WorldWideScience

Sample records for stress distribution transmitted

  1. STRAIN-STRESS DISTRIBUTION OF “HOMOGENEOUS” SOIL MASS DURING THE LOAD TRANSMITTED THROUGH THE LIMITED AREA IN THE PLAN, APPLIED INSIDE THE ELASTIC HOMOGENEOUS SOIL MASS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2017-03-01

    Full Text Available Summary. Based on the current understanding of the piles work in clayey soils; that is forming during driving process a compacted core (compacted platform in the pile tip plane and transferring the load from the pile (from the piling foundation not through the pile tip but through the pressed core (compacted platform, the stress in the soil mass by the load applied inside the elastic half-space is determined with the change in the calculated scheme of load transferring to the “homogeneous” soil mass.

  2. The pressure distribution for biharmonic transmitting array: theoretical study

    Science.gov (United States)

    Baranowska, A.

    2005-03-01

    The aim of the paper is theoretical analysis of the finite amplitude waves interaction problem for the biharmonic transmitting array. We assume that the array consists of 16 circular pistons of the same dimensions that regrouped in two sections. Two different arrangements of radiating elements were considered. In this situation the radiating surface is non-continuous without axial symmetry. The mathematical model was built on the basis of the Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation. To solve the problem the finite-difference method was applied. On-axis pressure amplitude for different frequency waves as a function of distance from the source, transverse pressure distribution of these waves at fixed distances from the source and pressure amplitude distribution for them at fixed planes were examined. Especially changes of normalized pressure amplitude for difference frequency were studied. The paper presents mathematical model and some results of theoretical investigations obtained for different values of source parameters.

  3. Modelling the geographical distribution of soil-transmitted helminth infections in Bolivia.

    Science.gov (United States)

    Chammartin, Frédérique; Scholte, Ronaldo G C; Malone, John B; Bavia, Mara E; Nieto, Prixia; Utzinger, Jürg; Vounatsou, Penelope

    2013-05-25

    The prevalence of infection with the three common soil-transmitted helminths (i.e. Ascaris lumbricoides, Trichuris trichiura, and hookworm) in Bolivia is among the highest in Latin America. However, the spatial distribution and burden of soil-transmitted helminthiasis are poorly documented. We analysed historical survey data using Bayesian geostatistical models to identify determinants of the distribution of soil-transmitted helminth infections, predict the geographical distribution of infection risk, and assess treatment needs and costs in the frame of preventive chemotherapy. Rigorous geostatistical variable selection identified the most important predictors of A. lumbricoides, T. trichiura, and hookworm transmission. Results show that precipitation during the wettest quarter above 400 mm favours the distribution of A. lumbricoides. Altitude has a negative effect on T. trichiura. Hookworm is sensitive to temperature during the coldest month. We estimate that 38.0%, 19.3%, and 11.4% of the Bolivian population is infected with A. lumbricoides, T. trichiura, and hookworm, respectively. Assuming independence of the three infections, 48.4% of the population is infected with any soil-transmitted helminth. Empirical-based estimates, according to treatment recommendations by the World Health Organization, suggest a total of 2.9 million annualised treatments for the control of soil-transmitted helminthiasis in Bolivia. We provide estimates of soil-transmitted helminth infections in Bolivia based on high-resolution spatial prediction and an innovative variable selection approach. However, the scarcity of the data suggests that a national survey is required for more accurate mapping that will govern spatial targeting of soil-transmitted helminthiasis control.

  4. Transmitted ion energy loss distributions to detect cluster formation in silicon

    International Nuclear Information System (INIS)

    Selen, L.J.M.; Loon, A. van; IJzendoorn, L.J. van; Voigt, M.J.A. de

    2002-01-01

    The energy loss distribution of ions transmitted through a 5.7±0.2 μm thick Si crystal was measured and simulated with the Monte Carlo channeling simulation code FLUX. A general resemblance between the measured and simulated energy loss distributions was obtained after incorporation of an energy dependent energy loss in the simulation program. The energy loss calculations are used to investigate the feasibility to detect the presence of light element dopant clusters in a host crystal from the shape of the energy loss distribution, with transmission ion channeling. A curved crystal structure is used as a model for a region in the host crystal with clusters. The presence of the curvature does have a large influence on the transmitted energy distribution, which offers the possibility to determine the presence of dopant clusters in a host crystal with transmission ion channeling

  5. Temperature distribution and thermal stress

    Indian Academy of Sciences (India)

    Abstract. Thermal effects of a double-end-pumped cubic Nd:YVO4 laser crystal are investigated in this paper. A detailed analysis of temperature distribution and thermal stress in cubic crystal with circular shape pumping is discussed. It has been shown that by considering the total input powers as constant, the ...

  6. Inter-Vehicle Communication System Utilizing Autonomous Distributed Transmit Power Control

    Science.gov (United States)

    Hamada, Yuji; Sawa, Yoshitsugu; Goto, Yukio; Kumazawa, Hiroyuki

    In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.

  7. Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis.

    Science.gov (United States)

    Fang, Yi-Kai; Huang, Kuo-Yang; Huang, Po-Jung; Lin, Rose; Chao, Mei; Tang, Petrus

    2015-12-01

    Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted disease in the world. This infection affects millions of individuals worldwide annually. Although direct sexual contact is the most common mode of transmission, increasing evidence indicates that T. vaginalis can survive in the external environment and can be transmitted by contaminated utensils. We found that the growth of T. vaginalis under cold conditions is greatly inhibited, but recovers after placing these stressed cells at the normal cultivation temperature of 37 °C. However, the mechanisms by which T. vaginalis regulates this adaptive process are unclear. An expressed sequence tag (EST) database generated from a complementary DNA library of T. vaginalis messenger RNAs expressed under cold-culture conditions (4 °C, TvC) was compared with a previously published normal-cultured EST library (37 °C, TvE) to assess the cold-stress responses of T. vaginalis. A total of 9780 clones were sequenced from the TvC library and were mapped to 2934 genes in the T. vaginalis genome. A total of 1254 genes were expressed in both the TvE and TvC libraries, and 1680 genes were only found in the TvC library. A functional analysis showed that cold temperature has effects on many cellular mechanisms, including increased H2O2 tolerance, activation of the ubiquitin-proteasome system, induction of iron-sulfur cluster assembly, and reduced energy metabolism and enzyme expression. The current study is the first large-scale transcriptomic analysis in cold-stressed T. vaginalis and the results enhance our understanding of this important protist. Copyright © 2014. Published by Elsevier B.V.

  8. Spatial distribution of soil-transmitted helminths, including Strongyloides stercoralis, among children in Zanzibar

    Directory of Open Access Journals (Sweden)

    Stefanie Knopp

    2008-11-01

    Full Text Available A programme periodically distributing anthelminthic drugs to school-aged children for the control of soiltransmitted helminthiasis was launched in Zanzibar in the early 1990s. We investigated the spatial distribution of soiltransmitted helminth infections, including Strongyloides stercoralis, in 336 children from six districts in Unguja, Zanzibar, in 2007. One stool sample per child was examined with the Kato-Katz, Koga agar plate and Baermann methods. The point prevalence of the different helminth infections was compared to the geological characteristics of the study sites. The observed prevalences for Trichuris trichiura, Ascaris lumbricoides, hookworm and S. stercoralis were 35.5%, 12.2%, 11.9% and 2.2%, respectively, with considerable spatial heterogeneity. Whilst T. trichiura and hookworm infections were found in all six districts, no A. lumbricoides infections were recorded in the urban setting and only a low prevalence (2.2% was observed in the South district. S. stercoralis infections were found in four districts with the highest prevalence (4.0% in the West district. The prevalence of infection with any soil-transmitted helminth was highest in the North A district (69.6% and lowest in the urban setting (22.4%. A. lumbricoides, hookworm and, with the exception of the North B district, S. stercoralis infections were observed to be more prevalent in the settings north of Zanzibar Town, which are characterized by alluvial clayey soils, moist forest regions and a higher precipitation. After a decade of large-scale administration of anthelminthic drugs, the prevalence of soil-transmitted helminth infections across Unguja is still considerable. Hence, additional measures, such as improving access to adequate sanitation and clean water and continued health education, are warranted to successfully control soil-transmitted helminthiasis in Zanzibar.

  9. [Research on controlling iron release of desalted water transmitted in existing water distribution system].

    Science.gov (United States)

    Tian, Yi-Mei; Liu, Yang; Zhao, Peng; Shan, Jin-Lin; Yang, Suo-Yin; Liu, Wei

    2012-04-01

    Desalted water, with strong corrosion characteristics, would possibly lead to serious "red water" when transmitted and distributed in existing municipal water distribution network. The main reason for red water phenomenon is iron release in water pipes. In order to study the methods of controlling iron release in existing drinking water distribution pipe, tubercle analysis of steel pipe and cast iron pipe, which have served the distribution system for 30-40 years, was carried out, the main construction materials were Fe3O4 and FeOOH; and immersion experiments were carried in more corrosive pipes. Through changing mixing volume of tap water and desalted water, pH, alkalinity, chloride and sulfate, the influence of different water quality indexes on iron release were mainly analyzed. Meanwhile, based on controlling iron content, water quality conditions were established to meet with the safety distribution of desalted water: volume ratio of potable water and desalted water should be higher than or equal to 2, pH was higher than 7.6, alkalinity was higher than 200 mg x L(-1).

  10. Monte Carlo calculations of energy and angular distributions of transmitted and backscattered neutrons of 15 MeV incident energy

    International Nuclear Information System (INIS)

    Gaber, M.; Faied, A.

    1994-01-01

    The Monte Carlo technique was used to generate both energy and angular distributions of transmitted and backscattered neutrons incident on infinite graphite slabs of thicknesses ranging from 1-90 cm. Point isotropic and parallel beams of 15 MeV neutrons were used. A computer program was developed to simulate collisions by fast neutrons. (author)

  11. Stress distribution in two-dimensional silos

    Science.gov (United States)

    Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel

    2018-01-01

    Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.

  12. Spatio-temporal distribution of soil-transmitted helminth infections in Brazil.

    Science.gov (United States)

    Chammartin, Frédérique; Guimarães, Luiz H; Scholte, Ronaldo Gc; Bavia, Mara E; Utzinger, Jürg; Vounatsou, Penelope

    2014-09-18

    In Brazil, preventive chemotherapy targeting soil-transmitted helminthiasis is being scaled-up. Hence, spatially explicit estimates of infection risks providing information about the current situation are needed to guide interventions. Available high-resolution national model-based estimates either rely on analyses of data restricted to a given period of time, or on historical data collected over a longer period. While efforts have been made to take into account the spatial structure of the data in the modelling approach, little emphasis has been placed on the temporal dimension. We extracted georeferenced survey data on the prevalence of infection with soil-transmitted helminths (i.e. Ascaris lumbricoides, hookworm and Trichuris trichiura) in Brazil from the Global Neglected Tropical Diseases (GNTD) database. Selection of the most important predictors of infection risk was carried out using a Bayesian geostatistical approach and temporal models that address non-linearity and correlation of the explanatory variables. The spatial process was estimated through a predictive process approximation. Spatio-temporal models were built on the selected predictors with integrated nested Laplace approximation using stochastic partial differential equations. Our models revealed that, over the past 20 years, the risk of soil-transmitted helminth infection has decreased in Brazil, mainly because of the reduction of A. lumbricoides and hookworm infections. From 2010 onwards, we estimate that the infection prevalences with A. lumbricoides, hookworm and T. trichiura are 3.6%, 1.7% and 1.4%, respectively. We also provide a map highlighting municipalities in need of preventive chemotherapy, based on a predicted soil-transmitted helminth infection risk in excess of 20%. The need for treatments in the school-aged population at the municipality level was estimated at 1.8 million doses of anthelminthic tablets per year. The analysis of the spatio-temporal aspect of the risk of infection

  13. Macro design effects on stress distribution around implants: A photoelastic stress analysis

    Directory of Open Access Journals (Sweden)

    Serhat Emre Ozkir

    2012-01-01

    Conclusion: As there were observable differences between the implant types, straight placed cylindrical implants showed better stress distribution characteristics, while inclined tapering implants had better stress distribution characteristics.

  14. Stress distributions of coils for toroidal magnetic field

    International Nuclear Information System (INIS)

    Kajita, Tateo; Miyamoto, Kenro.

    1976-01-01

    The stress distributions of a D shaped coil and a circular coil are computed by the finite element method. The dependences of the stress distribution on the geometrical parameters of the stress distribution on the geometrical parameters of the coils and supporting methods are examined. The maximum amount of the stress in the D shaped coil is not much smaller than that of the circular one. However, the stress distribution of the D shaped coil becomes much more uniform. The supporting method has as much effect as the geometrical parameters of the coil on the stress distribution. (auth.)

  15. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice. Journal Home ... Von Mises and thermal stress distributions were evaluated. Results: In all ... distribution. Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ...

  16. An approximate analytical solution for the energy distribution of beta particles transmitted through metal foils

    International Nuclear Information System (INIS)

    Gurler, O.; Yalcin, S.; Gultekin, A.; Kaynak, G.; Gundogdu, O.

    2006-01-01

    The energy distributions of beta particles which penetrated a certain matter thickness were studied experimentally and theoretically by using a surface barrier solid state detector. A valid theoretical expression based on average values between energy and distance traveled during the slowing down of the electron was obtained. Two analytical expressions were proposed; one for the energy distribution of monoenergetic electrons which penetrated a certain matter thickness, and one for the response function in the detector for monoenergetic electrons detected with its entire energy. Response functions of the detector for beta particles emitted from 204 Tl isotope which penetrated a certain matter thickness were obtained for two different aluminum thicknesses, and the results were discussed by comparing with experimental energy spectra

  17. An approximate analytical solution for the energy distribution of beta particles transmitted through metal foils

    Energy Technology Data Exchange (ETDEWEB)

    Gurler, O. [Faculty of Arts and Sciences, University of Uludag, 16059 Bursa (Turkey)]. E-mail: ogurler@uludag.edu.tr; Yalcin, S. [Gazi University Kastamonu, Education Faculty, 37200 Kastamonu (Turkey); Gultekin, A. [Faculty of Arts and Sciences, University of Uludag, 16059 Bursa (Turkey); Kaynak, G. [Faculty of Arts and Sciences, University of Uludag, 16059 Bursa (Turkey); Gundogdu, O. [School of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2006-04-15

    The energy distributions of beta particles which penetrated a certain matter thickness were studied experimentally and theoretically by using a surface barrier solid state detector. A valid theoretical expression based on average values between energy and distance traveled during the slowing down of the electron was obtained. Two analytical expressions were proposed; one for the energy distribution of monoenergetic electrons which penetrated a certain matter thickness, and one for the response function in the detector for monoenergetic electrons detected with its entire energy. Response functions of the detector for beta particles emitted from {sup 204}Tl isotope which penetrated a certain matter thickness were obtained for two different aluminum thicknesses, and the results were discussed by comparing with experimental energy spectra.

  18. Distribution of sexually transmitted diseases and risk factors by work locations among female sex workers in Tijuana, Mexico.

    Science.gov (United States)

    Rusch, Melanie L A; Brouwer, Kimberly C; Lozada, Remedios; Strathdee, Steffanie A; Magis-Rodríguez, Carlos; Patterson, Thomas L

    2010-10-01

    Sex work is regulated in the Zona Roja (red light district) in Tijuana, Mexico, where HIV and sexually transmitted disease (STD) prevalence is high among female sex workers (FSWs). We examined the spatial distribution of STDs by work venue among FSWs in Tijuana. FSWs aged 18 years and older who reported unprotected sex with ≥ 1 client in the past 2 months underwent testing for HIV, syphilis, gonorrhea, and Chlamydia. HIV/STDs were mapped by venue (i.e., bar, hotel) and Getis-Ord Gi statistics were used to identify geographic hotspots. High-risk venues were then identified using a standardized STD ratio (high risk defined as a ratio ≥ 1.25). Logistic regression was used to assess correlates of working at a high risk venue. Of 474 FSWs, 176 (36.4%) had at least 1 bacterial sexually transmitted infection (STI); 36 (7.6%) were HIV-positive. Within the Zona Roja, 1 venue was identified as a geographic "hotspot," with a higher than expected number of HIV/STD-positive FSW (P Tijuana. Structural interventions that focus on sex work venues could help increase STI diagnosis, prevention, and treatment among FSWs in Tijuana.

  19. Stress Distribution, Friction and Listeria Propulsion

    Science.gov (United States)

    Prost, Jacques

    2003-03-01

    I will review our work on the physics of listeria propulsion based on an unavoidable elastic analysis of the stress distribution in the actin gel and dynamical boundary conditions (both normal and tangential). I will show in particular that it provides a natural explanation for the symmetry breaking transition occurring with beads (work with K. Sekimoto and F. Julicher), of the saltatory behavior of beads reported by A Bernheim et al (Nature 2002) and of the shape of soft beads (with O. Campas and J.F Joanny). This last analysis proves that, as announced in an earlier paper (F; Gerbal et al Biophys Journal 2000) the rear part of the gel contributes negatively to the motion.

  20. stress distribution in continuo ribution in continuous thin ribution

    African Journals Online (AJOL)

    eobe

    studied stresses in thin-walled box girder bridges but stress distribution walled box girder bridges .... the classical thin plate theory and trigonometric series. Lertsima et al. ..... remedied by applying spline finite strip method. Compared to other ...

  1. Mapping and modelling the geographical distribution of soil-transmitted helminthiases in Peninsular Malaysia: implications for control approaches

    Directory of Open Access Journals (Sweden)

    Romano Ngui

    2014-05-01

    Full Text Available Soil-transmitted helminth (STH infections in Malaysia are still highly prevalent, especially in rural and remote communities. Complete estimations of the total disease burden in the country has not been performed, since available data are not easily accessible in the public domain. The current study utilised geographical information system (GIS to collate and map the distribution of STH infections from available empirical survey data in Peninsular Malaysia, highlighting areas where information is lacking. The assembled database, comprising surveys conducted between 1970 and 2012 in 99 different locations, represents one of the most comprehensive compilations of STH infections in the country. It was found that the geographical distribution of STH varies considerably with no clear pattern across the surveyed locations. Our attempt to generate predictive risk maps of STH infections on the basis of ecological limits such as climate and other environmental factors shows that the prevalence of Ascaris lumbricoides is low along the western coast and the southern part of the country, whilst the prevalence is high in the central plains and in the North. In the present study, we demonstrate that GIS can play an important role in providing data for the implementation of sustainable and effective STH control programmes to policy-makers and authorities in charge.

  2. Chlamydia trachomatis serovar distribution and other sexually transmitted coinfections in subjects attending an STD outpatients clinic in Italy.

    Science.gov (United States)

    Marangoni, Antonella; Foschi, Claudio; Nardini, Paola; D'Antuono, Antonietta; Banzola, Nicoletta; Di Francesco, Antonietta; Ostanello, Fabio; Russo, Incoronata; Donati, Manuela; Cevenini, Roberto

    2012-04-01

    We studied the prevalence of Chlamydia trachomatis (CT) urogenital infection and the distribution of different genotypes in a non-selected STD population of 1625 patients, evaluating presence of coinfections with other sexually transmitted diseases. Each patient was bled to perform serological tests for syphilis and HIV, then urethral or endocervical swabs were obtained for the detection of CT and Neisseria gonorrhoeae by culture. DNA extracted from remnant positive swabs was amplified by omp1 Nested PCR and products were sequenced. Total prevalence of CT infection was 6.3% (103/1625), with strong differences between men and women (11.4% vs 3.9%, Pmen than in women (Pmen and women (P=0.042) and among patients with or without coinfection (P=0.035); patients infected by serovar D/Da showed the highest coinfection rate. This study can be considered a contribution in increasing knowledge on CT serovar distribution in Italy. Further studies are needed to better define molecular epidemiology of CT infection and to investigate its correlation with other STDs.

  3. Use of frozen stress in extracting stress intensity factor distributions in three dimensional cracked body problems

    Science.gov (United States)

    Smith, C. W.

    1992-01-01

    The adaptation of the frozen stress photoelastic method to the determination of the distribution of stress intensity factors in three dimensional problems is briefly reviewed. The method is then applied to several engineering problems of practical significance.

  4. Stress Distribution in Graded Cellular Materials Under Dynamic Compression

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available Abstract Dynamic compression behaviors of density-homogeneous and density-graded irregular honeycombs are investigated using cell-based finite element models under a constant-velocity impact scenario. A method based on the cross-sectional engineering stress is developed to obtain the one-dimensional stress distribution along the loading direction in a cellular specimen. The cross-sectional engineering stress is contributed by two parts: the node-transitive stress and the contact-induced stress, which are caused by the nodal force and the contact of cell walls, respectively. It is found that the contact-induced stress is dominant for the significantly enhanced stress behind the shock front. The stress enhancement and the compaction wave propagation can be observed through the stress distributions in honeycombs under high-velocity compression. The single and double compaction wave modes are observed directly from the stress distributions. Theoretical analysis of the compaction wave propagation in the density-graded honeycombs based on the R-PH (rigid-plastic hardening idealization is carried out and verified by the numerical simulations. It is found that stress distribution in cellular materials and the compaction wave propagation characteristics under dynamic compression can be approximately predicted by the R-PH shock model.

  5. Comparing of Normal Stress Distribution in Static and Dynamic Soil-Structure Interaction Analyses

    International Nuclear Information System (INIS)

    Kholdebarin, Alireza; Massumi, Ali; Davoodi, Mohammad; Tabatabaiefar, Hamid Reza

    2008-01-01

    It is important to consider the vertical component of earthquake loading and inertia force in soil-structure interaction analyses. In most circumstances, design engineers are primarily concerned about the analysis of behavior of foundations subjected to earthquake-induced forces transmitted from the bedrock. In this research, a single rigid foundation with designated geometrical parameters located on sandy-clay soil has been modeled in FLAC software with Finite Different Method and subjected to three different vertical components of earthquake records. In these cases, it is important to evaluate effect of footing on underlying soil and to consider normal stress in soil with and without footing. The distribution of normal stress under the footing in static and dynamic states has been studied and compared. This Comparison indicated that, increasing in normal stress under the footing caused by vertical component of ground excitations, has decreased dynamic vertical settlement in comparison with static state

  6. Distribution of incremental static stress caused by earthquakes

    Directory of Open Access Journals (Sweden)

    Y. Y. Kagan

    1994-01-01

    Full Text Available Theoretical calculations, simulations and measurements of rotation of earthquake focal mechanisms suggest that the stress in earthquake focal zones follows the Cauchy distribution which is one of the stable probability distributions (with the value of the exponent α equal to 1. We review the properties of the stable distributions and show that the Cauchy distribution is expected to approximate the stress caused by earthquakes occurring over geologically long intervals of a fault zone development. However, the stress caused by recent earthquakes recorded in instrumental catalogues, should follow symmetric stable distributions with the value of α significantly less than one. This is explained by a fractal distribution of earthquake hypocentres: the dimension of a hypocentre set, ��, is close to zero for short-term earthquake catalogues and asymptotically approaches 2¼ for long-time intervals. We use the Harvard catalogue of seismic moment tensor solutions to investigate the distribution of incremental static stress caused by earthquakes. The stress measured in the focal zone of each event is approximated by stable distributions. In agreement with theoretical considerations, the exponent value of the distribution approaches zero as the time span of an earthquake catalogue (ΔT decreases. For large stress values α increases. We surmise that it is caused by the δ increase for small inter-earthquake distances due to location errors.

  7. The distribution of sexually-transmitted Human Papillomaviruses in HIV positive and negative patients in Zambia, Africa

    Directory of Open Access Journals (Sweden)

    Hause Lara

    2007-07-01

    Full Text Available Abstract Background Human Papillomaviruses (HPV are double-stranded DNA viruses, considered to be the primary etiological agents in cervical intraepithelial neoplasias and cancers. Approximately 15–20 of the 40 mucosal HPVs confer a high-risk of progression of lesions to invasive cancer. In this study, we investigated the prevalence of sexually transmitted HPVs in Human Immunodeficiency Virus (HIV positive and negative patients in Zambia, Africa. The rate of high-risk HPV genotypes worldwide varies within each country. Thus, we sought to investigate the rates of HPV infection in sub-Saharan Africa and the potential role of HIV in affecting the HPV genotype distribution. Methods This retrospective cross-sectional study reports findings on the association and effects of HIV on HPV infections in an existing cohort of patients at University Teaching Hospital (UTH Lusaka, Zambia. The objective of this study was to assess HPV prevalence, genotype distribution and to identify co-factors that influence HPV infection. Polymerase chain reaction (PCR with two standard consensus primer sets (CpI/II and GP5+/6+ was used to test for the presence of HPV DNA. Primers specific for β-actin were used to monitor DNA quality. Vaginal lavage samples, collected between 1998-1999 from a total of 70 women, were part of a larger cohort that was also analyzed for HIV and human herpesvirus infection. Seventy of the samples yielded usable DNA. HIV status was determined by two rapid assays, Capillus and Determine. The incidence of HIV and HPV infections and HPV genotype distributions were calculated and statistical significance was determined by Chi-Squared test. Results We determined that most common HPV genotypes detected among these Zambian patients were types 16 and 18 (21.6% each, which is approximately three-fold greater than the rates for HPV16, and ten-fold greater than the rates for HPV18 in the United States. The worldwide prevalence of HPV16 is approximately 14

  8. Thermographic Analysis of Stress Distribution in Welded Joints

    Directory of Open Access Journals (Sweden)

    Domazet Ž.

    2010-06-01

    Full Text Available The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  9. Thermographic Analysis of Stress Distribution in Welded Joints

    Science.gov (United States)

    Piršić, T.; Krstulović Opara, L.; Domazet, Ž.

    2010-06-01

    The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural) stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis) in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  10. Core stress distribution of phase shifting multimode polymer optical fiber

    International Nuclear Information System (INIS)

    Furukawa, Rei; Matsuura, Motoharu; Nagata, Morio; Mishima, Kenji; Inoue, Azusa; Tagaya, Akihiro; Koike, Yasuhiro

    2013-01-01

    Poly-(methyl methacrylate-co-benzyl methacrylate) polarization-maintaining optical fibers are known for their high response to normal stress. In this report, responses to higher stress levels up to 0.45 MPa were investigated. The stress amplitude and direction in the fiber cross section were calculated and analyzed with a coincident mode-field obtained from the near-field pattern. The stress amplitude varies significantly in the horizontal direction and is considered to create multiple phases, explaining the measurement results. To investigate possible permanent deformation, the core yield point profile was analyzed. Although it largely exceeds the average applied stress, the calculated stress distribution indicates that the core could partially experience stress that exceeds the yield point

  11. Vertical Distribution of Tidal Flow Reynolds Stress in Shallow Sea

    Institute of Scientific and Technical Information of China (English)

    SONG Zhi-yao; NI Zhi-hui; LU Guo-nian

    2009-01-01

    Based on the results of the tidal flow Reynolds stresses of the field observations,indoor experiments,and numerical models,the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper.Having been well verified with the field data and experimental data,the proposed distribution of Reynolds stress is also compared with numerical model results,and a good agreement is obtained,showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration,upward when the tidal flow is of deceleration.Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress,turbulent generation,transmission,and so on.The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit,but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.

  12. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  13. Measurement of probability distributions for internal stresses in dislocated crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, Angus J.; Tarleton, Edmund; Vilalta-Clemente, Arantxa; Collins, David M. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Jiang, Jun; Britton, T. Benjamin [Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ (United Kingdom)

    2014-11-03

    Here, we analyse residual stress distributions obtained from various crystal systems using high resolution electron backscatter diffraction (EBSD) measurements. Histograms showing stress probability distributions exhibit tails extending to very high stress levels. We demonstrate that these extreme stress values are consistent with the functional form that should be expected for dislocated crystals. Analysis initially developed by Groma and co-workers for X-ray line profile analysis and based on the so-called “restricted second moment of the probability distribution” can be used to estimate the total dislocation density. The generality of the results are illustrated by application to three quite different systems, namely, face centred cubic Cu deformed in uniaxial tension, a body centred cubic steel deformed to larger strain by cold rolling, and hexagonal InAlN layers grown on misfitting sapphire and silicon carbide substrates.

  14. Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel

    Science.gov (United States)

    Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin

    2018-07-01

    Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.

  15. Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel

    Science.gov (United States)

    Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin

    2018-03-01

    Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.

  16. Residual-stress distributions near stainless steel butt weldments

    International Nuclear Information System (INIS)

    Elligson, W.A.; Shack, W.J.

    1978-01-01

    Concern for the integrity of stainless steel butt-weldments in boiling-water-reactor (BWR) piping systems has stimulated study of the conditions that cause stress corrosion cracking (SCC) in the heat-affected zones (HAZ) of the weldments. It is generally agreed that a high stress exceeding the initial yield strength is one of the essential elements for crack initiation. Since design procedures usually ensure that load stresses are below initial yield, the source of the high stresses necessary to produce SCC is thought to be the residual stresses due to welding. To examine the level of residual stresses in the weldments of interest, bulk residual stresses were measured on 100 mm (4-in.) and 254 mm (10-in.) diameter Schedule 80 piping weldments using strain relief techniques. Both laboratory welded specimens and field welded specimens from reactors in service were studied. Axial bulk residual stress distributions were obtained at 45 0 intervals around the circumference. At each azimuthal position, the residual stresses were measured at seven axial positions: on the weld centerline and 13, 20, and 25 mm on either side of the weld centerline on both the inside and outside surfaces

  17. Imaging shear stress distribution and evaluating the stress concentration factor of the human eye

    Science.gov (United States)

    Joseph Antony, S.

    2015-03-01

    Healthy eyes are vital for a better quality of human life. Historically, for man-made materials, scientists and engineers use stress concentration factors to characterise the effects of structural non-homogeneities on their mechanical strength. However, such information is scarce for the human eye. Here we present the shear stress distribution profiles of a healthy human cornea surface in vivo using photo-stress analysis tomography, which is a non-intrusive and non-X-ray based method. The corneal birefringent retardation measured here is comparable to that of previous studies. Using this, we derive eye stress concentration factors and the directional alignment of major principal stress on the surface of the cornea. Similar to thermometers being used for monitoring the general health in humans, this report provides a foundation to characterise the shear stress carrying capacity of the cornea, and a potential bench mark for validating theoretical modelling of stresses in the human eye in future.

  18. Macro design effects on stress distribution around implants: a photoelastic stress analysis.

    Science.gov (United States)

    Ozkir, Serhat Emre; Terzioglu, Hakan

    2012-01-01

    Biomechanics is one of the main factors for achieving long-term success of implant supported prostheses. Long-term failures mostly depend on biomechanical complications. It is important to distinguish the effects of macro design of the implants. In this study, the photoelastic response of four different types of implants that were inserted with different angulations were comparatively analyzed. The implant types investigated were screw cylinder (ITI, Straumann AG, Basel, Switzerland), stepped cylinder (Frialit2, Friadent GmbH, Manheim, Germany), root form (Camlog Rootline, Alatatec, Wilshelm, Germany), and cylindrical implant, with micro-threads on the implant neck (Astra, AstraTech, Mölndal, Sweden). In the test models, one of the implants was inserted straight, while the other one was aligned mesially with 15° angles. The superstructures were prepared as single crowns. A 150N loading was applied to the restorations throughout the test. A comparison of the implant designs showed that there were no significant differences between the straight implants; however, between the inclined implants, the most favorable stress distribution was seen with the stepped cylinder implants. The least favorable stress concentration was observed around the root formed implants. Microthreads around the implant neck appeared to be effective in a homogenous stress distribution. Observations showed that misaligned implants caused less stress than straight implants, but the stress concentrations were not homogenous. As there were observable differences between the implant types, straight placed cylindrical implants showed better stress distribution characteristics, while inclined tapering implants had better stress distribution characteristics.

  19. The Two Defaults Scenario for Stressing Credit Portfolio Loss Distributions

    Directory of Open Access Journals (Sweden)

    Dirk Tasche

    2015-12-01

    Full Text Available The impact of a stress scenario of default events on the loss distribution of a credit portfolio can be assessed by determining the loss distribution conditional on these events. While it is conceptually easy to estimate loss distributions conditional on default events by means of Monte Carlo simulation, it becomes impractical for two or more simultaneous defaults as then the conditioning event is extremely rare. We provide an analytical approach to the calculation of the conditional loss distribution for the CreditRisk + portfolio model with independent random loss given default distributions. The analytical solution for this case can be used to check the accuracy of an approximation to the conditional loss distribution whereby the unconditional model is run with stressed input probabilities of default (PDs. It turns out that this approximation is unbiased. Numerical examples, however, suggest that the approximation may be seriously inaccurate but that the inaccuracy leads to overestimation of tail losses and, hence, the approach errs on the conservative side.

  20. Stress distribution and topography of Tellus Regio, Venus

    Science.gov (United States)

    Williams, David R.; Greeley, Ronald

    1989-01-01

    The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined.

  1. Stress distribution and topography of Tellus Regio, Venus

    International Nuclear Information System (INIS)

    Williams, D.R.; Greeley, R.

    1989-01-01

    The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined

  2. Energy distribution measurements of 300 keV transmitted protons at the axial-to-planar channeling transition in silicon

    International Nuclear Information System (INIS)

    Bulgakov, Yu.V.; Lenkeit, K.; Stolle, R.

    1983-01-01

    The energy distribution of protons with initial energy of 300 keV which passed through a 0.76 μm thick Si monocrystal film was measured under the conditions of transition from the axial to planar (110) channeling. The experimental angular dependences of the transparency coefficient and of the first three moments of the energy distributions (energy loss, straggling, and skewness) for 300 keV protons are shown. The shape of curves are discussed explaining the resonance dechanneling effect and the non-monotonic behaviour of transparency in the case of the axial-to-planar channeling transition

  3. Stress-strength reliability for general bivariate distributions

    Directory of Open Access Journals (Sweden)

    Alaa H. Abdel-Hamid

    2016-10-01

    Full Text Available An expression for the stress-strength reliability R=P(X1distribution. Such distribution includes bivariate compound Weibull, bivariate compound Gompertz, bivariate compound Pareto, among others. In the parametric case, the maximum likelihood estimates of the parameters and reliability function R are obtained. In the non-parametric case, point and interval estimates of R are developed using Govindarajulu's asymptotic distribution-free method when X1 and X2 are dependent. An example is given when the population distribution is bivariate compound Weibull. Simulation is performed, based on different sample sizes to study the performance of estimates.

  4. Geographical Distribution of Intestinal Schistosomiasis and Soil-Transmitted Helminthiasis and Preventive Chemotherapy Strategies in Sierra Leone

    Science.gov (United States)

    Koroma, Joseph B.; Peterson, Jen; Gbakima, Aiah A.; Nylander, Francis E.; Sahr, Foday; Soares Magalhães, Ricardo J.; Zhang, Yaobi; Hodges, Mary H.

    2010-01-01

    Background A national baseline mapping of schistosomiasis and soil-transmitted helminthiasis (STH) was performed in Sierra Leone. The aim was to provide necessary tools for the Ministry of Health and Sanitation to plan the intervention strategies in the national integrated control program on neglected tropical diseases according to the World Health Organization (WHO) guidelines for preventative chemotherapy (PCT) and for future monitoring and evaluation. Methodology/Principal Findings 53 primary schools were randomly selected through a two-staged random sampling throughout the country. Approximately one hundred children aged 5–16 years of age were systematically selected from each school and their stool samples examined in a field laboratory. A total of 5,651 samples were examined. Data were analyzed with multivariable logistic regression models using model-based geostatistics. Spatial analysis predicted that S. mansoni infection was positively associated with population density and elevation and that there was a large cluster of high risk of S. mansoni infection (prevalence >70%) in the north and most of the eastern areas of the country, in line with the observed prevalence in Kono (63.8–78.3%), Koinadugu (21.6–82.1%), Kailahun (43.5–52.6%), Kenema (6.1–68.9%) and Tonkolili (0–57.3%). Hookworm infection was negatively associated with population density and land surface temperature, and was high across Sierra Leone with a large cluster of high infection risk (prevalence >70%) in the north-eastern part of the country. Remarkably low prevalence of Ascaris lumbricoides (7.2%) and Trichuris trichiura (3.3%) was recorded when compared with results published in the 1990s. Conclusions/Significance Results justify PCT for schistosomiasis for school age children and at-risk adults every year in high-risk communities in five districts and every two years in moderate-risk communities in one more district. The high prevalence of STH, particularly hookworm, coupled

  5. Geographical distribution of intestinal schistosomiasis and soil-transmitted helminthiasis and preventive chemotherapy strategies in Sierra Leone.

    Science.gov (United States)

    Koroma, Joseph B; Peterson, Jen; Gbakima, Aiah A; Nylander, Francis E; Sahr, Foday; Soares Magalhães, Ricardo J; Zhang, Yaobi; Hodges, Mary H

    2010-11-23

    A national baseline mapping of schistosomiasis and soil-transmitted helminthiasis (STH) was performed in Sierra Leone. The aim was to provide necessary tools for the Ministry of Health and Sanitation to plan the intervention strategies in the national integrated control program on neglected tropical diseases according to the World Health Organization (WHO) guidelines for preventative chemotherapy (PCT) and for future monitoring and evaluation. 53 primary schools were randomly selected through a two-staged random sampling throughout the country. Approximately one hundred children aged 5-16 years of age were systematically selected from each school and their stool samples examined in a field laboratory. A total of 5,651 samples were examined. Data were analyzed with multivariable logistic regression models using model-based geostatistics. Spatial analysis predicted that S. mansoni infection was positively associated with population density and elevation and that there was a large cluster of high risk of S. mansoni infection (prevalence >70%) in the north and most of the eastern areas of the country, in line with the observed prevalence in Kono (63.8-78.3%), Koinadugu (21.6-82.1%), Kailahun (43.5-52.6%), Kenema (6.1-68.9%) and Tonkolili (0-57.3%). Hookworm infection was negatively associated with population density and land surface temperature, and was high across Sierra Leone with a large cluster of high infection risk (prevalence >70%) in the north-eastern part of the country. Remarkably low prevalence of Ascaris lumbricoides (7.2%) and Trichuris trichiura (3.3%) was recorded when compared with results published in the 1990s. Results justify PCT for schistosomiasis for school age children and at-risk adults every year in high-risk communities in five districts and every two years in moderate-risk communities in one more district. The high prevalence of STH, particularly hookworm, coupled with widespread anemia according to a national report in Sierra Leone, suggests

  6. Modelling the Impact of Condom Distribution on the Incidence and Prevalence of Sexually Transmitted Infections in an Adult Male Prison System.

    Directory of Open Access Journals (Sweden)

    Nick Scott

    Full Text Available To determine the effects of 1 a condom distribution program and 2 a condom distribution program combined with opt-out sexually transmitted infection (STI screening on the transmission and prevalence of STIs in a prison system.Using data from an implementation evaluation of a state-wide prison condom program and parameter estimates from available literature, a deterministic model was developed to quantify the incidence and prevalence of sexually transmitted HIV, hepatitis B, chlamydia, syphilis and gonorrhoea across 14 Victorian prisons. The model included individual prison populations (by longer (>2 years or shorter sentence lengths and monthly prisoner transfers. For each STI, simulations were compared: without any intervention; with a condom distribution program; and with a combined condom and opt-out STI screening at prison reception intervention program.Condoms reduced the annual incidence of syphilis by 99% (N = 66 averted cases; gonorrhoea by 98% (N = 113 cases; hepatitis B by 71% (N = 5 cases; chlamydia by 27% (N = 196 cases; and HIV by 50% (N = 2 cases every 10 years. Condom availability changed the in-prison epidemiology of gonorrhoea and syphilis from self-sustaining to levels unlikely to result in infection outbreaks; however, condoms did not reduce chlamydia prevalence below a self-sustaining level due to its high infectiousness, high prevalence and low detection rate. When combined with a screening intervention program, condoms reduced chlamydia prevalence further, but not below a self-sustaining level. The low prevalence of HIV and hepatitis B in Australian prisons meant the effects of condoms were predicted to be small.Condoms are predicted to effectively reduce the incidence of STIs in prison and are predicted to control syphilis and gonorrhoea transmission, however even combined with a screening on arrival program may be insufficient to reduce chlamydia prevalence below self-sustaining levels. To control chlamydia transmission

  7. Modelling the Impact of Condom Distribution on the Incidence and Prevalence of Sexually Transmitted Infections in an Adult Male Prison System.

    Science.gov (United States)

    Scott, Nick; McBryde, Emma; Kirwan, Amy; Stoové, Mark

    2015-01-01

    To determine the effects of 1) a condom distribution program and 2) a condom distribution program combined with opt-out sexually transmitted infection (STI) screening on the transmission and prevalence of STIs in a prison system. Using data from an implementation evaluation of a state-wide prison condom program and parameter estimates from available literature, a deterministic model was developed to quantify the incidence and prevalence of sexually transmitted HIV, hepatitis B, chlamydia, syphilis and gonorrhoea across 14 Victorian prisons. The model included individual prison populations (by longer (>2 years) or shorter sentence lengths) and monthly prisoner transfers. For each STI, simulations were compared: without any intervention; with a condom distribution program; and with a combined condom and opt-out STI screening at prison reception intervention program. Condoms reduced the annual incidence of syphilis by 99% (N = 66 averted cases); gonorrhoea by 98% (N = 113 cases); hepatitis B by 71% (N = 5 cases); chlamydia by 27% (N = 196 cases); and HIV by 50% (N = 2 cases every 10 years). Condom availability changed the in-prison epidemiology of gonorrhoea and syphilis from self-sustaining to levels unlikely to result in infection outbreaks; however, condoms did not reduce chlamydia prevalence below a self-sustaining level due to its high infectiousness, high prevalence and low detection rate. When combined with a screening intervention program, condoms reduced chlamydia prevalence further, but not below a self-sustaining level. The low prevalence of HIV and hepatitis B in Australian prisons meant the effects of condoms were predicted to be small. Condoms are predicted to effectively reduce the incidence of STIs in prison and are predicted to control syphilis and gonorrhoea transmission, however even combined with a screening on arrival program may be insufficient to reduce chlamydia prevalence below self-sustaining levels. To control chlamydia transmission

  8. Distribution of Schistosomiasis and Soil Transmitted Helminthiasis in Zimbabwe: Towards a National Plan of Action for Control and Elimination

    Science.gov (United States)

    Midzi, Nicholas; Mduluza, Takafira; Chimbari, Moses J.; Tshuma, Clement; Charimari, Lincoln; Mhlanga, Gibson; Manangazira, Portia; Munyati, Shungu M.; Phiri, Isaac; Mutambu, Susan L.; Midzi, Stanley S.; Ncube, Anastancia; Muranzi, Lawrence P.; Rusakaniko, Simbarashe; Mutapi, Francisca

    2014-01-01

    Background Schistosomiasis and STH are among the list of neglected tropical diseases considered for control by the WHO. Although both diseases are endemic in Zimbabwe, no nationwide control interventions have been implemented. For this reason in 2009 the Zimbabwe Ministry of Health and Child Care included the two diseases in the 2009–2013 National Health Strategy highlighting the importance of understanding the distribution and burden of the diseases as a prerequisite for elimination interventions. It is against this background that a national survey was conducted. Methodology A countrywide cross-sectional survey was carried out in 280 primary schools in 68 districts between September 2010 and August 2011. Schistosoma haematobium was diagnosed using the urine filtration technique. Schistosoma mansoni and STH (hookworms, Trichuris trichiura, Ascaris lumbricoides) were diagnosed using both the Kato Katz and formol ether concentration techniques. Main findings Schistosomiasis was more prevalent country-wide (22.7%) than STH (5.5%). The prevalence of S. haematobium was 18.0% while that of S. mansoni was 7.2%. Hookworms were the most common STH with a prevalence of 3.2% followed by A. lumbricoides and T. trichiura with prevalence of 2.5% and 0.1%, respectively. The prevalence of heavy infection intensity as defined by WHO for any schistosome species was 5.8% (range 0%–18.3% in districts). Only light to moderate infection intensities were observed for STH species. The distribution of schistosomiasis and STH varied significantly between provinces, districts and schools (p<0.001). Overall, the prevalence of co-infection with schistosomiasis and STH was 1.5%. The actual co-endemicity of schistosomiasis and STH was observed in 43 (63.2%) of the 68 districts screened. Conclusion and recommendations This study provided comprehensive baseline data on the distribution of schistosomiasis and STH that formed the basis for initiating a national control and elimination programme

  9. Distribution of schistosomiasis and soil transmitted helminthiasis in Zimbabwe: towards a national plan of action for control and elimination.

    Science.gov (United States)

    Midzi, Nicholas; Mduluza, Takafira; Chimbari, Moses J; Tshuma, Clement; Charimari, Lincoln; Mhlanga, Gibson; Manangazira, Portia; Munyati, Shungu M; Phiri, Isaac; Mutambu, Susan L; Midzi, Stanley S; Ncube, Anastancia; Muranzi, Lawrence P; Rusakaniko, Simbarashe; Mutapi, Francisca

    2014-08-01

    Schistosomiasis and STH are among the list of neglected tropical diseases considered for control by the WHO. Although both diseases are endemic in Zimbabwe, no nationwide control interventions have been implemented. For this reason in 2009 the Zimbabwe Ministry of Health and Child Care included the two diseases in the 2009-2013 National Health Strategy highlighting the importance of understanding the distribution and burden of the diseases as a prerequisite for elimination interventions. It is against this background that a national survey was conducted. A countrywide cross-sectional survey was carried out in 280 primary schools in 68 districts between September 2010 and August 2011. Schistosoma haematobium was diagnosed using the urine filtration technique. Schistosoma mansoni and STH (hookworms, Trichuris trichiura, Ascaris lumbricoides) were diagnosed using both the Kato Katz and formol ether concentration techniques. Schistosomiasis was more prevalent country-wide (22.7%) than STH (5.5%). The prevalence of S. haematobium was 18.0% while that of S. mansoni was 7.2%. Hookworms were the most common STH with a prevalence of 3.2% followed by A. lumbricoides and T. trichiura with prevalence of 2.5% and 0.1%, respectively. The prevalence of heavy infection intensity as defined by WHO for any schistosome species was 5.8% (range 0%-18.3% in districts). Only light to moderate infection intensities were observed for STH species. The distribution of schistosomiasis and STH varied significantly between provinces, districts and schools (p<0.001). Overall, the prevalence of co-infection with schistosomiasis and STH was 1.5%. The actual co-endemicity of schistosomiasis and STH was observed in 43 (63.2%) of the 68 districts screened. This study provided comprehensive baseline data on the distribution of schistosomiasis and STH that formed the basis for initiating a national control and elimination programme for these two neglected tropical diseases in Zimbabwe.

  10. Assessment of the stress transmitted to dental implants connected to screw-retained bars using different casting techniques.

    Science.gov (United States)

    Haselhuhn, Klaus; Marotti, Juliana; Tortamano, Pedro; Weiss, Claudia; Suleiman, Lubna; Wolfart, Stefan

    2014-12-01

    Passive fit of the prosthetic superstructure is important to avoid complications; however, evaluation of passive fit is not possible using conventional procedures. Thus, the aim of this study was to check and locate mechanical stress in bar restorations fabricated using two casting techniques. Fifteen patients received four implants in the interforaminal region of the mandible, and a bar was fabricated using either the cast-on abutment or lost-wax casting technique. The fit accuracy was checked according to the Sheffield's test criteria. Measurements were recorded on the master model with a gap-free, passive fit using foil strain gauges both before and after tightening the prosthetic screws. Data acquisition and processing was analyzed with computer software and submitted to statistical analysis (ANOVA). The greatest axial distortion was at position 42 with the cast-on abutment technique, with a mean distortion of 450 μm/m. The lowest axial distortion occurred at position 44 with the lost-wax casting technique, with a mean distortion of 100 μm/m. The minimal differences between the means of axial distortion do not indicate any significant differences between the techniques (P = 0.2076). Analysis of the sensor axial distortion in relation to the implant position produced a significant difference (P casting techniques, with no significant difference between the sides.

  11. Influence of Hardening Model on Weld Residual Stress Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Jonathan; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  12. Influence of Hardening Model on Weld Residual Stress Distribution

    International Nuclear Information System (INIS)

    Mullins, Jonathan; Gunnars, Jens

    2009-06-01

    This study is the third stage of a project sponsored by the Swedish Radiation Safety Authority (SSM) to improve the weld residual stress modelling procedures currently used in Sweden. The aim of this study was to determine which material hardening model gave the best agreement with experimentally measured weld residual stress distributions. Two girth weld geometries were considered: 19mm and 65mm thick girth welds with Rin/t ratios of 10.5 and 2.8, respectively. The FE solver ABAQUS Standard v6.5 was used for analysis. As a preliminary step some improvements were made to the welding simulation procedure used in part one of the project. First, monotonic stress strain curves and a mixed isotropic/kinematic hardening model were sourced from the literature for 316 stainless steel. Second, more detailed information was obtained regarding the geometry and welding sequence for the Case 1 weld (compared with phase 1 of this project). Following the preliminary step, welding simulations were conducted using isotropic, kinematic and mixed hardening models. The isotropic hardening model gave the best overall agreement with experimental measurements; it is therefore recommended for future use in welding simulations. The mixed hardening model gave good agreement for predictions of the hoop stress but tended to under estimate the magnitude of the axial stress. It must be noted that two different sources of data were used for the isotropic and mixed models in this study and this may have contributed to the discrepancy in predictions. When defining a mixed hardening model it is difficult to delineate the relative contributions of isotropic and kinematic hardening and for the model used it may be that a greater isotropic hardening component should have been specified. The kinematic hardening model consistently underestimated the magnitude of both the axial and hoop stress and is not recommended for use. Two sensitivity studies were also conducted. In the first the effect of using a

  13. Stress distribution characteristics in the vicinity of coal seam floor

    Science.gov (United States)

    Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe

    2018-01-01

    Although longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method in recent years, roadway floor heave and rock bursts frequently appear when exploiting such coal seams with large dip angle. This paper proposes addressing this problem by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress distribution characteristics in the vicinity of coal seam floor based on the stress slip line field theory. In the second step, numerical calculation using FLAC3D was conducted. Finally, an evaluation of the 3-D RLSA for solving this particular issue was given. Results indicate that for this particular mine the proposed 3-D RLSA results in 24% increase in the coal recovery ratio and a modest reduction in excavation and maintenance costs compared to the conventional LTCC method.

  14. Modelling spatial distribution of snails transmitting parasitic worms with importance to human and animal health and analysis of distributional changes in relation to climate

    Directory of Open Access Journals (Sweden)

    Ulrik B. Pedersen

    2014-05-01

    Full Text Available The environment, the on-going global climate change and the ecology of animal species determine the localisation of habitats and the geographical distribution of the various species in nature. The aim of this study was to explore the effects of such changes on snail species not only of interest to naturalists but also of importance to human and animal health. The spatial distribution of freshwater snail intermediate hosts involved in the transmission of schistosomiasis, fascioliasis and paramphistomiasis (i.e. Bulinus globosus, Biomphalaria pfeifferi and Lymnaea natalensis were modelled by the use of a maximum entropy algorithm (Maxent. Two snail observation datasets from Zimbabwe, from 1988 and 2012, were com- pared in terms of geospatial distribution and potential distributional change over this 24-year period investigated. Climate data, from the two years were identified and used in a species distribution modelling framework to produce maps of pre- dicted suitable snail habitats. Having both climate- and snail observation data spaced 24 years in time represent a unique opportunity to evaluate biological response of snails to changes in climate variables. The study shows that snail habitat suit- ability is highly variable in Zimbabwe with foci mainly in the central Highveld but also in areas to the South and West. It is further demonstrated that the spatial distribution of suitable habitats changes with variation in the climatic conditions, and that this parallels that of the predicted climate change.

  15. Spatial and temporal distribution of soil-transmitted helminth infection in sub-Saharan Africa: a systematic review and geostatistical meta-analysis.

    Science.gov (United States)

    Karagiannis-Voules, Dimitrios-Alexios; Biedermann, Patricia; Ekpo, Uwem F; Garba, Amadou; Langer, Erika; Mathieu, Els; Midzi, Nicholas; Mwinzi, Pauline; Polderman, Anton M; Raso, Giovanna; Sacko, Moussa; Talla, Idrissa; Tchuenté, Louis-Albert Tchuem; Touré, Seydou; Winkler, Mirko S; Utzinger, Jürg; Vounatsou, Penelope

    2015-01-01

    Interest is growing in predictive risk mapping for neglected tropical diseases (NTDs), particularly to scale up preventive chemotherapy, surveillance, and elimination efforts. Soil-transmitted helminths (hookworm, Ascaris lumbricoides, and Trichuris trichiura) are the most widespread NTDs, but broad geographical analyses are scarce. We aimed to predict the spatial and temporal distribution of soil-transmitted helminth infections, including the number of infected people and treatment needs, across sub-Saharan Africa. We systematically searched PubMed, Web of Knowledge, and African Journal Online from inception to Dec 31, 2013, without language restrictions, to identify georeferenced surveys. We extracted data from household surveys on sources of drinking water, sanitation, and women's level of education. Bayesian geostatistical models were used to align the data in space and estimate risk of with hookworm, A lumbricoides, and T trichiura over a grid of roughly 1 million pixels at a spatial resolution of 5 × 5 km. We calculated anthelmintic treatment needs on the basis of WHO guidelines (treatment of all school-aged children once per year where prevalence in this population is 20-50% or twice per year if prevalence is greater than 50%). We identified 459 relevant survey reports that referenced 6040 unique locations. We estimate that the prevalence of hookworm, A lumbricoides, and T trichiura among school-aged children from 2000 onwards was 16·5%, 6·6%, and 4·4%. These estimates are between 52% and 74% lower than those in surveys done before 2000, and have become similar to values for the entire communities. We estimated that 126 million doses of anthelmintic treatments are required per year. Patterns of soil-transmitted helminth infection in sub-Saharan Africa have changed and the prevalence of infection has declined substantially in this millennium, probably due to socioeconomic development and large-scale deworming programmes. The global control strategy

  16. Modelling spatial distribution of snails transmitting parasitic worms with importance to human and animal health and analysis of distributional changes in relation to climate

    DEFF Research Database (Denmark)

    Pedersen, Ulrik Bo; Midzi, Nicholas; Mduluza, Takafira

    2014-01-01

    to naturalists but also of importance to human and animal health. The spatial distribution of freshwater snail intermediate hosts involved in the transmission of schistosomiasis, fascioliasis and paramphistomiasis (i.e. Bulinus globosus, Biomphalaria pfeifferi and Lymnaea natalensis) were modelled by the use...

  17. Numerical modeling of regional stress distributions for geothermal exploration

    Science.gov (United States)

    Guillon, Theophile; Peter-Borie, Mariane; Gentier, Sylvie; Blaisonneau, Arnold

    2017-04-01

    Any high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the "geological risk", i.e., the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics …) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the European project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault

  18. Representation of stress distributions inprismatic and cylindrical linear elements

    Directory of Open Access Journals (Sweden)

    Fernando Giménez-Palomares

    2017-08-01

    Full Text Available The  loads  applied  on  a  linear  structural  element  generate  internal  forces  in  the  cross  sections  which,  in turn, result in stresses along the element. The nature, extent and shape of stress distributions are required  parameters  to  compute  the  strength  of  structural  elements  or  machinery  components  in  order  to  its analysis or design. In this work, it is presented a virtual laboratory which allows to obtain different stress distributions  in  an  isostatic  beam,  prismatic  or  cylindrical,  subjected  to  axial  forces,  shear  forces  and bending moments. The virtual laboratory permits a great interactivity, allowing the simulation of various real  situations  in  which  the  user  can  modify  the  magnitude  and  direction  of  acting  loads,  and  also  the boundary conditions of the beam. The ultimate goal of this paper is to present a tool aimed to support the learning and teaching of subjects related to Elasticy and Strength of Materials that are found in bachelor university degrees.

  19. Schistosomiasis and soil-transmitted helminth control in Niger: cost effectiveness of school based and community distributed mass drug administration [corrected].

    Directory of Open Access Journals (Sweden)

    Jacqueline Leslie

    2011-10-01

    Full Text Available BACKGROUND: In 2004 Niger established a large scale schistosomiasis and soil-transmitted helminths control programme targeting children aged 5-14 years and adults. In two years 4.3 million treatments were delivered in 40 districts using school based and community distribution. METHOD AND FINDINGS: Four districts were surveyed in 2006 to estimate the economic cost per district, per treatment and per schistosomiasis infection averted. The study compares the costs of treatment at start up and in a subsequent year, identifies the allocation of costs by activity, input and organisation, and assesses the cost of treatment. The cost of delivery provided by teachers is compared to cost of delivery by community distributers (CDD. The total economic cost of the programme including programmatic, national and local government costs and international support in four study districts, over two years, was US$ 456,718; an economic cost/treatment of $0.58. The full economic delivery cost of school based treatment in 2005/06 was $0.76, and for community distribution was $0.46. Including only the programme costs the figures are $0.47 and $0.41 respectively. Differences at sub-district are more marked. This is partly explained by the fact that a CDD treats 5.8 people for every one treated in school. The range in cost effectiveness for both direct and direct and indirect treatments is quantified and the need to develop and refine such estimates is emphasised. CONCLUSIONS: The relative cost effectiveness of school and community delivery differs by country according to the composition of the population treated, the numbers targeted and treated at school and in the community, the cost and frequency of training teachers and CDDs. Options analysis of technical and implementation alternatives including a financial analysis should form part of the programme design process.

  20. HammerCloud: A Stress Testing System for Distributed Analysis

    International Nuclear Information System (INIS)

    Ster, Daniel C van der; García, Mario Úbeda; Paladin, Massimo; Elmsheuser, Johannes

    2011-01-01

    Distributed analysis of LHC data is an I/O-intensive activity which places large demands on the internal network, storage, and local disks at remote computing facilities. Commissioning and maintaining a site to provide an efficient distributed analysis service is therefore a challenge which can be aided by tools to help evaluate a variety of infrastructure designs and configurations. HammerCloud is one such tool; it is a stress testing service which is used by central operations teams, regional coordinators, and local site admins to (a) submit arbitrary number of analysis jobs to a number of sites, (b) maintain at a steady-state a predefined number of jobs running at the sites under test, (c) produce web-based reports summarizing the efficiency and performance of the sites under test, and (d) present a web-interface for historical test results to both evaluate progress and compare sites. HammerCloud was built around the distributed analysis framework Ganga, exploiting its API for grid job management. HammerCloud has been employed by the ATLAS experiment for continuous testing of many sites worldwide, and also during large scale computing challenges such as STEP'09 and UAT'09, where the scale of the tests exceeded 10,000 concurrently running and 1,000,000 total jobs over multi-day periods. In addition, HammerCloud is being adopted by the CMS experiment; the plugin structure of HammerCloud allows the execution of CMS jobs using their official tool (CRAB).

  1. HammerCloud: A Stress Testing System for Distributed Analysis

    CERN Document Server

    van der Ster, Daniel C; Ubeda Garcia, Mario; Paladin, Massimo

    2011-01-01

    Distributed analysis of LHC data is an I/O-intensive activity which places large demands on the internal network, storage, and local disks at remote computing facilities. Commissioning and maintaining a site to provide an efficient distributed analysis service is therefore a challenge which can be aided by tools to help evaluate a variety of infrastructure designs and configurations. HammerCloud (HC) is one such tool; it is a stress testing service which is used by central operations teams, regional coordinators, and local site admins to (a) submit arbitrary number of analysis jobs to a number of sites, (b) maintain at a steady-state a predefined number of jobs running at the sites under test, (c) produce web-based reports summarizing the efficiency and performance of the sites under test, and (d) present a web-interface for historical test results to both evaluate progress and compare sites. HC was built around the distributed analysis framework Ganga, exploiting its API for grid job management. HC has been ...

