WorldWideScience

Sample records for stress corrosion susceptibilities

  1. Susceptibility to Stress Corrosion Cracking of 254SMO SS

    Directory of Open Access Journals (Sweden)

    De Micheli Lorenzo

    2002-01-01

    Full Text Available The susceptibility to stress corrosion cracking (SCC of solubilized and sensitized 254SMO SS was studied in sodium chloride, and sodium fluoride solutions at 80 °C and sulfuric acid solutions in presence of sodium chloride at 25 °C. The influence of salt concentration, pH values and the addition of thiosulfate was examined. The susceptibility to SCC was evaluated by Slow Strain Rate Tests (SSRT, at 1.5 x 10-6 s-1 strain rate. The behavior of 254SMO was compared to those of AISI 316L SS and Hastelloy C276. 254SMO showed an excellent resistance to SCC in all conditions, except in the more acidic solutions (pH <= 1 where, in the sensitized conditions, intergranular stress corrosion cracking occurred.

  2. Thermomechanical processing of 5083 aluminum to increase strength without increasing susceptibility to stress corrosion cracking

    International Nuclear Information System (INIS)

    Edstrom, C.M.; Blakeslee, J.J.

    1980-01-01

    5083 aluminium with 25% cold work must be processed above 215 0 C or below 70 0 C to avoid forming continuous precipitate in the grain boundaries which makes the material susceptible to stress corrosion cracking. Time at temperature above 215 0 C should be held to minimum (less than 30 min) to retain some strength from the 25% cold work

  3. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace applications

    Science.gov (United States)

    Pizzo, P. P.

    1982-01-01

    Stress corrosion tests of Al-Li-Cu powder metallurgy alloys are described. Alloys investigated were Al-2.6% Li-1.4% and Al-2.6% Li-1.4% Cu-1.6% Mg. The base properties of the alloys were characterized. Process, heat treatment, and size/orientational effects on the tensile and fracture behavior were investigated. Metallurgical and electrochemical conditions are identified which provide reproducible and controlled parameters for stress corrosion evaluation. Preliminary stress corrosion test results are reported. Both Al-Li-Cu alloys appear more susceptible to stress corrosion crack initiation than 7075-T6 aluminum, with the magnesium bearing alloy being the most susceptible. Tests to determine the threshold stress intensity for the base and magnesium bearing alloys are underway. Twelve each, bolt loaded DCB type specimens are under test (120 days) and limited crack growth in these precracked specimens has been observed. General corrosion in the aqueous sodium chloride environment is thought to be obscuring results through crack tip blunting.

  4. Stress corrosion cracking susceptibility of selected materials for steam plant bolting applications

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, P.; Noga, J.O.; Ogundele, G.

    1996-12-01

    The incidence of alloy steel bolting failure in nuclear and fossil fired generating plants was discussed. The problem manifests itself in the form of intergranular stress corrosion cracking. A study was conducted to rank the susceptibility of three materials (Alloy AISI, type 4140, Alloy ASTM A564-92AXM 13 and Inconel 718) to stress corrosion cracking and to determine threshold stress intensity factors of currently used and alternate alloys in service environments typically encountered in steam generating utility plants. Although most alloy steel bolting failures have involved Cr-Mo, failures have also been reported for all the above mentioned materials. Attempts to minimize the occurrence of stress corrosion cracking have involved a ban on molybdenum disulphide, limiting bolt tightening torque and placing an upper limit on bolt hardness, and by correlation on tensile strength. Slow strain rate and wedge opening-loading specimen tests were used to evaluate commonly used and superior alternative bolting materials. Electrochemical polarization tests were also conducted. Threshold stresses in a H{sub 2}S environment were determined according to NACE standard TM-01-77. Results showed that, to a certain degree, all tested materials were susceptible to stress corrosion cracking. They ranked as follows from best to worst performance: (1) the Inconel 718, (2) alloy SM 13, and (3) alloy 4140. 9 refs., 20 tabs., 34 figs.

  5. Method of evaluation of stress corrosion cracking susceptibility of clad fuel tubes

    International Nuclear Information System (INIS)

    Takase, Iwao; Yoshida, Toshimi; Ikeda, Shinzo; Masaoka, Isao; Nakajima, Junjiro.

