammatory factor protein were increased in high glucose-induced HRECs and retina of diabetic rats, while ΔΨm was decreased. The UPP inhibitor and UbshRNA could attenuate these effects through inhibiting the pathway of ROS/PARP and the expression of NF-κB inflammatory factors, and the increased UPP was a result of high glucose-induced increase of ROS generation and NF-κBp65 expression, accompanied with the decrease of ΔΨm. Clinical study showed the overexpression of UPP and detachment of epiretinal membranes in proliferative DR (PDR) patients. It has been indicated that the pathogenic effect of UPP on DR was involved in the increase of ROS generation and NF-κB expression, which associated with the ROS/PARP and NF-κB inflammatory factor pathways. Our study supports a new insight for further application of UPP inhibitor in DR treatment.

  6. PO2 cycling reduces diaphragm fatigue by attenuating ROS formation.

    Science.gov (United States)

    Zuo, Li; Diaz, Philip T; Chien, Michael T; Roberts, William J; Kishek, Juliana; Best, Thomas M; Wagner, Peter D

    2014-01-01

    Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe) was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses.

  7. PO2 cycling reduces diaphragm fatigue by attenuating ROS formation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr followed by a high oxygen level (550 Torr, can reduce intracellular reactive oxygen species (ROS as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses.

  8. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Science.gov (United States)

    Ivanov, Alexander V.; Smirnova, Olga A.; Petrushanko, Irina Y.; Ivanova, Olga N.; Karpenko, Inna L.; Alekseeva, Ekaterina; Sominskaya, Irina; Makarov, Alexander A.; Bartosch, Birke; Kochetkov, Sergey N.; Isaguliants, Maria G.

    2015-01-01

    Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGFβ1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1α. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein. PMID:26035647

  9. Interpretation of metabolic memory phenomenon using a physiological systems model: What drives oxidative stress following glucose normalization?

    Science.gov (United States)

    Voronova, Veronika; Zhudenkov, Kirill; Helmlinger, Gabriel; Peskov, Kirill

    2017-01-01

    Hyperglycemia is generally associated with oxidative stress, which plays a key role in diabetes-related complications. A complex, quantitative relationship has been established between glucose levels and oxidative stress, both in vitro and in vivo. For example, oxidative stress is known to persist after glucose normalization, a phenomenon described as metabolic memory. Also, uncontrolled glucose levels appear to be more detrimental to patients with diabetes (non-constant glucose levels) vs. patients with high, constant glucose levels. The objective of the current study was to delineate the mechanisms underlying such behaviors, using a mechanistic physiological systems modeling approach that captures and integrates essential underlying pathophysiological processes. The proposed model was based on a system of ordinary differential equations. It describes the interplay between reactive oxygen species production potential (ROS), ROS-induced cell alterations, and subsequent adaptation mechanisms. Model parameters were calibrated using different sources of experimental information, including ROS production in cell cultures exposed to various concentration profiles of constant and oscillating glucose levels. The model adequately reproduced the ROS excess generation after glucose normalization. Such behavior appeared to be driven by positive feedback regulations between ROS and ROS-induced cell alterations. The further oxidative stress-related detrimental effect as induced by unstable glucose levels can be explained by inability of cells to adapt to dynamic environment. Cell adaptation to instable high glucose declines during glucose normalization phases, and further glucose increase promotes similar or higher oxidative stress. In contrast, gradual ROS production potential decrease, driven by adaptation, is observed in cells exposed to constant high glucose.

  10. OXIDATIVE STRESS IN MUSCLE GROWTH AND ADAPTATION TO PHYSICAL EXERCISE

    Directory of Open Access Journals (Sweden)

    Ihor Yurkevych

    2015-05-01

    Full Text Available In a few last decades oxidative stress detected in a variety of physiological processes where reactive oxygen species (ROS and reactive nitrogen species (RNS play a central role. They are directly involved in oxidation of proteins, lipids and nucleic acids. In certain concentrations they are necessary for cell division, proliferation and apoptosis. Contractile muscle tissue at aerobic conditions form high ROS flow that may modulate a variety of cell functions, for example proliferation. However, slight increase in ROS level provide hormetic effect which may participate in adaptation to heavy weight training resulted in hypertrophy and proliferation of skeletal muscle fibers. This review will discuss ROS types, sites of generation, strategies to increase force production and achieve skeletal muscle hypertrophy.

  11. The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress.

    Science.gov (United States)

    Liow, K Y; Chow, Sek C

    2018-01-01

    The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.

  12. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress.

    Science.gov (United States)

    Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B

    2016-08-01

    Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Evaluation of the use of reactive oxygen species (ROS generated through oxyion® technology in strawberry (Fragaria × ananassa (Duchesne ex Weston Duchesne ex Rozier cv. Monterrey storage

    Directory of Open Access Journals (Sweden)

    Rafael Andres Ramirez

    2018-04-01

    Full Text Available Reactive oxygen species (ROS play a key role in oxidative stress processes at the biological level. In most cases the presence of these chemical species is undesirable due to the impact they have on tissues and cellular structures, however, their effects can be used to control the incidence of microorganisms responsible for deterioration processes in fruits and vegetables. In the present study the feasibility of combining low temperature storage with the presence of reactive oxygen species generated using Oxyion® technology to control the deterioration process in strawberry (Fragaria X ananassa was studied. The treatments used were as follows: control storage (4°C ± 2°C without Oxyion® and ROS storage (4°C ± 2°C with Oxyion®, for two product categories according to weight and maturation state according to NTC 4103 (ICONTEC, 1997. The variables were monitored with measuring points at 1, 3, 5, 7, 10 and 15 days after harvest in percentage of loss of mass, soluble solids, respiratory intensity, acidity, resistance, color and ethylene and significant interactions among variables. At the conclusion of the study, Oxyion® technology was found to have statistically significant differences compared to control, and have allowed to less weight loss, higher resistance and lower exogenous ethylene production, extending the life of strawberry cv. Monterrey in a 40% during storage, additionally the losses by action of microorganisms present in strawberries surface were reduced considerably, generating a positive precedent in the processes of storage and conservation of fruits for Colombia.

  14. UVA-induced ROS generation inhibition by Oenothera paradoxa defatted seeds extract and subsequent cell death in human dermal fibroblasts.

    Science.gov (United States)

    Jaszewska, Edyta; Soin, Magdalena; Filipek, Agnieszka; Naruszewicz, Marek

    2013-09-05

    UVA radiation stimulates the production of reactive oxygen species (ROS), which react with lipids, proteins and other intracellular molecules leading to oxidative stress, cellular damage and ultimately cell death. There is, therefore, a growing need for substances exhibiting antioxidant activity, which may support repair mechanisms of the skin. This study evaluates the protective effect of the aqueous Oenothera paradoxa Hudziok defatted seeds extract, rich in polyphenolic compounds, against UVA (25 and 50J/cm(2))-induced changes in normal human dermal fibroblasts (NHDFs). The tested extract (0.1-10μg/ml) has decreased, in a concentration-dependent fashion, the UVA-induced release of lactate dehydrogenase (LDH) into the culture medium, the ROS production (with the use of 2',7'-dichlorodihydrofluorescein diacetate) and lipid peroxidation (utilizing redox reactions with ferrous ions) as compared to the control cells (incubated without the extract). Moreover, the extract increased the number of viable (calcein positive) cells decreasing the number of cells in late apoptosis (annexin V-FITC and propidium iodide positive). Thus our results show that O. paradoxa defatted seeds extract may be beneficial for the prevention of UVA skin damage. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yan

    2014-01-01

    Full Text Available Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH, respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.

  16. Roles of Oxidative Stress, Apoptosis, PGC-1α and Mitochondrial Biogenesis in Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Ding-I Yang

    2011-10-01

    Full Text Available The primary physiological function of mitochondria is to generate adenosine triphosphate through oxidative phosphorylation via the electron transport chain. Overproduction of reactive oxygen species (ROS as byproducts generated from mitochondria have been implicated in acute brain injuries such as stroke from cerebral ischemia. It was well-documented that mitochondria-dependent apoptotic pathway involves pro- and anti-apoptotic protein binding, release of cytochrome c, leading ultimately to neuronal death. On the other hand, mitochondria also play a role to counteract the detrimental effects elicited by excessive oxidative stress. Recent studies have revealed that oxidative stress and the redox state of ischemic neurons are also implicated in the signaling pathway that involves peroxisome proliferative activated receptor-γ (PPARγ co-activator 1α (PGC1-α. PGC1-α is a master regulator of ROS scavenging enzymes including manganese superoxide dismutase 2 and the uncoupling protein 2, both are mitochondrial proteins, and may contribute to neuronal survival. PGC1-α is also involved in mitochondrial biogenesis that is vital for cell survival. Experimental evidence supports the roles of mitochondrial dysfunction and oxidative stress as determinants of neuronal death as well as endogenous protective mechanisms after stroke. This review aims to summarize the current knowledge focusing on the molecular mechanisms underlying cerebral ischemia involving ROS, mitochondrial dysfunction, apoptosis, mitochondrial proteins capable of ROS scavenging, and mitochondrial biogenesis.

  17. The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Obesity and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Krithika Srikanthan

    2016-09-01

    Full Text Available Na/K-ATPase has been extensively studied for its ion pumping function, but, in the past several decades, has been identified as a scaffolding and signaling protein. Initially it was found that cardiotonic steroids (CTS mediate signal transduction through the Na/K-ATPase and result in the generation of reactive oxygen species (ROS, which are also capable of initiating the signal cascade. However, in recent years, this Na/K-ATPase/ROS amplification loop has demonstrated significance in oxidative stress related disease states, including obesity, atherosclerosis, heart failure, uremic cardiomyopathy, and hypertension. The discovery of this novel oxidative stress signaling pathway, holds significant therapeutic potential for the aforementioned conditions and others that are rooted in ROS.

  18. Mechanisms of nanotoxicity: generation of reactive oxygen species.

    Science.gov (United States)

    Fu, Peter P; Xia, Qingsu; Hwang, Huey-Min; Ray, Paresh C; Yu, Hongtao

    2014-03-01

    Nanotechnology is a rapidly developing field in the 21(st) century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS). Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium. Copyright © 2014. Published by Elsevier B.V.

  19. Mechanisms of nanotoxicity: Generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Peter P. Fu

    2014-03-01

    Full Text Available Nanotechnology is a rapidly developing field in the 21st century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS. Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium.

  20. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng

    2014-08-05

    Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H₂O₂, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H₂O₂ synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress.

  1. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  2. Real-time investigation of antibiotics-induced oxidative stress and superoxide release in bacteria using an electrochemical biosensor.

    Science.gov (United States)

    Liu, Xiaobo; Marrakchi, Mouna; Jahne, Michael; Rogers, Shane; Andreescu, Silvana

    2016-02-01

    The involvement of oxidative stress in the mechanism of antibiotics-meditated cell death is unclear and subject to debate. The kinetic profile and a quantitative relationship between the release of reactive oxygen species (ROS), bacteria and antibiotic type remain elusive. Here we report direct measurements and analytical quantification of the release of superoxide radicals (O2(·-)), a major contributor to ROS, in antibiotics-treated bacterial cultures using a cytochrome c electrochemical biosensor. The specificity of electrochemical measurements was established by the addition of superoxide dismutase (SOD) which decreased the O2(·-) signal. Measurements using a general ROS-specific fluorescence dye and colony forming units (CFU) assays were performed side-by-side to determine the total ROS and establish the relationship between ROS and the degree of lethality. Exposure of Escherichia coli and Listeria monocytogenes cultures to antibiotics increased the release of O2(·-) radicals in a dose-dependent manner, suggesting that the transmembrane generation of ROS may occur as part of the antibiotic action. The study provides a quantitative methodology and fundamental knowledge to further explore the role of oxidative stress in antibiotics-meditated bacterial death and to assess physiological changes associated with the complex metabolic events related to oxidative stress and bacterial resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles.

    Science.gov (United States)

    Lavado, Andrea S; Chauhan, Veeren M; Zen, Amer Alhaj; Giuntini, Francesca; Jones, D Rhodri E; Boyle, Ross W; Beeby, Andrew; Chan, Weng C; Aylott, Jonathan W

    2015-09-14

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(II) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(II) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(II) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.

  4. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  5. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  6. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation.

    Science.gov (United States)

    Wang, Haibo; Han, Xiaokun; Wittchen, Erika S; Hartnett, M Elizabeth

    2016-01-01

    Inflammation, oxidative stress, and angiogenesis have been proposed to interact in age-related macular degeneration. It has been postulated that external stimuli that cause oxidative stress can increase production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial (RPE) cells. In this study, we tested the hypothesis that the inflammatory cytokine, tumor necrosis factor alpha (TNF-α), contributed to choroidal neovascularization (CNV) by upregulating VEGF in RPE through intracellular reactive oxygen species (ROS)-dependent signaling and sought to understand the mechanisms involved. In a murine laser-induced CNV model, 7 days after laser treatment and intravitreal neutralizing mouse TNF-α antibody or isotype immunoglobulin G (IgG) control, the following measurements were made: 1) TNF-α protein and VEGF protein in RPE/choroids with western blot, 2) CNV volume in RPE/choroidal flatmounts, and 3) semiquantification of oxidized phospholipids stained with E06 antibody within CNV with immunohistochemistry (IHC). In cultured human RPE cells treated with TNF-α or PBS control, 1) ROS generation was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence assay, and 2) NOX4 protein and VEGF protein or mRNA were measured with western blot or quantitative real-time PCR in cells pretreated with apocynin or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) inhibitor, VAS 2870, or transfected with p22phox siRNA, and each was compared to its appropriate control. Western blots of phosphorylated p65 (p-p65), total p65 and β-actin, and quantitative real-time PCR of VEGF mRNA were measured in human RPE cells treated with TNF-α and pretreatment with the nuclear factor kappa B inhibitor, Bay 11-7082 or control. Western blots of β-catenin, VEGF, and p22phox and coimmunoprecipitation of β-catenin and T-cell transcriptional factor were performed in human RPE cells treated with TNF-α following pretreatment with

  7. Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging?

    Directory of Open Access Journals (Sweden)

    Gábor Zsurka

    2018-03-01

    Full Text Available Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG. In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H2O2 by a Fenton reaction. The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.

  8. Establishing the subcellular localization of photodynamically-induced ROS using 3,3′-diaminobenzidine: A methodological proposal, with a proof-of-concept demonstration

    DEFF Research Database (Denmark)

    Stockert, Juan Carlos; Blazquez-Castro, Alfonso

    2016-01-01

    The critical involvement of reactive oxygen species (ROS) in both physiological and pathological processes in cell biology makes their detection and assessment a fundamental topic in biomedical research. Established methodologies to study ROS in cell biology take advantage of oxidation reactions...... is proved in a photodynamic model of ROS generation, the principle is applicable to many different scenarios of intracellular ROS production. As a consequence this proposed methodology should greatly complement other techniques aiming at establishing a precise subcellular localization of ROS generation....... between the ROS and a reduced probe. After reacting the probe reveals the presence of ROS either by the appearance of colour (chromogenic reaction) or fluorescence (fluorogenic reaction). However current methodologies rarely allow for a site-specific detection of ROS production. Here we propose...

  9. Quantification of particle-induced inflammatory stress response: a novel approach for toxicity testing of earth materials

    Directory of Open Access Journals (Sweden)

    Harrington Andrea D

    2012-04-01

    Full Text Available Abstract Background Reactive oxygen species (ROS are vital regulators of many cellular functions in the body. The intracellular ROS concentration is highly regulated by a balance between pro-oxidants and anti-oxidants. A chronic excess of pro-oxidants leads to elevated ROS concentrations and inflammation, possibly initiating or enhancing disease onset. Mineral-induced generation of ROS, the role of minerals in upregulating cellular ROS, and their role in the development of several occupational diseases are now widely recognized. However, there is no standard protocol to determine changes in ROS production in cells after exposure to mineral dust or earth materials in general. In this study, a new method for determining the degree of cellular toxicity (i.e., cytotoxicity of particles is described that will help bridge the gap in knowledge. Results By measuring the production of ROS and the viability of cells, an inflammatory stress response (ISR indicator is defined. This approach normalizes the ROS upregulation with respect to the number of viable cells at the time of measurement. We conducted experiments on a series of minerals and soils that represent materials that are inert (i.e., glass beads, anatase, and a soil with low trace element content, moderately reactive (i.e., soil with high trace element content, and highly reactive (i.e., pyrite. Inert materials generated the lowest ISR, averaging 350% compared to the control. Acid washed pyrite produced the highest ISR (1,100 fold higher than the control. The measurements conducted as a function of time showed a complex response. Most materials showed an increase in ISR with particle loading. Conclusions The amount of cellularly generated ROS and cell viability combined provide a better understanding of particle-induced oxidative stress. The results indicate that some earth materials may solicit an initial burst of ROS, followed by a second phase in which cell viability decreases and ROS

  10. The Effects of Aronia melanocarpa 'Viking' Extracts in Attenuating RANKL-Induced Osteoclastic Differentiation by Inhibiting ROS Generation and c-FOS/NFATc1 Signaling.

    Science.gov (United States)

    Ghosh, Mithun; Kim, In Sook; Lee, Young Min; Hong, Seong Min; Lee, Taek Hwan; Lim, Ji Hong; Debnath, Trishna; Lim, Beong Ou

    2018-03-08

    This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa 'Viking' (AM) and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS) are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL) were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK) and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun- N -terminal kinase (JNK) and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin β₃. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB)-mediated c-Fos and NFATc1 signaling pathway.

  11. JNK and NADPH Oxidase Involved in Fluoride-Induced Oxidative Stress in BV-2 Microglia Cells

    Directory of Open Access Journals (Sweden)

    Ling Yan

    2013-01-01

    Full Text Available Excessive fluoride may cause central nervous system (CNS dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS, and NADPH oxidase (NOX is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells.

  12. JNK and NADPH Oxidase Involved in Fluoride-Induced Oxidative Stress in BV-2 Microglia Cells

    Science.gov (United States)

    Yan, Ling; Liu, Shengnan; Wang, Chen; Wang, Fei; Song, Yingli; Yan, Nan; Xi, Shuhua; Liu, Ziyou; Sun, Guifan

    2013-01-01

    Excessive fluoride may cause central nervous system (CNS) dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS), and NADPH oxidase (NOX) is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular O2 ·− and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL) resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells. PMID:24072958

  13. Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway.

    Science.gov (United States)

    Liu, Zhong-wei; Wang, Jun-kui; Qiu, Chuan; Guan, Gong-chang; Liu, Xin-hong; Li, Shang-jian; Deng, Zheng-rong

    2015-03-01

    Matrine is an alkaloid from Sophora alopecuroides L, which has shown a variety of pharmacological activities and potential therapeutic value in cardiovascular diseases. In this study we examined the protective effects of matrine against diabetic cardiomyopathy (DCM) in rats. Male SD rats were injected with streptozotocin (STZ) to induce DCM. One group of DCM rats was pretreated with matrine (200 mg·kg(-1)·d(-1), po) for 10 consecutive days before STZ injection. Left ventricular function was evaluated using invasive hemodynamic examination, and myocardiac apoptosis was assessed. Primary rat myocytes were used for in vitro experiments. Intracellular ROS generation, MDA content and GPx activity were determined. Real-time PCR and Western blotting were performed to detect the expression of relevant mRNAs and proteins. DCM rats exhibited abnormally elevated non-fasting blood glucose levels at 4 weeks after STZ injection, and LV function impairment at 16 weeks. The cardiac tissues of DCM rats showed markedly increased apoptosis, excessive ROS production, and activation of TLR-4/MyD-88/caspase-8/caspase-3 signaling. Pretreatment with matrine significantly decreased non-fasting blood glucose levels and improved LV function in DCM rats, which were associated with reducing apoptosis and ROS production, and suppressing TLR-4/MyD-88/caspase-8/caspase-3 signaling in cardiac tissues. Incubation in a high-glucose medium induced oxidative stress and activation of TLR-4/MyD-88 signaling in cultured myocytes in vitro, which were significantly attenuated by pretreatment with N-acetylcysteine. Excessive ROS production in DCM activates the TLR-4/MyD-88 signaling, resulting in cardiomyocyte apoptosis, whereas pretreatment with matrine improves cardiac function via suppressing ROS/TLR-4 signaling pathway.

  14. Transcriptomic profiling of linolenic acid-responsive genes in ROS signalling from RNA-seq data in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Capilla eMata-Pérez

    2015-03-01

    Full Text Available Linolenic acid (Ln released from chloroplast membrane galactolipids is a precursor of the phytohormone jasmonic acid (JA. The involvement of this hormone in different plant biological processes, such as responses to biotic stress conditions, has been extensively studied. However, the role of Ln in the regulation of gene expression during abiotic stress situations mediated by cellular redox changes and/or by oxidative stress processes remains poorly understood. An RNA-seq approach has increased our knowledge of the interplay among Ln, oxidative stress and ROS signalling that mediates abiotic stress conditions. Transcriptome analysis with the aid of RNA-seq in the absence of oxidative stress revealed that the incubation of Arabidopsis thaliana cell suspension cultures (ACSC with Ln resulted in the modulation of 7525 genes, of which 3034 genes had a 2 fold-change, being 533 up- and 2501 down-regulated genes, respectively. Thus, RNA-seq data analysis showed that an important set of these genes were associated with the jasmonic acid biosynthetic pathway including lypoxygenases (LOXs and Allene oxide cyclases (AOCs. In addition, several transcription factor families involved in the response to biotic stress conditions (pathogen attacks or herbivore feeding, such as WRKY, JAZ, MYC and LRR were also modified in response to Ln. However, this study also shows that Ln has the capacity to modulate the expression of genes involved in the response to abiotic stress conditions, particularly those mediated by ROS signalling. In this regard, we were able to identify new targets such as galactinol synthase 1 (GOLS1, methionine sulfoxide reductase (MSR and alkenal reductase in ACSC. It is therefore possible to suggest that, in the absence of any oxidative stress, Ln is capable of modulating new sets of genes involved in the signalling mechanism mediated by additional abiotic stresses (salinity, UV and high light intensity and especially in stresses mediated by ROS.

  15. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    Science.gov (United States)

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  16. N,N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells

    International Nuclear Information System (INIS)

    Kim, Byeong Mo; Choi, Yun Jung; Han, Youngsoo; Yun, Yeon-Sook; Hong, Sung Hee

    2009-01-01

    N,N-dimethyl phytosphingosine (DMPS) blocks the conversion of sphingosine to sphingosine-1-phosphate (S1P) by the enzyme sphingosine kinase (SK). In this study, we elucidated the apoptotic mechanisms of DMPS action on a human leukemia cell line using functional pharmacologic and genetic approaches. First, we demonstrated that DMPS-induced apoptosis is evidenced by nuclear morphological change, distinct internucleosomal DNA fragmentation, and an increased sub-G1 cell population. DMPS treatment led to the activation of caspase-9 and caspase-3, accompanied by the cleavage of poly(ADP-ribose) polymerase (PARP) and led to cytochrome c release, depolarization of the mitochondrial membrane potential, and downregulation of the anti-apoptotic members of the bcl-2 family. Ectopic expression of bcl-2 and bcl-xL conferred resistance of HL-60 cells to DMPS-induced cell death, suggesting that DMPS-induced apoptosis occurs predominantly through the activation of the intrinsic mitochondrial pathway. We also observed that DMPS activated the caspase-8-Bid-Bax pathway and that the inhibition of caspase-8 by z-IETD-fmk or small interfering RNA suppressed the cleavage of Bid, cytochrome c release, caspase-3 activation, and apoptotic cell death. In addition, cells subjected to DMPS exhibited significantly increased reactive oxygen species (ROS) generation, and ROS scavengers, such as quercetin and Tiron, but not N-acetylcysteine (NAC), inhibited DMPS-induced activations of caspase-8, -3 and subsequent apoptotic cell death, indicating the role of ROS in caspase-8-mediated apoptosis. Taken together, these results indicate that caspase-8 acts upstream of caspase-3, and that the caspase-8-mediated mitochondrial pathway is important in DMPS-induced apoptosis. Our results also suggest that ROS are critical regulators of caspase-8-mediated apoptosis in DMPS-treated leukemia cells.

  17. Neuroprotective Effect of Puerarin on Glutamate-Induced Cytotoxicity in Differentiated Y-79 Cells via Inhibition of ROS Generation and Ca(2+) Influx.

    Science.gov (United States)

    Wang, Ke; Zhu, Xue; Zhang, Kai; Wu, Zhifeng; Sun, Song; Zhou, Fanfan; Zhu, Ling

    2016-07-11

    Glutamate toxicity is estimated to be the key cause of photoreceptor degeneration in the pathogenesis of retinal degenerative diseases. Oxidative stress and Ca(2+) influx induced by glutamate are responsible for the apoptosis process of photoreceptor degeneration. Puerarin, a primary component of Kudzu root, has been widely used in the clinical treatment of retinal degenerative diseases in China for decades; however, the detailed molecular mechanism underlying this effect remains unclear. In this study, the neuroprotective effect of puerarin against glutamate-induced cytotoxicity in the differentiated Y-79 cells was first investigated through cytotoxicity assay. Then the molecular mechanism of this effect regarding anti-oxidative stress and Ca(2+) hemostasis was further explored with indirect immunofluorescence, flow cytometric analysis and western blot analysis. Our study showed that glutamate induced cell viability loss, excessive reactive oxygen species (ROS) generation, calcium overload and up-regulated cell apoptosis in differentiated Y-79 cells, which effect was significantly attenuated with the pre-treatment of puerarin in a dose-dependent manner. Furthermore, our data indicated that the neuroprotective effect of puerarin was potentially mediated through the inhibition of glutamate-induced activation of mitochondrial-dependent signaling pathway and calmodulin-dependent protein kinase II (CaMKII)-dependent apoptosis signal-regulating kinase 1(ASK-1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. The present study supports the notion that puerarin may be a promising neuroprotective agent in the prevention of retinal degenerative diseases.

  18. ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.

    Science.gov (United States)

    Frank, Tobias; Krieger, Axel; Leonard, Simon; Patel, Niravkumar A; Tokuda, Junichi

    2017-08-01

    With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.

  19. Oxidative Stress, Bone Marrow Failure, and Genome Instability in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Christine Richardson

    2015-01-01

    Full Text Available Reactive oxygen species (ROS can be generated by defective endogenous reduction of oxygen by cellular enzymes or in the mitochondrial respiratory pathway, as well as by exogenous exposure to UV or environmental damaging agents. Regulation of intracellular ROS levels is critical since increases above normal concentrations lead to oxidative stress and DNA damage. A growing body of evidence indicates that the inability to regulate high levels of ROS leading to alteration of cellular homeostasis or defective repair of ROS-induced damage lies at the root of diseases characterized by both neurodegeneration and bone marrow failure as well as cancer. That these diseases may be reflective of the dynamic ability of cells to respond to ROS through developmental stages and aging lies in the similarities between phenotypes at the cellular level. This review summarizes work linking the ability to regulate intracellular ROS to the hematopoietic stem cell phenotype, aging, and disease.

  20. Hyperglycemia regulates TXNIP/TRX/ROS axis via p38 MAPK and ERK pathways in pancreatic cancer.

    Science.gov (United States)

    Li, Wei; Wu, Zheng; Ma, Qingyong; Liu, Jiangbo; Xu, Qinhong; Han, Liang; Duan, Wanxing; Lv, Yunfu; Wang, Fengfei; Reindl, Katie M; Wu, Erxi

    2014-01-01

    Approximately 85% of pancreatic cancer patients suffer from glucose intolerance or even diabetes because high glucose levels can contribute to oxidative stress which promotes tumor development. As one of the reactive oxygen species (ROS)-regulating factors, thioredoxin-interacting protein (TXNIP), is involved in the maintenance of thioredoxin (TRX)-mediated redox regulation. In this study, we demonstrated that high glucose levels increased the expression of TXNIP in time- and concentration-dependent manners and modulated the activity of TRX and ROS production in pancreatic cancer cells, BxPC-3 and Panc-1. We also found that glucose activated both p38 MAPK and ERK pathways and inhibitors of these pathways impaired the TXNIP/TRX/ROS axis. Knockdown of TXNIP restored TRX activity and decreased ROS production under high glucose conditions. Moreover, we observed that the integrated optical density (IOD) of TXNIP staining as well as the protein and mRNA expression levels of TXNIP were higher in the tumor tissues of pancreatic cancer patients with diabetes. Taken together, these results indicate that hyperglycemia-induced TXNIP expression is involved in diabetes-mediated oxidative stress in pancreatic cancer via p38 MAPK and ERK pathways.

  1. ROSMOD: A Toolsuite for Modeling, Generating, Deploying, and Managing Distributed Real-time Component-based Software using ROS

    Directory of Open Access Journals (Sweden)

    Pranav Srinivas Kumar

    2016-09-01

    Full Text Available This paper presents the Robot Operating System Model-driven development tool suite, (ROSMOD an integrated development environment for rapid prototyping component-based software for the Robot Operating System (ROS middleware. ROSMOD is well suited for the design, development and deployment of large-scale distributed applications on embedded devices. We present the various features of ROSMOD including the modeling language, the graphical user interface, code generators, and deployment infrastructure. We demonstrate the utility of this tool with a real-world case study: an Autonomous Ground Support Equipment (AGSE robot that was designed and prototyped using ROSMOD for the NASA Student Launch competition, 2014–2015.

  2. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Pierpaola Davalli

    2016-01-01

    Full Text Available The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS and/or Reactive Nitrosative Species (RNS. Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.

  3. Piper nigrum ethanolic extract rich in piperamides causes ROS overproduction, oxidative damage in DNA leading to cell cycle arrest and apoptosis in cancer cells.

    Science.gov (United States)

    de Souza Grinevicius, Valdelúcia Maria Alves; Kviecinski, Maicon Roberto; Santos Mota, Nádia Sandrini Ramos; Ourique, Fabiana; Porfirio Will Castro, Luiza Sheyla Evenni; Andreguetti, Rafaela Rafognato; Gomes Correia, João Francisco; Filho, Danilo Wilhem; Pich, Claus Tröger; Pedrosa, Rozangela Curi

    2016-08-02

    Ayurvedic and Chinese traditional medicine and tribal people use herbal preparations containing Piper nigrum fruits for the treatment of many health disorders like inflammation, fever, asthma and cancer. In Brazil, traditional maroon culture associates the spice Piper nigrum to health recovery and inflammation attenuation. The aim of the current work was to evaluate the relationship between reactive oxygen species (ROS) overproduction, DNA fragmentation, cell cycle arrest and apoptosis induced by Piper nigrum ethanolic extract and its antitumor activity. The plant was macerated in ethanol. Extract constitution was assessed by TLC, UV-vis and ESI-IT-MS/MS spectrometry. The cytotoxicity, proliferation and intracellular ROS generation was evaluated in MCF-7 cells. DNA damage effects were evaluated through intercalation into CT-DNA, plasmid DNA cleavage and oxidative damage in CT-DNA. Tumor growth inhibition, survival time increase, apoptosis, cell cycle arrest and oxidative stress were assessed in Ehrlich ascites carcinoma-bearing mice. Extraction yielded 64mg/g (36% piperine and 4.2% piperyline). Treatments caused DNA damage and reduced cell viability (EC50=27.1±2.0 and 80.5±6.6µg/ml in MCF-7 and HT-29 cells, respectively), inhibiting cell proliferation by 57% and increased ROS generation in MCF-7 cells (65%). Ehrlich carcinoma was inhibited by the extract, which caused reduction of tumor growth (60%), elevated survival time (76%), cell cycle arrest and induced apoptosis. The treatment with extract increased Bax and p53 and inhibited Bcl-xL and cyclin A expression. It also induced an oxidative stress in vivo verified as enhanced lipid peroxidation and carbonyl proteins content and increased activities of glutathione reductase, superoxide dismutase and catalase. GSH concentration was decreased in tumor tissue from mice. The ethanolic extract has cytotoxic and antiproliferative effect on MCF-7 cells and antitumor effect in vivo probably due to ROS overproduction

  4. PKCδ phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-β1-induced senescence.

    Science.gov (United States)

    Byun, H-O; Jung, H-J; Kim, M-J; Yoon, G

    2014-09-01

    Transforming growth factor β1 (TGF-β1) induces Mv1Lu cell senescence through inactivating glycogen synthase kinase 3 (GSK3), thereby inactivating complex IV and increasing intracellular ROS. In the present study, we identified protein kinase C delta (PKCδ) as an upstream regulator of GSK3 inactivation in this mechanism of TGF-β1-induced senescence. When Mv1Lu cells were exposed to TGF-β1, PKCδ phosphorylation simultaneously increased with GSK3 phosphorylation, and then AKT and ERK were phosphorylated. AKT phosphorylation and Smad signaling were independent of GSK3 phosphorylation, but ERK phosphorylation was downstream of GSK3 inactivation. TGF-β1-triggered GSK3 phosphorylation was blocked by inhibition of PKCδ, using its pharmacological inhibitor, Rottlerin, or overexpression of a dominant negative PKCδ mutant, but GSK3 inhibition with SB415286 did not alter PKCδ phosphorylation. Activation of PKCδ by PMA delayed cell growth and increased intracellular ROS level, but did not induce senescent phenotypes. In addition, overexpression of wild type or a constitutively active PKCδ mutant was enough to delay cell growth and decrease the mitochondrial oxygen consumption rate and complex IV activity, but weakly induce senescence. However, PMA treatment on Mv1Lu cells, which overexpress wild type and constitutively active PKCδ mutants, effectively induced senescence. These results indicate that PKCδ plays a key role in TGF-β1-induced senescence of Mv1Lu cells through the phosphorylation of GSK3, thereby triggering mitochondrial complex IV dysfunction and intracellular ROS generation.

  5. Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration

    Science.gov (United States)

    Torres, Samantha M.; Schreurs, Ann-Sofie; Truong, Tiffany A.; Tahimic, Candice; Globus, Ruth

    2017-01-01

    Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.

  6. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10

    International Nuclear Information System (INIS)

    McCarthy, S.; Somayajulu, M.; Sikorska, M.; Borowy-Borowski, H.; Pandey, S.

    2004-01-01

    Neuronal cell death induced by oxidative stress is correlated with numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The causes of sporadic forms of age-related neurodegenerative diseases are still unknown. Recently, a correlation between paraquat exposure and neurodegenerative diseases has been observed. Paraquat, a nonselective herbicide, was once widely used in North America and is still routinely used in Taiwan. We have used differentiated Human Neuroblastoma (SHSY-5Y) cells as an in vitro model to study the mechanism of cell death induced by paraquat. We observed that paraquat-induced oxidative stress in differentiated SHSY-5Y cells as indicated by an increase in the production of cellular reactive oxygen species (ROS). Furthermore, apoptosis was evident as indicated by cellular and nuclear morphology and DNA fragmentation. Interestingly, pretreatment of SHSY-5Y cells with water-soluble Coenzyme Q 10 (CoQ 10 ) before paraquat exposure inhibited ROS generation. Pretreatment with CoQ 10 also significantly reduced the number of apoptotic cells and DNA fragmentation. We also analyzed the effect of paraquat and CoQ 10 on isolated mitochondria. Our results indicated that treatment with paraquat induced the generation of ROS from isolated mitochondria and depolarization of the inner mitochondrial membrane. Pretreatment with CoQ 10 was able to inhibit ROS generation from isolated mitochondria as well as the collapse of mitochondrial membrane potential. Our results indicate that water-soluble CoQ 10 can prevent oxidative stress and neuronal damage induced by paraquat and therefore, can be used for the prevention and therapy of neurodegenerative diseases caused by environmental toxins

  7. The Effects of Aronia melanocarpa ‘Viking’ Extracts in Attenuating RANKL-Induced Osteoclastic Differentiation by Inhibiting ROS Generation and c-FOS/NFATc1 Signaling

    Directory of Open Access Journals (Sweden)

    Mithun Ghosh

    2018-03-01

    Full Text Available This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa ‘Viking’ (AM and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK, c-Jun-N-terminal kinase (JNK and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1 protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin β3. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB-mediated c-Fos and NFATc1 signaling pathway.

  8. NPRL-Z-1, as a new topoisomerase II poison, induces cell apoptosis and ROS generation in human renal carcinoma cells.

    Science.gov (United States)

    Wu, Szu-Ying; Pan, Shiow-Lin; Xiao, Zhi-Yan; Hsu, Jui-Ling; Chen, Mei-Chuan; Lee, Kuo-Hsiung; Teng, Che-Ming

    2014-01-01

    NPRL-Z-1 is a 4β-[(4"-benzamido)-amino]-4'-O-demethyl-epipodophyllotoxin derivative. Previous reports have shown that NPRL-Z-1 possesses anticancer activity. Here NPRL-Z-1 displayed cytotoxic effects against four human cancer cell lines (HCT 116, A549, ACHN, and A498) and exhibited potent activity in A498 human renal carcinoma cells, with an IC50 value of 2.38 µM via the MTT assay. We also found that NPRL-Z-1 induced cell cycle arrest in G1-phase and detected DNA double-strand breaks in A498 cells. NPRL-Z-1 induced ataxia telangiectasia-mutated (ATM) protein kinase phosphorylation at serine 1981, leading to the activation of DNA damage signaling pathways, including Chk2, histone H2AX, and p53/p21. By ICE assay, the data suggested that NPRL-Z-1 acted on and stabilized the topoisomerase II (TOP2)-DNA complex, leading to TOP2cc formation. NPRL-Z-1-induced DNA damage signaling and apoptotic death was also reversed by TOP2α or TOP2β knockdown. In addition, NPRL-Z-1 inhibited the Akt signaling pathway and induced reactive oxygen species (ROS) generation. These results demonstrated that NPRL-Z-1 appeared to be a novel TOP2 poison and ROS generator. Thus, NPRL-Z-1 may present a significant potential anticancer candidate against renal carcinoma.

  9. Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation

    International Nuclear Information System (INIS)

    Tominaga, Hideyuki; Kodama, Seiji; Suzuki, Keiji; Watanabe, Masami; Matsuda, Naoki

    2004-01-01

    Radiation generates reactive oxygen species (ROS) that interact with cellular molecules, including DNA, lipids, and proteins. To know how ROS contribute to the induction of genetic instability, we examined the effect of the anti-ROS condition, using both ascorbic acid phosphate (APM) treatment or a low oxygen condition, on the induction of delayed reproductive cell death and delayed chromosome aberrations. The primary surviving colonies of mouse m5S-derived cl. 2011-14 cells irradiated with 6 Gy of X-rays were replated and allowed to form secondary colonies. The anti-ROS treatments were applied to either preirradiation culture or postirradiation cultures for primary or secondary colony formation. Both anti-ROS conditions relieved X-ray-induced acute cell killing to a similar extent. These anti-ROS conditions also relieved genetic instability when those conditions were applied during primary colony formation. However, no effect was observed when the conditions were applied during preirradiation culture and secondary colony formation. We also demonstrated that the amounts of ROS in X-ray-irradiated cells rapidly increase and then decrease at 6 hr postirradiation, and the levels of ROS then gradually decrease to a baseline within 2 weeks. The APM treatment kept the ROS production at a lower level than an untreated control. These results suggest that the cause of genetic instability might be fixed by ROS during a 2-week postirradiation period. (author)

  10. Assessment of a Standardized ROS Production Profile in Humans by Electron Paramagnetic Resonance

    Directory of Open Access Journals (Sweden)

    Simona Mrakic-Sposta

    2012-01-01

    Full Text Available Despite the growing interest in the role of reactive oxygen species (ROS in health and disease, reliable quantitative noninvasive methods for the assessment of oxidative stress in humans are still lacking. EPR technique, coupled to a specific spin probe (CMH: 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine is here presented as the method of choice to gain a direct measurement of ROS in biological fluids and tissues. The study aimed at demonstrating that, differently from currently available “a posteriori” assays of ROS-induced damage by means of biomolecules (e.g., proteins and lipids spin-trapping EPR provides direct evidence of the “instantaneous” presence of radical species in the sample and, as signal areas are proportional to the number of excited electron spins, lead to absolute concentration levels. Using a recently developed bench top continuous wave system (e-scan EPR scanner, Bruker dealing with very low ROS concentration levels in small (50 μL samples, we successfully monitored rapid ROS production changes in peripheral blood of athletes after controlled exercise and sedentary subjects after antioxidant supplementation. The correlation between EPR results and data obtained by various enzymatic assays (e.g., protein carbonyls and thiobarbituric acid reactive substances was determined too. Synthetically, our method allows reliable, quick, noninvasive quantitative determination of ROS in human peripheral blood.

  11. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Takuya Sakurai

    2017-01-01

    Full Text Available Obesity-induced inflammatory changes in white adipose tissue (WAT, which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS, and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT.

  13. Skin Aging-Dependent Activation of the PI3K Signaling Pathway via Downregulation of PTEN Increases Intracellular ROS in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Eun-Mi Noh

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3 metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.

  14. Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging.

    Science.gov (United States)

    Briganti, Stefania; Wlaschek, Meinhard; Hinrichs, Christina; Bellei, Barbara; Flori, Enrica; Treiber, Nicolai; Iben, Sebastian; Picardo, Mauro; Scharffetter-Kochanek, Karin

    2008-09-01

    Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.