  2. The Influence of Distributed Leadership on Job Stress in Technical and Vocational Education

    OpenAIRE

    Siva Rabindarang; Khuan Wai Bing; Khoo Yin Yin

    2014-01-01

    Distributed leadership proposed in the field of leadership studies for the improvement of organizational effectiveness. Job stress is the work situation that can affect the organizational performance. Thus, these studies carried out to measure the influence of distributed leadership on job stress. Studies on distributed leadership and job stress are scarce especially in technical and vocational education. Therefore, the purpose of this study is to determine the influence of distributed leader...

  3. Primitive Path Analysis and Stress Distribution in Highly Strained Macromolecules.

    Science.gov (United States)

    Hsu, Hsiao-Ping; Kremer, Kurt

    2018-01-16

    Polymer material properties are strongly affected by entanglement effects. For long polymer chains and composite materials, they are expected to be at the origin of many technically important phenomena, such as shear thinning or the Mullins effect, which microscopically can be related to topological constraints between chains. Starting from fully equilibrated highly entangled polymer melts, we investigate the effect of isochoric elongation on the entanglement structure and force distribution of such systems. Theoretically, the related viscoelastic response usually is discussed in terms of the tube model. We relate stress relaxation in the linear and nonlinear viscoelastic regimes to a primitive path analysis (PPA) and show that tension forces both along the original paths and along primitive paths, that is, the backbone of the tube, in the stretching direction correspond to each other. Unlike homogeneous relaxation along the chain contour, the PPA reveals a so far not observed long-lived clustering of topological constraints along the chains in the deformed state.

  4. The stress distribution in shell bodies and wings as an equilibrium problem

    Science.gov (United States)

    Wagner, H

    1937-01-01

    This report treats the stress distribution in shell-shaped airplane components (fuselage, wings) as an equilibrium problem; it includes both cylindrical and non-cylindrical shells. In particular, it treats the stress distribution at the point of stress application and at cut-out points.

  5. Stress Distribution during Rapid Canine Retraction with a Distraction Device: A Finite Element Study

    Directory of Open Access Journals (Sweden)

    Nareen Chakravarthy Challagulla

    2013-01-01

    Conclusion: The periodontium in the maxillary first molar region showed the maximum stress and the canine showed unequal stress distribution with more stress at the crest of the alveolar bone and lesser stress at the apical region which lessens root resorption.

  6. Tibiofemoral contact stress and stress distribution evaluation of total knee arthroplasties.

    Science.gov (United States)

    Szivek, J A; Cutignola, L; Volz, R G

    1995-08-01

    The Fuji film (Itochu, Los Angeles, CA) area analysis technique demonstrates that a more accurate assessment of tibiofemoral contact stresses is possible when the film is used at 37 degrees C and at the upper end of its sensitivity range (in this case, a 2,000-N load). An AMK with a regular and Hylamer-M insert (DePuy, Warsaw, IN), an MG II (Zimmer, Warsaw, IN), an Omnifit (Osteonics, Allendale, NJ), an Ortholoc III (Dow Corning Wright, Midland, MI), a PCA II (Howmedica, Rutherford, NJ), and a PFC (Johnson & Johnson Orthopaedics, Raynham, MA) had average contact stresses that varied only 12% at 60 degrees flexion. At 0 degrees, 15 degrees and 60 degrees flexion, stresses ranged from 13 to 25 MPa. Contact area distribution ratios, which were smaller at 37 degrees C than at 24 degrees C, provide a quantitative means of grouping implants according to the shape of the tibiofemoral contact area. The Omnifit, MG II, PCA II, and PFC had small ratios (symmetric areas). The AMK and Ortholoc III had large ratios (asymmetric contact areas). If the impression is reflective of wear, it would be expected to be focal in knees with small ratios and contact areas, and uniform in knees with large ratios and contact areas, whereas large ratios and small areas would imply a linear wear pattern. Calibrated electrical resistance contact stress measurements indicated that the Fuji film measurements underestimated the magnitude of contact stresses. They also provided a means of quantifying the rate of area increase during initial loading of the knees, with the highest area increase noted for the knee with the roughest insert (Ortholoc III) and the lowest area increase for the knee with the smoothest insert (PCA II).

  7. Investigation of stress distribution in normal and oblique partial penetration. Welded nozzles by 3-D photoelastic stress freezing method

    International Nuclear Information System (INIS)

    Miyamoto, H.; Kubo, M.; Katori, T.

    1981-01-01

    Experimental investigation by 3-D photoelasticity has been carried out to measure the stress distribution of partial penetration welded nozzles attached to the bottom head of a pressure vessel. A 3-D photoelastic stress freezing method was chosen as the most effective means of observation of the stress distribution in the vicinity of the nozzle/wall weld. The experimental model was a 1:20 scale spherical bottom head. Both an axisymmetric nozzle and an asymmetric nozzle were investigated. Epoxy resin, which is a thermosetting plastic, was used as the model material. The oblique effect was examined by comparing the stress distribution of the asymmetric nozzle with that of the axisymmetric nozzle. Furthermore, the experimental results were compared with the analytical results using 3-D finite element method (FEM). The stress distributions obtained from the frozen fringe pattern of the 3-D photoelastic model were in good agreement with those by 3-D FEM. (orig.)

  8. Estimation of stress distribution in ferromagnetic tensile specimens using low cost eddy current stress measurement system and BP neural network.

    Directory of Open Access Journals (Sweden)

    Jianwei Li

    Full Text Available Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235 specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.

  9. Estimation of stress distribution in ferromagnetic tensile specimens using low cost eddy current stress measurement system and BP neural network.

    Science.gov (United States)

    Li, Jianwei; Zhang, Weimin; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi

    2017-01-01

    Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.

  10. Stress distribution patterns of implant supported overdentures-analog versus finite element analysis: A comparative in-vitro study

    Directory of Open Access Journals (Sweden)

    Soumyadev Satpathy

    2015-01-01

    Full Text Available Aims and Objectives: The aim of this study was to asses & compare the load transfer characteristics of Ball/O-ring and Bar/Clip attachment systems in implant supported overdentures using analog and finite element analysis models. Methodology: For the analog part of the study, castable bar was used for the bar and clip attachment and a metallic housing with a rubber O-ring component was used for the ball/O-ring attachment. The stress on the implant surface was measured using the strain-gauge technique. For the finite element analysis, the model were fabricated and load applications were done in a similar manner as in analog study. Results: The difference between both the attachment systems was found to be statistically significant (P<0.001. Conclusion: Ball/O-ring attachment system transmitted lesser amount of stresses to the implants on the non-loading side, as compared to the Bar-Clip attachment system. When overall stress distribution is compared, the Bar-Clip attachment seems to perform better than the Ball/O-ring attachment, because the force was distributed better.

  11. Geographical distribution of soil transmitted helminths and the effects of community type in South Asia and South East Asia - A systematic review.

    Directory of Open Access Journals (Sweden)

    Zachary A Silver

    2018-01-01

    Full Text Available Soil-transmitted helminth (STH infections are among the most prevalent neglected tropical diseases (NTD worldwide. Since the publication of the WHO road map to combat NTD in 2012, there has been a renewed commitment to control STH. In this study, we analysed the geographical distribution and effect of community type on prevalence of hookworm, Trichuris and Ascaris in south Asia and south east Asia.We conducted a systematic review of open-access literature published in PubMed Central and the Global Atlas of Helminth Infection. A total of 4182 articles were available and after applying selection criteria, 174 studies from the region were retained for analysis.Ascaris was the commonest STH identified with an overall prevalence of 18% (95% CI, 14-23% followed by Trichuris (14%, 9-19% and hookworm (12%, 9-15%. Hookworm prevalence was highest in Laos, Vietnam and Cambodia. We found a geographical overlap in countries with high prevalence rates for Trichuris and Ascaris (Malaysia, Philippines, Myanmar, Vietnam and Bangladesh. When the effect of community type was examined, prevalence rates of hookworm was comparable in rural (19%, 14-24% and tribal communities (14%, 10-19%. Tribal communities, however, showed higher prevalence of Trichuris (38%, 18-63% and Ascaris (32%, 23-43% than rural communities (13%, 9-20% and 14%, 9-20% respectively. Considerable between and within country heterogeneity in the distribution of STH (I2 >90% was also noted. When available data from school aged children (SAC were analysed, prevalence of Ascaris (25% 16-31% and Trichuris (22%, 14-34% were higher than among the general population while that of hookworm (10%, 7-16% was comparable.Our analysis showed significant variation in prevalence rates between and within countries in the region. Highlighting the importance of community type in prevalence and species mix, we showed that tribal and rural communities had higher hookworm infections than urban communities and for

  12. Geographical distribution of soil transmitted helminths and the effects of community type in South Asia and South East Asia - A systematic review.

    Science.gov (United States)

    Silver, Zachary A; Kaliappan, Saravanakumar P; Samuel, Prasanna; Venugopal, Srinivasan; Kang, Gagandeep; Sarkar, Rajiv; Ajjampur, Sitara S R

    2018-01-01

    Soil-transmitted helminth (STH) infections are among the most prevalent neglected tropical diseases (NTD) worldwide. Since the publication of the WHO road map to combat NTD in 2012, there has been a renewed commitment to control STH. In this study, we analysed the geographical distribution and effect of community type on prevalence of hookworm, Trichuris and Ascaris in south Asia and south east Asia. We conducted a systematic review of open-access literature published in PubMed Central and the Global Atlas of Helminth Infection. A total of 4182 articles were available and after applying selection criteria, 174 studies from the region were retained for analysis. Ascaris was the commonest STH identified with an overall prevalence of 18% (95% CI, 14-23%) followed by Trichuris (14%, 9-19%) and hookworm (12%, 9-15%). Hookworm prevalence was highest in Laos, Vietnam and Cambodia. We found a geographical overlap in countries with high prevalence rates for Trichuris and Ascaris (Malaysia, Philippines, Myanmar, Vietnam and Bangladesh). When the effect of community type was examined, prevalence rates of hookworm was comparable in rural (19%, 14-24%) and tribal communities (14%, 10-19%). Tribal communities, however, showed higher prevalence of Trichuris (38%, 18-63%) and Ascaris (32%, 23-43%) than rural communities (13%, 9-20% and 14%, 9-20% respectively). Considerable between and within country heterogeneity in the distribution of STH (I2 >90%) was also noted. When available data from school aged children (SAC) were analysed, prevalence of Ascaris (25% 16-31%) and Trichuris (22%, 14-34%) were higher than among the general population while that of hookworm (10%, 7-16%) was comparable. Our analysis showed significant variation in prevalence rates between and within countries in the region. Highlighting the importance of community type in prevalence and species mix, we showed that tribal and rural communities had higher hookworm infections than urban communities and for

  13. Spatiotemporal distribution and population at risk of soil-transmitted helminth infections following an eight-year school-based deworming programme in Burundi, 2007–2014

    Directory of Open Access Journals (Sweden)

    Mohamad Assoum

    2017-11-01

    Full Text Available Abstract Background Investigating the effect of successive annual deworming rounds on the spatiotemporal distribution of infection prevalence and numbers at risk for soil-transmitted helminths (STHs can help identify communities nearing elimination and those needing further interventions. In this study, we aim to quantify the impact of an 8-year mass drug administration (MDA programme (from 2007 to 2014 on the spatiotemporal distribution of prevalence of STH infections and to estimate the number of school-aged children infected with STHs in Burundi. Methods During annual longitudinal school-based surveys in Burundi between 2007 and 2011, STH infection and anthropometric data for a total of 40,656 children were collected; these data were supplemented with data from a national survey conducted in 2014. Bayesian model based geostatistics (MBG were used to generate predictive prevalence maps for each STH species and year. The numbers of children at-risk of infection per district between 2008 and 2014 were estimated as the product of the predictive prevalence maps and population density maps. Results Overall, the degree of spatial clustering of STH infections decreased between 2008 and 2011; in 2014 the geographical clusters of all STH infections reappeared. The reduction in prevalence was small for Ascaris lumbricoides and Trichuris trichiura in the centre and central north of the country. Our predictive prevalence maps for hookworm indicate a reduction in prevalence along the periphery of the country. The predicted number of children infected with any STH species decreased substantially between 2007 and 2011, but in 2014 there was an increase in the predicted number of children infected with A. lumbricoides and T. trichiura. In 2014, the districts with the highest predicted number of children infected with A. lumbricoides, T. trichiura and hookworms were Kibuye district (n = 128,903, Mabayi district (n = 35,302 and Kiremba (n = 87

  14. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    Science.gov (United States)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  15. A novel stress distribution analytical model of O-ring seals under different properties of materials

    International Nuclear Information System (INIS)

    Wu, Di; Wang, Shao Ping; Wang, Xing Jian

    2017-01-01

    The elastomeric O-ring seals have been widely used as sealing elements in hydraulic systems. The sealing performance of O-ring seals is related to stress distribution. The stresses distribution depends on the squeeze rate and internal pressure, and would vary with properties of O-ring seals materials. Thus, in order to study the sealing performance of O-ring seals, it is necessary to describe the analytic relationship between stress distribution and properties of O-ring seals materials. For this purpose, a novel Stress distribution analytical model (SDAM) is proposed in this paper. The analytical model utilizes two stress complex functions to describe the stress distribution of O-ring seals. The proposed SDAM can express not only the analytical relationship between stress distribution and Young’s modulus, but also the one between stress distribution and Poisson’s ratio. Finally, compared results between finite element analysis and the SDAM validate that the proposed model can effectively reveal the stress distribution under different properties for O-ring materials

  16. A novel stress distribution analytical model of O-ring seals under different properties of materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di; Wang, Shao Ping; Wang, Xing Jian [School of Automation Science and Electrical Engineering, Beihang University, Beijing (China)

    2017-01-15

    The elastomeric O-ring seals have been widely used as sealing elements in hydraulic systems. The sealing performance of O-ring seals is related to stress distribution. The stresses distribution depends on the squeeze rate and internal pressure, and would vary with properties of O-ring seals materials. Thus, in order to study the sealing performance of O-ring seals, it is necessary to describe the analytic relationship between stress distribution and properties of O-ring seals materials. For this purpose, a novel Stress distribution analytical model (SDAM) is proposed in this paper. The analytical model utilizes two stress complex functions to describe the stress distribution of O-ring seals. The proposed SDAM can express not only the analytical relationship between stress distribution and Young’s modulus, but also the one between stress distribution and Poisson’s ratio. Finally, compared results between finite element analysis and the SDAM validate that the proposed model can effectively reveal the stress distribution under different properties for O-ring materials.

  17. Visualizing Stress and Temperature Distribution During Elevated Temperature Deformation of IN-617 Using Nanomechanical Raman Spectroscopy

    Science.gov (United States)

    Zhang, Yang; Wang, Hao; Tomar, Vikas

    2018-04-01

    This work presents direct measurements of stress and temperature distribution during the mesoscale microstructural deformation of Inconel-617 (IN-617) during 3-point bending tests as a function of temperature. A novel nanomechanical Raman spectroscopy (NMRS)-based measurement platform was designed for simultaneous in situ temperature and stress mapping as a function of microstructure during deformation. The temperature distribution was found to be directly correlated to stress distribution for the analyzed microstructures. Stress concentration locations are shown to be directly related to higher heat conduction and result in microstructural hot spots with significant local temperature variation.

  18. Residual Stress Distribution In Heat Affected Zone Of Welded Steel By Means Of Neutron Diffraction Method

    International Nuclear Information System (INIS)

    Fajar, Andika; Prasuad; Gunawan; Muslich, M. Rifai

    1996-01-01

    Three dimensional residual stress distribution in the heat affected zone of 10 mm thick welded steel by means of neutron diffraction technique has been measured. The results showed that the residual stress was distributed near the welded metal, namely within about 46,25 mm. The major tensile stresses occurred in the X-direction, and they attained a level greater than 2000 MPa through the position far away fram the weld. The tensile stresses in the Y and Z- directions lied between 500 and 1500 MPa, The results also suggest that the stress in the surface was greater than that in the middle of the sample

  19. Bed shear stress distribution in straight channels with arbitrary cross section

    DEFF Research Database (Denmark)

    Christensen, Henrik Bo; Fredsøe, Jørgen

    1998-01-01

    The bed shear stress distribution in straight open channels is affected by mechanisms as bed curvature of the cross section profile, shear diffusion, and secondary currents. This paper compares some analytical and numerical methods to estimate the bed shear stress distribution. The methods...

  20. Measurement of stress distributions in truck tyre contact patch in real rolling conditions

    Science.gov (United States)

    Anghelache, Gabriel; Moisescu, Raluca

    2012-12-01

    Stress distributions on three orthogonal directions have been measured across the contact patch of truck tyres using the complex measuring system that contains a transducer assembly with 30 sensing elements placed in the road surface. The measurements have been performed in straight line, in real rolling conditions. Software applications for calibration, data acquisition, and data processing were developed. The influence of changes in inflation pressure and rolling speed on the shapes and sizes of truck tyre contact patch has been shown. The shapes and magnitudes of normal, longitudinal, and lateral stress distributions, measured at low speed, have been presented and commented. The effect of wheel toe-in and camber on the stress distribution results was observed. The paper highlights the impact of the longitudinal tread ribs on the shear stress distributions. The ratios of stress distributions in the truck tyre contact patch have been computed and discussed.

  1. A numerical study on stress distribution across the ankle joint: Effects of material distribution of bone, muscle force and ligaments.

    Science.gov (United States)

    Mondal, Subrata; Ghosh, Rajesh

    2017-09-01

    The goal of this study is to develop a realistic three dimensional FE model of intact ankle joint. Three dimensional FE model of the intact ankle joint was developed using computed tomography data sets. The effect of muscle force, ligaments and proper material property distribution of bone on stress distribution across the intact ankle joint was studied separately. Present study indicates bone material property, ligaments and muscle force have influence on stress distribution across the ankle joint. Proper bone material, ligaments and muscle must be considered in the computational model for pre-clinical analysis of ankle prosthesis.

  2. Stress distribution in quasi-crystalline granular piles

    NARCIS (Netherlands)

    Trigger, S.A.; Heijst, van G.J.F.; Krasnopolskaya, T.S.; Schram, P.P.J.M.

    2001-01-01

    The main goal of this paper is a rigorous consideration of the stress problem in some simple models of granular piles. Discrete models are considered and the transition to the continuous description is accomplished in order to find the coarse-grained average stress. Some phenomenological rules are

  3. A study of stress distribution in elbows mounted on stanchions

    International Nuclear Information System (INIS)

    Basavanhally, N.R.; Tonet, N.

    1983-01-01

    It is a common practice, both in the nuclear and power piping industry, to have integral attachments on piping to either form a restraint or an anchor. For small attachments, such as lugs, one can use the readily available methods (eg., ASME Code Case N-318) to evaluate the local stresses at these attachments. For elbows or curved pipes mounted on stanchions, the evaluation of local stresses is more complex. In the present analysis, a 3D finite element model was implemented to determine the stress intensification factor that can be applied to piping stress under internal pressure and in-plane bending type of loads. The analysis indicates that, for an internal pressure load, in-plane bending is generated. For such supports, a stress intensification factor should be used to account for the increased loads. The results also indicate that there is an optimum elbow to stanchion post radius ratio which should be used in designing such supports. (orig.)

  4. X-ray study of residual stress distribution of ground ceramics

    International Nuclear Information System (INIS)

    Sakaida, Yoshihisa; Tanaka, Keisuke; Ikuhara, Yuichi; Suzuki, Kenzi.

    1997-01-01

    The residual stress distribution of ground ceramics was determined from the eigen strain existing in the ground surface. The eigen strain of ground ceramics was tensile, and exponentially decreased with the distance from the surface. The residual stress distribution is given as a superposition of an exponential function of compression and a linear function. It is found that the actual residual stress distribution can be approximated by a compressive exponential function because the magnitude of tensile residual stress is negligibly small compared to the compressive residual stress. In the experiments, the diffraction angle was measured on ground silicon nitride for a wide range of sin 2 ψ using the glancing incidence X-ray diffraction technique. A strong nonlinearity was found in the 2θ-sin 2 ψ diagram at very high ψ-angles. From the analysis of nonlinearity, the residual stress distribution was determined. The residual stress distribution of silicon nitride coincided with the distribution calculated from the eigen strain distribution. Transmission electron microscopy was used to clarify the origin of generation of the residual stress. Both strain contrasts and microcracks were observed below the ground surface ; straight dislocations were also observed within silicon nitride grains near the ground surface. (author)

  5. Internal stress distribution for generating closure domains in laser-irradiated Fe–3%Si(110) steels

    International Nuclear Information System (INIS)

    Iwata, Keiji; Imafuku, Muneyuki; Orihara, Hideto; Sakai, Yusuke; Ohya, Shin-Ichi; Suzuki, Tamaki; Shobu, Takahisa; Akita, Koichi; Ishiyama, Kazushi

    2015-01-01

    Internal stress distribution for generating closure domains occurring in laser-irradiated Fe–3%Si(110) steels was investigated using high-energy X-ray analysis and domain theory based on the variational principle. The measured triaxial stresses inside the specimen were compressive and the stress in the rolling direction became more dominant than stresses in the other directions. The calculations based on the variational principle of magnetic energy for closure domains showed that the measured triaxial stresses made the closure domains more stable than the basic domain without closure domains. The experimental and calculation results reveal that the laser-introduced internal stresses result in the occurrence of the closure domains

  6. Analytical model and application of stress distribution on mining coal floor

    Institute of Scientific and Technical Information of China (English)

    ZHU Shu-yun; JIAN Zhen-quan; HOU Hong-liang; XIAO Wei-guo; YAO Pu

    2008-01-01

    Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fixed position of the mining coal floor: the extent of stress variation in a fixed floor position decreases gradually along with depth, the decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth. The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face. The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests, which is an important mechanical basis for preventing water inrush from confined aquifers.

  7. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.

  8. Residual stress distribution in carbon steel pipe welded joint measured by neutron diffraction

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Ishiwata, Masayuki; Morii, Yukio; Minakawa, Nobuaki

    2000-01-01

    In order to estimate crack growth behavior of fatigue and stress corrosion cracking in pipes, the residual stress distribution near the pipe weld region has to be measured through the wall thickness. Since the penetration depth of neutron is deep enough to pass through the thick pipe wall, the neutron diffraction technique for the residual stress measurement is effective for this purpose. At the first step the residual stress distribution near the weld region in a butt-welded carbon steel pipe was measured by the neutron diffraction. Significant stresses extended only to a distance of 30 mm from the center of the weld. The major tensile stresses occurred in the hoop direction in the fusion and heat affected zones of the weldment, and they attained a level greater than 200 MPa through the thickness. While the axial residual stress at the inside surface was 50 MPa, the stress at the outside surface was -100 MPa. The comparison of residual stress distributions measured by the neutron diffraction, the X-ray diffraction and the strain gauge method reveals that the neutron diffraction is the most effective for measuring the residual stress inside the structural components. (author)

  9. Sexually transmitted diphtheria.

    Science.gov (United States)

    Berger, Anja; Lensing, Carmen; Konrad, Regina; Huber, Ingrid; Hogardt, Michael; Sing, Andreas

    2013-03-01

    Diphtheria is caused by diphtheria toxin-producing Corynebacterium species. While classical respiratory diphtheria is transmitted by droplets, cutaneous diphtheria often results from minor trauma. This report concerns the first case of sexually transmitted diphtheria in a patient with non-gonococcal urethritis after orogenital contact.

  10. USACE AIS Transmit Technical Support Summary Report

    Science.gov (United States)

    2014-09-01

    the TAG block for the correct transmitters, and then send to the USACE AIS network. B. Outbound openings in the USCG firewall for the USCG Message...USACE AIS Transmit Technical Support Summary Report Distribution Statement A: Approved for public release; distribution is unlimited...September 2014 Report No. CD-D-09-15 USACE AIS Transmit Technical Support Summary Report ii UNCLAS//Public | CG-926 RDC | I. Gonin et al. Public

  11. Estimation of residual stress distribution for pressurizer nozzle of Kori nuclear power plant considering safe end

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-08-15

    In nuclear power plants, ferritic low alloy steel nozzle was connected with austenitic stainless steel piping system through alloy 82/182 butt weld. Accurate estimation of residual stress for weldment is important in the sense that alloy 82/182 is susceptible to stress corrosion cracking. There are many results which predict residual stress distribution for alloy 82/182 weld between nozzle and pipe. However, nozzle and piping system usually connected through safe end which has short length. In this paper, residual stress distribution for pressurizer nozzle of Kori nuclear power plant was predicted using FE analysis, which considered safe end. As a result, existing residual stress profile was redistributed and residual stress of inner surface was decreased specially. It means that safe end should be considered to reduce conservatism when estimating the piping system.

  12. Variation behavior of residual stress distribution by manufacturing processes in welded pipes of austenitic stainless steel

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Hashimoto, Tadafumi; Mochizuki, Masahito

    2012-01-01

    Stress corrosion cracking (SCC) has been observed near heat affected zone (HAZ) of primary loop recirculation pipes made of low-carbon austenitic stainless steel type 316L in the nuclear power plants. For the non-sensitization material, residual stress is the important factor of SCC, and it is generated by machining and welding. In the actual plants, welding is conducted after machining as manufacturing processes of welded pipes. It could be considered that residual stress generated by machining is varied by welding as a posterior process. This paper presents residual stress variation due to manufacturing processes of pipes using X-ray diffraction method. Residual stress distribution due to welding after machining had a local maximum stress in HAZ. Moreover, this value was higher than residual stress generated by welding or machining. Vickers hardness also had a local maximum hardness in HAZ. In order to clarify hardness variation, crystal orientation analysis with EBSD method was performed. Recovery and recrystallization were occurred by welding heat near the weld metal. These lead hardness decrease. The local maximum region showed no microstructure evolution. In this region, machined layer was remained. Therefore, the local maximum hardness was generated at machined layer. The local maximum stress was caused by the superposition effect of residual stress distributions due to machining and welding. Moreover, these local maximum residual stress and hardness are exceeded critical value of SCC initiation. In order to clarify the effect of residual stress on SCC initiation, evaluation including manufacturing processes is important. (author)

  13. Yield stress distribution in injection-moulded glassy polymers

    NARCIS (Netherlands)

    Verbeeten, W.M.H.; Kanters, M.J.W.; Engels, T.A.P.; Govaert, L.E.

    2015-01-01

    A methodology for structural analysis simulations is presented that incorporates the distribution of mechanical propertiesalong the geometrical dimensions of injection-moulded amorphous polymer products. It is based on a previously developedmodelling approach, where the thermomechanical history

  14. Research on stress distribution regularity of cement sheaths of radial well based on ABAQUS

    Science.gov (United States)

    Shi, Jihui; Cheng, Yuanfang; Li, Xiaolong; Xiao, Wen; Li, Menglai

    2017-12-01

    To ensure desirable outcome of hydraulic fracturing based on ultra-short radius radial systems, it is required to investigate the stress distribution regularity and stability of the cement sheath. On the basis of the theoretical model of the cement sheath stress distribution, a reservoir mechanical model was built using the finite element software, ABAQUS, according to the physical property of a certain oil reservoir of the Shengli oilfield. The stress distribution of the casing-cement-sheath-formation system under the practical condition was simulated, based on which analyses were conducted from multiple points of view. Results show that the stress on the internal interface of the cement sheath exceeds that on the external interface, and fluctuates with higher amplitudes, which means that the internal interface is the most failure-prone. The unevenness of the cement sheath stress distribution grows with the increasing horizontal principal stress ratio, and so does the variation magnitude. This indicates that higher horizontal principal stress ratios are unfavourable for the structural stability of the cement sheath. Both the wellbore quantity of the URRS and the physical property of the material can affect the cement sheath distribution. It is suggested to optimize the quantity of the radial wellbore and use cement with a lower elastic modulus and higher Poisson’s ratio. At last, the impact level of the above factor was analysed, with the help of the grey correlation analysis.

  15. Biomechanical effects of two different collar implant structures on stress distribution under cantilever fixed partial dentures.

    Science.gov (United States)

    Merıç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; özden, Ahmet Utku

    2011-11-01

    The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone around the implants supporting cantilever fixed partial dentures (CFPDs) as well as in the implant-abutment complex and superstructures. The three-dimensional finite element method was selected to evaluate the stress distribution. CFPDs which was supported by microthread collar structured (MCS) and non-microthread collar structured (NMCS) implants was modeled; 300 N vertical, 150 N oblique and 60 N horizontal forces were applied to the models separately. The stress values in the bone, implant-abutment complex and superstructures were calculated. In the MCS model, higher stresses were located in the cortical bone and implant-abutment complex in the case of vertical load while decreased stresses in cortical bone and implant-abutment complex were noted within horizontal and oblique loading. In the case of vertical load, decreased stresses have been noted in cancellous bone and framework. Upon horizontal and oblique loading, a MCS model had higher stress in cancellous bone and framework than the NMCS model. Higher von Mises stresses have been noted in veneering material for NMCS models. It has been concluded that stress distribution in implant-supported CFPDs correlated with the macro design of the implant collar and the direction of applied force.

  16. Residual stress measurement of large scaled welded pipe using neutron diffraction method. Effect of SCC crack propagation and repair weld on residual stress distribution

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Katsuyama, Jinya; Tobita, Tohru; Morii, Yukio

    2011-01-01

    The RESA-1 neutron engineering diffractometer in the JRR-3 (Japan Research Reactor No.3) at the Japan Atomic Energy Agency, which is used for stress measurements, was upgraded to realize residual stress measurements of large scaled mechanical components. A series of residual stress measurements was made to obtain through-thickness residual stress distributions in a Type 304 stainless steel butt-welded pipe of 500A-sch.80 using the upgraded RESA-1 diffractometer. We evaluated effects of crack propagation such as stress corrosion cracking (SCC) and a part-circumference repair weld on the residual stress distributions induced by girth welding. Measured residual stress distributions near original girth weld revealed good agreement with typical results shown in some previous works using finite element method, deep hole drilling as well as neutron diffraction. After introducing a mock crack with 10 mm depth in the heat affected zone on the inside wall of the pipe by electro discharge machining, the axial residual stresses were found to be released in the part of the mock crack. However, changes in the through-wall bending stress component and the self-equilibrated stress component were negligible and hence the axial residual stress distribution in the ligament was remained in the original residual stresses near girth weld without the mock crack. Furthermore, changes in hoop and radial residual stress were also small. The residual stress distributions after a part repair welding on the outer circumference of the girth weld were significantly different from residual stress distributions near the original girth weld. The through-thickness average axial residual stress was increased due to increase of the tensile membrane stress and mitigation of the bending stress after repair welding. Throughout above studies, we evidenced that the neutron diffraction technique is useful and powerful tool for measuring residual stress distributions in large as well as thick mechanical

  17. Effect study of multi-bubbles on stress distribution of fuel particle

    International Nuclear Information System (INIS)

    Zhao Yi; Wang Xiaomin; Long Chongsheng

    2015-01-01

    The finite element model was proposed to simulate the process of the UO_2 dispersion fuel particle sustaining the internal pressure of multi-bubbles, and the stress distribution of fuel particle with intra-bubbles was calculated. The results show that when the bubbles line equidistantly along x axis, the max normal stress along y axis increases with the number of bubbles, meanwhile, the increment of the normal stress gradually decreases. There is a limit that the effect of bubble's number imposes on the max normal stress in the fuel particle. When multi-column of bubbles exist, the max normal stress along x axis in the fuel particle increases, and the max normal stress along y axis decreases with the increase of the number of bubble column. The stress concentration in the fuel particle decreases with the spacing radius ratio increasing. (authors)

  18. Effects of Prosthesis Stem Tapers on Stress Distribution of Cemented Hip Arthroplasty

    International Nuclear Information System (INIS)

    Abdullah, Abdul Halim; Nor, Mohd Asri Mohd; Saman, Alias Mohd; Tamin, Mohd Nasir; Kadir, Mohammed Rafiq Abdul

    2010-01-01

    Aseptic loosening effects are critical issues in encouraging long term stability of cemented hip arthroplasty. Stress shielding is believed to be an important factor that contributes to the aseptic loosening problems. The numerous changes in the prosthesis stem design are intended to minimize the stress shielding and aseptic loosening problems and to improve the long term performance of the implants. In this study, the stress distribution in cemented hip arthroplasty is established using finite element method. The taper of the prosthesis is designed to be 3 deg. at anterior/posterior, 3 deg. at medial/lateral and 10 deg. from wide lateral to narrow medial. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair climbing load cases. Effects of prosthesis stem tapers on the resulting stress distribution are investigated. Results show that compressive stress dominates in the medial plane while tensile stress in the lateral plane of the femur. The corresponding stress levels of intact femur for walking and stair-climbing load cases are 22 and 29 MPa, respectively. The magnitude of Tresca stress for the THA femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.

  19. Effects on Subtalar Joint Stress Distribution After Cannulated Screw Insertion at Different Positions and Directions.

    Science.gov (United States)

    Yuan, Cheng-song; Chen, Wan; Chen, Chen; Yang, Guang-hua; Hu, Chao; Tang, Kang-lai

    2015-01-01

    We investigated the effects on subtalar joint stress distribution after cannulated screw insertion at different positions and directions. After establishing a 3-dimensional geometric model of a normal subtalar joint, we analyzed the most ideal cannulated screw insertion position and approach for subtalar joint stress distribution and compared the differences in loading stress, antirotary strength, and anti-inversion/eversion strength among lateral-medial antiparallel screw insertion, traditional screw insertion, and ideal cannulated screw insertion. The screw insertion approach allowing the most uniform subtalar joint loading stress distribution was lateral screw insertion near the border of the talar neck plus medial screw insertion close to the ankle joint. For stress distribution uniformity, antirotary strength, and anti-inversion/eversion strength, lateral-medial antiparallel screw insertion was superior to traditional double-screw insertion. Compared with ideal cannulated screw insertion, slightly poorer stress distribution uniformity and better antirotary strength and anti-inversion/eversion strength were observed for lateral-medial antiparallel screw insertion. Traditional single-screw insertion was better than double-screw insertion for stress distribution uniformity but worse for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion was slightly worse for stress distribution uniformity than was ideal cannulated screw insertion but superior to traditional screw insertion. It was better than both ideal cannulated screw insertion and traditional screw insertion for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion is an approach with simple localization, convenient operation, and good safety. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Evaluating stress distribution in two different designs of class I partial removable dentures

    Directory of Open Access Journals (Sweden)

    F. Geramipanah

    1998-05-01

    Full Text Available In Present study a digital model of hemimaxillectomy was reconstructed by computer and stress distribution of removable partial dentures in tissues, periodontal ligament and bone were thoroughly evaluated. The maximum stress of two different removable partial denture designs which contained buccal and lingual c-shaped clasps respectively were analyzed and compared. It was assumed that a 90 gram force which is equal to an average obturator’s weight is applied outwardly. The results showed that the maximum stress distribution in these two designs is not significantly different.

  1. Nonlocal approach to the analysis of the stress distribution in granular systems. I. Theoretical framework

    Science.gov (United States)

    Kenkre, V. M.; Scott, J. E.; Pease, E. A.; Hurd, A. J.

    1998-05-01

    A theoretical framework for the analysis of the stress distribution in granular materials is presented. It makes use of a transformation of the vertical spatial coordinate into a formal time variable and the subsequent study of a generally non-Markoffian, i.e., memory-possessing (nonlocal) propagation equation. Previous treatments are obtained as particular cases corresponding to, respectively, wavelike and diffusive limits of the general evolution. Calculations are presented for stress propagation in bounded and unbounded media. They can be used to obtain desired features such as a prescribed stress distribution within the compact.

  2. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    Science.gov (United States)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-06-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  3. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    Science.gov (United States)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-02-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  4. theoretical investigation of stresses distributions in hollow sandcrete

    African Journals Online (AJOL)

    user

    The test thin plate distributes the load on the block and the hollow block is regarded as a two ... Some research works had been done on the relationship between cavity ... The results would help reduce the cost, labour and time necessary to.

  5. Distribution of Side Abutment Stress in Roadway Subjected to Dynamic Pressure and Its Engineering Application

    Directory of Open Access Journals (Sweden)

    Yao Qiangling

    2015-01-01

    Full Text Available The borehole stress-meter was employed in this study to investigate the distribution of the side abutment stress in roadway subjected to dynamic pressure. The results demonstrate that the side abutment stress of the mining roadway reaches a peak value when the distance to the gob is 8 m and the distribution curve of the side abutment stress can be divided into three zones: stress rising zone, stress stabilizing zone, and stress decreasing zone. Further numerical investigation was carried out to study the effect of the coal mass strength, coal seam depth, immediate roof strength, and thickness on the distribution of the side abutment stress. Based on the research results, we determined the reasonable position of the mining roadway and the optimal width of the barrier pillar. The engineering application demonstrates that the retention of the barrier pillar with a width of 5 m along the gob as the haulage roadway for the next panel is feasible, which delivers favorable technological and economic benefits.

  6. The Effect of Resection Angle on Stress Distribution after Root-End Surgery

    Science.gov (United States)

    Monteiro, Jaiane Bandoli; Dal Piva, Amanda Maria de Oliveira; Tribst, João Paulo Mendes; Borges, Alexandre Luiz Souto; Tango, Rubens Nisie

    2018-01-01

    Introduction: This study aimed to investigate the influence of the resection angle on the stress distribution of retrograde endodontic treated maxillary incisors under oblique-load application. Methods and Materials: A maxillary central incisor which was endodontically treated and restored with a fiber glass post was obtained in a 3-dimensional numerical model and distributed into three groups according to type of resection: control; restored with fiber post without retrograde obturation, R45 and R90 with 45º and 90º resection from tooth axial axis, respectively and restored with Fuji II LC (GC America). The numerical models received a 45º occlusal load of 200 N/cm2 on the middle of lingual surface. All materials and structures were considered linear elastic, homogeneous and isotropic. Numerical models were plotted and meshed with isoparametric elements, and the results were analyzed using maximum principal stress (MPS). Results: MPS showed greater stress values in the bone tissue for control group than the other groups. Groups with apicectomy showed acceptable stress distribution on the fiber post, cement layer and root dentin, presenting more improved values than control group. Conclusion: Apicectomy at 90º promotes more homogeneity on stress distribution on the fiber post, cement layer and root dentin, which suggests less probability of failure. However, due to its facility and stress distribution also being better than control group, apicectomy at 45° could be a good choice for clinicians. PMID:29707013

  7. Thermodynamic method for generating random stress distributions on an earthquake fault

    Science.gov (United States)

    Barall, Michael; Harris, Ruth A.

    2012-01-01

    This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.

  8. Interface topography and residual stress distributions in W coatings for fusion armour applications

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)], E-mail: g.thomas@cranfield.ac.uk; Vincent, R. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Matthews, G. [UKAEA Fusion, K2 Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Dance, B. [TWI Ltd, Granta Park, Great Abingdon, Cambridge CB1 6AL (United Kingdom); Grant, P.S. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2008-03-25

    Vacuum plasma sprayed (VPS) tungsten (W) coatings are potential plasma facing components in future fusion power plants. However, the large coefficient of thermal expansion mismatch between W and underlying structural steels and other metallic materials poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper, the effects of the substrate/coating interface 3D geometry on stress distributions are investigated using finite element analysis and VPS experiments to manufacture up to 2 mm thick W coatings. The key factors that affect internal stress distributions during thermal exposure have been identified including graded composition inter-layers, stress concentration effects, mechanical adhesion, and the possible role of segmentation in relieving coating stresses on surface sculptured substrates.

  9. Interface topography and residual stress distributions in W coatings for fusion armour applications

    International Nuclear Information System (INIS)

    Thomas, G.; Vincent, R.; Matthews, G.; Dance, B.; Grant, P.S.

    2008-01-01

    Vacuum plasma sprayed (VPS) tungsten (W) coatings are potential plasma facing components in future fusion power plants. However, the large coefficient of thermal expansion mismatch between W and underlying structural steels and other metallic materials poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper, the effects of the substrate/coating interface 3D geometry on stress distributions are investigated using finite element analysis and VPS experiments to manufacture up to 2 mm thick W coatings. The key factors that affect internal stress distributions during thermal exposure have been identified including graded composition inter-layers, stress concentration effects, mechanical adhesion, and the possible role of segmentation in relieving coating stresses on surface sculptured substrates

  10. Stress Distribution around Laser-Welded Cutting Wheels Using a Spherical Indentation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Hee; Lee, Wan Kyu; Jeong, In Hyeon; Nahm, Seung Hoon [KRISS, Daejeon (Korea, Republic of)

    2008-04-15

    A spherical indentation has been proposed as a nondestructive method of measuring local residual stress field in laser-voided joints. The apparent yield strengths interpreted from the spherical indentation data of as-welded cutting wheel were compared with the intrinsic yield strengths measured at nearly equivalent locations in annealed wheel. Their difference along the distance from the welding line is welding stress distribution because the intrinsic yield strength is invariant regardless of the elastic residual stress. The spherical indentations show that the laser-welded diamond cutting wheel displays a 10 min-wide distribution of the welding residual stress and has peak compressive and tensile stresses in the shank and tip regions, respectively.

  11. Impact of peak electricity demand in distribution grids: a stress test

    NARCIS (Netherlands)

    Hoogsteen, Gerwin; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria; Schuring, Friso; Kootstra, Ben

    2015-01-01

    The number of (hybrid) electric vehicles is growing, leading to a higher demand for electricity in distribution grids. To investigate the effects of the expected peak demand on distribution grids, a stress test with 15 electric vehicles in a single street is conducted and described in this paper.

  12. Sexually transmitted infections

    African Journals Online (AJOL)

    AJRH Managing Editor

    Sexually transmitted infections constitute economic burden for developing countries, exposure to causative agents is an occupational hazard ... In Nigeria, the deteriorating economic situation has led to ..... female sex workers from Mexico City.

  13. Influence of Transformation Plasticity on the Distribution of Internal Stress in Three Water-Quenched Cylinders

    Science.gov (United States)

    Liu, Yu; Qin, Shengwei; Zhang, Jiazhi; Wang, Ying; Rong, Yonghua; Zuo, Xunwei; Chen, Nailu

    2017-10-01

    Based on the hardenability of three medium carbon steels, cylinders with the same 60-mm diameter and 240-mm length were designed for quenching in water to obtain microstructures, including a pearlite matrix (Chinese steel mark: 45), a bainite matrix (42CrMo), and a martensite matrix (40CrNiMo). Through the combination of normalized functions describing transformation plasticity (TP), the thermo-elasto-plastic constitutive equation was deduced. The results indicate that the finite element simulation (FES) of the internal stress distribution in the three kinds of hardenable steel cylinders based on the proposed exponent-modified (Ex-Modified) normalized function is more consistent with the X-ray diffraction (XRD) measurements than those based on the normalized functions proposed by Abrassart, Desalos, and Leblond, which is attributed to the fact that the Ex-Modified normalized function better describes the TP kinetics. In addition, there was no significant difference between the calculated and measured stress distributions, even though TP was taken into account for the 45 carbon steel; that is, TP can be ignored in FES. In contrast, in the 42CrMo and 40CrNiMo alloyed steels, the significant effect of TP on the residual stress distributions was demonstrated, meaning that TP must be included in the FES. The rationality of the preceding conclusions was analyzed. The complex quenching stress is a consequence of interactions between the thermal and phase transformation stresses. The separated calculations indicate that the three steels exhibit similar thermal stress distributions for the same water-quenching condition, but different phase transformation stresses between 45 carbon steel and alloyed steels, leading to different distributions of their axial and tangential stresses.

  14. STRESS DISTRIBUTION IN THE STRATIFIED MASS CONTAINING VERTICAL ALVEOLE

    Directory of Open Access Journals (Sweden)

    Bobileva Tatiana Nikolaevna

    2017-08-01

    Full Text Available Almost all subsurface rocks used as foundations for various types of structures are stratified. Such heterogeneity may cause specific behaviour of the materials under strain. Differential equations describing the behaviour of such materials contain rapidly fluctuating coefficients, in view of this, solution of such equations is more time-consuming when using today’s computers. The method of asymptotic averaging leads to getting homogeneous medium under study to averaged equations with fixed factors. The present article is concerned with stratified soil mass consisting of pair-wise alternative isotropic elastic layers. In the results of elastic modules averaging, the present soil mass with horizontal rock stratification is simulated by homogeneous transversal-isotropic half-space with isotropy plane perpendicular to the standing axis. Half-space is loosened by a vertical alveole of circular cross-section, and virgin ground is under its own weight. For horizontal parting planes of layers, the following two types of surface conditions are set: ideal contact and backlash without cleavage. For homogeneous transversal-isotropic half-space received with a vertical alveole, the analytical solution of S.G. Lekhnitsky, well known in scientific papers, is used. The author gives expressions for stress components and displacements in soil mass for different marginal conditions on the alveole surface. Such research problems arise when constructing and maintaining buildings and when composite materials are used.

  15. Residual stress distribution analysis of heat treated APS TBC using image based modelling.

    Science.gov (United States)

    Li, Chun; Zhang, Xun; Chen, Ying; Carr, James; Jacques, Simon; Behnsen, Julia; di Michiel, Marco; Xiao, Ping; Cernik, Robert

    2017-08-01

    We carried out a residual stress distribution analysis in a APS TBC throughout the depth of the coatings. The samples were heat treated at 1150 °C for 190 h and the data analysis used image based modelling based on the real 3D images measured by Computed Tomography (CT). The stress distribution in several 2D slices from the 3D model is included in this paper as well as the stress distribution along several paths shown on the slices. Our analysis can explain the occurrence of the "jump" features near the interface between the top coat and the bond coat. These features in the residual stress distribution trend were measured (as a function of depth) by high-energy synchrotron XRD (as shown in our related research article entitled 'Understanding the Residual Stress Distribution through the Thickness of Atmosphere Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) by high energy Synchrotron XRD; Digital Image Correlation (DIC) and Image Based Modelling') (Li et al., 2017) [1].

  16. Analysis and measurement of residual stress distribution of vanadium/ceramics joints for fusion reactor applications

    International Nuclear Information System (INIS)

    Nemoto, Y.; Ueda, K.

    1998-01-01

    Vanadium alloys are considered as candidate structural materials for fusion reactor system. When vanadium alloys are used in fusion reactor system, joining with ceramics for insulating is one of material issues to be solved to make component of fusion reactor. In the application of ceramics/metal jointing and coating, residual stress caused by difference of thermal expansion rate between ceramics and metals is an important factor in obtaining good bonding strength and soundness of coating. In this work, residual stress distribution in direct diffusion bonded vanadium/alumina joint (jointing temperature: 1400 C) was measured by small area X-ray diffraction method. And the comparison of finite element method (FEM) analysis and actual stress distribution was carried out. Tensile stress concentration at the edge of the boundary of the joint in alumina was observed. The residual stress concentration may cause cracks in alumina, or failure of bonding. Actually, cracks in alumina caused by thermal stress after bonding at 1500 C was observed. The stress concentration of the joint must be reduced to obtain good bonded joint. Lower bonding temperature or to devise the shape of the outer surface of the joint will reduce the stress concentration. (orig.)

  17. Measurement of the residual stress distribution in a thick pre-stretched aluminum plate

    Science.gov (United States)

    Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.

    2008-12-01

    Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.

  18. Bayesian Approach for Constant-Stress Accelerated Life Testing for Kumaraswamy Weibull Distribution with Censoring

    Directory of Open Access Journals (Sweden)

    Abeer Abd-Alla EL-Helbawy

    2016-09-01

    Full Text Available The accelerated life tests provide quick information on the life time distributions by testing materials or products at higher than basic conditional levels of stress such as pressure, high temperature, vibration, voltage or load to induce failures. In this paper, the acceleration model assumed is log linear model. Constant stress tests are discussed based on Type I and Type II censoring. The Kumaraswmay Weibull distribution is used. The estimators of the parameters, reliability, hazard rate functions and p-th percentile at normal condition, low stress, and high stress are obtained. In addition, credible intervals for parameters of the models are constructed. Optimum test plan are designed. Some numerical studies are used to solve the complicated integrals such as Laplace and Markov Chain Monte Carlo methods.

  19. Bayesian Approach for Constant-Stress Accelerated Life Testing for Kumaraswamy Weibull Distribution with Censoring

    Directory of Open Access Journals (Sweden)

    Abeer Abd-Alla EL-Helbawy

    2016-12-01

    Full Text Available The accelerated life tests provide quick information on the life time distributions by testing materials or products at higher than basic conditional levels of stress such as pressure, high temperature, vibration, voltage or load to induce failures. In this paper, the acceleration model assumed is log linear model. Constant stress tests are discussed based on Type I and Type II censoring. The Kumaraswmay Weibull distribution is used. The estimators of the parameters, reliability, hazard rate functions and p-th percentile at normal condition, low stress, and high stress are obtained. In addition, credible intervals for parameters of the models are constructed. Optimum test plan are designed. Some numerical studies are used to solve the complicated integrals such as Laplace and Markov Chain Monte Carlo methods.

  20. Distribution and natural history of stress fractures in U.S. Marine recruits

    International Nuclear Information System (INIS)

    Greaney, R.B.; Gerber, F.H.; Laughlin, R.L.; Kmet, J.P.; Metz, C.D.; Kilcheski, T.S.; Rao, B.R.; Silverman, E.D.

    1983-01-01

    In a prospective study of stress injuries of the lower extremities of U.S. Marine recruits, researchers derived a frequency distribution of stress fractures. The most frequently fractured bone was the tibia (73%), while the single most common site was the posterior calcaneal tuberosity (21%). The natural history of stress fractures by scintigraphy and radiography has been outlined, showing the evolutionary changes on either study as a universal progression independent of injury site or type of stress. An identical spectrum of changes should be present within any group undergoing intense new exercise. The frequency distribution of stress fractures should be a function of differing forms and intensities of exercise, therefore, our figures should not be applied to other groups. Researchers used the presence of a scintigraphic abnormality at a symptomatic site as the criterion for diagnosis of stress fracture. Since the distribution of skeletal radiotracer uptake is directly dependent on local metabolic activity, it is expected that a focal alteration in bone metabolism will result in a scintigram approaching 100% sensitivity for the abnormality (9). In the proper clinical setting, the specificity should approximate this figure; however, a focal, nonstress-related bone abnormality which has not manifested any radiographic change, such as early osteomyelitis, could result in a false-positive examination. Specificity cannot, therefore, be accurately determined without an actual determination of the pathologic changes within the bone, necessarily involving biopsy

  1. Measurements of three dimensional residual stress distribution on laser irradiated spot

    International Nuclear Information System (INIS)

    Tanaka, Hirotomo; Akita, Koichi; Ohya, Shin-ichi; Sano, Yuji; Naito, Hideki

    2004-01-01

    Three dimensional residual stress distributions on laser irradiated spots were measured using synchrotron radiation to study the basic mechanism of laser peening. A water-immersed sample of high tensile strength steel was irradiated with Q-switched and frequency-doubled Nd:YAG laser. The residual stress depth profile of the sample was obtained by alternately repeating the measurement and surface layer removal by electrolytic polishing. Tensile residual stresses were observed on the surface of all irradiated spots, whereas residual stress changed to compressive just beneath the surface. The depth of compressive residual stress imparted by laser irradiation and plastic deformation zone increased with increasing the number of laser pulses irradiated on the same spot. (author)

  2. The influence of muscle forces on the stress distribution in the lumbar spine

    DEFF Research Database (Denmark)

    Wong, C; Rasmussen, J; Simonsen, Erik B.

    2011-01-01

    muscles. Results: In general the von Mises stress was larger by 30 %, and even higher when looking at the von Mises stress distribution in the superio-anterior and central part of the vertebral body and in the pedicles. Conclusion: The application of spine muscles to a finite element model showed markedly...... larger von Mises stress responses in the central and anterior part of the vertebral body, which can be tolerated in the young and healthy spine, but it would increase the risk of compression fractures in the elderly, osteoporotic spine.......Introduction: Previous studies of bone stresses in the human lumbar spine have relied on simplified models when modeling the spinal musculature, even though muscle forces are likely major contributors to the stresses in the vertebral bones. Detailed musculoskeletal spine models have recently become...

  3. Yield shear stress model of magnetorheological fluids based on exponential distribution

    International Nuclear Information System (INIS)

    Guo, Chu-wen; Chen, Fei; Meng, Qing-rui; Dong, Zi-xin

    2014-01-01

    The magnetic chain model that considers the interaction between particles and the external magnetic field in a magnetorheological fluid has been widely accepted. Based on the chain model, a yield shear stress model of magnetorheological fluids was proposed by introducing the exponential distribution to describe the distribution of angles between the direction of magnetic field and the chain formed by magnetic particles. The main influencing factors were considered in the model, such as magnetic flux density, intensity of magnetic field, particle size, volume fraction of particles, the angle of magnetic chain, and so on. The effect of magnetic flux density on the yield shear stress was discussed. The yield stress of aqueous Fe 3 O 4 magnetreological fluids with volume fraction of 7.6% and 16.2% were measured by a device designed by ourselves. The results indicate that the proposed model can be used for calculation of yield shear stress with acceptable errors. - Highlights: • A yield shear stress model of magnetorheological fluids was proposed. • Use exponential distribution to describe the distribution of magnetic chain angles. • Experimental and predicted results were in good agreement for 2 types of MR

  4. Simulation of Stress Distribution in a Thick- Walled Bushing Produced by Die-Casting

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2017-12-01

    Full Text Available Metallographic investigations and a computer simulation of stresses in a gravity die-casting bushing were performed. Simulation of the casting process, solidification of the thick-walled bushing and calculations of the stress was performed using MAGMA5.3 software. The size variability of phases κII affecting the formation of phase stresses σf, depending on the location of the metallographic test area, was identified. The distribution of thermal σt and shrinkage stresses σs, depending on the location of the control point SC in the bushing's volume, was estimated. Probably the nature of these stresses will change slightly even after machining. This can cause variations in operating characteristics (friction coefficient, wear. Due to the strong inhomogeneity of the stress distribution in the bushing's casting, it is necessary to perform further tests of the possibility to conduct thermal treatment guaranteeing homogenization of the internal stresses in the casting, as well as to introduce changes in the bushing' s construction and the casting technology. The paper presents the continuation of the results of research aimed at identifying the causes of defects in the thick-walled bushing, die-casting made of CuAl10Fe5Ni5Cr aluminium bronze.

  5. Determination of stress distribution in III-V single crystal layers for heterogeneous integration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M.; Hayashi, S. [Dept. of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Goorsky, M.S.; Sandhu, R.; Chang-Chien, P.; Gutierrez-Aitken, A.; Tsai, R. [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States); Noori, A.; Poust, B. [Dept. of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States)

    2007-08-15

    Double crystal X-ray diffraction imaging and a variable temperature stage are employed to determine the stress distribution in heterogeneous wafer bonded layers though the superposition of images produced at different rocking curve angles. The stress distribution in InP layers transferred to a silicon substrate at room temperature exhibits an anticlastic deformation, with different regions of the wafer experiencing different signs of curvature. Measurements at elevated temperatures ({<=}125 C) reveals that differences in thermal expansion coefficients dominate the stress and that interfacial particulates introduce very high local stress gradients that increase with increased temperature. For thinned GaAs substrates (100 {mu}m) bonded using patterned metal interlayers to a separate GaAs substrate at {approx}200 C, residual stresses are produced at room temperature due to local stress points from metallization contacts and vias and the complex stress patterns can be observed using the diffraction imaging technique. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. A Study of Stress Distribution in Layered and Gradient Tribological Coatings (Preprint)

    Science.gov (United States)

    2006-11-01

    FG) Ti/TiC coating design. On the top of the 440C stainless steel substrate, α-Ti is added as a bond layer with 50nm thickness to improve the... stainless steel substrate and the rigid spherical indenter was performed. Figure 5 (a) shows the normalized Hertzian point contact pressure distribution...AFRL-ML-WP-TP-2007-402 A STUDY OF STRESS DISTRIBUTION IN LAYERED AND GRADIENT TRIBOLOGICAL COATINGS (PREPRINT) Young Sup Kang, Shashi K

  7. X-ray fractography by using synchrotron radiation source. Residual stress distribution just beneath fatigue fracture surface

    International Nuclear Information System (INIS)

    Akita, Koichi; Yoshioka, Yasuo; Suzuki, Hiroshi; Sasaki, Toshihiko

    2000-01-01

    The residual stress distributions just beneath the fatigue fracture surface were measured using synchrotron radiation with three different wavelengths, i.e., three different penetration depths. The residual stress distributions were estimated from three kinds of diffraction data by the following process. First, a temporary residual stress distribution in the depth direction is assumed. Theoretical 2θ-sin 2 ψ diagrams for each wavelength, where each has a different penetration depth, are calculated by the cosψ method developed by one of the authors. The sum total of the differences between the theoretical and experimental values of the diffraction angle in 2θ-sin 2 ψ diagrams is calculated. This total value is minimized by changing the assumed stress distribution by the quasi-Newton optimization method. Finally, optimized 2θ-sin 2 ψ diagrams for each penetration depth and detailed stress distribution are determined. The true surface residual stress is obtained from this stress distribution. No effect of load ratio R (= P min /P max ) on the residual stresses of the fatigue fracture surfaces in low-carbon steels was observed when the sin 2 ψ method was used for stress measurement. However, the residual stresses became higher with increasing R when these were measured by the proposed method. On the basis of this, the stress intensity factor range, ΔK, can be estimated from the residual stress on the fatigue fracture surface. (author)

  8. Effect of processing conditions on residual stress distributions by bead-on-plate welding after surface machining

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Mochizuki, Masahito

    2014-01-01

    Residual stress is important factor for stress corrosion cracking (SCC) that has been observed near the welded zone in nuclear power plants. Especially, surface residual stress is significant for SCC initiation. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and residual stress distribution due to surface machining is varied by the subsequent butt welding. In previous paper, authors reported that residual stress distribution generated by bead on plate welding after surface machining has a local maximum residual stress near the weld metal. The local maximum residual stress shows approximately 900 MPa that exceeds the stress threshold for SCC initiation. Therefore, for the safety improvement of nuclear power plants, a study on the local maximum residual stress is important. In this study, the effect of surface machining and welding conditions on residual stress distribution generated by welding after surface machining was investigated. Surface machining using lathe machine and bead on plate welding with tungsten inert gas (TIG) arc under various conditions were conducted for plate specimens made of SUS316L. Then, residual stress distributions were measured by X-ray diffraction method (XRD). As a result, residual stress distributions have the local maximum residual stress near the weld metal in all specimens. The values of the local maximum residual stresses are almost the same. The location of the local maximum residual stress is varied by welding condition. It could be consider that the local maximum residual stress is generated by same generation mechanism as welding residual stress in surface machined layer that has high yield stress. (author)

  9. Factors affecting stress distribution and displacements in crystals III-V grown by Czochralski method with liquid encapsulation

    International Nuclear Information System (INIS)

    Schvezov, C.E.; Samarasekera, I.; Weinberg, F.