    1986-01-01

    Purpose: To determine, by an evaluation in out-pile test, the stress corrosion cracking susceptibility of clad fuel tubes in the reactor environment. Method: A plurality of electrodes are mounted in the circumferential direction on the entire surface of cladding tubes. Of the electrodes, electrodes at two adjacent places are used as measuring terminals and electrodes at another two places adjacent thereto are used as constant-current terminals. With a specific current flowing in the constant-current terminals, measurements are made of a potential difference between the terminals to be measured, and from a variation in the potential difference the depth of cracking of the cladding tube surface is presumed to determine the stress corrosion cracking susceptibility of the cladding tube. To check the entire surface of the cladding tube, the cladding tube is moved by each block in the circumferential direction by a contact changeover system, repeating the measurements of the potential difference. Contact type electrodes are secured with an insulator and held in uniform contact with the cladding tube by a spring. It is detachable by use of a locking system and movable as desired. Thus the stress corrosion cracking susceptibility can be determined without mounting the cladding tube through and also a fuel failure can be prevented. (Horiuchi, T.)

  6. Microstructural investigation of vintage pipeline steels highly susceptible to stress corrosion cracking

    Science.gov (United States)

    Torres, Monica

    The use of pipelines for the transmission of gas offers not only efficiency, but a number of economic advantages. Nevertheless, pipelines are subject to aggressive operating conditions and environments which can lead to in-service degradation [1] and thus to failures. These failures can have catastrophic consequences, such as environmental damage and loss of life [2]. One of the most dangerous threats to pipeline integrity is stress corrosion cracking (SCC). Despite the substantial progress that has been achieved in the field, due to the complex nature of this phenomenon there is still not a complete understanding of this form of external corrosion. This makes its detection and prevention a challenge and therefore a risk to pipeline integrity, and most importantly, to the safety of the population. SCC cracks are the result of the interaction between a corrosive environment, applied stresses, and a susceptible microstructure. To date, what defines a susceptible microstructure remains ambiguous, as SCC has been observed in a range of steel grades, microstructures, chemical composition, and grain sizes. Therefore, in order to be able to accurately predict and prevent this hazardous form of corrosion, it is imperative to advance our knowledge on the subject and gain a better understanding on the microstructural features of highly susceptible pipeline materials, especially in the subsurface zone where crack nucleation must take place. Therefore, a microstructural characterization of the region near the surface layer was carried-out utilizing TEM. TEM analysis revealed the dislocation character, ferrite morphology, and apparent carbide precipitation in some grain boundaries. Furthermore, light microscopy, SEM, and hardness testing were performed to expand our knowledge on the microscopical features of highly SCC susceptible service components. This investigation presents a new approach to SCC characterization, which exposed the sub-surface region microscopical

  7. Stress corrosion cracking susceptibility of the earthquake resistant NOM B457 Mexican steel

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    1994-01-01

    The Mexican construction code was modified after the Mexico city 1985 earthquake, substituted the medium carbon reinforced steel NOM B6 by the new micro alloyed steel NOM B457 in 42 Kg/mm 2 grade. The present study reports the evaluation of the NOM B457 steel behavior in mortar with and without 2% wt. in chlorides and in Ca(OH) 2 saturated solutions. The results are compared with the NOM B6 steel behavior in the same conditions. The Stress Corrosion Cracking (SCC) is not present in all the conditions used in this study and there are not susceptibility potential range to SCC when the material is evaluated by electrochemical Tests, Constant Extension Rate Tests (CERT) and Constant Load Test at 80 % of yield stress. A susceptibility potential range to Hydrogen Induced Cracking (HIC) is detected, below -900 mV. vs Standard Calomel Electrode (SCE) by CERT at constant potential

  8. Understanding susceptibility of in-core components to irradiation-assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1991-03-01

    As nuclear plants age and accumulated fluences of core structural components increase, susceptibility of the components to irradiation-assisted stress corrosion cracking (IASCC) is also expected to increase. Irradiation-induced sensitization, commonly associated with an IASCC failure, was investigated in this study to provide a better understanding of long-term structural integrity of safety-significant in-core components. Irradiation-induced sensitization of high- and commercial-purity Type 304 stainless steels irradiated in BWRs was analyzed. 7 refs., 8 figs

  9. Stress corrosion cracking susceptibility of steam generator tube materials in AVT (all volatile treatment) chemistry contaminated with lead

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Castano, M.L.; Garcia, M.S.