  15. DJ-1-dependent regulation of oxidative stress in the retinal pigment epithelium (RPE.

    Directory of Open Access Journals (Sweden)

    Karen G Shadrach

    Full Text Available DJ-1 is found in many tissues, including the brain, where it has been extensively studied due to its association with Parkinson's disease. DJ-1 functions as a redox-sensitive molecular chaperone and transcription regulator that robustly protects cells from oxidative stress.Retinal pigment epithelial (RPE cultures were treated with H2O2 for various times followed by biochemical and immunohistological analysis. Cells were transfected with adenoviruses carrying the full-length human DJ-1 cDNA and a mutant construct, which has the cysteine residues at amino acid 46, 53 and 106 mutated to serine (C to S prior to stress experiments. DJ-1 localization, levels of expression and reactive oxygen species (ROS generation were also analyzed in cells expressing exogenous DJ-1 under baseline and oxidative stress conditions. The presence of DJ-1 and oxidized DJ-1 was evaluated in human RPE total lysates. The distribution of DJ-1 was assessed in AMD and non-AMD cryosectionss and in isolated human Bruch's membrane (BM/choroid from AMD eyes.DJ-1 in RPE cells under baseline conditions, displays a diffuse cytoplasmic and nuclear staining. After oxidative challenge, more DJ-1 was associated with mitochondria. Increasing concentrations of H2O2 resulted in a dose-dependent increase in DJ-1. Overexpression of DJ-1 but not the C to S mutant prior to exposure to oxidative stress led to significant decrease in the generation of ROS. DJ-1 and oxDJ-1 intensity of immunoreactivity was significantly higher in the RPE lysates from AMD eyes. More DJ-1 was localized to RPE cells from AMD donors with geographic atrophy and DJ-1 was also present in isolated human BM/choroid from AMD eyes.DJ-1 regulates RPE responses to oxidative stress. Most importantly, increased DJ-1 expression prior to oxidative stress leads to decreased generation of ROS, which will be relevant for future studies of AMD since oxidative stress is a known factor affecting this disease.

  16. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat.

    Science.gov (United States)

    Wang, Lin-Lin; Yu, Qun-Li; Han, Ling; Ma, Xiu-Li; Song, Ren-De; Zhao, Suo-Nan; Zhang, Wen-Hua

    2018-04-01

    This study investigated the effect of reactive oxygen species-mediated oxidative stress on activation of mitochondrial apoptosis and tenderness of yak meat during postmortem ageing. Oxidative stress degree, Ca 2+ levels, membrane permeability transition pore opening, mitochondrial membrane potential, apoptotic factors and the shear force were examined. Results showed that the ROS generated by H 2 O 2 significantly increased mitochondrial oxidative stress by decreasing the activities of superoxide dismutase, catalase and glutathione peroxidase, and increasing lipid peroxidation. Furthermore, oxidative stress enhanced Ca 2+ production and cytochrome c release, changed the levels of Bcl-2 family proteins and activated caspase-9 and -3 activities. Ultimately, oxidative stress increased the apoptosis rate and tenderness of yak meat. These observations confirmed that ROS-mediated oxidative stress participates in the activation of the apoptotic cascade reaction involving Ca 2+ and Bcl-2 family proteins. The results further suggested that ROS-mediated oxidative stress plays a significant role in meat tenderization through the mitochondrial apoptotic pathway. Copyright © 2017. Published by Elsevier Ltd.

  17. Evaluation of stresses generated in steel finger joint of bridge by X-ray stress measurement

    International Nuclear Information System (INIS)

    Kohri, Ami; Kawano, Yutaka; Nishido, Takayuki

    2017-01-01

    In a steel bridge, the evaluation of the stress generated in the finger joint without a gap to absorb temperature change can be an index when evaluating the remaining life. This study chose as the object the finger joint of a diagonal bridge, where the generated stress state is considered to be more complicated, prepared a finger joint test specimen that simulated an actual part, and performed a load test. For judgment, FEM analysis, non-destructive X-ray stress measurement, and measurement of the generated stress using strain gauge were applied. Compared with the FEM analysis results, the difference in the stress value was generated due to the difference in the contact state, but the trends of the stress distribution were equivalent. In addition, the same measurement value as the strain gauge was obtained, and the validity of the X-ray stress measurement method was confirmed. As a result, it was found that the stress measurement method by X-ray is effective for measuring the generated stress including the residual stress of the finger joint without gap at a bridge. (A.O.)

  18. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Gundala, Sushma Reddy; Yang, Chunhua [Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Mukkavilli, Rao [Advinus Therapeutics, Karnataka (India); Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice [Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Reid, Michelle D. [Department of Pathology, Emory University School of Medicine, Atlanta, GA (United States); Aneja, Ritu, E-mail: raneja@gsu.edu [Department of Biology, Georgia State University, Atlanta, GA 30303 (United States)

    2014-10-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ∼ 72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. - Highlights: • HC perturbs cell-cycle progression by induction of reactive oxygen species (ROS). • HC mediated cytotoxicity by ROS-induced DNA damage leading to

  19. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

    International Nuclear Information System (INIS)

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D.; Aneja, Ritu

    2014-01-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ∼ 72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. - Highlights: • HC perturbs cell-cycle progression by induction of reactive oxygen species (ROS). • HC mediated cytotoxicity by ROS-induced DNA damage leading to

  20. Inertial effects on the stress generation of active fluids

    Science.gov (United States)

    Takatori, S. C.; Brady, J. F.

    2017-09-01

    Suspensions of self-propelled bodies generate a unique mechanical stress owing to their motility that impacts their large-scale collective behavior. For microswimmers suspended in a fluid with negligible particle inertia, we have shown that the virial swim stress is a useful quantity to understand the rheology and nonequilibrium behaviors of active soft matter systems. For larger self-propelled organisms such as fish, it is unclear how particle inertia impacts their stress generation and collective movement. Here we analyze the effects of finite particle inertia on the mechanical pressure (or stress) generated by a suspension of self-propelled bodies. We find that swimmers of all scales generate a unique swim stress and Reynolds stress that impact their collective motion. We discover that particle inertia plays a similar role as confinement in overdamped active Brownian systems, where the reduced run length of the swimmers decreases the swim stress and affects the phase behavior. Although the swim and Reynolds stresses vary individually with the magnitude of particle inertia, the sum of the two contributions is independent of particle inertia. This points to an important concept when computing stresses in computer simulations of nonequilibrium systems: The Reynolds and the virial stresses must both be calculated to obtain the overall stress generated by a system.

  1. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2017-01-01

    Full Text Available Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS. Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG, which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I and glyoxalase II (Gly II, and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III, has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated

  2. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Hossain, Md. Shahadat; Mahmud, Jubayer Al; Rahman, Anisur; Inafuku, Masashi; Oku, Hirosuke; Fujita, Masayuki

    2017-01-01

    Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of

  3. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jinying Peng

    2014-10-01

    Full Text Available Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and loss-of-function studies demonstrated that EIN3 (ETHYLENE INSENSITIVE 3 and EIL1 (EIN3-LIKE 1, two ethylene-activated transcription factors, are necessary and sufficient for the enhanced salt tolerance. High salinity induced the accumulation of EIN3/EIL1 proteins by promoting the proteasomal degradation of two EIN3/EIL1-targeting F-box proteins, EBF1 and EBF2, in an EIN2-independent manner. Whole-genome transcriptome analysis identified a list of SIED (Salt-Induced and EIN3/EIL1-Dependent genes that participate in salt stress responses, including several genes encoding reactive oxygen species (ROS scavengers. We performed a genetic screen for ein3 eil1-like salt-hypersensitive mutants and identified 5 EIN3 direct target genes including a previously unknown gene, SIED1 (At5g22270, which encodes a 93-amino acid polypeptide involved in ROS dismissal. We also found that activation of EIN3 increased peroxidase (POD activity through the direct transcriptional regulation of PODs expression. Accordingly, ethylene pretreatment or EIN3 activation was able to preclude excess ROS accumulation and increased tolerance to salt stress. Taken together, our study provides new insights into the molecular action of ethylene signaling to enhance plant salt tolerance, and elucidates the transcriptional network of EIN3 in salt stress response.

  4. Crosstalk between Rac1-mediated actin regulation and ROS production.

    Science.gov (United States)

    Acevedo, Alejandro; González-Billault, Christian

    2018-02-20

    The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The STAT3 inhibitor pimozide impedes cell proliferation and induces ROS generation in human osteosarcoma by suppressing catalase expression.

    Science.gov (United States)

    Cai, Nan; Zhou, Wei; Ye, Lan-Lan; Chen, Jun; Liang, Qiu-Ni; Chang, Gang; Chen, Jia-Jie

    2017-01-01

    Currently, there is a considerable need to develop new treatments for osteosarcoma (OS), a very aggressive bone cancer. The activation of STAT3 signaling is positively associated with poor prognosis and aggressive progression in OS patients. Our previous study reported that the FDA-approved antipsychotic drug pimozide had anti-tumor activity against hepatocellular carcinoma and prostate cancer cells by suppressing STAT3 activity. Therefore, the aim of this study was to investigate the specific effect of pimozide on OS cells and the underlying molecular mechanism. Pimozide inhibited cell proliferation, colony formation, and sphere formation capacities of the OS cells in a dose-dependent manner, inducing G0/G1 phase cell cycle arrest. Pimozide reduced the percentage of side population cells representing cancer stem-like cells and enhanced the sensitivity of OS cells to 5-FU induced proliferative inhibition. In addition, pimozide induced apoptosis of U2OS cells, which showed increased expression of cleaved-PARP, a marker of programmed cell death. Moreover, pimozide suppressed Erk signaling in OS cells. Importantly, pimozide induced ROS generation by downregulating the expression of the antioxidant enzyme catalase (CAT). NAC treatment partially reversed the ROS generation and cytotoxic effects induced by pimozide. CAT treatment attenuated the pimozide-induced proliferation inhibition. The decrease of CAT expression induced by pimozide was potentially mediated through the suppression of cellular STAT3 activity in OS cells. Thus, pimozide may be a novel STAT3 inhibitor that suppresses cellular STAT3 activity to inhibit OS cells or stem-like cells and is a novel potential anti-cancer agent in OS treatment.

  6. Co-Rumination Exacerbates Stress Generation among Adolescents with Depressive Symptoms.

    Science.gov (United States)

    Rose, Amanda J; Glick, Gary C; Smith, Rhiannon L; Schwartz-Mette, Rebecca A; Borowski, Sarah K

    2017-07-01

    Through stress generation, individuals' own thoughts and behaviors can actually lead to increases in their experience of stress. Unfortunately, stress generation is especially common among individuals who are already suffering from elevated depressive symptoms. However, despite the acknowledgement that some individuals with depressive symptoms generate greater stress than others, few studies have identified specific factors that could exacerbate stress generation among individuals with depressive symptoms. The present study examines co-rumination as a factor that might exacerbate stress generation among adolescents with depressive symptoms using a short-term longitudinal design. Considering these processes among adolescents was critical given that many youth experience increases in depressive symptoms at this developmental stage and that co-rumination also becomes more common at adolescence. Participants were 628 adolescents (326 girls; 302 boys) who reported on their depressive symptoms, experiences of stress, and co-rumination with a best friend. Interpersonal stressors (peer and family stress) and non-interpersonal stressors (school and sports stress) were assessed. Consistent with past research, adolescents with depressive symptoms experienced greater interpersonal and non-interpersonal stress over time. Importantly, co-rumination interacted with both depressive symptoms and gender in predicting increases in peer stress. Depressive symptoms predicted the generation of peer stress only for girls who reported high levels of co-rumination with friends. Implications for protecting youth with depressive symptoms against stress generation are discussed.

  7. Rosmarinic acid counteracts activation of hepatic stellate cells via inhibiting the ROS-dependent MMP-2 activity: Involvement of Nrf2 antioxidant system

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Changfang; Zou, Yu; Liu, Yuzhang; Niu, Yingcai, E-mail: nyc1968@126.com

    2017-03-01

    Recently, oxidative stress is involved in hepatofibrogenesis. Matrix metalloproteinase-2 (MMP-2) is required for activation of hepatic stellate cells (HSCs) in response to reactive oxygen species (ROS). This study was designed to explore the hypothesis that the inhibitory effect of rosmarinic acid (RA) on HSCs activation might mainly result from its antioxidant capability by increasing the synthesis of glutathione (GSH) involved in nuclear factor kappa B (NF-κB)-dependent inhibition of MMP-2 activity. Here, we demonstrate that RA reverses activated HSCs to quiescent cells. Concomitantly, RA inhibits MMP-2 activity. RNA interference-imposed knockdown of NF-κB abolished down-regulation of MMP-2 by RA. RA-mediated inactivation of NF-κB could be blocked by the diphenyleneiodonium chloride (DPI; a ROS inhibitor). Conversely, transfection of dominant-negative (DN) mutant of extracellular signal-regulated kinases 2 (ERK2), c-Jun N-terminal kinase 1 (JNK1), or p38α kinase had no such effect. Simultaneously, RA suppresses ROS generation and lipid peroxidation (LPO) whereas increases cellular GSH in HSC-T6 cells. Furthermore, RA significantly increased antioxidant response element (ARE)-mediated luciferase activity, nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and catalytic subunits from glutamate cysteine ligase (GCLc) expression, but not modulatory subunits from GCL (GCLm). RA-mediated up-regulation of GClc is inhibited by the shRNA-induced Nrf2 knockdown. The knocking down of Nrf2 or buthionine sulfoximine (a GCL inhibitor) abolished RA-mediated inhibition of ROS. Collectively, these results provide novel insights into the mechanisms of RA as an antifibrogenic candidate in the prevention and treatment of liver fibrosis. - Highlights: • RA reverses activated HSCs to quiescent cells. • RA suppresses MMP-2 activity through a NF-κB-dependent pathway. • Inhibition of oxidative stress by RA is dependent on nuclear translocation of Nrf2

  8. Rosmarinic acid counteracts activation of hepatic stellate cells via inhibiting the ROS-dependent MMP-2 activity: Involvement of Nrf2 antioxidant system

    International Nuclear Information System (INIS)

    Lu, Changfang; Zou, Yu; Liu, Yuzhang; Niu, Yingcai

    2017-01-01

    Recently, oxidative stress is involved in hepatofibrogenesis. Matrix metalloproteinase-2 (MMP-2) is required for activation of hepatic stellate cells (HSCs) in response to reactive oxygen species (ROS). This study was designed to explore the hypothesis that the inhibitory effect of rosmarinic acid (RA) on HSCs activation might mainly result from its antioxidant capability by increasing the synthesis of glutathione (GSH) involved in nuclear factor kappa B (NF-κB)-dependent inhibition of MMP-2 activity. Here, we demonstrate that RA reverses activated HSCs to quiescent cells. Concomitantly, RA inhibits MMP-2 activity. RNA interference-imposed knockdown of NF-κB abolished down-regulation of MMP-2 by RA. RA-mediated inactivation of NF-κB could be blocked by the diphenyleneiodonium chloride (DPI; a ROS inhibitor). Conversely, transfection of dominant-negative (DN) mutant of extracellular signal-regulated kinases 2 (ERK2), c-Jun N-terminal kinase 1 (JNK1), or p38α kinase had no such effect. Simultaneously, RA suppresses ROS generation and lipid peroxidation (LPO) whereas increases cellular GSH in HSC-T6 cells. Furthermore, RA significantly increased antioxidant response element (ARE)-mediated luciferase activity, nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and catalytic subunits from glutamate cysteine ligase (GCLc) expression, but not modulatory subunits from GCL (GCLm). RA-mediated up-regulation of GClc is inhibited by the shRNA-induced Nrf2 knockdown. The knocking down of Nrf2 or buthionine sulfoximine (a GCL inhibitor) abolished RA-mediated inhibition of ROS. Collectively, these results provide novel insights into the mechanisms of RA as an antifibrogenic candidate in the prevention and treatment of liver fibrosis. - Highlights: • RA reverses activated HSCs to quiescent cells. • RA suppresses MMP-2 activity through a NF-κB-dependent pathway. • Inhibition of oxidative stress by RA is dependent on nuclear translocation of Nrf2

  9. Male Infertility: The Effect of Natural Antioxidants and Phytocompounds on Seminal Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Malik Adewoyin

    2017-03-01

    Full Text Available Defective sperm function has been identified as the most common cause of infertility. The objective of this study was to review recent findings on the effects of various antioxidants on male fertility. High amounts of poly unsaturated fatty acid are found in the mammalian spermatozoa membranes, thereby making them susceptible to lipid peroxidation. Although, free radicals and reactive oxygen species (ROS play major roles in reproduction, they are strongly associated with oxidative stress. Furthermore, factors such as obesity, inflammation, pollutants and cigarette smoking are negatively correlated with spermatogenesis. Endogenous antioxidants system exists to mediate these damages. In a normal physiological state, the seminal plasma contains antioxidant enzyme mechanism that is capable of quenching these ROS as well as protecting the spermatozoa against any likely damage. However, high level of ROS triggered by inflammatory cells and oxidation of fatty acid in obese subjects may down play antioxidant mechanism resulting in oxidative stress. Evaluation of such oxidative stress is the first step in the treatment of male infertility through administration of suitable antioxidant. Notably, antioxidant such as vitamin E and C, carotenoids and carnitine have been found beneficial in restoring a balance between ROS generation and scavenging activities. There are emerging evidences that herbal products can also boost male reproductive functions. Nonetheless, a good lifestyle, regular exercise, avoidance of stress and observing safety rules at work are habits that can reverse male infertility.

  10. ROS evaluation for a series of CNTs and their derivatives using an ESR method with DMPO

    International Nuclear Information System (INIS)

    Tsuruoka, S; Noguchi, T; Endo, M; Tristan, F; Terrones, M; Takeuchi, K; Koyama, K; Usui, Y; Matsumoto, H; Saito, N; Porter, D W; Castranova, V

    2013-01-01

    Carbon nanotubes (CNTs) are important materials in advanced industries. It is a concern that pulmonary exposure to CNTs may induce carcinogenic responses. It has been recently reported that CNTs scavenge ROS though non-carbon fibers generate ROS. A comprehensive evaluation of ROS scavenging using various kinds of CNTs has not been demonstrated well. The present work specifically investigates ROS scavenging capabilities with a series of CNTs and their derivatives that were physically treated, and with the number of commercially available CNTs. CNT concentrations were controlled at 0.2 through 0.6 wt%. The ROS scavenging rate was measured by ESR with DMPO. Interestingly, the ROS scavenging rate was not only influenced by physical treatments, but was also dependent on individual manufacturing methods. Ratio of CNTs to DMPO/ hydrogen peroxide is a key parameter to obtain appropriate ROS quenching results for comparison of CNTs. The present results suggest that dangling bonds are not a sole factor for scavenging, and electron transfer on the CNT surface is not clearly determined to be the sole mechanism to explain ROS scavenging.

  11. ROS evaluation for a series of CNTs and their derivatives using an ESR method with DMPO.

    Science.gov (United States)

    Tsuruoka, S; Takeuchi, K; Koyama, K; Noguchi, T; Endo, M; Tristan, F; Terrones, M; Matsumoto, H; Saito, N; Usui, Y; Porter, D W; Castranova, V

    Carbon nanotubes (CNTs) are important materials in advanced industries. It is a concern that pulmonary exposure to CNTs may induce carcinogenic responses. It has been recently reported that CNTs scavenge ROS though non-carbon fibers generate ROS. A comprehensive evaluation of ROS scavenging using various kinds of CNTs has not been demonstrated well. The present work specifically investigates ROS scavenging capabilities with a series of CNTs and their derivatives that were physically treated, and with the number of commercially available CNTs. CNT concentrations were controlled at 0.2 through 0.6 wt%. The ROS scavenging rate was measured by ESR with DMPO. Interestingly, the ROS scavenging rate was not only influenced by physical treatments, but was also dependent on individual manufacturing methods. Ratio of CNTs to DMPO/ hydrogen peroxide is a key parameter to obtain appropriate ROS quenching results for comparison of CNTs. The present results suggest that dangling bonds are not a sole factor for scavenging, and electron transfer on the CNT surface is not clearly determined to be the sole mechanism to explain ROS scavenging.

  12. Particle-bound reactive oxygen species (PB-ROS) emissions and formation pathways in residential wood smoke under different combustion and aging conditions

    Science.gov (United States)

    Zhou, Jun; Zotter, Peter; Bruns, Emily A.; Stefenelli, Giulia; Bhattu, Deepika; Brown, Samuel; Bertrand, Amelie; Marchand, Nicolas; Lamkaddam, Houssni; Slowik, Jay G.; Prévôt, André S. H.; Baltensperger, Urs; Nussbaumer, Thomas; El-Haddad, Imad; Dommen, Josef

    2018-05-01

    Wood combustion emissions can induce oxidative stress in the human respiratory tract by reactive oxygen species (ROS) in the aerosol particles, which are emitted either directly or formed through oxidation in the atmosphere. To improve our understanding of the particle-bound ROS (PB-ROS) generation potential of wood combustion emissions, a suite of smog chamber (SC) and potential aerosol mass (PAM) chamber experiments were conducted under well-determined conditions for different combustion devices and technologies, different fuel types, operation methods, combustion regimes, combustion phases, and aging conditions. The PB-ROS content and the chemical properties of the aerosols were quantified by a novel ROS analyzer using the DCFH (2',7'-dichlorofluorescin) assay and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). For all eight combustion devices tested, primary PB-ROS concentrations substantially increased upon aging. The level of primary and aged PB-ROS emission factors (EFROS) were dominated by the combustion device (within different combustion technologies) and to a greater extent by the combustion regimes: the variability within one device was much higher than the variability of EFROS from different devices. Aged EFROS under bad combustion conditions were ˜ 2-80 times higher than under optimum combustion conditions. EFROS from automatically operated combustion devices were on average 1 order of magnitude lower than those from manually operated devices, which indicates that automatic combustion devices operated at optimum conditions to achieve near-complete combustion should be employed to minimize PB-ROS emissions. The use of an electrostatic precipitator decreased the primary and aged ROS emissions by a factor of ˜ 1.5 which is however still within the burn-to-burn variability. The parameters controlling the PB-ROS formation in secondary organic aerosol were investigated by employing a regression model, including the fractions of

  13. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress.

    Science.gov (United States)

    Klumpe, Inga; Savvatis, Konstantinos; Westermann, Dirk; Tschöpe, Carsten; Rauch, Ursula; Landmesser, Ulf; Schultheiss, Heinz-Peter; Dörner, Andrea

    2016-06-01

    Ischemia impairs the adenine nucleotide translocase (ANT), which transports ADP and ATP across the inner mitochondrial membrane. We investigated whether ANT1 overexpression has protective effects on ischemic hearts. Myocardial infarction was induced in wild-type (WT) and heart-specific ANT1-transgenic (ANT1-TG) rats, and hypoxia was set in isolated cardiomyocytes. ANT1 overexpression reduced the myocardial infarct area and increased the survival rate of infarcted rats. Reduced ANT1 expression and increased 4-hydroxynonenal modification of ANT paralleled to impaired ANT function in infarcted WT hearts. ANT1 overexpression improved ANT expression and function. This was accompanied by reduced mitochondrial cytochrome C release and caspase-3 activation. ANT1-TG hearts suffered less from oxidative stress, as shown by lower protein carbonylation and 4-hydroxynonenal modification of ANT. ANT1 overexpression also increased cell survival of hypoxic cardiomyocytes and attenuated reactive oxygen species (ROS) production. This was linked to higher stability of mitochondrial membrane potential and lower activity of ROS detoxifying catalase. ANT1-TG cardiomyocytes also showed higher resistance against H2O2 treatment, which was independent of catalase activity. In conclusion, ANT1 overexpression compensates impaired ANT activity under oxygen-restricted conditions. It reduces ROS production and oxidative stress, stabilizes mitochondrial integrity, and increases survival, making ANT1 a component in ROS management and heart protection during ischemia. ANT1 overexpression reduces infarct size and increases survival after infarction. ANT1 overexpression compensates restricted ANT expression and function in infarcted hearts. Increased ANT1 expression enhances mitochondrial integrity. ANT1-overexpressing hearts reduce oxidative stress by decreasing ROS generation. ANT1 is a component in ROS management and heart protection.

  14. ROS (Robot Operating System) für Automotive

    OpenAIRE

    Bubeck, Alexander

    2014-01-01

    - Introduction into the Robot Operating System - Open Source in the automotive industries - Application of ROS in the automotive industry - ROS navigation - ROS with real time control - ROS in the embedded world - Outlook: ROS 2.0 - Summary

  15. Sodium orthovanadate associated with pharmacological doses of ascorbate causes an increased generation of ROS in tumor cells that inhibits proliferation and triggers apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Günther, T-hat nia Mara Fischer; Kviecinski, Maicon Roberto; Baron, Carla Cristine; Felipe, Karina Bettega; Farias, Mirelle Sifroni; Ourique da Silva, Fabiana; Bücker, Nádia Cristina Falcão [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Pich, Claus Tröger [Campus de Araranguá, Universidade Federal de Santa Catarina, Araranguá (Brazil); Ferreira, Eduardo Antonio [Universidade de Brasília, Faculdade de Ceilândia, DF (Brazil); Filho, Danilo Wilhelm [Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Verrax, Julien; Calderon, Pedro Buc [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels (Belgium); Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil)

    2013-01-18

    Graphical abstract: -- Abstract: Pharmacological doses of ascorbate were evaluated for its ability to potentiate the toxicity of sodium orthovanadate (Na{sub 3}VO{sub 4}) in tumor cells. Cytotoxicity, inhibition of cell proliferation, generation of ROS and DNA fragmentation were assessed in T24 cells. Na{sub 3}VO{sub 4} was cytotoxic against T24 cells (EC{sub 50} = 5.8 μM at 24 h), but in the presence of ascorbate (100 μM) the EC{sub 50} fell to 3.3 μM. Na{sub 3}VO{sub 4} plus ascorbate caused a strong inhibition of cell proliferation (up to 20%) and increased the generation of ROS (4-fold). Na{sub 3}VO{sub 4} did not directly cleave plasmid DNA, at this aspect no synergism was found occurring between Na{sub 3}VO{sub 4} and ascorbate once the resulting action of the combination was no greater than that of both substances administered separately. Cells from Ehrlich ascites carcinoma-bearing mice were used to determine the activity of antioxidant enzymes, the extent of the oxidative damage and the type of cell death. Na{sub 3}VO{sub 4} alone, or combined with ascorbate, increased catalase activity, but only Na{sub 3}VO{sub 4} plus ascorbate increased superoxide dismutase activity (up to 4-fold). Oxidative damage on proteins and lipids was higher due to the treatment done with Na{sub 3}VO{sub 4} plus ascorbate (2–3-fold). Ascorbate potentiated apoptosis in tumor cells from mice treated with Na{sub 3}VO{sub 4}. The results indicate that pharmacological doses of ascorbate enhance the generation of ROS induced by Na{sub 3}VO{sub 4} in tumor cells causing inhibition of proliferation and apoptosis. Apoptosis induced by orthovanadate and ascorbate is closer related to inhibition on Bcl-xL and activation of Bax. Our data apparently rule out a mechanism of cell demise p53-dependent or related to Cdk2 impairment.

  16. The sulfated laminarin triggers a stress transcriptome before priming the SA- and ROS-dependent defenses during grapevine's induced resistance against Plasmopara viticola.

    Directory of Open Access Journals (Sweden)

    Adrien Gauthier

    Full Text Available Grapevine (Vitis vinifera is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The β-glucan laminarin (Lam and its sulfated derivative (PS3 have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola. However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this study was to identify the molecular mechanisms of the PS3-induced resistance. For this purpose we studied i the signaling events and transcriptome reprogramming triggered by PS3 treatment on uninfected grapevine, ii grapevine immune responses primed by PS3 during P. viticola infection. Our results showed that i PS3 was unable to elicit reactive oxygen species (ROS production, cytosolic Ca(2+ concentration variations, mitogen-activated protein kinase (MAPK activation but triggered a long lasting plasma membrane depolarization in grapevine cells, ii PS3 and Lam shared a common stress-responsive transcriptome profile that partly overlapped the salicylate- (SA and jasmonate-(JA-dependent ones. After P. viticola inoculation, PS3 specifically primed the SA- and ROS-dependent defense pathways leading to grapevine induced resistance against this biotroph. Interestingly pharmacological approaches suggested that the plasma membrane depolarization and the downstream ROS production are key events of the PS3-induced resistance.

  17. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    Science.gov (United States)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn

  18. Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment

    Directory of Open Access Journals (Sweden)

    Piersiak Tomasz

    2010-11-01

    Full Text Available Abstract Background Rhizobium leguminosarum bv. trifolii is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Trifolium spp. Bacterial surface polysaccharides are crucial for establishment of a successful symbiosis with legumes that form indeterminate-type nodules, such as Trifolium, Pisum, Vicia, and Medicago spp. and aid the bacterium in withstanding osmotic and other environmental stresses. Recently, the R. leguminosarum bv. trifolii RosR regulatory protein which controls exopolysaccharide production has been identified and characterized. Results In this work, we extend our earlier studies to the characterization of rosR mutants which exhibit pleiotropic phenotypes. The mutants produce three times less exopolysaccharide than the wild type, and the low-molecular-weight fraction in that polymer is greatly reduced. Mutation in rosR also results in quantitative alterations in the polysaccharide constituent of lipopolysaccharide. The rosR mutants are more sensitive to surface-active detergents, antibiotics of the beta-lactam group and some osmolytes, indicating changes in the bacterial membranes. In addition, the rosR mutants exhibit significant decrease in motility and form a biofilm on plastic surfaces, which differs significantly in depth, architecture, and bacterial viability from that of the wild type. The most striking effect of rosR mutation is the considerably decreased attachment and colonization of root hairs, indicating that the mutation affects the first stage of the invasion process. Infection threads initiate at a drastically reduced rate and frequently abort before they reach the base of root hairs. Although these mutants form nodules on clover, they are unable to fix nitrogen and are outcompeted by the wild type in mixed inoculations, demonstrating that functional rosR is important for competitive nodulation. Conclusions This report demonstrates the significant role RosR regulatory protein plays in

  19. Effect of paraquat-induced oxidative stress on gene expression and aging of the filamentous ascomycete Podospora anserina

    Directory of Open Access Journals (Sweden)

    Matthias Wiemer

    2014-06-01

    Full Text Available Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly linked to aging. Here we view the impact of ROS from a different angle: their role in the control of gene expression. We report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina grown on medium containing paraquat (PQ. This treatment leads to an increased cellular generation and release of H2O2, a reduced growth rate, and a decrease in lifespan. The combined challenge by PQ and copper has a synergistic negative effect on growth and lifespan. The data from the transcriptome analysis of the wild type cultivated under PQ-stress and their comparison to those of a longitudinal aging study as well as of a copper-uptake longevity mutant of P. anserina revealed that PQ-stress leads to the up-regulation of transcripts coding for components involved in mitochondrial remodeling. PQ also affects the expression of copper-regulated genes suggesting an increase of cytoplasmic copper levels as it has been demonstrated earlier to occur during aging of P. anserina and during senescence of human fibroblasts. This effect may result from the induction of the mitochondrial permeability transition pore via PQ-induced ROS, leading to programmed cell death as part of an evolutionary conserved mechanism involved in biological aging and lifespan control.

  20. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis.

    Science.gov (United States)

    Kim, Young-Mee; Kim, Seok-Jo; Tatsunami, Ryosuke; Yamamura, Hisao; Fukai, Tohru; Ushio-Fukai, Masuko

    2017-06-01

    Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H 2 O 2 ) or overexpression of Nox4, which produces H 2 O 2 , increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H 2 O 2 to promote mtROS production. Mechanistically, H 2 O 2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H 2 O 2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program. Copyright © 2017 the American Physiological Society.

  1. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    Science.gov (United States)

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Inhibition of macrophage oxidative stress prevents the reduction of ABCA-1 transporter induced by advanced glycated albumin.

    Science.gov (United States)

    de Souza Pinto, Raphael; Castilho, Gabriela; Paim, Bruno Alves; Machado-Lima, Adriana; Inada, Natalia M; Nakandakare, Edna Regina; Vercesi, Aníbal Eugênio; Passarelli, Marisa

    2012-05-01

    We investigated the role of aminoguanidine and benfotiamine on the inhibition of reactive oxygen species (ROS) generation in macrophages induced by advanced glycated albumin (AGE-albumin) and its relationship with cell cholesterol homeostasis, emphasizing the expression of the ATP binding cassette transporter A-1 (ABCA-1). AGE-albumin was made by incubating fatty acid-free albumin with 10 mM glycolaldehyde. ROS production and ABCA-1 protein level were determined by flow cytometry in J774 macrophages treated along time with control (C) or AGE-albumin alone or in the presence of aminoguanidine or benfotiamine. Mitochondrial function was evaluated by oxygraphy. Compared to C-albumin, AGE-albumin increased ROS production in macrophages, which was ascribed to the activities of NADPH oxidase and of the mitochondrial system. Mitochondrial respiratory chain activity was reduced in cells incubated with AGE-albumin. ROS generation along time was associated with the reduction in macrophage ABCA-1 protein level. Aminoguanidine prevented ROS elevation and restored the ABCA-1 content in macrophages; on the other hand, benfotiamine that promoted a lesser reduction in ROS generation was not able to restore ABCA-1 levels. Inhibition of oxidative stress induced by AGE-albumin prevents disturbances in reverse cholesterol transport by curbing the reduction of ABCA-1 elicited by advanced glycation in macrophages and therefore may contribute to the prevention of atherosclerosis in diabetes mellitus.

  3. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles

    Directory of Open Access Journals (Sweden)

    Jingga Morry

    2017-04-01

    Full Text Available Oxidative stress, mainly contributed by reactive oxygen species (ROS, has been implicated in pathogenesis of several diseases. We review two primary examples; fibrosis and cancer. In fibrosis, ROS promote activation and proliferation of fibroblasts and myofibroblasts, activating TGF-β pathway in an autocrine manner. In cancer, ROS account for its genomic instability, resistance to apoptosis, proliferation, and angiogenesis. Importantly, ROS trigger cancer cell invasion through invadopodia formation as well as extravasation into a distant metastasis site. Use of antioxidant supplements, enzymes, and inhibitors for ROS-generating NADPH oxidases (NOX is a logical therapeutic intervention for fibrosis and cancer. We review such attempts, progress, and challenges. Lastly, we review how nanoparticles with inherent antioxidant activity can also be a promising therapeutic option, considering their additional feature as a delivery platform for drugs, genes, and imaging agents.

  4. Periodontitis and increase in circulating oxidative stress

    Directory of Open Access Journals (Sweden)

    Takaaki Tomofuji

    2009-05-01

    Full Text Available Reactive oxygen species (ROS are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress. Such oxidation may be detrimental to systemic health. For instance, previous animal studies suggested that experimental periodontitis induces oxidative damage of the liver and descending aorta by increasing circulating oxidative stress. In addition, it has been revealed that clinical parameters in chronic periodontitis patients showed a significant improvement 2 months after periodontal treatment, which was accompanied by a significant reduction of reactive oxygen metabolites in plasma. Improvement of periodontitis by periodontal treatment could reduce the occurrence of circulating oxidative stress. Furthermore, recent studies indicate that the increase in circulating oxidative stress following diabetes mellitus and inappropriate nutrition damages periodontal tissues. In such cases, therapeutic approaches to systemic oxidative stress might be necessary to improve periodontal health.

  5. Cardiac Light Chain Amyloidosis: The Role of Metal Ions in Oxidative Stress and Mitochondrial Damage.

    Science.gov (United States)

    Diomede, Luisa; Romeo, Margherita; Rognoni, Paola; Beeg, Marten; Foray, Claudia; Ghibaudi, Elena; Palladini, Giovanni; Cherny, Robert A; Verga, Laura; Capello, Gian Luca; Perfetti, Vittorio; Fiordaliso, Fabio; Merlini, Giampaolo; Salmona, Mario

    2017-09-20

    The knowledge of the mechanism underlying the cardiac damage in immunoglobulin light chain (LC) amyloidosis (AL) is essential to develop novel therapies and improve patients' outcome. Although an active role of reactive oxygen species (ROS) in LC-induced cardiotoxicity has already been envisaged, the actual mechanisms behind their generation remain elusive. This study was aimed at further dissecting the action of ROS generated by cardiotoxic LC in vivo and investigating whether transition metal ions are involved in this process. In the absence of reliable vertebrate model of AL, we used the nematode Caenorhabditis elegans, whose pharynx is an "ancestral heart." LC purified from patients with severe cardiac involvement intrinsically generated high levels of ROS and when administered to C. elegans induced ROS production, activation of the DAF-16/forkhead transcription factor (FOXO) pathway, and expression of proteins involved in stress resistance and survival. Profound functional and structural ROS-mediated mitochondrial damage, similar to that observed in amyloid-affected hearts from AL patients, was observed. All these effects were entirely dependent on the presence of metal ions since addition of metal chelator or metal-binding 8-hydroxyquinoline compounds (chelex, PBT2, and clioquinol) permanently blocked the ROS production and prevented the cardiotoxic effects of amyloid LC. Innovation and Conclusion: Our findings identify the key role of metal ions in driving the ROS-mediated toxic effects of LC. This is a novel conceptual advance that paves the way for new pharmacological strategies aimed at not only counteracting but also totally inhibiting the vicious cycle of redox damage. Antioxid. Redox Signal. 27, 567-582.

  6. Oxidative stress homeostasis in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Luisa C Carvalho

    2015-03-01

    Full Text Available Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light and to biotic stress (pathogens does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS. As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments.In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and to suitable viticulture

  7. Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: Implication of reactive oxygen species as common signals

    International Nuclear Information System (INIS)

    Babu, T.S.; Akhtar, T.A.; Lampi, M.A.; Tripuranthakam, S.; Dixon, D.G.; Greenberg, B.M.

    2003-01-01

    Metals and ultraviolet (UV) radiation are two environmental stressors that can cause damage to plants. These two types of stressors often impact simultaneously on plants and both are known to promote reactive oxygen species (ROS) production. However, little information is available on the potential parallel stress responses elicited by metals and UV radiation. Using the aquatic plant Lemna gibba, we found that copper and simulated solar radiation (SSR, a light source containing photosynthetically active radiation (PAR) and UV radiation) induced similar responses in the plants. Both copper and SSR caused ROS formation. The ROS levels were higher when copper was combined with SSR than when applied with PAR. Higher concentrations of copper plus PAR caused toxicity as monitored by diminished growth and chlorophyll content. This toxicity was more pronounced when copper was combined with SSR. Because the generation of ROS was also higher when copper was combined with SSR, we attributed this enhanced toxicity to elevated levels of ROS. In comparison to PAR-grown plants, SSR treated plants exhibited elevated levels of superoxide dismutase (SOD) and glutathione reductase (GR). These enzyme levels were further elevated under both PAR and SSR when copper was added at concentrations that generated ROS. Interestingly, copper treatment in the absence of SSR (i.e. copper plus PAR) induced synthesis of the same flavonoids as those observed in SSR without copper. Finally, addition of either dimethyl thiourea or GSH (two common ROS scavengers) lowered in vivo ROS production, alleviated toxicity and diminished induction of GR as well as accumulation of UV absorbing compounds. Thus, the potential of ROS being a common signal for acclimation to stress by both copper and UV can be considered. (author)

  8. Does the stress generation hypothesis apply to eating disorders?: an examination of stress generation in eating, depressive, and anxiety symptoms.

    Science.gov (United States)

    Bodell, Lindsay P; Hames, Jennifer L; Holm-Denoma, Jill M; Smith, April R; Gordon, Kathryn H; Joiner, Thomas E

    2012-12-15

    The stress generation hypothesis posits that individuals actively contribute to stress in their lives. Although stress generation has been studied frequently in the context of depression, few studies have examined whether this stress generation process is unique to depression or whether it occurs in other disorders. Although evidence suggests that stress contributes to the development of eating disorders, it is unclear whether eating disorders contribute to subsequent stress. A prospective design was used to examine the influence of eating disorder symptoms on negative life stressors. Two hundred and ninety female undergraduates completed questionnaires at two time points that examined eating disorder, depressive and anxiety symptoms and the presence of negative life events. Regression analyses found that while eating disorder symptoms (i.e. bulimic symptoms and drive for thinness) were independent, significant predictors of negative life events, they did not predict negative life events above and beyond symptoms of depression. Limitations include the use of self-report measures and a college-based sample, which may limit generalizability of the results. Findings suggest that if stress generation is present in individuals with symptoms of eating disorders, it is likely attributable to symptoms of depression. Thus, it may be important for clinicians to target depressive symptoms in order to reduce the frequency of negative life stressors among individuals with eating disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The residual stress evaluation for expansion process of steam generator tubes

    International Nuclear Information System (INIS)

    King, C.-S.; Lee, S.-C.; Shim, D.-N.

    2004-01-01

    The reliability of a nuclear power plant is affected by the reliability of steam generator tube and the reliability of steam generator tube is affected by stress corrosion cracking(SCC). Many steam generator tubes were experiencing stress corrosion cracking and stress corrosion cracking is affected material characteristics, corrosive environments and added stresses. The added stresses have the manufacturing stresses and operating stresses, the manufacturing stresses include the residual stresses generating in the tube manufacture and tube expanding procedure. We will investigate for influence which affected to residual stresses with tube plastic deformation method and measurement region. (author)

  10. Role of Oxidative Stress in Hepatocarcinogenesis Induced by Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Kyoko Tsukiyama-Kohara

    2012-11-01

    Full Text Available Hepatitis C virus (HCV easily establishes chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC. During the progression of HCV infections, reactive oxygen species (ROS are generated, and these ROS then induce significant DNA damage. The role of ROS in the pathogenesis of HCV infection is still not fully understood. Recently, we found that HCV induced the expression of 3β-hydroxysterol ∆24-reductase (DHCR24. We also found that a HCV responsive region is present in the 5'-flanking genomic promoter region of DHCR24 and the HCV responsive region was characterized as (−167/−140. Moreover, the transcription factor Sp1 was found to bind to this region in response to oxidative stress under the regulation of ataxia telangiectasia mutated (ATM kinase. Overexpression of DHCR24 impaired p53 activity by suppression of acetylation and increased interaction with MDM2. This impairment of p53 suppressed the hydrogen peroxide-induced apoptotic response in hepatocytes. Thus, a target of oxidative stress in HCV infection is DHCR24 through Sp1, which suppresses apoptotic responses and increases tumorigenicity.