    1988-01-01

    A mathematical model based on the finite element method for calculating temperature and shear stress distributions in III-V crystals grown by LEC technique was developed. The calculated temperature are in good agreements with the experimental measurements. The shear stress distribution was calculated for several environmental conditions. The results showed that the magnitude and the distribution of shear stresses are highly sensitive to the crystal environment, including thickness and temperature distribution in boron oxides and the gas. The shear stress is also strongly influenced by interface curvature and cystals radius. (author) [pt

  10. Determination of Hot-Carrier Distribution Functions in Uniaxially Stressed p-Type Germanium

    DEFF Research Database (Denmark)

    Christensen, Ove

    1973-01-01

    This paper gives a description of an experimental determination of distribution functions in k→ space of hot holes in uniaxially compressed germanium. The hot-carrier studies were made at 85°K at fields up to 1000 V/cm and uniaxial stresses up to 11 800 kg/cm2. The field and stress were always in...... probabilities with stress. A model based on the nonparabolicity of the upper p3 / 2 level is proposed for the negative differential conductivity in stressed p-type Ge....... function has been assumed. The parameters of the distribution function are then fitted to the experimental modulation. The calculation of absorption was performed numerically, using a four-band k→·p→ model. This model was checked for consistency by comparing with piezoabsorption measurements performed...... in thermal equilibrium. The average carrier energy calculated from the distribution function shows a fast increase with stress and almost saturates when the strain splitting of the two p3 / 2 levels reaches the optical-phonon energy. This saturation is interpreted in terms of the change in scattering...

  11. Internal Stress Distribution Measurement of TIG Welded SUS304 Samples Using Neutron Diffraction Technique

    Science.gov (United States)

    Muslih, M. Refai; Sumirat, I.; Sairun; Purwanta

    2008-03-01

    The distribution of residual stress of SUS304 samples that were undergone TIG welding process with four different electric currents has been measured. The welding has been done in the middle part of the samples that was previously grooved by milling machine. Before they were welded the samples were annealed at 650 degree Celsius for one hour. The annealing process was done to eliminate residual stress generated by grooving process so that the residual stress within the samples was merely produced from welding process. The calculation of distribution of residual stress was carried out by measuring the strains within crystal planes of Fe(220) SUS304. Strain, Young modulus, and Poisson ratio of Fe(220) SUS304 were measured using DN1-M neutron diffractometer. Young modulus and Poisson ratio of Fe(220) SUS304 sample were measured in-situ. The result of calculations showed that distribution of residual stress of SUS304 in the vicinity of welded area is influenced both by treatments given at the samples-making process and by the electric current used during welding process.

  12. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    Science.gov (United States)

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  13. Stress Prediction for Distributed Structural Health Monitoring Using Existing Measurements and Pattern Recognition.

    Science.gov (United States)

    Lu, Wei; Teng, Jun; Zhou, Qiushi; Peng, Qiexin

    2018-02-01

    The stress in structural steel members is the most useful and directly measurable physical quantity to evaluate the structural safety in structural health monitoring, which is also an important index to evaluate the stress distribution and force condition of structures during structural construction and service phases. Thus, it is common to set stress as a measure in steel structural monitoring. Considering the economy and the importance of the structural members, there are only a limited number of sensors that can be placed, which means that it is impossible to obtain the stresses of all members directly using sensors. This study aims to develop a stress response prediction method for locations where there are insufficent sensors, using measurements from a limited number of sensors and pattern recognition. The detailed improved aspects are: (1) a distributed computing process is proposed, where the same pattern is recognized by several subsets of measurements; and (2) the pattern recognition using the subset of measurements is carried out by considering the optimal number of sensors and number of fusion patterns. The validity and feasibility of the proposed method are verified using two examples: the finite-element simulation of a single-layer shell-like steel structure, and the structural health monitoring of the space steel roof of Shenzhen Bay Stadium; for the latter, the anti-noise performance of this method is verified by the stress measurements from a real-world project.

  14. Influence of parafunctional loading and prosthetic connection on stress distribution: a 3D finite element analysis.

    Science.gov (United States)

    Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto

    2015-11-01

    Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (PProsthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Statistics on Near Wall Structures and Shear Stress Distribution from 3D Holographic Measurement.

    Science.gov (United States)

    Sheng, J.; Malkiel, E.; Katz, J.

    2007-11-01

    Digital Holographic Microscopy performs 3D velocity measurement in the near-wall region of a turbulent boundary layer in a square channel over a smooth wall at Reτ=1,400. Resolution of ˜1μm over a sample volume of 1.5x2x1.5mm (x^+=50, y^+=60, z^+=50) is sufficient for resolving buffer layer and lower log layer structures, and for measuring instantaneous wall shear stress distributions from velocity gradients in the viscous sublayer. Results, based on 700 instantaneous realizations, provide detailed statistics on the spatial distribution of both wall stress components along with characteristic flow structures. Conditional sampling based on maxima and minima of wall shear stresses, as well as examination of instantaneous flow structures, lead to development of a conceptual model for a characteristic flow phenomenon that seems to generating extreme stress events. This structure develops as an initially spanwise vortex element rises away from the surface, due to local disturbance, causing a local stress minimum. Due to increasing velocity with elevation, this element bends downstream, forming a pair of inclined streamwise vortices, aligned at 45^0 to freestream, with ejection-like flow between them. Entrainment of high streamwise momentum on the outer sides of this vortex pair generates streamwise shear stress maxima, 70 δν downstream, which are displaced laterally by 35 δν from the local minimum.

  16. Evaluation of stress distribution characteristics on various bar designs of three-implant-supported mandibular overdentures

    Directory of Open Access Journals (Sweden)

    Emre Tokar

    2017-01-01

    Full Text Available Objective: Implant-supported-overdentures, instead of conventional complete dentures, are frequently recommended to rehabilitate patients having edentulous mandible. The aim of this study was to evaluate the stress distribution characteristics of mandibular implant-supported overdentures with four different bar attachment designs. Materials and Method: A photoelastic mandibular model with three implants (3.75 mm - 13 mm placed at the interforaminal region was generated from a cast of an edentulous mandible. Four mandibular bar overdenture designs were fabricated: bar-clip, bar-galvano, bar-locator, and bar-ceka. Axial vertical loads (135 N were applied to the central fossa of the right first molar area for each overdenture design. Stress concentrations were recorded photographically and analyzed visually. Results: The tested bar attachment designs revealed low and moderate stress levels. The lowest stress was observed with the bar-clip design, followed by bar-locator, bar-ceka, and bar-galvano designs. Conclusion: The loads were distributed to all of the implants. Studied designs experienced moderate stress levels around the loaded side implant. Bars with distally placed stud attachments and surface treatment with electroforming seems to increase stress levels around the implants.

  17. Influence of Sewer Sediments on Flow Friction and Shear Stress Distribution

    DEFF Research Database (Denmark)

    Perrusquia, G.; Petersen, O.; Larsen, Torben

    1995-01-01

    Most sewers contain more or less deposited sediments. The paper discusses the distribution of the boundary shear stresses and the hydraulic resistance in part-full sewer pipes with such deposited sediments. The discussion is based on a series of numerical experiments using a validated numerical...

  18. Is the wide distribution of aspen a result of its stress tolerance?

    Science.gov (United States)

    V. J. Lieffers; S. M. Landhausser; E. H. Hogg

    2001-01-01

    Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...

  19. Transient temperature and stress distributions in the pressure vessel's wall of a nuclear reactor

    International Nuclear Information System (INIS)

    Silva, G.A. da

    1979-01-01

    In order to calculate the temperature distribution in a reactor vessel wall which is under the effect of gamma radiation originated in the reactor core, a numerical solution is proposed. This problem may arise from a reactor cooling pump failure .The thermal stresses are also calculated. (Author) [pt

  20. The influence of initial defects on mechanical stress and deformation distribution in oxidized silicon

    Directory of Open Access Journals (Sweden)

    Kulinich O. A.

    2008-10-01

    Full Text Available The near-surface silicon layers in silicon – dioxide silicon systems with modern methods of research are investigated. It is shown that these layers have compound structure and their parameters depend on oxidation and initial silicon parameters. It is shown the influence of initial defects on mechanical stress and deformation distribution in oxidized silicon.

  1. Thermal stress comparison in modular power converter topologies for smart transformers in the electrical distribution system

    DEFF Research Database (Denmark)

    Andresen, Markus; Ma, Ke; Liserre, Marco

    2015-01-01

    A Smart Transformer (ST) can cover an important managing role in the future electrical distribution grid. For the moment, the reliability and cost are not competitive with traditional transformers and create a barrier for its application. This work conduct detail designs and analysis...... for a promising modular ST solution, which is composed of Modular Multi-level converter, Quad Active Bridge DC-DC converters, and two-level voltage source converters. The focus is put on the loading conditions and thermal stress of power semiconductor devices in order to discover critical parts of the whole...... system when performing various mission profiles in the realistic distribution grid. It is concluded that the thermal stress for all stages is low during normal operation and especially the isolation stage is stressed least....

  2. Parameter Estimations and Optimal Design of Simple Step-Stress Model for Gamma Dual Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Hamdy Mohamed Salem

    2018-03-01

    Full Text Available This paper considers life-testing experiments and how it is effected by stress factors: namely temperature, electricity loads, cycling rate and pressure. A major type of accelerated life tests is a step-stress model that allows the experimenter to increase stress levels more than normal use during the experiment to see the failure items. The test items are assumed to follow Gamma Dual Weibull distribution. Different methods for estimating the parameters are discussed. These include Maximum Likelihood Estimations and Confidence Interval Estimations which is based on asymptotic normality generate narrow intervals to the unknown distribution parameters with high probability. MathCAD (2001 program is used to illustrate the optimal time procedure through numerical examples.

  3. A fully coupled finite element model for stress distribution in buried gas pipeline

    International Nuclear Information System (INIS)

    Yahya Sukirman; Zainal Zakaria; Woong Soon Yue

    2001-01-01

    The study of stress-strain relationship is very important in many designs of buried structures over the years. The behavior and mechanism between the interaction of soil and buried structures such as a natural pipeline will mostly contributes to the integrity of the pipeline. This paper presents a fully coupled finite element of consolidation analysis model to study the stress-strain distribution along a buried pipeline before it excess its maximum deformation limit. The behavior of the soil-pipeline system can be modelled by a non-linear elasto-plastic based on Mohr-Coulomb and critical state yield surfaces. The deformation and deflection of the pipeline due to drained and external loading condition will be considered here. Finally the stress-strain distribution of the buried pipeline will be utilised to obtain the maximum deformation limit and the deflection of the buried pipeline. (Author)

  4. Evaluation of the stress distribution on the pressure vessel head with multi-openings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.S.; Kim, T.W.; Jeong, K.H.; Lee, G.M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    This report discusses and analyzes the stress distribution on the pressure vessel head with multi-openings(3 PSV nozzles, 2 SDS nozzles and 1 Man Way) according to patterns of the opening distance. The pressurizer of Korea Standardized Nuclear Power Plant(Ulchin 3 and 4), which meets requirements of the cyclic operation and opening design defined by ASME code, was used as the basic model for that. Stress changes according to the distance between openings were investigated and the factors which should be considered for the opening design were analyzed. Also, the nozzle loads at Level A, B conditions and internal pressure were applied in order to evaluate changes of head stress distributions due to nozzle loads. (author). 6 refs., 29 figs., 4 tabs.

  5. Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, T; Fujitani, W; Ishimoto, T [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Umakoshi, Y [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaragi, 305-0471 (Japan)], E-mail: nakano@mat.eng.osaka-u.ac.jp

    2009-05-01

    Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-K{alpha} radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.

  6. Tissue distribution of 3H-corticosterone in response to stress

    International Nuclear Information System (INIS)

    Kolta, M.G.; Soliman, K.F.A.

    1981-01-01

    The level and distribution of 3 H-corticosterone ( 3 H-B) was investigated in adult male Sprague-Dawley rats in response to diethyl ether stress, epinephrine (EP) and/or dexamethasone administration. Diethyl ether stress caused a significant increase in the 3 H-B counts by some of the body tissues and brain regions studied. Plasma 3 H-B counts in the stressed rats were found to be twice as much as in the control animals. When EP (1.0 mg/kg) was injected, the tissue-plasma ratios of 3 H-B were significantly lower (P 3 H-B count in the plasma in response to diethyl ether stress or EP may indicate a decline in rate of corticosterone metabolism. (author)

  7. The Three Gorges Dam: Does the Flooding Time Determine the Distribution of Schistosome-Transmitting Snails in the Middle and Lower Reaches of the Yangtze River, China?

    Directory of Open Access Journals (Sweden)

    Yu Yang

    2018-06-01

    Full Text Available Background: Schistosomiasis is one of the most devastating tropical diseases in the world. Oncomelania hupensis is the only intermediate host of Schistosoma japonicum, and its growth and development are sensitive to environmental factors. The Three Gorges Dam has substantially altered the water level in the Yangtze River. This study focused on the impact of the flooding time on the occurrence of Oncomelania snails in Hunan Province, China. Methods: The data regarding Oncomelania snails were collected from the Schistosomiasis Atlas of the People’s Republic of China. Air temperature, hours of daylight and relative humidity from 1995 to 2002 were collected from the China Meteorological Data Sharing Service System. The data for rainfall and days inundated with water were collected from the Hunan flood control information system and hydrological stations in Hunan Province. A generalized additive model was used to estimate the impact of these factors on the presence or absence of snails. Results: The number of days inundated with water in the areas with snails ranged from 56 to 212 days. However, 82 percent of the areas without snails were inundated with water less than 60 days. The lowest air temperature in a year in the areas without snails ranges from −2.88 °C to −2.10 °C, and the range was from −2.88 °C to −2.34 °C for areas with snails. Annual rainfall in the areas with snails ranged from 989 to 1565 mm, and the range was from 1230 mm to 1647 mm for the areas without snails. The results from the generalized additive model showed that the number of days inundated with water, lowest air temperature in a year, annual rainfall, days of daily rainfall greater than 0.1 mm, and hours of daylight were the factors that significantly affect the occurrence of snails in Hunan Province, China. Conclusions: The number of days inundated with water may be a key factor determining the geographical distribution of Oncomelania snails in Hunan Province

  8. A Microstructural Study of Load Distribution in Cartilage: A Comparison of Stress Relaxation versus Creep Loading

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah

    2015-01-01

    Full Text Available The compressive response of articular cartilage has been extensively investigated and most studies have focussed largely on the directly loaded matrix. However, especially in relation to the tissue microstructure, less is known about load distribution mechanisms operating outside the directly loaded region. We have addressed this issue by using channel indentation and DIC microscopy techniques that provide visualisation of the matrix microstructural response across the regions of both direct and nondirect loading. We hypothesise that, by comparing the microstructural response following stress relaxation and creep compression, new insights can be revealed concerning the complex mechanisms of load bearing. Our results indicate that, with stress relaxation, the initial mode of stress decay appears to primarily involve relaxation of the surface layer. In the creep loading protocol, the main mode of stress release is a lateral distribution of load via the mid matrix. While these two modes of stress redistribution have a complex relationship with the zonally differentiated tissue microstructure and the depth of strain, four mechanostructural mechanisms are proposed to describe succinctly the load responses observed.

  9. Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes

    International Nuclear Information System (INIS)

    Liu, C.; Zhang, J.X.; Xue, C.B.

    2011-01-01

    Research highlights: → We performed pass-by-pass simulation of stresses for welding of thick-walled pipes. → The distributions and evolution of the residual stresses are demonstrated. → After the groove is filled to a height, the through-wall stress is almost unchanged. - Abstracts: The detailed pass-by-pass finite element (FE) simulation is presented to investigate the residual stresses in narrow gap multipass welding of pipes with a wall thickness of 70 mm and 73 weld passes. The simulated residual stress on the outer surface is validated with the experimental one. The distribution and evolution of the through-wall residual stresses are demonstrated. The investigated results show that the residual stresses on the outer and inner surfaces are tensile in the weld zone and its vicinity. The through-wall axial residual stresses at the weld center line and the HAZ line demonstrate a distribution of bending type. The through-wall hoop residual stress within the weld is mostly tensile. After the groove is filled to a certain height, the peak tensile stresses and the stress distribution patterns for both axial and hoop stresses remain almost unchanged.

  10. Three-Dimensional Finite Element Analysis on Stress Distribution of Internal Implant-Abutment Engagement Features.

    Science.gov (United States)

    Cho, Sung-Yong; Huh, Yun-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    To investigate the stress distribution in an implant-abutment complex with a preloaded abutment screw by comparing implant-abutment engagement features using three-dimensional finite element analysis (FEA). For FEA modeling, two implants-one with a single (S) engagement system and the other with a double (D) engagement system-were placed in the human mandibular molar region. Two types of abutments (hexagonal, conical) were connected to the implants. Different implant models (a single implant, two parallel implants, and mesial and tilted distal implants with 1-mm bone loss) were assumed. A static axial force and a 45-degree oblique force of 200 N were applied as the sum of vectors to the top of the prosthetic occlusal surface with a preload of 30 Ncm in the abutment screw. The von Mises stresses at the implant-abutment and abutment-screw interfaces were measured. In the single implant model, the S-conical abutment type exhibited broader stress distribution than the S-hexagonal abutment. In the double engagement system, the stress concentration was high in the lower contact area of the implant-abutment engagement. In the tilted implant model, the stress concentration point was different from that in the parallel implant model because of the difference in the bone level. The double engagement system demonstrated a high stress concentration at the lower contact area of the implant-abutment interface. To decrease the stress concentration, the type of engagement features of the implant-abutment connection should be carefully considered.

  11. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR.

  12. Effect of preemptive weld overlay sequence on residual stress distribution for dissimilar metal weld of Kori nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Bae, Hong Yeol; Song, Tae Kwang; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae; Lee, Kyoung Soo; Park, Chi Yong

    2008-01-01

    Weld overlay is one of the residual stress mitigation method which arrest crack. An overlay weld sued in this manner is termed a Preemptive Weld OverLay(PWOL). PWOL was good for distribution of residual stress of Dissimilar Metal Weld(DMW) by previous research. Because range of overlay welding is wide relatively, residual stress distribution on PWR is affected by welding sequence. In order to examine the effect of welding sequence, PWOL was applied to a specific DMW of KORI nuclear power plant by finite element analysis method. As a result, the welding direction that from nozzle to pipe is better good for residual stress distribution on PWR

  13. Analysis of the temperature and stress distributions in ceramic window materials subjected to microwave heating

    International Nuclear Information System (INIS)

    Ferber, M.K.; Kimrey, H.D.; Becher, P.F.

    1983-07-01

    The temperature and stress and distributions generated in ceramic materials currently employed in microwave gyrotron tube windows were determined for a variety of operating conditions. Both edge- and face-cooled windows of either polycrystalline BeO or polycrystalline Al 2 O 3 were considered. The actual analysis involved three steps. First, a computer program was used to determine the electric field distribution within the window at a given power level and frequency (TE 02 wave propagation assumed). This program was capable of describing both the radial and axial dependence of the electric field. The effects of multiple internal reflections at the various dielectric interfaces were also accounted for. Secondly, the field distribution was used to derive an expression for the heat generated per unit volume per unit time within the window due to dieletric losses. A generalized heat conduction computer code was then used to compute the temperature distribution based on the heat generation function. Third, the stresses were determined from the temperature profiles using analytical expression or a finite-element computer program. Steady-state temperature and stress profiles were computed for the face-cooled and edge-cooled windows

  14. Effect of thermoplastic appliance thickness on initial stress distribution in periodontal ligament

    Directory of Open Access Journals (Sweden)

    De-Shin Liu

    2015-04-01

    Full Text Available A numerical investigation into the initial stress distribution induced within the periodontal ligament by thermoplastic appliances with different thicknesses is performed. Based on the plaster model of a 25-year-old male patient, a finite element model of the maxillary lateral incisors and their supporting structures is constructed. In addition, four finite element models of thermoplastic appliances with different thicknesses in the range of 0.5–1.25 mm are also constructed based on the same plaster model. Finite element analysis simulations are performed to examine the effects of the force delivered by the thermoplastic appliances on the stress response of the periodontal ligament during the elastic recovery process. The results show that the stress induced in the periodontal ligament increases with an increasing appliance thickness. For example, the stress triples from 0.0012 to 0.0038 MPa as the appliance thickness is increased from 0.75 to 1.25 mm. The results presented in this study provide a useful insight into as a result of the compressive and tensile stresses induced by thermoplastic appliances of different thicknesses. Moreover, the results enable the periodontal ligament stress levels produced by thermoplastic appliances of different thicknesses to be reliably estimated.

  15. Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel

    International Nuclear Information System (INIS)

    Bensely, A.; Venkatesh, S.; Mohan Lal, D.; Nagarajan, G.; Rajadurai, A.; Junik, Krzysztof

    2008-01-01

    The effect of cryogenic treatment on the distribution of residual stress in the case carburized steel (En 353) was studied using X-ray diffraction technique. Two types of cryogenic treatment: shallow cryogenic treatment (193 K) and deep cryogenic treatment (77 K) were adopted, as a supplement to conventional heat treatment. The amount of retained austenite in conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples was found to be 28%, 22% and 14%, respectively. The conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples in untempered condition had a surface residual stress of -125 MPa, -115 MPa and -235 MPa, respectively. After tempering the conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples had a surface residual stress of -150 MPa, -80 MPa and -80 MPa, respectively. A comparative study of the three treatments revealed that there was an increase in the compressive residual stress in steel that was subjected to cryogenic treatment prior to tempering. The experimental investigation revealed that deep cryogenically treated steel when subjected to tempering has undergone a reduction in compressive residual stress. Such stress relieving behaviour was mainly due to the increased precipitation of fine carbides in specimens subjected to DCT with tempering

  16. The probability distribution of intergranular stress corrosion cracking life for sensitized 304 stainless steels in high temperature, high purity water

    International Nuclear Information System (INIS)

    Akashi, Masatsune; Kenjyo, Takao; Matsukura, Shinji; Kawamoto, Teruaki

    1984-01-01

    In order to discuss the probability distribution of intergranular stress corrsion carcking life for sensitized 304 stainless steels, a series of the creviced bent beem (CBB) and the uni-axial constant load tests were carried out in oxygenated high temperature, high purity water. The following concludions were resulted; (1) The initiation process of intergranular stress corrosion cracking has been assumed to be approximated by the Poisson stochastic process, based on the CBB test results. (2) The probability distribution of intergranular stress corrosion cracking life may consequently be approximated by the exponential probability distribution. (3) The experimental data could be fitted to the exponential probability distribution. (author)

  17. Theoretical Analysis of Stress Distribution in Bonded Single Strap and Stiffened Joints

    Directory of Open Access Journals (Sweden)

    Behnam Ghoddous

    Full Text Available Abstract In this paper, distribution of peeling stress in two types of adhesively-bonded joints is investigated. The joints are a single strap and a stiffened joint. Theses joints are under uniform tensile load and materials are assumed orthotropic. Layers can be identical or different in mechanical or geometrical properties. A two-dimensional elasticity theory that includes the complete stress-strain and the complete strain-displacement relations for adhesive and adherends is used in this analysis. The displacement is assumed to be linear in the adhesive layer. A set of differential equations was derived and solved by using appropriate boundary conditions. Results revealed that the peak peeling stress developed within the adhesive layer is a function of geometrical and mechanical properties. FEM solution is used as the second method to verify the analytical results. A good agreement is observed between analytical and FEM solutions.

  18. Non--Local Approach to the Analysis of the Stress Distribution in Granular Systems.

    Science.gov (United States)

    Scott, J. E.; Kenkre, V. M.; Hurd, A. J.

    1998-03-01

    A continuum mechanical theory of the stress distribution in granular materials is presented, where the transformation of the vertical spatial coordinate into a formal time variable converts the study of the static stress distribution into a generally non--Markoffian, i.e., memory-possessing (non-local) propagation analysis. Previous treatments (J. -P). Bouchaud, M. E. Cates, and P. Claudin, J. Phys. I France 5, 639 (1995). (C. -h). Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar, O. Narayan, and T. A. Witten, Science 269, 513 (1995). are shown to be particular cases of our theory corresponding to, respectively, wave-like and dif fusive limits of the general evolution. Calculations are presented for the example of ceramic or metal powder compaction in dies, with emphasis on the understanding of previously unexplained features as seen in experimental data found in the literature o ver the past 50 years. Specific proposals for new experimental investigations are presented.

  19. Study of the stress distribution around an orthotropic bi-material notch tip

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Profant, T.; Kotoul, M.

    417-418, - (2010), s. 385-388 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /8./. Malta, 08.09.2009-10.09.2009] R&D Projects: GA ČR GA101/08/0994; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : Generalized fracture mechanics * Singular stress distribution * Orthotropic bimaterial notch Subject RIV: JL - Materials Fatigue, Friction Mechanics www.scientific.net

  20. Tungsten heavy metal alloys relations between the crystallographic texture and the internal stress distribution

    International Nuclear Information System (INIS)

    Nicolas, G.; Voltz, M.

    2001-01-01

    Quite often the W-Ni-Fe-Co heavy alloys are subjected to a thermomechanical processing of swaging and aging in order to obtain the highest possible level of resistance. Within the framework of this plastic deformation on cylindrical parts, the swaging leads to the distribution of morphological and crystallographic texture as well as specific internal stresses. The resulting mechanical characteristics are correlated to structural and sub-structural variations. (author)

  1. Distinctive hippocampal zinc distribution patterns following stress exposure in an animal model of PTSD.

    Science.gov (United States)

    Sela, Hagit; Cohen, Hagit; Karpas, Zeev; Zeiri, Yehuda

    2017-03-22

    Emerging evidence suggests that zinc (Zn) deficiency is associated with depression and anxiety in both human and animal studies. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of Zn distribution. The work has focused on one case study, the association between an animal model of posttraumatic stress disorder (PTSD) and the Zn distribution in the rat hippocampus. Behaviors were assessed with the elevated plus-maze and acoustic startle response tests 7 days later. Preset cut-off criteria classified exposed animals according to their individual behavioral responses. To further characterize the distribution of Zn that occurs in the hippocampus 8 days after the exposure, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging was used. It has been found that Zn distribution in the dentate gyrus (DG) sub-region in the hippocampus is clearly more widely spread for rats that belong to the extreme behavioral response (EBR) group as compared to the control group. Comparison of the Zn concentration changes in the cornu ammonis 1 (CA1) and the DG sub-regions of the hippocampus shows that the concentration changes are statistically significantly higher in the EBR rats compared to the rats in the control and minimal behavioral response (MBR) groups. In order to understand the mechanism of stress-induced hippocampal Zn dyshomeostasis, relative quantitative analyses of metallothionein (MT), B-cell lymphoma 2 (Bcl-2) and caspase 3 immunoreactivity were performed. Significant differences in the number of caspase-ir and Bcl-2 cells were found in the hippocampal DG sub-region between the EBR group and the control and MBR groups. The results of this study demonstrate a statistically significant association between the degree of behavioral disruption resulting from stress exposure and the patterns of Zn distribution and concentration changes in the various hippocampal regions

  2. Effect of phytohormones on absorption and distribution of ions in salt-stressed bean plants

    Directory of Open Access Journals (Sweden)

    Zofia Starck

    2014-01-01

    Full Text Available Bean plant seedlings grown in water culture were treated for 5 days either with NaCl or with 7-times concentrated nutrient solution (diminished water potential by 3-103 hPa in both cases. Control and stressed plants were treated for 24 hrs with zeatin and GA,. NaCl-stress reduced distinctly ion absorption rate (K, Ca and P. Zeatin and GA3 promoted potassium uptake, but only in NaCI-treated plants. These hormones diminished Na accumulation in metabolically active organs but increased P- and Ca-content. In plants grown under both kind of stresses zeatin and GA3 partially reestablished the ratio of the main mono- to divalent cations, which increased in the leaves and apical part of the stressed plants. ABA introduced into the nutrient solution caused inhibition of the ion uptake (K, Ca, Mg and P. similar to that caused by NaCl-stress. The above reported results seem to confirm the supposition, that hormones act as an important factor contributing to regulation of both uptake and distribution of ions. In this way growth substances may also participate in the regulation of transport of various substances (among others - assimilates in the whole plant.

  3. Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Charles K.S., E-mail: charles.moy@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Ranzi, Gianluca [ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Petersen, Timothy C. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia)

    2011-05-15

    One major concern since the development of the field ion microscope is the mechanical strength of the specimens. The macroscopic shape of the imaging tip greatly influences field-induced stresses and there is merit in further study of this phenomenon from a classical perspective. Understanding the geometrical, as opposed to localized electronic, factors that affect the stress might improve the quality and success rate of atom probe experiments. This study uses macroscopic electrostatic principles and finite element modelling to investigate field-induced stresses in relation to the shape of the tip. Three two-dimensional idealized models are considered, namely hyperbolic, parabolic and sphere-on-orthogonal-cone; the shapes of which are compared to experimental tips prepared by electro-polishing. Three dimensional morphologies of both a nano-porous and single-crystal aluminium tip are measured using electron tomography to quantitatively test the assumption of cylindrical symmetry for electro-polished tips. The porous tip was prepared and studied to demonstrate a fragile specimen for which such finite element studies could determine potential mechanical failure, prior to any exhaustive atom probe investigation. -- Research highlights: {yields} We use electrostatic principles and finite element to model field-induced stresses. {yields} We study two-dimensional idealized needle-shaped field emitters. {yields} Stress distribution of hyperbolic, parabolic and sphere-on-orthogonal-cone tips mapped. {yields} Electron tomography to obtain the morphology of three-dimensional aluminium tips. {yields} Studies of the morphology of the porous tip demonstrate a fragile specimen.

  4. The effect of unerupted permanent tooth crowns on the distribution of masticatory stress in children.

    Directory of Open Access Journals (Sweden)

    Ashley S Hammond

    Full Text Available Human mothers wean their children from breast milk at an earlier developmental stage than do ape mothers, resulting in human children chewing solid and semi-solid foods using the deciduous dentition. Mechanical forces generated by chewing solid foods during the post-weaning period travel through not only the deciduous teeth, but also the enamel caps of the developing permanent teeth within the maxilla and mandible, which are not present in the adult face. The effects of mechanical stress propagating through these very stiff structures have yet to be examined. Based on a heuristic model, we predicted that the enamel of the embedded developing teeth would act to reduce stresses in the surrounding bony elements of the juvenile face. We tested this hypothesis by simulating occlusal loading in a finite element (FE model of a child's cranium with a complete set of deciduous teeth and the first permanent molars embedded in the bony crypt in the maxilla. We modeled bone and enamel with appropriate material properties and assessed the effect of embedding high-stiffness enamel structures on stress distribution in the juvenile face. Against expectation, the presence of unerupted enamel caps does not affect the magnitude or location of stresses in the juvenile face. Our results do not support the hypothesis that the unerupted secondary teeth act to moderate stresses in the juvenile face.

  5. Numerical simulation of stress distribution in Al2 O3-TiC/Q235 diffusion bonded joints

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The distributions of the axial stress and shear stress in Al2O3-TiC/Q235 diffusion bonded joints were studied using finite element method (FEM). The effect of interlayer thickness on the axial stress and shear stress was also investigated. The results indicate that the gradients of the axial stress and shear stress are great near the joint edge. The maximal shear stress produces at the interface of the Al2O3-TiC and Ti interlayer. With the increase of Cu interlayer thickness, the magnitudes of the axial stress and shear stress first decrease and then increase. The distribution of the axial stress changes greatly with a little change in the shear stress. The shear fracture initiates at the interface of the Al2O3-TiC/ Ti interlayer with high shear stress and then propagates to the Al2O3-TiC side, which is consistent with the stress FEM calculating results.

  6. Distribution of stress on TMJ disc induced by use of chincup therapy: assessment by the finite element method

    Science.gov (United States)

    Calçada, Flávio Siqueira; Guimarães, Antônio Sérgio; Teixeira, Marcelo Lucchesi; Takamatsu, Flávio Atsushi

    2017-01-01

    ABSTRACT Objective: To assess the distribution of stress produced on TMJ disc by chincup therapy, by means of the finite element method. Methods: a simplified three-dimensional TMJ disc model was developed by using Rhinoceros 3D software, and exported to ANSYS software. A 4.9N load was applied on the inferior surface of the model at inclinations of 30, 40, and 50 degrees to the mandibular plane (GoMe). ANSYS was used to analyze stress distribution on the TMJ disc for the different angulations, by means of finite element method. Results: The results showed that the tensile and compressive stresses concentrations were higher on the inferior surface of the model. More presence of tensile stress was found in the middle-anterior region of the model and its location was not altered in the three directions of load application. There was more presence of compressive stress in the middle and mid-posterior regions, but when a 50o inclined load was applied, concentration in the middle region was prevalent. Tensile and compressive stresses intensities progressively diminished as the load was more vertically applied. Conclusions: stress induced by the chincup therapy is mainly located on the inferior surface of the model. Loads at greater angles to the mandibular plane produced distribution of stresses with lower intensity and a concentration of compressive stresses in the middle region. The simplified three-dimensional model proved useful for assessing the distribution of stresses on the TMJ disc induced by the chincup therapy. PMID:29160348

  7. X-ray evaluation of residual stress distributions within surface machined layer generated by surface machining and sequential welding

    International Nuclear Information System (INIS)

    Taniguchi, Yuu; Okano, Shigetaka; Mochizuki, Masahito

    2017-01-01

    The excessive tensile residual stress generated by welding after surface machining may be an important factor to cause stress corrosion cracking (SCC) in nuclear power plants. Therefore we need to understand and control the residual stress distribution appropriately. In this study, residual stress distributions within surface machined layer generated by surface machining and sequential welding were evaluated by X-ray diffraction method. Depth directional distributions were also investigated by electrolytic polishing. In addition, to consider the effect of work hardened layer on the residual stress distributions, we also measured full width at half maximum (FWHM) obtained from X-ray diffraction. Testing material was a low-carbon austenitic stainless steel type SUS316L. Test specimens were prepared by surface machining with different cutting conditions. Then, bead-on-plate welding under the same welding condition was carried out on the test specimens with different surface machined layer. As a result, the tensile residual stress generated by surface machining increased with increasing cutting speed and showed nearly uniform distributions on the surface. Furthermore, the tensile residual stress drastically decreased with increasing measurement depth within surface machined layer. Then, the residual stress approached 0 MPa after the compressive value showed. FWHM also decreased drastically with increasing measurement depth and almost constant value from a certain depth, which was almost equal regardless of the machining condition, within surface machined layer in all specimens. After welding, the transverse distribution of the longitudinal residual stress varied in the area apart from the weld center according to machining conditions and had a maximum value in heat affected zone. The magnitude of the maximum residual stress was almost equal regardless of the machining condition and decreased with increasing measurement depth within surface machined layer. Finally, the

  8. Effect of geometric construction on residual stress distribution in designing a nuclear rotor joined by multipass narrow gap welding

    International Nuclear Information System (INIS)

    Tan, Long; Zhang, Linjie; Zhang, Jianxun; Zhuang, Dong

    2014-01-01

    Highlights: • The internal stress of the pipe is measured using local material removal method. • Bottom protrusion at weld seam can release the stress and mitigate stress evolution. The through-wall axial stress is bending type under the effect of the rotor discs. • The impact of geometric construction on the stress evolution begins after pass 15. - Abstract: The purpose of this study is to investigate the effect of geometric construction on the distribution of residual stresses before and after heat treatment in designing a nuclear welded rotor. The local material removal method was used to measure internal residual stress of the experimental pipe after post weld heat treatment. Three finite element models were employed as follows: a model of experimental pipe, a model with a bottom protrusion existed at the weld region, and a model of two rotor discs butt-welded with a bottom protrusion at the weld region. Investigated results showed that the bottom protrusion existed at the weld region can decrease the residual stress and mitigate the stress evolution significantly on the inner surface. Under the binding effect of the rotor discs, the axial stress of inner surface region is compressive stress; the through-wall axial stress at the weld center line can be deemed to a bending type; both the hoop stress and axial stress at the weld center line on the inner surface are compressive. The impact of geometric construction on the stress evolution at the root bead begins after pass 15 deposited

  9. Ocular Manifestations of Mosquito-Transmitted Diseases.

    Science.gov (United States)

    Karesh, James W; Mazzoli, Robert A; Heintz, Shannon K

    2018-03-01

    Of the 3,548 known mosquito species, about 100 transmit human diseases. Mosquitoes are distributed globally throughout tropical and temperate regions where standing water sources are available for egg laying and the maturation of larva. Female mosquitoes require blood meals for egg production. This is the main pathway for disease transmission. Mosquitoes carry several pathogenic organisms responsible for significant ocular pathology and vision loss including West Nile, Rift Valley, chikungunya, dengue viruses, various encephalitis viruses, malarial parasites, Francisella tularensis, microfilarial parasites, including Dirofilaria, Wuchereria, and Brugia spp., and human botfly larvae. Health care providers may not be familiar with many of these mosquito-transmitted diseases or their associated ocular findings delaying diagnosis, treatment, and recovery of visual function. This article aims to provide an overview of the ocular manifestations associated with mosquito-transmitted diseases.

  10. Predicting Posttraumatic Stress Symptom Prevalence and Local Distribution after an Earthquake with Scarce Data.

    Science.gov (United States)

    Dussaillant, Francisca; Apablaza, Mauricio

    2017-08-01

    After a major earthquake, the assignment of scarce mental health emergency personnel to different geographic areas is crucial to the effective management of the crisis. The scarce information that is available in the aftermath of a disaster may be valuable in helping predict where are the populations that are in most need. The objectives of this study were to derive algorithms to predict posttraumatic stress (PTS) symptom prevalence and local distribution after an earthquake and to test whether there are algorithms that require few input data and are still reasonably predictive. A rich database of PTS symptoms, informed after Chile's 2010 earthquake and tsunami, was used. Several model specifications for the mean and centiles of the distribution of PTS symptoms, together with posttraumatic stress disorder (PTSD) prevalence, were estimated via linear and quantile regressions. The models varied in the set of covariates included. Adjusted R2 for the most liberal specifications (in terms of numbers of covariates included) ranged from 0.62 to 0.74, depending on the outcome. When only including peak ground acceleration (PGA), poverty rate, and household damage in linear and quadratic form, predictive capacity was still good (adjusted R2 from 0.59 to 0.67 were obtained). Information about local poverty, household damage, and PGA can be used as an aid to predict PTS symptom prevalence and local distribution after an earthquake. This can be of help to improve the assignment of mental health personnel to the affected localities. Dussaillant F , Apablaza M . Predicting posttraumatic stress symptom prevalence and local distribution after an earthquake with scarce data. Prehosp Disaster Med. 2017;32(4):357-367.

  11. ABA pretreatment can alter the distribution of polysomes in salt-stressed barley sprouts

    Directory of Open Access Journals (Sweden)

    Szypulska Ewa

    2016-12-01

    Full Text Available The study analyzed caryopses of barley (Hordeum vulgare cv. Stratus. Caryopses were germinated in darkness at 20°C in three experimental setups: (a in distilled water for 24 hours, followed by 100 mM NaCl for another 24 hours (salinity stress, SS, (b in 100 μM of abscisic acid for the first 24 hours, followed by rinsing with distilled water to remove residual ABA, and in 100 mM NaCl for another 24 hours (ABA pretreatment + salinity stress, ABAS, (c in distilled water only (control, C. Changes in the content of free polysomes (FP, membrane-bound polysomes (MBP, cytoskeleton-bound polysomes (CBP and cytomatrix-bound polysomes (CMBP were examined in barley sprouts germinated in SS and ABAS treatments for 48 hours. In salt-stressed barley sprouts, the concentrations of membrane-bound and cytoskeleton-bound polysomes (MBP, CBP and CMBP decreased significantly, whereas an increase was noted only in the free polysome (FP fraction. ABA pretreatment altered the distribution of polysomes in stressed plants. The content of cytoskeletonbound polysomes (CBP and CMBP increased, FP levels decreased, whereas no changes in MBP content were observed in response to ABA treatment. Our results suggest that plants respond to salt stress by increasing the concentrations of free polysomes that are probably released from damaged cell structures, mainly membranes. Our present and previous findings indicate that ABA could inhibit the release of FP in stressed plants by enhancing polysome binding to the cytoskeleton.

  12. THE STRESS STATE OF THE RADIALLY INHOMOGENEOUS HEMISPHERICAL SHELL UNDER LOCALLY DISTRIBUTED VERTICAL LOAD

    Directory of Open Access Journals (Sweden)

    Andreev Vladimir Igorevich

    2018-01-01

    Full Text Available Subject: one of the promising trends in the development of structural mechanics is the development of methods for solving problems in the theory of elasticity for bodies with continuous inhomogeneity of any deformation characteristics: these methods make it possible to use the strength of the material most fully. In this paper, we consider the two-dimensional problem for the case when a vertical, locally distributed load acts on the hemisphere and the inhomogeneity is caused by the influence of the temperature field. Research objectives: derive governing system of equations in spherical coordinates for determination of the stress state of the radially inhomogeneous hemispherical shell under locally distributed vertical load. Materials and methods: as a mechanical model, we chose a thick-walled reinforced concrete shell (hemisphere with inner and outer radii a and b, respectively, b > a. The shell’s parameters are a = 3.3 m, b = 4.5 m, Poisson’s ratio ν = 0.16; the load parameters are f = 10MPa - vertical localized load distributed over the outer face, θ0 = 30°, temperature on the internal surface of the shell Ta = 500 °C, temperature on the external surface of the shell Tb = 0 °C. The resulting boundary-value problem (a system of differential equations with variable coefficients is solved using the Maple software package. Results: maximal compressive stresses σr with allowance for material inhomogeneity are reduced by 10 % compared with the case when the inhomogeneity is ignored. But it is not so important compared with a 3-fold decrease in the tensile stress σθ on the inner surface and a 2-fold reduction in the tensile stress σθ on the outer surface of the hemisphere as concretes generally have a tensile strength substantially smaller than the compressive strength. Conclusions: the method presented in this article makes it possible to reduce the deformation characteristics of the material, i.e. it leads to a reduction in stresses

  13. [Influence of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown].

    Science.gov (United States)

    Guo, Jing; Wang, Xiao-Yu; Li, Xue-Sheng; Sun, Hai-Yang; Liu, Lin; Li, Hong-Bo

    2016-02-01

    To evaluate the effect of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown using three-dimensional finite element method. Four models with different designs of marginal preparation, including the flat margin, 90° shoulder, 135° shoulder and chamfer shoulder, were established to imitate mandibular first premolar restored with endocrown. A load of 100 N was applied to the intersection of the long axis and the occlusal surface, either parallel or with an angle of 45° to the long axis of the tooth. The maximum values of Von Mises stress and the stress distribution around the cervical region of the abutment and the endocrown with different designs of marginal preparation were analyzed. The load parallel to the long axis of the tooth caused obvious stress concentration in the lingual portions of both the cervical region of the tooth tissue and the restoration. The stress distribution characteristics on the cervical region of the models with a flat margin and a 90° shoulder were more uniform than those in the models with a 135° shoulder and chamfer shoulder. Loading at 45° to the long axis caused stress concentration mainly on the buccal portion of the cervical region, and the model with a flat margin showed the most favorable stress distribution patterns with a greater maximum Von Mises stress under this circumstance than that with a parallel loading. Irrespective of the loading direction, the stress value was the lowest in the flat margin model, where the stress value in the cervical region of the endocrown was greater than that in the counterpart of the tooth tissue. The stress level on the enamel was higher than that on the dentin nearby in the flat margin model. From the stress distribution point of view, endocrowns with flat margin followed by a 90° shoulder are recommended.

  14. Effects of heat stress on dynamic absorption process, tissue distribution and utilization efficiency of vitamin C in broilers

    International Nuclear Information System (INIS)

    Liu Guohua; Chen Guosheng; Cai Huiyi

    1998-01-01

    The experiment was conducted to determine the effects of heat stress on ascorbic acid nutritional physiology of broilers with radioisotope technology. 3 H-Vc was fed to broilers and then the blood, liver, kidney, breast muscle, and excreta were sampled to determine the dynamic absorption process, the tissue distribution and the utilization efficiency of vitamin C. The results indicated that the absorption, metabolism and mobilization of supplemented vitamin C in broilers with heat stress was faster than that in broilers without heat stress. However, the utilization efficiency of supplemented vitamin C in broilers with heat stress was not higher than that of broilers without heat stress

  15. Temperature-time distribution and thermal stresses on the RTG fins and shell during water cooling

    Science.gov (United States)

    Turner, R. H.

    1983-01-01

    Radioisotope thermoelectric generator (RTG) packages designed for space missions generally do not require active cooling. However, the heat they generate cannot remain inside of the launch vehicle bay and requires active removal. Therefore, before the Shuttle bay door is closed, the RTG coolant tubes attached to the heat rejection fins must be filled with water, which will circulate and remove most of the heat from the cargo bay. There is concern that charging a system at initial temperature around 200 C with water at 24 C can cause unacceptable thermal stresses in the RTG shell and fins. A computer model is developed to estimate the transient temperature distribution resulting from such charging. The thermal stresses resulting from the temperature gradients do not exceed the elastic deformation limit for the material. Since the simplified mathematical model for thermal stresses tends to overestimate stresses, it is concluded that the RTG can be cooled by introducing water at 24 C to the initially hot fin coolant tubes while the RTG is in the Shuttle cargo bay.

  16. Predicted tyre-soil interface area and vertical stress distribution based on loading characteristics

    DEFF Research Database (Denmark)

    Schjønning, Per; Stettler, M.; Keller, Thomas

    2015-01-01

    The upper boundary condition for all models simulating stress patterns throughout the soil profile is the stress distribution at the tyre–soil interface. The so-called FRIDA model (Schjønning et al., 2008. Biosyst. Eng. 99, 119–133) treats the contact area as a superellipse and has been shown...... of the actual to recommended inflation pressure ratio. We found that VT and Kr accounted for nearly all variation in the data with respect to the contact area. The contact area width was accurately described by a combination of tyre width and Kr, while the superellipse squareness parameter, n, diminished...... slightly with increasing Kr. Estimated values of the contact area length related to observed data with a standard deviation of about 0.06 m. A difference between traction and implement tyres called for separate prediction equations, especially for the contact area. The FRIDA parameters α and β, reflecting...

  17. Numerical Simulation of Temperature Field and Residual Stress Distribution for Laser Cladding Remanufacturing

    Directory of Open Access Journals (Sweden)

    Liang Hua

    2014-05-01

    Full Text Available A three-dimensional finite element model was employed to simulate the cladding process of Ni-Cr-B-Si coatings on 16MnR steel under different parameters of laser power, scanning speed, and spot diameter. The temperature and residual stress distribution, the depth of the heat affected zone (HAZ, and the optimized parameters for laser cladding remanufacturing technology were obtained. The orthogonal experiment and intuitive analysis on the depth of the HAZ were performed to study the influence of different cladding parameters. A new criterion based on the ratio of the maximum tensile residual stress and fracture strength of the substrate was proposed for optimization of the remanufacturing parameters. The result showed well agreement with that of the HAZ analysis.

  18. Modelling and analysis of the stress distribution in a multi-thin film system Pt/USG/Si

    Science.gov (United States)

    Yao, W. Z.; Roqueta, F.; Craveur, J. C.; Belhenini, S.; Gardes, P.; Tougui, A.

    2018-04-01

    Residual stress analysis is commonly achieved through curvature measurement with the help of Stoney’s formula. However, this conventional approach is inadequate for multi-layer thin film systems, which are widely used in today’s microelectronics. Also, for the thin film case, the residual stress is composed of thermal stress and intrinsic stress. Measuring the wafer curvature at room temperature provides a value for the average stresses in the layer, the two components cannot be distinguished by the existing methodologies of curvature measurement. To alleviate these problems, a modified curvature method combining finite element (FE) modelling is proposed to study the stress distribution in a Pt/USG/Si structure. A 2D FE model is firstly built in order to calculate the thermal stress in the multilayer structure, the obtained thermal stresses in respective films are verified by an analytical model. Then, we calculate the warpage of the multilayer structure by considering the intrinsic stress in the respective films. The residual stresses in the films are determined by minimizing the difference between the simulated warpage and that of experimental measurement. The proposed approach can be used to calculate not only the average residual stress but also thermal and intrinsic stress components in the USG and Platinum films. The obtained residual and intrinsic stresses from a numerical model are compared with the values of other studies. There is no limitation for the application of our methodologies regarding the number of the layers in the stack.

  19. Pressure distribution of implant-supported removable partial dentures with stress-breaking attachments.

    Science.gov (United States)

    Kono, Kentaro; Kurihara, Daisuke; Suzuki, Yasunori; Ohkubo, Chikahiro

    2014-04-01

    This in vitro study investigated the pressure distribution of the implant-supported removable partial dentures (RPDs) with the stress-breaking attachments under the occlusal force. The experimental model of bilateral missing premolars and molars was modified from a commercial simulation model. Five pressure sensors were embedded near the bilateral first molars, first premolars, and medio-lingual alveolar crest. Two implants were placed near the second molars, and they were connected to the denture base using the following conditions: complete separation between the denture base and implant with cover screws (CRPD), flexible connection with a stress-breaking ball (SBB) attachment, and rigid connection without stress breaking with healing caps (HC). The pressure at five different areas of the soft tissue and the displacement of the RPDs were simultaneously measured, loading up to 50 N. The coefficient of variation (CV) for each connection was calculated from all data of the pressure at five areas to evaluate the pressure distribution. The pressure on medio-lingual alveolar crest and molars of the HC was less than SBB and CRPD. In contrast, the pressure on premolars of SBB was greater than for the HC and CRPD. The CV of SBB was less than that of HC and CRPD. Denture displacement of HC and SBB was less than for CRPD. Within the in vitro limitations, precise denture settlements and pressure distribution under the denture base could be controlled using an SBB attachment. An SBB attachment might be able to protect the implant from harmful force. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  20. Theoretical role of adjunctive implant positional support in stress distribution of distal-extension mandibular removable partial dentures.

    Science.gov (United States)

    Xiao, Wei; Li, Zhiyong; Shen, Shiqian; Chen, Shaowu; Wang, Yining; Wang, Jiawei

    2014-01-01

    This preliminary study evaluated the adjunctive supporting role of diverse implant positions on stress distribution in a Class I removable partial denture (RPD) design. Nine three-dimensional finite element models were prepared to simulate mandibular RPD designs with three different loading conditions applied. Implant supported designs demonstrated lower stress value concentrations and mucosal displacement.

  1. 78 FR 64153 - Policy Statement on the Principles for Development and Distribution of Annual Stress Test Scenarios

    Science.gov (United States)

    2013-10-28

    .... OCC-2012-0016] Policy Statement on the Principles for Development and Distribution of Annual Stress... the stress test horizon. The variables specified for each scenario generally address economic activity... institutions by November 15th of each year. This document articulates the principles that the OCC will apply to...

  2. 78 FR 72534 - Policy Statement on the Principles for Development and Distribution of Annual Stress Test Scenarios

    Science.gov (United States)

    2013-12-03

    ... FEDERAL DEPOSIT INSURANCE CORPORATION 12 CFR Part 325 Policy Statement on the Principles for... stress test horizon. The variables specified for each scenario generally address economic activity, asset..., 2012, that articulated the principles the FDIC will apply to develop and distribute the stress test...

  3. Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Connection.

    Science.gov (United States)

    Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2016-01-01

    This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.

  4. Stress distribution in dental prosthesis under an occlusal combined dynamic loading

    International Nuclear Information System (INIS)

    Merdji, A.; Bachir Bouiadjra, B.; Ould Chikh, B.; Mootanah, R.; Aminallah, L.; Serier, B.; Muslih, I.M.

    2012-01-01

    Highlights: ► The mechanical stress reaches the highest in areas of cortical bones. ► The mechanical stress in the cancellous bone reaches greatest in the bottom of the dental implant. ► Implant with low-volume bone might cause increased stress concentration in the cortical bone. -- Abstract: The biomechanical behavior of osseointegrated dental prostheses systems plays an important role in its functional longevity inside the bone. Simulation of these systems requires an accurate modeling of the prosthesis components, the jaw bone, the implant–bone interface, and the response of the system to different types of applied forces. The purpose of this study was to develop a new three-dimensional model of an osseointegrated molar dental prosthesis and to carry out finite element analysis to evaluate stress distributions in the bone and the dental prosthesis compounds under an occlusal combined dynamic load was applied to the top of the occlusale face of the prosthesis crown. The jaw bone model containing cortical bone and cancellous bone was constructed by using computer tomography scan pictures and Computer Aided Design tools. The dental prosthesis compounds were constructed, simulating the commercially available cylindrical implant of 4.8 mm diameter and 10 mm length. Both finite element models were created in Abaqus finite element software. All materials used in the models were considered to be isotropic, homogeneous and linearly elastic. The elastic properties, loads and constraints used in the model were taken from published data. Results of our finite element analyses, indicated that the maximum stresses were located around the mesial neck of the implant, in the marginal bone. Thus, this area should be preserved clinically in order to maintain the bone–implant interface structurally and functionally.

  5. Study on improved procedure for determination of three dimensional distributions of the initial rock stresses. 3

    International Nuclear Information System (INIS)

    Mizuta, Yoshiaki

    2004-02-01

    In the fiscal year of 2003, our committee achieved the following work items during the contract period, from September 3rd, 2003 to February 13th, 2004. The more accurate numerical data with respect to the geological/geometrical conditions including the fault were provided from Tono Geoscience Center and the numerical models by Finite Element Method (FEM), Finite Difference Method (FDM) and Boundary Element Method (BEM) were built taking those strata data into account. For small region modeling by FEM, three layers models, Shoumasama model and Tono-Shoumasama model, as well as Tono Mine model, were constructed, and each strain state at the far field boundary was determined. In order to get better agreement in local stress states with the measured values, a far field strain state was determined to the modified model in which material properties of upper granite and lower granite are different. In intermediate region modeling by FDM, actual strata data was taken into account, whereas strata boundary was assumed to be horizontal in former modeling, and far field stress field was analyzed. Intermediate region modeling by BEM was also carried out and far field stress state was determined. In wide region modeling by FEM, the fault was build in the model and fault slip was taken into account, and evaluation of strain state at the far field boundary was carried out for inhomogeneous rock including fault. It was proposed to output three-dimensional distribution of the maximum shear stress coefficients in order to advance three-dimensional modeling. It will make clear effect of shape, scale and property of the fault on stress state characteristic. This report describes minutely the results of the studies mentioned above. (author)

  6. Prediction of residual stress distribution in multi-stacked thin film by curvature measurement and iterative FEA

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang; Park, Jun Hyub

    2005-01-01

    In this study, residual stress distribution in multi-stacked film by MEMS (Micro-Electro Mechanical System) process is predicted using Finite Element Method (FEM). We develop a finite element program for REsidual Stress Analysis (RESA) in multi-stacked film. The RESA predicts the distribution of residual stress field in multi-stacked film. Curvatures of multi-stacked film and single layers which consist of the multi-stacked film are used as the input to the RESA. To measure those curvatures is easier than to measure a distribution of residual stress. To verify the RESA, mean stresses and stress gradients of single and multilayers are measured. The mean stresses are calculated from curvatures of deposited wafer by using Stoney's equation. The stress gradients are calculated from the vertical deflection at the end of cantilever beam. To measure the mean stress of each layer in multi-stacked film, we measure the curvature of wafer with the film after etching layer by layer in multi-stacked film

  7. EFFECTS OF VARIOUS SOIL ENVIRONMENTAL STRESSES ON THE OCCURRENCE, DISTRIBUTION AND EFFECTIVENESS OF VA MYCORRHIZAE

    Directory of Open Access Journals (Sweden)

    A.G. KHAN

    1995-01-01

    Full Text Available The vesicular - arbuscular (VA mycorrhizal fungi are geographically ubiquitous soil inhabitants and form universal symbiotic relationship with plants from every phylum. These fungi link host plants with host soils and their biota in the mycorrhizosphere and play an important role in plant health, productivity and soil structure. Although VA mycorrhizal fungi do not show any host specificity, there is increasing evidence that various climatic and edaphic environmental factors such as land use and management practices, physical, chemical and biological properties of host soils and host plant characteristics influence their occurrence, taxonomic distribution and effectiveness. The interaction of these factors with vesicular-arbuscular mycorrhizae (VAM is poorly understood except in a few cases. It is now very clear that VA mycorrhizal associations are ecologically significant factors that require more attention than previously accorded. This paper discusses the occurrence, distribution and significance of VAM in environmentally stressed soil conditions that limit plant growth such as drought, waterlogging and salinity.

  8. Stress

    Science.gov (United States)

    ... can be life-saving. But chronic stress can cause both physical and mental harm. There are at least three different types of stress: Routine stress related to the pressures of work, family, and other daily responsibilities Stress brought about ...

  9. Heterogeneous Cytoskeletal Force Distribution Delineates the Onset Ca2+ Influx Under Fluid Shear Stress in Astrocytes

    Directory of Open Access Journals (Sweden)

    Mohammad M. Maneshi

    2018-03-01

    Full Text Available Mechanical perturbations increase intracellular Ca2+ in cells, but the coupling of mechanical forces to the Ca2+ influx is not well understood. We used a microfluidic chamber driven with a high-speed pressure servo to generate defined fluid shear stress to cultured astrocytes, and simultaneously measured cytoskeletal forces using a force sensitive actinin optical sensor and intracellular Ca2+. Fluid shear generated non-uniform forces in actinin that critically depended on the stimulus rise time emphasizing the presence of viscoelasticity in the activating sequence. A short (ms shear pulse with fast rise time (2 ms produced an immediate increase in actinin tension at the upstream end of the cell with minimal changes at the downstream end. The onset of Ca2+ rise began at highly strained areas. In contrast to stimulus steps, slow ramp stimuli produced uniform forces throughout the cells and only a small Ca2+ response. The heterogeneity of force distribution is exaggerated in cells having fewer stress fibers and lower pre-tension in actinin. Disruption of cytoskeleton with cytochalasin-D (Cyt-D eliminated force gradients, and in those cells Ca2+ elevation started from the soma. Thus, Ca2+ influx with a mechanical stimulus depends on local stress within the cell and that is time dependent due to viscoelastic mechanics.

  10. Influence of Connector Width on the Stress Distribution of Posterior Bridges under Loading

    Directory of Open Access Journals (Sweden)

    A. Azary

    2011-06-01

    Full Text Available Objective: In all ceramic fixed partial dentures the connector area is a common fracture location. The survival time of three-unit fixed partial dentures may be improved by altering the connector design in regions of maximum tension. The purpose of this study was to determine the effect of buccolingual increase of the connector width on the stress distribution in posterior fixed partial dentures made of IPS Empress 2. To simulate the anatomical condition, we used three-dimensional finite element analysis to generate.Materials and Methods: Three models of three-unit bridges replacing the first molar were prepared. The buccolingual connector width varied from 3.0 to 5.0 mm. Bridges were vertically loaded with 600 N at one point on the central fossa of the pontic, at 12 points along the cusp-fossa contact (50 N each, or at eight points along the cusp-marginal ridge contact (75 N each. Alternatively, a load of 225 N was applied at a 45º angle from the lingual side.Results: Stress concentrations were observed within or near the connectors. The von Mises stress decreased by increasing connector width, regardless of whether the loading was applied vertically or at an angle.Conclusion: Within the limitations of this study, we conclude that increasing the connector width decreases the failure probability when a vertical or angled load is applied.