    1996-01-01

    Alloy 600 steam generator tubing has shown a high susceptibility to stress corrosion degradation at the operation conditions of pressurized water reactors. Several contaminants, such as lead, have been postulated as being responsible for producing the secondary side stress corrosion cracking that has occurred mainly at the location where these contaminants can concentrate. An extensive experimental work has been carried out in order to better understand the effects of lead on the stress corrosion cracking susceptibility of steam generator tube materials, namely Alloys 600, 690 and 800. This paper presents the experimental work conducted with a view to determining the influence of lead oxide concentration in AVT (all volatile treatment) conditions on the stress corrosion resistance of nickel alloys used in the fabrication of steam generator tubing. (orig.)

  10. Influence of cold worked layer on susceptibility to stress corrosion of duplex stainless steel

    International Nuclear Information System (INIS)

    Labanowski, J.; Ossowska, A.; Cwiek, J.

    2001-01-01

    Stress corrosion cracking resistance of cold worked layers on duplex stainless steel was investigated. The surface layers were performed through burnishing treatment. Corrosion tests were performed with the use of Slow Strain Rate Test technique in boiling 35% MgCl 2 solution. It has been shown that burnishing treatment increases corrosion resistance of steel. The factor that improves stress corrosion cracking resistance is crack incubation time. (author)

  11. The Role of Passive Film Growth Kinetics and Properties in Stress Corrosion and Crevice Corrosion Susceptibility

    Science.gov (United States)

    1975-10-01

    Kleinzack-Mathieu Cl. Mertens, J. Meunier, Cl. Vanlengenhaghe, L. de Munck, L. Laureys , L. N. Nellmans, and M . Warzu, Corrosion Science, 3, 239 (1963). 10) H...312O448 DEPARTMENT OF COMMERCE 11. CoMfact/Grat No. WASHINGTON. D.C. 20234 M 1 mRO36-082 12. Spoasoring Organizstion N~me and Complete Address (Street...Ill. Undw Swnay Dr. 111"y Alu-Juhws. AsnluaM ScWaty fr Salome and T0e@* M /WY NATIONAL UMAU OF STANDAWS. Ernest Ambler. Acting Dimwt PART I (To be

  12. Stress corrosion cracking susceptibilities of various stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Shoji, Saburo; Ohnaka, Noriyuki; Kikuchi, Eiji; Minato, Akira; Tanno, Kazuo.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) behaviors of several austenitic stainless steels in high temperature water were evaluated using three types of SCC tests, i.e., single U-bend test in chloride containing water, uniaxial constant load and constant extension rate tests (CERT) in pure water. The steels used were SUS 304, 304L, 316, 316L, 321 and 347 and several heats of them to examine heat to heat variations. The three test methods gave the same relative ranking of the steels. The CERT is the most sensitive method to detect the relative IGSCC susceptibilities. The CERT result for relative ranking from poor to good is: SUS 304 - 0.07% C, 304 - 0.06% C, 304L - 0.028% C, 316 - 0.07% C. The IGSCC susceptibilities of SUS 304L - 0.020% C, 316L - 0.023% C, 321 and 347 were not detected. These test results suggest that the use of the low carbon, molybdenum bearing, or stabilized austenitic stainless steel is beneficial for eliminating the IGSCC problem in boiling water reactor environment. (author)

  13. Stress corrosion cracking susceptibility of austenitic stainless steels in supercritical water conditions

    International Nuclear Information System (INIS)

    Novotny, R.; Haehner, P.; Ripplinger, S.; Siegl, J.; Penttilae, Sami; Toivonen, Aki