  11. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

    Science.gov (United States)

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D.; Aneja, Ritu

    2015-01-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ~72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. PMID:25064160

  12. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis.

    Science.gov (United States)

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D; Aneja, Ritu

    2014-10-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ~72% upon daily oral administration of 150mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    Science.gov (United States)

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy.

  14. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road

    Directory of Open Access Journals (Sweden)

    Nasser eSewelam

    2016-02-01

    Full Text Available Current technologies have changed biology into a data-intensive field and significantly increased our understanding of signal transduction pathways in plants. However, global defense signaling networks in plants have not been established yet. Considering the apparent intricate nature of signaling mechanisms in plants (due to their sessile nature, studying the points at which different signaling pathways converge, rather than the branches, represents a good start to unravel global plant signaling networks. In this regard, growing evidence shows that the generation of reactive oxygen species (ROS is one of the most common plant responses to different stresses, representing a point at which various signaling pathways come together. In this review, the complex nature of plant stress signaling networks will be discussed. An emphasis on different signaling players with a specific attention to ROS as the primary source of the signaling battery in plants will be presented. The interactions between ROS and other signaling components, e.g. calcium, redox homeostasis, membranes, G-proteins, MAPKs, plant hormones and transcription factors will be assessed. A better understanding of the vital roles ROS are playing in plant signaling would help innovate new strategies to improve plant productivity under the circumstances of the increasing severity of environmental conditions and the high demand of food and energy worldwide

  15. ROS Installation and Commissioning

    CERN Multimedia

    Gorini, B

    The ATLAS Readout group (a sub-group of TDAQ) has now completed the installation and commissioning of all of the Readout System (ROS) units. Event data from ATLAS is initially handled by detector specific hardware and software, but following a Level 1 Accept the data passes from the detector specific Readout Drivers (RODs) to the ROS, the first stage of the central ATLAS DAQ. Within the final ATLAS TDAQ system the ROS stores the data and on request makes it available to the Level 2 Trigger (L2) processors and to the Event Builder (EB) as required. The ROS is implemented as a large number of PCs housing custom built cards (ROBINs) and running custom multi-threaded software. Each ROBIN card (shown below) contains buffer memories to store the data, plus a field programmable gate array ( FPGA ) and an embedded PowerPC processor for management of the memories and data requests, and is implemented as a 64-bit 66 MHz PCI card. Both the software and the ROBIN cards have been designed and developed by the Readout g...

  16. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress.

    Science.gov (United States)

    Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon

    2013-06-01

    To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.

  17. Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Friis, Martin Barfred; Hoffmann, Else Kay

    2012-01-01

    The present work was initiated to investigate regulation of the taurine transporter TauT by reactive oxygen species (ROS) and the tonicity-responsive enhancer binding protein (TonEBP) in NIH3T3 mouse fibroblasts during acute and long-term (4 h) exposure to low-sodium/hypo-osmotic stress. Taurine...... are significantly increased following hyperosmotic exposure. Swelling-induced ROS production in NIH3T3 fibroblasts is generated by NOX4 and by increasing total ROS, by either exogenous application of H(2)O(2) or overexpressing NOX4, we demonstrate that TonEBP activity and taurine influx are regulated negatively...... by ROS under hypo-osmotic, low-sodium conditions, whereas the TauT mRNA level is unaffected. Acute exposure to ROS reduces taurine uptake as a result of modulated TauT transport kinetics. Thus, swelling-induced ROS production could account for the reduced taurine uptake under low...

  18. SERPINA3K plays antioxidant roles in cultured pterygial epithelial cells through regulating ROS system.

    Directory of Open Access Journals (Sweden)

    Chengpeng Zhu

    Full Text Available We recently demonstrated that SERPINA3K, a serine proteinase inhibitor, has antioxidant activity in the cornea. Here we investigated the antioxidant effects of SERPINA3K on the pterygial, which is partially caused by oxidative stress in pathogenesis. The head part of primary pterygial tissue was dissected and then cultured in keratinocyte serum-free defined medium (KSFM. The cultured pterygial epithelial cells (PECs were treated with SERPINA3K. The cell proliferation and migration of PECs were measured and analyzed. Western blot and quantitative real-time polymerase chain reaction (PCR assay were performed. It showed that SERPINA3K significantly suppressed the cell proliferation of PECs in a concentration-dependent manner, compared with cultured human conjunctival epithelial cells. SERPINA3K also inhibited the cell migration of PECs. Towards its underlying mechanism, SERPINA3K had antioxidant activities on the PECs by significantly inhibiting NADPH oxidase 4 (NOX4, which is an important enzyme of ROS generation, and by elevating the levels of key antioxidant factors of ROS: such as NAD(PH dehydrogenase (quinone 1 (NQO1, NF-E2-related factor-2 (NRF2 and superoxide dismutases (SOD2. Meanwhile, SERPINA3K down-regulated the key effectors of Wnt signaling pathway: β-catenin, nonphospho-β-catenin, and low-density lipoprotein receptor-related protein 6 (LRP6. We provided novel evidence that SERPINA3K had inhibitory effects on pterygium and SERPINA3K played antioxidant role via regulating the ROS system and antioxidants.

  19. Radical Roles for RAGE in the Pathogenesis of Oxidative Stress in Cardiovascular Diseases and Beyond

    Directory of Open Access Journals (Sweden)

    Radha Ananthakrishnan

    2013-10-01

    Full Text Available Oxidative stress is a central mechanism by which the receptor for advanced glycation endproducts (RAGE mediates its pathological effects. Multiple experimental inquiries in RAGE-expressing cultured cells have demonstrated that ligand-RAGE interaction mediates generation of reactive oxygen species (ROS and consequent downstream signal transduction and regulation of gene expression. The primary mechanism by which RAGE generates oxidative stress is via activation of NADPH oxidase; amplification mechanisms in the mitochondria may further drive ROS production. Recent studies indicating that the cytoplasmic domain of RAGE binds to the formin mDia1 provide further support for the critical roles of this pathway in oxidative stress; mDia1 was required for activation of rac1 and NADPH oxidase in primary murine aortic smooth muscle cells treated with RAGE ligand S100B. In vivo, in multiple distinct disease models in animals, RAGE action generates oxidative stress and modulates cellular/tissue fate in range of disorders, such as in myocardial ischemia, atherosclerosis, and aneurysm formation. Blockade or genetic deletion of RAGE was shown to be protective in these settings. Indeed, beyond cardiovascular disease, evidence is accruing in human subjects linking levels of RAGE ligands and soluble RAGE to oxidative stress in disorders such as doxorubicin toxicity, acetaminophen toxicity, neurodegeneration, hyperlipidemia, diabetes, preeclampsia, rheumatoid arthritis and pulmonary fibrosis. Blockade of RAGE signal transduction may be a key strategy for the prevention of the deleterious consequences of oxidative stress, particularly in chronic disease.

  20. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells.

    Science.gov (United States)

    Oliveira, Jessica Silva Santos de; Santos, Gabriela da Silva; Moraes, João Alfredo; Saliba, Alessandra Mattos; Barja-Fidalgo, Thereza Christina; Mattos-Guaraldi, Ana Luíza; Nagao, Prescilla Emy

    2018-01-01

    BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.

  1. Platelet oxidative stress and its relationship with cardiovascular diseases in type 2 diabetes mellitus patients.

    Science.gov (United States)

    El Haouari, Mohammed

    2017-10-05

    Enhanced platelet activation and thrombosis are linked to various cardiovascular diseases. Among other mechanisms, oxidative stress seems to play a pivotal role in platelet hyperactivity. Indeed, upon stimulation by physiological agonists, human platelets generate and release several types of reactive oxygen species (ROS) such as O2-, H2O2 or OH- , further amplifying the platelet activation response via various signalling pathways, including, formation of isoprostanes, Ca2+ mobilization and NO inactivation. Furthermore, excessive platelet ROS generation, incorporation of free radicals from environment and/or depletion of antioxidants induce pro-oxidant, pro-inflammatory and platelet hyperaggregability effects, leading to the incidence of cardiovascular events. Here, we review the current knowledge regarding the effect of oxidative stress on platelet signaling pathways and its implication in CVD such as type 2 diabetes mellitus. We also summarize the role of natural antioxidants included in vegetables, fruits and medicinal herbs in reducing platelet function via an oxidative stress-mediated mechanism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Negative life events and symptoms of depression and anxiety: stress causation and/or stress generation.

    Science.gov (United States)

    Phillips, Anna C; Carroll, Douglas; Der, Geoff

    2015-01-01

    Stressful life events are known to contribute to development of depression; however, it is possible this link is bidirectional. The present study examined whether such stress generation effects are greater than the effects of stressful life events on depression, and whether stress generation is also evident with anxiety. Participants were two large age cohorts (N = 732 aged 44 years; N = 705 aged 63 years) from the West of Scotland Twenty-07 study. Stressful life events, depression, and anxiety symptoms were measured twice five years apart. Cross-lagged panel analysis examined the mutual influences of stressful life events on depression and on anxiety over time. Life events predicted later depressive symptomatology (p = .01), but the depression predicting life events relationship was less strong (p = .06), whereas earlier anxiety predicted life events five years later (p = .001). There was evidence of sex differences in the extent to which life events predicted later anxiety. This study provides evidence of stress causation for depression and weaker evidence for stress generation. In contrast, there was strong evidence of stress generation for anxiety but weaker evidence for stress causation, and that differed for men and women.

  3. Oxidative Stress and Metabolic Syndrome: Cause or Consequence of Alzheimer's Disease?

    Directory of Open Access Journals (Sweden)

    Diana Luque-Contreras

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is a major neurodegenerative disease affecting the elderly. Clinically, it is characterized by a progressive loss of memory and cognitive function. Neuropathologically, it is characterized by the presence of extracellular β-amyloid (Aβ deposited as neuritic plaques (NP and neurofibrillary tangles (NFT made of abnormal and hyperphosphorylated tau protein. These lesions are capable of generating the neuronal damage that leads to cell death and cognitive failure through the generation of reactive oxygen species (ROS. Evidence indicates the critical role of Aβ metabolism in prompting the oxidative stress observed in AD patients. However, it has also been proposed that oxidative damage precedes the onset of clinical and pathological AD symptoms, including amyloid-β deposition, neurofibrillary tangle formation, vascular malfunction, metabolic syndrome, and cognitive decline. This paper provides a brief description of the three main proteins associated with the development of the disease (Aβ, tau, and ApoE and describes their role in the generation of oxidative stress. Finally, we describe the mitochondrial alterations that are generated by Aβ and examine the relationship of vascular damage which is a potential prognostic tool of metabolic syndrome. In addition, new therapeutic approaches targeting ROS sources and metabolic support were reported.

  4. Normal personality traits, rumination and stress generation among early adolescent girls

    Science.gov (United States)

    Stroud, Catherine B.; Sosoo, Effua E.; Wilson, Sylia

    2017-01-01

    This study examined associations between personality and stress generation. Expanding upon prior work, we examined (a) the role of Positive Emotionality (PE), Negative Emotionality (NE), and Constraint (CON), and their lower-order facets, as predictors of acute and chronic interpersonal stress generation; (b) whether personality moderated effects of rumination on stress generation; and (c) whether personality increased exposure to independent (uncontrollable) stress. These questions were examined in a one-year study of 126 adolescent girls (M age = 12.39 years) using contextual stress interviews. NE predicted increases in acute and chronic interpersonal stress generation, but not independent stress. NE, CON and affiliative PE each moderated the effect of rumination on chronic interpersonal stress generation. These effects were driven by particular lower-order traits. PMID:28845067

  5. Effects of exposure to high glucose on primary cultured hippocampal neurons: involvement of intracellular ROS accumulation.

    Science.gov (United States)

    Liu, Di; Zhang, Hong; Gu, Wenjuan; Zhang, Mengren

    2014-06-01

    Recent studies showed that hyperglycemia is the main trigger of diabetic cognitive impairment and can cause hippocampus abnormalities. The goal of this study is to explore the effects of different concentrations of high glucose for different exposure time on cell viability as well as intracellular reactive oxygen species (ROS) generation of primary cultured hippocampal neurons. Hippocampal neurons were exposed to different concentrations of high glucose (50, 75, 100, 125, and 150 mM) for 24, 48, 72 and 96 h. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. Intracellular ROS were monitored using the fluorescent probe DCFH-DA. The results showed that, compared with control group, the cell viability of all high glucose-treated groups decreased significantly after 72 h and there also was a significant increase of apoptotic nuclei in high glucose-treated groups from 72 to 96 h. Furthermore, 50 mM glucose induced a peak rise in ROS generation at 24 h and the intracellular ROS levels of 50 mM glucose group were significantly higher than the corresponding control group from 6 to 72 h. These results suggest that hippocampal neurons could be injured by high glucose exposure and the neuronal injury induced by high glucose is potentially mediated through intracellular ROS accumulation.

  6. Roles of ROS mediated oxidative stress and DNA damage in 3-methyl-2-quinoxalin benzenevinylketo-1, 4-dioxide-induced immunotoxicity of Sprague-Dawley rats.

    Science.gov (United States)

    Gao, Hui; Wang, Di; Zhang, Shun; Xu, Mengjing; Yang, Wei; Yan, Peipei; Liu, Yang; Luo, Xiao; Wu, Hailei; Yao, Ping; Yan, Hong; Liu, Liegang

    2015-11-01

    3-methyl-2-quinoxalin benzenevinylketo-1, 4-dioxide (Quinocetone, QCT) has been broadly used to treat dysentery and promote animal growth in food producing animals. However, its potential toxicity could not been neglected as parts of safety assessment according to the acceptable guidelines for QCT administration. In this study, the immunotoxicity of QCT was investigated in male Sprague-Dawley (SD) rats following a 28-day oral exposure at doses of 0, 50, 800, and 2400 mg/kg/day. The food consumption, body weight gain and relative spleen weight were significantly decreased by QCT in a dose-dependent manner. Treatment of rats with QCT also notably suppressed the T-cell proliferation and natural killer (NK) cell activity, accompanied by intracellular reactive oxygen species (ROS) accumulation, antioxidant system inhibition and DNA damage enhancement. Thus, the primary finding of this study is that QCT exposure (2400 mg/kg/day) could cause immunotoxicity in SD rats due to ROS mediated oxidative stress and DNA damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Laser-induced generation of pure tensile stresses

    International Nuclear Information System (INIS)

    Niemz, M.H.; Lin, C.P.; Pitsillides, C.; Cui, J.; Doukas, A.G.; Deutsch, T.F.

    1997-01-01

    While short compressive stresses can readily be produced by laser ablation, the generation of pure tensile stresses is more difficult. We demonstrate that a 90 degree prism made of polyethylene can serve to produce short and pure tensile stresses. A compressive wave is generated by ablating a thin layer of strongly absorbing ink on one surface of the prism with a Q-switched frequency-doubled Nd:YAG laser. The compressive wave driven into the prism is reflected as a tensile wave by the polyethylene-air interface at its long surface. The low acoustic impedance of polyethylene makes it ideal for coupling tensile stresses into liquids. In water, tensile stresses up to -200bars with a rise time of the order of 20 ns and a duration of 100 ns are achieved. The tensile strength of water is determined for pure tensile stresses lasting for 100 ns only. The technique has potential application in studying the initiation of cavitation in liquids and in comparing the effect of compressive and tensile stress transients on biological media. copyright 1997 American Institute of Physics

  8. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    Science.gov (United States)

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  9. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells

    International Nuclear Information System (INIS)

    David Gara, Pedro M.; Garabano, Natalia I.; Llansola Portoles, Manuel J.; Moreno, M. Sergio; Dodat, Diego; Casas, Oscar R.; Gonzalez, Mónica C.; Kotler, Mónica L.

    2012-01-01

    The capability of silicon nanoparticles to increase the yield of reactive species upon 4 MeV X-ray irradiation of aqueous suspensions and C6 glioma cell cultures was investigated. ROS generation was detected and quantified using several specific probes. The particles were characterized by FTIR, XPS, TEM, DLS, luminescence, and adsorption spectroscopy before and after irradiation to evaluate the effect of high energy radiation on their structure. The total concentration of O 2 •− /HO 2 • , HO • , and H 2 O 2 generated upon 4-MeV X-ray irradiation of 6.4 μM silicon nanoparticle aqueous suspensions were on the order of 10 μM per Gy, ten times higher than that obtained in similar experiments but in the absence of particles. Cytotoxic 1 O 2 was generated only in irradiation experiments containing the particles. The particle surface became oxidized to SiO 2 and the luminescence yield reduced with the irradiation dose. Changes in the surface morphology did not affect, within the experimental error, the yields of ROS generated per Gy. X-ray irradiation of glioma C6 cell cultures with incorporated silicon nanoparticles showed a marked production of ROS proportional to the radiation dose received. In the absence of nanoparticles, the cells showed no irradiation-enhanced ROS generation. The obtained results indicate that silicon nanoparticles of 1 O 2 upon X-ray irradiation opens novel approaches in the design of therapy strategies.

  10. Asbestos Induces Oxidative Stress and Activation of Nrf2 Signaling in Murine Macrophages: Chemopreventive Role of the Synthetic Lignan Secoisolariciresinol Diglucoside (LGM2605

    Directory of Open Access Journals (Sweden)

    Ralph A. Pietrofesa

    2016-03-01

    Full Text Available The interaction of asbestos fibers with macrophages generates harmful reactive oxygen species (ROS and subsequent oxidative cell damage that are key processes linked to malignancy. Secoisolariciresinol diglucoside (SDG is a non-toxic, flaxseed-derived pluripotent compound that has antioxidant properties and may thus function as a chemopreventive agent for asbestos-induced mesothelioma. We thus evaluated synthetic SDG (LGM2605 in asbestos-exposed, elicited murine peritoneal macrophages as an in vitro model of tissue phagocytic response to the presence of asbestos in the pleural space. Murine peritoneal macrophages (MFs were exposed to crocidolite asbestos fibers (20 µg/cm2 and evaluated at various times post exposure for cytotoxicity, ROS generation, malondialdehyde (MDA, and levels of 8-iso Prostaglandin F2α (8-isoP. We then evaluated the ability of LGM2605 to mitigate asbestos-induced oxidative stress by administering LGM2605 (50 µM 4-h prior to asbestos exposure. We observed a significant (p < 0.0001, time-dependent increase in asbestos-induced cytotoxicity, ROS generation, and the release of MDA and 8-iso Prostaglandin F2α, markers of lipid peroxidation, which increased linearly over time. LGM2605 treatment significantly (p < 0.0001 reduced asbestos-induced cytotoxicity and ROS generation, while decreasing levels of MDA and 8-isoP by 71%–88% and 41%–73%, respectively. Importantly, exposure to asbestos fibers induced cell protective defenses, such as cellular Nrf2 activation and the expression of phase II antioxidant enzymes, HO-1 and Nqo1 that were further enhanced by LGM2605 treatment. LGM2605 boosted antioxidant defenses, as well as reduced asbestos-induced ROS generation and markers of oxidative stress in murine peritoneal macrophages, supporting its possible use as a chemoprevention agent in the development of asbestos-induced malignant mesothelioma.

  11. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells

    International Nuclear Information System (INIS)

    Naha, Pratap C.; Davoren, Maria; Lyng, Fiona M.; Byrne, Hugh J.

    2010-01-01

    The immunotoxicity of three generations of polyamidoamine (PAMAM) dendrimers (G-4, G-5 and G-6) was evaluated in mouse macrophage cells in vitro. Using the Alamar blue and MTT assays, a generation dependent cytotoxicity of the PAMAM dendrimers was found whereby G-6 > G-5 > G-4. The toxic response of the PAMAM dendrimers correlated well with the number of surface primary amino groups, with increasing number resulting in an increase in toxic response. An assessment of intracellular ROS generation by the PAMAM dendrimers was performed by measuring the increased fluorescence as a result of intracellular oxidation of Carboxy H 2 DCFDA to DCF both quantitatively using plate reader and qualitatively by confocal laser scanning microscopy. The inflammatory mediators macrophage inflammatory protein-2 (MIP-2), tumour necrosis factor-α (TNF-α) and interleukin-6, (IL-6) were measured by the enzyme linked immunosorbant assay (ELISA) following exposure of mouse macrophage cells to PAMAM dendrimers. A generation dependent ROS and cytokine production was found, which correlated well with the cytotoxicological response and therefore number of surface amino groups. A clear time sequence of increased ROS generation (maximum at ∼ 4 h), TNF-α and IL-6 secretion (maximum at ∼ 24 h), MIP-2 levels and cell death (∼ 72 h) was observed. The intracellular ROS generation and cytokine production induced cytotoxicity point towards the mechanistic pathway of cell death upon exposure to PAMAM dendrimers.

  12. Black rice extract protected HepG2 cells from oxidative stress-induced cell death via ERK1/2 and Akt activation

    Science.gov (United States)

    Yoon, Jaemin; Ham, Hyeonmi; Sung, Jeehye; Kim, Younghwa; Choi, Youngmin; Lee, Jeom-Sig; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    BACKGROUND/OBJECTIVES The objective of this study was to evaluate the protective effect of black rice extract (BRE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. MATERIALS/METHODS Methanolic extract from black rice was evaluated for the protective effect on TBHP-induced oxidative injury in HepG2 cells. Several biomarkers that modulate cell survival and death including reactive oxygen species (ROS), caspase-3 activity, and related cellular kinases were determined. RESULTS TBHP induced cell death and apoptosis by a rapid increase in ROS generation and caspase-3 activity. Moreover, TBHP-induced oxidative stress resulted in a transient ERK1/2 activation and a sustained increase of JNK1/2 activation. While, BRE pretreatment protects the cells against oxidative stress by reducing cell death, caspase-3 activity, and ROS generation and also by preventing ERKs deactivation and the prolonged JNKs activation. Moreover, pretreatment of BRE increased the activation of ERKs and Akt which are pro-survival signal proteins. However, this effect was blunted in the presence of ERKs and Akt inhibitors. CONCLUSIONS These results suggest that activation of ERKs and Akt pathway might be involved in the cytoprotective effect of BRE against oxidative stress. Our findings provide new insights into the cytoprotective effects and its possible mechanism of black rice against oxidative stress. PMID:24741394

  13. The ROS Workshop

    CERN Multimedia

    Francis, D.

    The first week of February saw the taking place of the ReadOut Subsystem (ROS) workshop. The ROS is the subsystem of the Trigger, DAQ & DCS project which receives and buffers data from the detector ReadOut Drivers (RODs). On request it then provides a subset of this buffered data, the so-called Regions of Interest (RoI), to the Level 2 trigger. Using the subsequent Level 2 trigger decision, the ROS either removes the buffered event data from its buffers or sends the full event data to the Event Filter for further processing. The workshop took place over a four-day period at a location in the Jura. The average daily attendance was twenty people, which mainly represented the five main ATLAS institutes currently engaged in this Trigger, DAQ & DCS activity. The aim of the workshop was to bring to an end the current prototyping activities in this area and launch the next, final, phase of prototyping. This new phase of prototyping will build on the successful activities of the previous phase and will focus...

  14. Learning ROS for robotics programming

    CERN Document Server

    Martinez, Aaron

    2013-01-01

    The book will take an easy-to-follow and engaging tutorial approach, providing a practical and comprehensive way to learn ROS.If you are a robotic enthusiast who wants to learn how to build and program your own robots in an easy-to-develop, maintainable and shareable way, ""Learning ROS for Robotics Programming"" is for you. In order to make the most of the book, you should have some C++ programming background, knowledge of GNU/Linux systems, and computer science in general. No previous background on ROS is required, since this book provides all the skills required. It is also advisable to hav

  15. ROS Mediates Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa Rah; Ahn, Ji Yeon; Kim, Mi Hyeung; Lim, Min Jin; Yun, Yeon Sook; Song, Jie Young

    2009-01-01

    One of the most common tumors worldwide is lung cancer and the number of patients with lung cancer received radiotherapy is increasing rapidly. Although radiotherapy may have lots of advantages, it can also induce serious adverse effects such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of smooth muscle actin-alpha (a-SMA) and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-b), tumor necrosis factor (TNF), IL-6, platelet-derived growth factor (PDGF) and reactive oxygen species are related to fibrosis. It is also reported that reactive oxygen species (ROS) can be induced by radiation and can act as a second messenger in various signaling pathways. Therefore we focused on the role of ROS in radiation induced fibrosis. Here, we suggest that irradiation generate ROS mainly through NOX4, result in differentiation of lung fibroblast into myofibroblast

  16. Periodontitis and increase in circulating oxidative stress

    OpenAIRE

    Takaaki Tomofuji; Koichiro Irie; Toshihiro Sanbe; Tetsuji Azuma; Daisuke Ekuni; Naofumi Tamaki; Tatsuo Yamamoto; Manabu Morita

    2009-01-01

    Reactive oxygen species (ROS) are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress). Such oxidation may be detrimental to systemic health. Fo...

  17. Oxidative stress, metabolomics profiling, and mechanism of local anesthetic induced cell death in yeast

    Directory of Open Access Journals (Sweden)

    Cory H.T. Boone

    2017-08-01

    Full Text Available The World Health Organization designates lidocaine as an essential medicine in healthcare, greatly increasing the probability of human exposure. Its use has been associated with ROS generation and neurotoxicity. Physiological and metabolomic alterations, and genetics leading to the clinically observed adverse effects have not been temporally characterized. To study alterations that may lead to these undesirable effects, Saccharomyces cerevisiae grown on aerobic carbon sources to stationary phase was assessed over 6 h. Exposure of an LC50 dose of lidocaine, increased mitochondrial depolarization and ROS/RNS generation assessed using JC-1, ROS/RNS specific probes, and FACS. Intracellular calcium also increased, assessed by ICP-MS. Measurement of the relative ATP and ADP concentrations indicates an initial 3-fold depletion of ATP suggesting an alteration in the ATP:ADP ratio. At the 6 h time point the lidocaine exposed population contained ATP concentrations roughly 85% that of the negative control suggesting the surviving population adapted its metabolic pathways to, at least partially restore cellular bioenergetics. Metabolite analysis indicates an increase of intermediates in the pentose phosphate pathway, the preparatory phase of glycolysis, and NADPH. Oxidative stress produced by lidocaine exposure targets aconitase decreasing its activity with an observed decrease in isocitrate and an increase citrate. Similarly, increases in α-ketoglutarate, malate, and oxaloacetate imply activation of anaplerotic reactions. Antioxidant molecule glutathione and its precursor amino acids, cysteine and glutamate were greatly increased at later time points. Phosphatidylserine externalization suggestive of early phase apoptosis was also observed. Genetic studies using metacaspase null strains showed resistance to lidocaine induced cell death. These data suggest lidocaine induces perpetual mitochondrial depolarization, ROS/RNS generation along with increased

  18. Prototheca zopfii isolated from bovine mastitis induced oxidative stress and apoptosis in bovine mammary epithelial cells.

    Science.gov (United States)

    Shahid, Muhammad; Gao, Jian; Zhou, Yanan; Liu, Gang; Ali, Tariq; Deng, Youtian; Sabir, Naveed; Su, Jingliang; Han, Bo

    2017-05-09

    Bovine protothecal mastitis results in considerable economic losses worldwide. However, Prototheca zopfii induced morphological alterations and oxidative stress in bovine mammary epithelial cells (bMECs) is not comprehensively studied yet. Therefore, the aim of this current study was to investigate the P. zopfii induced pathomorphological changes, oxidative stress and apoptosis in bMECs. Oxidative stress was assessed by evaluating catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA) contents and lactate dehydrogenase (LDH) activity, while ROS generation and apoptosis was measured by confocal laser scanning microscopy. The results revealed that infection of P. zopfii genotype II (GTII) significantly changed bMECs morphology, increased apoptotic rate and MDA contents at 12 h (p < 0.05) and 24 h (p < 0.01) in comparison with control group, in time-dependent manner. LDH activity and ROS generation was also increased (p < 0.01) at 12 h and 24 h. However, SOD and CAT contents in bMECs infected with GTII were decreased (p < 0.05) at 12 h, while GPx (p < 0.01), SOD (p < 0.05) and CAT (p < 0.01) levels were reduced at 24 h. In case of GTI, only CAT and GPx activities were significantly decreased when the duration prolonged to 24 h but lesser than GTII. This suggested that GTII has more devastating pathogenic effects in bMECs, and the findings of this study concluded that GTII induced apoptosis and oxidative stress in bMECs via the imbalance of oxidant and antioxidant defenses as well as the production of intracellular ROS.

  19. Acetylcholine Attenuates Hypoxia/ Reoxygenation-Induced Mitochondrial and Cytosolic ROS Formation in H9c2 Cells via M2 Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Yi Miao

    2013-02-01

    Full Text Available Background: The anti-infammatory and cardioprotective effect of acetylcholine (ACh has been reported; nevertheless, whether and how ACh exhibits an antioxidant property against ischemia/reperfusion (I/R-induced oxidative stress remains obscure. Methods: In the present study, H9c2 rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R to mimic I/R injury. We estimated intracellular different sources of reactive oxygen species (ROS by measuring mitochondrial ROS (mtROS, mitochondrial DNA (mtDNA copy number, xanthine oxidase (XO and NADPH oxidase (NOX activity and expression of rac 1. Cell injury was determined by lactate dehydrogenase (LDH release and cleaved caspase-3 expression. The siRNA transfection was performed to knockdown of M2 acetylcholine receptor (M2 AChR expression. Results: 12-h hypoxia followed by 2-h reoxygenation resulted in an abrupt burst of ROS in H9c2 cells. Administration of ACh reduced the levels of ROS in a concentration-dependent manner. Compared to the H/R group, ACh decreased mtROS, recovered mtDNA copy number, diminished XO and NOX activity, rac 1 expression as well as cell injury. Co- treatment with atropine rather than hexamethonium abolished the antioxidant and cardioprotective effect of ACh. Moreover, knockdown of M2 AChR by siRNA showed the similar trends as atropine co-treatment group. Conclusions: ACh inhibits mitochondria-, XO- and NOX-derived ROS production thus protecting H9c2 cells against H/R-induced oxidative stress, and these benefcial effects are mainly mediated by M2 AChR. Our findings suggested that increasing ACh release could be a potential therapeutic strategy for treatment and prevention of I/R injury.

  20. Robot operating system (ROS) the complete reference

    CERN Document Server

    The objective of this book is to provide the reader with a comprehensive coverage on the Robot Operating Systems (ROS) and latest related systems, which is currently considered as the main development framework for robotics applications. The book includes twenty-seven chapters organized into eight parts. Part 1 presents the basics and foundations of ROS. In Part 2, four chapters deal with navigation, motion and planning. Part 3 provides four examples of service and experimental robots. Part 4 deals with real-world deployment of applications. Part 5 presents signal-processing tools for perception and sensing. Part 6 provides software engineering methodologies to design complex software with ROS. Simulations frameworks are presented in Part 7. Finally, Part 8 presents advanced tools and frameworks for ROS including multi-master extension, network introspection, controllers and cognitive systems. This book will be a valuable companion for ROS users and developers to learn more ROS capabilities and features.   ...

  1. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); Wu, Jincai [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China); Fang, Jianguo, E-mail: fangjg@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells.

  2. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    International Nuclear Information System (INIS)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-01-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells. ► Curcumin

  3. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan.

    Science.gov (United States)

    Jabeen, Nusrat; Ahmad, Rafiq

    2013-05-01

    Salt tolerance is a complex trait which involves the coordinated action of many genes that perform a variety of functions, such as ion sequestration, metabolic adjustment, osmotic adjustment and antioxidative defence. In this article, the growth and the generation and scavenging of reactive oxygen species (ROS) under normal (ECiw [Electrical conductivity of irrigation water] = 0.5 dS m(-1)) and salt stress conditions (ECiw = 3.4, 6.1, 8.6 and 10.8 dS m(-1) ) in relation to the priming of seeds of the two important oil yielding crops, i.e. safflower and sunflower, with different concentrations of chitosan [0% (control), 0.25%, 0.50%, 0.75%] is discussed. Induced salinity stress significantly decreased germination percentage, germination rate, length and weight of root and shoot, and protein content. Proline content, malondialdehyde content (MDA), catalase (CAT) and peroxidase (POX) activity increased at 10.8 dS m(-1). Under control conditions there were no significant differences in germination percentage among different concentrations of chitosan, whereas CAT and POX activity were increased by low concentrations of chitosan. With increasing salt stress, low concentrations of chitosan increased germination percentage but decreased MDA and proline contents and CAT and POX activity. Generation of ROS seems to be unavoidable under normal conditions and the activity of antioxidant enzymes in plants varies in terms of ROS generation under salt stress. However, the data indicate that plants subjected to salt stress-induced oxidative stress and the low concentrations of chitosan exhibited positive effects on salt stress alleviation through the reduction of enzyme activity in both crops. © 2012 Society of Chemical Industry.

  4. Piroxicam, a traditional non-steroidal anti-inflammatory drug (NSAID) causes apoptosis by ROS mediated Akt activation.

    Science.gov (United States)

    Rai, Neha; Sarkar, Munna; Raha, Sanghamitra

    2015-12-01

    Piroxicam (Px) belongs to the oxicam group of the non-steroidal anti-inflammatory drugs (NSAIDs) and have been shown to exert chemopreventive and chemotherapeutic effects in animal models and cultured animal cells. However, little is known about the mode of action of Px and its cellular targets. We explored the role of Px, in triggering apoptosis and examined the involvement of upstream cellular mechanisms in apoptosis induction by Px. Our studies with human breast cancer cells MCF-7 show that Px induces reactive oxygen species (ROS) generation along with apoptotic cell death. ROS release lead to Akt activation. On evaluation it became evident that ROS mediated apoptosis induction was due to Akt activation (hyper phosphorylation). Silencing the expression of Akt using siRNA and a specific Akt inhibitor, triciribine further confirmed the findings. However Px failed to cause ROS generation, cell death or Akt phosphorylation in another human breast cancer cells MDA-MB-231 which is estrogen receptor negative and more aggressive compared to MCF-7 cells. This suggests that Px has cell type specific effects. Thus we revealed for the first time that Px can induce apoptosis by ROS mediated Akt hyperphosphorylation/activation. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. Role of ROS in Aβ42 Mediated Activation of Cerebral Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Andrey Tsoy

    2014-12-01

    elevation. However, total expression levels of P-selectin were not changed following exposure to Aβ42. Pre-treatment with NAC attenuated Aβ42 induced P-selectin localization, while NAC alone did not significantly affect P selectin localization. As a positive control, H2O2 also increased P-selectin expression on the cell surface, which peaked after 30 minutes of H2O2 treatment. Exposure of CECs with Aβ42 promoted actin polymerization, which peaked after 10 minutes of Aβ42 treatment, while no significant increase of F-actin intensity was observed when cells were pre-treated with NAC. H2O2 was able to mimic Aβ42 induced oxidative stress, causing increased actin polymerization with similar timing.Conclusions. The results of our study have indicated that Aβ42 induced accumulation of P-selectin on the surface of bEnd3 cells and promoted actin polymerization, and all these events were correlated with ROS generation. The rapid post-translational cell signaling response mediated by ROS may well represent an important physiological trigger of the microvascular inflammatory responses in AD and requires further investigations.

  6. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    Science.gov (United States)

    Sada, Kiminori; Nishikawa, Takeshi; Kukidome, Daisuke; Yoshinaga, Tomoaki; Kajihara, Nobuhiro; Sonoda, Kazuhiro; Senokuchi, Takafumi; Motoshima, Hiroyuki; Matsumura, Takeshi; Araki, Eiichi

    2016-01-01

    We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS) generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs), cellular hypoxia increased after incubation with high glucose (HG). A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD) overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1), a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  7. Hyperglycemia Induces Cellular Hypoxia through Production of Mitochondrial ROS Followed by Suppression of Aquaporin-1.

    Directory of Open Access Journals (Sweden)

    Kiminori Sada

    Full Text Available We previously proposed that hyperglycemia-induced mitochondrial reactive oxygen species (mtROS generation is a key event in the development of diabetic complications. Interestingly, some common aspects exist between hyperglycemia and hypoxia-induced phenomena. Thus, hyperglycemia may induce cellular hypoxia, and this phenomenon may also be involved in the pathogenesis of diabetic complications. In endothelial cells (ECs, cellular hypoxia increased after incubation with high glucose (HG. A similar phenomenon was observed in glomeruli of diabetic mice. HG-induced cellular hypoxia was suppressed by mitochondria blockades or manganese superoxide dismutase (MnSOD overexpression, which is a specific SOD for mtROS. Overexpression of MnSOD also increased the expression of aquaporin-1 (AQP1, a water and oxygen channel. AQP1 overexpression in ECs suppressed hyperglycemia-induced cellular hypoxia, endothelin-1 and fibronectin overproduction, and apoptosis. Therefore, hyperglycemia-induced cellular hypoxia and mtROS generation may promote hyperglycemic damage in a coordinated manner.

  8. Crizotinib-Resistant ROS1 Mutations Reveal a Predictive Kinase Inhibitor Sensitivity Model for ROS1- and ALK-Rearranged Lung Cancers.

    Science.gov (United States)

    Facchinetti, Francesco; Loriot, Yohann; Kuo, Mei-Shiue; Mahjoubi, Linda; Lacroix, Ludovic; Planchard, David; Besse, Benjamin; Farace, Françoise; Auger, Nathalie; Remon, Jordi; Scoazec, Jean-Yves; André, Fabrice; Soria, Jean-Charles; Friboulet, Luc

    2016-12-15

    The identification of molecular mechanisms conferring resistance to tyrosine kinase inhibitor (TKI) is a key step to improve therapeutic results for patients with oncogene addiction. Several alterations leading to EGFR and anaplastic lymphoma kinase (ALK) resistance to TKI therapy have been described in non-small cell lung cancer (NSCLC). Only two mutations in the ROS1 kinase domain responsible for crizotinib resistance have been described in patients thus far. A patient suffering from a metastatic NSCLC harboring an ezrin (EZR)-ROS1 fusion gene developed acquired resistance to the ALK/ROS1 inhibitor crizotinib. Molecular analysis (whole-exome sequencing, CGH) and functional studies were undertaken to elucidate the mechanism of resistance. Based on this case, we took advantage of the structural homology of ROS1 and ALK to build a predictive model for drug sensitivity regarding future ROS1 mutations. Sequencing revealed a dual mutation, S1986Y and S1986F, in the ROS1 kinase domain. Functional in vitro studies demonstrated that ROS1 harboring either the S1986Y or the S1986F mutation, while conferring resistance to crizotinib and ceritinib, was inhibited by lorlatinib (PF-06463922). The patient's clinical response confirmed the potency of lorlatinib against S1986Y/F mutations. The ROS1 S1986Y/F and ALK C1156Y mutations are homologous and displayed similar sensitivity patterns to ALK/ROS1 TKIs. We extended this analogy to build a model predicting TKI efficacy against potential ROS1 mutations. Clinical evidence, in vitro validation, and homology-based prediction provide guidance for treatment decision making for patients with ROS1-rearranged NSCLC who progressed on crizotinib. Clin Cancer Res; 22(24); 5983-91. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Stress analysis of steam generator row-1 tubes

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Lee, Ho Jin; Kim, Sung Chung

    2000-01-01

    Residual stresses induced in U-bending and tube-to-tubesheet joining processes of PWR's steam generator row-1 tube were measured by X-ray method and Hole-Drilling Method(HDM). The stresses resulting from the internal pressure and the temperature gradient in the steam generator were also estimated theoretically. In U-bent regions, the residual stresses at extrados were induced with compressive stress(-), and its maximum value reached -319 Mpa in axial direction at ψ=0 .deg. in position. Maximum tensile residual stress of 170 MPa was found to be at the flank side at position of ψ=90 deg., i.e., at apex region. In tube-to-tubesheet joining methods, the residual stresses induced by the explosive joint method were found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region, and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction. Hoop stress due to an internal pressure between primary and secondary side was analyzed to be 76 MPa and thermal stress was 45 MPa

  10. Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy.

    Science.gov (United States)

    Moruno-Manchon, Jose F; Uzor, Ndidi-Ese; Kesler, Shelli R; Wefel, Jeffrey S; Townley, Debra M; Nagaraja, Archana Sidalaghatta; Pradeep, Sunila; Mangala, Lingegowda S; Sood, Anil K; Tsvetkov, Andrey S

    2018-01-01

    Doxorubicin, a commonly used anti-neoplastic agent, causes severe neurotoxicity. Doxorubicin promotes thinning of the brain cortex and accelerates brain aging, leading to cognitive impairment. Oxidative stress induced by doxorubicin contributes to cellular damage. In addition to mitochondria, peroxisomes also generate reactive oxygen species (ROS) and promote cell senescence. Here, we investigated if doxorubicin affects peroxisomal homeostasis in neurons. We demonstrate that the number of peroxisomes is increased in doxorubicin-treated neurons and in the brains of mice which underwent doxorubicin-based chemotherapy. Pexophagy, the specific autophagy of peroxisomes, is downregulated in neurons, and peroxisomes produce more ROS. 2-hydroxypropyl-β-cyclodextrin (HPβCD), an activator of the transcription factor TFEB, which regulates expression of genes involved in autophagy and lysosome function, mitigates damage of pexophagy and decreases ROS production induced by doxorubicin. We conclude that peroxisome-associated oxidative stress induced by doxorubicin may contribute to neurotoxicity, cognitive dysfunction, and accelerated brain aging in cancer patients and survivors. Peroxisomes might be a valuable new target for mitigating neuronal damage caused by chemotherapy drugs and for slowing down brain aging in general. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Residual stresses generated in F-522 steel by different machining processes

    International Nuclear Information System (INIS)

    Gracia-Navas, V.; Ferreres, I.; Maranon, J. A.; Garcia-Rosales, C.; Gil-Sevillano, J.