  11. Distribution of Selenium and Oxidative Stress in Breast Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Pei-Chung Chen

    2013-02-01

    Full Text Available The present study investigated the effects of breast tumors on the blood and tissue distribution of essential trace mineral selenium (Se, and oxidative stress status of mice. Female 10-week-old BALB/cByJNarl mice were randomly assigned into control (CNL and breast tumor-bearing (TB groups. TB mice were injected subcutaneously into the right hind thigh with 5 × 106 EMT6 mouse mammary tumor cells. After 22 days, we measured Se concentrations, Se-dependent glutathione peroxidase (GPx activities, and malondialdehyde (MDA products (indicator of oxidative stress in plasma, various tissues, and plasma vascular endothelial growth factor (VEGF concentrations. There were no significant differences in body weights and daily intake between both groups. Compared with the CNL group, TB mice have decreases in plasma Se concentrations and GPx activities, as well as higher plasma VEGF and MDA concentrations. Plasma Se concentrations were also negatively correlated with plasma MDA and VEGF concentrations. Furthermore, tissue Se concentrations and GPx activities in TB animals were lower; whereas the MDA concentrations higher in various tissues including liver, kidney, brain, lung, spleen, and thymic tissues. In conclusion, disruption of Se homeostasis critically reflects oxidative stress in target tissues, thus may increase the risk for progression of breast cancer and metastasis.

  12. Miniaturization of Micro-Solder Bumps and Effect of IMC on Stress Distribution

    Science.gov (United States)

    Choudhury, Soud Farhan; Ladani, Leila

    2016-07-01

    As the joints become smaller in more advanced packages and devices, intermetallic (IMCs) volume ratio increases, which significantly impacts the overall mechanical behavior of joints. The existence of only a few grains of Sn (Tin) and IMC materials results in anisotropic elastic and plastic behavior which is not detectable using conventional finite element (FE) simulation with average properties for polycrystalline material. In this study, crystal plasticity finite element (CPFE) simulation is used to model the whole joint including copper, Sn solder and Cu6Sn5 IMC material. Experimental lap-shear test results for solder joints from the literature were used to validate the models. A comparative analysis between traditional FE, CPFE and experiments was conducted. The CPFE model was able to correlate the experiments more closely compared to traditional FE analysis because of its ability to capture micro-mechanical anisotropic behavior. Further analysis was conducted to evaluate the effect of IMC thickness on stress distribution in micro-bumps using a systematic numerical experiment with IMC thickness ranging from 0% to 80%. The analysis was conducted on micro-bumps with single crystal Sn and bicrystal Sn. The overall stress distribution and shear deformation changes as the IMC thickness increases. The model with higher IMC thickness shows a stiffer shear response, and provides a higher shear yield strength.

  13. Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles

    International Nuclear Information System (INIS)

    Lu, Y; Shi, B; Wei, G Q; Zhang, D; Chen, S E

    2012-01-01

    Due to its ability in providing long distance, distributed sensing, the optical fiber sensing technique based on a Brillouin optical time domain reflectometer (BOTDR) has a unique advantage in monitoring the stability and safety of linear structures. This paper describes the application of a BOTDR-based technique to measure the stress within precast piles. The principle behind the BOTDR and the embedding technique for the sensing optical fiber in precast piles is first introduced, and then the analysis method and deformation and stress calculation based on distributed strain data are given. Finally, a methodology for using a BOTDR-based monitoring workflow for in situ monitoring of precast piles, combined with a practical example, is introduced. The methodology requires implantation of optical fibers prior to pile placement. Field experimental results show that the optical fiber implantation method with slotting, embedding, pasting and jointing is feasible, and have accurately measured the axial force, side friction, end-bearing resistance and bearing feature of the precast pile according to the strain measuring data. (paper)

  14. Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation

    International Nuclear Information System (INIS)

    Madejski, Paweł; Taler, Dawid

    2013-01-01

    Highlights: • The CFD simulation was used to calculate 3D steam and tube wall temperature distributions in the platen superheater. • The CFD results can be used in design of superheaters made of tubes with complex cross-section. • The CFD analysis enables the proper selection of the steel grade. • The transient temperature and stress distributions were calculated using Finite Volume Method. • The detailed analysis prevents superheater tubes from excessive stresses during sootblower or attemperator activation. - Abstract: Superheaters are characterized by high metal temperatures due to higher steam temperature and low heat transfer coefficients on the tube inner surfaces. Superheaters have especially difficult operating conditions, particularly during attemperator and sootblower activations, when temperature and steam flow rate as well as tube wall temperature change with time. A detailed thermo-mechanical analysis of the superheater tubes makes it possible to identify the cause of premature high-temperature failures and aids greatly in the changes in tubing arrangement and improving start-up technology. This paper presents a thermal and strength analysis of a tube “double omega”, used in the steam superheaters in CFB boilers

  15. Effect of Taper on Stress Distribution of All Ceramic Fixed Partial Dentures: a 3D-FEA Study

    Directory of Open Access Journals (Sweden)

    F. Gerami-Panah

    2005-09-01

    Full Text Available Statement of Problem: Mechanical failure of ceramic materials is controlled by brittle fracture, mostly occurred in tension. In 3-unit all-ceramic FPDs the connector area is considered to be at fracture risk because of tensile stress concentrations.Purpose: The aim of this FE analysis was to evaluate the effect of taper on stress distribution in all-ceramic FPDs.Materials and Methods: In this experimental study two 3-D finite element models of thee-unit IPS-Empress 2 FPDs replacing mandible second premolar were created by means of finite element software. The digital images were obtained from CT scan of human skull. Abutment was reduced with 12 and 22 degrees of taper. The cement layer,PDL, cancellous bone and cortical bone were also modeled. Frameworks of core material were fabricated. A static load of 100 N was applied at mid pontic area.Resolved stresses were calculated according to the Von Mises criterion and principal stresses.Results: In both models stresses were concentrated at the connectors. The maximum stresses were lower in the model with larger taper. The maximum Von Mises stress was recorded at the connector region of the premolar and the pontic. In model with larger taper the patterns of stresses were also more distributed and less concentrated.Conclusion: The highest Von Mises and principal stress were recorded at the connectors. Tensile stresses developed at the gingival connector of premolar and pontic was higher than molar. The stress level in model with 22-degree taper was lower compare to 12-degree and the stress pattern was more distributed, lowered the risk ofconcentrations.

  16. The Effect of Composite Thickness on the Stress Distribution Pattern of Restored Premolar Teeth with Cusp Reduction.

    Science.gov (United States)

    Panahandeh, Narges; Torabzadeh, Hassan; Ziaee, Nargess; Mahdian, Mina; Tootiaee, Bahman; Ghasemi, Amir

    2017-07-01

    Different thicknesses of restorative material can alter the stress distribution pattern in remaining tooth structure. The assumption is that a thicker composite restoration will induce a higher fracture resistance. Therefore, the present study evaluated the effect of composite thickness on stress distribution in a restored premolar with cusp reduction. A 3D solid model of a maxillary second premolar was prepared and meshed. MOD cavities were designed with different cusp reduction thicknesses (0, 0.5, 1, 1.5, 2.5 mm). Cavities were restored with Valux Plus composite. They were loaded with 200 N force on the occlusal surface in the direction of the long axis. Von Mises stresses were evaluated with Abaqus software. Stress increased from occlusal to gingival and was maximum in the cervical region. The stressed area in the palatal cusp was more than that of the buccal cusp. Increasing the thickness of composite altered the shear stress to compressive stress in the occlusal area of the teeth. The model with 2.5 mm cusp reduction exhibited the most even stress distribution. © 2015 by the American College of Prosthodontists.

  17. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    OpenAIRE

    Haque, Rezwanul; Wong, Yat C.; Paradowska, Anna; Blacket, Stuart; Durandet, Yvonne

    2017-01-01

    Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR) joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring...

  18. Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor.

    Science.gov (United States)

    Eason, Eric V; Hawkes, Elliot W; Windheim, Marc; Christensen, David L; Libby, Thomas; Cutkosky, Mark R

    2015-02-02

    The adhesive systems of geckos have been widely studied and have been a great source of bioinspiration. Load-sharing (i.e. preventing stress concentrations through equal distribution of loads) is necessary to maximize the performance of an adhesive system, but it is not known to what extent load-sharing occurs in gecko toes. In this paper, we present in vivo measurements of the stress distribution and contact area on the toes of a tokay gecko (Gekko gecko) using a custom tactile sensor with 100 μm spatial resolution. We found that the stress distributions were nonuniform, with large variations in stress between and within lamellae, suggesting that load-sharing in the tokay gecko is uneven. These results may be relevant to the understanding of gecko morphology and the design of improved synthetic adhesive systems.

  19. Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor

    International Nuclear Information System (INIS)

    Eason, Eric V; Hawkes, Elliot W; Christensen, David L; Cutkosky, Mark R; Windheim, Marc; Libby, Thomas

    2015-01-01

    The adhesive systems of geckos have been widely studied and have been a great source of bioinspiration. Load-sharing (i.e. preventing stress concentrations through equal distribution of loads) is necessary to maximize the performance of an adhesive system, but it is not known to what extent load-sharing occurs in gecko toes. In this paper, we present in vivo measurements of the stress distribution and contact area on the toes of a tokay gecko (Gekko gecko) using a custom tactile sensor with 100 μm spatial resolution. We found that the stress distributions were nonuniform, with large variations in stress between and within lamellae, suggesting that load-sharing in the tokay gecko is uneven. These results may be relevant to the understanding of gecko morphology and the design of improved synthetic adhesive systems. (paper)

  20. The Influence of Pressure Distribution on the Maximum Values of Stress in FEM Analysis of Plain Bearings

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2016-12-01

    Full Text Available Several methods can be used in the FEM studies to apply the loads on a plain bearing. The paper presents a comparative analysis of maximum stress obtained for three loading scenarios: resultant force applied on the shaft – bearing assembly, variable pressure with sinusoidal distribution applied on the bearing surface, variable pressure with parabolic distribution applied on the bearing surface.

  1. [Influence of attachment type on stress distribution of implant-supported removable partial dentures].

    Science.gov (United States)

    Yang, Xue; Rong, Qi-guo; Yang, Ya-dong

    2015-02-18

    To compare influences of different retention attachments on stress among supporting structures. By 3-dimensional laser scanner and reverse engineering computer aided design (CAD) software, a basic partially edentulous digital model with mandibular premolar and molar missing was established. Implant attachment and removable partial dentures (RPD) were added into the basic model to build three kinds of models: RPD only, RPD + implant + Locator attachment, and RPD + implant + Magfit attachment. Vertical and inclined loads were put on artificial teeth unilaterally. By means of 3-dimensional finite element analysis, the stress distribution and displacement of the main supportive structures were compared. A complete 3-dimensional finite element model was established, which contained tooth structure, and periodontal structures. The displacement of the denture was smaller in Locator (9.38 μm vertically, 45.48 μm obliquely) and Magfit models (9.54 μm vertically, 39.45 μm obliquely) compared with non-implant RPD model (95.27 μm vertically, 155.70 μm obliquely). Compared with the two different attachments, cortical bone stress value was higher in Locator model (Locator model 10.850 MPa vertically, 43.760 MPa obliquely; Magfit model 7.100 MPa vertically, 19.260 MPa obliquely).The stress value of abutment periodontal ligamentin Magfit model (0.420 MPa vertically) was lower than that in Locator model (0.520 MPa vertically). The existence of implant could reduce maximum von Mises value of each supportive structure when Kennedy I partially edentulous mandible was restored. Comparing the structure of Magfit and Locator attachment, the contact of Magfit attachment was rigid, while Locator was resilient. Locator attachment could improve stability of the denture dramatically. Locator had stronger effect on defending horizontal movement of the denture.

  2. Evaluation of Residual Stress Distribution and Relaxation on In Situ TiB2/7050 Al Composites

    Directory of Open Access Journals (Sweden)

    Kunyang Lin

    2018-04-01

    Full Text Available Interior residual stresses induced by quenching may cause distortion during subsequent machining processes. Hence, various strategies have been employed to relieve the interior residual stress, such as stretching, post treatment, and other techniques. In this study, the stress distribution inside TiB2/7050 Al composite extrusions was investigated and the effects of different methods on relieving the quenching-induced stress were compared. Firstly, three TiB2/7050 Al composite extrusions were treated by stretching, stretching and heat treatment, and stretching and cold treatment processes, respectively. Then, the multiple-cut contour method was employed to assess the residual stresses in the three workpieces. Experimental results indicate that the interior stress of TiB2/7050 Al composite extrusions after stretching ranges from −89 MPa to +55 MPa, which is larger than that in 7050 aluminum alloy, which ranges from −25 Pa to +25 MPa. The heat treatment performs better than the cold treatment to reduce the post-stretching residual stress, with a reduction of 23.2–46.4% compared to 11.3–40.8%, respectively. From the stress map, it is found that the stress distribution after the heat treatment is more uniform compared with that after the cold treatment.

  3. Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress.

    Science.gov (United States)

    Yan, Yonglian; Takáč, Tomáš; Li, Xiaoquan; Chen, Houbin; Wang, Yingying; Xu, Enfeng; Xie, Ling; Su, Zhaohua; Šamaj, Jozef; Xu, Chunxiang

    2015-01-01

    Information on the spatial distribution of arabinogalactan proteins (AGPs) in plant organs and tissues during plant reactions to low temperature (LT) is limited. In this study, the extracellular distribution of AGPs in banana leaves and roots, and their changes under LT stress were investigated in two genotypes differing in chilling tolerance, by immuno-techniques using 17 monoclonal antibodies against different AGP epitopes. Changes in total classical AGPs in banana leaves were also tested. The results showed that AGP epitopes recognized by JIM4, JIM14, JIM16, and CCRC-M32 antibodies were primarily distributed in leaf veins, while those recognized by JIM8, JIM13, JIM15, and PN16.4B4 antibodies exhibited predominant sclerenchymal localization. Epitopes recognized by LM2, LM14, and MAC207 antibodies were distributed in both epidermal and mesophyll cells. Both genotypes accumulated classical AGPs in leaves under LT treatment, and the chilling tolerant genotype contained higher classical AGPs at each temperature treatment. The abundance of JIM4 and JIM16 epitopes in the chilling-sensitive genotype decreased slightly after LT treatment, and this trend was opposite for the tolerant one. LT induced accumulation of LM2- and LM14-immunoreactive AGPs in the tolerant genotype compared to the sensitive one, especially in phloem and mesophyll cells. These epitopes thus might play important roles in banana LT tolerance. Different AGP components also showed differential distribution patterns in banana roots. In general, banana roots started to accumulate AGPs under LT treatment earlier than leaves. The levels of AGPs recognized by MAC207 and JIM13 antibodies in the control roots of the tolerant genotype were higher than in the chilling sensitive one. Furthermore, the chilling tolerant genotype showed high immuno-reactivity against JIM13 antibody. These results indicate that several AGPs are likely involved in banana tolerance to chilling injury.

  4. 2012 Sexually Transmitted Diseases Surveillance, Other Sexually Transmitted Diseases

    Science.gov (United States)

    ... 2012 Sexually Transmitted Diseases Surveillance Table of Contents Introductory Section Foreword Preface Acronyms Figures- National Profile Figures - ... GISP Profiles Related Links STD Home STD Data & Statistics NCHHSTP Atlas Interactive STD Data - 1996-2013 STD ...

  5. [Effect of zirconia abutment angulation on stress distribution in the abutment and the bone around implant: a finite element study].

    Science.gov (United States)

    Yang, Yan-zhong; Tian, Xiao-hua; Zhou, Yan-min

    2015-08-01

    To investigate the effect of three different zirconia angular abutments on the stress distribution in bone and abutment using three-dimensional finite element analysis, and provide instruction for clinical application. Finite element analysis (FEA) was applied to analyze the stress distribution of three different zirconia/titanium angular abutments and bone around implant. The maximum Von Minses stress that existed in abutment, bolt and bone of the angular abutment model was significantly higher than that existed in the straight abutment model. The maximum Von Minses stress that existed in abutment, bolt and bone of the 20 ° angular abutment model was significantly higher than that existed in 15 ° angular abutment model. There was no significant difference between zirconia abutment model and titanium abutment model. The abutment angulation has a significant influence on the stress distribution in the abutment, bolt and bone, and exacerbates as the angulation increases, which suggest that we should take more attention to the implant orientation and use straight abutment or little angular abutment. The zirconia abutment can be used safely, and there is no noticeable difference between zirconia abutment and titanium abutment on stress distribution.

  6. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis.

    Science.gov (United States)

    Liang, Liang; Liu, Minliang; Martin, Caitlin; Sun, Wei

    2018-01-01

    Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to obtain final simulation results, preventing prompt feedback to clinicians in time-sensitive clinical applications. In this study, by using machine learning techniques, we developed a deep learning (DL) model to directly estimate the stress distributions of the aorta. The DL model was designed and trained to take the input of FEA and directly output the aortic wall stress distributions, bypassing the FEA calculation process. The trained DL model is capable of predicting the stress distributions with average errors of 0.492% and 0.891% in the Von Mises stress distribution and peak Von Mises stress, respectively. This study marks, to our knowledge, the first study that demonstrates the feasibility and great potential of using the DL technique as a fast and accurate surrogate of FEA for stress analysis. © 2018 The Author(s).

  7. The bio-distribution of the antidepressant clomipramine is modulated by chronic stress in mice: Effects on behavior

    Directory of Open Access Journals (Sweden)

    Georgia eBalsevich

    2015-01-01

    Full Text Available Major depression is one of the most common psychiatric disorders, severely affecting the quality of life of millions of people worldwide. Despite the availability of several classes of antidepressants, treatment efficacy is still very variable and many patients do not respond to the treatment. Clomipramine (CMI, a classical and widely used antidepressant, shows widespread interindividual variability of efficacy, while the environmental factors contributing to such variability remain unclear. We investigated whether chronic stress modulates the bio-distribution of CMI, and as a result the behavioral response to CMI treatment in a mouse model of chronic social defeat stress. Our results show that stress exposure increased anxiety-like and depressive-like behaviors and altered the stress response. Chronic defeat stress furthermore significantly altered CMI bio-distribution. Interestingly, CMI bio-distribution highly correlated with anxiety-like and depressive-like behaviors only under basal conditions. Taken together, we provide first evidence demonstrating that chronic stress exposure modulates CMI bio-distribution and behavioral responses. This may contribute to CMI’s broad interindividual variability, and is especially relevant in clinical practice.

  8. Influence of occlusal contact area on cusp defection and stress distribution.

    Science.gov (United States)

    Costa, Anna Karina Figueiredo; Xavier, Thaty Aparecida; Paes-Junior, Tarcisio José Arruda; Andreatta-Filho, Oswaldo Daniel; Borges, Alexandre Luiz Souto

    2014-11-01

    The purpose of this study was to evaluate the effect of occlusal contact area for loading on the cuspal defection and stress distribution in a first premolar restored with a high elastic modulus restorative material. The Rhinoceros 4.0 software was used for modeling the three-dimensional geometries of dental and periodontal structures and the inlay restoration. Thus, two different models, intact and restored teeth with three occlusal contact areas, 0.1, 0.5 and 0.75 mm(2), on enamel at the occlusal surface of buccal and lingual cusps. Finite element analysis (FEA) was performed with the program ANSYS (Workbench 13.0), which generated a mesh with tetrahedral elements with greater refinement in the regions of interest, and was constrained at the bases of cortical and trabecular bone in all axis and loaded with 100 N normal to each contact area. To analysis of maximum principal stress, the smaller occlusal contact area showed greater compressive stress in region of load application for both the intact and inlay restored tooth. However, tensile stresses at the occlusal isthmus were similar for all three tested occlusal contact areas (60 MPa). To displacement of the cusps was higher for teeth with inlay (0.46-0.48 mm). For intact teeth, the smaller contact area showed greater displacement (0.10 mm). For teeth with inlays, the displacement of the cusps were similar in all types of occlusal area. Cuspal displacement was higher in the restored tooth when compared to the intact tooth, but there were no significant variations even with changes in the occlusal contact area. RELEVANCE CLINICAL: Occlusal contacts have a great influence on the positioning of teeth being able to maintain the position and stability of the mandible. Axial loads would be able to generate more uniform stress at the root presenting a greater concentration of load application in the point and the occlusal surface. Thus, is necessary to analyze the relationship between these occlusal contacts as dental

  9. Influence of intrinsic and extrinsic forces on 3D stress distribution using CUDA programming

    Science.gov (United States)

    Räss, Ludovic; Omlin, Samuel; Podladchikov, Yuri

    2013-04-01

    In order to have a better understanding of the influence of buoyancy (intrinsic) and boundary (extrinsic) forces in a nonlinear rheology due to a power law fluid, some basics needs to be explored through 3D numerical calculation. As first approach, the already studied Stokes setup of a rising sphere will be used to calibrate the 3D model. Far field horizontal tectonic stress is applied to the sphere, which generates a vertical acceleration, buoyancy driven. This simple and known setup allows some benchmarking performed through systematic runs. The relative importance of intrinsic and extrinsic forces producing the wide variety of rates and styles of deformation, including absence of deformation and generating 3D stress patterns, will be determined. Relation between vertical motion and power law exponent will also be explored. The goal of these investigations will be to run models having topography and density structure from geophysical imaging as input, and 3D stress field as output. The stress distribution in Swiss Alps and Plateau and its implication for risk analysis is one of the perspective for this research. In fact, proximity of the stress to the failure is fundamental for risk assessment. Sensitivity of this to the accurate topography representation can then be evaluated. The developed 3D numerical codes, tuned for mid-sized cluster, need to be optimized, especially while running good resolution in full 3D. Therefor, two largely used computing platforms, MATLAB and FORTRAN 90 are explored. Starting with an easy adaptable and as short as possible MATLAB code, which is then upgraded in order to reach higher performance in simulation times and resolution. A significant speedup using the rising NVIDIA CUDA technology and resources is also possible. Programming in C-CUDA, creating some synchronization feature, and comparing the results with previous runs, helps us to investigate the new speedup possibilities allowed through GPU parallel computing. These codes

  10. Finite Element Analysis of the Effect of Proximal Contour of Class II Composite Restorations on Stress Distribution

    Directory of Open Access Journals (Sweden)

    Hossein Abachizadeh

    2012-09-01

    Full Text Available Introduction: The aim of this study was to evaluate the effect of proximal contour of class II composite restorations placed with straight or contoured matrix band using composite resins with different modulus of elasticity on stress distribution by finite element method. Methods: In order to evaluate the stress distribution of class II composite restorations using finite element method, upper right first molar and second premolar were modeled. Proximal boxes were designed and restored with universal Z250 and packable P60 composite resins (3M ESPE using two matrix systems: flat Tofflemire matrix and precurved sectional matrix. Finally models were evaluated under loads of 200 and 400 Newton at 90 degrees angle and the results were graphically illustrated in the form of Von Misses stresses. Results: In general the stress obtained under 400 Newton load was significantly greater than the stress of models under 200 Newton load. Von Misses stress distribution pattern of two different Z250 and P60 composites were very similar in all modes of loading and proximal contour. In all analyzed models there was a significant difference between models restored with Tofflemire matrix with flat contour and models restored with sectional matrix with curved contour. This difference was greater in first molar than second premolar. Conclusion: Use of a contoured matrix band results in less stress in class II composite resin restorations.

  11. Stress distribution and displacement of abutment of middle implant-natural teeth fixed bridge under different loading

    International Nuclear Information System (INIS)

    Chen Erjun; Zhou Yanmin; Ma Chenchun; Cong Zhiqiang; Jiang Yonghua

    2004-01-01

    Objective: To study stress distribution and displacement of abutment of middle implant-natural teeth fixed bridge under different loading. Methods: The stress distribution and displacement of abutment were studied and analyzed by means of three-dimensional finite element when different loading was applied. Results: The biggest stress of middle implant was 4-5 times as big as that of natural teeth. Under concentrated vertical loading, the biggest stress of implant was about 2 times higher than that under dispersed vertical loading. There was no significant difference of biggest stress on the implant between concentrated oblique loading and dispersed oblique loading. The biggest stress of implant under oblique loading was 3 times as big as that under dispersed vertical loading. The biggest stress of natural teeth under dispersed loading was lower than that under concentrated loading. The maximum displacement of implant in occlusal-gum direction was great lower than that of natural teeth. Both in buccal-lingual direction and medial-distal direction, the displacement of implant were about equal to that of natural teeth. Conclusion: The oblique loading is the main force to destroy the middle implant-natural teeth fixed bridge. The lean of cusp should be reduced. The abnormally high occlusal points should be deleted. The bite points should be well distributed. The fixed bridge is feasible. (authors)

  12. Stochastic variability in stress, sleep duration, and sleep quality across the distribution of body mass index: insights from quantile regression.

    Science.gov (United States)

    Yang, Tse-Chuan; Matthews, Stephen A; Chen, Vivian Y-J

    2014-04-01

    Obesity has become a problem in the USA and identifying modifiable factors at the individual level may help to address this public health concern. A burgeoning literature has suggested that sleep and stress may be associated with obesity; however, little is know about whether these two factors moderate each other and even less is known about whether their impacts on obesity differ by gender. This study investigates whether sleep and stress are associated with body mass index (BMI) respectively, explores whether the combination of stress and sleep is also related to BMI, and demonstrates how these associations vary across the distribution of BMI values. We analyze the data from 3,318 men and 6,689 women in the Philadelphia area using quantile regression (QR) to evaluate the relationships between sleep, stress, and obesity by gender. Our substantive findings include: (1) high and/or extreme stress were related to roughly an increase of 1.2 in BMI after accounting for other covariates; (2) the pathways linking sleep and BMI differed by gender, with BMI for men increasing by 0.77-1 units with reduced sleep duration and BMI for women declining by 0.12 unit with 1 unit increase in sleep quality; (3) stress- and sleep-related variables were confounded, but there was little evidence for moderation between these two; (4) the QR results demonstrate that the association between high and/or extreme stress to BMI varied stochastically across the distribution of BMI values, with an upward trend, suggesting that stress played a more important role among adults with higher BMI (i.e., BMI > 26 for both genders); and (5) the QR plots of sleep-related variables show similar patterns, with stronger effects on BMI at the upper end of BMI distribution. Our findings suggested that sleep and stress were two seemingly independent predictors for BMI and their relationships with BMI were not constant across the BMI distribution.

  13. On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B; Hedberg, S

    1966-08-15

    It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less.

  14. On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Hedberg, S.

    1966-08-01

    It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less

  15. Soil-Transmitted Helminth Infections

    Science.gov (United States)

    ... Schistosomiasis and soil-transmitted helminth infections More about neglected tropical diseases News WHO recommends large-scale deworming to improve children’s health and nutrition 29 September 2017 About us ...

  16. Sex differences in the tracer distribution on stress thallium-201 imaging, (1)

    International Nuclear Information System (INIS)

    Tamaki, Nagara; Koda, Hideki; Adachi, Yukihide; Sugihara, Takao; Kato, Mihoko; Tanaka, Nobuyuki; Tamari, Kimimasa.

    1988-01-01

    To determine the sex differences in the tracer distribution on stress thallium-201 imaging, the studies of 18 normal males and 18 normal females were subjected to quantitative circumferential profile analysis in each projection image. Although the exercise duration was shorter in females (11±3 min) than in males (14±3 min) (p<0.01), the peak heart rate, peak systolic pressure and the lung-to-myocardial count ratio were similar between them. The averaged profile curves in female showed a significant reduction in tracer uptake in anterior and upper septal regions, particularly in the study of lateral view, which may be attributed to breast attenuation. In addition, the percent washout of thallium in 3 hours was higher in females (48±8%) than in males (43±7%) (p<0.01), particularly in the study of anterior view. We conclude that important differences in the pattern of thallium uptake and washout between males and females should be considered for interpretation of stress thallium imaging. (author)

  17. Effect of Oval Posts on Stress Distribution in Endodontically Treated Teeth: A Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mojtaba Mahmoodi

    2017-09-01

    Full Text Available Introduction: In post-core crown restorations, the use of prefabricated composite posts concentrate stress at the cervical region and the use of metal posts (prefabricated and customized posts concentrates stress at the interfaces. Fiber reinforced composite posts (FRCs with oval cross-section (oval posts were proposed for post-core crown restorations to reduce the stress levels at the cervical region. The aim of the present study was to investigate the impact of oval cross-section composite posts on stress distribution of premolar with oval-shaped canal by using three-dimensional (3D finite element analysis. Materials and Methods: An extracted premolar tooth was mounted, sectioned, and photographed to create a 3D model. The surrounding tissues of the tooth, periodontal ligament, as well as cortical and trabecular bones were modeled. Seven taper posts with two different cross-section geometries (circular and oval shapes were modeled, as well. Then, the effect of post geometry, post material (carbon fiber and fiberglass, and cement material were investigated by 3D finite element analysis and the stress distribution results were compared. Results: In all the models, the highest stress levels of the dentin were accumulated at the coronal third of the root, and the highest stress levels at the bonding layers were accumulated at the cervical margin. Narrow circular posts induced the highest stress levels, whereas the stress levels were reduced by using thick oval posts. Application of elastic cement reduces the stress at the bonding layers but increases stress at the dentin. Conclusion: Finite element analysis showed that prefabricated oval posts are superior to traditional circular ones. The use of cement with low elastic modulus reduces the risk of debonding but raises the risk of root fracture.

  18. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  19. Investigating the Effect of Drought Stress on Growth and distribution of Purple Nutsedge (Cyperus rotundus L.

    Directory of Open Access Journals (Sweden)

    N. Karimi Arpanahi

    2017-08-01

    Full Text Available Introduction: Drought is one of the most important and common environmental stresses in the country, which affect different stages of plant growth and development. Drought can affect plants growth in various ways, thereby reduces and delays germination, and decreases shoot growth and dry matter production. In the case of high water stress, it results showed great reductions in photosynthesis and disruption of the physiological processes, as well as growth stop and eventually plant death.Purple nutsedge (Cyperus rotundus L. has been listed as the world’s worst weed based onits worldwide distribution (92 countries and interference with over 50 crops. It causes high yield losses in fruiting vegetables and cucurbits in eastern and southeastern parts of Iran, where drought stress is a common phenomenon. Therefore, it is of utmost importance to understand the response of this noxious weed species to drought stress. Materials and Methods: In order to study the effect of drought stress on growth and distribution of purple nutsedge, two separate experiments were carried out in a randomized complete block design with three replications in the Research Greenhouse at Birjand University in 2013. The first experiment consisted of 6 irrigation interval levels (3, 6, 9, 12, 15 and 18- day irrigation intervals and the second one were 5 irrigation levels based on field capacity (12.5, 25, 50, 75 and 100 % FC. Results and Discussion: ANOVA results of both experiments showed that all growth characteristics of purple nutsedge were affected by drought stress. The results of irrigation interval stress experiment showed that the maximum height (76 cm, leaf area (110.83 cm2, stem number (4.66 stemperpot, shoot dry weight (4.132 gr per plant, tuber number (7.66 tuber per pot and total underground organs dry weight (4.435 gr per plant were observed in 3- day irrigation interval. Also, the lowest amount of these characteristics was obtained in 18- day irrigation interval

  20. Effects of water stress on the distribution of 14C-assimilates in young apple trees (mauls pumila mill.)

    International Nuclear Information System (INIS)

    Dong Jiankang; Deng Ximin; Zeng Xiang

    1994-01-01

    Young apple trees were treated by water stress and 14 CO 2 was fed to leaves. Distribution of assimilates in source and sink organs was determined. The results show that plant water deficit increased the proportion of 14 C-assimilates remained in source leaves, and decreased the proportion of 13 C-assimilates exported into the developing fruits. Water stress also significantly decreased the photosynthetic rate of leaves and the growth rate of plants

  1. SPR Characteristics Curve and Distribution of Residual Stress in Self-Piercing Riveted Joints of Steel Sheets

    Directory of Open Access Journals (Sweden)

    Rezwanul Haque

    2017-01-01

    Full Text Available Neutron diffraction was used to describe the residual stress distributions in self-piercing riveted (SPR joints. The sheet material displayed a compressive residual stress near the joint, and the stress gradually became tensile in the sheet material far away from the joint. The stress in the rivet leg was lower in the thick joint of the softer steel sheet than in the thin joint of the harder steel sheet. This lower magnitude was attributed to the lower force gradient during the rivet flaring stage of the SPR process curve. This study shows how the residual stress results may be related to the physical occurrences that happened during joining, using the characteristics curve. The study also shows that neutron diffraction technique enabled a crack in the rivet tip to be detected which was not apparent from a cross-section.

  2. The residual stress distribution in welded pipe inner surface of stainless steel from the nuclear power plant in Ringhals

    International Nuclear Information System (INIS)

    Larsson, L.E.

    1984-06-01

    The axial residual stress distribution on the inner surface of welded pipes of stainless steel SS 2333 (AISI 304) have been measured using the X-ray diffraction technique. Four halves of two pipes with the outer diameter of 114 mm and wall thickness of 10 mm were investigated. The result on the pipe inner surface shows compressive stresses in the weld metal and tensile stresses within a region between 8-23 mm with a maximum of 180MPa at a distance of 17 mm from the weld centerline. The maximum axial and circumferential residual stresses on the pipe outer surface are of the magnitude of 100 MPa. By cutting the pipes into two halves these stresses are relaxed by about 35 MPa. (author)

  3. High energy x-ray synchrotron radiation analysis of residual stress distribution of shot-peened steels

    International Nuclear Information System (INIS)

    Tanaka, Keisuke; Akiniwa, Yoshiaki; Kimachi, Hirohisa; Suzuki, Kenji; Yanase, Etsuya; Nishio, Kouji; Kusumi, Yukihiro

    2001-01-01

    A high energy X-ray beam from synchrotron radiation source SPring-8 was used to determine the residual stress distribution beneath the shot-peened surface of carbon steel plates. By using the monochromatic X-ray beam with an energy of 72 keV, the relation between 2θ and sin 2 ψ was obtained by the side-inclination method upto sin 2 ψ = 0.9. The distribution of the residual stress was determined from the non-linearity of the relation between 2θ and sin 2 ψ. (author)

  4. Determination of the plastic deformation and residual stress tensor distribution using surface and bulk intrinsic magnetic properties

    International Nuclear Information System (INIS)

    Hristoforou, E.; Svec, P. Sr.

    2015-01-01

    We have developed an unique method to provide the stress calibration curve in steels: performing flaw-less welding in the under examination steel, we obtained to determine the level of the local plastic deformation and the residual stress tensors. These properties where measured using both the X-ray and the neutron diffraction techniques, concerning their surface and bulk stresses type II (intra-grain stresses) respectively, as well as the stress tensor type III by using the electron diffraction technique. Measuring the distribution of these residual stresses along the length of a welded sample or structure, resulted in determining the local stresses from the compressive to tensile yield point. Local measurement of the intrinsic surface and bulk magnetic property tensors allowed for the un-hysteretic correlation. The dependence of these local magnetic tensors with the above mentioned local stress tensors, resulting in a unique and almost un-hysteretic stress calibration curve of each grade of steel. This calibration integrated the steel's mechanical and thermal history, as well as the phase transformations and the presence of precipitations occurring during the welding process.Additionally to that, preliminary results in different grade of steels reveal the existence of a universal law concerning the dependence of magnetic and magnetostrictive properties of steels on their plastic deformation and residual stress state, as they have been accumulated due to their mechanical and thermal fatigue and history. This universality is based on the unique dependence of the intrinsic magnetic properties of steels normalized with a certain magnetoelastic factor, upon the plastic deformation or residual stress state, which, in terms, is normalized with their yield point of stress. (authors)

  5. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite.

    Science.gov (United States)

    Duan, Yuanyuan; Griggs, Jason A

    2015-06-01

    Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Scanning electron-acoustic imaging of residual stress distributions in aluminum metal and ZrSiO4 multiphase ceramics

    International Nuclear Information System (INIS)

    Zhang, B.Y.; Jiang, F.M.; Shi, Y.; Yin, Q.R.; Qian, M.L.

    1997-01-01

    The scanning electron-acoustic imaging technique has been used in the characterization of the residual stress field distributions existing in the subsurface in aluminum disks and 20 vol% SiC ( w)/ZrSiO 4 multiphase ceramics left by Vicker close-quote s indentation. The experimental results reveal that the distribution areas are the plastic-elastic interchange zones. The electron-acoustic signal generation mechanism in the samples are discussed. copyright 1997 American Institute of Physics

  7. Influence of implantoplasty on stress distribution of exposed implants at different bone insertion levels

    Directory of Open Access Journals (Sweden)

    João Paulo Mendes TRIBST

    2017-12-01

    Full Text Available Abstract This study evaluated the effect of implantoplasty on different bone insertion levels of exposed implants. A model of the Bone Level Tapered implant (Straumann Institute, Waldenburg, Switzerland was created through the Rhinoceros software (version 5.0 SR8, McNeel North America, Seattle, WA, USA. The abutment was fixed to the implant through a retention screw and a monolithic crown was modeled over a cementation line. Six models were created with increasing portions of the implant threads exposed: C1 (1 mm, C2 (2 mm, C3 (3 mm, C4 (4 mm, C5 (5 mm and C6 (6 mm. The models were made in duplicates and one of each pair was used to simulate implantoplasty, by removing the threads (I1, I2, I3, I4, I5 and I6. The final geometry was exported in STEP format to ANSYS (ANSYS 15.0, ANSYS Inc., Houston, USA and all materials were considered homogeneous, isotropic and linearly elastic. To assess distribution of stress forces, an axial load (300 N was applied on the cusp. For the periodontal insert, the strains increased in the peri-implant region according to the size of the exposed portion and independent of the threads’ presence. The difference between groups with and without implantoplasty was less than 10%. Critical values were found when the inserted portion was smaller than the exposed portion. In the exposed implants, the stress generated on the implant and retention screw was higher in the models that received implantoplasty. For the bone tissue, exposure of the implant’s thread was a damaging factor, independent of implantoplasty. Implantoplasty treatment can be safely used to control peri-implantitis if at least half of the implant is still inserted in bone.

  8. Influence of phase transformations on the asymptotic residual stress distribution arising near a sharp V-notch tip

    International Nuclear Information System (INIS)

    Ferro, P

    2012-01-01

    In this work, the residual stress distribution induced by the solidification and cooling of a fusion zone in the vicinity of a sharp V-notch tip is investigated. The intensity of the residual asymptotic stress fields, quantified by the notch stress intensity factors, was studied for two different V-notch specimen geometries under generalized plane-strain conditions. In order to analyze the influence of phase transformations on the obtained results, simulations with and without the effects of phase transformation were carried out on ASTM SA 516 steel plates. Thanks to the possibilities of numerical modelling, additional analyses were performed without taking into account the transformation plasticity phenomenon. It was found that phase transformation effects (both volume change and transformation plasticity) have a great influence on the intensity and sign of the asymptotic stress fields at the sharp V-notch tips. This result is believed to be very important for the correct numerical determination (and future applications) of notch stress intensity factors resulting from asymptotic residual stress distributions induced by transient thermal loads. The analyses were performed with the finite element code SYSWELD. (paper)

  9. Effect of elliptic or circular holes on the stress distribution in plates of wood or plywood considered as orthotropic materials

    Science.gov (United States)

    C. B. Smith

    1944-01-01

    This is a mathematical analysis of the stress distribution existing near a hole in a wood or plywood plate subjected to tension, as, for example, near holes in the tension flanges of wood box beams. It is assumed that the strains are small and remain within the proportional limit. In this analysis a large, rectangular, orthotropic plate with a small elliptic hole at...

  10. Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Jensen, Ole Mejlhede; Hansen, Kurt Kielsgaard

    2001-01-01

    The influence of cement particle-size distribution on autogenous strains and stresses in cement pastes of identical water-to-cement ratios is examined for cement powders of four different finenesses. Experimental measurements include chemical shrinkage, to quantify degree of hydration; internal r...

  11. Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis

    Directory of Open Access Journals (Sweden)

    Gökçe Meriç

    2011-03-01

    Conclusions: Prosthesis design and materials affect the load-transmission mechanism. Although additional experimental and clinical studies are needed, FRC FPDs can be considered a suitable alternative treatment choice for implant-supported prostheses. Within the limitations of the study, the 3-unit FPD supported by 2 implants with a cantilevered extension revealed acceptable stress distributions.

  12. Stress

    Science.gov (United States)

    ... taking care of an aging parent. With mental stress, the body pumps out hormones to no avail. Neither fighting ... with type 1 diabetes. This difference makes sense. Stress blocks the body from releasing insulin in people with type 2 ...

  13. Velocity and stress distributions of deep seismic zone under Izu-Bonin, Japan

    Science.gov (United States)

    Jiang, Guoming; Zhang, Guibin; Jia, Zhengyuan

    2017-04-01

    Deep earthquakes can provide the deep information of the Earth directly. We have collected the waveform data from 77 deep earthquakes with depth greater than 300 km under Izu-Bonin in Japan. To obtain the velocity structures of P- and S-wave, we have inversed the double-differences of travel times from deep event-pairs. These velocity anomalies can further yield the Poisson's ratio and the porosity. Our results show that the average P-wave velocity anomaly is lower 6%, however the S-wave anomaly is higher 2% than the iasp91 model. The corresponding Poisson's ratio and porosity anomaly are -24% and -4%, respectively, which suggest that the possibility of water in the deep seismic zone is very few and the porosity might be richer. To obtain the stress distribution, we have used the ISOLA method to analyse the non-double-couple components of moment tensors of 77 deep earthquakes. The focal mechanism results show that almost half of all earthquakes have larger double-couple (DC) components, but others have clear isotropic (ISO) or compensated linear vector dipole (CLVD) components. The non-double-couple components (ISO and CLVD) seem to represent the volume around a deep earthquake changes as it occurs, which could be explained the metastable olivine phase transition. All results indicate that the metastable olivine wedge (MOW) might exist in the Pacific slab under the Izu-Bonin region and the deep earthquakes might be induced by the phase change of metastable olivine.

  14. Vacuolar Chloride Fluxes Impact Ion Content and Distribution during Early Salinity Stress1

    Science.gov (United States)

    Baetz, Ulrike; Tohge, Takayuki; Martinoia, Enrico; De Angeli, Alexis

    2016-01-01

    The ability to control the cytoplasmic environment is a prerequisite for plants to cope with changing environmental conditions. During salt stress, for instance, Na+ and Cl− are sequestered into the vacuole to help maintain cytosolic ion homeostasis and avoid cellular damage. It has been observed that vacuolar ion uptake is tied to fluxes across the plasma membrane. The coordination of both transport processes and relative contribution to plant adaptation, however, is still poorly understood. To investigate the link between vacuolar anion uptake and whole-plant ion distribution during salinity, we used mutants of the only vacuolar Cl− channel described to date: the Arabidopsis (Arabidopsis thaliana) ALMT9. After 24-h NaCl treatment, almt9 knock-out mutants had reduced shoot accumulation of both Cl− and Na+. In contrast, almt9 plants complemented with a mutant variant of ALMT9 that exhibits enhanced channel activity showed higher Cl− and Na+ accumulation. The altered shoot ion contents were not based on differences in transpiration, pointing to a vacuolar function in regulating xylem loading during salinity. In line with this finding, GUS staining demonstrated that ALMT9 is highly expressed in the vasculature of shoots and roots. RNA-seq analysis of almt9 mutants under salinity revealed specific expression profiles of transporters involved in long-distance ion translocation. Taken together, our study uncovers that the capacity of vacuolar Cl− loading in vascular cells plays a crucial role in controlling whole-plant ion movement rapidly after onset of salinity. PMID:27503602

  15. Stress distribution and displacement of maxillary anterior teeth during en-masse intrusion and retraction: A FEM study

    Directory of Open Access Journals (Sweden)

    Parag Bohara

    2017-01-01

    Full Text Available Background: Space closure by en masse intrusion and retraction in orthodontics is of particular interest. Aim: The aim of this study was to evaluate the stress distribution and displacement of maxillary anterior teeth. Materials and Methods: Four different finite element models of maxillary arch were constructed to understand the nature of stresses and displacement patterns of anterior teeth during en masse intrusion and retraction on force application with different combinations of mini-implants and retraction hooks. Results: In this study, tensile stresses were seen in the cervical region and various movements of teeth such as lingual crown tipping, bodily movement, lingual root tipping, intrusion, and extrusion were observed. Conclusion: Nature of stresses changes from tensile to compressive from cervical area to apical area. Various tooth displacements suggest that different combinations of mini-implants and retraction hooks affect the direction of the tooth movement.

  16. Evaluation of stress distribution of implant-retained mandibular overdenture with different vertical restorative spaces: A finite element analysis

    Science.gov (United States)

    Ebadian, Behnaz; Farzin, Mahmoud; Talebi, Saeid; Khodaeian, Niloufar

    2012-01-01

    Background: Available restorative space and bar height is an important factor in stress distribution of implant-supported overdentures. The purpose of this study was to evaluate the effect of different vertical restorative spaces and different bar heights on the stress distribution around implants by 3D finite element analysis. Materials and Methods: 3D finite element models were developed from mandibular overdentures with two implants in the interforaminal region. In these models, four different bar heights from gingival crest (0.5, 1, 1.5, 2 mm) with 15 mm occlusal plane height and three different occlusal plane heights from gingival crest (9, 12, 15 mm) with 2 mm bar height were analyzed. A vertical unilateral and a bilateral load of 150 N were applied to the central occlusal fossa of the first molar and the stress of bone around implant was analyzed by finite element analysis. Results: By increasing vertical restorative space, the maximum stress values around implants were found to be decreased in unilateral loading models but slightly increased in bilateral loading cases. By increasing bar height from gingival crest, the maximum stress values around implants were found to be increased in unilateral loading models but slightly decreased in bilateral loading cases. In unilateral loading models, maximum stress was found in a model with 9 mm occlusal plane height and 1.5 mm bar height (6.254 MPa), but in bilateral loading cases, maximum stress was found in a model with 15 mm occlusal plane height and 0.5 mm bar height (3.482 MPa). Conclusion: The reduction of bar height and increase in the thickness of acrylic resin base in implant-supported overdentures are biomechanically favorable and may result in less stress in periimplant bone. PMID:23559952

  17. A new method of residual stress distribution analysis for corroded Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Godlewski, J.; Cadalbert, R.

    1992-01-01

    An X-ray diffraction method of residual stress measurement is developed to determine the stress level in the metal near the metal/oxide interface of Zircaloy-4 cladding samples oxidized in steam water at 400degC under a pressure of 10.3 MPa. The stress gradient is obtained and the evolution of the average stress is determined as function of the oxidation time. The presence of tetragonal zirconia phase in quite large quantity near the metal/oxide interface could be correlated to the high stress level in the base metal, adjacent to the interface. (author)

  18. A new method for residual stress distribution - analysis of corroded zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Godlewski, J.; Cadalbert, R.

    1992-01-01

    An X-ray diffraction method for residual stress measurement is developed to determine the stress level in the metal near the metal/oxide interface of Zircaloy-4 cladding samples oxidized in steam water at 400 deg C under a pressure of 10.3 MPa. The stress gradient is obtained and the evolution of the average stress is determined as a function of the oxidation time. The presence of tetragonal zirconia phase in quite large quantity near the metal/oxide interface could be correlated to the high stress level in the base metal, adjacent to the interface. 12 refs., 5 figs., 1 tab

  19. Experimental investigation of localized stress-induced leakage current distribution in gate dielectrics using array test circuit

    Science.gov (United States)

    Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.

  20. Study of temperature distribution of pipes heated by moving rectangular gauss distribution heat source. Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Kamo, Kazuhiko; Asada, Seiji; Terasaki, Toshio

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression stress occurs near the inner surface of pipes. In this paper, the theoretical equation for the temperature distributions of pipes heated by moving rectangular Gauss distribution heat source on the outer surface is derived. The temperature histories of pipes calculated by theoretical equation agree well with FEM analysis results. According to the theoretical equation, the controlling parameters of temperature distributions and histories are q/2a y , vh, a x /h and a y /h, where q is total heat input, a y is heat source length in the axial direction, a x is Gaussian radius of heat source in the hoop direction, ν is moving velocity, and h is thickness of the pipe. The essential variables for L-SIP, which are defined on the basis of the measured temperature histories on the outer surface of the pipe, are Tmax, F 0 =kτ 0 /h 2 , vh, W Q and L Q , where Tmax is maximum temperature on the monitor point of the outer surface, k is thermal diffusivity coefficient, τ 0 is the temperature rise time from 100degC to maximum temperature on the monitor point of the outer surface, W Q is τ 0 x ν, and L Q is the uniform temperature length in the axial direction. It is verified that the essential variables for L-SIP match the controlling parameters by the theoretical equation. (author)

  1. Finite element analysis of the stress distributions in peri-implant bone in modified and standard-threaded dental implants

    Directory of Open Access Journals (Sweden)

    Serkan Dundar

    2016-01-01

    Full Text Available The aim of this study was to examine the stress distributions with three different loads in two different geometric and threaded types of dental implants by finite element analysis. For this purpose, two different implant models, Nobel Replace and Nobel Active (Nobel Biocare, Zurich, Switzerland, which are currently used in clinical cases, were constructed by using ANSYS Workbench 12.1. The stress distributions on components of the implant system under three different static loadings were analysed for the two models. The maximum stress values that occurred in all components were observed in FIII (300 N. The maximum stress values occurred in FIII (300 N when the Nobel Replace implant is used, whereas the lowest ones, in the case of FI (150 N loading in the Nobel Active implant. In all models, the maximum tensions were observed to be in the neck region of the implants. Increasing the connection between the implant and the bone surface may allow more uniform distribution of the forces of the dental implant and may protect the bone around the implant. Thus, the implant could remain in the mouth for longer periods. Variable-thread tapered implants can increase the implant and bone contact.

  2. Stress distribution at the dissimilar metal weld of safety injection nozzle according to safe-end length and SMW thickness

    International Nuclear Information System (INIS)

    Kim, Tae Jin; Jeong, Woo Chul; Huh, Nam Su

    2015-01-01

    In the present paper, we evaluate the effects of the safe-end length and thickness of the similar metal weld (SMW) of safety injection nozzles on stress distributions at the dissimilar metal weld (DMW). For this evaluation, we carry out detailed 2-D axisymmetric finite element analyses by considering four different values of the safe-end length and four different values of the thickness of SMW. Based on the results obtained, we found that the SMW thickness affects the axial stresses at the center of the DMW for the shorter safe-end length; on the other hand, it does not affect the hoop stresses. In terms of the safe-end length, the values of the axial and hoop stresses at the inner surface of the DMW center increase as the safe-end length increases. In particular, for the cases considered in the present study, the stress distributions at the DMW center can be categorized according to certain values of safe-end length

  3. The role of prosthetic abutment material on the stress distribution in a maxillary single implant-supported fixed prosthesis

    International Nuclear Information System (INIS)

    Peixoto, Hugo Eduardo; Bordin, Dimorvan; Del Bel Cury, Altair A.; Silva, Wander José da; Faot, Fernanda

    2016-01-01

    Purpose: Evaluate the influence of abutment's material and geometry on stress distribution in a single implant-supported prosthesis. Materials and Methods: Three-dimensional models were made based on tomographic slices of the upper middle incisor area, in which a morse taper implant was positioned and a titanium (Ti) or zirconia (ZrN) universal abutments was installed. The commercially available geometry of titanium (T) and zirconia (Z) abutments were used to draw two models, TM1 and ZM1 respectively, which served as control groups. These models were compared with 2 experimental groups were the mechanical properties of Z were applied to the titanium abutment (TM2) and vice versa for the zirconia abutment (ZM2). Subsequently, loading was simulated in two steps, starting with a preload phase, calculated with the respective friction coefficients of each materials, followed by a combined preload and chewing force. The maximum von Mises stress was described. Data were analyzed by two-way ANOVA that considered material composition, geometry and loading (p 0.05). Conclusion: The screw was the piece most intensely affected, mainly through the preload force, independent of the abutment's material. - Highlights: • The abutment's screw was the most impaired piece of the dental implant system. • The highest stress was located at first thread of the abutment's screw. • The preload is the main factor in the abutment's screw stress. • Abutment configuration and material can have a positive contribution for the stress distribution

  4. Composite resin reinforced with pre-tensioned fibers: a three-dimensional finite element study on stress distribution.

    Science.gov (United States)

    Jie, Lin; Shinya, Akikazu; Lassila, Lippo V J; Vallittu, Pekka K

    2013-01-01

    Pre-tensioned construction material is utilized in engineering applications of high strength demands. The purpose of this study was to evaluate the effect of the pre-tensioning fibers of fiber-reinforced composite (FRC) using three-dimensional finite element (FE) analysis. The 3D FE models of particulate composite resin (CR), FRC and composite resin reinforced with pre-tensioned fibers (PRE-T-FRC) were constructed. The uniaxial three-point bending test was simulated using FE analysis to calculate the principal stress distribution. In the FRC and PRE-T-FRC, stresses were higher than CR, and they were located in the fiber. However, the maximum principal stress value at the composite of PRE-T-FRC was lower than the FRC and CR. Composite resin reinforced with pre-tensioned fibers was advantageous for stress distribution and lowering the stress at the composite itself. Experimental studies on physical properties of pre-tensioned FRC are encouraged to be conducted.

  5. Finite Element Analysis of the Effect of Superstructure Materials and Loading Angle on Stress Distribution around the Implant

    Directory of Open Access Journals (Sweden)

    Jafari K

    2014-12-01

    Full Text Available Statement of Problem: A general process in implant design is to determine the reason of possible problems and to find the relevant solutions. The success of the implant depends on the control technique of implant biomechanical conditions. Objectives: The goal of this study was to evaluate the influence of both abutment and framework materials on the stress of the bone around the implant by using threedimensional finite element analysis. Materials and Methods: A three-dimensional model of a patient’s premaxillary bone was fabricated using Cone Beam Computed Tomography (CBCT. Then, three types of abutment from gold, nickel-chromium and zirconia and also three types of crown frame from silver-palladium, nickel-chromium and zirconia were designed. Finally, a 178 N force at angles of zero, 30 and 45 degrees was exerted on the implant axis and the maximum stress and strain in the trabecular, cortical bones and cement was calculated. Results: With changes of the materials and mechanical properties of abutment and frame, little difference was observed in the level and distribution pattern of stress. The stress level was increased with the rise in the angle of pressure exertion. The highest stress concentration was related to the force at the angle of 45 degrees. The results of the cement analysis proved an inverse relationship between the rate of elastic modulus of the frame material and that of the maximum stress in the cement. Conclusions: The impact of the angle at which the force was applied was more significant in stress distribution than that of abutment and framework core materials.

  6. Stress distribution of metatarsals during forefoot strike versus rearfoot strike: A finite element study.

    Science.gov (United States)

    Li, Shudong; Zhang, Yan; Gu, Yaodong; Ren, James

    2017-12-01

    Due to the limitations of experimental approaches, comparison of the internal deformation and stresses of the human man foot between forefoot and rearfoot landing is not fully established. The objective of this work is to develop an effective FE modelling approach to comparatively study the stresses and energy in the foot during forefoot strike (FS) and rearfoot strike (RS). The stress level and rate of stress increase in the Metatarsals are established and the injury risk between these two landing styles is evaluated and discussed. A detailed subject specific FE foot model is developed and validated. A hexahedral dominated meshing scheme was applied on the surface of the foot bones and skin. An explicit solver (Abaqus/Explicit) was used to stimulate the transient landing process. The deformation and internal energy of the foot and stresses in the metatarsals are comparatively investigated. The results for forefoot strike tests showed an overall higher average stress level in the metatarsals during the entire landing cycle than that for rearfoot strike. The increase rate of the metatarsal stress from the 0.5 body weight (BW) to 2 BW load point is 30.76% for forefoot strike and 21.39% for rearfoot strike. The maximum rate of stress increase among the five metatarsals is observed on the 1st metatarsal in both landing modes. The results indicate that high stress level during forefoot landing phase may increase potential of metatarsal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength.

    Science.gov (United States)

    Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K

    2018-03-27

    The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  8. Internationalism in sexually transmitted infections.

    Science.gov (United States)

    Waugh, M A

    1997-12-01

    The International Union Against the Venereal Diseases and the Treponematoses (IUVDT) became the International Union Against Sexually Transmitted Infections (IUSTI) at the Union's 37th General Assembly, held in Melbourne, Australia. The name change reflects the increasing use by international donor organizations of the term sexually transmitted infections (STIs). STIs are a major problem in Africa, South East Asia, India, Russia, and the European countries which were formerly within the Communist bloc. The epidemic of syphilis together with HIV increases daily in Eastern Europe and Russia. There have, however, been some successes in developing countries with the syndromic method, the promotion of sexual health, and the prevention of STIs. While the UK has the largest body of fully trained sexually transmitted disease (STD) specialists in the world, comparatively few of them participate in large international commitments. These specialists should instead become more involved with STIs in areas of need. Furthermore, more aid should be provided by governmental, nongovernmental, and charitable sources. IUSTI is willing to cooperate with any efforts to fight STDs anywhere in the world.

  9. Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber

    Science.gov (United States)

    DAddario, Larry R.; Trink, Joseph T.

    2010-01-01

    In the process of connecting widely distributed antennas into a coherent array, it is necessary to synchronize the timing of signals at the various locations. This can be accomplished by distributing a common reference signal from a central source, usually over optical fiber. A high-frequency (RF or microwave) tone is a good choice for the reference. One difficulty is that the effective length of the optical fiber changes with temperature and mechanical stress, leading to phase instability in the received tone. This innovation provides a new way to stabilize the phase of the received tone, in spite of variations in the electrical length of the fiber. Stabilization is accomplished by two-way transmission in which part of the received signal is returned to the transmitting end over an identical fiber. The returned signal is detected and used to close an electrical servo loop whose effect is to keep constant the phase of the tone at the receiving end.

  10. Effect of Integration Patterns Around Implant Neck on Stress Distribution in Peri-Implant Bone: A Finite Element Analysis.

    Science.gov (United States)

    Han, Jingyun; Sun, Yuchun; Wang, Chao

    2017-08-01

    To investigate the biomechanical performance of different osseointegration patterns between cortical bone and implants using finite element analysis. Fifteen finite element models were constructed of the mandibular fixed prosthesis supported by implants. Masticatory loads (200 N axial, 100 N oblique, 40 N horizontal) were applied. The cortical bone/implant interface was divided equally into four layers: upper, upper-middle, lower-middle, and lower. The bone stress and implant displacement were calculated for 5 degrees of uniform integration (0, 20%, 40%, 60%, and 100%) and 10 integration patterns. The stress was concentrated in the bone margin and gradually decreased as osseointegration progressed, when the integrated and nonintegrated areas were alternated on the bone-implant surface. Compared with full integration, the integration of only the lower-middle layer or lower half layers significantly decreased von Mises, tensile, and compressive stresses in cortical bone under oblique and horizontal loads, and these patterns did not induce higher stress in the cancellous bone. For the integration of only the upper or upper-middle layer, stress in the cortical and cancellous bones significantly increased and was considerably higher than in the case of nonintegration. In addition, the maximum stress in the cortical bone was sensitive to the quantity of integrated nodes at the bone margin; lower quantity was associated with higher stress. There was no significant difference in the displacement of implants among 15 models. Integration patterns of cortical bone significantly affect stress distribution in peri-implant bone. The integration of only the lower-middle or lower half layers helps to increase the load-bearing capacity of peri-implant bone and decrease the risk of overloading, while upper integration may further increase the risk of bone resorption. © 2016 by the American College of Prosthodontists.