    2009-01-01

    Within the 6th Framework Program HPLWR-2 project (High Performance Light Water Reactor - Phase 2), stress corrosion cracking (SCC) susceptibilities of selected austenitic stainless steels, 316L and 316NG, were studied in supercritical water (SCW) with the aim to identify and describe the specific failure mechanisms prevailing during slow strain-rate tensile (SSRT) tests in ultra-pure demineralised SCW water solution. The SSRT tests were performed using a step-motor controlled loading device in an autoclave at 350 deg. C, 500 deg. C and 550 deg. C. Besides water temperature, the pressure, the oxygen content and the strain rate (resp. crosshead speed) were varied in the series of tests. The specimens SSRT tested to failure were subjected to fractographic analysis, in order to characterise the failure mechanisms. The fractography confirmed that failure was due to a combination of transgranular SCC and transgranular ductile fracture. The share of SCC and ductile fracture in the failure process of individual specimens was affected by the parameters of the SSRT tests, so that the environmental influence on SCC susceptibility could be assessed, in particular, the SCC sensitising effects of increasing oxygen content, decreasing strain rate and increasing test temperature. (author)

  14. Stress Corrosion cracking susceptibility of reduced-activation martensitic steel F82H

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Y. [Nuclear Energy and Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken (Japan); Jitsukawa, S.; Tsukada, T. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: For fusion power source in near future, supercritical water-cooled type blanket system was planned in Japan Atomic Energy Agency. The blankest system was designed by the present knowledge base and a reasonable extrapolation in material and design technology. Reduced-activation martensitic steel, F82H, is one of the blanket system structural materials. Therefore durability of the F82H for corrosion and stress corrosion cracking (SCC) is one of the concerns for this water-cooling concept of the blanket system. In this paper, SCC susceptibility of F82H was studied after heat treatments simulating post weld heat treatment (PWHT) or neutron-irradiation at 493 K to a dose level of 2.2 dpa. In order to evaluate SCC susceptibility of F82H, slow strain rate testing (SSRT) in high-purity, circulating water was conducted at 513-603 K in an autoclave. The strain rate was 1.0- 2.0x10{sup -7} s{sup -1}. Concentration of dissolved oxygen and hydrogen of the circulating water was controlled by bubbling with these gases. Specimens were heat treated after normalization at 1313 K for 40 min and water quenching. Some of the specimens were tempered at 873-1073 K for 1 h. Since the temperature control during PWHT in vacuum vessel by remote handling will be difficult, it is expected the tempering temperature will be different at place to place. Some specimens after tempering at 1033 K for 1 h were irradiated at 493 K to 2.2 dpa in Japan Research Reactor No.3 at Japan Atomic Energy Agency. The SSRT results showed the as-normalized specimens failed by IGSCC in oxygenated temperature water at 573 K. SSRT results of specimens with other tempering temperature conditions will be presented at conference. In irradiated specimen, IGSCC did not occur in oxygenated water at 5113-603 K. IGSCC also did not occur in hydrogenated water at 573 K. However TGSCC occurred in the irradiated specimen with a round notch (radius= {approx}0.2 mm) in oxygenated water at 573 K

  15. Stress corrosion cracking susceptibility of steam generator tubing on secondary side in restricted flow areas

    International Nuclear Information System (INIS)

    Fulger, M.; Lucan, D.; Radulescu, M.; Velciu, L.

    2003-01-01

    Nuclear steam generator tubes operate in high temperature water and on the secondary side in restricted flow areas many nonvolatile impurities accidentally introduced into circuit tend to concentrate. The concentration process leads to the formation of highly aggressive alkaline or acid solutions in crevices, and these solutions can cause stress corrosion cracking (SCC) on stressed tube materials. Even though alloy 800 has shown to be highly resistant to general corrosion in high temperature water, it has been found that the steam generator tubes may crack during service from the primary and/or secondary side. Stress corrosion cracking is still a serious problem occurring on outside tubes in operating steam generators. The purpose of this study was to evaluate the environmental factors affecting the stress corrosion cracking of steam generators tubing. The main test method was the exposure for 1000 hours into static autoclaves of plastically stressed C-rings of Incoloy 800 in caustic solutions (10% NaOH) and acidic chloride solutions because such environments may sometimes form accidentally in crevices on secondary side of tubes. Because the kinetics of corrosion of metals is indicated by anodic polarization curves, in this study, some stressed specimens were anodically polarized in caustic solutions in electrochemical cell, and other in chloride acidic solutions. The results presented as micrographs, potentiokinetic curves, and electrochemical parameters have been compared to establish the SCC behavior of Incoloy 800 in such concentrated environments. (authors)

  16. Susceptibility of 17-4PH stainless steel to stress corrosion cracking in aqueous environments by electrochemical techniques

    International Nuclear Information System (INIS)

    Diaz S, A.C.