    2005-01-01

    Machining operations induce plastic deformation and heat generation in the near surface area of the machined part, giving rise to residual stresses. Depending on their magnitude and sign, these stresses can be detrimental or beneficial to the service life of the part. The final stress state depends on the machining process applied, as well as on the machining parameters. Therefore, the establishment of adequate machining guidelines requires the measurement of the residual stresses generated both at the surface and inside the material. in this work, the residual stresses generated in F-522 steel by two hard turning (conventional and laser assisted) and two grinding (production and finishing) processes were measured by X-ray diffraction. Additionally, depth profiles of the volume fraction of retained austenite, microstructure and nano hardness were obtained in order to correlate those results with the residual stress state obtained for each machining process. It has been observed that turning generates tensile stresses in the surface while grinding causes compressive stresses. Below the surface grinding generates weak tensile or nearly null stresses whereas turning generates strong compressive stresses. These results show that the optimum mechanising process (disregarding economical considerations) implies the combination of turning plus elimination of a small thickness by final grinding. (Author) 19 refs

  12. Rap1 signaling is required for suppression of Ras-generated reactive oxygen species and protection against oxidative stress in T lymphocytes

    NARCIS (Netherlands)

    Remans, Philip H. J.; Gringhuis, Sonja I.; van Laar, Jacob M.; Sanders, Marjolein E.; Papendrecht-van der Voort, Ellen A. M.; Zwartkruis, Fried J. T.; Levarht, E. W. Nivine; Rosas, Marcela; Coffer, Paul J.; Breedveld, Ferdinand C.; Bos, Johannes L.; Tak, Paul P.; Verweij, Cornelis L.; Reedquist, Kris A.

    2004-01-01

    Transient production of reactive oxygen species (ROS) plays an important role in optimizing transcriptional and proliferative responses to TCR signaling in T lymphocytes. Conversely, chronic oxidative stress leads to decreased proliferative responses and enhanced transcription of inflammatory gene

  13. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz)

    OpenAIRE

    Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng

    2014-01-01

    Background Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Results Transgenic cassava plants that co-express cytosolic superoxide dismu...

  14. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    Science.gov (United States)

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  15. Oxidative Stress and Programmed Cell Death in Yeast

    International Nuclear Information System (INIS)

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.

  16. PO2 Cycling Reduces Diaphragm Fatigue by Attenuating ROS Formation

    OpenAIRE

    Zuo, Li; Diaz, Philip T.; Chien, Michael T.; Roberts, William J.; Kishek, Juliana; Best, Thomas M.; Wagner, Peter D.

    2014-01-01

    Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe) was used to monito...

  17. Upregulation of NOX2 and NOX4 Mediated by TGF-β Signaling Pathway Exacerbates Cerebral Ischemia/Reperfusion Oxidative Stress Injury

    Directory of Open Access Journals (Sweden)

    Zheng Lou

    2018-04-01

    Full Text Available Background/Aims: Ischemic stroke is still one of the leading debilitating diseases with high morbidity and mortality. NADPH oxidase (NOX-derived reactive oxygen species (ROS play an important role in cerebral ischemia/reperfusion (I/R injury. However, the mechanism underlying the regulation of ROS generation is still not fully elucidated. This study aims to explore the role of transforming growth beta (TGF-β signals in ROS generation. Methods: Sprague–Dawley rats were subjected to I/R injury, and PC-12 cells were challenged by hypoxia/reoxygenation (H/R and/or treated with activin receptor-like kinase (ALK5 inhibitor Sb505124 or siRNA against ALK5. Brain damage was evaluated using neurological scoring, triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, infarct volume measurement, TUNEL staining, and caspase-3 activity measurement. Expression of TGF-β and oxidative stress-related genes was analyzed by real-time polymerase chain reaction and Western blot; NOX activity and ROS level were measured using spectrophotometry and fluorescence microscopy, respectively. Results: I/R contributed to severe brain damage (impaired neurological function, brain infarction, tissue edema, apoptosis, TGF-β signaling activation (upregulation of ALK5, phosphorylation of SMAD2/3 and oxidative stress (upregulation of NOX2/4, rapid release of ROS [oxidative burst]. However, Sb505124 significantly reversed these alterations and protected rats against I/R injury. As in the animal results, H/R also contributed to TGF-β signaling activation and oxidative stress. Likewise, the inhibition of ALK5 or ALK5 knockdown significantly reversed these alterations in PC-12 cells. Other than ALK5 knockdown, ALK5 inhibition had no effect on the expression of ALK5 in PC-12 cells. Conclusions: Our studies demonstrated that TGF-β signaling activation is involved in the regulation of NOX2/NOX4 expression and exacerbates cerebral I/R injury.

  18. Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-κB regulation

    Science.gov (United States)

    Chhunchha, Bhavana; Fatma, Nigar; Kubo, Eri; Rai, Prerana; Singh, Sanjay P.

    2013-01-01

    Oxidative stress and endoplasmic reticulum (ER) stress are emerging as crucial events in the etiopathology of many neurodegenerative diseases. While the neuroprotective contributions of the dietary compound curcumin has been recognized, the molecular mechanisms underlying curcumin's neuroprotection under oxidative and ER stresses remains elusive. Herein, we show that curcumin protects HT22 from oxidative and ER stresses evoked by the hypoxia (1% O2 or CoCl2 treatment) by enhancing peroxiredoxin 6 (Prdx6) expression. Cells exposed to CoCl2 displayed reduced expression of Prdx6 with higher reactive oxygen species (ROS) expression and activation of NF-κB with IκB phosphorylation. When NF-κB activity was blocked by using SN50, an inhibitor of NF-κB, or cells treated with curcumin, the repression of Prdx6 expression was restored, suggesting the involvement of NF-κB in modulating Prdx6 expression. These cells were enriched with an accumulation of ER stress proteins, C/EBP homologous protein (CHOP), GRP/78, and calreticulin, and had activated states of caspases 12, 9, and 3. Reinforced expression of Prdx6 in HT22 cells by curcumin reestablished survival signaling by reducing propagation of ROS and blunting ER stress signaling. Intriguingly, knockdown of Prdx6 by antisense revealed that loss of Prdx6 contributed to cell death by sustaining enhanced levels of ER stress-responsive proapoptotic proteins, which was due to elevated ROS production, suggesting that Prdx6 deficiency is a cause of initiation of ROS-mediated ER stress-induced apoptosis. We propose that using curcumin to reinforce the naturally occurring Prdx6 expression and attenuate ROS-based ER stress and NF-κB-mediated aberrant signaling improves cell survival and may provide an avenue to treat and/or postpone diseases associated with ROS or ER stress. PMID:23364261

  19. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway.

    Science.gov (United States)

    Yu, Jiangkun; Lu, Yanyu; Li, Yapeng; Xiao, Lili; Xing, Yu; Li, Yanshen; Wu, Leiming

    2015-09-01

    S100A1 plays a crucial role in hypoxia-induced inflammatory response in cardiomyocytes. However, the role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes is still unknown. enzyme-linked immunosorbent assay (ELISA) was performed for the determination of inflammatory cytokines. Immunocytochemistry and immunofluorescence, Western blot analysis and Real-time polymerase chain reaction (RT-PCR) were conducted to assess protein or mRNA expressions. Fluorogenic probe dihydroethidium (DHE) was used to evaluate the generation of reactive oxygen species (ROS) while Hoechst 33342 staining for apoptosis. Small interfering RNA (siRNA) for S100A1 was used to evaluate the role of S100A1. The levels of ROS and inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 in H9c2 cells were increased remarkably by hypoxia. However, IL-37 protein or mRNA levels were decreased significantly. Both Toll-like receptor 4 (TLR4) inhibitor Ethyl (6R)-6-[N-(2-Chloro-4fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) treatment or siRNA S100A1 downregulated TLR4 expression and inflammatory cytokine level and mRNA in H9c2 cells, as well as weakening ROS and phospho-p65 Nuclear factor (NF)-κB levels. Further, S100A1 treatment significantly reduced TNF-α protein or mRNA level whereas enhanced IL-37 protein or mRNA level, and could attenuate ROS and phospho-p65 NF-κB levels. Our results demonstrate that S100A1 can regulate the inflammatory response and oxidative stress in H9C2 cells via TLR4/ROS/NF-κB pathway. These findings provide an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response. © 2015 Royal Pharmaceutical Society.

  20. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide.

    Science.gov (United States)

    Tyagi, Priyanka; Dharmaraja, Allimuthu T; Bhaskar, Ashima; Chakrapani, Harinath; Singh, Amit

    2015-07-01

    Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection. Copyright © 2015 The Authors. Published by

  1. Antioxidant and neuroprotective effects of Scrophularia striata extract against oxidative stress-induced neurotoxicity.

    Science.gov (United States)

    Azadmehr, Abbas; Oghyanous, Keyvan Alizadeh; Hajiaghaee, Reza; Amirghofran, Zahra; Azadbakht, Mohammad

    2013-11-01

    In this study, the neuroprotective effect of Scrophularia striata Boiss (Scrophulariaceae) extract, a plant growing in northeastern of Iran, against oxidative stress-induced neurocytotoxicity in PC12 was evaluated. The PC12 cell line pretreated with different concentrations (10, 50, 100, and 200 μg/ml) of the extract and then treated with H2O2 to induce oxidative stress and neurotoxicity. Survival of the cells, reactive oxygen species (ROS) generation, and apoptosis were measured using MTT assay, fluorescent probe 2',7'-dichlorofluorescein diacetate, and annexin V/propidium iodide, respectively. Moreover, the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) was used to evaluate the antioxidant capacity of the plant extract. Phytochemical assay by thin layer chromatography showed that the main components, including phenolic compounds, phenyl propanoids and flavonoids, were presented in the S. striata extract. The extract in concentrations of 50-200 μg/ml protected PC12 cells from H2O2-induced toxicity. The survival of the cells at concentration of 200 μg/ml was 64 % compared to that of H2O2 alone-treated cells (48 %) (p extract also dose-dependently reduced intracellular ROS production (p extract showed antioxidative effects and decreased apoptotic cells. Collectively, these findings indicated the ability of S. striata to decrease ROS generation and cell apoptosis and also suggest the presence of the neuroprotective agents in this plant.

  2. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Science.gov (United States)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  3. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China)

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  4. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-01-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca 2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging

  5. Stress generation by myosin minifilaments in actin bundles

    International Nuclear Information System (INIS)

    Dasanayake, Nilushi L; Carlsson, Anders E

    2013-01-01

    Forces and stresses generated by the action of myosin minifilaments are analyzed in idealized computer-generated actin bundles, and compared to results for isotropic actin networks. The bundles are generated as random collections of actin filaments in two dimensions with constrained orientations, crosslinked and attached to two fixed walls. Myosin minifilaments are placed on actin filament pairs and allowed to move and deform the network so that it exerts forces on the walls. The vast majority of simulation runs end with contractile minifilament stress, because minifilaments rotate into energetically stable contractile configurations. This process is aided by the bending and stretching of actin filaments, which accomodate minifilament rotation. Stresses for bundles are greater than those for isotropic networks, and antiparallel filaments generate more tension than parallel filaments. The forces transmitted by the actin network to the walls of the simulation cell often exceed the tension in the minifilament itself. (paper)

  6. Negative life events and symptoms of depression and anxiety: stress causation and/or stress generation

    OpenAIRE

    Phillips, Anna C.; Carroll, Douglas; Der, Geoffrey

    2015-01-01

    Background and Objectives: Stressful life events are known to contribute to development of depression, however, it is possible this link is bi-directional. The present study examined whether such stress generation effects are greater than the effects of stressful life events on depression, and whether stress generation is also evident with anxiety. Design: Participants were two large age cohorts (N = 732 aged 44 years; N = 705 aged 63 years) from the West of Scotland Twenty-07 study. Methods:...

  7. Normal personality traits, rumination and stress generation among early adolescent girls

    OpenAIRE

    Stroud, Catherine B.; Sosoo, Effua E.; Wilson, Sylia

    2015-01-01

    This study examined associations between personality and stress generation. Expanding upon prior work, we examined (a) the role of Positive Emotionality (PE), Negative Emotionality (NE), and Constraint (CON), and their lower-order facets, as predictors of acute and chronic interpersonal stress generation; (b) whether personality moderated effects of rumination on stress generation; and (c) whether personality increased exposure to independent (uncontrollable) stress. These questions were exam...

  8. ROS-activated calcium signaling mechanisms regulating endothelial barrier function.

    Science.gov (United States)

    Di, Anke; Mehta, Dolly; Malik, Asrar B

    2016-09-01

    Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. ROS and Brain Diseases: The Good, the Bad, and the Ugly

    Directory of Open Access Journals (Sweden)

    Aurel Popa-Wagner

    2013-01-01

    Full Text Available The brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms. This paper reviews the Janus-faced properties of reactive oxygen species. It will describe the positive aspects of moderately induced ROS but it will also outline recent research findings concerning the impact of oxidative and nitrooxidative stress on neuronal structure and function in neuropsychiatric diseases, including major depression. A common denominator of all neuropsychiatric diseases including schizophrenia and ADHD is an increased inflammatory response of the brain caused either by an exposure to proinflammatory agents during development or an accumulation of degenerated neurons, oxidized proteins, glycated products, or lipid peroxidation in the adult brain. Therefore, modulation of the prooxidant-antioxidant balance provides a therapeutic option which can be used to improve neuroprotection in response to oxidative stress. We also discuss the neuroprotective role of the nuclear factor erythroid 2-related factor (Nrf2 in the aged brain in response to oxidative stressors and nanoparticle-mediated delivery of ROS-scavenging drugs. The antioxidant therapy is a novel therapeutic strategy. However, the available drugs have pleiotropic actions and are not fully characterized in the clinic. Additional clinical trials are needed to assess the risks and benefits of antioxidant therapies for neuropsychiatric disorders.

  10. Benzoquinone activates the ERK/MAPK signaling pathway via ROS production in HL-60 cells

    International Nuclear Information System (INIS)

    Ruiz-Ramos, Ruben; Cebrian, Mariano E.; Garrido, Efrain

    2005-01-01

    Benzene (BZ) is a class I carcinogen and its oxidation to reactive intermediates is a prerequisite of hematoxicity and myelotoxicity. The generated metabolites include hydroquinone, which is further oxidized to the highly reactive 1,4-benzoquinone (BQ) in bone marrow. Therefore, we explored the mechanisms underlying BQ-induced HL-60 cell proliferation by studying the role of BQ-induced reactive oxygen species (ROS) in the activation of the ERK-MAPK signaling pathway. BQ treatment (0.01-30 μM) showed that doses below 10 μM did not significantly reduce viability. ROS production after 3 μM BQ treatment increased threefold; however, catalase addition reduced ROS generation to basal levels. FACS analysis showed that BQ induced a fivefold increase in the proportion of cells in S-phase. We also observed a high proportion of Bromodeoxyuridine (BrdU) stained cells, indicating a higher DNA synthesis rate. BQ also produced rapid and prolonged phosphorylation of ERK1/2 proteins. Simultaneous treatment with catalase or PD98059, a potent MEK protein inhibitor, reduced cell recruitment into the S-phase and also abolished the ERK1/2 protein phosphorylation induced by BQ, suggesting that MEK/ERK is an important pathway involved in BQ-induced ROS mediated proliferation. The prolonged activation of ERK1/2 contributes to explain the increased S-phase cell recruitment and to understand the leukemogenic processes associated with exposure to benzene metabolites. Thus, the possible mechanism by which BQ induce HL-60 cells to enter the cell cycle and proliferate is linked to ROS production and its growth promoting effects by specific activation of regulating genes known to be activated by redox mechanisms

  11. Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation.

    Directory of Open Access Journals (Sweden)

    Juan José Lázaro

    2013-11-01

    Full Text Available Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are compelling indications that nitric oxide (NO. can be generated in this organelle by both reductive and oxidative pathways. ROS and reactive nitrogen species (RNS play a key role in signaling but they can also be deleterious via oxidation of macromolecules. The high production of ROS obligates mitochondria to be provided with a set of ROS scavenging mechanisms. The first line of mitochondrial antioxidants is composed of superoxide dismutase and the enzymes of the ascorbate-glutathione cycle, which are not only able to scavenge ROS but also to repair cell damage and possibly serve as redox sensors. The dithiol-disulfide exchanges form independent signaling nodes and act as antioxidant defense mechanisms as well as sensor proteins modulating redox signaling during development and stress adaptation. The presence of thioredoxin (Trx, peroxiredoxin (Prx and sulfiredoxin (Srx in the mitochondria has been recently reported. Cumulative results obtained from studies in salt stress models have demonstrated that these redox proteins play a significant role in the establishment of salt tolerance. The Trx/Prx/Srx system may be subjected to a fine regulated mechanism involving post-translational modifications, among which S-glutathionylation and S-nitrosylation seem to exhibit a critical role that is just beginning to be understood. This review summarizes our current knowledge in antioxidative systems in plant mitochondria, their interrelationships, mechanisms of compensation and some unresolved questions, with special focus on their response to abiotic stress.

  12. Luteolin as reactive oxygen generator by X-ray and UV irradiation

    Science.gov (United States)

    Toyama, Michiru; Mori, Takashi; Takahashi, Junko; Iwahashi, Hitoshi

    2018-05-01

    Non-toxic X-ray-responsive substances can be used in the radiosensitization of cancer, like porphyrin mediated radiotherapy. However, most X-ray-responsive substances are toxic. To find novel non-toxic X-ray-responsive substances, we studied the X-ray and UV reactivity of 40 non-toxic compounds extracted from plants. Dihydroethidium was used as an indicator to detect reactive oxygen species (ROS) generated by the compounds under X-ray or UV irradiation. We found that 13 of the investigated compounds generated ROS under X-ray irradiation and 17 generated ROS under UV irradiation. Only 4 substances generated ROS under both X-ray and UV. In particular, luteolin exhibited the highest activity among the investigated compounds; therefore, the ROS generated by luteolin were thoroughly characterized. To identify the ROS, we employed a combination of ROS detection reagents and their quenchers. O2·- generation by luteolin was monitored using dihydroethidium and superoxide dismutase (as an O2·- quencher). OH· and 1O2 generation was determined using aminophenyl fluorescein with ethanol (OH· quencher) and Singlet Oxygen Sensor Green® with NaN3 (1O2 quencher), respectively. Generation of O2·- under X-ray and UV irradiation was observed; however, no OH· or 1O2 was detected. The production of ROS from luteolin is surprising, because luteolin is a well-known antioxidant.

  13. Overexpression of Arachis hypogaea AREB1 Gene Enhances Drought Tolerance by Modulating ROS Scavenging and Maintaining Endogenous ABA Content

    Directory of Open Access Journals (Sweden)

    Ling Li

    2013-06-01

    Full Text Available AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1 is a member of the basic domain leucine zipper (bZIP-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA, dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAREB1 was conducted in wild-type (WT, and a complementation experiment was employed to ABA non-sensitivity mutant abi5 (abscisic acid-insensitive 5. Constitutive expression of AhAREB1 confers water stress tolerance and is highly sensitive to exogenous ABA. Microarray and further real-time PCR analysis revealed that drought stress, reactive oxygen species (ROS scavenging, ABA synthesis/metabolism-related genes and others were regulated in transgenic Arabidopsis overexpressing AhAREB1. Accordingly, low level of ROS, but higher ABA content was detected in the transgenic Arabidopsis plants’ overexpression of AhAREB1. Taken together, it was concluded that AhAREB1 modulates ROS accumulation and endogenous ABA level to improve drought tolerance in transgenic Arabidopsis.

  14. Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro

    DEFF Research Database (Denmark)

    Wielsøe, Maria; Long, Manhai; Ghisari, Mandana

    2015-01-01

    Perfluoroalkylated substances (PFAS) have been widely used since 1950s and humans are exposed through food, drinking water, consumer products, dust, etc. The long-chained PFAS are persistent in the environment and accumulate in wildlife and humans. They are suspected carcinogens and a potential...... mode of action is through generation of oxidative stress. Seven long-chained PFAS found in human serum were investigated for the potential to generate reactive oxygen species (ROS), induce DNA damage and disturb the total antioxidant capacity (TAC). The tested PFAS were perfluorohexane sulfonate (PFHx...

  15. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Khan, M A Majeed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-12-01

    Cobalt iron oxide (CoFe 2 O 4 ) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Fumarate Reductase of Bacteroides thetaiotaomicron, unlike That of Escherichia coli, Is Configured so that It Does Not Generate Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2017-01-01

    Full Text Available The impact of oxidative stress upon organismal fitness is most apparent in the phenomenon of obligate anaerobiosis. The root cause may be multifaceted, but the intracellular generation of reactive oxygen species (ROS likely plays a key role. ROS are formed when redox enzymes accidentally transfer electrons to oxygen rather than to their physiological substrates. In this study, we confirm that the predominant intestinal anaerobe Bacteroides thetaiotaomicron generates intracellular ROS at a very high rate when it is aerated. Fumarate reductase (Frd is a prominent enzyme in the anaerobic metabolism of many bacteria, including B. thetaiotaomicron, and prior studies of Escherichia coli Frd showed that the enzyme is unusually prone to ROS generation. Surprisingly, in this study biochemical analysis demonstrated that the B. thetaiotaomicron Frd does not react with oxygen at all: neither superoxide nor hydrogen peroxide is formed. Subunit-swapping experiments indicated that this difference does not derive from the flavoprotein subunit at which ROS normally arise. Experiments with the related enzyme succinate dehydrogenase discouraged the hypothesis that heme moieties are responsible. Thus, resistance to oxidation may reflect a shift of electron density away from the flavin moiety toward the iron-sulfur clusters. This study shows that the autoxidizability of a redox enzyme can be suppressed by subtle modifications that do not compromise its physiological function. One implication is that selective pressures might enhance the oxygen tolerance of an organism by manipulating the electronic properties of its redox enzymes so they do not generate ROS.

  17. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling.

    Science.gov (United States)

    Wang, Ying; Branicky, Robyn; Noë, Alycia; Hekimi, Siegfried

    2018-04-18

    Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling. © 2018 Wang et al.

  18. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells

    Energy Technology Data Exchange (ETDEWEB)

    David Gara, Pedro M. [CITOMA, Fundacion Avanzar, Instituto de Terapia Radiante S.A., CIO La Plata (Argentina); Garabano, Natalia I. [University of Buenos Aires, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, UBA (Argentina); Llansola Portoles, Manuel J. [UNLP, INIFTA, Departamento de Quimica, Facultad de Ciencias Exactas (Argentina); Moreno, M. Sergio [Centro Atomico Bariloche (Argentina); Dodat, Diego; Casas, Oscar R. [CITOMA, Fundacion Avanzar, Instituto de Terapia Radiante S.A., CIO La Plata (Argentina); Gonzalez, Monica C., E-mail: gonzalez@inifta.unlp.edu.ar [UNLP, INIFTA, Departamento de Quimica, Facultad de Ciencias Exactas (Argentina); Kotler, Monica L., E-mail: kotler@qb.fcen.uba.ar [University of Buenos Aires, Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, UBA (Argentina)

    2012-03-15

    The capability of silicon nanoparticles to increase the yield of reactive species upon 4 MeV X-ray irradiation of aqueous suspensions and C6 glioma cell cultures was investigated. ROS generation was detected and quantified using several specific probes. The particles were characterized by FTIR, XPS, TEM, DLS, luminescence, and adsorption spectroscopy before and after irradiation to evaluate the effect of high energy radiation on their structure. The total concentration of O{sub 2}{sup Bullet -}/HO{sub 2}{sup Bullet}, HO{sup Bullet}, and H{sub 2}O{sub 2} generated upon 4-MeV X-ray irradiation of 6.4 {mu}M silicon nanoparticle aqueous suspensions were on the order of 10 {mu}M per Gy, ten times higher than that obtained in similar experiments but in the absence of particles. Cytotoxic {sup 1}O{sub 2} was generated only in irradiation experiments containing the particles. The particle surface became oxidized to SiO{sub 2} and the luminescence yield reduced with the irradiation dose. Changes in the surface morphology did not affect, within the experimental error, the yields of ROS generated per Gy. X-ray irradiation of glioma C6 cell cultures with incorporated silicon nanoparticles showed a marked production of ROS proportional to the radiation dose received. In the absence of nanoparticles, the cells showed no irradiation-enhanced ROS generation. The obtained results indicate that silicon nanoparticles of <5 nm size have the potential to be used as radiosensitizers for improving the outcomes of cancer radiotherapy. Their capability of producing {sup 1}O{sub 2} upon X-ray irradiation opens novel approaches in the design of therapy strategies.

  19. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Kim, Bo-Mi; Rhee, Jae-Sung; Jeong, Chang-Bum; Seo, Jung Soo; Park, Gyung Soo; Lee, Young-Mi; Lee, Jae-Seong

    2014-11-01

    Heat shock proteins (hsps) are induced by a wide range of environmental stressors including heavy metals in aquatic organisms. However, the effect of heavy metals on zooplankton at the molecular level remains still unclear. In this study, we measured the intracellular reactive oxygen species (ROS) level and the antioxidant enzyme activities for 96 h after exposure to five heavy metals: arsenic (As), cadmium (Cd), copper (Cu), silver (Ag), and zinc (Zn) in the intertidal copepod Tigriopus japonicus. Activities of the antioxidant enzymes were highly elevated in metal-exposed copepods, indicating that heavy metals can induce oxidative stress by generating ROS, and stimulate the involvement of antioxidant enzymes as cellular defense mechanisms. Subsequently, transcriptional changes in hsp gene families were further investigated in the metal-exposed groups for 96 h. The ROS level and glutathione (GSH) content were significantly increased in Ag-, As-, and Cu-exposed copepods, while they were only slightly elevated in Cd- and Zn-exposed groups. Based on the numbers of significantly modulated hsp genes and their expression levels for 96 h, we measured the effect of heavy metals to stress genes of T. japonicus in the following order: Cu > Zn > Ag > As > Cd, implying that Cu acts as a stronger oxidative stress inducer than other heavy metals. Of them, the expression of hsp20 and hsp70 genes was substantially modulated by exposure to heavy metals, indicating that these genes would provide a sensitive molecular biomarker for aquatic monitoring of heavy metal pollution. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A longitudinal examination of stress generation in depressive and anxiety disorders.

    Science.gov (United States)

    Uliaszek, Amanda A; Zinbarg, Richard E; Mineka, Susan; Craske, Michelle G; Griffith, James W; Sutton, Jonathan M; Epstein, Alyssa; Hammen, Constance

    2012-02-01

    The current study compared two competing theories of the stress generation model of depression (stress causation vs. stress continuation) using interview-based measures of episodic life stress, as well as interpersonal and noninterpersonal chronic life stress. We also expanded on past research by examining anxiety disorders as well as depressive disorders. In addition, we examined the role of neuroticism and extraversion in these relationships. Participants were 627 adolescents enrolled in a two-site, longitudinal study of risk factors for depressive and anxiety disorders. Baseline and follow-up assessments were approximately one year apart. Results supported the stress causation theory for episodic stress generation for anxiety disorders, with neuroticism partially accounting for this relationship. The stress causation theory was also supported for depression, but only for more moderate to severe stressors; neuroticism partially accounted for this relationship as well. Finally, we found evidence for interpersonal and noninterpersonal chronic life stress continuation in both depressive and anxiety disorders. The present findings have implications regarding the specificity of the stress generation model to depressive disorders, as well as variables involved in the stress generation process. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  1. Soybean salt tolerance 1 (GmST1 reduces ROS production, enhances ABA sensitivity and abiotic stress tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shuxin eRen

    2016-04-01

    Full Text Available Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species (ROS under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative RT-PCR analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  2. Reynolds stress and shear flow generation

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.

    2001-01-01

    The so-called Reynolds stress may give a measure of the self-consistent flow generation in turbulent fluids and plasmas by the small-scale turbulent fluctuations. A measurement of the Reynolds stress can thus help to predict flows, e.g. shear flows in plasmas. This may assist the understanding...... of improved confinement scenarios such as H-mode confinement regimes. However, the determination of the Reynolds stress requires measurements of the plasma potential, a task that is difficult in general and nearly impossible in hot plasmas in large devices. In this work we investigate an alternative method......, based on density measurements, to estimate the Reynolds stress, and demonstrate the validity range of this quantity, which we term the pseudo-Reynolds stress. The advantage of such a quantity is that accurate measurements of density fluctuations are much easier to obtain experimentally. Prior...

  3. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells.

    Science.gov (United States)

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

  4. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  5. Oxidative Stress in Neurodegenerative Diseases: Mechanisms and Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Ailton Melo

    2011-01-01

    Full Text Available The incidence and prevalence of neurodegenerative diseases (ND increase with life expectancy. This paper reviews the role of oxidative stress (OS in ND and pharmacological attempts to fight against reactive oxygen species (ROS-induced neurodegeneration. Several mechanisms involved in ROS generation in neurodegeneration have been proposed. Recent articles about molecular pathways involved in ROS generation were reviewed. The progress in the development of neuroprotective therapies has been hampered because it is difficult to define targets for treatment and determine what should be considered as neuroprotective. Therefore, the attention was focused on researches about pharmacological targets that could protect neurons against OS. Since it is necessary to look for genes as the ultimate controllers of all biological processes, this paper also tried to identify gerontogenes involved in OS and neurodegeneration. Since neurons depend on glial cells to survive, recent articles about the functioning of these cells in aging and ND were also reviewed. Finally, clinical trials testing potential neuroprotective agents were critically reviewed. Although several potential drugs have been screened in in vitro and in vivo models of ND, these results were not translated in benefit of patients, and disappointing results were obtained in the majority of clinical trials.

  6. Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model.

    Science.gov (United States)

    Kim, So Mi; Hwang, In Koo; Yoo, Dae Young; Eum, Won Sik; Kim, Dae Won; Shin, Min Jea; Ahn, Eun Hee; Jo, Hyo Sang; Ryu, Eun Ji; Yong, Ji In; Cho, Sung-Woo; Kwon, Oh-Shin; Lee, Keun Wook; Cho, Yoon Shin; Han, Kyu Hyung; Park, Jinseu; Choi, Soo Young

    2015-06-01

    Oxidative stress-induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat-Atox1 and examined the roles of Tat-Atox1 in oxidative stress-induced hippocampal HT-22 cell death and an ischaemic injury animal model. Tat-Atox1 effectively transduced into HT-22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)-induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat-Atox1 regulated cellular survival signalling such as p53, Bad/Bcl-2, Akt and mitogen-activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat-Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat-Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat-Atox1 protects against oxidative stress-induced HT-22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat-Atox1 has potential as a therapeutic agent for the treatment of oxidative stress-induced ischaemic damage. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Demodicidosis en pacientes con rosácea

    Directory of Open Access Journals (Sweden)

    Edhizon Trejo Mucha

    2007-01-01

    Full Text Available Objetivo: Determinar la frecuencia de demodicidosis y sus características clínicas en pacientes con rosácea. Materiales y métodos: Estudio de casos y controles en 42 pacientes con rosácea y 42 controles para describir la presencia y densidad de D. folliculorum. El estudio se realizó en el Hospital Nacional Cayetano Heredia entre marzo y setiembre del 2004, utilizándose la técnica de Tello. Resultados: Demodex folliculorum fue encontrado en los 42 pacientes con rosácea (100% y en 13 (31,0% del grupo control, (p= 0,000. La exposición a gatos, la crianza de roedores y cerdos, la seborrea y el uso de corticoides tópicos fueron mas frecuentes en los pacientes con rosácea. Conclusiones: La presencia de Demodex folliculorum fue más frecuente en los pacientes con rosácea. (Rev Med Hered 2007;18:15-21.

  8. Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis

    Directory of Open Access Journals (Sweden)

    Reig-Armiñana Jose

    2010-11-01

    Full Text Available Abstract Background Reactive oxygen species (ROS are normally produced in respiratory and photosynthetic electron chains and their production is enhanced during desiccation/rehydration. Nitric oxide (NO is a ubiquitous and multifaceted molecule involved in cell signaling and abiotic stress. Lichens are poikilohydrous organisms that can survive continuous cycles of desiccation and rehydration. Although the production of ROS and NO was recently demonstrated during lichen rehydration, the functions of these compounds are unknown. The aim of this study was to analyze the role of NO during rehydration of the lichen Ramalina farinacea (L. Ach., its isolated photobiont partner Trebouxia sp. and Asterochloris erici (Ahmadjian Skaloud et Peksa (SAG 32.85 = UTEX 911. Results Rehydration of R. farinacea caused the release of ROS and NO evidenced by the fluorescent probes DCFH2-DA and DAN respectively. However, a minimum in lipid peroxidation (MDA was observed 2 h post-rehydration. The inhibition of NO in lichen thalli with c-PTIO resulted in increases in both ROS production and lipid peroxidation, which now peaked at 3 h, together with decreases in chlorophyll autofluorescence and algal photobleaching upon confocal laser incidence. Trebouxia sp. photobionts generate peaks of NO-endproducts in suspension and show high rates of photobleaching and ROS production under NO inhibition which also caused a significant decrease in photosynthetic activity of A. erici axenic cultures, probably due to the higher levels of photo-oxidative stress. Conclusions Mycobiont derived NO has an important role in the regulation of oxidative stress and in the photo-oxidative protection of photobionts in lichen thalli. The results point to the importance of NO in the early stages of lichen rehydration.

  9. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, Chad A.; Rutagarama, Pierrot; Ahmad, Tanveer; Sundar, Isaac K.; Elder, Alison; Rahman, Irfan, E-mail: irfan_rahman@urmc.rochester.edu

    2016-09-02

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping. - Graphical abstract: Oxidants and possibly reactive properties of metal particles in E-cig aerosols impart mitochondrial oxidative stress and DNA damage. These biological effects accompany inflammatory response which may raise concern regarding long term E-cig use. Mitochondria may be particularly sensitive to reactive properties of E-cig aerosols in addition to the potential for them to induce genotoxic stress by generating increased ROS. - Highlights: • Mitochondria are sensitive to both E-cig aerosols and metal nanoparticles. • Increased mtROS by E-cig aerosol is associated with disrupted mitochondrial energy. • E-cig causes nuclear DNA fragmentation. • E-cig aerosols induce pro-inflammatory response in human fibroblasts.

  10. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts

    International Nuclear Information System (INIS)

    Lerner, Chad A.; Rutagarama, Pierrot; Ahmad, Tanveer; Sundar, Isaac K.; Elder, Alison; Rahman, Irfan

    2016-01-01

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping. - Graphical abstract: Oxidants and possibly reactive properties of metal particles in E-cig aerosols impart mitochondrial oxidative stress and DNA damage. These biological effects accompany inflammatory response which may raise concern regarding long term E-cig use. Mitochondria may be particularly sensitive to reactive properties of E-cig aerosols in addition to the potential for them to induce genotoxic stress by generating increased ROS. - Highlights: • Mitochondria are sensitive to both E-cig aerosols and metal nanoparticles. • Increased mtROS by E-cig aerosol is associated with disrupted mitochondrial energy. • E-cig causes nuclear DNA fragmentation. • E-cig aerosols induce pro-inflammatory response in human fibroblasts.

  11. Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out?

    Directory of Open Access Journals (Sweden)

    Simon R Dunn

    Full Text Available The symbiotic relationship between cnidarians and their dinoflagellate symbionts, Symbiodinium spp, which underpins the formation of tropical coral reefs, can be destabilized by rapid changes to environmental conditions. Although some studies have concluded that a breakdown in the symbiosis begins with increased reactive oxygen species (ROS generation within the symbiont due to a decoupling of photosynthesis, others have reported the release of viable symbionts via a variety of host cell derived mechanisms. We explored an alternative model focused upon changes in host cnidarian mitochondrial integrity in response to thermal stress. Mitochondria are often likened to being batteries of the cell, providing energy in the form of ATP, and controlling cellular pathway activation and ROS generation. The overall morphology of host mitochondria was compared to that of associated symbionts under an experimental thermal stress using confocal and electron microscopy. The results demonstrate that hyperthermic stress induces the degradation of cnidarian host mitochondria that is independent of symbiont cellular deterioration. The potential sites of host mitochondrial disruption were also assessed by measuring changes in the expression of genes associated with electron transport and ATP synthesis using quantitative RT-PCR. The primary site of degradation appeared to be downstream of complex III of the electron transport chain with a significant reduction in host cytochrome c and ATP synthase expression. The consequences of reduced expression could limit the capacity of the host to mitigate ROS generation and maintain both organelle integrity and cellular energy supplies. The disruption of host mitochondria, cellular homeostasis, and subsequent cell death irrespective of symbiont integrity highlights the importance of the host response to thermal stress and in symbiosis dysfunction that has substantial implications for understanding how coral reefs will survive

  12. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM).

    Science.gov (United States)

    Delmotte, Philippe; Sieck, Gary C

    2015-02-01

    Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.

  13. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    Directory of Open Access Journals (Sweden)

    Spyridon Loridas

    2013-08-01

    Full Text Available Reactive oxygen or nitrogen species (ROS, RNS and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.. Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM, at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc. play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  14. Oxidative stress under ambient and physiological oxygen tension in tissue culture

    Science.gov (United States)

    Jagannathan, Lakshmanan; Cuddapah, Suresh; Costa, Max

    2016-01-01

    Oxygen (O2) levels range from 2–9% in vivo. However, cell culture experiments are performed at atmospheric O2 levels (21%). Oxidative stress due to generation of reactive oxygen species (ROS) in cells cultured at higher than physiological levels is implicated in multitude of deleterious effects including DNA damage, genomic instability and senescence. In addition, oxidative stress activates redox sensitive transcription factors related to inflammatory signaling and apoptotic signaling. Furthermore, several chromatin-modifying enzymes are affected by ROS, potentially impacting epigenetic regulation of gene expression. While primary cells are cultured at lower O2 levels due to their inability to grow at higher O2, the immortalized cells, which display no such apparent growth difficulties, are typically cultured at 21% O2. This review will provide an overview of issues associated with increased oxygen levels in in vitro cell culture and point out the benefits of using lower levels of oxygen tension even for immortalized cells. PMID:27034917

  15. Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells

    International Nuclear Information System (INIS)

    Yoshida, Tokuyuki; Yoshioka, Yasuo; Matsuyama, Keigo; Nakazato, Yasutaro; Tochigi, Saeko; Hirai, Toshiro; Kondoh, Sayuri; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2012-01-01

    Highlights: ► There is increasing concern regarding the potential health risks of nanomaterials. ► We evaluated the effect of surface properties of nanomaterials on cellular responses. ► We showed that the surface properties play an important in determining its safety. ► These data provide useful information for producing safer nanomaterials. -- Abstract: Recently, nanomaterials have been utilized in various fields. In particular, amorphous nanosilica particles are increasingly being used in a range of applications, including cosmetics, food technology, and medical diagnostics. However, there is concern that the unique characteristics of nanomaterials might induce undesirable effects. The roles played by the physical characteristics of nanomaterials in cellular responses have not yet been elucidated precisely. Here, by using nanosilica particles (nSPs) with a diameter of 70 nm whose surface was either unmodified (nSP70) or modified with amine (nSP70-N) or carboxyl groups (nSP70-C), we examined the relationship between the surface properties of nSPs and cellular responses such as cytotoxicity, reactive oxygen species (ROS) generation, and DNA damage. To compare the cytotoxicity of nSP70, nSP70-N, or nSP70-C, we examined in vitro cell viability after nSP treatment. Although the susceptibility of each cell line to the nSPs was different, nSP70-C and nSP70-N showed lower cytotoxicity than nSP70 in all cell lines. Furthermore, the generation of ROS and induction of DNA damage in nSP70-C- and nSP70-N-treated cells were lower than those in nSP70-treated cells. These results suggest that the surface properties of nSP70 play an important role in determining its safety, and surface modification of nSP70 with amine or carboxyl groups may be useful for the development of safer nSPs. We hope that our results will contribute to the development of safer nanomaterials.

  16. Ex vivo effects of an Oenothera paradoxa extract on the reactive oxygen species generation and neutral endopeptidase activity in neutrophils from patients after acute myocardial infarction.