  11. A Distributed Computing Framework for Real-Time Detection of Stress and of Its Propagation in a Team.

    Science.gov (United States)

    Pandey, Parul; Lee, Eun Kyung; Pompili, Dario

    2016-11-01

    Stress is one of the key factor that impacts the quality of our daily life: From the productivity and efficiency in the production processes to the ability of (civilian and military) individuals in making rational decisions. Also, stress can propagate from one individual to other working in a close proximity or toward a common goal, e.g., in a military operation or workforce. Real-time assessment of the stress of individuals alone is, however, not sufficient, as understanding its source and direction in which it propagates in a group of people is equally-if not more-important. A continuous near real-time in situ personal stress monitoring system to quantify level of stress of individuals and its direction of propagation in a team is envisioned. However, stress monitoring of an individual via his/her mobile device may not always be possible for extended periods of time due to limited battery capacity of these devices. To overcome this challenge a novel distributed mobile computing framework is proposed to organize the resources in the vicinity and form a mobile device cloud that enables offloading of computation tasks in stress detection algorithm from resource constrained devices (low residual battery, limited CPU cycles) to resource rich devices. Our framework also supports computing parallelization and workflows, defining how the data and tasks divided/assigned among the entities of the framework are designed. The direction of propagation and magnitude of influence of stress in a group of individuals are studied by applying real-time, in situ analysis of Granger Causality. Tangible benefits (in terms of energy expenditure and execution time) of the proposed framework in comparison to a centralized framework are presented via thorough simulations and real experiments.

  12. Soil-transmitted helminths in pre-school-aged and school-aged children in an urban slum: a cross-sectional study of prevalence, distribution, and associated exposures.

    Science.gov (United States)

    Davis, Stephanie M; Worrell, Caitlin M; Wiegand, Ryan E; Odero, Kennedy O; Suchdev, Parminder S; Ruth, Laird J; Lopez, Gerard; Cosmas, Leonard; Neatherlin, John; Njenga, Sammy M; Montgomery, Joel M; Fox, LeAnne M

    2014-11-01

    Soil-transmitted helminths (STHs) are controlled by regular mass drug administration. Current practice targets school-age children (SAC) preferentially over pre-school age children (PSAC) and treats large areas as having uniform prevalence. We assessed infection prevalence in SAC and PSAC and spatial infection heterogeneity, using a cross-sectional study in two slum villages in Kibera, Nairobi. Nairobi has low reported STH prevalence. The SAC and PSAC were randomly selected from the International Emerging Infections Program's surveillance platform. Data included residence location and three stools tested by Kato-Katz for STHs. Prevalences among 692 analyzable children were any STH: PSAC 40.5%, SAC 40.7%; Ascaris: PSAC 24.1%, SAC 22.7%; Trichuris: PSAC 24.0%, SAC 28.8%; hookworm slums should be assessed separately in STH mapping. © The American Society of Tropical Medicine and Hygiene.

  13. Nonlocal approach to the analysis of the stress distribution in granular systems. II. Application to experiment

    International Nuclear Information System (INIS)

    Scott, J.E.; Kenkre, V.M.; Hurd, A.J.

    1998-01-01

    A theory of stress propagation in granular materials developed recently [Kenkre, Scott, Pease, and Hurd, preceding paper, Phys. Rev. E 57, 5841 (1998)] is applied to the compaction of ceramic and metal powders in pipes with previously unexplained experimental features such as nonmonotonic density and stress variation along the axis of cylindrical compacts. copyright 1998 The American Physical Society

  14. Stress distribution in a semi-infinite body symmetrically loaded over a circular area

    Science.gov (United States)

    Mcginness, H.

    1980-01-01

    Algorithms are developed for computing stresses in a semi-infinite body when loaded by a uniform pressure acting over a circular area. The algorithm allows easy determination of any stress component in a semi-infinite body having a known Poisson's ratio. Example curves are plotted for Portland cement grout and metal representative values.

  15. Nonlocal approach to the analysis of the stress distribution in granular systems. II. Application to experiment

    Science.gov (United States)

    Scott, J. E.; Kenkre, V. M.; Hurd, A. J.

    1998-05-01

    A theory of stress propagation in granular materials developed recently [Kenkre, Scott, Pease, and Hurd, preceding paper, Phys. Rev. E 57, 5841 (1998)] is applied to the compaction of ceramic and metal powders in pipes with previously unexplained experimental features such as nonmonotonic density and stress variation along the axis of cylindrical compacts.

  16. Elastic-plastic stress distributions near the endcap of a fuel element

    International Nuclear Information System (INIS)

    Tayal, M.; Hallgrimson, K.D.; Sejnoha, R.; Singh, P.N.

    1993-06-01

    This paper discusses the stress patterns in and near the endcap of a CANDU fuel element from the perspective of stress corrosion cracking. Simulations of out-reactor burst tests suggest that local plastic strains stay comparatively low for internal pressures below 26-30 MPa. Photoelastic measurements as well as analytical assessments show that the reentrant corner at the sheath/endcap junction results in high concentration of stresses and strains. Analytical assessments show that the in-reactor stresses and strains at the reentrant corner are highly multiaxial, and well into the plastic range. The maximum principal stress correlates well with the location and the direction of circumferential endcap cracks observed in fuel that failed in the Bruce reactor. Thus the maximum principal stress appears promising in ranking various geometries of the sheath/endcap junction with respect to their relative susceptibility to stress corrosion cracking. Design studies suggest that the most effective practical ways of lowering the stresses near the weld, in order of decreasing importance, are to provide a larger interference-free length between the ridge and the endcaps; to increase the pellet/sheath radial gap; to increase the pellet/endcap axial gap; and to keep the gas pressure low. (author). 16 refs., 16 figs

  17. The distribution of wall shear stress downstream of a change in roughness

    International Nuclear Information System (INIS)

    Loureiro, J.B.R.; Sousa, F.B.C.C.; Zotin, J.L.Z.; Silva Freire, A.P.

    2010-01-01

    In the present work, six different experimental techniques are used to characterize the non-equilibrium flow downstream of a rough-to-smooth step change in surface roughness. Over the rough surface, wall shear stress results obtained through the form drag and the Reynolds stress methods are shown to be mutually consistent. Over the smooth surface, reference wall shear stress data is obtained through two optical methods: linear velocity profiles obtained through laser-Doppler anemometry and a sensor surface, the diverging fringe Doppler sensor. The work shows that the two most commonly used methods to determine the wall shear stress, the log-law gradient method and the Reynolds shear stress method, are completely inappropriate in the developing flow region. Preston tubes, on the other hand, are shown to perform well in the region of a non-equilibrium flow.

  18. Stress distribution in a transversely loaded cross-shaped single fiber SCS-6/Ti-6Al-4V composite

    International Nuclear Information System (INIS)

    Warrier, S.G.; Gundel, D.B.; Majumdar, B.S.; Miracle, D.B.

    1996-01-01

    In most structural applications utilizing fiber reinforced metal matrix composites (MMCs), the mechanical response normal to the fiber direction has to be considered. The transverse response is very sensitive to the interface bond strength, which has commonly been determined by testing straight-sided 90 degree specimens and interpreting debond initiation from the knee in the stress-strain curve as well as from a sudden drop in the Poisson's ratio. In an attempt to modify the debond initiation site to an internal location free of uncharacteristic states of stress, a cross-shaped specimen has been developed. Experiments conducted by Gundel et al. indicated that this geometry was successful in obtaining the appropriate crack initiation site. In the present study, finite element analysis (FEA) was done on the cross-shaped specimen to obtain the stress distribution in the composite under transverse loading, in an effort to corroborate the success of this geometry in determining the true transverse response of the composite

  19. Tunable superstructure fiber Bragg grating with chirp-distribution modulation based on the effect of external stress.

    Science.gov (United States)

    Huang, Yize; Li, Yi; Zhu, Huiqun; Tong, Guoxiang; Fang, Baoying; Li, Liu; Shen, Yujian; Zheng, Qiuxin; Liang, Qian; Yan, Meng; Wang, Feng; Qin, Yuan; Ding, Jie; Wang, Xiaohua

    2012-09-15

    We report an external stress modulation method for producing a superstructure fiber Bragg grating (FBG) with approximate cascaded resonant cavities composed of different index chirp distributions. The 15 mm uncoated apodized uniform-period FBG is pressed by the vertical stress from the upper 11 pieces of the pattern plate controlled by a piezoelectric ceramic actuator. The piece length is 1 mm, and the interval of the adjacent pieces is 0.4 mm. The reflectivity of the modulated FBG gradually shows six obvious multichannel 75%-85% reflection peaks with the increase of the vertical stress of each pattern-plate piece from 0 to 30 N. The channel spacing is steady at about 10 GHz for a C-band wavelength division multiplexing system.

  20. Finite element analysis to determine the stress distribution, displacement and safety factor on a microplate for the fractured jaw case

    Science.gov (United States)

    Pratama, Juan; Mahardika, Muslim

    2018-03-01

    Microplate is a connecting plate that can be used for jaw bone fixation. In the last two decades, microplate has been used so many times to help reconstruction of fractured jaw bone which is called mandibular bone or mandible bone. The plate is used to provide stable fixation of the fractured bone tissue during healing and reconstruction process. In this study Finite Element Analysis was used to predict the stress concentration and distribution on a microplate, displacement on the microplate and also to determine the safety factor of the microplate based on maximum allowable stress value, and finally to ascertain whether microplate is safe to use or not. The microplate was produced from punching process using titanium grade 1 (pure titanium) as material with a thickness of 500 µm. The results of the research indicated that the microplate was safe to use according to the maximum stress around the hole, displacement around the hole and also the safety factor of the microplate.

  1. A prediction method of temperature distribution and thermal stress for the throttle turbine rotor and its application

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available In this paper, a prediction method of the temperature distribution for the thermal stress for the throttle-regulated steam turbine rotor is proposed. The rotor thermal stress curve can be calculated according to the preset power requirement, the operation mode and the predicted critical parameters. The results of the 660 MW throttle turbine rotor show that the operators are able to predict the operation results and to adjust the operation parameters in advance with the help of the inertial element method. Meanwhile, it can also raise the operation level, thus providing the technical guarantee for the thermal stress optimization control and the safety of the steam turbine rotor under the variable load operation.

  2. Temperature and blood flow distribution in the human leg during passive heat stress.

    Science.gov (United States)

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  3. Increasing Aridity is Enhancing Silver Fir (Abies Alba Mill). Water Stress in its South-Western Distribution Limit

    Energy Technology Data Exchange (ETDEWEB)

    Macias, M. [Department of Geology, University of Helsinki, Gustaf Haellstroeminkatu 2, P.O. Box 64, FI-00014 Helsinki (Finland); Andreu, L.; Bosch, O.; Gutierrez, E. [Departament d' Ecologia, Universitat de Barcelona, Avgda. Diagonal, 645, Barcelona, 08028, Catalonia (Spain); Camarero, J.J. [Unidad de Recursos Forestales, Centro de Investigacion Agroalimentaria, Gobierno de Aragon, Apdo. 727, Zaragoza, 50080, Aragon (Spain)

    2006-12-15

    Tree populations located at the geographical distribution limit of the species may provide valuable information about the response of tree growth to climate warming across climatic gradients. Dendroclimatic information was extracted from a network of 10 silver-fir (Abies alba) populations in the south-western distribution limit of the species (Pyrenees, NE Iberian Peninsula). Ring-width chronologies were built for five stands sampled in mesic sites from the Main Range in the Pyrenees, and for five forests located in the southern Peripheral Ranges where summer drought is more pronounced. The radial growth of silver-fir in this region is constrained by water stress during the summer previous to growth, as suggested by the negative relationship with previous September temperature and, to a lesser degree, by a positive relationship with previous end of summer precipitation. Climatic data showed a warming trend since the 1970s across the Pyrenees, with more severe summer droughts. The recent warming changed the climate-growth relationships, causing higher growth synchrony among sites, and a higher year-to-year growth variation, especially in the southernmost forests. Moving-interval response functions suggested an increasing water-stress effect on radial growth during the last half of the 20th century. The growth period under water stress has extended from summer up to early autumn. Forests located in the southern Peripheral Ranges experienced a more intense water stress, as seen in a shift of their response to precipitation and temperature. The Main-Range sites mainly showed a response to warming. The intensification of water-stress during the late 20th century might affect the future growth performance of the highly-fragmented A. alba populations in the southwestern distribution limit of the species.

  4. Effect of different types of prosthetic platforms on stress-distribution in dental implant-supported prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Minatel, Lurian [Pró-Reitoria de Pesquisa e Pós-graduação (PRPPG), Universidade do Sagrado Coração, USC, 10–50 Irmã Armindal, Jardim Brasil, Bauru, 17011–160, SP (Brazil); Verri, Fellippo Ramos [Department of Dental Materials and Prosthodontics, Araçatuba Dental School, UNESP - Univ Estadual Paulista, 1193 José Bonifácio Street, Vila Mendonça, Araçatuba 16015–050 (Brazil); Kudo, Guilherme Abu Halawa [Pró-Reitoria de Pesquisa e Pós-graduação (PRPPG), Universidade do Sagrado Coração, USC, 10–50 Irmã Armindal, Jardim Brasil, Bauru, 17011–160, SP (Brazil); Faria Almeida, Daniel Augusto de; Souza Batista, Victor Eduardo de; Aparecido Araujo Lemos, Cleidiel; Piza Pellizzer, Eduardo [Department of Dental Materials and Prosthodontics, Araçatuba Dental School, UNESP - Univ Estadual Paulista, 1193 José Bonifácio Street, Vila Mendonça, Araçatuba 16015–050 (Brazil); and others

    2017-02-01

    A biomechanical analysis of different types of implant connections is relevant to clinical practice because it may impact the longevity of the rehabilitation treatment. Therefore, the objective of this study is to evaluate the Morse taper connections and the stress distribution of structures associated with the platform switching (PSW) concept. It will do this by obtaining data on the biomechanical behavior of the main structure in relation to the dental implant using the 3-dimensional finite element methodology. Four models were simulated (with each containing a single prosthesis over the implant) in the molar region, with the following specifications: M1 and M2 is an external hexagonal implant on a regular platform; M3 is an external hexagonal implant using PSW concept; and M4 is a Morse taper implant. The modeling process involved the use of images from InVesalius CT (computed tomography) processing software, which were refined using Rhinoceros 4.0 and SolidWorks 2011 CAD software. The models were then exported into the finite element program (FEMAP 11.0) to configure the meshes. The models were processed using NeiNastram software. The main results are that M1 (regular diameter 4 mm) had the highest stress concentration area and highest microstrain concentration for bone tissue, dental implants, and the retaining screw (P < 0.05). Using the PSW concept increases the area of the stress concentrations in the retaining screw (P < 0.05) more than in the regular platform implant. It was concluded that the increase in diameter is beneficial for stress distribution and that the PSW concept had higher stress concentrations in the retaining screw and the crown compared to the regular platform implant. - Highlights: • The external hexagon implants was unfavorable biomechanical. • The Morse taper implant presented the best biomechanical result. • Platform switching concept increased stress in screw-retained prostheses.

  5. Effect of different types of prosthetic platforms on stress-distribution in dental implant-supported prostheses

    International Nuclear Information System (INIS)

    Minatel, Lurian; Verri, Fellippo Ramos; Kudo, Guilherme Abu Halawa; Faria Almeida, Daniel Augusto de; Souza Batista, Victor Eduardo de; Aparecido Araujo Lemos, Cleidiel; Piza Pellizzer, Eduardo

    2017-01-01

    A biomechanical analysis of different types of implant connections is relevant to clinical practice because it may impact the longevity of the rehabilitation treatment. Therefore, the objective of this study is to evaluate the Morse taper connections and the stress distribution of structures associated with the platform switching (PSW) concept. It will do this by obtaining data on the biomechanical behavior of the main structure in relation to the dental implant using the 3-dimensional finite element methodology. Four models were simulated (with each containing a single prosthesis over the implant) in the molar region, with the following specifications: M1 and M2 is an external hexagonal implant on a regular platform; M3 is an external hexagonal implant using PSW concept; and M4 is a Morse taper implant. The modeling process involved the use of images from InVesalius CT (computed tomography) processing software, which were refined using Rhinoceros 4.0 and SolidWorks 2011 CAD software. The models were then exported into the finite element program (FEMAP 11.0) to configure the meshes. The models were processed using NeiNastram software. The main results are that M1 (regular diameter 4 mm) had the highest stress concentration area and highest microstrain concentration for bone tissue, dental implants, and the retaining screw (P < 0.05). Using the PSW concept increases the area of the stress concentrations in the retaining screw (P < 0.05) more than in the regular platform implant. It was concluded that the increase in diameter is beneficial for stress distribution and that the PSW concept had higher stress concentrations in the retaining screw and the crown compared to the regular platform implant. - Highlights: • The external hexagon implants was unfavorable biomechanical. • The Morse taper implant presented the best biomechanical result. • Platform switching concept increased stress in screw-retained prostheses.

  6. A finite element analysis of the stress distribution to the mandible from impact forces with various orientations of third molars*

    Science.gov (United States)

    Liu, Yun-feng; Wang, Russell; Baur, Dale A.; Jiang, Xian-feng

    2018-01-01

    Objective: To investigate the stress distribution to the mandible, with and without impacted third molars (IM3s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography (CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces (Load I-front blow and Load II left blow) were evaluated using finite element analysis (FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3s. The condylar region had the highest stress when IM3s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk. PMID:29308606

  7. Reproducibility of aluminum foam properties: Effect of precursor distribution on the structural anisotropy and the collapse stress and its dispersion

    International Nuclear Information System (INIS)

    Nosko, M.; Simancik, F.; Florek, R.

    2010-01-01

    The porous structure of aluminum foam manufactured through the foaming of precursors containing blowing agent is stochastic in nature, usually with a random distribution of pores of different size and shape, creating difficulties in the modeling and prediction of foam properties. In this study, the effect of the initial location of the precursor material in the mold on the foam structure and compression behavior was investigated. Structural characterization showed that the porosity distribution, surface skin thickness and pore orientation was affected by the location of the precursors in the mold and by the extrusion direction of the precursors. Moreover, compression tests demonstrated a significant effect of the structural anisotropy on the collapse stress and its dispersion. The collapse stress of the foam increased if the loading was performed parallel to the thicker surface skin or parallel to the preferential pore orientation, leading to a 20% difference in collapse stress. The dispersion of the collapse stress could be significantly decreased if the loading was performed with regard to the structural anisotropy.

  8. Stress Distribution in Single Dental Implant System: Three-Dimensional Finite Element Analysis Based on an In Vitro Experimental Model.

    Science.gov (United States)

    Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches

    2015-10-01

    This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.

  9. Comparison of the stress distribution in the metallic layers of flexible pipes using two alternative Bflex formulations

    OpenAIRE

    Shi, Yunzhu

    2014-01-01

    Axisymmetric load is the most common load acting on flexible pipe. Modelling axisymmetric load correctly is very important to estimate the strength of a flexible pipe. The purpose of the thesis is to compare the stress distribution in metallic layers under three load case, i.e. tension, internal pressure and external pressure. Literature study and discussion to mechanical properties of flexible pipe and finite element modelling method are included in the thesis. The modelling program is BFLEX...

  10. Partial LVAD restores ventricular outputs and normalizes LV but not RV stress distributions in the acutely failing heart in silico

    OpenAIRE

    Sack, Kevin L.; Baillargeon, Brian; Acevedo-Bolton, Gabriel; Genet, Martin; Rebelo, Nuno; Kuhl, Ellen; Klein, Liviu; Weiselthaler, Georg M.; Burkhoff, Daniel; Franz, Thomas; Guccione, Julius M.

    2016-01-01

    Purpose: Heart failure is a worldwide epidemic that is unlikely to change as the population ages and life expectancy increases. We sought to detail significant recent improvements to the Dassault Systèmes Living Heart Model (LHM) and use the LHM to compute left ventricular (LV) and right ventricular (RV) myofiber stress distributions under the following 4 conditions: (1) normal cardiac function; (2) acute left heart failure (ALHF); (3) ALHF treated using an LV assist device (LVAD) flow rate o...

  11. Evaluation on double-wall-tube residual stress distribution of sodium-heated steam generator by neutron diffraction and numerical analysis

    International Nuclear Information System (INIS)

    Kisohara, N.; Suzuki, H.; Akita, K.; Kasahara, N.

    2012-01-01

    A double-wall-tube is nominated for the steam generator heat transfer tube of future sodium fast reactors (SFRs) in Japan, to decrease the possibility of sodium/water reaction. The double-wall-tube consists of an inner tube and an outer tube, and they are mechanically contacted to keep the heat transfer of the interface between the inner and outer tubes by their residual stress. During long term SG operation, the contact stress at the interface gradually falls down due to stress relaxation. This phenomenon might increase the thermal resistance of the interface and degrade the tube heat transfer performance. The contact stress relaxation can be predicted by numerical analysis, and the analysis requires the data of the initial residual stress distributions in the tubes. However, unclear initial residual stress distributions prevent precious relaxation evaluation. In order to resolve this issue, a neutron diffraction method was employed to reveal the tri-axial (radius, hoop and longitudinal) initial residual stress distributions in the double-wall-tube. Strain gauges also were used to evaluate the contact stress. The measurement results were analyzed using a JAEA's structural computer code to determine the initial residual stress distributions. Based on the stress distributions, the structural computer code has predicted the transition of the relaxation and the decrease of the contact stress. The radial and longitudinal temperature distributions in the tubes were input to the structural analysis model. Since the radial thermal expansion difference between the inner (colder) and outer (hotter) tube reduces the contact stress and the tube inside steam pressure contributes to increasing it, the analytical model also took these effects into consideration. It has been conduced that the inner and outer tubes are contacted with sufficient stresses during the plant life time, and that effective heat transfer degradation dose not occur in the double-wall-tube SG. (authors)

  12. The role of prosthetic abutment material on the stress distribution in a maxillary single implant-supported fixed prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Hugo Eduardo, E-mail: hugo.e.peixoto@hotmail.com [Implantology Team, Latin American Institute of Research and Education in Dentistry, Curitiba, Paraná (Brazil); Bordin, Dimorvan, E-mail: dimorvan_bordin@hotmail.com [Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Limeira avenue, 901-Vila Rezende, Piracicaba, SP 13414-903 (Brazil); Del Bel Cury, Altair A., E-mail: altcury@fop.unicamp.br [Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Limeira avenue, 901-Vila Rezende, Piracicaba, SP 13414-903 (Brazil); Silva, Wander José da, E-mail: wanderjose@fop.unicamp.br [Department of Prosthodontics and Periodontology, Piracicaba Dental School, State University of Campinas, Limeira avenue, 901-Vila Rezende, Piracicaba, SP 13414-903 (Brazil); Faot, Fernanda, E-mail: fernanda.faot@gmail.com [Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Gonçalves Chaves, 457, 2nd floor, Pelotas, Rio Grande do Sul 96015-560 (Brazil)

    2016-08-01

    Purpose: Evaluate the influence of abutment's material and geometry on stress distribution in a single implant-supported prosthesis. Materials and Methods: Three-dimensional models were made based on tomographic slices of the upper middle incisor area, in which a morse taper implant was positioned and a titanium (Ti) or zirconia (ZrN) universal abutments was installed. The commercially available geometry of titanium (T) and zirconia (Z) abutments were used to draw two models, TM1 and ZM1 respectively, which served as control groups. These models were compared with 2 experimental groups were the mechanical properties of Z were applied to the titanium abutment (TM2) and vice versa for the zirconia abutment (ZM2). Subsequently, loading was simulated in two steps, starting with a preload phase, calculated with the respective friction coefficients of each materials, followed by a combined preload and chewing force. The maximum von Mises stress was described. Data were analyzed by two-way ANOVA that considered material composition, geometry and loading (p < 0.05). Results: Titanium and zirconia abutments showed similar von Mises stresses in the mechanical part of the four models. The area with the highest concentration of stress was the screw thread, following by the screw body. The highest stress levels occurred in screw thread was observed during the preloading phase in the ZM1 model (931 MPa); and during the combined loading in the TM1 model (965 MPa). Statistically significant differences were observed for loading, the material × loading interaction, and the loading × geometry interaction (p < 0.05). Preloading contributed for 77.89% of the stress (p < 0.05). There were no statistically significant differences to the other factors (p > 0.05). Conclusion: The screw was the piece most intensely affected, mainly through the preload force, independent of the abutment's material. - Highlights: • The abutment's screw was the most impaired piece of the

  13. Stress distributions due to hydrogen concentrations in electrochemically charged and aged austenitic stainless steel

    International Nuclear Information System (INIS)

    Rozenak, P.; Loew, A.

    2008-01-01

    As a result of hydrogen concentration gradients in type austenitic stainless steels, formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses were developed. These stresses were measured by X-ray technique and the crack formation thus induced could be studied using equilibrium stress equations. After various electrochemical charging and aging times, X-ray diffraction patterns obtained from samples indicated that the reflected and broadened diffraction peaks are the result of the formation of a non-uniform but continuous solid solution in the austenitic matrix. Since both hydrogen penetrations during charging and hydrogen release during aging are diffusion controlled processes and huge hydrogen concentration gradients in the thin surface layer, at depths comparable with the depth of X-ray penetration, are observed. The non-uniform hydrogen concentration in the austenitic matrix, results to the non-uniform expansion of the atomic microstructure and latter inevitably leads to the development of internal stresses. The internal stresses development formulae's are very similar to those relating to non-uniform heating of the materials, where thermal stresses appear due to non-uniform expansion or contraction. The relevant well developed theory is applicable in our case of non-uniform hydrogen concentrations in a solid solution of electrochemically charged and aged austenitic matrix. A few cracks were present on the surface after some minutes of electrochemical charging and the severity of cracking increased as hydrogen was lost during subsequent aging. This is consistent with the expectation of high compressive stresses in the bulk of the specimen during charging and high tensile surface stresses (at the level of 1 x 10 11 Pa) during the aging process. These stresses can induce the formation of surface cracks during the aging process after electrochemical charging in the AISI 316 stainless steel

  14. Application of the photoelastic experimental hybrid method with new numerical method to the high stress distribution

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Lee, Dong Hun; Lee, Dong Ha; Tche, Konstantin

    2004-01-01

    In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method

  15. Modelling effects of tyre inflation pressure on the stress distribution near the soil-tyre interface

    DEFF Research Database (Denmark)

    Schjønning, Per; Lamandé, Mathieu; Tøgersen, Frede A

    2008-01-01

    stress in the contact area for two radial-ply agricultural trailer tyres (650/65R30.5 and 800/50R34) loaded with 60 kN. The study took place on a sandy soil at a water content slightly less than field capacity. We tested the effect of three different inflation pressures (50, 100 and 240 k......Pa) in a randomised block design with three replicates. The vertical stress was measured with load cells located in 0.1 m soil depth. The vertical stress data were used also for identifying the soil area in contact with the tyre, i.e. the tyre footprint. A model (named FRIDA) is proposed that describes the tyre...... footprint by a super ellipse and the stress distribution by a combined exponential (perpendicular to the driving direction) and power-law (along the driving direction) function. The contact area doubled when the inflation pressure was reduced from 240 to 50 kPa. For both tyres, the measured peak stress...

  16. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  17. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  18. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength

    Directory of Open Access Journals (Sweden)

    Kaishi Wang

    2018-03-01

    Full Text Available The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS, a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  19. Velocity and shear stress distribution downstream of mechanical heart valves in pulsatile flow.

    Science.gov (United States)

    Giersiepen, M; Krause, U; Knott, E; Reul, H; Rau, G

    1989-04-01

    Ten mechanical valves (TAD 27 mm): Starr-Edwards Silastic Ball, Björk-Shiley Standard, Björk-Shiley Concave-Convex, Björk-Shiley Monostrut, Hall-Kaster (Medtronic-Hall), OmniCarbon, Bicer Val, Sorin, Saint-Jude Medical and Hemex (Duromedics) are investigated in a comparative in vitro study. The velocity and turbulent shear stress profiles of the valves were determined by Laser Doppler anemometry in two different downstream axes within a model aortic root. Depending on the individual valve design, velocity peaks up to 1.5 m/s and turbulent shear stress peaks up to 150 N/m2 were measured during the systolic phase. These shear stress peaks mainly occurred in areas of flow separation and intense momentum exchange. Directly downstream of the valves (measuring axis 0.55.dAorta) turbulent shear stress peaks occurred at peak systole and during the deceleration phase, while in the second measuring axis (1.5.dAorta) turbulence levels were lower. Shear stress levels were high at the borders of the fluid jets. The results are discussed from a fluid-dynamic point of view.

  20. Transmit antenna selection based on shadowing side information

    KAUST Repository

    Yilmaz, Ferkan

    2011-05-01

    In this paper, we propose a new transmit antenna selection scheme based on shadowing side information. In the proposed scheme, single transmit antenna which has the highest shadowing coefficient is selected. By the proposed technique, usage of the feedback channel and channel estimation complexity at the receiver can be reduced. We consider independent but not identically distributed Generalized-K composite fading model, which is a general composite fading & shadowing channel model for wireless environments. Exact closed-form outage probability, moment generating function and symbol error probability expressions are derived. In addition, theoretical performance results are validated by Monte Carlo simulations. © 2011 IEEE.

  1. Transmit antenna selection based on shadowing side information

    KAUST Repository

    Yilmaz, Ferkan; Yilmaz, Ahmet Oǧuz; Alouini, Mohamed-Slim; Kucur, Oǧuz

    2011-01-01

    In this paper, we propose a new transmit antenna selection scheme based on shadowing side information. In the proposed scheme, single transmit antenna which has the highest shadowing coefficient is selected. By the proposed technique, usage of the feedback channel and channel estimation complexity at the receiver can be reduced. We consider independent but not identically distributed Generalized-K composite fading model, which is a general composite fading & shadowing channel model for wireless environments. Exact closed-form outage probability, moment generating function and symbol error probability expressions are derived. In addition, theoretical performance results are validated by Monte Carlo simulations. © 2011 IEEE.

  2. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

    Science.gov (United States)

    Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu

    2017-12-01

    A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

  3. The global distribution of giant radiating dike swarms on Venus: Implications for the global stress state

    Science.gov (United States)

    Grosfils, Eric B.; Head, James W.

    1994-01-01

    Magellan radar data of Venus reveal 163 large radial lineament systems composed of graben, fissure, and fracture elements. On the basis of their structure, plan view geometry, and volcanic associations, at least 72% are interpreted to have formed primarily through subsurface dike swarm emplacement, the remainder through uplift or a combination of these two mechanisms. The population of swarms is used to determine regional and global stress orientation. The stress configuration recorded from 330-210 deg E (Aphrodite Terra) is best explained by isostatic compensation of existing long wavelength topography or coupling between mantle flow and the lithosphere. The rest are correlated with concentrations of rifting and volcanism in the Beta-Atla-Themis region. The global stress field on Venus is different than that of Earth, where plate boundary forces dominate.

  4. Stress distribution in the 16MND5 bainitic steel. Experimental analysis and polycrystalline modelling

    International Nuclear Information System (INIS)

    Pesci, R.; Inal, K.; Berveiller, M.; Masson, R.

    2003-01-01

    The 16MND5 bainitic steel being a two-phase material (ferrite/cementite), the X-Ray Diffraction (XRD) is the most efficient tool to determine the stress states into the ferritic phase (sin 2 ψ method). The latter, coupled to the observations realized during tensile tests (specimen surface and facies), have permitted to establish criteria to describe the behavior and the damaging processes of the material on a crystallographic scale, in the lower part of the ductile-to-brittle transition region and at lower temperatures [-196 deg. C;-60 deg. C]. During the loading, the damage is observed with a Scanning Electron Microscope, while the internal stresses are determined by XRD: the stress states are less important in ferrite than in bainite (macroscopic stress), the difference not exceeding 150 MPa. A multi-scale polycrystalline model is developed concurrently with the experimental measurements: a Mori-Tanaka formulation is used to describe the elastoplastic behavior of a ferritic single crystal reinforced by cementite precipitates, while the transition to the polycrystal is achieved by a self-consistent approach. The developed modeling takes into account the temperature effects on the stress states in each phase and includes a cleavage criterion (critical value of the stress normal to [100] planes), which expresses the damage of the material: thus, it enables to predict the actual experimental behavior of the 16MND5 steel in relation to temperature, and to take into account the failure process which is fragile from -120 deg. C. Besides, it is also possible to calculate the strains of the diffracting planes, which can be compared to those measured by XRD: this enables to evaluate the heterogeneity of the strains for each crystallographic orientation. (authors)

  5. SEXUALLY TRANSMITTED DISEASES - HISTORY, TYPES, PREVALENCE, EPIDEMIOLOGY

    Directory of Open Access Journals (Sweden)

    Valentin Irmov

    2017-12-01

    Full Text Available Sexually transmitted infections affect persons of active sex and cause serious consequences for the human organism, society and the generation. They spread sporadically, epidemically, and in some of them there are pandemics. For example, humanity is currently in a third viral hepatitis pandemic and a first AIDS pandemic. Another group of diseases can also be transmitted through sexual contact, but this is not the main mode of transmission. Such are salmonellosis, amoebiasis, influenza, various causes of meningitis and pneumonia. Despite being sexually transmitted, this is not a major and almost irrelevant way of transmitting the infection. Therefore, the diseases themselves are not included in the group of sexually transmitted diseases.

  6. Viscous flux flow velocity and stress distribution in the Kim model of a long rectangular slab superconductor

    Science.gov (United States)

    Yang, Yong; Chai, Xueguang

    2018-05-01

    When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.

  7. Pore-Scale Investigation on Stress-Dependent Characteristics of Granular Packs and Their Impact on Multiphase Fluid Distribution

    Science.gov (United States)

    Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.

    2013-12-01

    The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Influence of abutment screw preload on stress distribution in marginal bone.

    Science.gov (United States)

    Khraisat, Ameen

    2012-01-01

    Changes in an implant assembly after abutment connection might possibly cause deformation in the implant/abutment joint and even in the marginal bone. The aim of this study was to evaluate the influence of abutment screw preload through the implant collar on marginal bone stress without external load application. Models of three implant parts made of titanium (implant, abutment, and abutment screw) and cortical bone were built and positioned with computer-aided design software. Meshing and generation of boundary conditions, loads, and interactions were performed. Each part was meshed independently. The sole load applied to the model was a torque of 32 Ncm on the abutment screw about its axis of rotation. The implant collar was deformed axially after the screw was tightened (3 μm). This deformation resulted in 60 MPa of stress in the marginal bone. Moreover, pressure on the marginal bone in a radial direction was observed. It can be concluded that, without any external load application, abutment screw preload exerts stresses on the implant collar and the marginal bone. These findings should help guide the development of new implant/abutment joint designs that exert less stress on the marginal bone.

  9. Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation

    International Nuclear Information System (INIS)

    Reyes-Ruiz, C.; Figueroa, I.A.; Braham, C.; Cabrera, J.M.; Zanellato, O.; Baiz, S.; Gonzalez, G.

    2016-01-01

    There is a lack of information with regards to the friction effect in ECAPed aluminum alloys, even though it might substantially modify the deformation at the surface. In this work, the friction effect at the surface and the deformation heterogeneity in the ECAPed aluminum alloy 6061-T6 were characterized. X-Ray diffraction was used to determine residual stresses (RS) on the sample surface. The volumetric sections were characterized by Synchrotron diffraction at ESRF beamline ID15B (Grenoble, France). It was found that the microhardness mapping and residual stress results showed a good agreement with the finite element analysis for the first layer studied. Minor strain variation, Δd/d as a function of (hkl) planes, for the different analyzed sections was found. The study also showed that there was an incomplete symmetry in the residual stress near the surface, even at up to a depth of 400 µm. The regions with higher deformation were found to be at the top and bottom parts of the sample, while the central region showed stress variations of up to 50 MPa.

  10. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2018-04-01

    Full Text Available Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  11. Distribution of stress in greenhouses frames estimated by aerodynamic coefficients of Brazilian and European standards

    Directory of Open Access Journals (Sweden)

    José Gabriel Vieira Neto

    2016-04-01

    Full Text Available ABSTRACT Widely disseminated in both national and international scenarios, greenhouses are agribusiness solutions which are designed to allow for greater efficiency and control of the cultivation of plants. Bearing this in mind, the construction of greenhouses should take into consideration the incidence of wind, and other such aspects of comfort and safety, and ensure they are factored into the design of structural elements. In this study, we evaluated the effects of pressure coefficients established by the European standard EN 13031-1 (2001 and the Brazilian standard ABNT (1988, which are applicable to the structures of greenhouses with flat roofs, taking into account the following variables: roof slope, external and internal pressure coefficients and height-span ratio of the structure. Using the ANSYSTM computer program, zones of columns and roof were discretized by the Beam44 finite element to identify the maximum and minimum stress portions connected to the aerodynamic coefficients. With this analysis, we found that, in the smallest roof slope (a equal to 20°, the frame stress was quite similar for standards adopted. On the other hand, for the greatest inclination (a equal to 26°, the stress was consistently lower under the Brazilian standard. In view of this, we came to the conclusion that the differences between stresses when applying both standards were more significant at the higher degrees of height-span ratio and roof slope.

  12. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    Science.gov (United States)

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  13. Impact of thermal stress on the growth, size-distribution and biomass ...

    African Journals Online (AJOL)

    This paper reports an in-vivo account of the impact of thermal stress on the biomass and sizedistribution of estuarine populations of Pachymelania aurita in Epe Lagoon, Nigeria. Off all physicochemical variables investigated only water temperature was statistically different among study stations. A total of 7626 individuals of ...

  14. Residual stress distribution of a 6061-T6 aluminum alloy under shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Ruiz, C.; Figueroa, I.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico); Braham, C. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Cabrera, J.M. [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, ETSEIB-Universidad Politécnica de Cataluña, Av Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnológic, Pl. de la Ciencia 2, 08243 Manresa (Spain); Zanellato, O.; Baiz, S. [Laboratoire Procédés et Ingénierie Mécanique et Matériaux, CNRS UMR 8006, ENSAM-CNAM, 151, Bd de l’Hôpital, 75013 Paris (France); Gonzalez, G., E-mail: joseggr@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior S/N, Cd. Universitaria, A.P. 70-360, Coyoacán C.P. 04510 (Mexico)

    2016-07-18

    There is a lack of information with regards to the friction effect in ECAPed aluminum alloys, even though it might substantially modify the deformation at the surface. In this work, the friction effect at the surface and the deformation heterogeneity in the ECAPed aluminum alloy 6061-T6 were characterized. X-Ray diffraction was used to determine residual stresses (RS) on the sample surface. The volumetric sections were characterized by Synchrotron diffraction at ESRF beamline ID15B (Grenoble, France). It was found that the microhardness mapping and residual stress results showed a good agreement with the finite element analysis for the first layer studied. Minor strain variation, Δd/d as a function of (hkl) planes, for the different analyzed sections was found. The study also showed that there was an incomplete symmetry in the residual stress near the surface, even at up to a depth of 400 µm. The regions with higher deformation were found to be at the top and bottom parts of the sample, while the central region showed stress variations of up to 50 MPa.

  15. A finite element study on stress distribution of two different attachment designs under implant supported overdenture

    Directory of Open Access Journals (Sweden)

    Mohamed I. El-Anwar

    2015-10-01

    Conclusions: Locator and ball and socket attachments induce equivalent stresses on bone surrounding implants. Locator attachment performance was superior to that of the ball and socket attachment in the implants, nylon caps, and overdenture. Locator attachments are highly recommended and can increase the interval between successive maintenance sessions.

  16. Temperature and stress distribution in pressure vessel by the boundary element method

    International Nuclear Information System (INIS)

    Alujevic, A.; Apostolovic, D.

    1990-01-01

    The aim of this paper is to demonstrate the applicability of boundary element method for the solution of temperatures and thermal stresses in the body of reactor pressure vessel of the NPP Krsko . In addition to the theory of boundary elements for thermo-elastic continua (2D, 3D) results are given of a numerically evaluated meridional cross-section. (author)

  17. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  18. The influence of die geometry on stress distribution by experimental and FEM simulation on electrolytic copper wiredrawing

    Directory of Open Access Journals (Sweden)

    Leonardo Kyo Kabayama

    2009-09-01

    Full Text Available The study of die geometry is vital in determining the surface and mechanical properties of drawn wires, and consequently, their application. In this work, annealed electrolytic copper wire (ETP, with 0.5 mm original diameter was reduced by 19% in dies with 2β = 10º and 18º and Hc = 35 and 50%. The best experimental results were then studied by the Finite Element Method to simulate residual stress distribution. The experimental results show that the friction coefficient decreases as the wire drawing speed increases, and that low 2β and Hc values bring about the most favorable wiredrawing conditions. The simulation shows a variation in the axial and radial tensions, both for the compression and traction stresses on all regions during the wire drawing process. In conclusion, the influence of the internal die geometry on the drawn wire is clarified.

  19. Influence of Reinforcement Anisotropy on the Stress Distribution in Tension and Shear of a Fusion Magnet Insulation System

    Science.gov (United States)

    Humer, K.; Raff, S.; Prokopec, R.; Weber, H. W.

    2008-03-01

    A glass fiber reinforced plastic laminate, which consists of half-overlapped wrapped Kapton/R-glass-fiber reinforcing tapes vacuum-pressure impregnated in a cyanate ester/epoxy blend, is proposed as the insulation system for the ITER Toroidal Field coils. In order to assess its mechanical performance under the actual operating conditions, cryogenic (77 K) tensile and interlaminar shear tests were done after irradiation to the ITER design fluence of 1×1022 m-2 (E>0.1 MeV). The data were then used for a Finite Element Method (FEM) stress analysis. We find that the mechanical strength and the fracture behavior as well as the stress distribution and the failure criteria are strongly influenced by the winding direction and the wrapping technique of the reinforcing tapes.

  20. Stress distribution and pressure-bearing capacity of a high-pressure split-cylinder die with prism cavity

    Science.gov (United States)

    Zhao, Liang; Li, Mingzhe; Wang, Liyan; Qu, Erhu; Yi, Zhuo

    2018-03-01

    A novel high-pressure belt-type die with a split-type cylinder is investigated with respect to extending its lifetime and improving its pressure bearing capacity. Specifically, a tungsten carbide cylinder is split into several parts along the radial direction with a prism-type cavity. In this paper, the cylinders with different split numbers are chosen to study the stress distribution and compare them with the traditional belt-type die. The simulation results indicate that the split cylinder has much smaller stress than those in the belt-type cylinder, and the statistical analysis reveals that the split-pressure cylinder is able to bear higher pressure. Experimental tests also show that the high-pressure die with a split cylinder and prism cavity has a stronger pressure-bearing capacity than a belt-type die. The split cylinder has advantages of easy manufacturing, high pressure bearing capacity, and replaceable performance.

  1. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  2. Finite element analysis of the equivalent stress distribution in Schanz screws during the use of a femoral fracture distractor

    Directory of Open Access Journals (Sweden)

    Vincenzo Giordano

    Full Text Available ABSTRACT To evaluate the mechanical stress and elastic deformation exercised in the thread/shaft transition of Schanz screws in assemblies with different screw anchorage distances in the entrance to the bone cortex, through the distribution and location of tension in the samples. An analysis of 3D finite elements was performed to evaluate the distribution of the equivalent stress (triple stress state in a Schanz screw fixed bicortically and orthogonally to a tubular bone, using two mounting patterns: (1 thread/shaft transition located 20 mm from the anchorage of the Schanz screws in the entrance to the bone cortex and (2 thread/shaft transition located 3 mm from the anchorage of the Schanz screws in entrance to the bone cortex. The simulations were performed maintaining the same direction of loading and the same distance from the force vector in relation to the center of the hypothetical bone. The load applied, its direction, and the distance to the center of the bone were constant during the simulations in order to maintain the moment of flexion equally constant. The present calculations demonstrated linear behavior during the experiment. It was found that the model with a distance of 20 mm between the Schanz screws anchorage in the entrance to the bone cortex and the thread/shaft transition reduces the risk of breakage or fatigue of the material during the application of constant static loads; in this model, the maximum forces observed were higher (350 MPa. The distance between the Schanz screws anchorage at the entrance to the bone cortex and the smooth thread/shaft transition of the screws used in a femoral distractor during acute distraction of a fracture must be farther from the entrance to the bone cortex, allowing greater degree of elastic deformation of the material, lower mechanical stress in the thread/shaft transition, and minimized breakage or fatigue. The suggested distance is 20 mm.

  3. Analysis of stress distribution of timing belts by FEM; Yugen yosoho ni yoru timing belt oryoku kaiseki (belt code oryoku bunpu kaiseki hokoku)

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Y; Tomono, K; Takahashi, H; Uchida, T [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    A model of the belt analyzed by-ABAQUS (: a general nonlinear finite element program) successfully confirmed the mechanism that generates the belt cord stress. A quite good agreement between experimental and computed results for the stress distribution of the belt cord. It is found that maximum stress of the cords occurs near the root of the tooth by calculation, where the belt cords break off. 3 refs., 9 figs.

  4. The Control of Transmitted Power in an Active Isolation System

    DEFF Research Database (Denmark)

    Elliott, S.J.; Gardonio, P.; Pinnington, R.J.

    1997-01-01

    The isolation of vibration through a system with multiple active mounts is discussed, in which each of the mounts can transmit vibration in several degrees of freedom. Theoretical models of the various parts of this system have been developed which include a flexible receiving structure and distr......The isolation of vibration through a system with multiple active mounts is discussed, in which each of the mounts can transmit vibration in several degrees of freedom. Theoretical models of the various parts of this system have been developed which include a flexible receiving structure...... and distributed active mounts, and these models can be connected together to produce an overall theoretical description of a realistic active isolation system. Total transmitted power has been found to be an excellent criterion to quantify the effect of various control strategies in this model in which...... the contributions to the transmitted power in the various degrees of freedom can be clearly understood. It has also been found, however, that an active control system which minimises a practical estimate of transmitted power, calculated from the product of the axial forces and velocities under the mounts, can give...

  5. Evaluation of Stress Distribution of Mini Dental Implant-Supported Overdentures in Complete Cleft Palate Models: A Three-Dimensional Finite Element Analysis Study.

    Science.gov (United States)

    Soğancı, Gökçe; Yazıcıoğlu, Hüseyin

    2016-01-01

    Mini dental implants could be an alternative treatment method for prosthetic treatment of edentulous cleft palate. The aim of this study was to analyze stress distribution around the cortical bone and different plans using a varied number of mini dental implants in edentulous unilateral complete cleft palates. Three edentulous maxillary models were modified to create unilateral complete cleft palates. Mini dental implants (2.4 × 15 mm) were located as two mini implants at the premolar region, four mini implants at the premolar and molar region, and six mini implants at the first premolar, second premolar, and first molar regions in the models, respectively. Mucosa, o-ring/ball attachments, and overdentures were simulated. Vertical and horizontal loads of 100 N were applied on both the right and left molar teeth of the overdenture for each model. Maximum and minimum principal stress values and the distribution at cortical bone around the implants and cleft palates were evaluated by finite element analysis. Stress values under vertical loads were lower than values under horizontal loadings for all models. Stress values were found to be lower in the first model than in the second and third models. The highest stress values were found around implants in the second model. The unilateral feature of a complete cleft pattern affected the stress distribution. Stresses occured mostly around implants when the overdenture was supported by six implants; however, the stress distribution around implants was low with two implants because of tissue support.

  6. Periodontal ligament influence on the stress distribution in a removable partial denture supported by implant: a finite element analysis

    Directory of Open Access Journals (Sweden)

    Carlos Marcelo Archangelo

    2012-06-01

    Full Text Available OBJECTIVES: The non-homogenous aspect of periodontal ligament (PDL has been examined using finite element analysis (FEA to better simulate PDL behavior. The aim of this study was to assess, by 2-D FEA, the influence of non-homogenous PDL on the stress distribution when the free-end saddle removable partial denture (RPD is partially supported by an osseointegrated implant. MATERIAL AND METHODS: Six finite element (FE models of a partially edentulous mandible were created to represent two types of PDL (non-homogenous and homogenous and two types of RPD (conventional RPD, supported by tooth and fibromucosa; and modified RPD, supported by tooth and implant [10.00x3.75 mm]. Two additional Fe models without RPD were used as control models. The non-homogenous PDL was modeled using beam elements to simulate the crest, horizontal, oblique and apical fibers. The load (50 N was applied in each cusp simultaneously. Regarding boundary conditions the border of alveolar ridge was fixed along the x axis. The FE software (Ansys 10.0 was used to compute the stress fields, and the von Mises stress criterion (svM was applied to analyze the results. RESULTS: The peak of svM in non-homogenous PDL was higher than that for the homogenous condition. The benefits of implants were enhanced for the non-homogenous PDL condition, with drastic svM reduction on the posterior half of the alveolar ridge. The implant did not reduce the stress on the support tooth for both PDL conditions. Conclusion: The PDL modeled in the non-homogeneous form increased the benefits of the osseointegrated implant in comparison with the homogeneous condition. Using the non-homogenous PDL, the presence of osseointegrated implant did not reduce the stress on the supporting tooth.

  7. Residual Stress Distribution and Microstructure of a Multiple Laser-Peened Near-Alpha Titanium Alloy

    Science.gov (United States)

    Umapathi, A.; Swaroop, S.

    2018-04-01

    Laser peening without coating (LPwC) was performed on a Ti-2.5 Cu alloy with multiple passes (1, 3 and 5), using a Nd:YAG laser (1064 nm) at a constant overlap rate of 70% and power density of 6.7 GW cm-2. Hardness and residual stress profiles indicated thermal softening near the surface (hardness (235 HV at 500 μm) and maximum residual stress (- 890 MPa at 100 μm) were observed for LPwC with 1 pass. Surface roughness and surface 3-D topography imaging showed that the surface roughness increased with the increase in the number of passes. XRD results indicated no significant β phases. However, peak shifts, broadening and asymmetry were observed and interpreted based on dislocation activity. Microstructures indicated no melting or resolidification or refinement of grains at the surface. Twin density was found to increase with the increase in the number of passes.

  8. Stress Distribution in Layered Elastic Creeping Array with a Vertical Cylindrical Shaft

    Directory of Open Access Journals (Sweden)

    Bobyleva Tatiana

    2017-01-01

    Full Text Available Construction should be taking into account the influence of time factor on the stability of the structures. In the paper hereditary creep and homogenization theories are used to determine stresses in the layered elastic creeping array with a vertical shaft. Volterra correspondence principle was applied. As a result, the reduction of a time-dependent elastic creeping problem to a corresponding elastic problem became possible. The method proposes a way to determine average (effective elastic creeping properties and homogenized stress field from known properties of the layers’ components. Creep kernels are of a convolution type and are taken in the exponential form. The problem of heterogeneous elastic creeping environment is reduced to a problem of homogeneous transversely isotropic medium. Different boundary conditions on the cylindrical shaft’s surface were considered. An analytical solution was obtained. These explicit expressions can be useful for the necessary calculations in the construction practice.

  9. Probability distribution of von Mises stress in the presence of pre-load.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph; Field, Richard V.,; Reese, Garth M.

    2013-04-01

    Random vibration under preload is important in multiple endeavors, including those involving launch and re-entry. There are some methods in the literature to begin to address this problem, but there is nothing that accommodates the existence of preloads and the necessity of making probabilistic statements about the stress levels likely to be encountered. An approach to achieve to this goal is presented along with several simple illustrations.

  10. Defense Horizons. STAR-TIDES and Starfish Networks: Supporting Stressed Populations with Distributed Talent

    Science.gov (United States)

    2009-12-01

    In November 2007, Cyclone Sidr struck Bangladesh. In response to a query, members of the network noted that Vibrio cholerae bacteria are carried...southern California severely stressed the area around San Diego and stretched beyond the border into Mexico . The STAR–TIDES core group asked members of...day warn- ing on where cholera outbreaks might occur. A check with the National Geospatial-Intelligence Agency (NGA) revealed that there was no

  11. Neutron diffraction study of the stress distribution in steel matrix around active NiTi inserts

    Czech Academy of Sciences Publication Activity Database

    Davydov, Vadim; Lukáš, Petr; Vrána, Miroslav; Malard, B.; Pilch, Jan; Maximov, V.; Šittner, Petr

    2010-01-01

    Roč. 527, č. 15 (2010), s. 3310-3316 ISSN 0921-5093 R&D Projects: GA ČR GAP107/10/0824; GA AV ČR(CZ) IAA200100627 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100520 Keywords : In-situ neutron diffraction * Shape memory alloys * Residual stresses Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.090, year: 2010

  12. Influence of different restorative materials on the stress distribution in dental implants.

    Science.gov (United States)

    Datte, Carlos-Eduardo; Tribst, João-Paulo-Mendes; Dal Piva, Amanda-Maria-de Oliveira; Nishioka, Renato-Sussumu; Bottino, Marco-Antonio; Evangelhista, Alexandre-Duarte M; Monteiro, Fabrício M de M; Borges, Alexandre-Luiz-Souto

    2018-05-01

    To assist clinicians in deciding the most suitable restorative materials to be used in the crowns and abutment in implant rehabilitation. For finite element analysis (FEA), a regular morse taper implant was created using a computer aided design software. The implant was inserted at the bone model with 3 mm of exposed threads. An anatomic prosthesis representing a first maxillary molar was modeled and cemented on the solid abutment. Considering the crown material (zirconia, chromium-cobalt, lithium disilicate and hybrid ceramic) and abutment (Titanium and zirconia), the geometries were multiplied, totaling eight groups. In order to perform the static analysis, the contacts were considered bonded and each material was assigned as isotropic. An axial load (200 N) was applied on the crown and fixation occurred on the base of the bone. Results using Von-Mises criteria and micro strain values were obtained. A sample identical to the CAD model was made for the Strain Gauge (SG) analysis; four SGs were bonded around the implant to obtain micro strain results in bone tissue. FEA results were 3.83% lower than SG. According to the crown material, it is possible to note that the increase of elastic modulus reduces the stress concentration in all system without difference for bone. Crown materials with high elastic modulus are able to decrease the stress values in the abutments while concentrates the stress in its structure. Zirconia abutments tend to concentrate more stress throughout the prosthetic system and may be more susceptible to mechanical problems than titanium. Key words: Finite element analysis, dental implants, ceramic.

  13. Stress and gas hydrate-filled fracture distribution, Krishna-Godavari Basin, India

    Energy Technology Data Exchange (ETDEWEB)

    Cook, A.; Goldberg, D. [Lamont-Doherty Earth Observatory of Columbia Univ., Palisades, NY (United States)

    2008-07-01

    The first expedition of the Indian National Gas Hydrate Program (NGHP) was launched in the summer of 2006 to characterize the presence of gas hydrates on the continental margins of India. This paper presented a study from the NGHP expedition that found high resistivity fractures in unconsolidated clay sediments on logging-while-drilling (LWD) borehole resistivity images. Gas hydrate-filled and conductive fractures appearing on LWD resistivity images in holes 5A, 5B, 6A, 7A and 10 were analysed and discussed. Fracture orientation and shallow sediment stress orientations were determined for each hole. The paper described how to determine which sections of a log are hydrate bearing as well as how to calculate the predicted water saturated resistivity. It was concluded that holes 5A, 5B, 6A and 7A contained well-ordered, high-angle fractures, from which horizontal stress directions could be accurately resolved. However, these stress directions, contradicted the orientations normally seen on a passive margin, and may be the result of local bathymetry variations. 6 refs., 1 tab., 11 figs.

  14. Stress distribution in Co-Cr implant frameworks after laser or TIG welding.

    Science.gov (United States)

    de Castro, Gabriela Cassaro; de Araújo, Cleudmar Amaral; Mesquita, Marcelo Ferraz; Consani, Rafael Leonardo Xediek; Nóbilo, Mauro Antônio de Arruda

    2013-01-01

    Lack of passivity has been associated with biomechanical problems in implant-supported prosthesis. The aim of this study was to evaluate the passivity of three techniques to fabricate an implant framework from a Co-Cr alloy by photoelasticity. The model was obtained from a steel die simulating an edentulous mandible with 4 external hexagon analog implants with a standard platform. On this model, five frameworks were fabricated for each group: a monoblock framework (control), laser and TIG welding frameworks. The photoelastic model was made from a flexible epoxy resin. On the photoelastic analysis, the frameworks were bolted onto the model for the verification of maximum shear stress at 34 selected points around the implants and 5 points in the middle of the model. The stresses were compared all over the photoelastic model, between the right, left, and center regions and between the cervical and apical regions. The values were subjected to two-way ANOVA, and Tukey's test (α=0.05). There was no significant difference among the groups and studied areas (p>0.05). It was concluded that the stresses generated around the implants were similar for all techniques.

  15. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy & Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2012-07-01

    Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional). In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating parameters on the

  16. Measurements of wall-shear-stress distribution on an NACA0018 airfoil by liquid-crystal coating and near-wall particle image velocimetry (PIV)

    International Nuclear Information System (INIS)

    Fujisawa, N; Oguma, Y; Nakano, T

    2009-01-01

    Measurements of wall-shear-stress distributions along curved surfaces are carried out using non-intrusive experimental methods, such as liquid-crystal coating and near-wall particle image velocimetry (PIV). The former method relies on the color change of the liquid-crystal coating sensitive to the wall shear stress, while the latter is based on the direct evaluation of shear stresses through the near-wall PIV measurement in combination with the image deformation technique. These experimental methods are applied to the measurement of wall-shear-stress distributions of air flow at a free-stream velocity of 15 m s −1 on a flat plate and an NACA0018 airfoil. The experiments are carried out at zero angle of attack for the flat plate and at 0° and ±6° angles of attack for the airfoil, and then the variations of shear-stress distribution along these surfaces are studied. These measurements in wall shear stresses agree with each other within their experimental uncertainties, suggesting the validity of experimental methods for non-intrusive shear-stress measurements. It is found that the wall-shear-stress distribution shows a small negative value upstream of the reattachment point on the NACA0018 airfoil, which is followed by an increase in shear stresses downstream due to laminar–turbulent transition of boundary layers. Such behavior of wall-shear-stress distribution is well correlated with the mean flow and turbulence characteristics along the airfoil surfaces, which are measured by PIV

  17. Stress distribution and seismicity patterns of the 2011 seismic swarm in the Messinia basin, (South-Western Peloponnesus, Greece

    Directory of Open Access Journals (Sweden)

    G. Chouliaras

    2013-01-01

    Full Text Available In this investigation we examine the local stress field and the seismicity patterns associated with the 2011–2012 seismicity swarm in the Messinia basin, south-western Peloponnesus, Greece, using the seismological data of the National Observatory of Athens (NOA. During this swarm more than 2000 events were recorded in a 12 month period by the Hellenic Unified Seismological Network (HUSN and also by the additional local installation of four portable broadband seismographic stations by NOA.