    1997-01-01

    The susceptibility of a 17-4PH type steel to Stress Corrosion Cracking (SCC) in low pressure steam turbine environments was assessed using slow strain rate test at 90 Centigrade and at 1.35x10 -6 seg -1 . Environments tested included different concentrated solutions of NaCl, NaOH and Na 2 SO 4 . It was concluded that this steel is susceptible to SCC in 20 % NaCl and pH=3 and in 20 % NaCl pH=neutral but under cathodic polarisation. The electrochemical potential noise of the specimen was monitored during the test. The naturally fluctuations in potential were arise due to spontaneous brake protective film and were characteristics of the kind of corrosion like pit or stress corrosion cracking. After that using Fast Fourier Transformer (FFT) the noise data set were analyzed to obtain power spectral density plots which showed differences between general corrosion and localized corrosion. Polarization curves were carry out at two different rates and them showed the general behavior of the systems. (Author)

  17. Grain boundary segregation and intergranular stress corrosion cracking susceptibility of austenitic stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Shoji, T.; Yamaki, K.; Ballinger, R.G.; Hwang, I.S.

    1992-01-01

    The effects of grain boundary segregation on intergranular stress corrosion cracking of austenitic stainless steels in high temperature water have been examined as a function of heat treatment. The materials investigated were: (1) two commercial purity Type 304; (2) low sulfur Type 304; (3) nuclear grade Type 304; (4) ultra high purity Type 304L; and (5) Type 316L and Type 347L. Specimens were solution treated at 1050 degrees C for 0.5 hour and given a sensitization heat treatment at 650 degrees C for 50 hours. Some of the specimens were then subjected to an aging heat treatment at 850 degrees C for from one to ten hours to cause Cr recovery at the grain boundaries. The effects of heat treatments on degree of sensitization and grain boundary segregation were evaluated by Electrochemical Potentiokinetic Reactivation (EPR) and Coriou tests, respectively. The susceptibility to stress corrosion (SCC) was evaluated using slow strain rate tests technique (SSRT) in high temperature water. SSRT tests were performed in an aerated pure water (8 ppm dissolved oxygen) at 288 degrees C at a strain rate of 1.33 x 10 -6 /sec. Susceptibility to intergranular stress corrosion cracking was compared with degree of sensitization and grain boundary segregation. The results of the investigation indicate that EPR is not always an accurate indicator of SCC susceptibility. The Coriou test provides a more reliable measure of SCC susceptibility especially for 304L, 304NG, 316L, and 347L stainless steels. The results also indicate that grain boundary segregation as well as degree of sensitization must be considered in the determination of SCC susceptibility

  18. Effects of Cr and Nb contents on the susceptibility of Alloy 600 type Ni-base alloys to stress-corrosion cracking in a simulated BWR environment

    International Nuclear Information System (INIS)

    Akashi, Masatsune

    1995-01-01

    In order to discuss the effects of chromium and niobium contents on the susceptibility of Alloy 600 type nickel-base alloys to stress-corrosion cracking in the BWR primary coolant environment, a series of creviced bent-beam (CBB) tests were conducted in a high-temperature, high-purity water environment. Chromium, niobium, and titanium as alloying elements improved the resistivity to stress-corrosion cracking, whereas carbon enhanced the susceptibility to it. Alloy-chemistry-based correlations have been defined to predict the relative resistances of alloys to stress-corrosion cracking. A strong correlation was found, for several heats of alloys, between grain-boundary chromium depletion and the susceptibility to stress-corrosion cracking

  19. Stress-corrosion cracking susceptibility of V-15Cr-5Ti in pressurized water at 2880C

    International Nuclear Information System (INIS)

    Diercks, D.R.; Smith, D.L.