    Science.gov (United States)

    Kiss, Anna K; Kapłon-Cieślicka, Agnieszka; Filipiak, Krzysztof J; Opolski, Grzegorz; Naruszewicz, Marek

    2012-04-01

    Oxidative stress induced by reactive oxygen species (ROS) is considered to play an important part in the aetiology of coronary heart disease. Apart from ROS, neutrophils are a source of neutral endopeptidase (NEP) that inactivates protective natriuretic peptides. The aim of the present study was to evaluate the in vitro ROS generation and inhibition of NEP activity in neutrophils obtained from healthy volunteers and from patients after acute myocardial infarction (AMI) by an aqueous extract of Oenothera paradoxa. Neutrophils isolated from AMI patients showed two-fold higher ROS generation compared with cells from healthy donors, especially in the lucigenin-enhanced luminescence model, which suggests intensive O₂⁻ generation. The addition of O. paradoxa extract at concentrations of 0.2, 2 and 20 µg/mL resulted in a significant reduction in ROS generation. The extracellular NEP activity was higher in patients after AMI compared with healthy individuals (15.0 ± 0.9 versus 10.3 ± 0.5 nmol AMC/10(6) cells/60 min; p = 0.001). The addition of O. paradoxa extract at concentrations of 20, 50 and 100 µg/mL resulted in a significant reduction in NEP activity in both groups. O. paradoxa extract appears to be an interesting candidate for supplementation in the prevention of cardiovascular diseases. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Different roles of ROS and Nrf2 in Cr(VI)-induced inflammatory responses in normal and Cr(VI)-transformed cells

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Ram Vinod; Pratheeshkumar, Poyil; Son, Yong-Ok; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Hitron, John Andrew [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Divya, Sasidharan Padmaja; Zhang, Zhuo [Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2016-09-15

    Hexavalent chromium (Cr(VI)) is classified as a human carcinogen. Cr(VI) has been associated with adenocarcinomas and squamous cell carcinoma of the lung. The present study shows that acute Cr(VI) treatment in human bronchial epithelial cells (BEAS-2B) increased inflammatory responses (TNF-α, COX-2, and NF-кB/p65) and expression of Nrf2. Cr(VI)-induced generation of reactive oxygen species (ROS) are responsible for increased inflammation. Despite the fact that Nrf2 is a master regulator of response to oxidative stress, silencing of Nrf2 in the acute Cr(VI) treatment had no effect on Cr(VI)-induced inflammation. In contrast, in Cr(VI)-transformed (CrT) cells, Nrf2 is constitutively activated. Knock-down of this protein resulted in decreased inflammation, while silencing of SOD2 and CAT had no effect in the expression of these inflammatory proteins. Results obtained from the knock-down of Nrf2 in CrT cells are very different from the results obtained in the acute Cr(VI) treatment. In BEAS-2B cells, knock-down of Nrf2 had no effect in the inflammation levels, while in CrT cells a decrease in the expression of inflammation markers was observed. These results indicate that before transformation, ROS plays a critical role while Nrf2 not in Cr(VI)-induced inflammation, whereas after transformation (CrT cells), Nrf2 is constitutively activated and this protein maintains inflammation while ROS not. Constitutively high levels of Nrf2 in CrT binds to the promoter regions of COX-2 and TNF-α, leading to increased inflammation. Collectively, our results demonstrate that before cell transformation ROS are important in Cr(VI)-induced inflammation and after transformation a constitutively high level of Nrf2 is important. - Highlights: • Cr(VI)-induced ROS increased inflammation, while Nrf2 had no effect. • In the CrT cells knock-down of Nrf2 resulted in decreased inflammation. • Mechanistic differences in regulating Cr(VI)-induced inflammation.

  18. Selective neuronal vulnerability to oxidative stress in the brain

    Directory of Open Access Journals (Sweden)

    Xinkun Wang

    2010-03-01

    Full Text Available Oxidative stress (OS, caused by the imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS, plays an important role in brain aging, neurodegenerative diseases, and other related adverse conditions, such as ischemia. While ROS/RNS serve as signaling molecules at physiological levels, an excessive amount of these molecules leads to oxidative modification and, therefore, dysfunction of proteins, nucleic acids, and lipids. The response of neurons to this pervasive stress, however, is not uniform in the brain. While many brain neurons can cope with a rise in OS, there are select populations of neurons in the brain that are vulnerable. Because of their selective vulnerability, these neurons are usually the first to exhibit functional decline and cell death during normal aging, or in age-associated neurodegenerative diseases, such as Alzheimer’s disease. Understanding the molecular and cellular mechanisms of selective neuronal vulnerability (SNV to OS is important in the development of future intervention approaches to protect such vulnerable neurons from the stresses of the aging process and the pathological states that lead to neurodegeneration. In this review, the currently known molecular and cellular factors that contribute to SNV to OS are summarized. Included among the major underlying factors are high intrinsic OS, high demand for ROS/RNS-based signaling, low ATP production, mitochondrial dysfunction, and high inflammatory response in vulnerable neurons. The contribution to the selective vulnerability of neurons to OS by other intrinsic or extrinsic factors, such as deficient DNA damage repair, low calcium-buffering capacity, and glutamate excitotoxicity, are also discussed.

  19. Limitations in Using Chemical Oxidative Potential to Understand Oxidative Stress from Particulate Matter

    Science.gov (United States)

    Chan, A. W. H.; Wang, S.; Wang, X.; Kohl, L.; Chow, C. W.

    2017-12-01

    Particulate matter (PM) in the atmosphere is known to cause adverse cardiorespiratory health effects. It has been suggested that the ability of PM to generate oxidative stress leads to a proinflammatory response. In this work, we study the biological relevance of using a chemical oxidative potential (OP) assay to evaluate proinflammatory response in airway epithelial cells. Here we study the OPs of laboratory secondary organic aerosol (SOA) and metal mixtures, ambient PM from India, ash from the 2016 Alberta wildfires, and diesel exhaust particles. We use SOA derived from naphthalene and from monoterpenes as model systems for SOA. We measure OP using the dithiothreitol (DTT) assay, and cytosolic reactive oxygen species (ROS) production in BEAS-2B cell culture was measured using CellROX assay. We found that both SOA and copper show high OPs individually, but the OP of the combined SOA/copper mixture, which is more atmospherically relevant, was lower than either of the individual OPs. The reduced activity is attributed to chelation between metals and organic compounds using proton nuclear magnetic resonance. There is reasonable association between DTT activity and cellular ROS production within each particle type, but weak association across different particle types, suggesting that particle composition plays an important role in distinguishing between antioxidant consumption and ROS production. Our results highlight that while oxidative potential is a useful metric of PM's ability to generate oxidative stress, the chemical composition and cellular environment should be considered in understanding health impacts of PM.

  20. ROS - Robotiikan tutkimustyökalusta kohti kaupallista menestystarinaa

    OpenAIRE

    Ahonen, Mika

    2017-01-01

    Avoimen lähdekoodin ROS-käyttöjärjestelmä on yleisesti tutkimushankkeissa käytetty robotiikan kehitysalusta. Tutkielman tavoitteena on ollut arvioida onko ROS järjestelmä, joka tulee yleistymään myös robotiikan kaupallisissa ratkaisuissa. ROS-pohjaisia kaupallisia tuotteita on jo olemassa ja sen käyttöä on pilotoitu runsaasti erilaisilla sovellusalueilla. Erityisesti palvelu- ja pilvirobotiikan alueilla ROSilla on kasvavaa potentiaalia. ROS on vielä kehittyvä järjestelmä ja ei nykyisellään...

  1. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Kumar, Sudhir; Siddiqui, Huma; Patil, Govil; Ashquin, Mohd; Ahmad, Iqbal

    2010-10-09

    Though, oxidative stress has been implicated in silica nanoparticles induced toxicity both in vitro and in vivo, but no similarities exist regarding dose-response relationship. This discrepancy may, partly, be due to associated impurities of trace metals that may present in varying amounts. Here, cytotoxicity and oxidative stress parameters of two sizes (10 nm and 80 nm) of pure silica nanoparticles was determined in human lung epithelial cells (A549 cells). Both sizes of silica nanoparticles induced dose-dependent cytotoxicity as measured by MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and lactate dehydrogenase (LDH) assays. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species (ROS) generation, and membrane lipid peroxidation (LPO). However, both sizes of silica nanoparticles had little effect on intracellular glutathione (GSH) level and the activities of glutathione metabolizing enzymes; glutathione reductase (GR) and glutathione peroxidase (GPx). Buthionine-[S,R]-sulfoximine (BSO) plus silica nanoparticles did not result in significant GSH depletion than that caused by BSO alone nor N-acetyl cysteine (NAC) afforded significant protection from ROS and LPO induced by silica nanoparticles. The rather unaltered level of GSH is also supported by finding no appreciable alteration in the level of GR and GPx. Our data suggest that the silica nanoparticles exert toxicity in A549 cells through the oxidant generation (ROS and LPO) rather than the depletion of GSH. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Control of cucumber (Cucumis sativus L. tolerance to chilling stress – evaluating the role of ascorbic acid and glutathione

    Directory of Open Access Journals (Sweden)

    Alexander S. Lukatkin

    2014-12-01

    Full Text Available Chilling temperatures (1-10 ºC are known to disturb cellular physiology, cause oxidative stress via creating imbalance between generation and metabolism of reactive oxygen species (ROS leading finally to cell and/or plant death. Owing to known significance of low molecular antioxidants - ascorbic acid (AsA and glutathione (GSH in plant stress-tolerance, this work analyzes the role of exogenously applied AsA and GSH in the alleviation of chilling stress (3°C-impact in cucumber (Cucumis sativus L. cv. Vjaznikowskij 37 plants. Results revealed AsA and GSH concentration dependent metabolism of ROS such as superoxide (O2•‾ and the mitigation of ROS-effects such as lipid peroxidation (LPO as well as membrane permeability (measured as electrolyte leakage in C. sativus leaf discs. AsA concentration (750 µM and GSH (100 µM exhibited maximum reduction in O2•‾ generation, LPO intensity as well as electrolyte leakage, all of these were increased in cold water (3°C and 25°C-treated leaf discs. However, AsA, in particular, had a pronounced antioxidative effect, more expressed in case of leaf discs during chilling (3°C; whereas, at temperature 25°C, some AsA concentrations (such as 50 and 100 mM AsA exhibited a prooxidative effect that requires molecular-genetic studies. Overall, it is inferred that AsA and GSH have high potential for sustainably increasing chilling-resistance in plants.

  3. Chemioxyexcitation (delta pO2/ROS)-dependent release of IL-1 beta, IL-6 and TNF-alpha: evidence of cytokines as oxygen-sensitive mediators in the alveolar epithelium.

    Science.gov (United States)

    Haddad, J J; Safieh-Garabedian, B; Saadé, N E; Kanaan, S A; Land, S C

    2001-02-07

    The signalling mechanisms in oxidative stress mediated by cytokines in the perinatal alveolar epithelium are not well known. In an in vitro model of fetal alveolar type II epithelial cells, we investigated the profile of cytokines in response to ascending Deltap O(2)regimen (oxyexcitation). The peak of TNF-alpha (4 h) preceded IL-1beta and IL-6 (6-9 h), indicating a positive feedback autocrine loop confirmed by exogenous rmTNF-alpha. Reactive oxygen species (ROS) induced a dose-dependent release of cytokines, an effect specifically obliterated by selective antioxidants of the hydroxyl radical (*OH) and superoxide anion (O(2)-). Actinomycin and cycloheximide blocked the induced production of cytokines, implicating transcriptional and translational control. Whilst the dismutating enzymes superoxide dismutase (SOD) and catalase were ineffective in reducing ROS-induced cytokines, MnP, a cell-permeating SOD mimetic, abrogated xanthine/xanthine oxidase-dependent cytokine release. Desferrioxamine mesylate, which inhibits the iron-catalysed generation of *OH via the Fenton reaction, exhibited a mild effect on the release of cytokines. Dynamic variation in alveolar p O(2)constitutes a potential signalling mechanism within the perinatal lung allowing upregulation of cytokines in an ROS-dependent manner. Copyright 2001 Academic Press.

  4. Pyrogallol, ROS generator inhibits As4.1 juxtaglomerular cells via cell cycle arrest of G2 phase and apoptosis

    International Nuclear Information System (INIS)

    Park, Woo Hyun; Han, Yong Hwan; Kim, Suhn Hee; Kim, Sung Zoo

    2007-01-01

    Pyrogallol as a catechin compound has been employed as an O 2 · - generator and often used to investigate the role of ROS in the biological system. Here, we investigated the in vitro effect of pyrogallol on cell growth, cell cycle and apoptosis in As4.1 juxtaglomerular cells. Dose-dependent inhibition of cell growth was observed with IC 50 of about 60 μM for 48 h using MTT assay. Pyrogallol (100 μM) did not alter intracellular H 2 O 2 level and catalase activity, but increased the intracellular O 2 · - level and decreased SOD activity in As4.1 cells. DNA flow cytometric analysis indicated that 50 and 100 μM pyrogallol significantly increased G2 phase cells as compared with those of pyrogallol-untreated cells. Also, pyrogallol induced apoptosis as evidenced by flow cytometric detection of sub-G1 DNA content, annexin V binding assay and DAPI staining. This apoptosis process was accompanied with the loss of mitochondrial transmembrane potential (ΔΨ m ), Bcl-2 decrease, caspase-3 activation and PARP cleavage. Pan caspase inhibitor (Z-VAD) could significantly rescue As4.1 cells from pyrogallol-induced cell death. But, the inhibitors of caspase-3, caspase-8, and caspase-9 did not prevent apoptotic events in pyrogallol-treated As4.1 cells. Taken together, we have demonstrated that an ROS inducer, pyrogallol inhibits the growth of As4.1 JG cells via cell cycle arrest and apoptosis, and suggest that the compound exhibits an anti-proliferative efficacy on these cells

  5. Transcriptomic Response of Chinese Yew (Taxus chinensis to Cold Stress

    Directory of Open Access Journals (Sweden)

    Xianghua Yu

    2017-04-01

    Full Text Available Taxus chinensis is a rare and endangered shrub, highly sensitive to temperature changes and widely known for its potential in cancer treatment. How gene expression of T. chinensis responds to low temperature is still unknown. To investigate cold response of the genus Taxus, we obtained the transcriptome profiles of T. chinensis grown under normal and low temperature (cold stress, 0°C conditions using Illumina Miseq sequencing. A transcriptome including 83,963 transcripts and 62,654 genes were assembled from 4.16 Gb of reads data. Comparative transcriptomic analysis identified 2,025 differently expressed (DE isoforms at p < 0.05, of which 1,437 were up-regulated by cold stress and 588 were down-regulated. Annotation of DE isoforms indicated that transcription factors (TFs in the MAPK signaling pathway and TF families of NAC, WRKY, bZIP, MYB, and ERF were transcriptionally activated. This might have been caused by the accumulation of secondary messengers, such as reactive oxygen species (ROS and Ca2+. While accumulation of ROS will have caused damages to cells, our results indicated that to adapt to low temperatures T. chinensis employed a series of mechanisms to minimize these damages. The mechanisms included: (i cold-enhanced expression of ROS deoxidant systems, such as peroxidase and phospholipid hydroperoxide glutathione peroxidase, to remove ROS. This was further confirmed by analyses showing increased activity of POD, SOD, and CAT under cold stress. (ii Activation of starch and sucrose metabolism, thiamine metabolism, and purine metabolism by cold-stress to produce metabolites which either protect cell organelles or lower the ROS content in cells. These processes are regulated by ROS signaling, as the “feedback” toward ROS accumulation.

  6. The stress field and transient stress generation at shallow depths in the Canadian shield

    International Nuclear Information System (INIS)

    Hasegawa, H.S.

    1984-01-01

    A prominent feature of the stress field in eastern Canada is the high horizontal stress at shallow depths. Possible causative factors to this shallow stress field are remanent stresses from a previous tectonic orogeny, plate tectonic stresses and glacial-related stresses (glacial drag and flexual stress). The inherent difficulty in differentiating residual from current stress is one of the reasons why the relative contributions to the stress field from the phenomena described above are not properly understood. Maximum stress-strain changes an underground vault is likely to encounter from natural phenomena should occur when the periphery of the advancing or retreating glacier is near the vault. Theoretical calculations indicate that lithospheric flexure, differential postglacial uplift and possibly glacial drag may be able to generate significant horizontal stresses around a vault. In order to calculate the earthquake potential of these induced stress changes, the ambient tectonic stress field should also be included and a suitable failure criterion (e.g. Coulomb-Mohr) used. For earthquakes to generate appreciable stress-strain concentrations near a vault; the seismic signal must contain appreciable energy at appropriate frequencies (wavelengths comparable to vault dimensions) and be of appreciable duration; the particle velocity must be high (> 10 cm/s), induced strain is a function of particle velocity; and, the hypocentre must be less than half a fault length from the vault for residual deformation (strain and tilt) to be significant. The most severe case is when the causative fault intersects the vault

  7. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells.

    Science.gov (United States)

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-03-01

    Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.

  8. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress.

    Science.gov (United States)

    Chen, Jianfei; Song, Minbao; Yu, Shiyong; Gao, Pan; Yu, Yang; Wang, Hong; Huang, Lan

    2010-02-01

    Endothelial progenitor cells (EPCs) play an important role in preventing atherosclerosis. The factors that regulate the function of EPCs are not completely clear. Increased formation of advanced glycation endproducts (AGEs) is generally regarded as one of the main mechanisms responsible for vascular damage in patients with diabetes and atherosclerosis. AGEs lead to the generation of reactive oxygen species (ROS) and part of the regenerative capacity of EPCs seems to be due to their low baseline ROS levels and reduced sensitivity to ROS-induced cell apoptosis. Therefore, we tested the hypothesis that AGEs can alter functions and promote apoptosis in EPCs through overpress cell oxidant stress. EPCs, isolated from bone marrow, were cultured in the absence or presence of AGEs (50, 100, and 200 microg/ml). A modified Boyden's chamber was used to assess the migration of EPCs and the number of recultured EPCs was counted to measure the adhesiveness function. MTT assay was used to determine the proliferation function. ROS were analyzed using the ROS assay kit. A spectrophotometer was used to assess superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, and PCR was used to test mRNA expression of SOD and GSH-PX. SiRNA was used to block receptor for advanced glycation endproducts (RAGEs) expression. Apoptosis was evaluated by Annexin V immunostaining and TUNEL staining. Co-culturing with AGEs increases ROS production, decreases anti-oxidant defenses, overpresses oxidant stress, inhibits the proliferation, migration, and adhesion of EPCs, and induces EPCs apoptosis. In addition, these effects were attenuated during block RAGE protein expression by siRNA. AGEs may serve to impair EPCs functions through RAGE-mediate oxidant stress, and promote EPCs sensitivity toward oxidative-stress-mediated apoptosis, which indicates a new pathophysiological mechanism of disturbed vascular adaptation in atherosclerosis and suggests that lower levels of AGEs might improve the

  9. Interphase and intergranular stress generation in carbon steels

    International Nuclear Information System (INIS)

    Oliver, E.C.; Daymond, M.R.; Withers, P.J.

    2004-01-01

    Neutron diffraction spectra have been acquired during tensile straining of high and low carbon steels, in order to compare the evolution of internal stress in ferritic steel with and without a reinforcing phase. In low carbon steel, the generation of intergranular stresses predominates, while in high carbon steel similar intergranular stresses among ferrite grain families are superposed upon a large redistribution of stress between phases. Comparison is made to calculations using elastoplastic self-consistent and finite element methods

  10. Optimizing the Universal Robots ROS driver

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm

    improvement both in terms of faster reaction as well as making it possible to control the robot using either ros_control or ordinary joint speed commands, which is required for many types of sensory based control like visual servoing. The developed driver is compared to the drivers already existing in the ROS...

  11. The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells

    Science.gov (United States)

    Szili, Endre J.; Harding, Frances J.; Hong, Sung-Ha; Herrmann, Franziska; Voelcker, Nicolas H.; Short, Robert D.

    2015-12-01

    We have examined the link between ionized-gas plasma delivery of reactive oxygen species (ROS) to immortalized keratinocyte (HaCaT) cells and cell fate, defined in terms of cell viability versus death. Phospholipid vesicles were used as cell mimics to measure the possible intracellular ROS concentration, [ROSi], delivered by various plasma treatments. Cells were exposed to a helium cold atmospheric plasma (CAP) jet for different plasma exposure times (5-60 s) and gas flow rates (50-1000 ml min-1). Based upon the [ROSi] data we argue that plasma-generated ROS in the cell culture medium can readily diffuse into real cells. Plasma exposure that equated to an [ROSi] in the range of 3.81  ×  10-10-9.47  ×  10-8 M, measured at 1 h after the plasma exposure, resulted in increased cell viability at 72 h; whereas a higher [ROSi] at 1 h decreased cell viability after 72 h of culture. This may be because of the manner in which the ROS are delivered by the plasma: HaCaT cells better tolerate a low ROS flux over an extended plasma exposure period of 1 min, compared to a high flux delivered in a few seconds, although the final [ROSi] may be the same. Our results suggest that plasma stimulation of HaCaT cells follows the principle of hormesis.

  12. ROSMETER: a bioinformatic tool for the identification of transcriptomic imprints related to reactive oxygen species type and origin provides new insights into stress responses.

    Science.gov (United States)

    Rosenwasser, Shilo; Fluhr, Robert; Joshi, Janak Raj; Leviatan, Noam; Sela, Noa; Hetzroni, Amotz; Friedman, Haya

    2013-10-01

    The chemical identity of the reactive oxygen species (ROS) and its subcellular origin will leave a specific imprint on the transcriptome response. In order to facilitate the appreciation of ROS signaling, we developed a tool that is tuned to qualify this imprint. Transcriptome data from experiments in Arabidopsis (Arabidopsis thaliana) for which the ROS type and organelle origin are known were compiled into indices and made accessible by a Web-based interface called ROSMETER. The ROSMETER algorithm uses a vector-based algorithm to portray the ROS signature for a given transcriptome. The ROSMETER platform was applied to identify the ROS signatures profiles in transcriptomes of senescing plants and of those exposed to abiotic and biotic stresses. An unexpected highly significant ROS transcriptome signature of mitochondrial stress was detected during the early presymptomatic stages of leaf senescence, which was accompanied by the specific oxidation of mitochondria-targeted redox-sensitive green fluorescent protein probe. The ROSMETER analysis of diverse stresses revealed both commonalties and prominent differences between various abiotic stress conditions, such as salt, cold, ultraviolet light, drought, heat, and pathogens. Interestingly, early responses to the various abiotic stresses clustered together, independent of later responses, and exhibited negative correlations to several ROS indices. In general, the ROS transcriptome signature of abiotic stresses showed limited correlation to a few indices, while biotic stresses showed broad correlation with multiple indices. The ROSMETER platform can assist in formulating hypotheses to delineate the role of ROS in plant acclimation to environmental stress conditions and to elucidate the molecular mechanisms of the oxidative stress response in plants.

  13. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells.

    Science.gov (United States)

    Choudhury, Sreetama; Ghosh, Sayan; Mukherjee, Sudeshna; Gupta, Payal; Bhattacharya, Saurav; Adhikary, Arghya; Chattopadhyay, Sreya

    2016-12-01

    Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols. Copyright

  14. Implementation of a mobile base with evasion of obstacles using ROS navigation

    International Nuclear Information System (INIS)

    Arauz Villegas, Carolina

    2013-01-01

    A mobile base is implemented with evasion of obstacles using ROS Navigation. The simulation of that mobile base is performed with the 2D Stage simulator, firstly; and once understanded the operation of Navigation has proceeded to build the mobile base. The mobile base has had two DC motors, an Asus Xtion sensor, a netbook and a stm32f4-discovery microcontroller. ROS in the netbook was installed and then serial communication over USB was achieved between the netbook and the microcontroller. The microcontroller has received the velocity data sent by move_base of navigation through that communication and sends the odometry data back. A PWM control is implemented for the driving and for the speed of the motors having a control PI for the cycle of work of the same. The encoder interface of the microcontroller was used for the data acquisition of odometry. The communication between ROS and the mobile base was integrated to the navigation, which has allowed to generate mapping, location and move safely from a starting point to a point of arrival sending speed messages. (author) [es

  15. Vulnerability-specific stress generation: An examination of negative cognitive and interpersonal styles

    Science.gov (United States)

    Liu, Richard T.; Alloy, Lauren B.; Mastin, Becky M.; Choi, Jimmy Y.; Boland, Elaine M.; Jenkins, Abby L.

    2014-01-01

    Although there is substantial evidence documenting the stress generation effect in depression (i.e., the tendency for depression-prone individuals to experience higher rates of life stress to which they contribute), additional research is required to advance current understanding of the specific types of dependent stress (i.e., events influenced by characteristics and attendant behaviors of the individual) relevant to this effect. The present study tested an extension of the stress generation hypothesis, in which the content of dependent stress that is produced by depression-prone individuals is contingent upon, and matches, the nature of their particular vulnerabilities. This extension was tested within the context of two cognitive models (i.e., hopelessness theory [Abramson, Metalsky, & Alloy, 1989] and Cole’s [1990, 1991] competency-based model) and two interpersonal models (i.e., Swann’s [1987] self-verification theory and Coyne’s [1976] interpersonal theory) of depression. Overall, support was obtained for vulnerability-specific stress generation. Specifically, in analyses across vulnerability domains, evidence of stress-generation specificity was found for all domain-specific cognitive vulnerabilities except self-perceived social competence. The within-domain analyses for cognitive vulnerabilities produced more mixed results, but were largely supportive. Additionally, excessive reassurance-seeking was specifically predictive of dependent stress in the social domain, and moderated, but did not mediate, the relation between negative inferential styles overall and in the interpersonal domain and their corresponding generated stress. Finally, no evidence was found for a stress generation effect with negative feedback-seeking. PMID:24679143

  16. Assessment of DNA damage and oxidative stress induced by radiation in Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Exposure of eukaryotic cells to ionizing radiation results in the immediate formation of free radicals and the occurrence of oxidative cell damage. Recently International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on non-human biota for the radiological protection of the environment. Based on their radioecological properties and their important role in the soil ecosystem, earthworms have been identified by the ICRP as one of the reference animals and plants (RAPs) to be used in environmental radiation protection. The investigation shows that oxidative stress is closely related to the exposed dose of radiation in the environment. To evaluate oxidative stress by ionizing radiation in the earthworm, we performed several experiments. The comet assay is known as a measurement which is one of the best techniques in assessing the DNA damage by oxidative stress. The SOD is a key enzyme in protecting cells against oxidative stress. An increase in the level of antioxidant enzyme such as SOD indicated that the exposure to radiation caused stress responses. Glutathione oxidation is considered as a maker for detection of reactive oxygen species (ROS). The GSSG levels increased progressively with increased exposure dose of ionizing radiation, which suggested a dose-dependent ROS generation.

  17. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.

    Science.gov (United States)

    Schroeder, Elizabeth A; Shadel, Gerald S

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. The regulation of cellular apoptosis by the ROS-triggered PERK/EIF2α/chop pathway plays a vital role in bisphenol A-induced male reproductive toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Li [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Dai, Yanlin [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Medical Laboratory Technology Department, Chuxiong Medical College, Yunnan 675005 (China); Cui, Zhihong; Jiang, Xiao; Liu, Wenbin; Han, Fei; Lin, Ao; Cao, Jia [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Liu, Jinyi, E-mail: jinyiliutmmu@163.com [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China)

    2017-01-01

    Bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA) is ubiquitous in the environment, wildlife, and humans. Evidence from past studies suggests that BPA is associated with decreased semen quality. However, the molecular basis for the adverse effect of BPA on male reproductive toxicity remains unclear. We evaluated the effect of BPA on mouse spermatocytes GC-2 cells and adult mice, and we explored the potential mechanism of its action. The results showed that BPA inhibited cell proliferation and increased the apoptosis rate. The testes from BPA-treated mice showed fewer spermatogenic cells and sperm in the seminiferous tubules. In addition, BPA caused reactive oxygen species (ROS) accumulation. Previous study has verified that mitochondrion was the organelle affected by the BPA-triggered ROS accumulation. We found that BPA induced damage to the endoplasmic reticulum (ER) in addition to mitochondria, and most ER stress-related proteins were activated in cellular and animal models. Knocking down of the PERK/EIF2α/chop pathway, one of the ER stress pathways, partially recovered the BPA-induced cell apoptosis. In addition, an ROS scavenger attenuated the expression of the PERK/EIF2α/chop pathway-related proteins. Taken together, these data suggested that the ROS regulated PERK/EIF2α/chop pathway played a vital role in BPA-induced male reproductive toxicity. - Highlights: • BPA exposure caused the damage of the endoplasmic reticulum. • BPA exposure activated ER stress related proteins in male reproductive system. • ROS regulated PERK/EIF2α/chop pathway played a vital role in BPA-induced toxicity.

  19. Oxidative Stress Type Influences the Properties of Antioxidants Containing Polyphenols in RINm5F Beta Cells

    Directory of Open Access Journals (Sweden)

    Nathalie Auberval

    2015-01-01

    Full Text Available The in vitro methods currently used to screen bioactive compounds focus on the use of a single model of oxidative stress. However, this simplistic view may lead to conflicting results. The aim of this study was to evaluate the antioxidant properties of two natural extracts (a mix of red wine polyphenols (RWPs and epigallocatechin gallate (EGCG with three models of oxidative stress induced with hydrogen peroxide (H2O2, a mixture of hypoxanthine and xanthine oxidase (HX/XO, or streptozotocin (STZ in RINm5F beta cells. We employed multiple approaches to validate their potential as therapeutic treatment options, including cell viability, reactive oxygen species production, and antioxidant enzymes expression. All three oxidative stresses induced a decrease in cell viability and an increase in apoptosis, whereas the level of ROS production was variable depending on the type of stress. The highest level of ROS was found for the HX/XO-induced stress, an increase that was reflected by higher expression antioxidant enzymes. Further, both antioxidant compounds presented beneficial effects during oxidative stress, but EGCG appeared to be a more efficient antioxidant. These data indicate that the efficiency of natural antioxidants is dependent on both the nature of the compound and the type of oxidative stress generated.

  20. Targeted Modification of Mitochondrial ROS Production Converts High Glucose-Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning.

    Science.gov (United States)

    Sedlic, Filip; Muravyeva, Maria Y; Sepac, Ana; Sedlic, Marija; Williams, Anna Marie; Yang, Meiying; Bai, Xiaowen; Bosnjak, Zeljko J

    2017-01-01

    Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose-driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real-time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose-induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose-induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC-induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose-induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose-induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216-224, 2017

  1. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

    Directory of Open Access Journals (Sweden)

    M. Saliani

    2016-01-01

    Full Text Available ZnO NPs (zinc oxide nanoparticles has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemical position, and presence of metals can lead to changes in biological activities including ROS (reactive oxygen species production. However, there are some inconsistencies in the literature on the relation between the physicochemical features of ZnO NPs and their plausible oxidative stress mechanism. Herein, the possible oxidative stress mechanism of ZnO NPs was reviewed. This is worthy of further detailed evaluations in order to improve our understanding of vital NPs characteristics governing their toxicity. Therefore, this study focuses on the different reported oxidative stress paradigms induced by ZnO NPs including ROS generated by NPs, oxidative stress due to the NPs-cell interaction, and role of the particle dissolution in the oxidative damage. Also, this study tries to characterize and understand the multiple pathways involved in oxidative stress induced by ZnO NPs. Knowledge about different cellular signaling cascades stimulated by ZnO NPs lead to the better interpretation of the toxic influences induced by the cellular and acellular parameters. Regarding the potential benefits of toxic effects of ZnO NPs, in-depth evaluation of their toxicity mechanism and various effects of these nanoparticles would facilitate their implementation for biomedical applications.

  2. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia, E-mail: tania.gomes@niva.no [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Xie, Li [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Brede, Dag; Lind, Ole-Christian [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); Solhaug, Knut Asbjørn [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, N-1432, Ås (Norway); Salbu, Brit [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); and others

    2017-02-15

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H{sub 2}DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first

  3. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    International Nuclear Information System (INIS)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit

    2017-01-01

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report

  4. SkiROS

    DEFF Research Database (Denmark)

    Rovida, Francesco; Schou, Casper; Andersen, Rasmus Skovgaard

    During the last decades, the methods for intuitive task level programming of robots have become a fundamental point of interest for industrial application. The paper in hand presents SkiROS (Skill-based Robot Operating System) a novel software architecture based on the skills paradigm. The skill ...... of a flexible, highly modular system for the development of cognitive robot tasks....

  5. Effect of 900 MHz Electromagnetic Radiation on the Induction of ROS in Human Peripheral Blood Mononuclear Cells

    Science.gov (United States)

    Kazemi, E.; Mortazavi, S. M. J.; Ali-Ghanbari, A.; Sharifzadeh, S.; Ranjbaran, R.; Mostafavi-pour, Z.; Zal, F.; Haghani, M.

    2015-01-01

    Background Despite numerous studies over a decade, it still remains controversial about the biological effects of RF EMF emitted by mobile phone telephony. Objective Here we investigated the effect of 900 MHz GSM on the induction of oxidative stress and the level of intracellular reactive oxygen species (ROS) in human mononuclear cells, monocytes and lymphocytes as defence system cells. Method 6 ml Peripheral Blood samples were obtained from 13 healthy volunteers (21-30 year-old). Each sample was devided into 2 groups: one was exposed RF radiation emitted from a mobile phone simulator for 2 hour and the other used as control group which was not exposed to any fields. After that, mononuclear cells were isolated from peripheral blood by density gradient centrifugation in Ficoll-Paque. The intracellular ROS content in monocytes and lymphocytes was measured by the CM-H2DCFDA fluorescence probe using flowcytometry technique. Results Our results showed significant increase in  ROS production after exposure in population rich in monocytes. This effect was not significant in population rich in lymphocytes in comparison with non exposed cells. Conclusion The results obtained in this study clearly showed the oxidative stress induction capability of RF electromagnetic field in the portion of PBMCs mostly in monocytes, like the case of exposure to micro organisms, although the advantages or disadvantages of this effect should be evaluated. PMID:26396966

  6. Effect of 900 MHz Electromagnetic Radiation on the Induction of ROS in Human Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Mortazavi S.M.J.

    2015-09-01

    Full Text Available Background: Despite numerous studies over a decade, it still remains controversial about the biological effects of RF EMF emitted by mobile phone telephony. Objective: Here we investigated the effect of 900 MHz GSM on the induction of oxidative stress and the level of intracellular reactive oxygen species (ROS in human mononuclear cells, monocytes and lymphocytes as defence system cells. Method: 6 ml Peripheral Blood samples were obtained from 13 healthy volunteers (21-30 year-old. Each sample was devided into 2 groups: one was exposed RF radiation emitted from a mobile phone simulator for 2 hour and the other used as control group which was not exposed to any fields. After that, mononuclear cells were isolated from peripheral blood by density gradient centrifugation in Ficoll-Paque. The intracellular ROS content in monocytes and lymphocytes was measured by the CM-H2DCFDA fluorescence probe using flowcytometry technique. Results: Our results showed significant increase in ROS production after exposure in population rich in monocytes. This effect was not significant in population rich in lymphocytes in comparison with non exposed cells. Conclusion: The results obtained in this study clearly showed the oxidative stress induction capability of RF electromagnetic field in the portion of PBMCs mostly in monocytes, like the case of exposure to micro organisms, although the advantages or disadvantages of this effect should be evaluated.

  7. Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance.

    Directory of Open Access Journals (Sweden)

    Venkategowda Ramegowda

    Full Text Available NAC (NAM, ATAF1-2, and CUC2 proteins constitute one of the largest families of plant-specific transcription factors and have been shown to be involved in diverse plant processes including plant growth, development, and stress-tolerance. In this study, a stress-responsive NAC gene, EcNAC1, was isolated from the subtracted stress cDNA library generated from a drought adapted crop, finger millet, and characterized for its role in stress-tolerance. The expression analysis showed that EcNAC1 was highly induced during water-deficit and salt stress. EcNAC1 shares high amino acid similarity with rice genes that have been phylogenetically classified into stress-related NAC genes. Our results demonstrated that tobacco transgenic plants expressing EcNAC1 exhibit tolerance to various abiotic stresses like simulated osmotic stress, by polyethylene glycol (PEG and mannitol, and salinity stress. The transgenic plants also showed enhanced tolerance to methyl-viologen (MV induced oxidative stress. Reduced levels of reactive oxygen species (ROS and ROS-induced damage were noticed in pot grown transgenic lines under water-deficit and natural high light conditions. Root growth under stress and recovery growth after stress alleviation was more in transgenic plants. Many stress-responsive genes were found to be up-regulated in transgenic lines expressing EcNAC1. Our results suggest that EcNAC1 overexpression confers tolerance against abiotic stress in susceptible species, tobacco.

  8. Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans.

    Science.gov (United States)

    Dues, Dylan J; Schaar, Claire E; Johnson, Benjamin K; Bowman, Megan J; Winn, Mary E; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2017-07-01

    Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress. Our results suggest that elevated ROS levels in isp-1 worms cause the activation of multiple stress-response pathways including the mitochondrial unfolded protein response, the SKN-1-mediated stress response, and the hypoxia response. In addition, these worms have increased expression of specific antioxidant enzymes, including a marked upregulation of the inducible superoxide dismutase genes sod-3 and sod-5. Examining the contribution of sod-3 and sod-5 to the oxidative stress resistance in isp-1 worms revealed that loss of either of these genes increased resistance to oxidative stress, but not other forms of stress. Deletion of sod-3 or sod-5 decreased the lifespan of isp-1 worms and further exacerbated their slow physiologic rates. Thus, while deletion of sod-3 and sod-5 genes has little impact on stress resistance, physiologic rates or lifespan in wild-type worms, these genes are required for the longevity of isp-1 worms. Overall, this work shows that the increased resistance to oxidative stress in isp-1 worms does not account for their longevity, and that resistance to oxidative stress can be experimentally dissociated from lifespan. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Oxidative stress and enzymatic scavenging of superoxide radicals induced by solar UV-B radiation in Ulva canopies from southern Spain

    Directory of Open Access Journals (Sweden)

    Kai Bischof

    2003-09-01

    Full Text Available The generation of reactive oxygen species (ROS and scavenging of the superoxide radical by superoxide dismutase (SOD was studied in mat-like canopies of the green macroalga Ulva rotundata Bliding in a tidal brine pond system in southern Spain. Artificial canopies were covered with different cut-off filters, generating different radiation conditions. ROS and SOD were assessed after three days of exposure. ROS induced lipid peroxidation depended on the position of individual thalli within the canopy and on radiation conditions. Samples exposed to the full solar spectrum were most affected, whereas samples either exposed to photosynthetically active radiation (PAR alone or UV radiation without PAR exhibited fewer peroxidation products. The activity of SOD appeared to be controlled by the impinging UV-A and UV-B radiation and also increased in response to oxidative stress. The results provide evidence for additive effects of high PAR and UV-B under field conditions and support the previously proposed hypothesis that UV-B effects are mediated by an inhibition of the xanthophyll cycle, which increases ROS production and, consequently, causes oxidative damage to components of the photosynthetic machinery, such as proteins and pigments.

  10. Induction of oxidative and nitrosative stresses in human retinal pigment epithelial cells by all-trans-retinal

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xue [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu Province (China); Wang, Ke, E-mail: wangke@jsinm.org [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu Province (China); Zhang, Kai [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu Province (China); Zhou, Fanfan [Faculty of Pharmacy, University of Sydney, New South Wales 2006 (Australia); Zhu, Ling [Save Sight Institute, University of Sydney, New South Wales 2000 (Australia)

    2016-10-15

    Delayed clearance of free form all-trans-retinal (atRAL) is estimated be the key cause of retinal pigment epithelium (RPE) cells injury during the pathogenesis of retinopathies such as age-related macular degeneration (AMD), however, the underlying molecular mechanisms are far from clear. In this study, we investigated the cytotoxicity effect and underlying molecular mechanism of atRAL on human retinal pigment epithelium ARPE-19 cells. The results indicated that atRAL could cause cell dysfunction by inducing oxidative and nitrosative stresses in ARPE-19 cells. The oxidative stress induced by atRAL was mediated through up-regulation of reactive oxygen species (ROS) generation, activating mitochondrial-dependent and MAPKs signaling pathways, and finally resulting in apoptosis of ARPE-19 cells. The NADPH oxidase inhibitor apocynin could partly attenuated ROS generation, indicating that NADPH oxidase activity was involved in atRAL-induced oxidative stress in ARPE-19 cells. The nitrosative stress induced by atRAL was mainly reflected in increasing nitric oxide (NO) production, enhancing iNOS, ICAM-1 and VCAM-1 expressions, and promoting monocyte adhesion. Furthermore, above effects could be dramatically blocked by using a nuclear factor kappa B (NF-κB) inhibitor SN50, indicated that atRAL-induced oxidative and nitrosative stresses were mediated by NF-κB. The results provide better understanding of atRAL-induced toxicity in human RPE cells. - Highlights: • atRAL induces oxidative stress-mediated apoptosis in ARPE-19 cells. • atRAL induces oxidative stress-mediated inflammation in ARPE-19 cells. • NF-κB is involved in atRAL-induced oxidative and nitrosative stresses.

  11. Induction of oxidative and nitrosative stresses in human retinal pigment epithelial cells by all-trans-retinal

    International Nuclear Information System (INIS)

    Zhu, Xue; Wang, Ke; Zhang, Kai; Zhou, Fanfan; Zhu, Ling

    2016-01-01

    Delayed clearance of free form all-trans-retinal (atRAL) is estimated be the key cause of retinal pigment epithelium (RPE) cells injury during the pathogenesis of retinopathies such as age-related macular degeneration (AMD), however, the underlying molecular mechanisms are far from clear. In this study, we investigated the cytotoxicity effect and underlying molecular mechanism of atRAL on human retinal pigment epithelium ARPE-19 cells. The results indicated that atRAL could cause cell dysfunction by inducing oxidative and nitrosative stresses in ARPE-19 cells. The oxidative stress induced by atRAL was mediated through up-regulation of reactive oxygen species (ROS) generation, activating mitochondrial-dependent and MAPKs signaling pathways, and finally resulting in apoptosis of ARPE-19 cells. The NADPH oxidase inhibitor apocynin could partly attenuated ROS generation, indicating that NADPH oxidase activity was involved in atRAL-induced oxidative stress in ARPE-19 cells. The nitrosative stress induced by atRAL was mainly reflected in increasing nitric oxide (NO) production, enhancing iNOS, ICAM-1 and VCAM-1 expressions, and promoting monocyte adhesion. Furthermore, above effects could be dramatically blocked by using a nuclear factor kappa B (NF-κB) inhibitor SN50, indicated that atRAL-induced oxidative and nitrosative stresses were mediated by NF-κB. The results provide better understanding of atRAL-induced toxicity in human RPE cells. - Highlights: • atRAL induces oxidative stress-mediated apoptosis in ARPE-19 cells. • atRAL induces oxidative stress-mediated inflammation in ARPE-19 cells. • NF-κB is involved in atRAL-induced oxidative and nitrosative stresses.