    The results indicate a Gaussian distribution of swarm activity and the development of a seismicity cluster in a pre-existing seismic gap within the Messinia basin. Centroid Moment Tensor solutions demonstrate a normal fault trending northwest–southeast and dipping to the southwest primarily due to an extensional stress field. During this seismicity swarm an epicentre migration of the three largest shocks is observed, from one end of the rupture zone in the north-western part of the cluster, towards the other edge of the rupture in the south-eastern part of the cluster. This migration is found to follow the Coulomb failure criterion that predicts the advancement and retardation of the stress field and the patterns of increases and decreases of the seismicity rate (b-value of the frequency–magnitude relation.

  18. The multi-layered ring under parabolic distribution of radial stresses combined with uniform internal and external pressure

    Directory of Open Access Journals (Sweden)

    Christos F. Markides

    2017-04-01

    Full Text Available A recently introduced solution for the stress- and displacement-fields, developed in a multi-layered circular ring, composed of a finite number of linearly elastic concentric layers, subjected to a parabolic distribution of ra-dial stresses, is here extended to encompass a more general loading scheme, closer to actual conditions. The loading scheme includes, besides the para¬-bolic radial stresses, a combination of uniform pressures acting along the outer- and inner- most boundaries of the layered ring. The analytic solution of the problem is achieved by adopting Savin’s pioneering approach for an infinite plate with a hole strengthened by rings. Taking advantage of the results provided by the ana¬lytic solution, a numerical model, simulating the configuration of a three-layered ring (quite commonly encountered in practic¬al applications is validated. The numerical model is then used for a parametric analysis enlightening some crucial aspects of the overall response of the ring.

  19. [Effects of desulfurization waste on calcium distribution, Ca(2+)-ATPase activity, and antioxidant characteristics of rice leaf under alkali stress].

    Science.gov (United States)

    Mao, Gui-Lian; Xu, Xing; Zeng, Jin; Yue, Zi-Hui; Yang, Shu-Juan

    2012-02-01

    To approach the action mechanisms of desulfurization waste on alleviating alkali stress-induced injury of rice, a pot experiment was conducted to study the variations of leaf total calcium content, calcium distribution, plasma membrane Ca(2+)-ATPase activity, and reactive oxygen content of rice seedlings under alkali stress after the application of desulfurization waste. In the control, a few calcium particulates scattered in the cell wall and chloroplasts, while applying desulfurization waste or CaSO4 increased the calcium particulates in the plasma membrane, intercellular space, cell wall, and vacuole significantly. With the increasing application rate of desulfurization waste or CaSO4, the leaf total calcium content increased, Ca(2+)-ATPase activity in plasma membrane and tonoplast presented an increasing trend, plasma membrane relative permeability, MDA content, and O2 production rate decreased, and SOD and POD activities increased. The desulfurization waste could relieve the alkali stress to rice in some extent, and the main reactive compound in the waste could be CaSO4.

  20. School-based mass distributions of mebendazole to control soil-transmitted helminthiasis in the Munshiganj and Lakshmipur districts of Bangladesh: an evaluation of the treatment monitoring process and knowledge, attitudes, and practices of the population.

    Science.gov (United States)

    Hafiz, Israt; Berhan, Meklit; Keller, Angela; Haq, Rouseli; Chesnaye, Nicholas; Koporc, Kim; Rahman, Mujibur; Rahman, Shamsur; Mathieu, Els

    2015-01-01

    Bangladesh's national deworming program targets school-age children (SAC) through bi-annual school-based distributions of mebendazole. Qualitative and quantitative methods were applied to identify challenges related to treatment monitoring within the Munshiganj and Lakshmipur Districts of Bangladesh. Key stakeholder interviews identified several obstacles for successful treatment monitoring within these districts; ambiguity in defining the target population, variances in the methods used for compiling and reporting treatment data, and a general lack of financial and human resources. A treatment coverage cluster survey revealed that bi-annual primary school-based distributions proved to be an effective strategy in reaching school-attending SAC, with rates between 63.0% and 73.3%. However, the WHO target of regular treatment of at least 75% of SAC has yet to be reached. Particularly low coverage was seen amongst non-school attending children (11.4-14.3%), most likely due to the lack of national policy to effectively target this vulnerable group. Survey findings on water and sanitation coverage were impressive with the majority of households and schools having access to latrines (98.6-99.3%) and safe drinking water (98.2-100%). The challenge now for the Bangladesh control program is to achieve the WHO target of regular treatment of at least 75% of SAC at risk, irrespective of school-enrollment status. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Effect of Seepage on Change in Stress Distribution Scenario in Static and Seismic Behaviour of Earthen Dams

    Directory of Open Access Journals (Sweden)

    Nandi N.

    2018-02-01

    Full Text Available The present study makes an effort to understand the damage of earthen dams under static and seismic loading condition. To make the investigation more realistic, behaviour of earthen dams considering the occurrence of a phreatic line indicating the submerged zone due to seepage within the dam body is considered. In case of earthen dams, homogeneous or nonhomogeneous, the consideration of the occurrence of a phreatic line or seepage line through the dam body is an important part of the earthen dam design methodology. The impervious material properties in the submerged zone below the phreatic line due to seepage may differ a lot in magnitudes as compared to the value of the same materials lying above this line. Hence, to have the exact stress distribution scenarios within the earthen dam, the different material properties above and below the phreatic line are considered in this present study. The study is first carried out by two-dimensional as well as three-dimensional finite element analysis under static loading condition. The work is further extended to observe the effect of seepage due to the consideration of the phreatic line on dynamic characteristics of earthen dams. Free vibration analysis and seismic analysis based on the Complete Quadratic Combination (CQC method by considering twodimensional and three-dimensional modeling are carried out to present the frequencies, mode shapes and the stress distribution pattern of the earthen dam.

  2. Vaginal microbiota and viral sexually transmitted diseases.

    Science.gov (United States)

    Nardis, C; Mosca, L; Mastromarino, P

    2013-01-01

    Healthy vaginal microbiota is an important biological barrier to pathogenic microorganisms. When this predominantly Lactobacillus community is disrupted, decreased in abundance and replaced by different anaerobes, bacterial vaginosis (BV) may occur. BV is associated with prevalence and incidence of several sexually transmitted infections. This review provides background on BV, discusses the epidemiologic data to support a role of altered vaginal microbiota for acquisition of sexually transmitted diseases and analyzes mechanisms by which lactobacilli could counteract sexually transmitted viral infections.

  3. The influence of geometric factors on the wall shear stress distribution in realistic human coronary arteries

    OpenAIRE

    Santos, Jorge André Piedade Pinhal dos

    2009-01-01

    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Biomédica. A presente dissertação foi desenvolvida no Erasmus Medical Center em Roterdão, Holanda Background: Atherosclerosis is the main cause of death in the Western society. It is a geometrically focal disease, affecting preferentially vessel areas of low wall shear stress (SS), which induces the expression of atherogenic genes. To predict wall ...

  4. Distribution

    Science.gov (United States)

    John R. Jones

    1985-01-01

    Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....

  5. Tillage and Water Deficit Stress Effects on Corn (Zea mays, L.) Root Distribution

    Science.gov (United States)

    One goal of soil management is to provide optimum conditions for root growth. Corn root distributions were measured in 2004 from a crop rotation – tillage experiment that was started in 2000. Corn was grown either following corn or following sunflower with either no till or deep chisel tillage. Wate...

  6. Numerical simulation of stress distribution in Inconel 718 components realized by metal injection molding during supercritical debinding

    Science.gov (United States)

    Agne, Aboubakry; Barrière, Thierry

    2018-05-01

    Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.

  7. The Role of Stress-Effected Subgrain Size Distribution in Anelastic Recovery: An Experimental Study on Polycrystalline Ice-Ih

    Science.gov (United States)

    Caswell, T. E.; Goldsby, D. L.; Cooper, R. F.; Prior, D. J.

    2013-12-01

    Anelasticity, or time-dependent and recoverable strain, is the source of attenuation at seismic and sub-seismic frequencies, yet the processes governing anelastic recovery are poorly resolved. Numerous experimental studies [e.g., 1-3] have demonstrated that anelasticity occurs via diffusion-effected relaxation along grain boundaries, which leads to a significant grain size sensitivity. Similar studies, however, conducted on deformed single crystals [e.g. 4], coarse-grained metals deforming in dislocation creep [e.g., 5] and polycrystalline ice deforming via a dislocation-accommodated mechanism [6] demonstrate the same frequency dependence, consistent with the grain boundary mechanism, but with no sensitivity to grain size. We postulate that it is the deformation-effected distribution of subgrains, which possesses unique diffusive properties relative to a defect-free lattice, that dominates attenuation in these situations. To test this idea we are conducting creep and stress-drop experiments on polycrystalline ice-Ih with concurrent high-resolution microstructural analysis conducted via Electron Backscatter Diffraction (EBSD) [7] to characterize the relationship between subgrain size distribution and diffusion-effected anelasticity. Our experiments establish the subgrain size distribution in steady-state creep of fine-grained ice-1h at compressional stresses between 0.1-4 MPa, which for the grain sizes and temperatures of our experiments places the rheology squarely within the regime of grain boundary sliding that is accommodated by basal dislocation slip [8]. We then explore the dynamics of the established microstructure, which includes subgrain formation [cf. 9], via stress-drop experiments [e.g. 10]. Experiments of this type allow the characterization of microstructural 'hardness,' i.e., the viscosity of the polycrystalline solid as effected by finite strain, from which we can discern the diffusive kinetics of subgrain boundaries [11, 12]. We are currently

  8. Thermal infrared imaging of the variability of canopy-air temperature difference distribution for heavy metal stress levels discrimination in rice

    Science.gov (United States)

    Zhang, Biyao; Liu, Xiangnan; Liu, Meiling; Wang, Dongmin

    2017-04-01

    This paper addresses the assessment and interpretation of the canopy-air temperature difference (Tc-Ta) distribution as an indicator for discriminating between heavy metal stress levels. Tc-Ta distribution is simulated by coupling the energy balance equation with modified leaf angle distribution. Statistical indices including average value (AVG), standard deviation (SD), median, and span of Tc-Ta in the field of view of a digital thermal imager are calculated to describe Tc-Ta distribution quantitatively and, consequently, became the stress indicators. In the application, two grains of rice growing sites under "mild" and "severe" stress level were selected as study areas. A total of 96 thermal images obtained from the field measurements in the three growth stages were used for a separate application of a theoretical variation of Tc-Ta distribution. The results demonstrated that the statistical indices calculated from both simulated and measured data exhibited an upward trend as the stress level becomes serious because heavy metal stress would only raise a portion of the leaves in the canopy. Meteorological factors could barely affect the sensitivity of the statistical indices with the exception of the wind speed. Among the statistical indices, AVG and SD were demonstrated to be better indicators for stress levels discrimination.

  9. Stress Distribution Evaluation of the Periodontal Ligament in the Maxillary Canine for Retraction by Different Alveolar Corticotomy Techniques: A Three-dimensional Finite Element Analysis.

    Science.gov (United States)

    Pacheco, Ariel Adriano Reyes; Saga, Armando Yukio; de Lima, Key Fonseca; Paese, Victor Nissen; Tanaka, Orlando M

    2016-01-01

    By using the finite element method (FEM), this study aimed to evaluate the effect of different corticotomy formats on the distribution and magnitude of stress on the periodontal ligament (PDL) during retraction of the maxillary canine. A geometric model of the left hemi-jaw was created from computed tomography scan images of a dry human skull and loads were administered during distalization movement of the canine. Three trials were performed: (1) without corticotomy, (2) box-shaped corticotomy and perforations in the cortical bone of the canine (CVC) and (3) CVC and circular-shaped corticotomy in the cortical bone of the edentulous space of the first premolar. There was no difference in stress distribution among the different corticotomy formats. Different corticotomy formats used to accelerate orthodontic tooth movement did not affect stress distribution in the PDL during canine retraction. From a mechanical perspective, the present study showed that the stress distribution on the PDL during canine retraction was similar in all the corticotomy formats. When using the Andrews T2 bracket, the PDL presented the highest levels of stress in the middle third of the PDL, suggesting that the force was near the center of resistance. Also, as bone weakening by corticotomies did not influence stress distribution, the surgical procedure could be simplified to a less aggressive one, focusing more on inflammatory cellular stimulation than on bone resistance. A simpler surgical act could also be performed by most orthodontists in their practices, enhancing postoperative response and reducing patient costs.

  10. Stress Distribution in the Dissimilar Metal Butt Weld of Nuclear Reactor Piping due to the Simulation Technique for the Repair Welding

    International Nuclear Information System (INIS)

    Lee, Hweeseung; Huh, Namsu; Kim, Jinsu; Lee, Jinho

    2013-01-01

    During welding, the dissimilar metal butt welds of nuclear piping are typically subjected to repair welding in order to eliminate defects that are found during post-weld inspection. It has been found that the repair weld can significantly increase the tensile residual stress in the weldment, and therefore, accurate estimation of the weld residual stress due to repair weld, especially for dissimilar metal welds using Ni-based alloy 82/182 in nuclear components, is of great importance in order to assess susceptibility to primary water stress corrosion cracking. In the present study, the stress distributions of dissimilar metal butt welds in nuclear reactor piping subjected to repair weld were investigated based on detailed nonlinear finite element analyses. Particular emphasis was placed on the variation of the stress distribution in the dissimilar metal butt weld according to the finite element welding analysis sequence for the repair welding process

  11. 3D analysis of synaptic vesicle density and distribution after acute foot-shock stress by using serial section transmission electron microscopy

    DEFF Research Database (Denmark)

    Khanmohammadi, M; Darkner, S; Nava, N

    2017-01-01

    was employed to compare two groups of male rats: (1) rats subjected to foot-shock stress and (2) rats with sham stress as control group. Two-dimensional (2D) density measures are common in microscopic images and are estimated by following a 2D path in-section. However, this method ignores the slant...... in comparison to the 2D measures. Our results showed that acute foot-shock stress exposure significantly affected both the spatial distribution and density of the synaptic vesicles within the presynaptic terminal.......Behavioural stress has shown to strongly affect neurotransmission within the neocortex. In this study, we analysed the effect of an acute stress model on density and distribution of neurotransmitter-containing vesicles within medial prefrontal cortex. Serial section transmission electron microscopy...

  12. Internal stress distribution of X-ring using photoelastic experimental hybrid method

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Alunda Ouma [Dedan Kimathi University of Technology, Nyeri (Kenya); Hawong, Jai Sug; Lim, Hyun Seok [Yeungnam University, Gyeongsan (Korea, Republic of); Shin, Dong Chul [Koje College, Geoje (Korea, Republic of)

    2014-05-15

    Sealing elements are essential parts of many machines, and are used to prevent the loss of a fluid or gas. When such fluids are not properly sealed, catastrophic failures may result. Many different types of rings have been developed to suit various industrial needs. Considerable research has been done on the O-ring. We analyze the internal stresses developed in an X-ring under a uniform squeeze rate of 20%, which is suitable for static applications, using a photoelastic experimental hybrid method. The internal pressures applied were 0.98, 1.96, 2.94, 3.92, 4.90, and 5.88 MPa. We show that sealing rings with X geometry have considerably higher internal stresses than O-ring seals. In addition, we demonstrate that after extrusion, for an internal pressure of 5.88 MPa, the two lobes on the upper contact surface merge, thereby increasing the contact length of the upper side significantly. Extrusion in the X-ring occurred when the internal pressure was 4.90 MPa.

  13. Basal cerebral glucose distribution in long-term post-traumatic stress disorder.

    Science.gov (United States)

    Molina, Mario Enrique; Isoardi, Roberto; Prado, Marcela Nathalie; Bentolila, Silvia

    2010-03-01

    The purpose of this investigation was to study basal cerebral glucose absorption patterns associated to long-term post-traumatic stress disorder. Fluorodeoxyglucose positron emission tomography (FDG-PET) and statistic parametric mapping (SPM) were used to compare regional cerebral glucose absorption between 15 war veterans (Hispanic men, aged 39-41 (M = 39.5, SD = 0.84)) diagnosed with post-traumatic stress disorder (PTSD) based on DSM-IV criteria, and a matching control group of six asymptomatic veterans. This study was conducted 20 years after the traumatic events. PTSD patients presented relatively diminished activity (P<0.005) in: cingulate gyri, precuneus, insula, hippocampus; frontal, pre-frontal and post-central regions; lingual, calcarine, occipital medial and superior gyri, and verbal and paraverbal areas. Relativeley augmented activity (P<0.005) was observed in PTSD patients in: fusiform, temporal superior, medial, and inferior gyri; occipital medial, inferior and lingual gyri; precuneus, and cerebellum. The amygdala and the thalamus showed normal metabolic activity. Various brain regions that showed diminished activity (limbic, frontal and prefrontal cortex, multimodal parieto-occipital areas and verbal and paraverbal areas) have evolved lately, and sub-serve highly complex cognitive and behavioural functions. Metabolic activity patterns are comparable to those observed in personality disorders of the borderline type.

  14. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  15. Distributed deformation structures in shallow water carbonates subsiding through a simple stress field (Jandaira Formation, NE Brazil)

    Science.gov (United States)

    Bertotti, Giovanni; Bisdom, Kevin; Bezerra, Hilario; Reijmer, John; Cazarin, Carol

    2016-04-01

    Despite the scarcity of major deformation structures such as folds and faults, the flat-lying, post-rift shallow water carbonates of the Jandaira Formation (Potiguar Basin, NE Brazil) display well-organized fracture systems distributed of tens of km2. Structures observed in the outcropping carbonates are sub-vertical, generally N-S trending mode I and hybrid veins and barren fractures, sub-vertical roughly E-W trending stylolites and sub-horizontal stylolites. These features developed during subsidence in a simple and constant stress field characterized by, beside gravity, a significant horizontal stress probably of tectonic origin. The corresponding depth curves have different origin and slopes and, therefore, cross each other resulting in position of the principal stresses which change with depth. As a result, the type and amount of fractures affecting subsiding rocks change despite the fact that the far-field stresses remain constant. Following early diagenesis and porosity elimination in the first 100-200m depth, Jandaira carbonates experienced wholesale fracturing at depths of 400-800m resulting in a network of NNW-NE trending fractures partly organized in conjugate sets with a low interfault angle and a sub-vertical intersection, and sub-vertical stylolites roughly perpendicular to the fractures. Intense fluid circulation was activated as a consequence through the carbonates. With increasing subsidence, sub-horizontal stylolites formed providing calcite which precipitated in the open fractures transforming them in veins. The Jandaira formation lost thereby the permeability it had reached during the previous stage. Because of the lack of major deformation, the outcrops of the Jandaira Formation is an excellent analog for carbonate reservoirs in the Middle East, South Atlantic and elsewhere.

  16. Stress and strain distribution in three different mini dental implant designs using in implant retained overdenture: a finite element analysis study.

    Science.gov (United States)

    Aunmeungtong, W; Khongkhunthian, P; Rungsiyakull, P

    2016-01-01

    Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant should exhibit the same behavior to chewing force.

  17. Spatial distribution of xylem embolisms in the stems of Pinus thunbergii at the threshold of fatal drought stress.

    Science.gov (United States)

    Umebayashi, Toshihiro; Morita, Toshimitsu; Utsumi, Yasuhiro; Kusumoto, Dai; Yasuda, Yuko; Haishi, Tomoyuki; Fukuda, Kenji

    2016-10-01

    Although previous studies have suggested that branch dieback and whole-plant death due to drought stress occur at 50-88% loss of stem hydraulic conductivity (P 50 and P 88 , respectively), the dynamics of catastrophic failure in the water-conducting pathways in whole plants subjected to drought remain poorly understood. We examined the dynamics of drought stress tolerance in 3-year-old Japanese black pine (Pinus thunbergii Parl.). We nondestructively monitored (i) the spatial distribution of drought-induced embolisms in the stem at greater than P 50 and (ii) recovery from embolisms following rehydration. Stem water distributions were visualized by cryo-scanning electron microscopy. The percentages of both embolized area and loss of hydraulic conductivity showed similar patterns of increase, although the water loss in xylem increased markedly at -5.0 MPa or less. One seedling that had reached 72% loss of the water-conducting area survived and the xylem water potential recovered to -0.3 MPa. We concluded that Japanese black pines may need to maintain water-filled tracheids within earlywood of the current-year xylem under natural conditions to avoid disconnection of water movement between the stem and the tops of branches. It is necessary to determine the spatial distribution of embolisms around the point of the lethal threshold to gain an improved understanding of plant survival under conditions of drought. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Changing distribution and geometry of S′ in Al–Cu–Mg single crystals during stress aging by controlling the loading orientation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiqiang [School of Material Science and Engineering, Central South University, Yuelu Section, Changsha, Hunan 410083 (China); Chen, Zhiguo [School of Material Science and Engineering, Central South University, Yuelu Section, Changsha, Hunan 410083 (China); Hunan University of Humanities, Science and Technology, Loudi 417000 (China); Guo, Xiaobin [School of Material Science and Engineering, Central South University, Yuelu Section, Changsha, Hunan 410083 (China); Deng, Yunlai, E-mail: luckdeng@csu.edu.cn [School of Material Science and Engineering, Central South University, Yuelu Section, Changsha, Hunan 410083 (China); State Key Laboratory of High Performance and Complex Manufacturing, Central South University, Changsha 410083 (China)

    2016-01-05

    The precipitation behavior of S′ phase in Al–Cu–Mg single crystals during stress-free and stress aging was investigated by transmission electron microscopy (TEM). Different compressive stress magnitudes and loading orientations were applied to determine their effects on the precipitation of S′ in Al–Cu–Mg alloy during stress aging. The results indicate that a noticeable preferential orientation of S′ is generated in the sample under applied compressive stress of 33 MPa loading along close to [001]{sub Al}, whilst no obviously preferential orientation of S′ can be observed in the sample loaded along close to [101]{sub Al} under the same applied stress or even larger applied stress. The precipitation distribution of S′ phase during stress aging can be changed by the loading orientation of the applied stress. Moreover, compressive stress aging may lead to S′ phase shorter in length, and the length of S′ phase shows a decreasing tendency with increasing applied stress, which are associated with the positive misfit between S′ and Al matrix.

  19. Changing distribution and geometry of S′ in Al–Cu–Mg single crystals during stress aging by controlling the loading orientation

    International Nuclear Information System (INIS)

    Chen, Jiqiang; Chen, Zhiguo; Guo, Xiaobin; Deng, Yunlai

    2016-01-01

    The precipitation behavior of S′ phase in Al–Cu–Mg single crystals during stress-free and stress aging was investigated by transmission electron microscopy (TEM). Different compressive stress magnitudes and loading orientations were applied to determine their effects on the precipitation of S′ in Al–Cu–Mg alloy during stress aging. The results indicate that a noticeable preferential orientation of S′ is generated in the sample under applied compressive stress of 33 MPa loading along close to [001] Al , whilst no obviously preferential orientation of S′ can be observed in the sample loaded along close to [101] Al under the same applied stress or even larger applied stress. The precipitation distribution of S′ phase during stress aging can be changed by the loading orientation of the applied stress. Moreover, compressive stress aging may lead to S′ phase shorter in length, and the length of S′ phase shows a decreasing tendency with increasing applied stress, which are associated with the positive misfit between S′ and Al matrix.

  20. The stresses and displacements in cylindrical shells subject to arbitrary temperature distribution

    International Nuclear Information System (INIS)

    Tabakman, H.D.; Lin, Y.J.

    1977-01-01

    The paper begins with a statement of a reciprocal theorem in thermoelasticity based on a generalization of Betti's Reciprocal Theorem. This is followed by application to the solution of a simply supported thin walled cylindrical shell subject to arbitrary three-dimensional temperature distribution T(x,y,z). The usefulness of the theorem resides in the fact that existing solutions in elasticity may be used to obtain solutions of thermoelastic problems. This characteristic is of great importance, particularly when the temperature distribution is arbitrary, as is often the case in practise, and cannot be expressed in functional form; thus rendering solution of the thermoelastic equations very difficult. With solutions of a wide range of problems in elasticity in existence, application of the thermoelastic theorem is the key to solution of a broad class of problems in thermoelasticity, problems that cannot be solved by the classic process. (Auth.)

  1. Effect of Thermal Mechanical Behaviors of Cu on Stress Distribution in Cu-Filled Through-Silicon Vias Under Heat Treatment

    Science.gov (United States)

    Zhao, Xuewei; Ma, Limin; Wang, Yishu; Guo, Fu

    2018-01-01

    Through-silicon vias (TSV) are facing unexpected thermo-mechanical reliability problems due to the coefficient of thermal expansion (CTE) mismatch between various materials in TSVs. During applications, thermal stresses induced by CTE mismatch will have a negative impact on other devices connecting with TSVs, even leading to failure. Therefore, it is essential to investigate the stress distribution evolution in the TSV structure under thermal loads. In this report, TSVs were heated to 450°C at different heating rates, then cooled down to room temperature after a 30-min dwelling. After heating treatment, TSV samples exhibited different Cu deformation behaviors, including Cu intrusion and protrusion. Based on the different Cu deformation behaviors, stress in Si around Cu vias of these samples was measured and analyzed. Results analyzed by Raman spectrums showed that the stress distribution changes were associated with Cu deformation behaviors. In the area near the Cu via, Cu protrusion behavior might aggravate the stress in Si obtained from the Raman measurement, while Cu intrusion might alleviate the stress. The possible reason was that in this area, the compressive stress σ_{θ } induced by thermal loads might be the dominant stress. In the area far from the Cu via, thermal loads tended to result in a tensile stress state in Si.

  2. Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf

    2009-01-01

    The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953......-dimensional simulations of standing waves have also been made by application of a general purpose Navier-Stokes solver. The results agree well with those obtained by the boundary layer analysis. Wave reflection from a plane sloping wall is also investigated by using the same numerical model and by physical laboratory...

  3. Voice-band Modem: A Device to Transmit Data over Telephone ...

    Indian Academy of Sciences (India)

    over Telephone Networks. 2. Advanced Ideas ... transmitted signal power and No is the noise power spec- ... power distribution over all frequencies, and the samples of noise .... Figure 3, dmin=2fl, and average signal energy, assum- ing that ...

  4. Stress State of Elastic Thick-Walled Ring With Self-Balanced Pressures Distributed on Its Internal and External Borders

    Directory of Open Access Journals (Sweden)

    Kravchuk Aleksandr Stepanovich

    2015-10-01

    Full Text Available For the first time with the help of the theory of analytic functions and Kolosov-Muskhelishvili formulas the problem of the two-dimensional theory of elasticity for a thickwalled ring with the uneven pressures, acting on its borders, was solved. The pressure on the inner and outer boundaries is represented by Fourier series. The authors represent the two complex functions which solve boundary problem in the form of Laurent series. The logarithmic terms in these series are absent because the boundary problem has the self-balancing loads on each boundary of ring. The coefficients in the Laurent series are calculated by the boundary conditions. Firstly, the equations were obtained in the general form. But the hypothesis about even distributions of pressures at borders of ring was used for constructing an example. It leads to the fact that all coefficients of analytic functions represented in Laurent series have to be only real. As a solving example, the representation of pressures in equivalent hypotrochoids was used. The application of the computer algebra system Mathematica greatly simplifies the calculation of the distribution of stresses and displacements in ring. It does not require manual formal separation of real and imaginary parts in terms of Kolosov-Muskhelishvili to display the distribution of the physical parameters. It separates them only for calculated numbers with the help of built-in functions.

  5. Automatic Identification System (AIS) Transmit Testing in Louisville Phase 2

    Science.gov (United States)

    2014-08-01

    Firewall Louisville QM 65.206.28.x NAIS Site Controller PC RS232 Serial cable TV32 Computer Cmd Center Serial splitter SAAB R40 AIS Base Station...172.17.14.6 Rack mount computer AIS Radio Interface Ethernet Switch 192.168.0.x Firewall Cable Modem 192.168.0.1 VTS Accred. Boundary serial connection...Automatic Identification System ( AIS ) Transmit Testing in Louisville Phase 2 Distribution Statement A: Approved for public release

  6. Establishment of a finite element model of a neonate's skull to evaluate the stress pattern distribution resulting during nasoalveolar molding therapy of cleft lip and palate patients.

    Science.gov (United States)

    Bauer, Franz X; Heinrich, Veronika; Grill, Florian D; Wölfle, Felix; Hedderich, Dennis M; Rau, Andrea; Wolff, Klaus-Dietrich; Ritschl, Lucas M; Loeffelbein, Denys J

    2018-04-01

    Nasoalveolar Molding (NAM) is associated with ambivalent acceptance regarding effectiveness and unknown long-term results. Our purpose was to analyze the stress distribution patterns within the viscero- and neurocranium of neonates during the first phase of NAM therapy. A finite element (FE) model of a healthy four-week-old neonate was generated, derived from a computed tomography scan allowing the implementation of a bone-density-dependent material model. The influence of dental germs with variable material properties, the cleft width and area of expected force application were analyzed in a worst-case scenario. The resulting stress distribution patterns for each situation were analyzed using the software Ansys APDL. The established FE model was verified with a convergence analysis. Overall, stress patterns at the age of four weeks showed von Mises stress values below 60.000 Pa in the viscero- and neurocranium. The influences of the allocation of material properties for the dental germs, the area of force application, and the cleft width were negligible. A workflow to simulate the stress distribution and deformation in neonates attributable to various areas of force application has been established. Further analyses of the skulls of younger and older neonates are needed to describe the stress distribution patterns during NAM therapy. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Effect of the Yield Stress and r-value Distribution on the Earing Profile of Cup Drawing with Yld2000-2d Yield Function

    Science.gov (United States)

    Lou, Yanshan; Bae, Gihyun; Lee, Changsoo; Huh, Hoon

    2010-06-01

    This paper deals with the effect of the yield stress and r-value distribution on the earing in the cup drawing. The anisotropic yield function, Yld2000-2d yield function, is selected to describe the anisotropy of two metal sheets, 719B and AA5182-O. The tool dimension is referred from the Benchmark problem of NUMISHEET'2002. The Downhill Simplex method is applied to identify the anisotropic coefficients in Yld2000-2d yield function. Simulations of the drawing process are performed to investigate the earing profile of two materials. The earing profiles obtained from simulations are compared with the analytical model developed by Hosford and Caddell. Simulations are conducted with respect to the change of the yield stress and r-value distribution, respectively. The correlation between the anisotropy and the earing tendency is investigated based on simulation data. Finally, the earing mechanism is analyzed through the deformation process of the blank during the cup deep drawing. It can be concluded that ears locate at angular positions with lower yield stress and higher r-value while the valleys appear at the angular position with higher yield stress and lower r-value. The effect of the yield stress distribution is more important for the cup height distribution than that of the r-value distribution.

  8. A three-dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants.

    Science.gov (United States)

    Moreira, Wagner; Hermann, Caio; Pereira, Jucélio Tomás; Balbinoti, Jean Anacleto; Tiossi, Rodrigo

    2013-10-01

    The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA). Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan). The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment. Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.

  9. Does salt stress constrain spatial distribution of dune building grasses Ammophila arenaria and Elytrichia juncea on the beach?

    Science.gov (United States)

    van Puijenbroek, Marinka E B; Teichmann, Corry; Meijdam, Noortje; Oliveras, Imma; Berendse, Frank; Limpens, Juul

    2017-09-01

    Rising sea levels threaten coastal safety by increasing the risk of flooding. Coastal dunes provide a natural form of coastal protection. Understanding drivers that constrain early development of dunes is necessary to assess whether dune development may keep pace with sea-level rise. In this study, we explored to what extent salt stress experienced by dune building plant species constrains their spatial distribution at the Dutch sandy coast. We conducted a field transplantation experiment and a glasshouse experiment with two dune building grasses Ammophila arenaria and Elytrigia juncea . In the field, we measured salinity and monitored growth of transplanted grasses in four vegetation zones: (I) nonvegetated beach, (II) E. juncea occurring, (III) both species co-occurring, and (IV) A. arenaria dominant. In the glasshouse, we subjected the two species to six soil salinity treatments, with and without salt spray. We monitored biomass, photosynthesis, leaf sodium, and nutrient concentrations over a growing season. The vegetation zones were weakly associated with summer soil salinity; zone I and II were significantly more saline than zones III and IV. Ammophila arenaria performed equally (zone II) or better (zones III, IV) than E. juncea , suggesting soil salinity did not limit species performance. Both species showed severe winter mortality. In the glasshouse, A. arenaria biomass decreased linearly with soil salinity, presumably as a result of osmotic stress. Elytrigia juncea showed a nonlinear response to soil salinity with an optimum at 0.75% soil salinity. Our findings suggest that soil salinity stress either takes place in winter, or that development of vegetated dunes is less sensitive to soil salinity than hitherto expected.

  10. Long-term stress distribution patterns of the ankle joint in varus knee alignment assessed by computed tomography osteoabsorptiometry.

    Science.gov (United States)

    Onodera, Tomohiro; Majima, Tokifumi; Iwasaki, Norimasa; Kamishima, Tamotsu; Kasahara, Yasuhiko; Minami, Akio

    2012-09-01

    The stress distribution of an ankle under various physiological conditions is important for long-term survival of total ankle arthroplasty. The aim of this study was to measure subchondral bone density across the distal tibial joint surface in patients with malalignment/instability of the lower limb. We evaluated subchondral bone density across the distal tibial joint in patients with malalignment/instability of the knee by computed tomography (CT) osteoabsorptiometry from ten ankles as controls and from 27 ankles with varus deformity/instability of the knee. The quantitative analysis focused on the location of the high-density area at the articular surface, to determine the resultant long-term stress on the ankle joint. The area of maximum density of subchondral bone was located in the medial part in all subjects. The pattern of maximum density in the anterolateral area showed stepwise increases with the development of varus deformity/instability of the knee. Our results should prove helpful for designing new prostheses and determining clinical indications for total ankle arthroplasty.

  11. Influence of patient position and implant material on the stress distribution in an artificial intervertebral disc of the lumbar vertebrae

    Directory of Open Access Journals (Sweden)

    Karpiński Robert

    2017-01-01

    Full Text Available The aim of this paper was to determine the effect of using cobalt and titanium-based alloys as implant materials for the lumbar vertebrae with an artificial intervertebral disc on the stress distribution. The lumbar vertebrae were chosen for the study because they carry considerably higher loads, especially while standing or sitting. Finite element method (FEM simulations were conducted for three standard loads reflecting three patient's positions: recumbent, standing and sitting. The FEM analysis was performed using the SolidWorks Simulation module. Artificial units containing a pair of vertebrae with a prosthesis between them were designed by the Solid Edge software, based on micro-computed tomography CT scans of the patient's spine. The implant model was designed with its shape based on the geometry of surrounding vertebrae, consisting of an upper pad, a bottom pad and an insert (intervertebral disc. Two implant material configurations were studied. One involved the use of titanium alloy for the upper and bottom pads, while in the other, these pads were made of cobalt alloy. In both cases, a polyethylene insert was used. The FEM results demonstrate that both material configurations meet the requirements for prosthesis design. In both material configurations, the maximum stresses in each prosthesis element are almost twice higher in a sitting posture than in a recumbent position.

  12. Improved noninvasive assessment of coronary artery disease by quantitative analysis of regional stress myocardial distribution and washout of thallium-201

    International Nuclear Information System (INIS)

    Maddahi, J.; Garcia, E.V.; Berman, D.S.; Waxman, A.; Swan, H.J.C.; Forrester, J.

    1981-01-01

    Visual interpretation of stress-redistribution thallium-201 ( 201 Tl) scintigrams is subject to observer variability and is suboptimal for evaluation of extent of coronary artery disease (CAD). An objective, computerized technique has been developed that quantitatively expresses the relative space-time myocardial distribution of 201 Tl. Multiple-view, maximum-count circumferential profiles for stress myocardial distribution of 201 Tl and segmental percent washout were analyzed in a pilot group of 31 normal subjects and 20 patients with CAD to develop quantitative criteria for abnormality. Subsequently, quantitative analysis was applied prospectively to a group of 22 normal subjects and 45 CAD patients and compared with visual interpretation of scintigrams for detection and evaluation of CAD. The sensitivity and specificity of the quantitative technique (93% and 91%, respectively) were not significantly different from those of the visual method (91% and 86%). The quantitative analysis significantly (p 201 Tl imaging over the visual method in the left anterior descending artery (from 56% to 80%), left circumflex artery (from 34% to 63%) and right coronary artery (from 65% to 94%) without significant loss of specificity. Using quantitative analysis, sensitivity for detection of deseased vessels did not diminish as the number of vessels involved increased, as it did with visual interpretations. In patients with one-vessel disease, 86% of the lesions were detected by both techniques; however, in patients with three-vessel disease, quantitative analysis detected 83% of the lesions, while the sensitivity was only 53% for the visual method. Seventy percent of the coronary arteries with moderate

  13. A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution)

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Son, Bong Jin

    1997-01-01

    Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation

  14. Effect of implant number and distribution on load transfer in implant-supported partial fixed dental prostheses for the anterior maxilla: A photoelastic stress analysis study.

    Science.gov (United States)

    Lee, Jae-In; Lee, Yoon; Kim, Yu-Lee; Cho, Hye-Won

    2016-02-01

    The 4-, 3- or even 2-implant-supported partial fixed dental prosthesis (PFDP) designs have been used to rehabilitate the anterior edentulous maxilla. The purpose of this in vitro study was to compare the stress distribution in the supporting tissues surrounding implants placed in the anterior maxilla with 5 PFDP designs. A photoelastic model of the human maxilla with an anterior edentulous region was made with photoelastic resin (PL-2; Vishay Micro-Measurements), and 6 straight implants (OsseoSpeed; Astra Tech AB) were placed in the 6 anterior tooth positions. The 5 design concepts based on implant location were as follows: model 6I: 6 implants; model 2C2CI: 4 implants (2 canines and 2 central incisors); model 2C2LI: 4 implants (2 canines and 2 lateral incisors); model 2C1CI: 3 implants (2 canines and 1 central incisor); and model 2C: 2 canines. A load of 127.4 N was applied on the cingulum of 3 teeth at a 30-degree angle to the long axis of the implant. Stresses that developed in the supporting structure were recorded photographically. The 6-implant-supported PFDP exhibited the most even and lowest distribution of stresses in all loading conditions. When the canine was loaded, the 2- or 3-implant-supported PFDP showed higher stresses around the implant at the canine position than did the 4- or 6-implant-supported PFDP. When the central incisor or lateral incisor was loaded, the two 4-implant-supported PFDPs exhibited similar levels of stresses around the implants and showed lower stresses than did the 2- or 3-implant-supported PFDP. Implant number and distribution influenced stress distribution around the implants in the anterior maxilla. With a decrease in implant number, the stresses around the implants increased. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. The Effect Of Two-Stage Age Hardening Treatment Combined With Shot Peening On Stress Distribution In The Surface Layer Of 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Kaczmarek Ł.

    2015-09-01

    Full Text Available The article present the results of the study on the improvement of mechanical properties of the surface layer of 7075 aluminum alloy via two-stage aging combined with shot peening. The experiments proved that thermo-mechanical treatment may significantly improve hardness and stress distribution in the surface layer. Compressive stresses of 226 MPa±5.5 MPa and hardness of 210±2 HV were obtained for selected samples.

  16. Determination of PVB interlayer’s shear modulus and its effect on normal stress distribution in laminated glass panels

    Science.gov (United States)

    Hána, T.; Eliášová, M.; Machalická, K.; Vokáč, M.

    2017-10-01

    Noticing the current architecture, there are many examples of glass bearing members such as beams, panes, ribs stairs or even columns. Most of these elements are made of laminated glass from panes bonded by polymer interlayer so the task of transferring shear forces between the glass panes needs to be investigated due to the lack of knowledge. This transfer depends on stiffness of polymer material, which is affected by temperature and load duration. It is essential to catch the safe side with limit cases when designing these members if the exact material behaviour is not specified. There are lots of interlayers for structural laminated glass applications available on a market. Most of them exhibit different properties, which need to be experimentally verified. This paper is focused on tangent shear modulus of PVB (polyvinyl-buthyral) interlayer and its effect on the stress distribution in glass panes when loaded. This distribution may be determined experimentally or numerically, respectively. This enables to design structural laminated glass members more effectively regarding price and safety. Furthermore, this is the way, how to extend the use of laminated glass in architectural design.

  17. Impact of In Situ Stress Distribution Characteristics on Jointed Surrounding Rock Mass Stability of an Underground Cavern near a Hillslope Surface

    Directory of Open Access Journals (Sweden)

    Bangxiang Li

    2017-01-01

    Full Text Available In this paper, a series of numerical simulations are performed to analyze the in situ stress distribution characteristics of the rock mass near different slope angles hillslope surfaces, which are subjected to the vertical gravity stress and different horizontal lateral stresses and the influence which the in situ stress distribution characteristics of 45° hillslope to the integral stability of surrounding rock mass when an underground cavern is excavated considering three different horizontal distances from the underground cavern to the slope surface. It can be concluded from the numerical results that different slope angles and horizontal lateral stresses have a strong impact on the in situ stress distribution and the integral surrounding rock mass stability of the underground cavern when the horizontal distance from the underground cavern to the slope surface is approximately 100 m to 200 m. The relevant results would provide some important constructive suggestions to the engineering site selection and optimization of large-scale underground caverns in hydropower stations.

  18. Stress distribution in the temporo-mandibular joint discs during jaw closing: a high-resolution three-dimensional finite-element model analysis.

    Science.gov (United States)

    Savoldelli, Charles; Bouchard, Pierre-Olivier; Loudad, Raounak; Baque, Patrick; Tillier, Yannick

    2012-07-01

    This study aims at analysing the stresses distribution in the temporomandibular joint (TMJ) using a complete high-resolution finite element model (FE Model). This model is used here to analyse the stresses distribution in the discs during a closing jaw cycle. In the end, this model enables the prediction of the stress evolution in the TMJ disc submitted to various loadings induced by mandibular trauma, surgery or parafunction. The geometric data for the model were obtained from MRI and CT scans images of a healthy male patient. Surface and volume meshes were successively obtained using a 3D image segmentation software (AMIRA(®)). Bone components of skull and mandible, both of joint discs, temporomandibular capsules and ligaments and dental arches were meshed as separate bodies. The volume meshes were transferred to the FE analysis software (FORGE(®)). Material properties were assigned for each region. Boundary conditions for closing jaw simulations were represented by different load directions of jaws muscles. The von Mises stresses distribution in both joint discs during closing conditions was analyzed. The pattern of von Mises stresses in the TMJ discs is non-symmetric and changed continuously during jaw movement. Maximal stress is reached on the surface disc in areas in contact with others bodies. The three-dimension finite element model of masticatory system will make it possible to simulate different conditions that appear to be important in the cascade of events leading to joint damage.

  19. A comparative study on the stress distribution around dental implants in three arch form models for replacing six implants using finite element analysis.

    Science.gov (United States)

    Zarei, Maryam; Jahangirnezhad, Mahmoud; Yousefimanesh, Hojatollah; Robati, Maryam; Robati, Hossein

    2018-01-01

    Dental implant is a method to replacement of missing teeth. It is important for replacing the missed anterior teeth. In vitro method is a safe method for evaluation of stress distribution. Finite element analysis as an in vitro method evaluated stress distribution around replacement of six maxillary anterior teeth implants in three models of maxillary arch. In this in vitro study, using ABAQUS software (Simulia Corporation, Vélizy-Villacoublay, France), implant simulation was performed for reconstruction of six maxillary anterior teeth in three models. Two implants were placed on both sides of the canine tooth region (A model); two implants on both sides of the canine tooth region and another on one side of the central incisor region (B model); and two implants on both sides of the canine tooth region and two implants in the central incisor area (C model). All implants evaluated in three arch forms (tapered, ovoid, and square). Data were analyzed by finite analysis software. Von Mises stress by increasing of implant number was reduced. In a comparison of A model in each maxillary arch, the stress created in the cortical and cancellous bones in the square arch was less than ovoid and tapered arches. The stress created in implants and cortical and cancellous bones in C model was less than A and B models. The C model (four-implant) reduced the stress distribution in cortical and cancellous bones, but this pattern must be evaluated according to arch form and cost benefit of patients.

  20. Stress distribution in mechanically surface treated Ti-2.5Cu determined by combining energy-dispersive synchrotron and neutron diffraction

    International Nuclear Information System (INIS)

    Maawad, E.; Brokmeier, H.-G.; Hofmann, M.; Genzel, Ch.; Wagner, L.

    2010-01-01

    Mechanical surface treatments such as shot peening (SP) or ball-burnishing (BB) induce plastic deformation close to the surface resulting in work-hardening and compressive residual stresses. It enhances the fatigue performance by retarding or even suppressing micro-crack growth from the surface into the interior. SP and BB were carried out on a solution heat treated (SHT) Ti-2.5Cu. The investigations of compressive and balancing tensile residual stresses need a combination of energy-dispersive synchrotron (ED) and neutron diffraction. Essential for the stress distribution is the stress state before surface treatments which was determined by neutron diffraction. Results show that the maximum compressive stress and its depth play an important role to improve the fatigue performance.

  1. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis.

    Science.gov (United States)

    Chen, W P; Tang, F T; Ju, C W

    2001-08-01

    To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.

  2. A three-dimensional finite element study on the effect of hydroxyapatite coating thickness on the stress distribution of the surrounding dental implant-bone interface

    Directory of Open Access Journals (Sweden)

    Hadi Asgharzadeh Shirazi

    2014-06-01

    Full Text Available   Background and Aims: Hydroxyapatite coating has allocated a special place in dentistry due to its biocompatibility and bioactivity. The purpose of this study was to evaluate the relation between the hydroxyapatite thickness and stress distribution by using finite element method.   Materials and Methods: In this paper, the effect of hydroxyapatite coating thickness on dental implants was studied using finite element method in the range between 0 to 200 microns. A 3D model including one section of mandible bone was modeled by a thick layer of cortical surrounding dense cancellous and a Nobel Biocare commercial brand dental implant was simulated and analyzed under static load in the Abaqus software.   Results The diagram of maximum von Mises stress versus coating thickness was plotted for the cancellous and cortical bones in the range between 0 to 200 microns. The obtained results showed that the magnitude of maximum von Mises stress of bone decreased as the hydroxyapatite coating thickness increased. Also, the thickness of coating exhibited smoother stress distribution and milder variations of maximum von Mises stress in a range between 60 to 120 microns.   Conclusion: In present study, the stress was decreased in the mandible bone where hydroxyapatite coating was used. This stress reduction leads to a faster stabilization and fixation of implant in the mandible bone. Using hydroxyapatite coating as a biocompatible and bioactive material could play an important role in bone formation of implant- bone interface.

  3. A three-dimensional finite element analysis of a passive and friction fit implant abutment interface and the influence of occlusal table dimension on the stress distribution pattern on the implant and surrounding bone

    Directory of Open Access Journals (Sweden)

    Hasan Sarfaraz

    2015-01-01

    Conclusion : It can thus be concluded that the conical connection distributes more stress to the implant body and dissipates less stress to the surrounding bone. A narrow occlusal table considerably reduces the occlusal overload.

  4. CDC WONDER: Sexually Transmitted Disease (STD) morbidity

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Sexually Transmitted Disease (STD) Morbidity online databases on CDC WONDER contain case reports reported from the 50 United States and D.C., Puerto Rico, Virgin...

  5. CDC WONDER: Sexually Transmitted Disease (STD) Morbidity

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Sexually Transmitted Disease (STD) Morbidity online databases on CDC WONDER contain case reports reported from the 50 United States and D.C., Puerto Rico, Virgin...

  6. Sexually Transmitted Diseases Surveillance, 2014: Syphilis

    Science.gov (United States)

    ... 2014 Sexually Transmitted Diseases Surveillance Table of Contents Introductory Section Foreword Preface Acronyms Figures- National Profile Figures – ... GISP Profiles Related Links STD Home STD Data & Statistics NCHHSTP Atlas Interactive STD Data – 1996-2013 STD ...

  7. The hidden epidemic: confronting sexually transmitted diseases

    National Research Council Canada - National Science Library

    Eng, Thomas R; Butler, William T

    .... In addition, STDs increase the risk of HIV transmission. The Hidden Epidemic examines the scope of sexually transmitted infections in the United States and provides a critical assessment of the nation's response to this public health crisis...

  8. Knowledge of Sexually Transmitted Diseases among Secondary ...

    African Journals Online (AJOL)

    The study was carried out in three public secondary schools in Ogbondoroko and Laduba .... population live in the rural areas where information on sexually transmitted ..... Centers for Disease Control and Prevention (2009) Diagnoses of HIV ...

  9. Effect of process variables on the Drucker-Prager cap model and residual stress distribution of tablets estimated by the finite element method.

    Science.gov (United States)

    Hayashi, Yoshihiro; Otoguro, Saori; Miura, Takahiro; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2014-01-01

    A multivariate statistical technique was applied to clarify the causal correlation between variables in the manufacturing process and the residual stress distribution of tablets. Theophylline tablets were prepared according to a Box-Behnken design using the wet granulation method. Water amounts (X1), kneading time (X2), lubricant-mixing time (X3), and compression force (X4) were selected as design variables. The Drucker-Prager cap (DPC) model was selected as the method for modeling the mechanical behavior of pharmaceutical powders. Simulation parameters, such as Young's modulus, Poisson rate, internal friction angle, plastic deformation parameters, and initial density of the powder, were measured. Multiple regression analysis demonstrated that the simulation parameters were significantly affected by process variables. The constructed DPC models were fed into the analysis using the finite element method (FEM), and the mechanical behavior of pharmaceutical powders during the tableting process was analyzed using the FEM. The results of this analysis revealed that the residual stress distribution of tablets increased with increasing X4. Moreover, an interaction between X2 and X3 also had an effect on shear and the x-axial residual stress of tablets. Bayesian network analysis revealed causal relationships between the process variables, simulation parameters, residual stress distribution, and pharmaceutical responses of tablets. These results demonstrated the potential of the FEM as a tool to help improve our understanding of the residual stress of tablets and to optimize process variables, which not only affect tablet characteristics, but also are risks of causing tableting problems.

  10. Stress and strain distribution in three different mini dental implant designs using in implant retained overdenture: a finite element analysis study

    Science.gov (United States)

    AUNMEUNGTONG, W.; KHONGKHUNTHIAN, P.; RUNGSIYAKULL, P.

    2016-01-01

    SUMMARY Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Materials and methods Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. Results There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Conclusions Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Clinical implications Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant

  11. Effects of water stress on the photosynthetic assimilation and distribution of 14C-photosynthate in maize (Zea mays L.) and bean (Phaseolus vulgaris L.)

    International Nuclear Information System (INIS)

    Martinez y Huaman, C.A.; Cerri, C.C.

    1984-01-01

    The relationship between photosynthesis and distribution of 14 C-photosinthate as affected by water stress was evaluated. Corn (Zea mays L.) during the grain filling period and bean (Phaseolus vulgaris L.) during flowering, representing a C-4 and a C-3 photosynthetic type, respectively, were studied. (M.A.C.) [pt

  12. Optimization of VPSC Model Parameters for Two-Phase Titanium Alloys: Flow Stress Vs Orientation Distribution Function Metrics

    Science.gov (United States)

    Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.

    2018-06-01

    The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.

  13. Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab

    2016-04-01

    In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.

  14. Estimating Transmitted-Signal Phase Variations for Uplink Array Antennas

    Science.gov (United States)

    Paal, Leslie; Mukai, Ryan; Vilntrotter, Victor; Cornish, Timothy; Lee, Dennis

    2009-01-01

    A method of estimating phase drifts of microwave signals distributed to, and transmitted by, antennas in an array involves the use of the signals themselves as phase references. The method was conceived as part of the solution of the problem of maintaining precise phase calibration required for proper operation of an array of Deep Space Network (DSN) antennas on Earth used for communicating with distant spacecraft at frequencies between 7 and 8 GHz. The method could also be applied to purely terrestrial phased-array radar and other radio antenna array systems. In the DSN application, the electrical lengths (effective signal-propagation path lengths) of the various branches of the system for distributing the transmitted signals to the antennas are not precisely known, and they vary with time. The variations are attributable mostly to thermal expansion and contraction of fiber-optic and electrical signal cables and to a variety of causes associated with aging of signal-handling components. The variations are large enough to introduce large phase drifts at the signal frequency. It is necessary to measure and correct for these phase drifts in order to maintain phase calibration of the antennas. A prior method of measuring phase drifts involves the use of reference-frequency signals separate from the transmitted signals. A major impediment to accurate measurement of phase drifts over time by the prior method is the fact that although DSN reference-frequency sources separate from the transmitting signal sources are stable and accurate enough for most DSN purposes, they are not stable enough for use in maintaining phase calibrations, as required, to within a few degrees over times as long as days or possibly even weeks. By eliminating reliance on the reference-frequency subsystem, the present method overcomes this impediment. In a DSN array to which the present method applies (see figure), the microwave signals to be transmitted are generated by exciters in a signal

  15. Adaptive transmit selection with interference suppression

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2010-01-01

    This paper studies the performance of adaptive transmit channel selection in multipath fading channels. The adaptive selection algorithms are configured for single-antenna bandwidth-efficient or power-efficient transmission with as low transmit channel estimations as possible. Due to the fact that the number of active co-channel interfering signals and their corresponding powers experience random behavior, the adaptation to channels conditions, assuming uniform buffer and traffic loading, is proposed to be jointly based on the transmit channels instantaneous signal-to-noise ratios (SNRs) and signal-to- interference-plus- noise ratios (SINRs). Two interference cancelation algorithms, which are the dominant cancelation and the less complex arbitrary cancelation, are considered, for which the receive antenna array is assumed to have small angular spread. Analytical formulation for some performance measures in addition to several processing complexity and numerical comparisons between various adaptation schemes are presented. ©2010 IEEE.

  16. Syndromes Associated with Sexually Transmitted Infections

    Directory of Open Access Journals (Sweden)

    Max Chernesky

    2005-01-01

    Full Text Available Excellent technologies have been developed to identify the specific microbial agents of chlamydia, gonorrhea, syphilis, herpes, chancroid, trichomoniasis, human papillomavirus and HIV infection. However, it is also crucial to recognize syndromes that may be caused by one or more sexually transmitted pathogens. When laboratory services are lacking or are inadequate to provide timely results to enable appropriate treatment, some patients must be managed and treated syndromically. Most Canadian laboratories should be able to provide diagnostic services to determine the etiology of syndromes such as cervicitis, urethritis, pelvic inflammatory disease, prostatitis, genital ulcers, sexually transmitted infection (STI-related enteric infections, epididymitis, hepatitis, ophthalmia neonatorum, vulvovaginitis and vaginosis.

  17. The scaling of stress distribution under small scale yielding by T-scaling method and application to prediction of the temperature dependence on fracture toughness

    International Nuclear Information System (INIS)

    Ishihara, Kenichi; Hamada, Takeshi; Meshii, Toshiyuki

    2017-01-01

    In this paper, a new method for scaling the crack tip stress distribution under small scale yielding condition was proposed and named as T-scaling method. This method enables to identify the different stress distributions for materials with different tensile properties but identical load in terms of K or J. Then by assuming that the temperature dependence of a material is represented as the stress-strain relationship temperature dependence, a method to predict the fracture load at an arbitrary temperature from the already known fracture load at a reference temperature was proposed. This method combined the T-scaling method and the knowledge “fracture stress for slip induced cleavage fracture is temperature independent.” Once the fracture load is predicted, fracture toughness J c at the temperature under consideration can be evaluated by running elastic-plastic finite element analysis. Finally, the above-mentioned framework to predict the J c temperature dependency of a material in the ductile-to-brittle temperature distribution was validated for 0.55% carbon steel JIS S55C. The proposed framework seems to have a possibility to solve the problem the master curve is facing in the relatively higher temperature region, by requiring only tensile tests. (author)

  18. Analysis of stress- strain distribution of dowel and glue line in L-type furniture joint by means of finite element method

    Directory of Open Access Journals (Sweden)

    mossayeb dalvand

    2017-08-01

    Full Text Available In this study 3D stress-strain distribution of dowel and glue line on L-type joints made of plywood doweled was investigated. Members of joints made of 11-ply hardwood plywood (Hornbeam, Beech and Alder that were 19 mm in thickness. In this study effect of beech dowels in three levels diameters (6, 8 and 10 mm and penetration of depth (9, 13 and 17 mm on bending moment capacity of L-type joints under compression loading was investigated as experimental test, then stress-strain distribution of wood dowel and glue line in specimens were simulated by means of ANSYS 15 software with finite element method (FEM.Results have shown that bending moment resistance increased with increasing dowel diameter from 6 to 8 mm, but downward trend was observed with increasing 8 to 10 mm in dowel diameter. Bending moment resistance increased with increasing penetration depth. Also, result obtained of simulation by means of ANSYS software have shown that stress-strain in dowel and glue line increased with increasing diameter of dowel and Increasing stress in joints made of diameter dowel 10 mm due to fracture in joints and decrease in resistance once. According to results obtained of model analysis, the ultimate stress of dowel and glue line occurred in the area that joints were contacted.

  19. Acculturation and psychosocial stress show differential relationships to insulin resistance (HOMA) and body fat distribution in two groups of blacks living in the US Virgin Islands.

    Science.gov (United States)

    Tull, Eugene S.; Thurland, Anne; LaPorte, Ronald E.; Chambers, Earle C.

    2003-01-01

    The objective of this study was to determine whether acculturation and psychosocial stress exert differential effects on body fat distribution and insulin resistance among native-born African Americans and African-Caribbean immigrants living in the US Virgin Islands (USVI). Data collected from a non-diabetic sample of 183 USVI-born African Americans and 296 African-Caribbean immigrants age > 20 on the island of St. Croix, USVI were studied. Information on demographic characteristics, acculturation and psychosocial stress was collected by questionnaire. Anthropometric measurements were taken, and serum glucose and insulin were measured from fasting blood samples. Insulin resistance was estimated by the homeostasis model assessment (HOMA) method. The results showed that in multivariate regression analyses, controlling for age, education, gender, BMI, waist circumference, family history of diabetes, smoking and alcohol consumption, acculturation was independently related to logarithm of HOMA (InHOMA) scores among USVI-born African Americans, but not among African-Caribbean immigrants. In contrast, among USVI-born African Americans psychosocial stress was not significantly related to InHOMA, while among African-Caribbean immigrants psychosocial stress was independently related to InHOMA in models that included BMI, but not in those which included waist circumference. This study suggests that acculturation and psychosocial stress may have a differential effect on body fat distribution and insulin resistance among native-born and immigrant blacks living in the US Virgin Islands. PMID:12911254

  20. In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentation.

    Science.gov (United States)

    Zeilinger, Angelika; Todt, Juraj; Krywka, Christina; Müller, Martin; Ecker, Werner; Sartory, Bernhard; Meindlhumer, Michael; Stefenelli, Mario; Daniel, Rostislav; Mitterer, Christian; Keckes, Jozef

    2016-03-07

    Load-displacement curves measured during indentation experiments on thin films depend on non-homogeneous intrinsic film microstructure and residual stress gradients as well as on their changes during indenter penetration into the material. To date, microstructural changes and local stress concentrations resulting in plastic deformation and fracture were quantified exclusively using numerical models which suffer from poor knowledge of size dependent material properties and the unknown intrinsic gradients. Here, we report the first in-situ characterization of microstructural changes and multi-axial stress distributions in a wedge-indented 9 μm thick nanocrystalline TiN film volume performed using synchrotron cross-sectional X-ray nanodiffraction. During the indentation, needle-like TiN crystallites are tilted up to 15 degrees away from the indenter axis in the imprint area and strongly anisotropic diffraction peak broadening indicates strain variation within the X-ray nanoprobe caused by gradients of giant compressive stresses. The morphology of the multiaxial stress distributions with local concentrations up to -16.5 GPa correlate well with the observed fracture modes. The crack growth is influenced decisively by the film microstructure, especially by the micro- and nano-scopic interfaces. This novel experimental approach offers the capability to interpret indentation response and indenter imprint morphology of small graded nanostructured features.