  12. When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress

    Directory of Open Access Journals (Sweden)

    Fernanda Dos Santos Farnese

    2016-04-01

    Full Text Available The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS and reactive nitrogen species (RNS, particularly nitric oxide (NO, involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport, promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc, and demand the interaction with other signaling molecules, such as MAPK, plant hormones and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.

  13. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress.

    Science.gov (United States)

    Farnese, Fernanda S; Menezes-Silva, Paulo E; Gusman, Grasielle S; Oliveira, Juraci A

    2016-01-01

    The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.

  14. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Perez, Viviana; Recchia, Fabio A; Podlutsky, Andrej; Mukhopadhyay, Partha; Losonczy, Gyorgy; Pacher, Pal; Austad, Steven N; Bartke, Andrzej; Ungvari, Zoltan

    2008-11-01

    Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2(-) and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2(-) and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2(-) and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress.

  15. Methylcholanthrene-Induced Sarcomas Develop Independently from NOX2-Derived ROS.

    Directory of Open Access Journals (Sweden)

    Maarten A Ligtenberg

    Full Text Available Reactive oxygen species (ROS produced by the inducible NADPH oxidase type 2 (NOX2 complex are essential for clearing certain infectious organisms but may also have a role in regulating inflammation and immune response. For example, ROS is involved in myeloid derived suppressor cell (MDSC- and regulatory T cell (T(reg mediated T- and NK-cell suppression. However, abundant ROS produced within the tumor microenvironment, or by the tumor itself may also yield oxidative stress, which can blunt anti-tumor immune responses as well as eventually leading to tumor toxicity. In this study we aimed to decipher the role of NOX2-derived ROS in a chemically (by methylcholanthrene (MCA induced sarcoma model. Superoxide production by NOX2 requires the p47(phox (NCF1 subunit to organize the formation of the NOX2 complex on the cell membrane. Homozygous mutant mice (NCF1*/* have a functional loss of their super oxide burst while heterozygous mice (NCF1*/+ retain this key function. Mice harboring either a homo- or a heterozygous mutation were injected intramuscularly with MCA to induce sarcoma formation. We found that NOX2 functionality does not determine tumor incidence in the tested MCA model. Comprehensive immune monitoring in tumor bearing mice showed that infiltrating immune cells experienced an increase in their oxidative state regardless of the NOX2 functionality. While MCA-induced sarcomas where characterized by a T(reg and MDSC accumulation, no significant differences could be found between NCF1*/* and NCF1*/+ mice. Furthermore, infiltrating T cells showed an increase in effector-memory cell phenotype markers in both NCF1*/* and NCF1*/+ mice. Tumors established from both NCF1*/* and NCF1*/+ mice were tested for their in vitro proliferative capacity as well as their resistance to cisplatin and radiation therapy, with no differences being recorded. Overall our findings indicate that NOX2 activity does not play a key role in tumor development or immune cell

  16. Protective effect of polyphenols on presbycusis via oxidative/nitrosative stress suppression in rats.

    Science.gov (United States)

    Sánchez-Rodríguez, Carolina; Martín-Sanz, Eduardo; Cuadrado, Esperanza; Granizo, Juan José; Sanz-Fernández, Ricardo

    2016-10-01

    Age-related hearing loss (AHL) -presbycusis- is the number one neurodegenerative disorder and top communication deficit of our aged population. Experimental evidence suggests that mitochondrial dysfunction associated with reactive oxygen species (ROS) plays a central role in the aging process of cochlear cells. Dietary antioxidants, in particular polyphenols, have been found to be beneficial in protecting against the generation of ROS in various diseases associated with oxidative stress, such as cancer, neurodegenerative diseases and aging. This study was designed to investigate the effects of polyphenols on AHL and to determine whether oxidative stress plays a role in the pathophysiology of AHL. Sprague-Dawley rats (n=100) were divided into five groups according to their age (3, 6, 12, 18 and 24months old) and treated with 100mg/kg/day body weight of polyphenols dissolved in tap water for half of the life of the animal. Auditory steady-state responses (ASSR) threshold shifts were measured before sacrificing the rats. Then, cochleae were harvested to measure total superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, reactive oxidative and nitrogen species levels, superoxide anions and nitrotyrosine levels. Increased levels of ROS and RNS in cochlea observed with age decreases with polyphenol treatment. In addition, the activity of SOD and GPx enzymes in older rats recovered after the administration of polyphenols. The reduction in oxidative and nitrosative stress in the presence of polyphenols correlates with significant improvements in ASSR threshold shifts. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Abrus agglutinin promotes irreparable DNA damage by triggering ROS generation followed by ATM-p73 mediated apoptosis in oral squamous cell carcinoma.

    Science.gov (United States)

    Sinha, Niharika; Panda, Prashanta K; Naik, Prajna P; Das, Durgesh N; Mukhopadhyay, Subhadip; Maiti, Tapas K; Shanmugam, Muthu K; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman A; Sethi, Gautam; Agarwal, Rajesh; Bhutia, Sujit K

    2017-11-01

    Oral cancer, a type of head and neck cancer, is ranked as one of the top most malignancies in India. Herein, we evaluated the anticancer efficacy of Abrus agglutinin (AGG), a plant lectin, in oral squamous cell carcinoma. AGG selectively inhibited cell growth, and caused cell cycle arrest and mitochondrial apoptosis through a reactive oxygen species (ROS)-mediated ATM-p73 dependent pathway in FaDu cells. AGG-induced ROS accumulation was identified as the major mechanism regulating apoptosis, DNA damage and DNA-damage response, which were significantly reversed by ROS scavenger N-acetylcysteine (NAC). Moreover, AGG was found to interact with mitochondrial manganese-dependent superoxide dismutase that might inhibit its activity and increase ROS in FaDu cells. In oral cancer p53 is mutated, thus we focused on p73; AGG resulted in p73 upregulation and knock down of p73 caused a decrease in AGG-induced apoptosis. Interestingly, AGG-dependent p73 expression was found to be regulated by ROS, which was reversed by NAC treatment. A reduction in the level of p73 in AGG-treated shATM cells was found to be associated with a decreased apoptosis. Moreover, administration of AGG (50 μg/kg body weight) significantly inhibited the growth of FaDu xenografts in athymic nude mice. In immunohistochemical analysis, the xenografts from AGG-treated mice displayed a decrease in PCNA expression and an increase in caspase-3 activation as compared to the controls. In conclusion, we established a connection among ROS, ATM and p73 in AGG-induced apoptosis, which might be useful in enhancing the therapeutic targeting of p53 deficient oral squamous cell carcinoma. © 2017 Wiley Periodicals, Inc.

  18. Phototoxicity and oxidative stress responses in Daphnia magna under exposure to sulfathiazole and environmental level ultraviolet B irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungkon [School of Public Health, Seoul National University, Seoul, 110-799 (Korea, Republic of)], E-mail: koguma@snu.ac.kr; Park, Yena [School of Public Health, Seoul National University, Seoul, 110-799 (Korea, Republic of)], E-mail: elohim@snu.ac.kr; Choi, Kyungho [School of Public Health, Seoul National University, Seoul, 110-799 (Korea, Republic of)], E-mail: kyungho@snu.ac.kr

    2009-01-18

    Sulfonamide antibiotics frequently occur in aquatic environments. In this study, phototoxicity of sulfathiazole (STZ) and its mechanism of action were investigated using Daphnia magna. We evaluated the changes of molecular level stress responses by assessing gene expression, enzyme induction and lipid peroxidation, and the related organism-level effects in D. magna. In the presence of ultraviolet B (UV-B) light (continuous irradiation with 13.8 {+-} 1.0 {mu}W cm{sup -2} d{sup -1}), STZ (at the nominal concentration of 94.9 mg/L) caused a significant increase in reactive oxygen species (ROS) generation and lipid peroxidation. Catalase (CAT) and glutathione S-transferase (GST) showed concentration-dependent increases caused by the exposure. Exposure to STZ and UV-B light caused apparent up-regulation of {alpha}-esterase, hemoglobin, and vitellogenin mRNA. The survival of daphnids was significantly affected by the co-exposure to STZ and UV-B. The biochemical and molecular level observations in combination with organism-level effects suggest that the phototoxicity of STZ was mediated in part by ROS generated by oxidative stress in D. magna.

  19. Phototoxicity and oxidative stress responses in Daphnia magna under exposure to sulfathiazole and environmental level ultraviolet B irradiation

    International Nuclear Information System (INIS)

    Kim, Jungkon; Park, Yena; Choi, Kyungho

    2009-01-01

    Sulfonamide antibiotics frequently occur in aquatic environments. In this study, phototoxicity of sulfathiazole (STZ) and its mechanism of action were investigated using Daphnia magna. We evaluated the changes of molecular level stress responses by assessing gene expression, enzyme induction and lipid peroxidation, and the related organism-level effects in D. magna. In the presence of ultraviolet B (UV-B) light (continuous irradiation with 13.8 ± 1.0 μW cm -2 d -1 ), STZ (at the nominal concentration of 94.9 mg/L) caused a significant increase in reactive oxygen species (ROS) generation and lipid peroxidation. Catalase (CAT) and glutathione S-transferase (GST) showed concentration-dependent increases caused by the exposure. Exposure to STZ and UV-B light caused apparent up-regulation of α-esterase, hemoglobin, and vitellogenin mRNA. The survival of daphnids was significantly affected by the co-exposure to STZ and UV-B. The biochemical and molecular level observations in combination with organism-level effects suggest that the phototoxicity of STZ was mediated in part by ROS generated by oxidative stress in D. magna

  20. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    Science.gov (United States)

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications

    Science.gov (United States)

    Mai, Trang; Hilt, J. Zach

    2017-07-01

    Magnetic nanoparticles have been demonstrated to produce reactive oxygen species (ROS), which play a major role in various cellular pathways, via Fenton and Haber-Weiss reaction. ROS act as a double-edged sword inside the body. At normal conditions, the generation of ROS is in balance with their elimination by scavenger systems, and they can promote cell proliferation as well as differentiation. However, at an increased level, they can cause damages to protein, lead to cellular apoptosis, and contribute to many diseases including cancer. Many recent studies proposed a variety of strategies to either suppress toxicity of ROS generation or exploit the elevated ROS levels for cancer therapy.

  2. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.

    Science.gov (United States)

    Ji, Xiaoyu; Nie, Xianguang; Liu, Yujia; Zheng, Lei; Zhao, Huimin; Zhang, Bing; Huo, Lin; Wang, Yucheng

    2016-02-01

    Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Clinical and pathological significance of ROS1 expression in intrahepatic cholangiocarcinoma

    International Nuclear Information System (INIS)

    Lee, Kyung-Hun; Lee, Kyoung-Bun; Kim, Tae-Yong; Han, Sae-Won; Oh, Do-Youn; Im, Seock-Ah; Kim, Tae-You; Yi, Nam-Joon; Lee, Kwang-Woong; Suh, Kyung-Suk; Jang, Ja-June; Bang, Yung-Jue

    2015-01-01

    More knowledge about genetic and molecular features of cholangiocarcinoma is needed to develop effective therapeutic strategies. We investigated the clinical and pathological significance of ROS1 expression in intrahepatic cholangiocarcinoma. One hundred ninety-four patients with curatively resected intrahepatic cholangiocarcinoma were included in this study. Tumor tissue specimens were collected and analyzed for ROS1 gene rearrangement using fluorescence in situ hybridization (FISH) and ROS1 protein expression using immunohistochemistry (IHC). ROS1 immunohistochemistry was positive (moderate or strong staining) in 72 tumors (37.1 %). ROS1 protein expression was significantly correlated with well differentiated tumors, papillary or mucinous histology, oncocytic/hepatoid or intestinal type tumors, and periductal infiltrating or intraductal growing tumors (vs. mass-forming cholangiocarcinoma). ROS-expressing tumors were associated with better disease-free survival (30.1 months for ROS1 expression (+) tumors vs. 9.0 months for ROS1 (−) tumors, p = 0.006). Moreover, ROS1 expression was an independent predictor of better disease-free survival in a multivariate analysis (HR 0.607, 95 % CI 0.377–0.976; p = 0.039). Although break-apart FISH was successfully performed in 102 samples, a split pattern indicative of ROS1 gene rearrangement was not found in the examined samples. ROS1 protein expression was associated with well-differentiated histology and better survival in our patients with resected intrahepatic cholangiocarcinoma. ROS1 gene rearrangement by break-apart FISH was not found in the examined samples

  4. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses.

    Science.gov (United States)

    Czarnocka, Weronika; Karpiński, Stanisław

    2018-01-10

    In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca 2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions. Copyright © 2018. Published by Elsevier Inc.

  5. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    International Nuclear Information System (INIS)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-01-01

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  6. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Li, Yue, E-mail: ly99ly@vip.163.com [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province (China)

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  7. Oxyradical Stress, Endocannabinoids, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Anberitha T. Matthews

    2015-12-01

    Full Text Available Atherosclerosis is responsible for most cardiovascular disease (CVD and is caused by several factors including hypertension, hypercholesterolemia, and chronic inflammation. Oxidants and electrophiles have roles in the pathophysiology of atherosclerosis and the concentrations of these reactive molecules are an important factor in disease initiation and progression. Overactive NADPH oxidase (Nox produces excess superoxide resulting in oxidized macromolecules, which is an important factor in atherogenesis. Although superoxide and reactive oxygen species (ROS have obvious toxic properties, they also have fundamental roles in signaling pathways that enable cells to adapt to stress. In addition to inflammation and ROS, the endocannabinoid system (eCB is also important in atherogenesis. Linkages have been postulated between the eCB system, Nox, oxidative stress, and atherosclerosis. For instance, CB2 receptor-evoked signaling has been shown to upregulate anti-inflammatory and anti-oxidative pathways, whereas CB1 signaling appears to induce opposite effects. The second messenger lipid molecule diacylglycerol is implicated in the regulation of Nox activity and diacylglycerol lipase β (DAGLβ is a key biosynthetic enzyme in the biosynthesis eCB ligand 2-arachidonylglycerol (2-AG. Furthermore, Nrf2 is a vital transcription factor that protects against the cytotoxic effects of both oxidant and electrophile stress. This review will highlight the role of reactive oxygen species (ROS in intracellular signaling and the impact of deregulated ROS-mediated signaling in atherogenesis. In addition, there is also emerging knowledge that the eCB system has an important role in atherogenesis. We will attempt to integrate oxidative stress and the eCB system into a conceptual framework that provides insights into this pathology.

  8. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells.

    Science.gov (United States)

    Jo, Jeong-Rang; Park, Ju Sung; Park, Yu-Kyoung; Chae, Young Zoo; Lee, Gyu-Hee; Park, Gy-Young; Jang, Byeong-Churl

    2012-04-01

    The leaf of Pinus (P.) densiflora, a pine tree widely distributed in Asian countries, has been used as a traditional medicine. In the present study, we investigated the anticancer activity of essential oil, extracted by steam distillation, from the leaf of P. densiflora in YD-8 human oral squamous cell carcinoma (OSCC) cells. Treatment of YD-8 cells with P. densiflora leaf essential oil (PLEO) at 60 µg/ml for 8 h strongly inhibited proliferation and survival and induced apoptosis. Notably, treatment with PLEO led to generation of ROS, activation of caspase-9, PARP cleavage, down-regulation of Bcl-2, and phosphorylation of ERK-1/2 and JNK-1/2 in YD-8 cells. Treatment with PLEO, however, did not affect the expression of Bax, XIAP and GRP78. Importantly, pharmaco-logical inhibition studies demonstrated that treatment with vitamin E (an anti-oxidant) or z-VAD-fmk (a pan-caspase inhibitor), but not with PD98059 (an ERK-1/2 inhibitor) or SP600125 (a JNK-1/2 inhibitor), strongly suppressed PLEO-induced apoptosis in YD-8 cells and reduction of their survival. Vitamin E treatment further blocked activation of caspase-9 and Bcl-2 down-regulation induced by PLEO. Thus, these results demonstrate firstly that PLEO has anti-proliferative, anti-survival and pro-apoptotic effects on YD-8 cells and the effects are largely due to the ROS-dependent activation of caspases.

  9. HEATING AND ULTRAVIOLET LIGHT ACTIVATE ANTI-STRESS GENE FUNCTIONS IN HUMANS

    Directory of Open Access Journals (Sweden)

    Victor Fadeevitch Semenkov

    2015-07-01

    Full Text Available All types of cell stress are accompanied by the activation of anti-stress genes that can suppress ROS synthesis. We hypothesized that different environmental factors would affect organisms through the activation of anti-stress genes by autologous serum (AS proteins, followed by the synthesis of molecules that increase cell resistance to oxidative stress. The goal of this work was to study the influence of AS on ROS production by peripheral blood neutrophils isolated from donors in different age groups. Neutrophils were isolated from 59 donors (38-94 years old. AS was heated at 100˚C for 30 sec. or irradiated by ultraviolet light (UV at 200-280 nm and 8 W for 10 min. Neutrophils were exposed to heat shock at 42˚C for 1 min. (short-term heating stress or 43˚C for 10 min., followed by the determination of the chemiluminescence reaction induced by zymosan. AS can increase or decrease ROS production by neutrophils depending on the structure of the proteins in the serum; these structures can be changed by heating or UV treatment and the temperature of their interaction (4˚C or 37˚C. We propose that the effect of environmental factors on AS proteins can cause an adverse increase in oxidative stress levels due to the functional reduction of anti-stress genes. We found a negative correlation between the quantity of intracellular Hsp70 and levels of intracellular ROS production following 10 minutes of heat shock at 43°C. Short-term heating stress (1 minute at 42°C was followed by a prominent reduction in ROS production. This effect may be a result of the impact of the hormone adrenaline on the functions of anti-stress genes. Indeed, the same effect was observed after treatment of the neutrophils with adrenaline at concentrations of 10-4 M and 10-5 M. In contrast, dexamethasone from the other stress hormone group did not evoke the same effect at the same concentrations.

  10. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-04-01

    During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO plays an important

  11. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Directory of Open Access Journals (Sweden)

    Sasano Yu

    2012-04-01

    Full Text Available Abstract Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS, leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS

  12. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Science.gov (United States)

    2012-01-01

    Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO

  13. In vitro studies on oxidative stress-independent, Ag nanoparticles-induced cell toxicity of Candida albicans, an opportunistic pathogen

    Directory of Open Access Journals (Sweden)

    Radhakrishnan VS

    2018-03-01

    Full Text Available Venkatraman Srinivasan Radhakrishnan,1 Surya Prakash Dwivedi,2 Mohammed Haris Siddiqui,3 Tulika Prasad1 1Advanced Instrumentation Research Facility (AIRF, Jawaharlal Nehru University, New Delhi, 2School of Biotechnology, IFTM University, Moradabad, 3Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India Abstract: Silver nanoparticles (AgNps have attracted maximal attention among all metal nanoparticles, and the study of their biological properties has gained impetus for further medical adoption. This study evaluated the cellular and molecular mechanisms associated with the action of AgNps against an opportunistic pathogen, Candida albicans. Spherical, stable AgNp (average size 21.6 nm prepared by a chemical reduction method showed minimum inhibitory concentration (required to inhibit the growth of 90% of organisms at 40 µg/mL. AgNps have been reported to induce oxidative stress-mediated programmed cell death through the accumulation of intracellular reactive oxygen species (ROS. However, this study demonstrated that intracellular levels of AgNp-induced ROS could be reversed by using antioxidant ascorbic acid, but the sensitivity of AgNp-treated Candida cells could not be completely reversed. Moreover, in addition to the generation of ROS, the AgNps were found to affect other cellular targets resulting in altered membrane fluidity, membrane microenvironment, ergosterol content, cellular morphology, and ultrastructure. Thus, the generation of ROS does not seem to be the sole major cause of AgNp-mediated cell toxicity in Candida. Rather, the multitargeted action of AgNps, generation of ROS, alterations in ergosterol content, and membrane fluidity together seem to have potentiated anti-Candida action. Thus, this “nano-based drug therapy” is likely to favor broad-spectrum activity, multiple cellular targets, and minimum host toxicity. AgNps, therefore, appear to have the potential to address the challenges in multidrug

  14. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  15. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  16. Oxidative stress and inflammation in liver carcinogenesis

    Directory of Open Access Journals (Sweden)

    Natalia Olaya

    2007-02-01

    Full Text Available

    Inflammation is a common response in the human liver. It is involved in chronic hepatitis, cirrhosis, steatosis, ischemiareperfusion damage, hepatocarcinomas and in the development of metastasis. Reactive oxygen species (ROS production is part of the inflammatory processes. It is implicated in many physiological and pathological situations and can induce mutations in key cancer genes. Normally, this process is prevented by DNA repair enzymatic systems that maintain sequence fidelity during DNA replication. However, overproduction of free radicals in chronic inflammatory diseases is thought to saturate the ability of the cell to repair DNA damage prior to replications. Inflammation-induced genetic damage is not unique to the liver, and it might contribute to the development of mutations in several organs. An example is the chronic inflammatory response in ulcerative colitis that ultimately could lead to neoplasia.

    There is compelling evidence to suggest that most known environmental risk factors for HCC development lead to generation of reactive oxygen species (ROS. Indeed, hepatitis C virus (HCV, alcohol and hepatitis B virus (HBV have all been associated with oxidative stress. Direct production of oxidative stress by HCV core protein has been shown. A link between oxidative stress and liver pathogenesis is also supported by the successful use of antioxidant therapy to treat liver injury caused by chronic HCV infection, although it is not currently used for effective therapy. Ethanol metabolism via the alcohol dehydrogenase pathway and microsomal ethanol oxidizing system contribute substantially to the production of acetaldehyde and generation of ROS. HBx via its association with mitochondria has been shown to induce oxidative stress which in turn leads to activation of a

  17. Hyperglycemia-induced diaphragm weakness is mediated by oxidative stress

    Science.gov (United States)

    2014-01-01

    Introduction A major consequence of ICU-acquired weakness (ICUAW) is diaphragm weakness, which prolongs the duration of mechanical ventilation. Hyperglycemia (HG) is a risk factor for ICUAW. However, the mechanisms underlying HG-induced respiratory muscle weakness are not known. Excessive reactive oxygen species (ROS) injure multiple tissues during HG, but only one study suggests that excessive ROS generation may be linked to HG-induced diaphragm weakness. We hypothesized that HG-induced diaphragm dysfunction is mediated by excessive superoxide generation and that administration of a specific superoxide scavenger, polyethylene glycol superoxide dismutase (PEG-SOD), would ameliorate these effects. Methods HG was induced in rats using streptozotocin (60 mg/kg intravenously) and the following groups assessed at two weeks: controls, HG, HG + PEG-SOD (2,000U/kg/d intraperitoneally for seven days), and HG + denatured (dn)PEG-SOD (2000U/kg/d intraperitoneally for seven days). PEG-SOD and dnPEG-SOD were administered on day 8, we measured diaphragm specific force generation in muscle strips, force-pCa relationships in single permeabilized fibers, contractile protein content and indices of oxidative stress. Results HG reduced diaphragm specific force generation, altered single fiber force-pCa relationships, depleted troponin T, and increased oxidative stress. PEG-SOD prevented HG-induced reductions in diaphragm specific force generation (for example 80 Hz force was 26.4 ± 0.9, 15.4 ± 0.9, 24.0 ± 1.5 and 14.9 ± 0.9 N/cm2 for control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P hyperglycemia-induced diaphragm dysfunction. This new mechanistic information could explain how HG alters diaphragm function during critical illness. PMID:24886999

  18. Less stress, more success? Oncological implications of surgery-induced oxidative stress.

    LENUS (Irish Health Repository)

    O'Leary, D P

    2013-03-01

    Reactive oxygen species (ROS) possess important cell signalling properties. This contradicts traditional thought which associated ROS activity with cell death. Emerging evidence clearly demonstrates that ROS signalling acts as a key regulator in tumour cell survival and in the cellular processes required for tumour cells to successfully metastasise and proliferate. The discovery of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) family of enzymes in the last decade has unravelled much of the mystery surrounding how ROS are generated. Tumour cells are now known to express Nox enzymes which produce ROS required for cellular signalling. Activation of Nox enzymes occurs via interaction with proinflammatory cytokines and growth factors, all of which are released following surgical trauma. As our understanding of the signalling capabilities of ROS grows, the oncological implications of ROS activity are gradually being revealed. Nox-derived ROS are known to play a central role in each step of the metastatic cascade including invasion, adhesion, angiogenesis and proliferation. This article describes how surgery creates a ROS-rich environment, which facilitates redox signalling, and also examines the role played by Nox enzymes in this process. The authors then explore current knowledge of the oncological implications of surgery-induced redox signalling, and discuss current and future therapeutic strategies targeted at ROS and Nox enzymes in cancer patients.

  19. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  20. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.

    Science.gov (United States)

    Dutta, R K; Nenavathu, Bhavani P; Gangishetty, Mahesh K; Reddy, A V R

    2012-06-01

    Recent studies indicated the role of ROS toward antibacterial activity. In our study we report ROS mediated membrane lipid oxidation of Escherichia coli treated with ZnO nanoparticles (NPs) as supported by detection and spectrophotometric measurement of malondialdehyde (MDA) by TBARS (thiobarbituric acid-reactive species) assay. The antibacterial effects of ZnO NPs were studied by measuring the growth curve of E. coli, which showed concentration dependent bacteriostatic and bacteriocidal effects of ZnO NPs. The antibacterial effects were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further, antibacterial effect of ZnO NPs was found to decrease by introducing histidine to the culture medium treated with ZnO NPs. The ROS scavenging action of histidine was confirmed by treating histidine to the batch of Escherichia coli+ZnO NPs at the end of the lag phase of the growth curve (Set-I) and during inoculation (Set-II). A moderate bacteriostatic effect (lag in the E. coli growth) was observed in Set-II batch while Set-I showed no bacteriostatic effect. From these evidences we confirmed that the antibacterial effect of bare as well as TG capped ZnO NPs were due to membrane lipid peroxidation caused by the ROS generated during ZnO NPs interaction in culture medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Palladium induced oxidative stress and cell death in normal ...

    African Journals Online (AJOL)

    Our findings clearly indicate that Pd induces reactive oxygen species (ROS) formation and oxidative stress, mitochondrial and lysosomal injury and finally cell death. These effects are reversed by antioxidants and ROS scavengers, mitochondrial permeability transmission [1] pore sealing agent, ATP progenitor, and ...

  2. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress.

    Science.gov (United States)

    Abouelsaad, Ibrahim; Renault, Sylvie

    2018-04-21

    Jasmonic acid (JA) has been mostly studied in responses to biotic stresses, such as herbivore attack and pathogenic infection. More recently, the involvement of JA in abiotic stresses including salinity was highlighted; yet, its role in salt stress remained unclear. In the current study, we compared the physiological and biochemical responses of wild-type (WT) tomato (Solanum lycopersicum) cv Castlemart and its JA-deficient mutant defenseless-1 (def-1) under salt stress to investigate the role of JA. Plant growth, photosynthetic pigment content, ion accumulation, oxidative stress-related parameters, proline accumulation and total phenolic compounds, in addition to both enzymatic and non-enzymatic antioxidant activities, were measured in both genotypes after 14 days of 100 mM NaCl treatment. Although we observed in both genotypes similar growth pattern and sodium, calcium and potassium levels in leaves under salt stress, def-1 plants exhibited a more pronounced decrease of nitrogen content in both leaves and roots and a slightly higher level of sodium in roots compared to WT plants. In addition, def-1 plants exposed to salt stress showed reactive oxygen species (ROS)-associated injury phenotypes. These oxidative stress symptoms in def-1 were associated with lower activity of both enzymatic antioxidants and non-enzymatic antioxidants. Furthermore, the levels of the non-enzymatic ROS scavengers proline and total phenolic compounds increased in both genotypes exposed to salt stress, with a higher amount of proline in the WT plants. Overall the results of this study suggest that endogenous JA mainly enhanced tomato salt tolerance by maintaining ROS homeostasis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Anesthetic-Induced Oxidative Stress and Potential Protection

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2010-01-01

    Full Text Available Prolonged exposure of developing mammals to general anesthetics affects the N-methyl-D-aspartate (NMDA–type glutamate or γ-aminobutyric acid (GABA receptor systems and enhances neuronal toxicity. Stimulation of immature neurons by NMDA antagonists or GABA agonists is thought to increase overall nervous system excitability and may contribute to abnormal neuronal cell death during development. Although the precise mechanisms by which NMDA antagonists or GABA agonists cause neuronal cell death are still not completely understood, up-regulation of the NMDA receptor subunit NR1 may be an initiative factor in neuronal cell death. It is increasingly apparent that mitochondria lie at the center of the cell death regulation process. Evidence for the role of oxidative stress in anesthetic-induced neurotoxicity has been generated in studies that apply oxidative stress blockers. Prevention of neuronal death by catalase and superoxide dismutase in vitro, or by M40403 (superoxide dismutase mimetic in vivo, supports the contention that the involvement of reactive oxygen species (ROS and the nature of neuronal cell death in rodents is mainly apoptotic. However, more evidence is necessary to in order verify the role of the NMDA receptor subunit NR1 and ROS in anesthetic-induced neurodegeneration.

  4. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.

    Science.gov (United States)

    Bi, Chao; Ma, Yu; Wu, Zhen; Yu, Yong-Tao; Liang, Shan; Lu, Kai; Wang, Xiao-Fang

    2017-05-01

    It has been known that ABA INSENSITIVE 5 (ABI5) plays a vital role in regulating seed germination. In the present study, we showed that inhibition of the catalase activity with 3-amino-1,2,4-triazole (3-AT) inhibits seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines. Compared with Col-0, the seeds of abi5 mutants showed more sensitive to 3-AT during seed germination, while the seeds of ABI5-overexpression transgenic lines showed more insensitive. H 2 O 2 showed the same effect on seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines as 3-AT. These results suggest that ROS is involved in the seed germination mediated by ABI5. Further, we observed that T-DNA insertion mutants of the three catalase members in Arabidopsis displayed 3-AT-insensitive or -hypersensitive phenotypes during seed germination, suggesting that these catalase members regulate ROS homeostasis in a highly complex way. ABI5 affects reactive oxygen species (ROS) homeostasis by affecting CATALASE expression and catalase activity. Furthermore, we showed that ABI5 directly binds to the CAT1 promoter and activates CAT1 expression. Genetic evidence supports the idea that CAT1 functions downstream of ABI5 in ROS signaling during seed germination. RNA-sequencing analysis indicates that the transcription of the genes involved in ROS metabolic process or genes responsive to ROS stress is impaired in abi5-1 seeds. Additionally, expression changes in some genes correlative to seed germination were showed due to the change in ABI5 expression under 3-AT treatment. Together, all the findings suggest that ABI5 regulates seed germination at least partly by affecting ROS homeostasis.

  5. Oxidative stress measured in vivo without an exogenous contrast agent using QUEST MRI

    Science.gov (United States)

    Berkowitz, Bruce A.

    2018-06-01

    Decades of experimental studies have implicated excessive generation of reactive oxygen species (ROS) in the decline of tissue function during normal aging, and as a pathogenic factor in a vast array of fatal or debilitating morbidities. This massive body of work has important clinical implications since many antioxidants are FDA approved, readily cross blood-tissue barriers, and are effective at improving disease outcomes. Yet, the potential benefits of antioxidants have remained largely unrealized in patients because conventional methods cannot determine the dose, timing, and drug combinations to be used in clinical trials to localize and decrease oxidative stress. To address this major problem and improve translational success, new methods are urgently needed that non-invasively measure the same ROS biomarker both in animal models and patients with high spatial resolution. Here, we summarize a transformative solution based on a novel method: QUEnch-assiSTed MRI (QUEST MRI). The QUEST MRI index is a significant antioxidant-induced improvement in pathophysiology, or a reduction in 1/T1 (i.e., R1). The latter form of QUEST MRI provides a unique measure of uncontrolled production of endogenous, paramagnetic reactive oxygen species (ROS). QUEST MRI results to-date have been validated by gold standard oxidative stress assays. QUEST MRI has high translational potential because it does not use an exogenous contrast agent and requires only standard MRI equipment. Summarizing, QUEST MRI is a powerful non-invasive approach with unprecedented potential for (i) bridging antioxidant treatment in animal models and patients, (ii) identifying tissue subregions exhibiting oxidative stress, and (iii) coupling oxidative stress localization with behavioral dysfunction, disease pathology, and genetic vulnerabilities to serve as a marker of susceptibility.

  6. Oxidative stress in normal hematopoietic stem cells and leukemia.

    Science.gov (United States)

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  7. Silibinin induces mitochondrial NOX4-mediated endoplasmic reticulum stress response and its subsequent apoptosis

    International Nuclear Information System (INIS)

    Kim, Sang-Hun; Kim, Kwang-Youn; Yu, Sun-Nyoung; Seo, Young-Kyo; Chun, Sung-Sik; Yu, Hak-Sun; Ahn, Soon-Cheol

    2016-01-01

    Silibinin, a biologically active compound of milk thistle, has chemopreventive effects on cancer cell lines. Recently it was reported that silibinin inhibited tumor growth through activation of the apoptotic signaling pathway. Although various evidences showed multiple signaling pathways of silibinin in apoptosis, there were no reports to address the clear mechanism of ROS-mediated pathway in prostate cancer PC-3 cells. Several studies suggested that reactive oxygen species (ROS) play an important role in various signaling cascades, but the primary source of ROS was currently unclear. The effect of silibinin was investigated on cell growth of prostate cell lines by MTT assay. We examined whether silibinin induced apoptosis through production of ROS using flow cytometry. Expression of apoptosis-, endoplasmic reticulum (ER)-related protein and gene were determined by western blotting and RT-PCR, respectively. Results showed that silibinin triggered mitochondrial ROS production through NOX4 expression and finally led to induce apoptosis. In addition, mitochondrial ROS caused ER stress through disruption of Ca 2+ homeostasis. Co-treatment of ROS inhibitor reduced the silibinin-induced apoptosis through the inhibition of NOX4 expression, resulting in reduction of both Ca 2+ level and ER stress response. Taken together, silibinin induced mitochondrial ROS-dependent apoptosis through NOX4, which is associated with disruption of Ca 2+ homeostasis and ER stress response. Therefore, the regulation of NOX4, mitochondrial ROS producer, could be a potential target for the treatment of prostate cancer. The online version of this article (doi:10.1186/s12885-016-2516-6) contains supplementary material, which is available to authorized users

  8. Tolerance of spermatogonia to oxidative stress is due to high levels of Zn and Cu/Zn superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Fritzie T Celino

    Full Text Available BACKGROUND: Spermatogonia are highly tolerant to reactive oxygen species (ROS attack while advanced-stage germ cells such as spermatozoa are much more susceptible, but the precise reason for this variation in ROS tolerance remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using the Japanese eel testicular culture system that enables a complete spermatogenesis in vitro, we report that advanced-stage germ cells undergo intense apoptosis and exhibit strong signal for 8-hydroxy-2'-deoxyguanosine, an oxidative DNA damage marker, upon exposure to hypoxanthine-generated ROS while spermatogonia remain unaltered. Activity assay of antioxidant enzyme, superoxide dismutase (SOD and Western blot analysis using an anti-Copper/Zinc (Cu/Zn SOD antibody showed a high SOD activity and Cu/Zn SOD protein concentration during early spermatogenesis. Immunohistochemistry showed a strong expression for Cu/Zn SOD in spermatogonia but weak expression in advanced-stage germ cells. Zn deficiency reduced activity of the recombinant eel Cu/Zn SOD protein. Cu/Zn SOD siRNA decreased Cu/Zn SOD expression in spermatogonia and led to increased oxidative damage. CONCLUSIONS/SIGNIFICANCE: These data indicate that the presence of high levels of Cu/Zn SOD and Zn render spermatogonia resistant to ROS, and consequently protected from oxidative stress. These findings provide the biochemical basis for the high tolerance of spermatogonia to oxidative stress.

  9. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability.

    Science.gov (United States)

    Qian, Yong; Ducatman, Alan; Ward, Rebecca; Leonard, Steve; Bukowski, Valerie; Lan Guo, Nancy; Shi, Xianglin; Vallyathan, Val; Castranova, Vincent

    2010-01-01

    Perfluorooctane sulfonate (PFOS) is a member of the perfluoroalkyl acids (PFAA) containing an eight-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are among the strongest in organic chemistry, and PFOS is widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and is persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated that the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level.

  10. Ribosomal elongation factor 4 promotes cell death associated with lethal stress.

    Science.gov (United States)

    Li, Liping; Hong, Yuzhi; Luan, Gan; Mosel, Michael; Malik, Muhammad; Drlica, Karl; Zhao, Xilin

    2014-12-09

    Ribosomal elongation factor 4 (EF4) is highly conserved among bacteria, mitochondria, and chloroplasts. However, the EF4-encoding gene, lepA, is nonessential and its deficiency shows no growth or fitness defect. In purified systems, EF4 back-translocates stalled, posttranslational ribosomes for efficient protein synthesis; consequently, EF4 has a protective role during moderate stress. We were surprised to find that EF4 also has a detrimental role during severe stress: deletion of lepA increased Escherichia coli survival following treatment with several antimicrobials. EF4 contributed to stress-mediated lethality through reactive oxygen species (ROS) because (i) the protective effect of a ΔlepA mutation against lethal antimicrobials was eliminated by anaerobic growth or by agents that block hydroxyl radical accumulation and (ii) the ΔlepA mutation decreased ROS levels stimulated by antimicrobial stress. Epistasis experiments showed that EF4 functions in the same genetic pathway as the MazF toxin, a stress response factor implicated in ROS-mediated cell death. The detrimental action of EF4 required transfer-messenger RNA (tmRNA, which tags truncated proteins for degradation and is known to be inhibited by EF4) and the ClpP protease. Inhibition of a protective, tmRNA/ClpP-mediated degradative activity would allow truncated proteins to indirectly perturb the respiratory chain and thereby provide a potential link between EF4 and ROS. The connection among EF4, MazF, tmRNA, and ROS expands a pathway leading from harsh stress to bacterial self-destruction. The destructive aspect of EF4 plus the protective properties described previously make EF4 a bifunctional factor in a stress response that promotes survival or death, depending on the severity of stress. Translation elongation factor 4 (EF4) is one of the most conserved proteins in nature, but it is dispensable. Lack of strong phenotypes for its genetic knockout has made EF4 an enigma. Recent biochemical work has

  11. ROS and myokines promote muscle adaptation to exercise

    DEFF Research Database (Denmark)

    Scheele, Camilla; Nielsen, Søren; Pedersen, Bente K

    2009-01-01

    in skeletal muscle. In fact, it seems that exercise-induced ROS are able to stimulate cytokine production from skeletal muscle. Despite the initial view that ROS were potentially cell damaging, it now seems possible that these substances have important roles in the regulation of cell signaling. Muscle......-derived cytokines, so-called 'myokines', are distinguished from inflammation and instead possess important anti-inflammatory and metabolic properties. In this opinion piece, we suggest that both ROS and myokines are important players in muscle adaptation to exercise....

  12. ROS-induced toxicity: exposure of 3T3, RAW264.7, and MCF7 cells to superparamagnetic iron oxide nanoparticles results in cell death by mitochondria-dependent apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Hui-Chen, E-mail: d93548008@ntu.edu.tw; Chen, Chung-Ming, E-mail: chung@ntu.edu.tw [National Taiwan University, Institute of Biomedical Engineering (China); Hsieh, Wen-Yuan, E-mail: hsiehw@itri.org.tw [Industrial Technology Research Institute, Biomedical Technology and Device Research Labs (China); Chen, Ching-Yun, E-mail: chingyun523@gmail.com; Liu, Chia-Ching, E-mail: d95548005@ntu.edu.tw; Lin, Feng-Huei, E-mail: double@ntu.edu.tw [National Taiwan University, Institute of Biomedical Engineering (China)

    2015-02-15

    Superparamagnetic nanoparticles (Fe{sub 3}O{sub 4}, SPIO) have been used as magnetic resonance imaging enhancers for years. However, bio-safety issues concerning nanoparticles remain largely unexplored. Of particular concern is the possible cellular impact of nanoparticles during SPIO uptake and subsequent oxidative stress. SPIO causes cell death by apoptosis via a little understood mitochondrial pathway. To more closely examine this process, three kinds of cells—3T3, RAW264.7, and MCF7—were treated with SPIO coated with polyethylene glycol (SPIO-PEG) and monitored by transmission electron microscopy (TEM), using cytotoxicity evaluation, mitochondrial activity, reactive oxygen species (ROS) generation, and Annexin V assay. TEM revealed that SPIO-PEG nanoparticles surrounded the cellular endosome membrane, creating a bulge in the endosome. Compared to 3T3 cells, greater numbers of SPIO-PEG nanoparticles infiltrated the mitochondria of RAW264.7 and MCF7 cells. SPIO-PEG residency is associated with boosted ROS, with elevated levels of mitochondrial activity, and advancement of cell apoptosis. Furthermore, correlation analysis showed that a polynomial model demonstrates a better fit than a linear model in MCF7, implying that cytotoxicity may have alternative impacts on cell death at different concentrations. Thus, we believe that MCF7 cell death results from the apoptosis pathway triggered by mitochondria, and we find lower cytotoxicity in 3T3. We propose that optimal levels of SPIO-PEG nanoparticles lead to increased levels of ROS and a resulting oxidative stress environment which will kill only cancer cells while sparing normal cells. This finding has great potential for use in cancer therapies in the future.

  13. Epigallocatechin-3-Gallate Suppresses Human Herpesvirus 8 Replication and Induces ROS Leading to Apoptosis and Autophagy in Primary Effusion Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    2017-12-01

    Full Text Available Epigallocatechin-3-gallate (EGCG, the major constituent of green tea, has been shown to induce cell death in cancer cells. Primary effusion lymphoma (PEL is an aggressive neoplasm caused by human herpesvirus 8 (HHV8. In this study, we examined the role of EGCG on PEL cells in cell death and HHV8 replication. We performed trypan blue exclusion assay to assess the cell viability of PEL cells, flow cytometry analysis to examine the cell cycle distribution and reactive oxygen species (ROS generation, caspase-3 activity to assay apoptosis, acridine orange staining to determine autophagy, and immunoblotting to detect the protein levels involved in apoptosis and autophagy as well as mitogen activated protein kinases (MAPKs activation upon EGCG treatment. The expression of the HHV8 lytic gene was determined by luciferase reporter assay and reverse transcription-PCR, and viral progeny production was determined by PCR. Results revealed that EGCG induced cell death and ROS generation in PEL cells in a dose-dependent manner. N-acetylcysteine (NAC inhibited the EGCG-induced ROS and rescued the cell from EGCG-induced cell death. Even though EGCG induced ROS generation in PEL cells, it reduced the production of progeny virus from PEL cells without causing HHV8 reactivation. These results suggest that EGCG may represent a novel strategy for the treatment of HHV8 infection and HHV8-associated lymphomas.

  14. Modelling of thermal stress in vapor generator supports

    International Nuclear Information System (INIS)

    Halpert, S.; Vazquez, L.

    1997-01-01

    To assure safety and availability of a nuclear power plant components or equipment stress analysis are done. When thermal loads are involved it's necessary to know the temperature field of the component or equipment. This paper describes the structural analysis of a steam generator lug with thermal load including the model used for computer simulation and presents the evolution of the temperature profile, the stress intensity and principal stress during start up and shut down of a nuclear power reactor. Temperature field obtained from code calculation show good agreement with the experimental data while stress analysis results are in agreement with a preview estimation. (author) [es

  15. Vulnerability-specific stress generation: An examination of negative cognitive and interpersonal styles

    OpenAIRE

    Liu, Richard T.; Alloy, Lauren B.; Mastin, Becky M.; Choi, Jimmy Y.; Boland, Elaine M.; Jenkins, Abby L.

    2014-01-01

    Although there is substantial evidence documenting the stress generation effect in depression (i.e., the tendency for depression-prone individuals to experience higher rates of life stress to which they contribute), additional research is required to advance current understanding of the specific types of dependent stress (i.e., events influenced by characteristics and attendant behaviors of the individual) relevant to this effect. The present study tested an extension of the stress generation...

  16. Live longer on MARS: a yeast paradigm of mitochondrial adaptive ROS signaling in aging

    Directory of Open Access Journals (Sweden)

    Gerald S. Shadel

    2014-04-01

    Full Text Available Adaptive responses to stress, including hormesis, have been implicated in longevity, but their mechanisms and out comes are not fully understood. Here, I briefly summarize a longevity mechanism elucidated in the budding yeast chronological lifespan model by which Mitochondrial Adaptive ROS Signaling (MARS promotes beneficial epigenetic and metabolic remodeling. The potential relevance of MARS to the human disease Ataxia-Telangiectasia and as a potential anti-aging target is discussed.

  17. Transient thermal stresses in circular cylinder under intermittently sudden heat generation

    International Nuclear Information System (INIS)

    Sugano, Y.; Saito, K.; Takeuti, Y.

    1975-01-01

    The thermal stresses associated with the transient temperature distribution arising in a circular cylinder under intermittently changing sudden heat generation over a finite band and with heat loss to a surrounding medium on the remainder of the cylinder surface are exactly analysed. For the first time the temperature field in a circular cylinder under sudden heat generation over a finite band of the cylinder surface is determined by combined use of Fourier cosine, Laplace transforms in axial position and time, respectively. Secondly it is assumed that the temperature fields in a circular cylinder subjected to heat generation Qsub(i) (i=0, 1, 2, ...) independently over a finite band are given by T 0 (r,z,t), T 1 (r,z,t), T 2 (r,z,t),... respectively. Tsub(i)(r,z,t) indicates the temperature field before the i-th heat generation Qsub(i). The thermal stresses associated with the temperature field described above are analysed by using the Hoyle stress functions. Numerical calculations are carried out for the extensive case of the ratio of the heat-generating length to the diameter of cylinder. It is found that the time in which the maximum stresses occur on the cylinder surface does not depend on the heat-generating length-to-diameter ratio

  18. YARP-ROS Inter-Operation in a 2D Navigation Task

    Directory of Open Access Journals (Sweden)

    Marco Randazzo

    2018-02-01

    Full Text Available This paper presents some recent developments in YARP middleware, aimed to improve its integration with ROS. They include a new mechanism to read/write ROS transform frames and a new set of standard interfaces to intercommunicate with the ROS navigation stack. A novel set of YARP companion modules, which provide basic navigation functionalities for robots unable to run ROS, is also presented. These modules are optional, independent from each other, and they provide compatible functionalities to well-known packages available inside ROS framework. This paper also discusses how developers can customize their own hybrid YARP-ROS environment in the way it best suits their needs (e.g., the system can be configured to have a YARP application sending navigation commands to a ROS path planner, or vice versa. A number of available possibilities is presented through a set of chosen test cases applied to both real and simulated robots. Finally, example applications discussed in this paper are also made available to the community by providing snippets of code and links to source files hosted on github repository https://github.com/robotology.1

  19. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals.

    Science.gov (United States)

    Prasad, Sahdeo; Gupta, Subash C; Tyagi, Amit K

    2017-02-28

    Extensive research over the past half a century indicates that reactive oxygen species (ROS) play an important role in cancer. Although low levels of ROS can be beneficial, excessive accumulation can promote cancer. One characteristic of cancer cells that distinguishes them from normal cells is their ability to produce increased numbers of ROS and their increased dependence on an antioxidant defense system. ROS are produced as a byproduct intracellularly by mitochondria and other cellular elements and exogenously by pollutants, tobacco, smoke, drugs, xenobiotics, and radiation. ROS modulate various cell signaling pathways, which are primarily mediated through the transcription factors NF-κB and STAT3, hypoxia-inducible factor-1α, kinases, growth factors, cytokines and other proteins, and enzymes; these pathways have been linked to cellular transformation, inflammation, tumor survival, proliferation, invasion, angiogenesis, and metastasis of cancer. ROS are also associated with epigenetic changes in genes, which is helpful in diagnosing diseases. This review considers the role of ROS in the various stages of cancer development. Finally, we provide evidence that nutraceuticals derived from Mother Nature are highly effective in eliminating cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Tolerance to drought and salt stress in plants: Unraveling the signaling networks

    Directory of Open Access Journals (Sweden)

    Dortje eGolldack

    2014-04-01

    Full Text Available Tolerance of plants to abiotic stressors such as drought and salinity is triggered by complex multicomponent signaling pathways to restore cellular homeostasis and promote survival. Major plant transcription factor families such as bZIP, NAC, AP2/ERF and MYB orchestrate regulatory networks underlying abiotic stress tolerance. Sucrose nonfermenting 1-related protein kinase 2 (SnRK2 and MAPK pathways contribute to initiation of stress adaptive downstream responses and promote plant growth and development. As a convergent point of multiple abiotic cues, cellular effects of environmental stresses are not only imbalances of ionic and osmotic homeostasis but also impaired photosynthesis, cellular energy depletion, and redox imbalances. Recent evidence of regulatory systems that link sensing and signaling of environmental conditions and the intracellular redox status have shed light on interfaces of stress and energy signaling. ROS (reactive oxygen species cause severe cellular damage by peroxidation and de-esterification of membrane lipids, however, current models also define a pivotal signaling function of ROS in triggering tolerance against stress. Recent research advances suggest and support a regulatory role of ROS in the cross talks of stress triggered hormonal signaling such as the abscisic acid (ABA pathway and endogenously induced redox and metabolite signals. Here, we discuss and review the versatile molecular convergence in the abiotic stress responsive signaling networks in the context of ROS and lipid derived signals and the specific role of stomatal signaling.

  1. Novel piplartine-containing ruthenium complexes: synthesis, cell growth inhibition, apoptosis induction and ROS production on HCT116 cells.

    Science.gov (United States)

    D'Sousa Costa, Cinara O; Araujo Neto, João H; Baliza, Ingrid R S; Dias, Rosane B; Valverde, Ludmila de F; Vidal, Manuela T A; Sales, Caroline B S; Rocha, Clarissa A G; Moreira, Diogo R M; Soares, Milena B P; Batista, Alzir A; Bezerra, Daniel P

    2017-11-28

    Piplartine (piperlongumine) is a plant-derived molecule that has been receiving intense interest due to its anticancer characteristics that target the oxidative stress. In the present paper, two novel piplartine-containing ruthenium complexes [Ru(piplartine)(dppf)(bipy)](PF 6 ) 2 (1) and [Ru(piplartine)(dppb)(bipy)](PF 6 ) 2 (2) were synthesized and investigated for their cellular and molecular responses on cancer cell lines. We found that both complexes are more potent than metal-free piplartine in a panel of cancer cell lines on monolayer cultures, as well in 3D model of cancer multicellular spheroids formed from human colon carcinoma HCT116 cells. Mechanistic studies uncovered that the complexes reduced the cell growth and caused phosphatidylserine externalization, internucleosomal DNA fragmentation, caspase-3 activation and loss of the mitochondrial transmembrane potential on HCT116 cells. Moreover, the pre-treatment with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, reduced the complexes-induced apoptosis, indicating cell death by apoptosis through caspase-dependent and mitochondrial intrinsic pathways. Treatment with the complexes also caused a marked increase in the production of reactive oxygen species (ROS), including hydrogen peroxide, superoxide anion and nitric oxide, and decreased reduced glutathione levels. Application of N-acetyl-cysteine, an antioxidant, reduced the ROS levels and apoptosis induced by the complexes, indicating activation of ROS-mediated apoptosis pathway. RNA transcripts of several genes, including gene related to the cell cycle, apoptosis and oxidative stress, were regulated under treatment. However, the complexes failed to induce DNA intercalation. In conclusion, the complexes are more potent than piplartine against different cancer cell lines and are able to induce caspase-dependent and mitochondrial intrinsic apoptosis on HCT116 cells by ROS-mediated pathway.

  2. Menadione stress in Saccharomyces cerevisiae strains deficient in the glutathione transferases.

    Science.gov (United States)

    Castro, F A V; Herdeiro, R S; Panek, A D; Eleutherio, E C A; Pereira, M D

    2007-02-01

    Using S. cerevisiae as a eukaryotic cell model we have analyzed the involvement of both glutathione transferase isoforms, Gtt1 and Gtt2, in constitutive resistance and adaptive response to menadione, a quinone which can exert its toxicity as redox cycling and/or electrophiles. The detoxification properties, of these enzymes, have also been analyzed by the appearance of S-conjugates in the media. Direct exposure to menadione (20 mM/60 min) showed to be lethal for cells deficient on both Gtt1 and Gtt2 isoforms. However, after pre-treatment with a low menadione concentration, cells deficient in Gtt2 displayed reduced ability to acquire tolerance when compared with the control and the Gtt1 deficient strains. Analyzing the toxic effects of menadione we observed that the gtt2 mutant showed no reduction in lipid peroxidation levels. Moreover, measuring the levels of intracellular oxidation during menadione stress we have shown that the increase of this oxidative stress parameter was due to the capacity menadione possesses in generating reactive oxygen species (ROS) and that both GSH and Gtt2 isoform were required to enhance ROS production. Furthermore, the efflux of the menadione-GSH conjugate, which is related with detoxification of xenobiotic pathways, was not detected in the gtt2 mutant. Taken together, these results suggest that acquisition of tolerance against stress generated by menadione and the process of detoxification through S-conjugates are dependent upon Gtt2 activity. This assessment was corroborated by the increase of GTT2 expression, and not of GTT1, after menadione treatment.

  3. Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations

    International Nuclear Information System (INIS)

    Yilbas, Bekir Sami; Akhtar, S.S.; Sahin, A.Z.

    2016-01-01

    Thermal stress developed in thermoelectric generators is critical for long service applications. High temperature gradients, due to a large temperature difference across the junctions, causes excessive stress levels developed in the device pins and electrodes at the interfaces. In the present study, a thermoelectric generator with horizontal pin configuration is considered and thermal stress analysis in the device is presented. Ceramic wafer is considered to resemble the high temperature plate and copper electrodes are introduced at the pin junctions to reduce the electrical resistance between the pins and the high and low temperature junction plates during the operation. Finite element code is used to simulate temperature and stress fields in the thermoelectric generator. In the simulations, convection and radiation losses from the thermoelectric pins are considered and bismuth telluride pin material with and without tapering is incorporated. It is found that von Mises stress attains high values at the interface between the hot and cold junctions and the copper electrodes. Thermal stress developed in tapered pin configuration attains lower values than that of rectangular pin cross-section. - Highlights: • Different cold junction temperatures improves thermoelectric generator performance. • von Mises stress remains high across copper electrodes and hot junction ceramics. • von Mises stress reduces along pin length towards cold junction. • Pin tapering lowers stress levels in thermoelectric generator.

  4. Ebselen attenuates cisplatin-induced ROS generation through Nrf2 activation in auditory cells.

    Science.gov (United States)

    Kim, Se-Jin; Park, Channy; Han, A Lum; Youn, Myung-Ja; Lee, Jeong-Han; Kim, Yunha; Kim, Eun-Sook; Kim, Hyung-Jin; Kim, Jin-Kyung; Lee, Ho-Kyun; Chung, Sang-Young; So, Hongseob; Park, Raekil

    2009-05-01

    Ebselen, an organoselenium compound that acts as a glutathione peroxidase mimetic, has been demonstrated to possess antioxidant and anti-inflammatory activities. However, the molecular mechanism underlying this effect is not fully understood in auditory cells. The purpose of the present study is to investigate the protective effect of ebselen against cisplatin-induced toxicity in HEI-OC1 auditory cells, organotypic cultures of cochlear explants from two-day postnatal rats (P(2)) and adult Balb/C mice. Pretreatment with ebselen ameliorated apoptotic death induced by cisplatin in HEI-OC1 cells and organotypic cultures of Corti's organ. Ebselen pretreatment also significantly suppressed cisplatin-induced increases in intracellular reactive oxygen species (ROS), intracellular reactive nitrogen species (RNS) and lipid peroxidation levels. Ebselen dose-dependently increased the expression level of an antioxidant response element (ARE)-luciferase reporter in HEI-OC1 cells through the translocation of Nrf2 into the nucleus. Furthermore, we found that pretreatment with ebselen significantly restored Nrf2 function, whereas it ameliorated the cytotoxicity of cisplatin in cells transfectants with either a pcDNA3.1 (control) or a DN-Nrf2 (dominant-negative) plasmid. We also observed that Nrf2 activation by ebselen increased the expression of phase II antioxidant genes, including heme oxygenase (HO-1), NAD(P)H:quinine oxidoreductase, and gamma-glutamylcysteine synthetase (gamma-GCS). Treatment with ebselen resulted in an increased expression of HO-1 and intranuclear Nrf2 in hair cells of organotypic cultured cochlea. After intraperitoneal injection with cisplatin, auditory brainstem responses (ABRs) threshold was measured on 8th day in Balb/C mice. ABR threshold shift was marked occurred in mice injected with cisplatin (16 mg/kg, n=5; Click and 8-kHz stimuli, pebselen was not significantly changed. These results suggest that ebselen activates the Nrf2-ARE signaling pathway

  5. Novel derivative of aminobenzenesulfonamide (3c) induces apoptosis in colorectal cancer cells through ROS generation and inhibits cell migration.

    Science.gov (United States)

    Al-Khayal, Khayal; Alafeefy, Ahmed; Vaali-Mohammed, Mansoor-Ali; Mahmood, Amer; Zubaidi, Ahmed; Al-Obeed, Omar; Khan, Zahid; Abdulla, Maha; Ahmad, Rehan

    2017-01-03

    Colorectal cancer (CRC) is the 3 rd most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown. 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29. Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c

  6. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation.

    Science.gov (United States)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit; Tollefsen, Knut Erik

    2017-02-01

    The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49-1677mGy/h) for 6h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  8. Insulin receptor substrate-1 prevents autophagy-dependent cell death caused by oxidative stress in mouse NIH/3T3 cells

    Directory of Open Access Journals (Sweden)

    Chan Shih-Hung

    2012-07-01

    Full Text Available Abstract Background Insulin receptor substrate (IRS-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels. Methods and results In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3, aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress

  9. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA induces ROS generation through LPA 1 and LPA 3 . •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA 1 and LPA 3 siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway

  10. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei, Taiwan, ROC (China); Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Huang, Yuan-Li [Department of Biotechnology, Asia University, Taichung, Taiwan, ROC (China); Lee, Ming-Shyue [Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Chen, Jiun-Hong [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Lee, Hsinyu, E-mail: hsinyu@ntu.edu.tw [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC (China)

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  11. Characterizing the Role of Hep27 in Liver and Colorectal Cancer Stress Tolerance

    Science.gov (United States)

    2018-01-01

    AWARD NUMBER: W81XWH-16-1-0402 TITLE: Characterizing the Role of Hep27 in Liver and Colorectal Cancer Stress Tolerance PRINCIPAL INVESTIGATOR...Sep 2016 – 14 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Characterizing the Role of Hep27 in Liver and Colorectal Cancer Stress Tolerance...project has not demonstrated that Hep27 plays a role in ROS tolerance in liver cancer cells. 15. SUBJECT TERMS Hep27, ROS, stress , cancer 16. SECURITY

  12. Heme-induced ROS in Trypanosoma cruzi activates CaMKII-like that triggers epimastigote proliferation. One helpful effect of ROS.

    Directory of Open Access Journals (Sweden)

    Natália Pereira de Almeida Nogueira

    Full Text Available Heme is a ubiquitous molecule that has a number of physiological roles. The toxic effects of this molecule have been demonstrated in various models, based on both its pro-oxidant nature and through a detergent mechanism. It is estimated that about 10 mM of heme is released during blood digestion in the blood-sucking bug's midgut. The parasite Trypanosoma cruzi, the agent of Chagas' disease, proliferates in the midgut of the insect vector; however, heme metabolism in trypanosomatids remains to be elucidated. Here we provide a mechanistic explanation for the proliferative effects of heme on trypanosomatids. Heme, but not other porphyrins, induced T. cruzi proliferation, and this phenomenon was accompanied by a marked increase in reactive oxygen species (ROS formation in epimastigotes when monitored by ROS-sensitive fluorescent probes. Heme-induced ROS production was time- and concentration-dependent. In addition, lipid peroxidation and the formation of 4-hydroxy-2-nonenal (4-HNE adducts with parasite proteins were increased in epimastigotes in the presence of heme. Conversely, the antioxidants urate and GSH reversed the heme-induced ROS. Urate also decreased parasite proliferation. Among several protein kinase inhibitors tested only specific inhibitors of CaMKII, KN93 and Myr-AIP, were able to abolish heme-induced ROS formation in epimastigotes leading to parasite growth impairment. Taken together, these data provide new insight into T. cruzi- insect vector interactions: heme, a molecule from the blood digestion, triggers epimastigote proliferation through a redox-sensitive signalling mechanism.

  13. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility.

    Science.gov (United States)

    Zhao, Qian; Zhou, Lujian; Liu, Jianchao; Cao, Zhenzhen; Du, Xiaoxia; Huang, Fudeng; Pan, Gang; Cheng, Fangmin

    2018-05-01

    HT-induced ROS burst in developing anther is closely related to the lowered CAT activity as the result of the markedly suppressed OsCATB transcript, thereby causing severe fertility injury for rice plants exposed to HT at meiosis stage. The reproductive stage of rice plants is highly sensitive to heat stress. In this paper, different rice cultivars were used to investigate the relationship of HT-induced floret sterility with reactive oxygen species (ROS) detoxification in rice anthers under well-controlled climatic conditions. Results showed that high temperature (HT) exposure significantly enhanced the ROS level and malondialdehyde (MDA) content in developing anther, and the increase in ROS amount in rice anther under HT exposure was closely associated with HT-induced decline in the activities of several antioxidant enzymes. For various antioxidant enzymes, SOD and CAT were more susceptible to the ROS burst in rice anther induced by HT exposure than APX and POD, in which SOD and CAT activity in developing anther decreased significantly by HT exposure, whereas APX activity was relatively stable among different temperature regimes. HT-induced decrease in CAT activity was attributable to the suppressed transcript of OsCATB. This occurrence was strongly responsible for HT-induced increase in ROS level and oxidative-damage in rice anther, thereby it finally caused significant reduction in pollen viability and floret fertility for the rice plants exposed to HT during meiosis. Exogenous application of 1000 µM salicylic acid (SA) may alleviate HT-induced reduction in pollen viability and floret fertility, concomitantly with the increased CAT activity and reduced ROS level in rice anther.

  14. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    International Nuclear Information System (INIS)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika

    2014-01-01

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions

  15. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika, E-mail: lingappa@bcm.edu

    2014-08-08

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  16. Oxidative stress, activity behaviour and body mass in captive parrots

    OpenAIRE

    Larcombe, S. D.; Tregaskes, C. A.; Coffey, J.; Stevenson, A. E.; Alexander, L. G.; Arnold, K. E.

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melo...

  17. Walking the oxidative stress tightrope: a perspective from the naked mole-rat, the longest-living rodent.

    Science.gov (United States)

    Rodriguez, Karl A; Wywial, Ewa; Perez, Viviana I; Lambert, Adriant J; Edrey, Yael H; Lewis, Kaitlyn N; Grimes, Kelly; Lindsey, Merry L; Brand, Martin D; Buffenstein, Rochelle

    2011-01-01

    Reactive oxygen species (ROS), by-products of aerobic metabolism, cause oxidative damage to cells and tissue and not surprisingly many theories have arisen to link ROS-induced oxidative stress to aging and health. While studies clearly link ROS to a plethora of divergent diseases, their role in aging is still debatable. Genetic knock-down manipulations of antioxidants alter the levels of accrued oxidative damage, however, the resultant effect of increased oxidative stress on lifespan are equivocal. Similarly the impact of elevating antioxidant levels through transgenic manipulations yield inconsistent effects on longevity. Furthermore, comparative data from a wide range of endotherms with disparate longevity remain inconclusive. Many long-living species such as birds, bats and mole-rats exhibit high-levels of oxidative damage, evident already at young ages. Clearly, neither the amount of ROS per se nor the sensitivity in neutralizing ROS are as important as whether or not the accrued oxidative stress leads to oxidative-damage-linked age-associated diseases. In this review we examine the literature on ROS, its relation to disease and the lessons gleaned from a comparative approach based upon species with widely divergent responses. We specifically focus on the longest lived rodent, the naked mole-rat, which maintains good health and provides novel insights into the paradox of maintaining both an extended healthspan and lifespan despite high oxidative stress from a young age.

  18. Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro.

    Science.gov (United States)

    Wielsøe, Maria; Long, Manhai; Ghisari, Mandana; Bonefeld-Jørgensen, Eva C

    2015-06-01

    Perfluoroalkylated substances (PFAS) have been widely used since 1950s and humans are exposed through food, drinking water, consumer products, dust, etc. The long-chained PFAS are persistent in the environment and accumulate in wildlife and humans. They are suspected carcinogens and a potential mode of action is through generation of oxidative stress. Seven long-chained PFAS found in human serum were investigated for the potential to generate reactive oxygen species (ROS), induce DNA damage and disturb the total antioxidant capacity (TAC). The tested PFAS were perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluoroctanoic acid (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA). Using the human hepatoma cell line (HepG2) and an exposure time of 24h we found that all three endpoints were affected by one or more of the compounds. PFHxS, PFOA, PFOS and PFNA showed a dose dependent increase in DNA damage in the concentration range from 2×10(-7) to 2×10(-5)M determined by the comet assay. Except for PFDoA, all the other PFAS increased ROS generation significantly. For PFHxS and PFUnA the observed ROS increases were dose-dependent. Cells exposed to PFOA were found to have a significant lower TAC compared with the solvent control, whereas a non-significant trend in TAC decrease was observed for PFOS and PFDoA and an increase tendency for PFHxS, PFNA and PFUnA. Our results indicate a possible genotoxic and cytotoxic potential of the PFAS in human liver cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress.

    Science.gov (United States)

    Dehdashtian, Ehsan; Mehrzadi, Saeed; Yousefi, Bahman; Hosseinzadeh, Azam; Reiter, Russel J; Safa, Majid; Ghaznavi, Habib; Naseripour, Masood

    2018-01-15

    Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. Copyright © 2017. Published by Elsevier Inc.

  20. Real-time quantification of oxidative stress and the protective effect of nitroxide antioxidants.

    Science.gov (United States)

    Rayner, Cassie L; Bottle, Steven E; Gole, Glen A; Ward, Micheal S; Barnett, Nigel L

    2016-01-01

    Nitroxides have been exploited as profluorescent probes for the detection of oxidative stress. In addition, they deliver potent antioxidant action and attenuate reactive oxygen species (ROS) in various models of oxidative stress, with these results ascribed to superoxide dismutase or redox and radical-scavenging actions. Our laboratory has developed a range of novel, biostable, isoindoline nitroxide-based antioxidants, DCTEIO and CTMIO. In this study we compared the efficiency of these novel compounds as antioxidant therapies in reducing ROS both in vivo (rat model) and in vitro (661W photoreceptor cells), with the established antioxidant resveratrol. By assessing changes in fluorescence intensity of a unique redox-responsive probe in the rat retina in vivo, we evaluated the ability of antioxidant therapy to (1) ameliorate ROS production and (2) reverse the accumulation of ROS after complete, acute ischemia followed by reperfusion (I/R). I/R injury induced a marked decrease in fluorescence intensity over 60 min of reperfusion, which was successfully ameliorated with each of the antioxidants. DCTEIO and CTMIO reversed the accumulation of ROS when administered intraocularly post ischemic insult, whereas, the effect of resveratrol was not significant. We also investigated our novel agents' capacity to prevent ROS-mediated metabolic dysfunction in the 661W photoreceptor cell line. Cellular stress induced by the oxidant, tert-butyl hydroperoxide, resulted in a loss of spare mitochondrial respiratory capacity (SMRC) and in the extracellular acidification rate in 661W cells. DCTEIO antioxidant administration successfully reduced the loss of SMRC. Together, these findings show we can quantify dynamic changes in cellular oxidative status in vivo and suggest that nitroxide-based antioxidants may provide greater protection against oxidative stress than the current state-of-the-art antioxidant treatments for ROS-mediated diseases. Copyright © 2015 Elsevier Ltd. All rights

  1. Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart.

    Science.gov (United States)

    Madungwe, Ngonidzashe B; Zilberstein, Netanel F; Feng, Yansheng; Bopassa, Jean C

    2016-01-01

    Reactive oxygen species (ROS) generation has been implicated in many pathologies including ischemia/reperfusion (I/R) injury. This led to multiple studies on antioxidant therapies to treat cardiovascular diseases but paradoxically, results have so far been mixed as ROS production can be beneficial as a signaling mechanism and in cardiac protection via preconditioning interventions. We investigated whether the differential impact of increased ROS in injury as well as in protection could be explained by their site of production on the mitochondrial electron transport chain. Using amplex red to measure ROS production, we found that mitochondria isolated from hearts after I/R produced more ROS than non-ischemic when complex I substrate (glutamate/malate) was used. Interestingly, the substrates of complex II (succinate) and ubiquinone (sn-glycerol 3-phosphate, G3P) produced less ROS in mitochondria from I/R hearts compared to normal healthy hearts. The inhibitors of complex I (rotenone) and complex III (antimycin A) increased ROS production when glutamate/malate and G3P were used; in contrast, they reduced ROS production when the complex II substrate was used. Mitochondrial calcium retention capacity required to induce mitochondrial permeability transition pore (mPTP) opening was measured using calcium green fluorescence and was found to be higher when mitochondria were treated with G3P and succinate compared to glutamate/malate. Furthermore, Langendorff hearts treated with glutamate/malate exhibited reduced cardiac functional recovery and increased myocardial infarct size compared to hearts treated with G3P. Thus, ROS production by the stimulated respiratory chain complexes I and III has opposite roles: cardio-deleterious when produced in complex I and cardio-protective when produced in complex III. The mechanism of these ROS involves the inhibition of the mPTP opening, a key event in cell death following ischemia/reperfusion injury.

  2. Curcumin and Curcuma longa L. extract ameliorate lipid accumulation through the regulation of the endoplasmic reticulum redox and ER stress.

    Science.gov (United States)

    Lee, Hwa-Young; Kim, Seung-Wook; Lee, Geum-Hwa; Choi, Min-Kyung; Chung, Han-Wool; Lee, Yong-Chul; Kim, Hyung-Ryong; Kwon, Ho Jeong; Chae, Han-Jung

    2017-07-26

    For this study, we examined the effects of curcumin against acute and chronic stress, paying specific attention to ROS. We also aimed to clarify the differences between acute and chronic stress conditions. We investigated the effects of curcumin against acute stress (once/1 day CCl 4 treatment) and chronic-stress (every other day/4week CCl 4 treatment). Compared with acute stress, in which the antioxidant system functioned properly and aspartate transaminase (AST) and ROS production increased, chronic stress increased AST, alanine aminotransferase (ALT), hepatic enzymes, and ROS more significantly, and the antioxidant system became impaired. We also found that ER-originated ROS accumulated in the chronic model, another difference between the two conditions. ER stress was induced consistently, and oxidative intra-ER protein folding status, representatively PDI, was impaired, especially in chronic stress. The PDI-associated client protein hepatic apoB accumulated with the PDI-binding status in chronic stress, and curcumin recovered the altered ER folding status, regulating ER stress and the resultant hepatic dyslipidemia. Throughout this study, curcumin and curcumin-rich Curcuma longa L. extract promoted recovery from CCl 4 -induced hepatic toxicity in both stress conditions. For both stress-associated hepatic dyslipidemia, curcumin and Curcuma longa L. extract might be recommendable to recover liver activity.

  3. Mechanism of H₂O₂-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis.

    Science.gov (United States)

    Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2015-01-16

    The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Toxicological and pharmacological concerns on oxidative stress and related diseases

    Energy Technology Data Exchange (ETDEWEB)

    Saeidnia, Soodabeh [Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of); College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon (Canada); Abdollahi, Mohammad, E-mail: Mohammad@TUMS.Ac.Ir [Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of)

    2013-12-15

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD.

  5. Toxicological and pharmacological concerns on oxidative stress and related diseases

    International Nuclear Information System (INIS)

    Saeidnia, Soodabeh; Abdollahi, Mohammad

    2013-01-01

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD

  6. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle.

    Science.gov (United States)

    Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Cigliano, Riccardo Aiese; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo

    2015-10-23

    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B₁, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.

  7. The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics

    International Nuclear Information System (INIS)

    Henkler, Frank; Brinkmann, Joep; Luch, Andreas

    2010-01-01

    In addition to a wide range of adverse effects on human health, toxic metals such as cadmium, arsenic and nickel can also promote carcinogenesis. The toxicological properties of these metals are partly related to generation of reactive oxygen species (ROS) that can induce DNA damage and trigger redox-dependent transcription factors. The precise mechanisms that induce oxidative stress are not fully understood. Further, it is not yet known whether chronic exposures to low doses of arsenic, cadmium or other metals are sufficient to induce mutations in vivo, leading to DNA repair responses and/or tumorigenesis. Oxidative stress can also be induced by environmental xenobiotics, when certain metabolites are generated that lead to the continuous release of superoxide, as long as the capacity to reduce the resulting dions (quinones) into hydroquinones is maintained. However, the specific significance of superoxide-dependent pathways to carcinogenesis is often difficult to address, because formation of DNA adducts by mutagenic metabolites can occur in parallel. Here, we will review both mechanisms and toxicological consequences of oxidative stress triggered by metals and dietary or environmental pollutants in general. Besides causing DNA damage, ROS may further induce multiple intracellular signaling pathways, notably NF-κB, JNK/SAPK/p38, as well as Erk/MAPK. These signaling routes can lead to transcriptional induction of target genes that could promote proliferation or confer apoptosis resistance to exposed cells. The significance of these additional modes depends on tissue, cell-type and is often masked by alternate oncogenic mechanisms being activated in parallel

  8. Adiponectin protects palmitic acid induced endothelial inflammation and insulin resistance via regulating ROS/IKKβ pathways.

    Science.gov (United States)

    Zhao, Wenwen; Wu, Chuanhong; Li, Shaojing; Chen, Xiuping

    2016-12-01

    Endothelial inflammation and insulin resistance (IR) has been closely associated with endothelial dysfunction. Adiponectin (APN), an adipocyte-secreted hormone from adipose tissues, showed cardioprotective effects. Here, the protective effect of APN on palmitic acid (PA)-induced endothelial inflammation and IR was investigated. Cultured human umbilical vein endothelial cells (HUVECs) were treated with PA without or without APN pretreatment. The expression of inflammatory cytokines TNF-α, IL-6, adhesion molecule ICAM-1 were determined by western blotting, ELISA, and real-time PCR. The protein expression and protein-protein interaction were determined by western blotting and immunoprecipitation. The intracellular reactive oxygen species (ROS) and nitric oxide (NO) production were monitored with fluorescence probes. PA-induced secretion of TNF-α, IL-6, and expression of ICAM-1 at protein and mRNA levels, which was significantly inhibited by APN. PA treatment caused increase of ROS generation, NOX2, p-IKKβ, p-IκBα, p-p65 expression, and p-IκBα-IKKβ interaction, which were all partly reversed by APN. ROS scavenger N-acetylcysteine (NAC) and NF-κB inhibitor PDTC showed similar effect on PA-induced secretion of TNF-α, IL-6, and expression of ICAM-1. Furthermore, APN and NAC pretreatment restored PA-induced increase of p-IRS-1(S307), decrease of p-IRS-1(Tyr). In addition, insulin-triggered expression of p-IRS-1(Tyr), p-PI3K, p-AKT, p-eNOS and NO generation were inhibited by PA, which were also restored by both APN and NAC. These results suggested that APN ameliorated endothelial inflammation and IR through ROS/IKKβ pathway. This study shed new insights into the mechanisms of APN's cardiovascular protective effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mitochondrial ROS Production Protects the Intestine from Inflammation through Functional M2 Macrophage Polarization

    Directory of Open Access Journals (Sweden)

    Laura Formentini

    2017-05-01

    Full Text Available Mitochondria are signaling hubs in cellular physiology that play a role in inflammatory diseases. We found that partial inhibition of the mitochondrial ATP synthase in the intestine of transgenic mice triggers an anti-inflammatory response through NFκB activation mediated by mitochondrial mtROS. This shielding phenotype is revealed when mice are challenged by DSS-induced colitis, which, in control animals, triggers inflammation, recruitment of M1 pro-inflammatory macrophages, and the activation of the pro-oncogenic STAT3 and Akt/mTOR pathways. In contrast, transgenic mice can polarize macrophages to the M2 anti-inflammatory phenotype. Using the mitochondria-targeted antioxidant MitoQ to quench mtROS in vivo, we observe decreased NFκB activation, preventing its cellular protective effects. These findings stress the relevance of mitochondrial signaling to the innate immune system and emphasize the potential role of the ATP synthase as a therapeutic target in inflammatory and other related diseases.

  10. Stress generation in a developmental context: the role of youth depressive symptoms, maternal depression, the parent-child relationship, and family stress.

    Science.gov (United States)

    Chan, Priscilla T; Doan, Stacey N; Tompson, Martha C

    2014-02-01

    The present study examined stress generation in a developmental and family context among 171 mothers and their preadolescent children, ages 8-12 years, at baseline (Time 1) and 1-year follow-up (Time 2). In the current study, we examined the bidirectional relationship between children's depressive symptoms and dependent family stress. Results suggest that children's baseline level of depressive symptoms predicted the generation of dependent family stress 1 year later. However, baseline dependent family stress did not predict an increase in children's depressive symptoms 1 year later. In addition, we examined whether a larger context of both child chronic strain (indicated by academic, behavioral, and peer stress) and family factors, including socioeconomic status and parent-child relationship quality, would influence the stress generation process. Although both chronic strain and socioeconomic status were not associated with dependent family stress at Time 2, poorer parent-child relationship quality significantly predicted greater dependent family stress at Time 2. Child chronic strain, but neither socioeconomic status nor parent-child relationship quality, predicted children's depression symptoms at Time 2. Finally, gender, maternal depression history, and current maternal depressive symptoms did not moderate the relationship between level of dependent family stress and depressive symptoms. Overall, findings provide partial support for a developmental stress generation model operating in the preadolescent period.

  11. Carvedilol, a third-generation β-blocker prevents oxidative stress-induced neuronal death and activates Nrf2/ARE pathway in HT22 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Ying [Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, Ziwei [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Tan, Min [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Department of Traditional Chinese Medicine Chemistry, College of Chinese Materia Madica, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Liu, Anmin [Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, Meihui [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Liu, Jun [Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Pi, Rongbiao, E-mail: pirb@mail.sysu.edu.cn [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Fang, Jianpei, E-mail: jpf2005@163.com [Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China)

    2013-11-29

    Highlights: •Carvedilol significantly prevented oxidative stress-induced cell death. •Carvedilol significantly decreased the production of ROS. •Carvedilol activated Nrf2/ARE pathway. •Carvedilol increased the protein levels of HO-1 and NQO-1. -- Abstract: Carvedilol, a nonselective β-adrenoreceptor blocker with pleiotropic activities has been shown to exert neuroprotective effect due to its antioxidant property. However, the neuroprotective mechanism of carvedilol is still not fully uncovered. Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. Here we investigated the effect of carvedilol on oxidative stress-induced cell death (glutamate 2 mM and H{sub 2}O{sub 2} 600 μM) and the activity of Nrf2/ARE pathway in HT22 hippocampal cells. Carvedilol significantly increased cell viability and decreased ROS in HT22 cells exposed to glutamate or H{sub 2}O{sub 2}. Furthermore, carvedilol activated the Nrf2/ARE pathway in a concentration-dependent manner, and increased the protein levels of heme oxygenase-1(HO-1) and NAD(P)H quinone oxidoreductase-1(NQO-1), two downstream factors of the Nrf2/ARE pathway. Collectively, our results indicate that carvedilol protects neuronal cell against glutamate- and H{sub 2}O{sub 2}-induced neurotoxicity possibly through activating the Nrf2/ARE signaling pathway.

  12. The ROS/SUMO Axis Contributes to the Response of Acute Myeloid Leukemia Cells to Chemotherapeutic Drugs

    Directory of Open Access Journals (Sweden)

    Guillaume Bossis

    2014-06-01

    Full Text Available Chemotherapeutic drugs used in the treatment of acute myeloid leukemias (AMLs are thought to induce cancer cell death through the generation of DNA double-strand breaks. Here, we report that one of their early effects is the loss of conjugation of the ubiquitin-like protein SUMO from its targets via reactive oxygen species (ROS-dependent inhibition of the SUMO-conjugating enzymes. Desumoylation regulates the expression of specific genes, such as the proapoptotic gene DDIT3, and helps induce apoptosis in chemosensitive AMLs. In contrast, chemotherapeutics do not activate the ROS/SUMO axis in chemoresistant cells. However, pro-oxidants or inhibition of the SUMO pathway by anacardic acid restores DDIT3 expression and apoptosis in chemoresistant cell lines and patient samples, including leukemic stem cells. Finally, inhibition of the SUMO pathway decreases tumor growth in mice xenografted with AML cells. Thus, targeting the ROS/SUMO axis might constitute a therapeutic strategy for AML patients resistant to conventional chemotherapies.

  13. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    Science.gov (United States)

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  14. The orphan nuclear receptor NR4A1 (Nur77) regulates oxidative and endoplasmic reticulum stress in pancreatic cancer cells.

    Science.gov (United States)

    Lee, Syng-Ook; Jin, Un-Ho; Kang, Jeong Han; Kim, Sang Bae; Guthrie, Aaron S; Sreevalsan, Sandeep; Lee, Ju-Seog; Safe, Stephen

    2014-04-01

    NR4A1 (Nur77, TR3) is an orphan nuclear receptor that is overexpressed in pancreatic cancer and exhibits pro-oncogenic activity. RNA interference of NR4A1 expression in Panc-1 cells induced apoptosis and subsequent proteomic analysis revealed the induction of several markers of endoplasmic reticulum stress, including glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein-homologous protein (CHOP), and activating transcription factor-4 (ATF-4). Treatment of pancreatic cancer cells with the NR4A1 antagonist 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) gave similar results. Moreover, both NR4A1 knockdown and DIM-C-pPhOH induced reactive oxygen species (ROS), and induction of ROS and endoplasmic reticulum stress by these agents was attenuated after cotreatment with antioxidants. Manipulation of NR4A1 expression coupled with gene expression profiling identified a number of ROS metabolism transcripts regulated by NR4A1. Knockdown of one of these transcripts, thioredoxin domain containing 5 (TXNDC5), recapitulated the elevated ROS and endoplasmic reticulum stress; thus, demonstrating that NR4A1 regulates levels of endoplasmic reticulum stress and ROS in pancreatic cancer cells to facilitate cell proliferation and survival. Finally, inactivation of NR4A1 by knockdown or DIM-C-pPhOH decreased TXNDC5, resulting in activation of the ROS/endoplasmic reticulum stress and proapoptotic pathways. The NR4A1 receptor is pro-oncogenic, regulates the ROS/endoplasmic reticulum stress pathways, and inactivation of the receptor represents a novel pathway for inducing cell death in pancreatic cancer. Mol Cancer Res; 12(4); 527-38. ©2014 AACR.