  1. The measurement of stress and phase fraction distributions in pre and post-transition Zircaloy oxides using nano-beam synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Swan, H., E-mail: helen.swan@nnl.co.uk [National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Blackmur, M.S., E-mail: matthew.s.blackmur@nnl.co.uk [National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Hyde, J.M., E-mail: jonathan.m.hyde@nnl.co.uk [National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Laferrere, A., E-mail: alice.laferrere@atkinsglobal.com [W.S.Atkins, The Hub, Aztec West, 500 Park Ave, Almondsbury, Bristol BS32 4RZ (United Kingdom); Ortner, S.R., E-mail: susan.r.ortner@nnl.co.uk [National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Styman, P.D., E-mail: paul.d.styman@nnl.co.uk [National Nuclear Laboratory, Building D5, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Staines, C., E-mail: cassie.staines@nnl.co.uk [National Nuclear Laboratory, 102B, Stonehouse Park, Stonehouse, Gloucestershire, GL10 3UT (United Kingdom); Gass, M., E-mail: mhairi.gass@amecfw.com [Amec Foster Wheeler Clean Energy Europe, Walton House, Birchwood, WA3 6GA (United Kingdom); Hulme, H., E-mail: helen.hulme@amecfw.com [Amec Foster Wheeler Clean Energy Europe, Walton House, Birchwood, WA3 6GA (United Kingdom); Cole-Baker, A., E-mail: aidan.cole-baker@rolls-royce.com [Rolls-Royce plc, PO Box 2000, Derby, DE21 7XX (United Kingdom); Frankel, P., E-mail: philipp.frankel@manchester.ac.uk [Materials Performance Centre, School of Materials, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2016-10-15

    Zircaloy-4 oxide stress profiles and tetragonal:monoclinic oxide phase fraction distributions were studied using nano-beam transmission X-ray diffraction. Continuous stress relief and phase transformation during the first cycle of oxide growth was observed. The in-plane monoclinic stress was shown to relax strongly up to each transition, whereas in-plane tetragonal stress-relief (near the metal-oxide interface) was only observed post transition. The research demonstrates that plasticity in the metal and the development of a band of in-plane cracking both relax the monoclinic in-plane stress. The observations are consistent with a model of transition in which in-plane cracking becomes interlinked prior to transition. These cracks, combined with the development of cracks with a through-thickness component (driven primarily by plasticity in the metal) and/or a porous network of fine cracks (associated with phase transformation), form a percolation path through the oxide layer. The oxidising species can then percolate from the oxide surface to the metal/oxide interface, at which stage transition then ensues. - Highlights: • Measurement of stress in Zr-4 oxides using nano-beam transmission X-ray diffraction. • In-plane monoclinic stress relaxes strongly up to each transition. • In-plane tetragonal stress relaxation is only observed post transition. • Development of band of cracking is related to monoclinic in-plane stress relaxation. • Linking of in-plane cracking with through-plane crack/porosity leads to transition.

  2. The effects of implant-macro design on stress quantity and distribution around three types of fixtures by photo-elastic analysis

    OpenAIRE

    Shams Ak; Eyvaz ziaee A; Esfahanizadeh G; Ghoseiri R

    2011-01-01

    "nBackground and Aims: Considering the great incidence of implant failures due to high stresses around implant and at bone-implant interfaces, the aim of this study was to compare the effects of three different implant-macro designs on the quantity and distribution pattern of stresses around implants."nMaterials and Methods: In this experimental in vitro study, three types of implants including Biohorizon (4×10.5 mm), Iler (4×10 mm), and Swiss Plus (4.1×...

  3. Distribution of steady state temperatures and thermoelastic stresses in a cylindrical shell with internal heat generation and cooled on both sides or only on one side

    International Nuclear Information System (INIS)

    Melese d'Hospital, G.B.

    1979-10-01

    General expressions for steady state temperatures and elastic thermal stress distributions are derived for a hollow fuel element cooled on both sides. The main simplifying assumptions consist of one dimensional heat transfer and a single medium. Dimensionless numerical results are plotted in the case of uniform internal heat generation and for constant thermal conductivity. Solid rods and flat plates are treated as special cases. As could be expected, cooling on both sides rather than on only one side, leads to significant reduction in maximum fuel temperature and thermal stresses for a given power density, or to a significant increase in power density for either given maximum temperature drop in the fuel or for maximum tensile thermal stress. Typically, for a rod diameter ratio of 2, the power density could be increased by a factor of 3 to 4 without increasing the maximum stress. Similarly, for the same power density, replacing internal cooling of a hollow fuel element by external cooling reduces the maximum fuel temperature drop by a factor of 1.5 and the average fuel temperature drop (or maximum tensile stress) by a factor of 2, with the same maximum compressive stress

  4. On reflectionless equi-transmitting matrices

    Directory of Open Access Journals (Sweden)

    Pavel Kurasov

    2014-01-01

    Full Text Available Reflectionless equi-transmitting unitary matrices are studied in connection to matching conditions in quantum graphs. All possible such matrices of size 6 are described explicitly. It is shown that such matrices form 30 six-parameter families intersected along 12 five-parameter families closely connected to conference matrices.

  5. The hidden epidemic: confronting sexually transmitted diseases

    National Research Council Canada - National Science Library

    Eng, Thomas R; Butler, William T

    ... of Sexually Transmitted Diseases INSTITUTE OF MEDICINE Division of Health Promotion and Disease Prevention NATIONAL ACADEMY PRESS Washington, D.C. 1997 Copyrightthe cannot be not from book, paper however, version for formatting, original authoritative the typesetting-specific the as from created publication files XML from other this ...

  6. [Condom effectiveness to prevent sexually transmitted diseases].

    Science.gov (United States)

    Vera, Eduardo Gayón; Orozco, Hilda Hernández; Soto, Selene Sam; Aburto, Esther Lombardo

    2008-02-01

    Sexual transmitted diseases (included HIV/AIDS) are a common and preventable cause of perinatal morbidity and mortality. When used consistently and correctly, condoms are effective to prevent these diseases, however, its protection does not account for 100%. To know the effectiveness of male condom, through bibliographic evidence, to prevent sexual transmitted infections in heterosexual serodiscordant partners. A bibliographical review of Medline/Pubmed, LILACS and Cochrane databases, and publications of the National Health Institutes, Centers for Disease Control and Prevention, World Health Organization, and WHO AIDS Global Program was done to analyze male condom effectiveness to prevent sexual transmitted diseases. Reports demonstrated that male condom protection against HIV/AIDS in heterosexual serodiscordant partners goes from 60 to 95%. Most recent information (2006) showed 80%. Two studies demonstrated no HPV protection with male condom, and another one 70% of protection. Male condom demonstrated no HPV-1 protection, but decrease of risk in HVS-2 transmission in women (0.85 of protection). Male condom protection against sexual transmitted diseases is not 100%. There must be used additional measures that have demonstrated its utility to decrease transmission risk.

  7. Vulnerability and Knowledge of Sexually Transmitted Infections ...

    African Journals Online (AJOL)

    Vulnerability and Knowledge of Sexually Transmitted Infections Among Female Traders of Reproductive Age in Enugu, Nigeria. ... Conclusion: The inclusion of health education in schools' curricula to ensure that adolescents are adequately aware of STIs, their modes of transmission, prevention and treatment before ...

  8. Inductive Reasoning about Causally Transmitted Properties

    Science.gov (United States)

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D.; Tenenbaum, Joshua B.

    2008-01-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates'…

  9. Evaluation of transmitted images by teleradiology system

    International Nuclear Information System (INIS)

    Hoshikawa, Yoshikazu

    1993-01-01

    Teleradiology system is a combination of digital data networks and computer systems, which is the electric transmission of radiographs and/or radiologic images from local to center radiological system. The author evaluated reproducibility of transmitted images using Photophone (Image Data Corporation) as teleradiology system. Proven cases of abdominal free air (38 plain films, 15 CT), pneumothorax (24 plain films, 20 CT) and small bowel obstruction (30 plain films, 8 CT) were transmitted. Findings could be identified on non-magnified plain films in 75.6%, 83.3% and 96.7% respectively and on magnified CT in 100%, 100% and 100%. Transmitted images of 57 cases of abdominal trauma were read for positive findings and diagnosis by three radiologists. Average positive ratio was 47.3% on plain films and 70.9% on CT. Diagnosis was correct in 66.7% on CT. Specificity and sensitivity were 81.9% and 61.6% respectively on plain film and 88.6% and 93.9% on CT. The accuracy of transmitted images appears to be unsatisfactory on this study. It is suggested that the system is useful for consultation of already identified findings on the original images. (author)

  10. Evaluation of transmitted images by teleradiology system

    Energy Technology Data Exchange (ETDEWEB)

    Hoshikawa, Yoshikazu (St. Marianna Univ., Kawasaki (Japan). School of Medicine)

    1993-12-01

    Teleradiology system is a combination of digital data networks and computer systems, which is the electric transmission of radiographs and/or radiologic images from local to center radiological system. The author evaluated reproducibility of transmitted images using Photophone (Image Data Corporation) as teleradiology system. Proven cases of abdominal free air (38 plain films, 15 CT), pneumothorax (24 plain films, 20 CT) and small bowel obstruction (30 plain films, 8 CT) were transmitted. Findings could be identified on non-magnified plain films in 75.6%, 83.3% and 96.7% respectively and on magnified CT in 100%, 100% and 100%. Transmitted images of 57 cases of abdominal trauma were read for positive findings and diagnosis by three radiologists. Average positive ratio was 47.3% on plain films and 70.9% on CT. Diagnosis was correct in 66.7% on CT. Specificity and sensitivity were 81.9% and 61.6% respectively on plain film and 88.6% and 93.9% on CT. The accuracy of transmitted images appears to be unsatisfactory on this study. It is suggested that the system is useful for consultation of already identified findings on the original images. (author).

  11. Knowledge of sexually transmitted diseases among secondary ...

    African Journals Online (AJOL)

    Background: Sexually Transmitted Diseases (STDs) are a major health problem affecting mostly young people in both developed and developing countries. Insufficient knowledge about STDs is a major impediment to successfully prevent the diseases among adolescent populations in developing countries. Objective: To ...

  12. Soil transmitted helminths infections, malnutrition and anaemia ...

    African Journals Online (AJOL)

    Soil-transmitted helminths (STHs) are a major public health problem in many developing countries. Establishment of prevalence and intensity of infections is important in designing, implementating and evaluating control programs. This study aimed at determining the prevalence and intensity of STH infections, malnutrition ...

  13. Cortisol-dependent stress effects on cell distribution in healthy individuals and individuals suffering from chronic adrenal insufficiency.

    Science.gov (United States)

    Geiger, Ashley M; Pitts, Kenneth P; Feldkamp, Joachim; Kirschbaum, Clemens; Wolf, Jutta M

    2015-11-01

    Chronic adrenal insufficiency (CAI) is characterized by a lack of glucocorticoid and mineralocorticoid production due to destroyed adrenal cortex cells. However, elevated cortisol secretion is thought to be a central part in a well-orchestrated immune response to stress. This raises the question to what extent lack of cortisol in CAI affects stress-related changes in immune processes. To address this question, 28 CAI patients (20 females) and 18 healthy individuals (11 females) (age: 44.3 ± 8.4 years) were exposed to a psychosocial stress test (Trier Social Stress Test: TSST). Half the patients received a 0.03 mg/kg body weight injection of hydrocortisone (HC) post-TSST to mimic a healthy cortisol stress response. Catecholamines and immune cell composition were assessed in peripheral blood and free cortisol measured in saliva collected before and repeatedly after TSST. CAI patients showed norepinephrine (NE) stress responses similar to healthy participants, however, epinephrine (E) as well as cortisol levels were significantly lower. HC treatment post-TSST resulted in cortisol increases comparable to those observed in healthy participants (interaction effects--NE: F=1.05, p=.41; E: F=2.56, p=.045; cortisol: F=13.28, pcortisol's central involvement in post-stress lymphocyte migration from blood into immune-relevant body compartments. As such, future studies should investigate whether psychosocial stress exposure may put CAI patients at an increased health risk due to attenuated immune responses to pathogens. Copyright © 2015. Published by Elsevier Inc.

  14. Effect of platform connection and abutment material on stress distribution in single anterior implant-supported restorations: a nonlinear 3-dimensional finite element analysis.

    Science.gov (United States)

    Carvalho, Marco Aurélio; Sotto-Maior, Bruno Salles; Del Bel Cury, Altair Antoninha; Pessanha Henriques, Guilherme Elias

    2014-11-01

    Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections

  15. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation.

    Science.gov (United States)

    Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen

    2017-01-01

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold depend on the scaffold's internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve

  16. A study of an influence of a fiber arrangement of a laminate ply on the distribution and values of stresses in the multi-layered composite material

    Directory of Open Access Journals (Sweden)

    Herbuś Krzysztof

    2017-01-01

    Full Text Available In the work are presented studies related with the influence of a fiber arrangement of a laminate ply on the distribution and values of stresses in the multi-layered composite material. For this purpose, the characteristics of the three-point bending test, according to the standard PN-EN ISO 7438, of specimens made from the composite material, where a single ply is a composition of epoxy resin and glass fibres, was mapped. The modelling process of the multi-layered composite material and its strength verification was performed in the PLM Siemens NX system. Based on the results of performed numerical studies, the relation between the value of the main angle of an arrangement of fibers in each plies of the laminate, and the distribution and values of stresses, occurring in the examined specimens has been determined.

  17. Influence of Implant Position on Stress Distribution in Implant-Assisted Distal Extension Removable Partial Dentures: A 3D Finite Element Analysis.

    Science.gov (United States)

    Memari, Yeganeh; Geramy, Allahyar; Fayaz, Amir; Rezvani Habib Abadi, Shirin; Mansouri, Yasaman

    2014-09-01

    Distal extension removable partial denture is a prosthesis with lack of distal dental support with a 13-fold difference in resiliency between the mucosa and the periodontal ligament, resulting in leverage during compression forces. It may be potentially destructive to the abutments and the surrounding tissues. The aim of this study was to assess the effect of implant location on stress distribution, in distal extension implant assisted removable partial dentures. Three-dimensional models of a bilateral distal extension partially edentulous mandible containing anterior teeth and first premolar in both sides of the arch, a partial removable denture and an implant (4×10mm) were designed. With the aid of the finite element program ANSYS 8.0, the models were meshed and strictly vertical forces of 10 N were applied to each cusp tip. Displacement and von Mises Maps were plotted for visualization of results. When an implant was placed in the second premolar region, the highest stress on implant, abutment tooth and cancellous bone was shown. The lowest stress was shown on implant and bone in the 1(st) molar area. Implants located in the first molar area showed the least distribution of stresses in the analyzed models.

  18. Influence of Implant Position on Stress Distribution in Implant-Assisted Distal Extension Removable Partial Dentures: A 3D Finite Element Analysis.

    Directory of Open Access Journals (Sweden)

    Yeganeh Memari

    2014-10-01

    Full Text Available Distal extension removable partial denture is a prosthesis with lack of distal dental support with a 13-fold difference in resiliency between the mucosa and the periodontal ligament, resulting in leverage during compression forces. It may be potentially destructive to the abutments and the surrounding tissues. The aim of this study was to assess the effect of implant location on stress distribution, in distal extension implant assisted removable partial dentures.Three-dimensional models of a bilateral distal extension partially edentulous mandible containing anterior teeth and first premolar in both sides of the arch, a partial removable denture and an implant (4×10mm were designed. With the aid of the finite element program ANSYS 8.0, the models were meshed and strictly vertical forces of 10 N were applied to each cusp tip. Displacement and von Mises Maps were plotted for visualization of results.When an implant was placed in the second premolar region, the highest stress on implant, abutment tooth and cancellous bone was shown. The lowest stress was shown on implant and bone in the 1(st molar area.Implants located in the first molar area showed the least distribution of stresses in the analyzed models.

  19. Effect of macro-design of immediately loaded implants on micromotion and stress distribution in surrounding bone using finite element analysis.

    Science.gov (United States)

    Fazel, Akbar; Aalai, Shima; Rismanchian, Mansour

    2009-08-01

    Macro-design influences the initial stability of implant and reduces micromotions. The aim of this study was to determine and compare micromotions and stress distribution in the bone around immediately loaded Maestro and Xive implants using finite element analysis. In this experimental study, accurate, clear photos were prepared of Xive and Maestro implants 12 and 13 mm long and 4 and 3.8 mm in diameter, respectively, using a Nikon Digital Camera with a resolution 5.24-megapixels with 8x Optical Zoom and 4x Digital Zoom. After accurate measurements, 3-D models of the implants inside the lower mandible (D2) were processed in Solidworks Version 2003 environment and transferred into Ansys for finite element analysis. After loading of 500 N angled at 70 degrees from the horizontal plane, the micromotion of the implant and Von Misses stresses around the bone were measured. The measured micromotion in Maestro implant was 148 mum and that in Xive was 284 mum. Stress distribution in the bone surrounding Maestro implant was better than Xive, but maximum stress surrounding Xive implants (30 MPa) was lower than Maestro (33 MPa). Based on the results obtained in the present study, maximum micromotion in maestro was less than that in Xive implants. This finding can guarantee the application of maestro implants for immediate loading.

  20. The role of superstructure material on the stress distribution in mandibular full-arch implant-supported fixed dentures. A CT-based 3D-FEA.

    Science.gov (United States)

    Ferreira, Mayara Barbosa; Barão, Valentim Adelino; Faverani, Leonardo Perez; Hipólito, Ana Carolina; Assunção, Wirley Gonçalves

    2014-02-01

    This study evaluated the stress distribution in mandibular full-arch implant-supported fixed dentures with different veneering and metallic infrastructure materials, using three-dimensional finite element analysis. Ten models were obtained from an edentulous human mandible with a complete denture fixed by four implants. Acrylic resin (RES) and porcelain (POR) teeth were associated with infrastructures of titanium (Ti), gold (Au), silver-palladium (AgPd), chrome-cobalt (CoCr) and nickel-chrome (NiCr). A 100-N oblique was applied. The von Mises (σvM) and maximum (σmax) and minimum (σmin) principal stresses were obtained. The RES-AgPd group showed the lowest σvM values, while the RES-Ni-Cr group showed the highest. In the bone tissue, the RES-Au group was the only one that showed different σmax values with a 12% increase in comparison to the other groups which had similar stress values. In the implants, the groups with Ti, Au and AgPd infrastructures, either with porcelain or resin teeth, showed σvM values similar and lower in comparison to the groups with CoCr and NiCr infrastructures. The tooth veneering material influenced the stress values in metallic infrastructures, in which the acrylic resin had the highest values. The veneering and infrastructure materials have influence on stress values of implant-supported dentures, except for the peri-implant bone tissue. © 2013.

  1. [Diseases transmitted through water for human consumption].

    Science.gov (United States)

    Franco, E; Dentamaro, M

    2003-01-01

    The water for human consumption maintains a biological risk and can transmit diseases. The classical waterborne and the presently frequent diseases caused by protozoi Giardia and Cryptosporidium are considered and Arcobacter butzleri, a new waterborne pathogen, is described. Many measures have been adopted by institutions to ensure the quality of the drinking water. Managers and public health operators is working in order to verify the efficiency of more suitable indicators for its monitoring.

  2. Evaluation of stress distribution of implant-retained mandibular overdenture with different vertical restorative spaces: A finite element analysis

    Directory of Open Access Journals (Sweden)

    Behnaz Ebadian

    2012-01-01

    Conclusion: The reduction of bar height and increase in the thickness of acrylic resin base in implant-supported overdentures are biomechanically favorable and may result in less stress in periimplant bone.

  3. Thermal Aging Effects on Residual Stress and Residual Strain Distribution on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Junhyuk; Choi, Kyoung Joon; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Dissimilar metal weld (DMW), consisting of Alloy 600, Alloy 182, and A508 Gr.3, has been widely used as a joining material of the reactor pressure vessel penetration nozzle and the steam generator tubing for pressurized water reactors (PWR) because of its good mechanical strength, thermal conductivity, and corrosion resistance. Residual tensile stress is mainly nominated as a cause of SCC in light water reactors by IAEA report. So, to relax the residual stress, post-weld heat treatment is required after manufacturing process such as welding. However, thermal treatment has a great effect on the microstructure and the chromium depletion profile on Alloy 600, so called sensitization. By this reason, HAZ on Alloy 600 is critical to crack. According to G.A. Young et al., Crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions. And according to Z.P. Lu et al., CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. There are some methods to measure the exact value of residual stress on the material surface. The most common way is X-ray diffraction method (XRD). The principle of XRD is based on lattice strains and depends on the changes in the spacing of the atomic planes in material. And there is a computer simulation method to estimate residual stress distribution which is called ANSYS. This study was conducted to investigate how thermal aging affects residual stress and residual strain distribution of Alloy 600 HAZ. Following conclusions can be drawn from this study. According to preceding researches and this study, both the relaxation of residual stress and the change of residual strain follow as similar way, spreading out from concentrated region. The result of Vickers micro-hardness tester shows that tensile residual stresses are distributed broadly on the material aged by 15 years. Therefore, HT400{sub Y}15 material is weakest state for PWSCC. The

  4. Stress analysis of mandibular implant overdenture with locator and bar/clip attachment: Comparative study with differences in the denture base length

    OpenAIRE

    Yoo, Jin Suk; Kwon, Kung-Rock; Noh, Kwantae; Lee, Hyeonjong; Paek, Janghyun

    2017-01-01

    PURPOSE The design of the attachment must provide an optimum stress distribution around the implant. In this study, for implant overdentures with a bar/clip attachment or a locator attachment, the stress transmitted to the implant in accordance with the change in the denture base length and the vertical pressure was measured and analyzed. MATERIALS AND METHODS Test model was created with epoxy resin. The strain gauges made a tight contact with implant surfaces. A universal testing machine was...

  5. A comparison of stress distribution and flexion among various designs of bar attachments for implant overdentures: A three dimensional finite element analysis

    Directory of Open Access Journals (Sweden)

    Prakash Vijay

    2009-01-01

    Full Text Available Context: Bar overdentures are popular choices among clinicians worldwide but configurations that provide an optimal biomechanical distribution of stress are still debatable. Aims: To compare the stresses and elastic flexion between implant supported bar overdentures in various configurations using finite element analysis. Settings and Design: A CAT scan of a human mandible was used to generate an anatomically accurate mechanical model. Materials and Methods: Three models with bars and clips in three different configurations were constructed. Model 1 had a single bar connecting two implants, Model 2 had three bars connecting all the four implants, and Model 3 had two bars connecting the medial and distal implants on the sides only. The models were loaded under static conditions with 100N load distributed at the approximate position of the clip. The mandibular boundary conditions were modeled considering the real geometry of its muscle supporting system. Maximum von Mises stress at the level of the bar and at the bone implant interface were compared in all three models. The flexion of mandible and the bar was also compared qualitatively. Statistical Analysis Used: The analyses were accomplished using the ANSYS software program and were processed by a personal computer. Stress on these models was analyzed after loading conditions. Results: Qualitative comparisons showed that stress at the level of the bar and at the bone implant interface were in the following order: Model 1> Model 3> Model 2. The flexion of the mandible and the bar were in the following order: Model 2 > Model 1 > Model 3. Conclusions: Four implant bar systems connected by bars on the sides only is a better choice than two implant bar systems and four implant bar systems with bars connecting all four implants.

  6. Effect of assembly error of bipolar plate on the contact pressure distribution and stress failure of membrane electrode assembly in proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong' an; Peng, Linfa; Lai, Xinmin [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-07-01

    In practice, the assembly error of the bipolar plate (BPP) in a PEM fuel cell stack is unavoidable based on the current assembly process. However its effect on the performance of the PEM fuel cell stack is not reported yet. In this study, a methodology based on FEA model, ''least squares-support vector machine (LS-SVM)'' simulation and statistical analysis is developed to investigate the effect of the assembly error of the BPP on the pressure distribution and stress failure of membrane electrode assembly (MEA). At first, a parameterized FEA model of a metallic BPP/MEA assembly is established. Then, the LS-SVM simulation process is conducted based on the FEA model, and datasets for the pressure distribution and Von Mises stress of MEA are obtained, respectively for each assembly error. At last, the effect of the assembly error is obtained by applying the statistical analysis to the LS-SVM results. A regression equation between the stress failure and the assembly error is also built, and the allowed maximum assembly error is calculated based on the equation. The methodology in this study is beneficial to understand the mechanism of the assembly error and can be applied to guide the assembly process for the PEM fuel cell stack. (author)

  7. The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks

    DEFF Research Database (Denmark)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid

    2016-01-01

    Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling...... in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low...

  8. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment

    NARCIS (Netherlands)

    Santamaria, L.

    2002-01-01

    Non-marine aquatic vascular plants generally show broad distributional ranges. Climatic factors seem to have limited effects on their distributions, besides the determination of major disjunctions (tropical-temperate-subarctic). Dispersal should have been frequent enough to assure the quick

  9. Stress distribution difference between Lava Ultimate full crowns and IPS e.max CAD full crowns on a natural tooth and on tooth-shaped implant abutments.

    Science.gov (United States)

    Krejci, Ivo; Daher, René

    2017-04-01

    The goal of this short communication is to present finite element analysis comparison of the stress distribution between CAD/CAM full crowns made of Lava Ultimate and of IPS e.max CAD, adhesively luted to natural teeth and to implant abutments with the shape of natural teeth. Six 3D models were prepared using a 3D content-creating software, based on a micro-CT scan of a human mandibular molar. The geometry of the full crown and of the abutment was the same for all models representing Lava Ultimate full crowns (L) and IPS e.max CAD full crowns (E) on three different abutments: prepared natural tooth (n), titanium abutment (t) and zirconia abutment (z). A static load of 400 N was applied on the vestibular and lingual cusps, and fixtures were applied to the base of the models. After running the static linear analysis, the post-processing data we analyzed. The stress values at the interface between the crown and the abutment of the Lt and Lz groups were significantly higher than the stress values at the same interface of all the other models. The high stress concentration in the adhesive at the interface between the crown and the abutment of the Lava Ultimate group on implants might be one of the factors contributing to the reported debondings of crowns.

  10. THE INFLUENCE OF GRINDING CONDITIONS ON THE DISTRIBUTION OF RESIDUAL STRESS IN THE SURFACE LAYER OF 17crni6-6 STEEL AFTER CARBURIZING

    Directory of Open Access Journals (Sweden)

    Jacek Sawicki

    2017-06-01

    Full Text Available This paper presents the results of a study aimed at determining the residual stress which results from developing the surface layer by low-pressure and conventional carburizing and grinding of 17CrNi6-6 steel. A synergistic effect of thermochemical and abrasive treatment was examined on ring samples used to study residual stress by Davidenkov’s method. Samples were subjected to vacuum carburizing and conventional carburizing, which was followed by grinding with a 38A60K8V aloxite grinding wheel and a CBN grinding wheel - RNB80/63B75V. The following cutting fluids were used during the grinding process: oil emulsion 5%, supply rate ca. 20 l/min, Micro5000 oil supplied at the minimum quantity lubrication (MQL of ca. 25 ml/h, dry machining. The study determined the effect of the type of grinding wheel and the cooling and lubricating agent on the distribution of residual stress in the sur-face layer. The best effects of grinding with respect to the residual stress were achieved with flood cooling with oil emulsion and grinding with a CBN grinding wheel.

  11. Stochastic dynamics for reinfection by transmitted diseases

    Science.gov (United States)

    Barros, Alessandro S.; Pinho, Suani T. R.

    2017-06-01

    The use of stochastic models to study the dynamics of infectious diseases is an important tool to understand the epidemiological process. For several directly transmitted diseases, reinfection is a relevant process, which can be expressed by endogenous reactivation of the pathogen or by exogenous reinfection due to direct contact with an infected individual (with smaller reinfection rate σ β than infection rate β ). In this paper, we examine the stochastic susceptible, infected, recovered, infected (SIRI) model simulating the endogenous reactivation by a spontaneous reaction, while exogenous reinfection by a catalytic reaction. Analyzing the mean-field approximations of a site and pairs of sites, and Monte Carlo (MC) simulations for the particular case of exogenous reinfection, we obtained continuous phase transitions involving endemic, epidemic, and no transmission phases for the simple approach; the approach of pairs is better to describe the phase transition from endemic phase (susceptible, infected, susceptible (SIS)-like model) to epidemic phase (susceptible, infected, and removed or recovered (SIR)-like model) considering the comparison with MC results; the reinfection increases the peaks of outbreaks until the system reaches endemic phase. For the particular case of endogenous reactivation, the approach of pairs leads to a continuous phase transition from endemic phase (SIS-like model) to no transmission phase. Finally, there is no phase transition when both effects are taken into account. We hope the results of this study can be generalized for the susceptible, exposed, infected, and removed or recovered (SEIRIE) model, for which the state exposed (infected but not infectious), describing more realistically transmitted diseases such as tuberculosis. In future work, we also intend to investigate the effect of network topology on phase transitions when the SIRI model describes both transmitted diseases (σ social contagions (σ >1 ).

  12. Reliability estimation of a N- M-cold-standby redundancy system in a multicomponent stress-strength model with generalized half-logistic distribution

    Science.gov (United States)

    Liu, Yiming; Shi, Yimin; Bai, Xuchao; Zhan, Pei

    2018-01-01

    In this paper, we study the estimation for the reliability of a multicomponent system, named N- M-cold-standby redundancy system, based on progressive Type-II censoring sample. In the system, there are N subsystems consisting of M statistically independent distributed strength components, and only one of these subsystems works under the impact of stresses at a time and the others remain as standbys. Whenever the working subsystem fails, one from the standbys takes its place. The system fails when the entire subsystems fail. It is supposed that the underlying distributions of random strength and stress both belong to the generalized half-logistic distribution with different shape parameter. The reliability of the system is estimated by using both classical and Bayesian statistical inference. Uniformly minimum variance unbiased estimator and maximum likelihood estimator for the reliability of the system are derived. Under squared error loss function, the exact expression of the Bayes estimator for the reliability of the system is developed by using the Gauss hypergeometric function. The asymptotic confidence interval and corresponding coverage probabilities are derived based on both the Fisher and the observed information matrices. The approximate highest probability density credible interval is constructed by using Monte Carlo method. Monte Carlo simulations are performed to compare the performances of the proposed reliability estimators. A real data set is also analyzed for an illustration of the findings.

  13. On the Feasibility of Eddy Current Characterization of the Near-Surface Residual Stress Distribution in Nickel-Base Superalloys

    International Nuclear Information System (INIS)

    Blodgett, Mark P.; Nagy, Peter B.

    2004-01-01

    In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small (∼1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique 'window of opportunity' for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation

  14. On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure

    NARCIS (Netherlands)

    McMillen, B.W.; Bellouard, Y.

    2015-01-01

    Femtosecond laser exposure in the non-ablative regime induces a variety of bulk structural modifications, in which anisotropy may depend on the polarization of the writing beam. In this work, we investigate the correlation between polarization state and stress anisotropy. In particular, we introduce

  15. Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton

    DEFF Research Database (Denmark)

    Ly, Donald L.; Waheed, Faiza; Lodyga, Monika

    2013-01-01

    Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin-regulated coactiv......Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin......-regulated coactivator of serum response factor, is a major link between the actin skeleton and transcriptional control. We therefore investigated whether MRTF is regulated by hyperosmotic stress. Here we show that hypertonicity induces robust, rapid, and transient translocation of MRTF from the cytosol to the nucleus...... in kidney tubular cells. We found that the hyperosmolarity-triggered MRTF translocation is mediated by the RhoA/Rho kinase (ROK) pathway. Moreover, the Rho guanine nucleotide exchange factor GEF-H1 is activated by hyperosmotic stress, and it is a key contributor to the ensuing RhoA activation and MRTF...

  16. Microanalysis by spectroscopy of transmitted electron energy losses

    International Nuclear Information System (INIS)

    Colliex, C.; Trebbia, P.

    1978-01-01

    Among the various signals which, in a transmission electron microscope, result from the interactions between the primary beam of well defined energy E 0 and the sample, the spectrum of the energy distribution of the electrons transmitted contains useful informations on the chemical and physical properties of the sample. Consequently the adaptation of an energy dispersive system on an electron microscope enables new fields of research to be investigated, particularly a localised chemical analysis technique with a space resolution scale equal to that of the electron microscope. It is this second aspect that we suggest describing in particular here. Already, this technique appears to be indispensable in the problems arising from the analysis of very small quantities of matter: detection limits in the order of 10 -19 to 10 -20 g (around 100 to 1000 atoms) would seem to be resonably possible [fr

  17. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  18. Sexually Transmitted Diseases Treatment Guidelines, 2015

    Science.gov (United States)

    Workowski, Kimberly A.; Bolan, Gail A.

    2016-01-01

    Summary These guidelines for the treatment of persons who have or are at risk for sexually transmitted diseases (STDs) were updated by CDC after consultation with a group of professionals knowledgeable in the field of STDs who met in Atlanta on April 30–May 2, 2013. The information in this report updates the Sexually Transmitted Diseases Treatment Guidelines, 2010 (MMWR Recomm Rep 2010;59 [No. RR–12]). These updated guidelines discuss 1) alternative treatment regimens for Neisseria gonorrhoeae; 2) the use of nucleic acid amplification tests for the diagnosis of trichomoniasis; 3) alternative treatment options for genital warts; 4) the role of Mycoplasma genitalium in urethritis/cervicitis and treatment-related implications; 5) updated HPV vaccine recommendations and counseling messages; 6) the management of persons who are transgender; 7) annual testing for hepatitis C in persons with HIV infection; 8) updated recommendations for diagnostic evaluation of urethritis; and 9) retesting to detect repeat infection. Physicians and other health-care providers can use these guidelines to assist in the prevention and treatment of STDs. PMID:26042815

  19. Multiple routes transmitted epidemics on multiplex networks

    International Nuclear Information System (INIS)

    Zhao, Dawei; Li, Lixiang; Peng, Haipeng; Luo, Qun; Yang, Yixian

    2014-01-01

    This letter investigates the multiple routes transmitted epidemic process on multiplex networks. We propose detailed theoretical analysis that allows us to accurately calculate the epidemic threshold and outbreak size. It is found that the epidemic can spread across the multiplex network even if all the network layers are well below their respective epidemic thresholds. Strong positive degree–degree correlation of nodes in multiplex network could lead to a much lower epidemic threshold and a relatively smaller outbreak size. However, the average similarity of neighbors from different layers of nodes has no obvious effect on the epidemic threshold and outbreak size. -- Highlights: •We studies multiple routes transmitted epidemic process on multiplex networks. •SIR model and bond percolation theory are used to analyze the epidemic processes. •We derive equations to accurately calculate the epidemic threshold and outbreak size. •ASN has no effect on the epidemic threshold and outbreak size. •Strong positive DDC leads to a lower epidemic threshold and a smaller outbreak size.

  20. Multiple routes transmitted epidemics on multiplex networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dawei [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, Jinan 250014 (China); Li, Lixiang [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Peng, Haipeng, E-mail: penghaipeng@bupt.edu.cn [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Luo, Qun; Yang, Yixian [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-02-01

    This letter investigates the multiple routes transmitted epidemic process on multiplex networks. We propose detailed theoretical analysis that allows us to accurately calculate the epidemic threshold and outbreak size. It is found that the epidemic can spread across the multiplex network even if all the network layers are well below their respective epidemic thresholds. Strong positive degree–degree correlation of nodes in multiplex network could lead to a much lower epidemic threshold and a relatively smaller outbreak size. However, the average similarity of neighbors from different layers of nodes has no obvious effect on the epidemic threshold and outbreak size. -- Highlights: •We studies multiple routes transmitted epidemic process on multiplex networks. •SIR model and bond percolation theory are used to analyze the epidemic processes. •We derive equations to accurately calculate the epidemic threshold and outbreak size. •ASN has no effect on the epidemic threshold and outbreak size. •Strong positive DDC leads to a lower epidemic threshold and a smaller outbreak size.

  1. Stick–slip boundary friction mode as a second-order phase transition with an inhomogeneous distribution of elastic stress in the contact area

    Directory of Open Access Journals (Sweden)

    Iakov A. Lyashenko

    2017-09-01

    Full Text Available This article presents an investigation of the dynamical contact between two atomically flat surfaces separated by an ultrathin lubricant film. Using a thermodynamic approach we describe the second-order phase transition between two structural states of the lubricant which leads to the stick–slip mode of boundary friction. An analytical description and numerical simulation with radial distributions of the order parameter, stress and strain were performed to investigate the spatial inhomogeneity. It is shown that in the case when the driving device is connected to the upper part of the friction block through an elastic spring, the frequency of the melting/solidification phase transitions increases with time.

  2. The spatial context of clinic-reported sexually transmitted infection in Hong Kong

    OpenAIRE

    Lee, Shui-Shan; Ho, King-Man; Cheung, Georgiana MT

    2010-01-01

    Abstract Background The incidence and prevalence of sexually transmitted infection (STI) in China has been on the rise in the past decade. Delineation of epidemiologic pattern is often hampered by its uneven distribution. Spatial distribution is often a neglected aspect of STI research, the description of which may enhance epidemiologic surveillance and inform service development. Methods Over a one month-period, all first time attendees of 6 public STI clinics in Hong Kong were interviewed b...

  3. The analysis of the distribution of unitary stresses for the universal plowshare in tiller seeder combos (UPTSC)

    Science.gov (United States)

    Chiorescu, D.; Chiorescu, E.; Dodun, O.; Crăciun, V.

    2016-11-01

    The sustainable development of agriculture is an important component of economic and social progress of the mankind aiming especially at promoting environmentally friendly systems and technologies. Thus, the implementation of sustainable agriculture also requires some high performance farming aggregates such as tiller seeder combos. Their most stressed active working part is the plowshare which has an important part in cutting the soil. For this reason, we consider that theoretical and experimental research is needed for the tear to which this working part is subjected to. This paper analyses the behavior of the universal plowshare, component part of UPTSC, using the Finite Element Method (FEM) and the Ansys software program. With the help of FEM, we analyzed the universal plowshare in the material structure during the soil cutting process, highlighting the deformation degree and the stress field in the working part. In the first stage, we identified a representative set of problems concerning the soil cutting process, for which we designed the solutions through numerical simulations. In the processing stage, we designed a 3D model which respects entirely the geometric shape of the active element in Cartesian coordinates. In order to simulate the soil cutting process in accordance with the real conditions, the compilations are done for various refinement degrees of the discretization network in finite elements. In the same stage we introduced the constraints represented by: the fixation of the plowshare support, direction, as well as the action of the cohesion and shear strength. Using the Explicit Dynamics module of the Ansys software, which allows studying the plowshare behavior, we analyzed in real conditions, the normal and the shear stresses as well as the deformation, for various soil types and various soil states. Considering the data on the existent stresses, following the FEM analysis of the working part, we determined the wear and suggested the safety

  4. Influence of Number of Implants and Attachment Type on Stress Distribution in Mandibular Implant-Retained Overdentures: Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed I. El-Anwar

    2017-03-01

    CONCLUSION: Caps deformation and stresses are negligible in cases of using locator attachment in comparison to ball attachments. This may indicate longer lifetime and less repair/maintenance operations in implant overdentures retained by locator attachments. Although the study revealed that bone was insensitive to a number of implants or attachment type, it may be recommended to use two implants in the canine region than using four, where the locator attachments were found to be better.

  5. Finite Element Analysis of Stress Distribution in Three Commonly Used Implant Systems in D2 and D4 Bone Densities

    Directory of Open Access Journals (Sweden)

    C Radha

    2016-01-01

    Materials and Methods : Pro-engineer 3-0 software was used to create the geometric models of the three implant systems (Nobel biocare, Biohorizon, Adin and two bone densities D2 and D4. Six 3D models were created to simulate each one of the three implant systems supporting a metal ceramic crown placed in two different densities of bone D2 and D4. The Poisson′s ratio(΅ and Youngs modulus(E of elasticity were assigned to different materials used for the models. Vertical and oblique loads of 450N each were applied on all six models. Von Mises stress analysis was done with ANSYS software. Results : Von Mises stresses were more within D4 type bone than D2 type, for all the three systems of implants and less stresses were seen in Biohorizon implant followed by Nobel Biocare and Adin implant particularly in D4 bone. Conclusion: The study concluded that the selection of a particular implant system should be based on the scientific research rather than on popularity.

  6. The other epidemics. Sexually transmitted diseases.

    Science.gov (United States)

    Jacobson, J L

    1993-01-01

    Around 70% of female infertility in developing countries is caused by sexually transmitted diseases (STDs) that can be traced back to husbands or partners. STDs and reproductive tract infections cause 750,000 deaths and 75 million illnesses among women each year worldwide, and these deaths may more than double by the year 2000. Death rates are rising fastest in Africa, followed by Asia and Latin America. About 450,000 cases of potentially fatal reproductive tract cancers are diagnosed annually: an estimated 354,000 occur in Third World women, virtually all of whom die. Worldwide, roughly 250 million new infections of chlamydia, gonorrhea, and the human papillomavirus are sexually transmitted each year. Chlamydia and the human papillomavirus account for 50 million and 30 million new cases per year, respectively. The human immunodeficiency virus (HIV) infected 1 million people worldwide between April and December 1991, according to the World Health Organization. A study in the Indian state of Maharashtra revealed that 92% of the 650 rural women examined had an average of 3.6 infections of gynecological type or sexually transmitted type per women. Another study in 2 rural Egyptian villages found that half of 509 nonpregnant women aged 20 to 60 years had infections. Only 2 facilities for the diagnosis and treatment of STDs exist in all of Kenya. In Ibadan, Nigeria, with a population of 2 million, there is only 1 recognized STD clinic. The physical consequences of several STDs have been linked to increased risks of AIDS transmission. Early recognition and treatment of STDs in pregnant women would cut infant mortality. Maternal infections with chlamydia, gonorrhea, or herpes are transferred to infants at birth 25% to 50% of the time. In Africa, infant blindness caused by gonorrhea infection is 50 times more common than in industrial countries. The International Women's Health Coalition's March 1992 meeting of more than 50 Third World scientists, health advocates, and

  7. Social determinants and sexually transmitted disease disparities.

    Science.gov (United States)

    Hogben, Matthew; Leichliter, Jami S

    2008-12-01

    Social determinants of health play an important role in sexually transmitted disease (STD) transmission and acquisition; consequently, racial and ethnic disparities among social determinants are influences upon disparities in STD rates. In this narrative review, we outline a general model showing the relationship between social determinants and STD outcomes, mediated by epidemiologic context. We then review 4 specific social determinants relevant to STD disparities: segregation, health care, socioeconomics and correctional experiences, followed by 2 facets of the resultant epidemiologic context: core areas and sexual networks. This review shows that disparities exist among the social determinants and that they are related to each other, as well as to core areas, sexual networks, and STD rates. Finally, we discuss the implications of our review for STD prevention and control with particular attention to STD program collaboration and service integration.

  8. Rapid diagnosis of sexually transmitted infections.

    Science.gov (United States)

    Otero-Guerra, Luis; Fernández-Blázquez, Ana; Vazquez, Fernando

    Sexually transmitted infections (STIs) are responsible for an enormous burden of morbidity and mortality. Worldwide, millions of cases of STIs, such as syphilis, chlamydia, or gonorrhoea occur every year, and there is now an increase in antimicrobial resistance in pathogens, such as gonococcus. Delay in diagnosis is one of the factors that justifies the difficulty in controlling these infections. Rapid diagnostic tests allow the introduction of aetiological treatment at the first visit, and also leads to treating symptomatic and asymptomatic patients more effectively, as well as to interrupt the epidemiological transmission chain without delay. The World Health Organisation includes these tests in its global strategy against STIs. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. Pattern of Sexually Transmitted Diseases in Chandigarh

    Directory of Open Access Journals (Sweden)

    Bhushan Kumar

    1987-01-01

    Full Text Available A retrospective,data analysis of sexually transmitted diseases was carried out to study the pattern of these diseases prevalent in the region. One thousand′five hundred and seventy,one patients′were seen from January 1977 to October 1985. Maks constituted 95.5% of this group and females the remaining 4.5%. Commonest age group affected was 20-29 years in both sexes. Condytoma acuminata was the commonest STD (21.40/o, followed by gonorrhoea (16.9%, chancroid (12.2% genital herpes (11.4%, syphilis (10.4%, not′specific ulcers (7.1%, donovanosis (6.3%,mixed infections (5.3% and NSU (4.1% Secondary syphilis was the most common (48.6% presentation of syphik and in women it od 75.8% of all the cases of syphilis. In′more than a quarter of patients, psycho- problems were the reason for attendance.

  10. The Effect of Numerical 2D and 3D Fem Element Modelling on Strain and Stress Distributions at Laser Weld Notches in Steel Sandwich Type Panels

    Directory of Open Access Journals (Sweden)

    Niklas Karol

    2018-03-01

    Full Text Available Like other means of transport, merchant ships face the problem of increasing requirements concerning the environment protection, which, among other issues, implies the reduction of fuel consumption by the ship. Here, the conventional approach which consists in making use of higher strength steels to decrease the mass of the ship hull can be complemented by the use of new steel structures of sandwich panel type. However, the lack of knowledge and experience concerning, among other issues, fatigue strength assessment of thin-walled sandwich structures makes their use limited. Untypical welds imply the need for individual approach to the fatigue analysis. The article presents the effect of numerical FEM modelling with the aid of two-dimensional (2D and three-dimensional (3D elements on the results of strain and stress distributions in the areas of toe and root notches of the analysed laser weld. The presented results of computer simulation reveal that modelling of strain and stress states in 2D (instead of full 3D affects only the results in close vicinity of the notch, and the observed differences rapidly disappear at a distance of 0.05 mm from the bottom of the notch. The obtained results confirm the possibility of use of numerically effective 2D strain and stress state models for analysing the fatigue strength of laser weld according to local approach.

  11. [Anorectal manifestations of sexually transmitted infections].

    Science.gov (United States)

    Lautenschlager, Stephan

    2013-07-01

    The incidence of sexually transmitted infections is rising in Europe and in Switzerland since the beginning of the third millenium. Many organisms may affect the perianal skin and the anorectum. While some of these infections are a result of contigous spread from genital infection, most result from receptive anal intercourse affecting males who have sex with males but is seen increasingly in females as well since there is evidence of the increasing popularity of anal sex among heterosexuals. The symptoms of specific infections are largely dependent on the route and site of inoculation. Organisms that cause typical genital symptoms - such as syphilis, chancroid, herpes simplex or HPV-infection - result in similar symptoms when the perianal skin, the anoderm or the distal anal canal are the site of infection. Patients with proctitis may have unspecific signs in various degrees including mucous discharge, rectal bleeding, anorectal pain, superficial ulcers and sometimes generalized lymphadenopathy and fever. It is of utmost importance to include STIs (e. g. lymphogranuloma venereum, gonorrhea, non-LGV-chlamydia and herpes simplex) in the differential diagnosis in these patients. Unfortunately rectal infection with chlamydia and gonorrhea is asymptomatic in the majority of cases of men having sex with men and in high-risk females. A careful history and physical examination is essential in establishing a correct diagnosis, usually supported by proctoscopy, culture, PCR, serology and histology. Certain organisms, more commonly thought of as food- or water-borne disease may be sexually transmitted by direct or indirect fecal-oral contact from various sexual practices.

  12. Generalization of socially transmitted and instructed avoidance

    Directory of Open Access Journals (Sweden)

    Gemma eCameron

    2015-06-01

    Full Text Available Excessive avoidance behavior, in which an instrumental action prevents an upcoming aversive event, is a defining feature of anxiety disorders. Left unchecked, both fear and avoidance of potentially threatening stimuli may generalize to perceptually related stimuli and situations. The behavioral consequences of generalization mean that aversive learning experiences with specific threats may lead people to infer that classes of related stimuli are threatening, potentially dangerous, and need to be avoided, despite differences in physical form. Little is known about avoidance generalization in humans and the learning pathways by which it may be transmitted. In the present study, we compared two pathways to avoidance, instructions and social observation, on subsequent generalization of avoidance behavior, fear expectancy and physiological arousal. Participants first learned that one cue was a danger cue (conditioned stimulus, CS+ and another was a safety cue (CS-. Groups then were either instructed that a simple avoidance response in the presence of the CS+ cancelled upcoming shock presentations (instructed-learning group or observed a short movie showing a demonstrator performing the avoidance response to prevent shock (observational-learning group. During generalization testing, danger and safety cues were presented along with generalization stimuli that parametrically varied in perceptual similarity to the CS+. Reinstatement of fear and avoidance was also tested. Findings demonstrate, for the first time, generalization of socially transmitted and instructed avoidance: both groups showed comparable generalization gradients in fear expectancy, avoidance behavior and arousal. Return of fear was evident, suggesting that generalized avoidance remains persistent following extinction testing. The utility of the present paradigm for research on avoidance generalization is discussed.

  13. Transmit-receive eddy current probes

    International Nuclear Information System (INIS)

    Obrutsky, L.S.; Sullivan, S.P.; Cecco, V.S.

    1997-01-01

    In the last two decades, due to increased inspection demands, eddy current instrumentation has advanced from single-frequency, single-output instruments to multifrequency, computer-aided systems. This has significantly increased the scope of eddy current testing, but, unfortunately, it has also increased the cost and complexity of inspections. In addition, this approach has not always improved defect detectability or signal-to-noise. Most eddy current testing applications are still performed with impedance probes, which have well known limitations. However, recent research at AECL has led to improved eddy current inspections through the design and development of transmit-receive (T/R) probes. T/R eddy current probes, with laterally displaced transmit and receive coils, present a number of advantages over impedance probes. They have improved signal-to-noise ratio in the presence of variable lift-off compared to impedance probes. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection, and possess good phase discrimination to surface defects. They can significantly increase the scope of eddy current testing permitting reliable detection and sizing of cracks in heat exchanger tubing as well as in welded areas of both ferritic and non-ferromagnetic components. This presentation will describe the operating principles of T/R probes with the help of computer-derived normalized voltage diagrams. We will discuss their directional properties and analyze the advantages of using single and multiple T/R probes over impedance probes for specific inspection cases. Current applications to surface and tube testing and some typical inspection results will be described. (author)

  14. Determination of the most appropriate stress distribution by Finite Element Analysis in fixation with resorbable screws after Bilateral Sagittal Split Ramus Osteotomy surgery

    Directory of Open Access Journals (Sweden)

    Sarkarat F.

    2009-12-01

    Full Text Available "nBackground and Aim: Due to the complications associated with fixation by Titanium screws and plates in Bilateral Sagittal Split Ramus Osteotomy (BSSRO surgery, the use of resorbable polymers has been increasingly recommended. Since there are not enough studies on this issue, this study aimed to assess the most appropriate stress distribution in fixation with resorbable screws after BSSRO surgery by Fnite Element Analysis (FEA."nMaterials and Methods: This experimental study was performed on simulated human mandible using Ansys and Catia softwares. The osteotomy line was applied to the simulated model and experimental loads of 75, 135 and 600 N were respectively exerted according to the natural direction of occlusal force. The distribution pattern of stress was assessed and compared for fixation with one resorbable screw, two resorbable screws in vertical pattern, two resorbable screws in horizontal pattern, three resorbable screws in L pattern and three resorbable screws in inverted backward L pattern using Ansys software."nResults: Among the four simulated fixations, L pattern showed the highest primary stability. Two screws in vertical pattern were also associated with sufficient primary stability and less trauma and cost for patients. One screw did not provide enough stability under 600 N."nConclusion: Polymer-based resorbable screws (polyglycolic acid and D, L polylactide acid provided satisfactory primary stability in BSSRO surgery.

  15. Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress

    Directory of Open Access Journals (Sweden)

    Sanoara Mazid

    2016-12-01

    Full Text Available Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs. Immediately after acute immobilization stress (AIS or one-day after chronic immobilization stress (CIS, the brains of adult female and male rats were perfusion-fixed with aldehydes. The CA3b region and the dentate hilus of the dorsal hippocampus were quantitatively analyzed by light microscopy using DOR immunoperoxidase or dual label electron microscopy for DOR using silver intensified immunogold particles (SIG and GABA using immunoperoxidase. At baseline, females compared to males had more DORs near the plasmalemma of pyramidal cell dendrites and about 3 times more DOR-labeled CA3 dendritic spines contacted by mossy fibers. In AIS females, near-plasmalemmal DOR-SIGs decreased in GABAergic hilar dendrites. However, in AIS males, near-plasmalemmal DOR-SIGs increased in CA3 pyramidal cell and hilar GABAergic dendrites and the percentage of CA3 dendritic spines contacted by mossy fibers increased to about half that seen in unstressed females. Conversely, after CIS, near-plasmalemmal DOR-SIGs increased in hilar GABA-labeled dendrites of females whereas in males plasmalemmal DOR-SIGs decreased in CA3 pyramidal cell dendrites and near-plasmalemmal DOR-SIGs decreased hilar GABA-labeled dendrites. As CIS in females, but not males, redistributed DOR-SIGs near the plasmalemmal of hilar GABAergic dendrites, a subsequent experiment examined the acute affect of oxycodone on the redistribution of DOR-SIGs in a separate cohort of CIS females. Plasmalemmal DOR-SIGs were significantly elevated on hilar

  16. Hemorrhagic Shock and Surgical Stress Alter Distribution of Labile Zinc within High and Low Molecular Weight Plasma Fractions

    Science.gov (United States)

    Kelly, Edward; Mathew, Jeff; Kohler, Jonathan E.; Blass, Amy L.; Soybel, David I.

    2012-01-01

    Zinc ions (Zn2+) are essential for tissue repair following injury or stress. We hypothesize that during such stresses Zn2+ is redistributed to labile pools in plasma components. Here we tested this hypothesis utilizing a novel assay to monitor labile Zn2+ in plasma in hemorrhagic shock. Adult rats in the Shock (S) group underwent hemorrhage and resuscitation. Blood samples were drawn at baseline, 1 hr, 4 hrs and 24 hrs. The Surgical Control (SC) group was anesthetized and instrumented, but not bled. Albumin, total Zn2+, and labile Zn2+ levels were assayed in plasma. Binding capacity for Zn2+ was assessed in high (HMW) and low (LMW) molecular weight pools. Significant decreases in total Zn2+ were observed by 24 hrs, in both S and SC groups. Albumin levels were significantly reduced in the S group at 1 hr and 4 hr but restored at 24 hrs; significant changes were not observed in other groups. In whole plasma, labile Zn2+ levels were stable initially in the S and SC groups, but declined at 24 hrs. In the HMW pool, marked and significant impairment of binding was noted throughout all time periods following the shock period in the S group. Such changes were observed in the SC group of less intensity and duration. These experiments suggest that Shock alters affinity of plasma proteins for Zn2+, promoting delivery to peripheral tissues during periods of increased Zn2+ utilization. PMID:22744307

  17. Hemorrhagic shock and surgical stress alter distribution of labile zinc within high- and low-molecular-weight plasma fractions.

    Science.gov (United States)

    Kelly, Edward; Mathew, Jeff; Kohler, Jonathan E; Blass, Amy L; Soybel, And David I

    2012-08-01

    Zinc ions (Zn) are essential for tissue repair following injury or stress. We hypothesize that during such stresses Zn is redistributed to labile pools in plasma components. Here we tested this hypothesis using a novel assay to monitor labile Zn in plasma in hemorrhagic shock. Adult rats in the shock group (S group) underwent hemorrhage and resuscitation. Blood samples were drawn at baseline and at 1, 4, and 24 h. The surgical control group (SC group) was anesthetized and instrumented, but not bled. Albumin, total Zn, and labile Zn levels were assayed in plasma. Binding capacity for Zn was assessed in high- and low-molecular-weight pools. Significant decreases in total Zn were observed by 24 h, in both S and SC groups. Albumin levels were significantly reduced in the S group at 1 and 4 h but restored at 24 h; significant changes were not observed in other groups. In whole plasma, labile Zn levels were stable initially in the S and SC groups, but declined at 24 h. In the high-molecular-weight pool, marked and significant impairment of binding was noted throughout all time periods following the shock period in the S group. Such changes were observed in the SC group of less intensity and duration. These experiments suggest that shock alters affinity of plasma proteins for Zn, promoting delivery to peripheral tissues during periods of increased Zn utilization.

  18. The effects of implant-macro design on stress quantity and distribution around three types of fixtures by photo-elastic analysis

    Directory of Open Access Journals (Sweden)

    Shams Ak

    2011-04-01

    Full Text Available "nBackground and Aims: Considering the great incidence of implant failures due to high stresses around implant and at bone-implant interfaces, the aim of this study was to compare the effects of three different implant-macro designs on the quantity and distribution pattern of stresses around implants."nMaterials and Methods: In this experimental in vitro study, three types of implants including Biohorizon (4×10.5 mm, Iler (4×10 mm, and Swiss Plus (4.1×10 mm were studied by applying photo-elastic method. The implants were placed within photo-elastic models with dimensions of 50×50×10 mm. Then through open tray impressed method, crowns for each implant were constructed and cemented. Vertical and oblique loads of 100 N and 150 N were applied on the cemented crowns within polariscope machine. Then the photographs were evaluated using Isochromatic Fringe Characteristics table."nResults: Under vertical loads of 100 N and 150 N, the values for Biohorizon, Iler, Swiss Plus fixtures at the cervical region were (2.35, 3.60 N, (2.50, 3.10 N, and (1.39, 2.35 N, respectively; and in apical region the values were (1.63, 2.35 N, (1.82, 2.35 N, and (2.50, 3.10 N. Under oblique loads, the measures at the cervical region were (4.00, 5.00 N, (1.82, 5.00 N, and (5.20, 6.00 N; and in apical region were "n(1.39, 2.00 N, (4.00, 2.35 N, and (2.35, 3.00 N, respectively for mentioned implants."nConclusion: Under vertical loads, the lowest cervical stresses were observed in Swiss Plus fixture and the lowest apical stress values were recorded for Biohorizon fixture. Under oblique loads, the lowest cervical stresses were found in Iler implant and lowest apical stresses were recorded for Bohorizon.

  19. [Soil transmitted helminthiasis in Argentina. A systematic review].

    Science.gov (United States)

    Socías, M Eugenia; Fernández, Anabel; Gil, José F; Krolewiecki, Alejandro J

    2014-01-01

    A systematic review of surveys performed between 1980 and 2011 (published in MEDLINE/Pubmed and/or LILACS indexed journals, available in the baseline data from a Mass Deworming National Program (MDNP, 2005) was used to identify the prevalence, distribution and detection of risk areas for soil transmitted helminth infections (STH) in Argentina. We found 310 publications in the database using the pre-defined key-words (medical subject headings) for research purposes. Only 24 articles with 26 surveillance sites in 8 provinces and a total of 5495 surveyed individuals fulfilled the inclusion criteria. Frequency rates for STH had a wide range: Ascaris lumbricoides: 0-67%, hookworms: 0-90%, Trichuris trichiura: 0-24.6 and Strongyloides stercoralis: 0-83%. The estimated combined incidence varied from 0.8% to 88.6%. Baseline surveys from the MDNP reporting on 1943 children from 12 provinces confirmed the heterogeneity, with combined STH frequency rates ranging from 0 to 42.7%. Surveys included in this review showed that the distribution of STH in Argentina is not homogeneous, with areas of high incidence (> 20%) in the northeastern and northwestern provinces where mass deworming activities would be highly beneficial. In several surveys, the high overall incidence was mostly due to hookworms and S. stercoralis, a situation to be considered when selecting diagnostic and therapeutic control strategies. The scarcity or absence of data from various provinces and the availability of less than 8000 surveyed individuals should be considered.