  15. Bmi1 confers resistance to oxidative stress on hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Shunsuke Nakamura

    Full Text Available The polycomb-group (PcG proteins function as general regulators of stem cells. We previously reported that retrovirus-mediated overexpression of Bmi1, a gene encoding a core component of polycomb repressive complex (PRC 1, maintained self-renewing hematopoietic stem cells (HSCs during long-term culture. However, the effects of overexpression of Bmi1 on HSCs in vivo remained to be precisely addressed.In this study, we generated a mouse line where Bmi1 can be conditionally overexpressed under the control of the endogenous Rosa26 promoter in a hematopoietic cell-specific fashion (Tie2-Cre;R26Stop(FLBmi1. Although overexpression of Bmi1 did not significantly affect steady state hematopoiesis, it promoted expansion of functional HSCs during ex vivo culture and efficiently protected HSCs against loss of self-renewal capacity during serial transplantation. Overexpression of Bmi1 had no effect on DNA damage response triggered by ionizing radiation. In contrast, Tie2-Cre;R26Stop(FLBmi1 HSCs under oxidative stress maintained a multipotent state and generally tolerated oxidative stress better than the control. Unexpectedly, overexpression of Bmi1 had no impact on the level of intracellular reactive oxygen species (ROS.Our findings demonstrate that overexpression of Bmi1 confers resistance to stresses, particularly oxidative stress, onto HSCs. This thereby enhances their regenerative capacity and suggests that Bmi1 is located downstream of ROS signaling and negatively regulated by it.

  16. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    Directory of Open Access Journals (Sweden)

    Gulay Hacioglu

    2016-04-01

    Full Text Available Objective(s: Exposing to stress may be associated with increased production of reactive oxygen species (ROS. Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT and superoxide dismutase (SOD enzymes, and the amount of malondialdehyde (MDA were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.

  17. Ancestral Exposure to Stress Generates New Behavioral Traits and a Functional Hemispheric Dominance Shift.

    Science.gov (United States)

    Ambeskovic, Mirela; Soltanpour, Nasrin; Falkenberg, Erin A; Zucchi, Fabiola C R; Kolb, Bryan; Metz, Gerlinde A S

    2017-03-01

    In a continuously stressful environment, the effects of recurrent prenatal stress (PS) accumulate across generations and generate new behavioral traits in the absence of genetic variation. Here, we investigated if PS or multigenerational PS across 4 generations differentially affect behavioral traits, laterality, and hemispheric dominance in male and female rats. Using skilled reaching and skilled walking tasks, 3 findings support the formation of new behavioral traits and shifted laterality by multigenerational stress. First, while PS in the F1 generation did not alter paw preference, multigenerational stress in the F4 generation shifted paw preference to favor left-handedness only in males. Second, multigenerational stress impaired skilled reaching and skilled walking movement abilities in males, while improving these abilities in females beyond the levels of controls. Third, the shift toward left-handedness in multigenerationally stressed males was accompanied by increased dendritic complexity and greater spine density in the right parietal cortex. Thus, cumulative multigenerational stress generates sexually dimorphic left-handedness and dominance shift toward the right hemisphere in males. These findings explain the origins of apparently heritable behavioral traits and handedness in the absence of DNA sequence variations while proposing epigenetic mechanisms. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Characterization of the rubber tree metallothionein family reveals a role in mitigating the effects of reactive oxygen species associated with physiological stress.

    Science.gov (United States)

    Huang, Yacheng; Fang, Yongjun; Long, Xiangyu; Liu, Linya; Wang, Jia; Zhu, Jinheng; Ma, Yanyan; Qin, Yunxia; Qi, Jiyan; Hu, Xinwen; Tang, Chaorong

    2018-02-07

    Metallothioneins (MTs) as reactive oxygen species (ROS) scavengers play important roles in stress response and heavy metal homeostasis. In Hevea brasiliensis (the para rubber tree that is the source of commercial natural rubber) and in other trees, the functions of MTs are not well understood. Latex exudes when the rubber tree is tapped. The flow of latex and its regeneration can be enhanced by tapping, wounding and ethylene treatment, all of which produce ROS as a by-product. Here, we show the presence of four MT genes in H. brasiliensis, comprising three Type 2 (HbMT2, -2a and -2b) and one Type 3 (HbMT3L) isoforms, representing one of the smallest MT gene families among angiosperms. The four HbMTs exhibited distinct tissue expression patterns: HbMT2 and HbMT3L mainly in leaves, HbMT2a specifically in flowers and HbMT2b in diverse tissues. The expression of HbMT2b, an isoform present in latex, decreased significantly in the latex following the stress-inducing treatments of tapping, wounding and ethephon (an ethylene generator). The expressions of the leaf-abundant isoforms, HbMT2 and -3L were up-regulated following pathogenic fungus infection and high-temperature stress, but down-regulated by low-temperature stress. These reactions were consistent with multiple defense- and hormone-responsive cis-acting elements in the HbMT promoters. Nine transcription factors were shown to implicate in the high-temperature responsiveness of HbMT2 and -3L in leaves. Overexpression of HbMT2 in Escherichia coli enhanced the bacterium's tolerance to heavy metals and ROS, consistent with its predicted role as an ROS scavenger. Taken together, our results, along with other relevant studies, suggest an important role of HbMTs in latex regeneration as well as species adaptation via the regulation of ROS homeostasis. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    Science.gov (United States)

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  20. Inhibiting ROS-TFEB-Dependent Autophagy Enhances Salidroside-Induced Apoptosis in Human Chondrosarcoma Cells.

    Science.gov (United States)

    Zeng, Wei; Xiao, Tao; Cai, Anlie; Cai, Weiliang; Liu, Huanhuan; Liu, Jingling; Li, Jie; Tan, Miduo; Xie, Li; Liu, Ying; Yang, Xiangcheng; Long, Yi

    2017-01-01

    Autophagy modulation has been considered a potential therapeutic strategy for human chondrosarcoma, and a previous study indicated that salidroside exhibits significant anti-carcinogenic activity. However, the ability of salidroside to induce autophagy and its role in human chondrosarcoma cell death remains unclear. We exposed SW1353 cells to different concentrations of salidroside (0.5, 1 and 2 mM) for 24 h. RT-PCR, Western-blotting, Immunocytofluorescence, and Luciferase Reporter Assays were used to evaluate whether salidroside activated the TFEB-dependent autophagy. We show that salidroside induced significant apoptosis in the human chondrosarcoma cell line SW1353. In addition, we demonstrate that salidroside-induced an autophagic response in SW1353 cells, as evidenced by the upregulation of LC3-II and downregulation of P62. Moreover, pharmacological or genetic blocking of autophagy enhanced salidroside -induced apoptosis, indicating the cytoprotective role of autophagy in salidroside-treated SW1353 cells. Salidroside also induced TFEB (Ser142) dephosphorylation, subsequently to activated TFEB nuclear translocation and increase of TFEB reporter activity, which contributed to lysosomal biogenesis and the expression of autophagy-related genes. Importantly, we found that salidroside triggered the generation of ROS in SW1353 cells. Furthermore, NAC, a ROS scavenger, abrogated the effects of salidroside on TFEB-dependent autophagy. These data demonstrate that salidroside increased TFEB-dependent autophagy by activating ROS signaling pathways in human chondrosarcoma cells. These data also suggest that blocking ROS-TFEB-dependent autophagy to enhance the activity of salidroside warrants further attention in treatment of human chondrosarcoma cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  1. The p53/HSP70 inhibitor, 2-phenylethynesulfonamide, causes oxidative stress, unfolded protein response and apoptosis in rainbow trout cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanxing; Tee, Catherine; Liu, Michelle [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Sherry, James P. [Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario L7R 4A6 (Canada); Dixon, Brian; Duncker, Bernard P. [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Bols, Niels C., E-mail: ncbols@uwaterloo.ca [Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-01-15

    Highlights: •2-Phenylethynesulfonamide (PES) is an inhibitor of p53 and HSP 70 in mammals. •In the fish epithelial cell line, RTgill-W1, PES enhanced ROS generation and was cytotoxic. •RTgill-W1 death was by apoptosis and blocked by the anti-oxidant N-acetylcysteine. •This is the first report linking PES-induced cell death to ROS. •With this background PES should be useful for studying fish cell survival pathways. -- Abstract: The effect of 2-phenylethynesulfonamide (PES), which is a p53 and HSP70 inhibitor in mammalian cells, was studied on the rainbow trout (Oncorhynchus mykiss) gill epithelial cell line, RTgill-W1, in order to evaluate PES as a tool for understanding the cellular survival pathways operating in fish. As judged by three viability assays, fish cells were killed by 24 h exposures to PES, but cell death was blocked by the anti-oxidant N-acetylcysteine (NAC). Cell death had several hallmarks of apoptosis: DNA laddering, nuclear fragmentation, Annexin V staining, mitochondrial membrane potential decline, and caspases activation. Reactive oxygen species (ROS) production peaked in several hours after the addition of PES and before cell death. HSP70 and BiP levels were higher in cultures treated with PES for 24 h, but this was blocked by NAC. As well, PES treatment caused HSP70, BiP and p53 to accumulate in the detergent-insoluble fraction, and this too was prevented by NAC. Of several possible scenarios to explain the results, the following one is the simplest. PES enhances the generation of ROS, possibly by inhibiting the anti-oxidant actions of p53 and HSP70. ER stress arises from the ROS and from PES inhibiting the chaperone activities of HSP70. The ER stress in turn initiates the unfolded protein response (UPR), but this fails to restore ER homeostasis so proteins aggregate and cells die. Despite these multiple actions, PES should be useful for studying fish cellular survival pathways.

  2. The effect of tobacco smoke exposure on the generation of reactive oxygen species and cellular membrane damage using co-culture model of blood brain barrier with astrocytes.

    Science.gov (United States)

    Seo, Seung-Beom; Choe, Eun Sang; Kim, Kwang-Sik; Shim, Soon-Mi

    2017-06-01

    Brain tissue is known to be vulnerable to the exposure by tobacco smoke. Tobacco smoke can induce generation of reactive oxygen species (ROS), causing inflammatory activity and blood-brain barrier (BBB) impairment. The aim of the present study was to investigate the effect of tobacco smoke on cell cytotoxicity, generation of ROS, and cellular membrane damage in astrocytes and BBB using a co-culture system. Cell viability of U373MG cells was reduced in a dose-dependent manner, ranging from 96.7% to 40.3% by tobacco smoke condensate (TSC). Cell viability of U373MG co-cultured with human brain microvascular endothelial cells (HBMECs) was 104.9% at the IC 50 value of TSC. Trans-epithelial electric resistance values drastically decreased 80% following 12-h incubation. The value was maintained until 48 h and then increased at 72-h incubation (85%). It then decreased to 75% at 120 h. Generation of ROS increased in a dose-dependent manner, ranging from 102.7% to 107.9%, when various concentrations of TSC (4-16 mg/mL) were administered to the U373MG monoculture. When TSC was added into U373MG co-cultured with HBMECs, production of ROS ranged from 101.7% to 102.6%, slightly increasing over 12 h. Maximum exposure-generated ROS of 104.8% was reached at 24 h. Cell cytotoxicity and oxidative stress levels in the U373MG co-culture model system with HBMECs were lower than U373MG monoculture. HBMECs effectively acted as a barrier to protect the astrocytes (U373MG) from toxicity of TSC.

  3. ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms

    Directory of Open Access Journals (Sweden)

    Izabella Kovacs

    2016-11-01

    Full Text Available Nitric oxide (NO has emerged as a signaling molecule in plants being involved in diverse physiological processes like germination, root growth, stomata closing and response to biotic and abiotic stress. S-nitrosoglutathione (GSNO as a biological NO donor has a very important function in NO signaling since it can transfer its NO moiety to other proteins (trans-nitrosylation. Such trans-nitrosylation reactions are equilibrium reactions and depend on GSNO level. The breakdown of GSNO and thus the level of S-nitrosylated proteins are regulated by GSNO-reductase (GSNOR. In this way, this enzyme controls S-nitrosothiol levels and regulates NO signaling. Here we report that Arabidopsis thaliana GSNOR activity is reversibly inhibited by H2O2 in-vitro and by paraquat-induced oxidative stress in-vivo. Light scattering analyses of reduced and oxidized recombinant GSNOR demonstrated that GSNOR proteins form dimers under both reducing and oxidizing conditions. Moreover, mass spectrometric analyses revealed that H2O2-treatment increased the amount of oxidative modifications on Zn2+-coordinating Cys47 and Cys177. Inhibition of GSNOR results in enhanced levels of S-nitrosothiols followed by accumulation of glutathione. Moreover, transcript levels of redox-regulated genes and activities of glutathione-dependent enzymes are increased in gsnor-ko plants, which may contribute to the enhanced resistance against oxidative stress. In sum, our results demonstrate that ROS-dependent inhibition of GSNOR is playing an important role in activation of anti-oxidative mechanisms to damping oxidative damage and imply a direct crosstalk between ROS- and NO-signaling.

  4. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    Science.gov (United States)

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  5. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle

    Science.gov (United States)

    Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Aiese Cigliano, Riccardo; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo

    2015-01-01

    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies. PMID:26512693

  6. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle

    Directory of Open Access Journals (Sweden)

    Marco Zaccaria

    2015-10-01

    Full Text Available Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile to transcriptional analysis (RNA-seq. There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.

  7. Uremic myopathy: Is oxidative stress implicated in muscle dysfunction in uremia?

    Directory of Open Access Journals (Sweden)

    Antonia eKaltsatou

    2015-03-01

    Full Text Available Renal failure is accompanied by progressive muscle weakness and premature fatigue, in part linked to hypokinesis and in part to uremic toxicity. These changes are associated with various detrimental biochemical and morphological alterations. All of these pathological parameters are collectively termed ureamic myopathy. Various interventions while helpful can’t fully remedy the pathological phenotype. Complex mechanisms that stimulate muscle dysfunction in uremia have been proposed, and oxidative stress could be implicated. Skeletal muscles continuously produce reactive oxygen species (ROS and reactive nitrogen species (RNS at rest and more so during contraction. The aim of this mini review is to provide an update on recent advances in our understanding of how ROS and RNS generation might contribute to muscle dysfunction in uremia. Thus a systematic review was conducted searching PubMed and Scopus by using the Cochrane and PRISMA guidelines. While few studies met our criteria their findings are discussed making reference to other available literature data. Oxidative stress can direct muscle cells into a catabolic state and chronic exposure to it leads to wasting. Moreover, redox disturbances can significantly affect force production per se. We conclude that oxidative stress can be in part responsible for some aspects of uremic myopathy. Further research is needed to discern clear mechanisms and to help efforts to counteract muscle weakness and exercise intolerance in uremic patients.

  8. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, Maarten; Abee, Tjakko

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  9. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, J.M.; Abee, T.

    2011-01-01

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  10. Measurement of OH, NO, O and N atoms in helium plasma jet for ROS/RNS controlled biomedical processes

    Science.gov (United States)

    Yonemori, Seiya; Kamakura, Taku; Ono, Ryo

    2014-10-01

    Atmospheric-pressure plasmas are of emerging interest for new plasma applications such as cancer treatment, cell activation and sterilization. In those biomedical processes, reactive oxygen/nitrogen species (ROS/RNS) are said that they play significant role. It is though that active species give oxidative stress and induce biomedical reactions. In this study, we measured OH, NO, O and N atoms using laser induced fluorescence (LIF) measurement and found that voltage polarity affect particular ROS. When negative high voltage was applied to the plasma jet, O atom density was tripled compared to the case of positive applied voltage. In that case, O atom density was around 3 × 1015 [cm-3] at maximum. In contrast, OH and NO density did not change their density depending on the polarity of applied voltage, measured as in order of 1013 and 1014 [cm-3] at maximum, respectively. From ICCD imaging measurement, it could be seen that negative high voltage enhanced secondary emission in plasma bullet propagation and it can affect the effective production of particular ROS. Since ROS/RNS dose can be a quantitative criterion to control plasma biomedical application, those measurement results is able to be applied for in vivo and in vitro plasma biomedical experiments. This study is supported by the Grant-in-Aid for Science Research by the Ministry of Education, Culture, Sport, Science and Technology.

  11. Temperature stress effects in Bemisia tabaci (Hemiptera: Aleyrodidae) type B whiteflies

    Science.gov (United States)

    Oxidative stress occurs in response to changes in the redox equilibiurm, which may be caused by increases in reactive oxygen species (ROS), a decrease in antioxidant protection or failure of cells to repair oxidative damage. ROS are either free radicals, reactive molecules containing oxygen atoms or...

  12. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP mitigates salt and osmotic stress in transgenic tobacco plants

    Directory of Open Access Journals (Sweden)

    Pushpika eUdawat

    2016-04-01

    Full Text Available The Universal Stress Protein (USP is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologues of intron less SbUSP gene which encodes for salt and osmotic responsive universal stress protein. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control (wild type and vector control plants under different abiotic stress condition. Transgenic lines (T1 exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability and lower electrolyte leakage and lipid peroxidation (malondialdehyde content under stress treatments than control (WT and VC plants. Lower accumulation of H2O2 and O2- radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis (PCA exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant.

  13. Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Radhika Kapoor

    Full Text Available Apoptosis is an early event of liver damage in diabetes and oxidative stress has been linked to accelerate the apoptosis in hepatocytes. Therefore, the compounds that can scavenge ROS may confer regulatory effects on high-glucose induced apoptosis. In the present study, primary rat hepatocytes were exposed to high concentration (40 mM of glucose. At this concentration decreased cell viability and enhanced ROS generation was observed. Depleted antioxidant status of hepatocytes under high glucose stress was also observed as evident from transcriptional level and activities of antioxidant enzymes. Further, mitochondrial depolarisation was accompanied by the loss of mitochondrial integrity and altered expression of Bax and Bcl-2. Increased translocation of apoptotic proteins like AIF (Apoptosis inducing factor & Endo-G (endonuclease-G from its resident place mitochondria to nucleus was also observed. Cyt-c residing in the inter-membrane space of mitochondria also translocated to cytoplasm. These apoptotic proteins initiated caspase activation, DNA fragmentation, chromatin condensation, increased apoptotic DNA content in glucose treated hepatocytes, suggesting mitochondria mediated apoptotic mode of cell death. Morin, a dietary flavonoid from Psidium guajava was effective in increasing the cell viability and decreasing the ROS level. It maintained mitochondrial integrity, inhibited release of apoptotic proteins from mitochondria, prevented DNA fragmentation, chromatin condensation and hypodiploid DNA upon exposure to high glucose. This study confirms the capacity of dietary flavonoid Morin in regulating apoptosis induced by high glucose via mitochondrial mediated pathway through intervention of oxidative stress.

  14. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles

    Science.gov (United States)

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2′-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2′-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs. PMID:26366077

  15. Protective Effects of Green Tea Polyphenol Against Renal Injury Through ROS-Mediated JNK-MAPK Pathway in Lead Exposed Rats.

    Science.gov (United States)

    Wang, Haidong; Li, Deyuan; Hu, Zhongze; Zhao, Siming; Zheng, Zhejun; Li, Wei

    2016-06-30

    To investigate the potential therapeutic effects of polyphenols in treating Pb induced renal dysfunction and intoxication and to explore the detailed underlying mechanisms. Wistar rats were divided into four groups: control groups (CT), Pb exposure groups (Pb), Pb plus Polyphenols groups (Pb+PP) and Polyphenols groups (PP). Animals were kept for 60 days and sacrificed for tests of urea, serum blood urea nitrogen (BUN) and creatinine. Histological evaluations were then performed. In vitro studies were performed using primary kidney mesangial cells to reveal detailed mechanisms. Cell counting kit-8 (CCK-8) was used to evaluate cell viability. Pb induced cell apoptosis was measured by flow cytometry. Reactive oxygen species (ROS) generation and scavenging were tested by DCFH-DA. Expression level of tumor necrosis factor-α (TNF-α), interleukin-1-β (IL-1-β) and IL-6 were assayed by ELISA. Western blot and qPCR were used to measure the expression of ERK1/2, JNK1/2 and p38. Polyphenols have obvious protective effects on Pb induced renal dysfunction and intoxication both in vivo and in vitro. Polyphenols reduced Pb concentration and accumulation in kidney. Polyphenols also protected kidney mesangial cells from Pb induced apoptosis. Polyphenols scavenged Pb induced ROS generation and suppressed ROS-mediated ERK/JNK/p38 pathway. Downstream pro-inflammatory cytokines were inhibited in consistency. Polyphenol is protective in Pb induced renal intoxication and inflammatory responses. The underlying mechanisms lie on the antioxidant activity and ROS scavenging activity of polyphenols.

  16. Diosgenin Induces Apoptosis in HepG2 Cells through Generation of Reactive Oxygen Species and Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Dae Sung Kim

    2012-01-01

    Full Text Available Diosgenin, a naturally occurring steroid saponin found abundantly in legumes and yams, is a precursor of various synthetic steroidal drugs. Diosgenin is studied for the mechanism of its action in apoptotic pathway in human hepatocellular carcinoma cells. Based on DAPI staining, diosgenin-treated cells manifested nuclear shrinkage, condensation, and fragmentation. Treatment of HepG2 cells with 40 μM diosgenin resulted in activation of the caspase-3, -8, -9 and cleavage of poly-ADP-ribose polymerase (PARP and the release of cytochrome c. In the upstream, diosgenin increased the expression of Bax, decreased the expression of Bid and Bcl-2, and augmented the Bax/Bcl-2 ratio. Diosgenin-induced, dose-dependent induction of apoptosis was accompanied by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK-1, as well as generation of the ROS. NAC administration, a scavenger of ROS, reversed diosgene-induced cell death. These results suggest that diosgenin-induced apoptosis in HepG2 cells through Bcl-2 protein family-mediated mitochndria/caspase-3-dependent pathway. Also, diosgenin strongly generated ROS and this oxidative stress might induce apoptosis through activation of ASK1, which are critical upstream signals for JNK/p38 MAPK activation in HepG2 cancer cells.

  17. Effects of Mountain Ultra-Marathon Running on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques.

    Directory of Open Access Journals (Sweden)

    Simona Mrakic-Sposta

    . Considered altogether the investigated variables showed up that exhaustive and prolonged exercise not only promotes the generation of ROS but also induces oxidative stress, transient renal impairment and inflammation.

  18. Trace amounts of Cu{sup 2+} ions influence ROS production and cytotoxicity of ZnO quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, Hatem [CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy (France); Laboratoire de Biosurveillance de l' Environnement, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte (Tunisia); Merlin, Christophe [CNRS and Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME), CNRS UMR 7564, 15 Avenue du Charmois, 54500 Vandoeuvre-lès-Nancy (France); Dezanet, Clément [CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy (France); Balan, Lavinia [Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, 15 rue Jean Starcky, 68093 Mulhouse (France); Medjahdi, Ghouti [CNRS and Université de Lorraine, Institut Jean Lamour (IJL), UMR CNRS 7198, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Ben-Attia, Mossadok [Laboratoire de Biosurveillance de l' Environnement, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte (Tunisia); and others

    2016-03-05

    Highlights: • Chemisorbed Cu{sup 2+} ions on ZnO QDs enhance ROS production. • A mechanism combining excited electrons and holes and Fenton reactions is proposed. • ZnO@APTMS/Cu QDs were found to be the most deleterious to E. coli cells. - Abstract: 3-Aminopropyltrimethoxysilane (APTMS) was used as ligand to prepare ZnO@APTMS, Cu{sup 2+}-doped ZnO (ZnO:Cu@APTMS) and ZnO quantum dots (QDs) with chemisorbed Cu{sup 2+} ions at their surface (ZnO@APTMS/Cu). The dots have a diameter of ca. 5 nm and their crystalline and phase purities and composition were established by X-ray diffraction, transmission electron microscopy, UV-visible and fluorescence spectroscopies and by X-ray photoelectron spectroscopy. The effect of Cu{sup 2+} location on the ability of the QDs to generate reactive oxygen species (ROS) under light irradiation was investigated. Results obtained demonstrate that all dots are able to produce ROS (·OH, O{sub 2}·{sup −}, H{sub 2}O{sub 2} and {sup 1}O{sub 2}) and that ZnO@APTMS/Cu QDs generate more ·OH and O{sub 2}·{sup −} radicals and H{sub 2}O{sub 2} than ZnO@APTMS and ZnO:Cu@APTMS QDs probably via mechanisms associating photo-induced charge carriers and Fenton reactions. In cytotoxicity experiments conducted in the dark or under light exposure, ZnO@APTMS/Cu QDs appeared slightly more deleterious to Escherichia coli cells than the two other QDs, therefore pointing out the importance of the presence of Cu{sup 2+} ions at the periphery of the nanocrystals. On the other hand, with the lack of photo-induced toxicity, it can be inferred that ROS production cannot explain the cytotoxicity associated to the QDs. Our study demonstrates that both the production of ROS from ZnO QDs and their toxicity may be enhanced by chemisorbed Cu{sup 2+} ions, which could be useful for medical or photocatalytic applications.

  19. The medial tibial stress syndrome score: Item generation for a new ...

    African Journals Online (AJOL)

    The medial tibial stress syndrome score: Item generation for a new patient reported outcome measure. ... instrument that evaluates injury severity and treatment effects for medial tibial stress syndrome (MTSS) patients. ... from 32 Countries:.

  20. Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival

    Science.gov (United States)

    Navarro-Yepes, Juliana; Burns, Michaela; Anandhan, Annadurai; Khalimonchuk, Oleh; del Razo, Luz Maria; Quintanilla-Vega, Betzabet; Pappa, Aglaia; Panayiotidis, Mihalis I.

    2014-01-01

    Abstract Significance: The molecular machinery regulating autophagy has started becoming elucidated, and a number of studies have undertaken the task to determine the role of autophagy in cell fate determination within the context of human disease progression. Oxidative stress and redox signaling are also largely involved in the etiology of human diseases, where both survival and cell death signaling cascades have been reported to be modulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Recent Advances: To date, there is a good understanding of the signaling events regulating autophagy, as well as the signaling processes by which alterations in redox homeostasis are transduced to the activation/regulation of signaling cascades. However, very little is known about the molecular events linking them to the regulation of autophagy. This lack of information has hampered the understanding of the role of oxidative stress and autophagy in human disease progression. Critical Issues: In this review, we will focus on (i) the molecular mechanism by which ROS/RNS generation, redox signaling, and/or oxidative stress/damage alter autophagic flux rates; (ii) the role of autophagy as a cell death process or survival mechanism in response to oxidative stress; and (iii) alternative mechanisms by which autophagy-related signaling regulate mitochondrial function and antioxidant response. Future Directions: Our research efforts should now focus on understanding the molecular basis of events by which autophagy is fine tuned by oxidation/reduction events. This knowledge will enable us to understand the mechanisms by which oxidative stress and autophagy regulate human diseases such as cancer and neurodegenerative disorders. Antioxid. Redox Signal. 21, 66–85. PMID:24483238

  1. Parameters for measurement of oxidative stress in diabetes mellitus: applicability of enzyme-linked immunosorbent assay for clinical evaluation.

    Science.gov (United States)

    Noiri, Eisei; Tsukahara, Hirokazu

    2005-05-01

    Investigations of the mechanisms involved in the onset and progression of diabetes have recently confronted the role of reactive oxygen species (ROS) and oxidative stress. Prolonged exposure to hyperglycemic conditions induces nonenzymatic glycation of protein via the so-called Maillard reaction, resulting in Schiff-base products and Amadori products that engender ROS production. These processes initiate and exacerbate micro- and macrovascular complications in diabetes. Increased oxidative stress is induced by excessive ROS production and inadequate antioxidant defenses. Recently, oxidative stress status markers have been associated directly with the severity and prognosis of diabetes. To examine oxidative stress, reliable and high-throughput methods are needed to examine large numbers of clinical samples. The emerging availability of enzyme-linked immunosorbent assay (ELISA) for oxidative stress status markers allows its application to assessment of various pathophysiologic conditions, including diabetes. This review outlines the recent achievements of ELISA application for clinical studies elucidating oxidative stress. It introduces the potential applicability of ELISA for investigating oxidative stress in diabetes.

  2. NADPH oxidase-2 derived ROS dictates murine DC cytokine-mediated cell fate decisions during CD4 T helper-cell commitment.

    Directory of Open Access Journals (Sweden)

    Meghan A Jendrysik

    Full Text Available NADPH oxidase-2 (Nox2/gp91(phox and p47(phox deficient mice are prone to hyper-inflammatory responses suggesting a paradoxical role for Nox2-derived reactive oxygen species (ROS as anti-inflammatory mediators. The molecular basis for this mode of control remains unclear. Here we demonstrate that IFNγ/LPS matured p47(phox-/--ROS deficient mouse dendritic cells (DC secrete more IL-12p70 than similarly treated wild type DC, and in an in vitro co-culture model IFNγ/LPS matured p47(phox-/- DC bias more ovalbumin-specific CD4(+ T lymphocytes toward a Th1 phenotype than wild type (WT DC through a ROS-dependent mechanism linking IL-12p70 expression to regulation of p38-MAPK activation. The Nox2-dependent ROS production in DC negatively regulates proinflammatory IL-12 expression in DC by constraining p38-MAPK activity. Increasing endogenous H(2O(2 attenuates p38-MAPK activity in IFNγ/LPS stimulated WT and p47(phox-/- DC, which suggests that endogenous Nox 2-derived ROS functions as a secondary messenger in the activated p38-MAPK signaling pathway during IL-12 expression. These findings indicate that ROS, generated endogenously by innate and adaptive immune cells, can function as important secondary messengers that can regulate cytokine production and immune cell cross-talk to control during the inflammatory response.

  3. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  4. Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes.

    Science.gov (United States)

    Chen, Mingcang; Gu, Honggang; Ye, Yiyi; Lin, Bing; Sun, Lijuan; Deng, Weiping; Zhang, Jingzhe; Liu, Jianwen

    2010-10-01

    Increasing evidence regarding free radical generating agents and the inflammatory process suggest that accumulation of reactive oxygen species (ROS) could involve hepatotoxicity. Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to prevent tert-butyl hydroperoxide (t-BuOOH)-induced cell damage by augmenting cellular antioxidant defense. Hesperidin significantly protected hepatocytes against t-BuOOH-induced cell cytotoxicity, such as mitochondrial membrane potential (MMP) deplete and lactate dehydrogenase (LDH) release. Hesperidin also remarkably prevented indicators of oxidative stress, such as the ROS and lipid peroxidation level in a dose-dependent manner. Western blot showed that hesperidin facilitated ERK/MAPK phosphorylation which appeared to be responsible for nuclear translocation of Nrf2, thereby inducing cytoprotective heme oxygenase-1 (HO-1) expression. Based on the results described above, it suggested that hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocytes injury and liver dysfunctions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    Science.gov (United States)

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  6. Acclimation to Chronic O3 in Field-grown Soybean is Characterized by Increased Levels of TCA Cycle Transcripts and ROS Scavenging Compounds in Addition to Decreased Photosynthetic Capacity

    Science.gov (United States)

    Tropospheric ozone (O3) is a pollutant that is generated by volatile organic compounds, nitrogen oxides and sunlight. When plants take in O3 through stomata, harmful reactive oxygen species (ROS) are produced that induce the production of ROS scavenging antioxidants. Climate change predictions indic...

  7. Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mei, E-mail: happy_deercn@163.com [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Zhang, Minfang; Tahara, Yoshio; Chechetka, Svetlana; Miyako, Eijiro [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Iijima, Sumio [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya 468-8502 (Japan); Yudasaka, Masako, E-mail: m-yudasaka@aist.go.jp [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan)

    2014-10-01

    Understanding the molecular mechanisms responsible for the cytotoxic effects of carbon nanomaterials is important for their future biomedical applications. Carbon nanotubular materials induce the generation of reactive oxygen species (ROS), which causes cell death; however, the exact details of this process are still unclear. Here, we identify a mechanism of ROS generation that is involved in the apoptosis of RAW264.7 macrophages caused by excess uptake of carbon nanohorns (CNHs), a typical type of carbon nanotubule. CNH accumulated in the lysosomes, where they induced lysosomal membrane permeabilization (LMP) and the subsequent release of lysosomal proteases, such as cathepsins, which in turn caused mitochondrial dysfunction and triggered the generation of ROS in the mitochondria. The nicotinamide adenine dinucleotide phosphate oxidase was not directly involved in CNH-related ROS production, and the ROS generation cannot be regulated by mitochondrial electron transport chain. ROS fed back to amplify the mitochondrial dysfunction, leading to the subsequent activation of caspases and cell apoptosis. Carbon nanotubules commonly accumulate in the lysosomes after internalization in cells; however, lysosomal dysfunction has not attracted much attention in toxicity studies of these materials. These results suggest that LMP, a neglected mechanism, may be the primary reason for carbon nanotubule toxicity. - Highlights: • We clarify an apoptotic mechanism of RAW264.7 cells caused by carbon nanohorns. • In the meantime, the mechanism of CNH-induced ROS generation is identified. • LMP is the initial factor of CNH-induced ROS generation and cell death. • Cathepsins work as mediators that connect LMP and mitochondrial dysfunction.

  8. Study of residual stresses generated in machining of AISI 4340 steel

    International Nuclear Information System (INIS)

    Reis, W.P. dos; Fonseca, M.P. Cindra; Serrao, L.F.; Chuvas, T.C.; Oliveira, L.C.

    2010-01-01

    Among the mechanical construction steels, AISI 4340 has good harden ability, while combining high strength with toughness and good fatigue strength, making it excellent for application in the metalworking industry, where it can work at different levels and types of requests. Residual stresses are generated in almost all processes of mechanical manufacturing. In this study, the residual stresses generated in different machining processes and heat treatment hardening of AISI 4340 were analyzed by X-ray diffraction, by the sen 2 ψ method, using Crκβ radiation and compared. All samples, except for turned and cut by EDM, presented compressive residual stresses in the surface with various magnitudes. (author)

  9. Anti-oxidative effects of Rooibos tea (Aspalathus linearis on immobilization-induced oxidative stress in rat brain.

    Directory of Open Access Journals (Sweden)

    In-Sun Hong

    Full Text Available Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea's ability to (i reverse the increase in stress-related metabolites (5-HIAA and FFA, (ii prevent lipid peroxidation (LPO, (iii restore stress-induced protein degradation (PD, (iv regulate glutathione metabolism (GSH and GSH/GSSG ratio, and (v modulate changes in the activities of antioxidant enzymes (SOD and CAT.

  10. Towards Interactive, Incremental Programming of ROS Nodes

    DEFF Research Database (Denmark)

    Adam, Marian Sorin; Schultz, Ulrik Pagh

    Writing software for controlling robots is a complex task, usually demanding command of many programming languages and requiring significant experimentation. We believe that a bottom-up development process that complements traditional component- and MDSD-based approaches can facilitate...... experimentation. We propose the use of an internal DSL providing both a tool to interactively create ROS nodes and a behaviour-replacement mechanism to interactively reshape existing ROS nodes by wrapping the external interfaces (the publish/subscribe topics), dynamically controlled using the Python command line...

  11. Hepatoprotective properties of kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis.

    Science.gov (United States)

    Bhattacharya, Semantee; Gachhui, Ratan; Sil, Parames C

    2011-06-01

    Kombucha, a fermented tea (KT) is claimed to possess many beneficial properties. Recent studies have suggested that KT prevents paracetamol and carbon tetrachloride-induced hepatotoxicity. We investigated the beneficial role of KT was against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity and cell death in murine hepatocytes. TBHP is a well known reactive oxygen species (ROS) inducer, and it induces oxidative stress in organ pathophysiology. In our experiments, TBHP caused a reduction in cell viability, enhanced the membrane leakage and disturbed the intra-cellular antioxidant machineries while simultaneous treatment of the cells with KT and this ROS inducer maintained membrane integrity and prevented the alterations in the cellular antioxidant status. These findings led us to explore the detailed molecular mechanisms involved in the protective effect of KT. TBHP introduced apoptosis as the primary phenomena of cell death as evidenced by flow cytometric analyses. In addition, ROS generation, changes in the mitochondrial membrane potential, cytochrome c release, activation of caspases (3 and 9) and Apaf-1 were detected confirming involvement of mitochondrial pathway in this pathophysiology. Simultaneous treatment of KT with TBHP, on the other hand, protected the cells against oxidative injury and maintained their normal physiology. In conclusion, KT was found to modulate the oxidative stress induced apoptosis in murine hepatocytes probably due to its antioxidant activity and functioning via mitochondria dependent pathways and could be beneficial against liver diseases, where oxidative stress is known to play a crucial role. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. MAP17, a ROS-dependent oncogene

    International Nuclear Information System (INIS)

    Carnero, Amancio

    2012-01-01

    MAP17 is a small 17 kDa non-glycosylated membrane protein previously identified as being overexpressed in carcinomas. Breast tumor cells that overexpress MAP17 show an increased tumoral phenotype with enhanced proliferative capabilities both in the presence or the absence of contact inhibition, decreased apoptotic sensitivity, and increased migration. MAP17-expressing clones also grow better in nude mice. The increased malignant cell behavior induced by MAP17 is associated with an increase in reactive oxygen species (ROS) production, and the treatment of MAP17-expressing cells with antioxidants results in a reduction in the tumorigenic properties of these cells. The MAP17-dependent increase in ROS and tumorigenesis relies on its PDZ-binding domain because disruption of this sequence by point mutations abolishes the ability of MAP17 to enhance ROS production and tumorigenesis. MAP17 is overexpressed in a great variety of human carcinomas, including breast tumors. Immunohistochemical analysis of MAP17 during cancer progression demonstrates that overexpression of the protein strongly correlates with tumoral progression. Generalized MAP17 overexpression in human carcinomas indicates that MAP17 can be a good marker for tumorigenesis and, especially, for malignant progression.

  13. Ca(2+) mishandling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress.

    Science.gov (United States)

    Carvajal, Karla; Balderas-Villalobos, Jaime; Bello-Sanchez, Ma Dolores; Phillips-Farfán, Bryan; Molina-Muñoz, Tzindilu; Aldana-Quintero, Hugo; Gómez-Viquez, Norma L

    2014-11-01

    Obesity and insulin resistance (IR) are strongly connected to the development of subclinical cardiac dysfunction and eventually can lead to heart failure, which is the main cause of morbidity and death in patients having these metabolic diseases. It has been considered that excessive fat tissue may play a critical role in producing systemic IR and enhancing reactive oxygen species (ROS) generation. This oxidative stress (OS) may elicit or exacerbate IR. On the other hand, evidence suggests that some of the cellular mechanisms involved in the pathophysiology of obesity and IR-related cardiomyopathy are excessive myocardial ROS production and abnormal Ca(2+) homeostasis. In addition, emerging evidence suggests that augmented ROS production may contribute to Ca(2+) mishandling by affecting the redox state of key proteins implicated in this process. In this review, we focus on the role of Ca(2+) mishandling in the development of cardiac dysfunction in obesity and IR and address the evidence suggesting that OS might also contribute to cardiac dysfunction by affecting Ca(2+) handling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Jose Henrique M Oliveira

    2011-03-01

    Full Text Available The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.

  15. Capilliposide Isolated from Lysimachia capillipes Hemsl. Induces ROS Generation, Cell Cycle Arrest, and Apoptosis in Human Nonsmall Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Zheng-hua Fei

    2014-01-01

    Full Text Available Several data has reported that capilliposide, extracted from a traditional Chinese medicine, Lysimachia capillipes Hemsl. (LC could exhibit inhibitory effect on cell proliferation in various cancers. The current study investigated the antitumor efficacy of Capilliposide and elucidated its potential molecular mechanism involved in vivo and vitro. Our results indicated that LC capilliposide inhibited proliferation of lung cancer cells in a dose-dependent manner. LC capilliposide induced cell cycle arrest at the S stage and enhanced apoptosis in NSCLC cells. Treatment with LC capilliposide increased the intracellular level of ROS, which activated the mitochondrial apoptotic pathway. Blockage of ROS by NAC highly reversed the effect of LC capilliposide on apoptosis. Xenograft tumor growth was significantly lower in the LC-treated group compared with the untreated control group (P<0.05. The results also show that LC treatment does not produce any overt signs of acute toxicity in vivo. These findings demonstrate that LC capilliposide could exert an anti-tumor effect on NSCLC through mitochondrial-mediated apoptotic pathway and the activation of ROS is involved.

  16. Blue light-induced oxidative stress in live skin.

    Science.gov (United States)

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-07-01

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    Science.gov (United States)

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  18. Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels

    NARCIS (Netherlands)

    Heinen, André; Aldakkak, Mohammed; Stowe, David F.; Rhodes, Samhita S.; Riess, Matthias L.; Varadarajan, Srinivasan G.; Camara, Amadou K. S.

    2007-01-01

    Mitochondria generate reactive oxygen species (ROS) dependent on substrate conditions, O(2) concentration, redox state, and activity of the mitochondrial complexes. It is well known that the FADH(2)-linked substrate succinate induces reverse electron flow to complex I of the electron transport chain

  19. The ‘Goldilocks Zone’ from a redox perspective - Adaptive versus deleterious responses to oxidative stress in striated muscle

    Directory of Open Access Journals (Sweden)

    Rick J Alleman

    2014-09-01

    Full Text Available Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system’s position on the ‘hormetic curve’ is governed by the source and temporality of reactive oxygen species (ROS production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g. months to years inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome.

  20. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.