  20. Laser shock peening without coating induced residual stress distribution, wettability characteristics and enhanced pitting corrosion resistance of austenitic stainless steel

    Science.gov (United States)

    Prabhakaran, S.; Kulkarni, Aniket; Vasanth, G.; Kalainathan, S.; Shukla, Pratik; Vasudevan, Vijay K.

    2018-01-01

    Low energy laser shock peening without coating (LSPwC) was conducted on AISI 304 austenitic stainless steel specimens with varying pulse densities or overlapping. Highest magnitude of compressive residual stress (CRS) was achieved for an optimized pulse density of 2500 pulses/cm2 (75% overlapping). The 2-D and 3-D topographical analysis were indicative of the fact that controlled roughening of the surface was achieved after the LSPwC process. After the LSPwC process, the hydrophilic unpeened surface was converted into the hydrophobic surface, thus decreasing the wettability characteristics of the surface. The X-ray diffraction (XRD) results reveal that there is a beginning of the martensite transformation and the rise in the intensity value of the peaks after LSPwC indicates the presence of compressive residual stresses induced in the specimen. The optical microscope and high-resolution transmission electron microscope results provided evidence of grain refinement and deformation induced refinement features such as multidirectional mechanical twinning, dislocations lines, micro shear cells and stacking faults in the near and sub-surface areas. The average hardness value of the LSPwC specimens was found to be increased by 28% more than the untreated specimen. The potentiodynamic polarization revealed that there was a considerable amount of increase in the pitting corrosion resistance after the LSPwC process, thus, supporting to extend the fatigue life of the specimen. The electrochemical impedance spectroscopic (EIS) analysis depicts that the LSPwC process supports the formation of the strong passivation layer in 3.5% NaCl solution.

  1. Transmit Power Optimisation in Wireless Network

    Directory of Open Access Journals (Sweden)

    Besnik Terziu

    2011-09-01

    Full Text Available Transmit power optimisation in wireless networks based on beamforming have emerged as a promising technique to enhance the spectrum efficiency of present and future wireless communication systems. The aim of this study is to minimise the access point power consumption in cellular networks while maintaining a targeted quality of service (QoS for the mobile terminals. In this study, the targeted quality of service is delivered to a mobile station by providing a desired level of Signal to Interference and Noise Ratio (SINR. Base-stations are coordinated across multiple cells in a multi-antenna beamforming system. This study focuses on a multi-cell multi-antenna downlink scenario where each mobile user is equipped with a single antenna, but where multiple mobile users may be active simultaneously in each cell and are separated via spatial multiplexing using beamforming. The design criteria is to minimize the total weighted transmitted power across the base-stations subject to SINR constraints at the mobile users. The main contribution of this study is to define an iterative algorithm that is capable of finding the joint optimal beamformers for all basestations, based on a correlation-based channel model, the full-correlation model. Among all correlated channel models, the correlated channel model used in this study is the most accurate, giving the best performance in terms of power consumption. The environment here in this study is chosen to be Non-Light of- Sight (NLOS condition, where a signal from a wireless transmitter passes several obstructions before arriving at a wireless receiver. Moreover there are many scatterers local to the mobile, and multiple reflections can occur among them before energy arrives at the mobile. The proposed algorithm is based on uplink-downlink duality using the Lagrangian duality theory. Time-Division Duplex (TDD is chosen as the platform for this study since it has been adopted to the latest technologies in Fourth

  2. Is the spatial distribution of brain lesions associated with closed-head injury in children predictive of subsequent development of posttraumatic stress disorder?

    Science.gov (United States)

    Herskovits, Edward H.; Gerring, Joan P.; Davatzikos, Christos; Bryan, R. Nick

    2002-01-01

    PURPOSE: To determine whether there is an association between the spatial distributions of lesions detected at magnetic resonance (MR) imaging of the brain in children, adolescents, and young adults after closed-head injury (CHI) and development of the reexperiencing symptoms of posttraumatic stress disorder (PTSD). MATERIALS AND METHODS: Data obtained in 94 subjects without a history of PTSD as determined by parental interview were analyzed. MR images were obtained 3 months after CHI. Lesions were manually delineated and registered to the Talairach coordinate system. Mann-Whitney analysis of lesion distribution and PTSD status at 1 year (again, as determined by parental interview) was performed, consisting of an analysis of lesion distribution versus the major symptoms of PTSD: reexperiencing, hyperarousal, and avoidance. RESULTS: Of the 94 subjects, 41 met the PTSD reexperiencing criterion and nine met all three PTSD criteria. Subjects who met the reexperiencing criterion had fewer lesions in limbic system structures (eg, the cingulum) on the right than did subjects who did not meet this criterion (Mann-Whitney, P =.003). CONCLUSION: Lesions induced by CHI in the limbic system on the right may inhibit subsequent manifestation of PTSD reexperiencing symptoms in children, adolescents, and young adults. Copyright RSNA, 2002.

  3. Individuality evaluation for paper based artifact-metrics using transmitted light image

    Science.gov (United States)

    Yamakoshi, Manabu; Tanaka, Junichi; Furuie, Makoto; Hirabayashi, Masashi; Matsumoto, Tsutomu

    2008-02-01

    Artifact-metrics is an automated method of authenticating artifacts based on a measurable intrinsic characteristic. Intrinsic characters, such as microscopic random-patterns made during the manufacturing process, are very difficult to copy. A transmitted light image of the distribution can be used for artifact-metrics, since the fiber distribution of paper is random. Little is known about the individuality of the transmitted light image although it is an important requirement for intrinsic characteristic artifact-metrics. Measuring individuality requires that the intrinsic characteristic of each artifact significantly differs, so having sufficient individuality can make an artifact-metric system highly resistant to brute force attack. Here we investigate the influence of paper category, matching size of sample, and image-resolution on the individuality of a transmitted light image of paper through a matching test using those images. More concretely, we evaluate FMR/FNMR curves by calculating similarity scores with matches using correlation coefficients between pairs of scanner input images, and the individuality of paper by way of estimated EER with probabilistic measure through a matching method based on line segments, which can localize the influence of rotation gaps of a sample in the case of large matching size. As a result, we found that the transmitted light image of paper has a sufficient individuality.

  4. Sexually Transmitted Diseases and Travel: From Boudoir to Bordello.

    Science.gov (United States)

    Avery, Ann K; Zenilman, Jonathan M

    2015-10-01

    Travel has historically been an important risk factor for acquisition of sexually transmitted infections (STIs). Travel is often associated with a sense of adventure, periods of loneliness, and exploration away from one's home environment-which often form a milieu in which sexual activity can occur with new partners. Survey data clearly demonstrate that out-of-country travel is associated with recruitment of new sex partners and increased STI risk. Pretravel counseling to prevent STI risk is variable, and there is little evidence that it modifies risk behavior. Some travel occurs specifically for sexual purposes, such as the sexual tourism junkets to Southeast Asian destinations which became popular during the 1980s or the more recent rise in the popularity of circuit parties for men who have sex with men. Some travel situations pose particularly high risks. For example, military deployments and assignments to work camps such as those for oil extraction occur in the context of large groups of individuals of reproductive age, often predominantly males, exposed to high levels of stress in unfamiliar environments. Additionally, over the past decade, the Internet has dramatically changed the ability to identify sexual partners while traveling.

  5. Experimental analysis of axial and radial stress distribution in soft materials used for petrochemical valve stem sealing package

    Science.gov (United States)

    Ripeanu, R. G.; Ispas, A.; Ispas, D.

    2017-02-01

    Paper presents experimental results obtained by authors regarding pressure values and distribution, by using a special pressure sensitive paper, type FujiFilm and adequate hardware equipment and a soft program FPD810 Win. Was obtained the proper axial force related for different materials in order to respect the valves sealing demands. Were showed that, pressure maps obtained depends of the construction of sealing package, density of the preformed band rings and corrected sealing replacing on location in case of square braided cord used.

  6. VIS-IR transmitting BGG glass windows

    Science.gov (United States)

    Bayya, Shyam S.; Chin, Geoff D.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.

    2003-09-01

    BaO-Ga2O3-GeO2 (BGG) glasses have the desired properties for various window applications in the 0.5-5 μm wavelength region. These glasses are low cost alternatives to the currently used window materials. Fabrication of a high optical quality 18" diameter BGG glass window has been demonstrated with a transmitted wave front error of λ/10 at 632 nm. BGG substrates have also been successfully tested for environmental weatherability (MIL-F-48616) and rain erosion durability up to 300 mph. Preliminary EMI grids have been successfully applied on BGG glasses demonstrating attenuation of 20dB in X and Ku bands. Although the mechanical properties of BGG glasses are acceptable for various window applications, it is demonstrated here that the properties can be further improved significantly by the glassceramization process. The ceramization process does not add any significant cost to the final window material. The crystallite size in the present glass-ceramic limits its transmission to the 2-5 μm region.

  7. Inductive reasoning about causally transmitted properties.

    Science.gov (United States)

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D; Tenenbaum, Joshua B

    2008-11-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates' context-sensitive use of taxonomic and food web knowledge to guide reasoning about causal transmission and shows good qualitative agreement between model predictions and human inferences. A second experiment demonstrates strong quantitative and qualitative fits to inferences about a more complex artificial food web. A third experiment investigates human reasoning about complex novel food webs where species have known taxonomic relations. Results demonstrate a double-dissociation between the predictions of our causal model and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain structures. In Proceedings of the 25th annual conference of the cognitive science society]: the causal model predicts human inferences about diseases but not genes, while the taxonomic model predicts human inferences about genes but not diseases. We contrast our framework with previous models of category-based induction and previous formal instantiations of intuitive theories, and outline challenges in developing a complete model of context-sensitive reasoning.

  8. Genital elephantiasis and sexually transmitted infections - revisited.

    Science.gov (United States)

    Gupta, Somesh; Ajith, C; Kanwar, Amrinder J; Sehgal, Virendra N; Kumar, Bhushan; Mete, Uttam

    2006-03-01

    Genital elephantiasis is an important medical problem in the tropics. It usually affects young and productive age group, and is associated with physical disability and extreme mental anguish. The majority of cases are due to filariasis; however, a small but significant proportion of patients develop genital elephantiasis due to bacterial sexually transmitted infections (STIs), mainly lymphogranuloma venereum (LGV) and donovanosis. STI-related genital elephantiasis should be differentiated from elephantiasis due to other causes, including filariasis, tuberculosis, haematological malignancies, iatrogenic, or dermatological diseases. Laboratory investigations like microscopy of tissue smear and nucleic acid amplification test for donovanosis, and serology and polymerase chain reaction for LGV may help in the diagnosis, but in endemic areas, in the absence of laboratory facilities, diagnosis largely depends on clinical characteristics. The causative agent of LGV, Chlamydia trachomatis serovar L1-L3, is a lymphotropic organism which leads to the development of thrombolymphangitis and perilymphangitis, and lymphadenitis. Long-standing oedema, fibrosis and lymphogranulomatous infiltration result in the final picture of elephantiasis. Elephantiasis in donovanosis is mainly due to constriction of the lymphatics which are trapped in the chronic granulomatous inflammatory response generated by the causative agent, Calymmatobacterium (Klebsiella) granulomatis. The LGV-associated genital elephantiasis should be treated with a prolonged course of doxycycline given orally, while donovanosis should be treated with azithromycin or trimethoprim-sulphamethoxazole combination given for a minimum of three weeks. Genital elephantiasis is not completely reversible with medical therapy alone and often needs to be reduced surgically.

  9. Evaluation of stress distribution due to shearing in non-oriented electrical steel by using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Yoshiaki Zaizen

    2016-05-01

    Full Text Available The influence of the shearing process on the iron loss of non-oriented electrical steels with grain sizes of 10 μm-150 μm was investigated. The deterioration ratio of iron loss was clearly smaller in sample with small grain sizes. The droop height, reflecting the amount of plastic deformation, displayed a good relationship with the deterioration of iron loss under the effect of the material grain size. To clarify the strain distribution around the sheared edge, the elastic strain in a sheet sample with the thickness of 0.30 mm and grain size of 10 μm was evaluated by using synchrotron radiation. The width of the region of elastic strain due to shearing was two or three times of the material thickness. The results of the plastic strain distribution obtained by the measurements were then used to estimate the iron loss deterioration rate in 5 mm width sheared samples. The estimated loss deteriotation coincided with the actual measured iron loss.

  10. Evaluation of stress distribution due to shearing in non-oriented electrical steel by using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaizen, Yoshiaki, E-mail: y-zaizen@jfe-steel.co.jp; Omura, Takeshi; Senda, Kunihiro [Steel Research Laboratory, JFE Steel Corporation, Kawasakidori 1,Mizushima, Kurashiki,712-8511 (Japan); Fukumura, Masaru [Steel Research Laboratory, JFE Steel Corporation, Kawasaki, Kanagawa 210-0855 (Japan); Toda, Hiroaki [Steel Business Planning Dept, JFE Steel Corporation, Tokyo 100-0011 (Japan)

    2016-05-15

    The influence of the shearing process on the iron loss of non-oriented electrical steels with grain sizes of 10 μm-150 μm was investigated. The deterioration ratio of iron loss was clearly smaller in sample with small grain sizes. The droop height, reflecting the amount of plastic deformation, displayed a good relationship with the deterioration of iron loss under the effect of the material grain size. To clarify the strain distribution around the sheared edge, the elastic strain in a sheet sample with the thickness of 0.30 mm and grain size of 10 μm was evaluated by using synchrotron radiation. The width of the region of elastic strain due to shearing was two or three times of the material thickness. The results of the plastic strain distribution obtained by the measurements were then used to estimate the iron loss deterioration rate in 5 mm width sheared samples. The estimated loss deteriotation coincided with the actual measured iron loss.

  11. Soil transmitted helminths and associated factors among schoolchildren in government and private primary school in Jimma Town, Southwest Ethiopia.

    Science.gov (United States)

    Debalke, Serkadis; Worku, Amare; Jahur, Nejat; Mekonnen, Zeleke

    2013-11-01

    Soil transmitted helminth infections are among the most common human infections. They are distributed throughout the world with high prevalence rates in tropical and sub-tropical countries mainly because of lack of adequate sanitary facilities, inappropriate waste disposal systems, lack of safe water supply, and low socio-economic status. A comparative cross sectional study was conducted from December 2011 to June 2012 to determine and assess the prevalence of soil transmitted helminths and their associated factors among government and private primary school children. Stool samples were collected from 369 randomly selected children and examined microscopically for eggs of soil transmitted helminth following McMaster techniques. Soil samples were collected from different parts of the school compound and microscopic examination was performed for eggs of the helminths using sodium nitrate flotation technique. The overall prevalence rate of soil transmitted helminth infections in private and government schools was 20.9% and 53.5% respectively. T. trichiura was the most common soil transmitted helminth in both schools while hookworm infections were identified in government school students only. Type of school and sex were significantly associated with soil transmitted helminth. Soil contamination rate of the school compounds was 11.25% with predominant parasites of A. lumbricoides. Higher prevalence of soil transmitted helminth infection was found among government school students. Thus, more focus, on personal hygiene and sanitary facilities, should be given to children going to government schools.

  12. Stress distribution and lattice distortions in Nb3Sn multifilament wires under uniaxial tensile loading at 4.2 K

    International Nuclear Information System (INIS)

    Scheuerlein, C; Flükiger, R; Kadar, J; Bordini, B; Ballarino, A; Bottura, L; Di Michiel, M; Buta, F; Seeber, B; Senatore, C; Siegrist, T; Besara, T

    2014-01-01

    The lattice parameter changes in three types of Nb 3 Sn superconducting wires during uniaxial stress–strain measurements at 4.2 K have been measured by high-energy synchrotron x-ray diffraction. The nearly-stress-free Nb 3 Sn lattice parameter has been determined using extracted filaments, and the elastic strain in the axial and transverse wire directions in the different wire phases has been calculated. The mechanical properties of the PIT and RRP wire are mainly determined by the properties of Nb 3 Sn and unreacted Nb. This is in contrast to the bronze route wire, where the matrix can carry substantial loads. In straight wires the axial Nb 3 Sn pre-strain is strongest in the bronze route wire, its value being smaller in the PIT and RRP wires. A strong reduction of the non-Cu elastic modulus of about 30% is observed during cool-down from ambient temperature to 4.2 K. The Nb 3 Sn Poisson ratio at 4.2 K measured in the untwisted bronze route wire is 0.35. The present study also shows that the process route has a strong influence on the Nb 3 Sn texture. (paper)

  13. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: a comparative study using the MARTINI model.

    Science.gov (United States)

    Hu, Mingyang; de Jong, Djurre H; Marrink, Siewert J; Deserno, Markus

    2013-01-01

    We calculate the Gaussian curvature modulus kappa of a systematically coarse-grained (CG) one-component lipid membrane by applying the method recently proposed by Hu et al. [Biophys. J., 2012, 102, 1403] to the MARTINI representation of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We find the value kappa/kappa = -1.04 +/- 0.03 for the elastic ratio between the Gaussian and the mean curvature modulus and deduce kappa(m)/kappa(m) = -0.98 +/- 0.09 for the monolayer elastic ratio, where the latter is based on plausible assumptions for the distance z0 of the monolayer neutral surface from the bilayer midplane and the spontaneous lipid curvature K(0m). By also analyzing the lateral stress profile sigma0(z) of our system, two other lipid types and pertinent data from the literature, we show that determining K(0m) and kappa through the first and second moment of sigma0(z) gives rise to physically implausible values for these observables. This discrepancy, which we previously observed for a much simpler CG model, suggests that the moment conditions derived from simple continuum assumptions miss the effect of physically important correlations in the lipid bilayer.

  14. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1995-05-09

    Jasmonic acid (JA) is a naturally occurring growth regulator found in higher plants. Several physiological roles have been described for this compound (or a related compound, methyl jasmonate) during plant development and in response to biotic and abiotic stress. To accurately determine JA levels in plant tissue, we have synthesized JA containing 13C for use as an internal standard with an isotopic composition of [225]:[224] 0.98:0.02 compared with [225]:[224] 0.15:0.85 for natural material. GC analysis (flame ionization detection and MS) indicate that the internal standard is composed of 92% 2-(+/-)-[13C]JA and 8% 2-(+/-)-7-iso-[13C]JA. In soybean plants, JA levels were highest in young leaves, flowers, and fruit (highest in the pericarp). In soybean seeds and seedlings, JA levels were highest in the youngest organs including the hypocotyl hook, plumule, and 12-h axis. In soybean leaves that had been dehydrated to cause a 15% decrease in fresh weight, JA levels increased approximately 5-fold within 2 h and declined to approximately control levels by 4 h. In contrast, a lag time of 1-2 h occurred before abscisic acid accumulation reached a maximum. These results will be discussed in the context of multiple pathways for JA biosynthesis and the role of JA in plant development and responses to environmental signals.

  15. Adaptation and survival of plants in high stress habitats via fungal endophyte conferred stress tolerance

    Science.gov (United States)

    Rodriguez, Rusty J.; Woodward, Claire; Redman, Regina S.

    2010-01-01

    From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

  16. A three-dimensional finite element analysis of a passive and friction fit implant abutment interface and the influence of occlusal table dimension on the stress distribution pattern on the implant and surrounding bone

    Science.gov (United States)

    Sarfaraz, Hasan; Paulose, Anoopa; Shenoy, K. Kamalakanth; Hussain, Akhter

    2015-01-01

    Aims: The aim of the study was to evaluate the stress distribution pattern in the implant and the surrounding bone for a passive and a friction fit implant abutment interface and to analyze the influence of occlusal table dimension on the stress generated. Materials and Methods: CAD models of two different types of implant abutment connections, the passive fit or the slip-fit represented by the Nobel Replace Tri-lobe connection and the friction fit or active fit represented by the Nobel active conical connection were made. The stress distribution pattern was studied at different occlusal dimension. Six models were constructed in PRO-ENGINEER 05 of the two implant abutment connection for three different occlusal dimensions each. The implant and abutment complex was placed in cortical and cancellous bone modeled using a computed tomography scan. This complex was subjected to a force of 100 N in the axial and oblique direction. The amount of stress and the pattern of stress generated were recorded on a color scale using ANSYS 13 software. Results: The results showed that overall maximum Von Misses stress on the bone is significantly less for friction fit than the passive fit in any loading conditions stresses on the implant were significantly higher for the friction fit than the passive fit. The narrow occlusal table models generated the least amount of stress on the implant abutment interface. Conclusion: It can thus be concluded that the conical connection distributes more stress to the implant body and dissipates less stress to the surrounding bone. A narrow occlusal table considerably reduces the occlusal overload. PMID:26929518

  17. Concentration-elastic-stress instabilities in the distribution of ions and neutral particles in the insulator layer at the semiconductor surface

    International Nuclear Information System (INIS)

    Gol'dman, E. I.

    2006-01-01

    Mobile impurities in the form of ions and neutral associations are present in the insulator films that isolate the semiconductor from the metal electrode. If temperatures and the polarizing electric field are sufficiently high, impurities concentrate at the insulator-semiconductor interface where they exchange electrons with the semiconductor. It is shown that the pairwise interaction of particles via the field of elastic stresses caused by the concentration-related expansion of the insulator can give rise to an instability in the impurity distribution that is uniform over the contact. The stationary small-scale ordering of the particles over the contact of the insulator with the semiconductor arises in the solution of point defects, which is accompanied by annular flows of the particles

  18. 3D finite element analysis of stress distributions and strain energy release rates for adhesive bonded flat composite lap shear joints having pre-existing delaminations

    Energy Technology Data Exchange (ETDEWEB)

    Parida, S. K.; Pradhan, A. K. [Indian Institute of Technology, Bhubaneswar (India)

    2014-02-15

    The rate of propagation of embedded delamination in the strap adherend of lap shear joint (LSJ) made of carbon/epoxy composites has been evaluated employing three-dimensional non-linear finite elements. The delamination has been presumed to pre-exist in the thin resin layer between the first and second plies of the strap adherend. The inter-laminar peel and shear stress distributions have been studied in details and are seen to be predominantly three-dimensional in nature. The components of strain energy release rate (SERR) corresponding to the opening, sliding and cross sliding modes of delamination are significantly different at the two fronts of the embedded delamination. The sequential release of multi-point constraint (MPC) finite elements in the vicinity of the delamination fronts enables to simulate the growth of the delamination at either ends. This simulation procedure can be utilized effectively for evaluation of the status of the structural integrity of the bonded joints.

  19. Influence of friction on the residual morphology, the penetration load and the residual stress distribution of a Zr-based bulk metallic glass

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2013-04-01

    Full Text Available In this paper, friction between the Cube-Corner indenter and the sample surface of a Zr-based bulk metallic glass (BMG was analyzed and discussed by the experimental method, the theoretical method and the finite element simulation. Linear residua are observed on the surface of the indenter for the first time, which gives the direct evidence that strong interaction processes exist between the indenter surface and the sample surface because of strong friction and local high contact press. A simplified model was developed to correct the penetration load with the consideration of friction. Effects of friction on the penetration load-depth curves, plastic flow, surface deformation and residual stress distribution of the sample with different friction coefficients were investigated by the finite element simulation.

  20. Measurement of Stress Distribution Around a Circular Hole in a Plate Under Bending Moment Using Phase-shifting Method with Reflective Polariscope Arrangement

    Science.gov (United States)

    Baek, Tae Hyun

    Photoelasticity is one of the most widely used whole-field optical methods for stress analysis. The technique of birefringent coatings, also called the method of photoelastic coatings, extends the classical procedures of model photoelasticity to the measurement of surface strains in opaque models made of any structural material. Photoelastic phase-shifting method can be used for the determination of the phase values of isochromatics and isoclinics. In this paper, photoelastic phase-shifting technique and conventional Babinet-Soleil compensation method were utilized to analyze a specimen with a triangular hole and a circular hole under bending. Photoelastic phase-shifting technique is whole-field measurement. On the other hand, conventional compensation method is point measurement. Three groups of results were obtained by phase-shifting method with reflective polariscope arrangement, conventional compensation method and FEM simulation, respectively. The results from the first two methods agree with each other relatively well considering experiment error. The advantage of photoelastic phase-shifting method is that it is possible to measure the stress distribution accurately close to the edge of holes.

  1. Stress distribution in delayed replanted teeth splinted with different orthodontic wires: a three-dimensional finite element analysis.

    Science.gov (United States)

    de Souza, Fernando Isquierdo; Poi, Wilson Roberto; da Silva, Vanessa Ferreira; Martini, Ana Paula; Melo, Regis Alexandre da Cunha; Panzarini, Sonia Regina; Rocha, Eduardo Passos

    2015-06-01

    The aim was to evaluate the biomechanical behavior of the supporting bony structures of replanted teeth and the periodontal ligament (PDL) of adjacent teeth when orthodontic wires with different mechanical properties are applied, with three-dimensional finite element analysis. Based on tomographic and microtomographic data, a three-dimensional model of the anterior maxilla with the corresponding teeth (tooth 13-tooth 23) was generated to simulate avulsion and replantation of the tooth 21. The teeth were splinted with orthodontic wire (Ø 0.8 mm) and composite resin. The elastic modulus of the three orthodontic wires used, that is, steel wire (FA), titanium-molybdenum wire (FTM), and nitinol wire (FN) were 200 GPa, 84 GPa, and 52 GPa, respectively. An oblique load (100 N) was applied at an angle of 45° on the incisal edge of the replanted tooth and was analyzed using Ansys Workbench software. The maximum (σmax) and minimum (σmin) principal stresses generated in the PDL, cortical and alveolar bones, and the modified von Mises (σvM) values for the orthodontic wires were obtained. With regard to the cortical bone and PDL, the highest σmin and σmax values for FTM, FN, and FA were checked. With regard to the alveolar bone, σmax and σmin values were highest for FA, followed by FTM and FN. The σvM values of the orthodontic wires followed the order of rigidity of the alloys, that is, FA > FTM > FN. The biomechanical behavior of the analyzed structures with regard to all the three patterns of flexibility was similar. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Hybrid micro/nanostructural surface offering improved stress distribution and enhanced osseointegration properties of the biomedical titanium implant.

    Science.gov (United States)

    Hou, Ping-Jen; Ou, Keng-Liang; Wang, Chin-Chieh; Huang, Chiung-Fang; Ruslin, Muhammad; Sugiatno, Erwan; Yang, Tzu-Sen; Chou, Hsin-Hua

    2018-03-01

    The aim of the present study was to investigate the surface characteristic, biomechanical behavior, hemocompatibility, bone tissue response and osseointegration of the optimal micro-arc oxidation surface-treated titanium (MST-Ti) dental implant. The surface characteristic, biomechanical behavior and hemocompatibility of the MST-Ti dental implant were performed using scanning electron microscope, finite element method, blood dripping and immersion tests. The mini-pig model was utilized to evaluate the bone tissue response and osseointegration of the MST-Ti dental implant in vivo. Data were analyzed by analysis of variance using the Student's t-test (P ≤ 0.05). The hybrid volcano-like micro/nanoporous structure was formed on the surface of the MST-Ti dental implant. The hybrid volcano-like micro/nanoporous surface played an important role to improve the stress transfer between fixture, cortical bone and cancellous bone for the MST-Ti dental implant. Moreover, the MST-Ti implant was considered to have the outstanding hemocompatibility. In vivo testing results showed that the bone-to-implant contact (BIC) ratio significantly altered as the implant with micro/nanoporous surface. After 12 weeks of implantation, the MST-Ti dental implant group exhibited significantly higher BIC ratio than the untreated dental implant group. In addition, the MST-Ti dental implant group also presented an enhancing osseointegration, particularly in the early stages of bone healing. It can be concluded that the micro-arc oxidation approach induced the formation of micro/nanoporous surface is a promising and reliable alternative surface modification for Ti dental implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Incidence of sexually transmitted infections during pregnancy.

    Directory of Open Access Journals (Sweden)

    Chloe A Teasdale

    Full Text Available Prevalence of sexually transmitted infections (STI is high among pregnant women in certain settings. We estimated STI incidence and compared STI risk in pregnant and non-pregnant women. Data came from the Methods for Improving Reproductive Health in Africa (MIRA study conducted in South Africa and Zimbabwe 2003-2006. Women aged 18-50 years with at least one follow-up visit within 6 months of enrollment were included. Follow-up visits included laboratory testing for pregnancy, chlamydia, gonorrhea, trichomoniasis, and HIV, as well as self-report of hormonal contraceptive (HC use, sexual behaviors and intravaginal practices. All visits were classified according to pregnancy status. Incidence of each STI was calculated using follow-up time. Cox proportional hazards models were fitted using pregnancy as a time-varying exposure and sexual behaviors and intravaginal practices as time-varying covariates. Among 4,549 women, 766 (16.8% had a positive pregnancy test. Median follow-up time was 18 months [IQR: 12-24]. The overall incidence rate of chlamydia was 6.7 per 100 person years (py and 9.9/100py during pregnancy; gonorrhea incidence was 2.7/100py and 4.9/100py during pregnancy; trichomoniasis incidence was 7.1/100py overall and 9.2/100py during pregnancy. Overall HIV incidence was 3.9/100py and 3.8/100py during pregnancy. In crude models, pregnancy increased risk for chlamydia (hazard ratio (HR 1.5, 95%CI: 1.1-1.2, however there was no increased risk of any measured STI in adjusted models. STI Incidence was high during pregnancy however pregnancy did not increase STI risk after adjustment for sexual behaviors. Greater efforts are needed to help pregnant women avoid STIs.

  4. Sexually transmitted infections in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Madani Tariq A

    2006-01-01

    Full Text Available Abstract Background Data on sexually transmitted infections (STIs in Saudi Arabia (SA and other Islamic countries are limited. This study describes the results of a five-year surveillance for STIs in SA. Methods This is a case series descriptive study of all confirmed STIs diagnosed in SA from January, 1995 through December, 1999. Results A total of 39049 STIs were reported to the Ministry of Health. Reported STIs included nongonococcal urethritis (14557 infections, 37.3%, trichomoniasis (10967 infections, 28.1%, gonococcal urethritis (5547 infections, 14.2%, syphilis (3385 infections, 8.7%, human immunodeficiency virus (2917 infections, 7.5%, genital warts (1382, 3.5%, genital herpes (216 infections, 0.6%, and chancroid (78 infections, 0.2%. The average annual incidence of STIs per 100,000 population for Saudis and non-Saudis, respectively, was as follows: 14.8 and 7.5 for nongonococcal urethritis, 9.4 and 10.4 for trichomoniasis, 5.2 and 4.2 for gonorrhea, 1.7 and 6.4 for syphilis, 0.6 and 8.0 for HIV, 1.4 and 0.7 for genital warts, 0.1 and 0.4 for genital herpes, and 0.1 and 0.1 for chancroid. The incidence of STIs was somewhat steady over the surveillance period except for nongonococcal urethritis which gradually increased. Conclusion Nongonococcal urethritis, trichomoniasis, and gonococcal urethritis were the most commonly reported STIs in SA. Even though the incidence of STIs in SA is limited, appropriate preventive strategies that conform to the Islamic rules and values are essential and should be of highest priority for policymakers because of the potential of such infections to spread particularly among the youth.

  5. Seismicity, focal mechanisms, and stress distribution in the Tres Virgenes volcanic and geothermal region, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Victor; Munguia, Luis [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (Mexico)

    2006-01-15

    In October 1993 we carried out a seismic monitoring in the Tres Virgenes volcanic region in order to record the background seismicity associated with the volcanic structures, the geothermal field and the tectonic features of the area. Hypocenters for 257 microearthquakes were located in the volcanic edifices and along the northwest right-lateral, strike-slip La Virgen fault. Focal depths range from close to the Earth surface to about 8 km. Shallow depths occur mainly in the volcanic edifices. Deeper seismic events occurred outside the volcanic area. The duration magnitudes of the located microearthquakes range between 1 and 3. The Vp/Vs ratio and the low-Q values estimated suggest heterogeneous material properties in the volcanic structures mainly toward the El Azufre fault and the El Aguajito Caldera, where hydrothermal activity has been reported. The P- and T-axes of focal mechanisms for 90 microearthquakes suggest that the region is under N-S compression and E-W extension, in agreement with the regional tectonic stress field of the NW-SE right-lateral strike-slip transform fault system of the Gulf of California. [Spanish] En octubre de 1993 se llevo a cabo un monitoreo sismico en la region volcanica Las Tres Virgenes con el proposito de registrar la actividad sismica asociada a las estructuras volcanicas, al campo geotermico y a la tectonica local. Se localizaron 257 microsismos con hipocentros en los edificios volcanicos y a lo largo de la falla de rumbo, lateral derecha conocida como falla La Virgen. La profundidad focal de los sismos varia desde los muy cercanos a la superficie de la Tierra hasta los 8 km. Las profundidades someras ocurren principalmente en los edificios volcanicos. Los sismos mas profundos ocurren fuera del area volcanica. La magnitud de duracion de los microsismos localizados varia entre 1 y 3. La razon Vp/Vs y los valores bajos de Q que se estimaron en la zona sugieren un material con propiedades heterogeneas bajo las estructuras

  6. Design of a K-Band Transmit Phased Array For Low Earth Orbit Satellite Communications

    Science.gov (United States)

    Watson, Thomas; Miller, Stephen; Kershner, Dennis; Anzic, Godfrey

    2000-01-01

    The design of a light weight, low cost phased array antenna is presented. Multilayer printed wiring board (PWB) technology is utilized for Radio Frequencies (RF) and DC/Logic manifold distribution. Transmit modules are soldered on one side and patch antenna elements are on the other, allowing the use of automated assembly processes. The 19 GHz antenna has two independently steerable beams, each capable of transferring data at 622 Mbps. A passive, self-contained phase change thermal management system is also presented.

  7. Note on transmitted complexity for quantum dynamical systems

    Science.gov (United States)

    Watanabe, Noboru; Muto, Masahiro

    2017-10-01

    Transmitted complexity (mutual entropy) is one of the important measures for quantum information theory developed recently in several ways. We will review the fundamental concepts of the Kossakowski, Ohya and Watanabe entropy and define a transmitted complexity for quantum dynamical systems. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  8. Integrated Reconfigurable High-Voltage Transmitting Circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Jørgensen, Ivan Harald Holger

    2014-01-01

    -out and measurements are performed on the integrated circuit. The transmitting circuit is reconfigurable externally making it able to drive a wide variety of CMUTs. The transmitting circuit can generate several pulse shapes, pulse voltages up to 100 V, maximum pulse range of 50 V and frequencies up to 5 MHz. The area...

  9. 47 CFR 25.271 - Control of transmitting stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Control of transmitting stations. 25.271 Section 25.271 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.271 Control of transmitting stations. (a) The licensee of...

  10. GNSS satellite transmit power and its impact on orbit determination

    Science.gov (United States)

    Steigenberger, Peter; Thoelert, Steffen; Montenbruck, Oliver

    2018-06-01

    Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50-240 W were obtained, 20-135 W for GLONASS, 95-265 W for Galileo, and 130-185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1-27 mm depending on the transmit power, the satellite mass, and the orbital period.

  11. Discourse on the values transmitted in universities Uganda ...

    African Journals Online (AJOL)

    The study delved into the values transmitted in Universities in Uganda. Data were collected from a sample of 850 respondents who were drawn from faith-based, for–profit and public universities in the country. It was found that material, social/ public, personal and religious values are transmitted to students in the selected ...

  12. 22 CFR 1203.735-214 - Transmitting communications and gifts.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Transmitting communications and gifts. 1203.735....735-214 Transmitting communications and gifts. (a) Correspondence. In corresponding with anyone other... it to be clearly in the public interest to do so. (c) Gifts. An employee shall not act as an agent...

  13. [Soil-transmitted helminth trends and prevalence in La Virgen, Colombia 1995-2005].

    Science.gov (United States)

    Fernández-Niño, Julián A; Reyes-Harker, Patricia; Moncada-Alvarez, Ligia I; López, Myriam C; Cháves, María Del Pilar; Knudson, Angélica; Ariza, Yoseth

    2007-01-01

    Describing soil-transmitted helminthiasis prevalence and trends in children aged less than 15 in the village of La Virgen, Cundinamarca. Three non-random surveys were carried out on school-children aged 0 to 15 years. Intestinal parasitism was determined In the three cross-sectional studies by direct examination of fecal samples and modified Ritchie-Frick concentration method. Intestinal parasitism distribution was analysed and the trend during 1995-2005 described. The prevalence of intestinal parasitism in children aged less than 5 increased from 62,5 % in 1995 to 66,7 % in 2001 and to 69 % in 2005; soil-transmitted helminthiasis prevalence in this age group was 37,5 % in 1995, 23,6 % in 2001 and 27,6 % in 2005. The prevalence of intestinal parasitism for children aged over 5 increased from 86,2 % in 1995 to 89,1 % in 2005; soil-transmitted helminthiasis prevalence was 62,9 % in 1995, 39,8 % in 2001 and 23,9 % in 2005. Soil-transmitted helminthiasis was endemic and presented high prevalence during the study period. Effective control measures are needed to prevent intestinal parasitism in pre-school and schoolchildren.

  14. Exact performance analysis of MIMO cognitive radio systems using transmit antenna selection

    KAUST Repository

    Tourki, Kamel

    2014-03-01

    We consider in this paper, a spectrum sharing cognitive radio system with a ratio selection scheme; where one out of N independent-and-identically- distributed transmit antennas is selected such that the ratio of the secondary transmitter (ST) to the secondary receiver (SR) channel gain to the interference from the ST to the primary receiver (PR) channel gain is maximized. Although previous works considered perfect, outdated, or partial channel state information at the transmitter, we stress that using such assumptions may lead to a feedback overhead for updating the SR with the ST-PR interference channel estimation. Considering only statistical knowledge of the ST-PR channel gain, we investigate a ratio selection scheme using a mean value (MV)-based power allocation strategy referred to as MV-based scheme. We first provide the exact statistics in terms of probability density function and cumulative distribution function of the secondary channel gain as well as of the interference channel gain. Furthermore, we derive exact cumulative density function of the received signal-to-noise ratio at the SR where the ST uses a power allocation based on instantaneous perfect channel state information (CSI) referred to as CSI-based scheme. These statistics are then used to derive exact closed form expressions of the outage probability, symbol error rate, and ergodic capacity of the secondary system when the interference channel from the primary transmitter (PT) to the SR is ignored. Furthermore, an asymptotical analysis is also carried out for the MV-based scheme as well as for the CSI-based scheme to derive the generalized diversity gain for each. Subsequently, we address the performance analysis based on exact statistics of the combined signal-to-interference-plus- noise ratio at the SR of the more challenging case; when the PT-SR interference channel is considered. Numerical results in a Rayleigh fading environment manifest that the MV-based scheme outperforms the CSI

  15. Sexually transmitted diseases among psychiatric patients in Brazil.

    Science.gov (United States)

    Dutra, Maria Rita Teixeira; Campos, Lorenza Nogueira; Guimarães, Mark Drew Crosland

    2014-01-01

    Sexually transmitted diseases are still highly prevalent worldwide and represent an important public health problem. Psychiatric patients are at increased risk of sexually transmitted diseases but there are scarce published studies with representative data of this population. We sought to estimate the prevalence and correlates of self-reported sexually transmitted diseases among patients with mental illnesses under care in a national representative sample in Brazil (n=2145). More than one quarter of the sample (25.8%) reported a lifetime history of sexually transmitted disease. Multivariate analyses showed that patients with a lifetime sexually transmitted disease history were older, had history of homelessness, used more alcohol and illicit drugs, suffered violence, perceived themselves to be at greater risk for HIV and had high risk sexual behavioral: practised unprotected sex, started sexual life earlier, had more than ten sexual partners, exchanged money and/or drugs for sex and had a partner that refused to use condom. Our findings indicate a high prevalence of self-reported sexually transmitted diseases among psychiatric patients in Brazil, and emphasize the need for implementing sexually transmitted diseases prevention programs in psychiatric settings, including screening, treatment, and behavioral modification interventions. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.

  16. Analysis of Ultrasonic Transmitted Signal for Apple using Wavelet Transform

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Lee, Sang Dae; Choi, Man Yong; Kim, Man Soo

    2005-01-01

    This study was conducted to analyze the ultrasonic transmitted signal for apple using wavelet transform. Fruit consists of nonlinear visco-elastic properties such as flesh, an ovary and rind and lienee most ultrasonic wave is attenuated and its frequency is shifted during passing the fruit. Thus it is not easy to evaluate the internal quality of the fruit using typical ultrasonic parameters such as wave velocity, attenuation, and frequency spectrum. The discrete wavelet transform was applied to the ultrasonic transmitted signal for apple. The magnitude of the first peak frequency of the wavelet basis from the ultrasonic transmitted signal showed a close correlation to the storage time of apple

  17. Fluorinert as a pressure-transmitting medium for high-pressure diffraction studies

    International Nuclear Information System (INIS)

    Varga, Tamas; Wilkinson, Angus P.; Angel, Ross J.

    2003-01-01

    Fluorinert is a liquid pressure-transmitting medium that is widely used in high-pressure diffraction work. A systematic study of five different fluorinerts was carried out using single-crystal x-ray diffraction in a diamond-anvil cell in order to determine the pressure range over which they provide a hydrostatic stress state to the sample. It was found that none of the fluorinerts studied can be considered hydrostatic above 1.2 GPa, a lower pressure than reported previously

  18. Climate Chage in Spain and its Influence on Vector-Transmitted Diseases

    Directory of Open Access Journals (Sweden)

    Andres Iriso Calle

    2017-06-01

    Full Text Available In the past few decades Spain has experienced a resurgence of some vector-transmitted diseases which were thought to be under control and the appearance of new ones. Likewise, the arrival of new vectors and, in some cases, their establishment and expansion is creating to new public health risks. In general, these phenomena have been associated with complex ecological and climate-driven changes which have favored and increased the densities of vectors and their reservoirs, but they have also been affected by processes that have been triggered or accelerated by man such as globalization, urban development, deforestation and land-use changes.Changes in the distribution of vectors and their capacity to transmit pathogens owing to climate change will become more evident in areas that lie within their distribution limits, as is Spain’s case.This is compounded by Spain’s proximity to Africa and the potential entry of new vectors and pathogens from this continent.This scenario necessitates setting up action programs aimed at both identifying risks posed by vectors and preventing vector-borne diseases, and efficiently managing possible outbreaks that could occur in the future.We have reviewed the scenarios which Spain is expected to experience in connection with climate change and its impact on the incidence of diseases transmitted by mosquitoes, phlebotomine sand flies, ticks and other arthropods, and rodents.

  19. Hydrazine and hydrogen coinjection to mitigate stress corrosion cracking of structural materials in boiling water reactors (7). Effects of bulk water chemistry on ECP distribution inside a crack

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ishida, Kazushige; Tachibana, Masahiko; Aizawa, Motohiro; Fuse, Motomasa

    2007-01-01

    Water chemistry in a simulated crack (crack) has been studied to understand the mechanisms of stress corrosion cracking in a boiling water reactor environment. Electrochemical corrosion potential (ECP) in a crack made in an austenite type 304 stainless steel specimen was measured. The ECP distribution along the simulated crack was strongly affected by bulk water chemistry and bulk flow. When oxygen concentration was high in the bulk water, the potential difference between the crack tip and the outside of the crack (ΔE), which must be one motive force for crack growth, was about 0.3V under a stagnant condition. When oxygen was removed from the bulk water, ECP inside and outside the crack became low and uniform and ΔE became small. The outside ECP was also lowered by depositing platinum on the steel specimen surface and adding stoichiometrically excess hydrogen to oxygen to lower ΔE. This was effective only when bulk water did not flow. Under the bulk water flow condition, water-borne oxygen caused an increase in ECP on the untreated surface inside the crack. This also caused a large ΔE. The ΔE effect was confirmed by crack growth rate measurements with a catalyst-treated specimen. Therefore, lowering the bulk oxidant concentration by such measures as hydrazine hydrogen coinjection, which is currently under development, is important for suppressing the crack growth. (author)

  20. Spectroscopy Stress Evaluation of Translucid Polymers Using Laser Photoelasticity

    Science.gov (United States)

    Treviño, Marciano Vargas; Gil, Aarón Flores; Rodríguez-Lelis, J. M.; González, Antonio Hernández; Arvizo, Dagoberto Vela; Alarcón, Manuel May; Pliego, Arturo Abundez

    2008-04-01

    Several studies can be found where the mechanical strength of fiber composites is evaluated, but not much can be found regarding the influence of voids, as a second phase, in the same mechanical behavior of materials. In the present work, the influence of bubble presence into translucid polymeric bars is investigated. For this purpose, cubic probes with an anisotropic distribution of bubbles were casted, and other were casted controlling the manufacture process to avoid the bubble formation. Each probe was placed in a He-Ne laser-photoelastic arrangement and subjected to compression by an static load. The transmitted 630 nm, He-Ne laser beam was captured by a single mode fiber optic sensor and then transmitted to a spectrometer and PC. Analysis of the spectrometer signals showed that the maximum stresses are concentrated on the bubbles reducing the surface stresses and inducing damping on the probe. The amount of damping depends on the size of the bubbles formed within the probe and their arrangement, thus it can be anticipated that stresses can be directed for specific arrangements in size of bubbles. A white light was also employed in substitution of the laser to investigated the effect of wave length on the results previously obtained. The effect of damping was also experienced but although more information could be obtained caused of the non-coherent nature of the light, it was no possible to obtain full information of the structure of the probes.

  1. Switch and examine transmit diversity for spectrum sharing systems

    KAUST Repository

    Abdallah, Mohamed M.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2011-01-01

    In this paper, we develop a switch and examine transmit diversity algorithm for spectrum sharing cognitive networks. We consider a cognitive network composed of a primary link that employs constant rate and constant power transmission scheme

  2. Adaptive single-antenna transmit selection with interference suppression

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2011-01-01

    -efficient transmission with as low transmit channel estimations as possible. Due to the fact that the number of active co-channel interfering signals and their corresponding powers experience random behavior, the adaptation to channels conditions, assuming uniform buffer

  3. Integrated reconfigurable high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Jørgensen, Ivan Harald Holger

    2015-01-01

    In this paper a high-voltage transmitting circuit aimed for capacitive micromachined ultrasonic transducers (CMUTs) used in scanners for medical applications is designed and implemented in a 0.35 μm high-voltage CMOS process. The transmitting circuit is reconfigurable externally making it able...... to drive a wide variety of CMUTs. The transmitting circuit can generate several pulse shapes with voltages up to 100 V, maximum pulse range of 50 V, frequencies up to 5 MHz and different driving slew rates. Measurements are performed on the circuit in order to assess its functionality and power consumption...... performance. The design occupies an on-chip area of 0.938 mm2 and the power consumption of a 128-element transmitting circuit array that would be used in an portable ultrasound scanner is found to be a maximum of 181 mW....

  4. Behavioural risk factors for sexually transmitted infections and health ...

    African Journals Online (AJOL)

    Behavioural risk factors for sexually transmitted infections and health ... sharing of personal effects, malnourishment and sexual harassment. ... Development of risk reduction and appropriate sexual health interventions targeted at prevention ...

  5. Pair formation models for sexually transmitted infections : A primer

    NARCIS (Netherlands)

    Kretzschmar, MEE; Heijne, Janneke C M

    For modelling sexually transmitted infections, duration of partnerships can strongly influence the transmission dynamics of the infection. If partnerships are monogamous, pairs of susceptible individuals are protected from becoming infected, while pairs of infected individuals delay onward

  6. On the performance of transmit antenna selection based on shadowing side information

    KAUST Repository

    Yilmaz, Ahmet Oǧuz; Yilmaz, Ferkan; Alouini, Mohamed-Slim; Kucur, Oǧuz

    2013-01-01

    In this paper, a transmit antenna selection scheme, which is based on shadowing side information, is investigated. In this scheme, the selected single transmit antenna provides the highest shadowing coefficient between a transmitter and a receiver. By the proposed technique, the frequency of the usage of the feedback channel from the receiver to the transmitter and channel estimation complexity at the receiver can be reduced. We study the performance of our proposed technique, and in the analysis, we consider an independent but not identically distributed generalized-K composite fading model. More specifically, exact and closed-form expressions for the outage probability, the moment-generating function, the moments of signal-to-noise ratio, and the average symbol error probability (SEP) are derived. In addition, asymptotic outage probability and SP expressions are also presented to investigate the diversity order and the array gain. Finally, our theoretical performance results are validated by Monte Carlo simulations. © 2012 IEEE.

  7. Alfalfa Leaf Curl Virus: an Aphid-Transmitted Geminivirus.

    Science.gov (United States)

    Roumagnac, Philippe; Granier, Martine; Bernardo, Pauline; Deshoux, Maëlle; Ferdinand, Romain; Galzi, Serge; Fernandez, Emmanuel; Julian, Charlotte; Abt, Isabelle; Filloux, Denis; Mesléard, François; Varsani, Arvind; Blanc, Stéphane; Martin, Darren P; Peterschmitt, Michel

    2015-09-01

    The family Geminiviridae comprises seven genera differentiated by genome organization, sequence similarity, and insect vector. Capulavirus, an eighth genus, has been proposed to accommodate two newly discovered highly divergent geminiviruses that presently have no known vector. Alfalfa leaf curl virus, identified here as a third capulavirus, is shown to be transmitted by Aphis craccivora. This is the first report of an aphid-transmitted geminivirus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. EXPERIMENTAL STUDY ON LIGHT TRANSMITTING CONCRETE BY USING OPTICAL FIBRE

    OpenAIRE

    S. Suganya; S. Minu Gopika

    2017-01-01

    Light transmitting concrete is one of the fibre reinforced concrete which is mainly used for aesthetic application by incorporating the optical fibres in concrete. Optical fibres help to transmit the light through the fibres and the end-light type of fibre is used to increase the aesthetic appearance of the concrete which is like a transparent concrete. Fibres are arranged in different layers, to increase the load carrying capacity and also the pattern can be created to make the concrete deco...

  9. Secure direct communication based on secret transmitting order of particles

    International Nuclear Information System (INIS)

    Zhu Aidong; Zhang Shou; Xia Yan; Fan Qiubo

    2006-01-01

    We propose the schemes of quantum secure direct communication based on a secret transmitting order of particles. In these protocols, the secret transmitting order of particles ensures the security of communication, and no secret messages are leaked even if the communication is interrupted for security. This strategy of security for communication is also generalized to a quantum dialogue. It not only ensures the unconditional security but also improves the efficiency of communication

  10. Nosocomial Infections Transmitted Via Computers : A Literature Review

    OpenAIRE

    Atanda, Angela Achieng; Nwaoha, Nkechi Naomi

    2010-01-01

    The purpose of this review was to discuss how current literature described nosocomial infections transmitted via computers in hospitals. It also described the various methods used to disinfect computers. The research questions in this study were; What are nosocomial infections? How do contaminated computer devices transmit nosocomial infections? and What infection control methods are applied to decontaminate computers within hospitals? The aim of conducting this study was to create an aw...

  11. Some Models for Epidemics of Vector-Transmitted Diseases

    OpenAIRE

    Brauer, Fred; Castillo-Chavez, Carlos; Mubayi, Anuj; Towers, Sherry

    2016-01-01

    Vector-transmitted diseases such as dengue fever and chikungunya have been spreading rapidly in many parts of the world. The Zika virus has been known since 1947 and invaded South America in 2013. It can be transmitted not only by (mosquito) vectors but also directly through sexual contact. Zika has developed into a serious global health problem because, while most cases are asymptomatic or very light, babies born to Zika - infected mothers may develop microcephaly and other very serious birt...

  12. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression.

    Science.gov (United States)

    Dolega, M E; Delarue, M; Ingremeau, F; Prost, J; Delon, A; Cappello, G

    2017-01-27

    The surrounding microenvironment limits tumour expansion, imposing a compressive stress on the tumour, but little is known how pressure propagates inside the tumour. Here we present non-destructive cell-like microsensors to locally quantify mechanical stress distribution in three-dimensional tissue. Our sensors are polyacrylamide microbeads of well-defined elasticity, size and surface coating to enable internalization within the cellular environment. By isotropically compressing multicellular spheroids (MCS), which are spherical aggregates of cells mimicking a tumour, we show that the pressure is transmitted in a non-trivial manner inside the MCS, with a pressure rise towards the core. This observed pressure profile is explained by the anisotropic arrangement of cells and our results suggest that such anisotropy alone is sufficient to explain the pressure rise inside MCS composed of a single cell type. Furthermore, such pressure distribution suggests a direct link between increased mechanical stress and previously observed lack of proliferation within the spheroids core.

  13. Transmit selection algorithms for imperfect threshold-based receive MRC in the presence of co-channel interference

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2010-01-01

    The performance of transmit antenna selection for threshold-based maximal ratio combining (MRC) diversity receivers in the presence of multiple co-channel interfering signals is studied. The impact of imperfect channel estimation of desired user signals is considered, and the effect of phase and time misalignments between desired and undesired signals is incorporated in the analysis. Precise formulation for Nakagami-m faded interfering signals is presented. The analysis is applicable for arbitrary transmit antenna selection, which is based on the receiver combined signal-to-noise ratios (SNRs) or combined signal-to-interference-plus-noise ratios (SINRs) for different transmit channels. New expressions for the distribution of combined SINR and outage probability performance are derived considering SNR-based as well as SINR-based selection algorithms. The results can be used to study the performance of different system architectures under various channel conditions when the implementation complexity is of interest. ©2010 IEEE.

  14. Decreasing Prevalence of Transfusion Transmitted Infection in Indian Scenario

    Directory of Open Access Journals (Sweden)

    Tulika Chandra

    2014-01-01

    Full Text Available Transfusion transmitted infections are major problem associated with blood transfusion. Accurate estimates of risk of TTIs are essential for monitoring the safety of blood supply and evaluating the efficacy of currently employed screening procedures. The present study was carried out to assess the percentage of voluntary donors and replacement donors and to find out prevalence and changing trends of various TTIs blood donors in recent years. A study was carried out on blood units of voluntary and replacement donors which were collected from January 2008 to December 2012. On screening of 180,371 replacement units, seropositivity of transfusion transmitted disease in replacement donors was 0.15% in HIV, 1.67% in hepatitis B surface antigen, 0.49% in hepatitis C virus, 0.01% in VDRL, and 0.009% in malaria. Of 11,977 voluntary units, seropositivity of transfusion transmitted disease in voluntary donors was 0.08% in HIV, 0.24% in hepatitis B surface antigen, 0.001% in hepatitis C virus, 0.008% in VDRL (sexually transmitted disease, and 0.01% in malaria. From results it has been concluded that prevalence of transfusion transmitted infection (HIV, HBV, HCV, VDRL, and malaria was more in replacement donors in comparison to voluntary donors. Extensive donor selection and screening procedures will help in improving the blood safety.

  15. Influence of sexually transmitted infections in a horse breeding

    Directory of Open Access Journals (Sweden)

    Kosec Marjan

    2015-01-01

    Full Text Available The most frequent problems in horses reproduction are generally divided into those of infectious and non infectious etiology. Common causes of infectious diseases are usual­ly viruses and bacteria, and less frequently protozoa, mykoplasma and fungi. In this work there are presented the most important fact about sexually transmitted diseases, their clinical picture, risk factors, preventive measures as well as measures to prevent and eradicate the diseases. The biggest risk factor for sexually transmitted diseases in horses are breeding stallions, both in natural mating and in artificial insemination. Therefore, in order to prevent genital infections in horses, it is essential that the stallions used for breeding are healthy (non-infected. That can be determined with certainty only if the stallions are examined (tested just before the breeding season on most frequent sexually transmitted diseases (CEM,EAV. It is well known that in most cases the clinical picture of sexually transmitted diseses is not manifested on genitals. As well, variations in clinical picture can be expected also in mares, depending on the stage of the disease and its etiology. Harms arising from sexually transmitted diseases can be divided into direct and indirect. Direct damage occurs in the form of endometritis, miscarriage, stillbirths and births of weak foals, and indirect in restricting the traffic of infected and suspicios animals, isolation of the infected ones as well as medical treatment and interrupting mating.

  16. Power distribution monitor for nuclear reactor

    International Nuclear Information System (INIS)

    Nishizawa, Yasuo; Kiguchi, Takashi.

    1974-01-01

    Object: To compare the measured local power region monitor (LPRM) index with the result of a primary calculation to correct the threshold condition for the primary calculation thereby to rapidly grasp and monitor the existing power distribution. Structure: The index of an LPRM disposed in a nuclear reactor is processed in a data processor to remove therefrom a noise, and transmitted to a threshold condition processor to be stored therein. The LPRM index measured by the threshold condition processor is compared with the calculated LPRM value transmitted from the primary processor, whereby the threshold condition is corrected and transmitted to the primary processor. After the completion of calculation, the traversing incore probe (TIP) indexing value is converted to a thermal output distribution or a linear output density distribution and transmitted to an output indicator or an output typewriter. The operator may monitor the existing power distribution by monitoring the output indicator. (Kamimura, M.)

  17. Nematode infections: soil-transmitted helminths and trichinella.

    Science.gov (United States)

    Knopp, Stefanie; Steinmann, Peter; Keiser, Jennifer; Utzinger, Jürg

    2012-06-01

    Infection with soil-transmitted helminths occurs via ingestion of nematode eggs with contaminated food and water, via hands, or inhalation of dust, or by penetration of larvae through the skin. Trichinella infections are caused by the ingestion of larvae contained in undercooked meat. In highly endemic areas, preventive chemotherapy (ie, regular administration of anthelmintic drugs to at-risk populations) is the key strategy against soil-transmitted helminthiasis. Integrated control approaches, including improved hygiene, sanitation, and water, are required for lasting effects. Because of growing tourism, travel, and migration, clinicians and specialized travel clinics must remain aware of the diagnosis, prevention, and treatment of soil-transmitted helminth and Trichinella infections. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Interoception and Stress

    Directory of Open Access Journals (Sweden)

    André eSchulz

    2015-07-01

    Full Text Available Afferent neural signals are continuously transmitted from visceral organs to the brain. Interoception refers to the processing of visceral-afferent neural signals by the central nervous system, which can finally result in the conscious perception of bodily processes. Interoception can, therefore, be described as a prominent example of information processing on the ascending branch of the brain-body axis. Stress responses involve a complex neuro-behavioral cascade, which is elicited when the organism is confronted with a potentially harmful stimulus. As this stress cascade comprises a range of neural and endocrine pathways, stress can be conceptualized as a communication process on the descending branch of the brain-body axis. Interoception and stress are, therefore, associated via the bi-directional transmission of information on the brain-body axis. It could be argued that excessive and/or enduring activation (e.g. by acute or chronic stress of neural circuits, which are res