    1987-07-01

    The stress-corrosion cracking susceptibility of V-15Cr-5Ti in pressurized water at 288 0 C has been evaluated by means of constant extension rate tensile (CERT) tests in a refreshed autoclave system. The test environments included high-purity water as well as water containing SO 4 2- and NO 3 - impurities at a concentration of 10 wppM. Strain rates from 1 x 10 -6 to 5 x 10 -8 s -1 were employed, and dissolved oxygen levels ranged from <0.005 to 7.9 wppM. Test times were from 3.2 to 619 h. No stress corrosion cracking was observed under any of the test conditions. These results were analyzed using measured electrochemical potentials, available Pourbaix diagram information, and the observed oxidation behavior. 7 refs., 5 figs., 1 tab

  20. Effect of water content on the stress corrosion cracking susceptibility of Zircaloy-4 in iodine-alcoholic solutions

    International Nuclear Information System (INIS)

    Gomez Sanchez, Andrea; Farina, Silvia B.; Duffo, Gustavo S.

    2005-01-01

    The stress corrosion cracking (SCC) susceptibility of Zircaloy-4 (UNS R60804) was studied in 10 g/L iodine dissolved in various alcohols: methanol, ethanol, 1 propanol, 1-butanol, 1-pentanol and 1-octanol. SCC was observed in all the systems studied and it was found that the higher the size of alcohol molecule, the lower the SCC susceptibility. The existence of intergranular attack -controlled by the diffusion of the active species- is a condition for the SCC process to occur. In the present work the inhibiting effect of water on the SCC susceptibility of Zircaloy-4 in iodine-alcoholic solutions was also investigated and the results showed that the minimum water content to inhibit the SCC process depends on the type of alcohol used as a solvent. (author) [es

  1. Standard test method for determining susceptibility to stress-corrosion cracking of 2XXX and 7XXX Aluminum alloy products

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This test method covers a uniform procedure for characterizing the resistance to stress-corrosion cracking (SCC) of high-strength aluminum alloy wrought products for the guidance of those who perform stress-corrosion tests, for those who prepare stress-corrosion specifications, and for materials engineers. 1.2 This test method covers method of sampling, type of specimen, specimen preparation, test environment, and method of exposure for determining the susceptibility to SCC of 2XXX (with 1.8 to 7.0 % copper) and 7XXX (with 0.4 to 2.8 % copper) aluminum alloy products, particularly when stressed in the short-transverse direction relative to the grain structure. 1.3 The values stated in SI units are to be regarded as standard. The inch-pound units in parentheses are provided for information. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and de...

  2. Metallurgy of stress corrosion cracking

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1973-01-01

    The susceptibility of metals and alloys to stress corrosion is discussed in terms of the relationship between structural characteristics (crystal structure, grains, and second phases) and defects (vacancies, dislocations, and cracks) that exist in metals and alloys. (U.S.)

  3. Effect of surface treatments on stress corrosion cracking susceptibility of nickel base alloys

    International Nuclear Information System (INIS)

    Iwanami, Masaru; Kaneda, Junya; Tamako, Hiroaki; Hato, Hisamitsu; Takamoto, Shinichi

    2009-01-01

    Effect of surface treatment on SCC susceptibility of Ni base alloys was investigated. Cracks were observed in all grinding specimens in a creviced bent beam (CBB) test. On the other hand, no cracks occurred in shot peening (SP), water jet peening (WJP) specimens. It was indicated that these surface treatments effectively reduced the SCC susceptibility of nickel-base alloys. As a result of a residual stress test, the surface of specimens with grinding had high tensile residual stress. However, SP and WJP improved surface residual stress to compressive stress. The depth of the compressive effect of WJP was almost the same as that of SP. However, the surface hardness of WJP specimens differed from that of SP and it was found that WJP had less impact on surface hardening. This difference was consistent with their surface microstructures. The surface of SP specimens had clearly the deformation region, but the surface of WJP specimens was localized. (author)

  4. Effects of cyclic tensile loading on stress corrosion cracking susceptibility for sensitized Type 304 stainless steel in 290 C high purity water

    International Nuclear Information System (INIS)

    Takaku, H.; Tokiwai, M.; Hirano, H.

    1979-01-01

    The effects of load waveform on intergranular stress corrosion cracking (IGSCC) susceptibility have been examined for sensitized Type 304 stainless steels in a 290 C high purity water loop. Concerning the strain rate in the trapezoidal stress waveform, it was found that IGSCC susceptibility was higher for smaller values of the strain rate. It was also shown that IGSCC susceptibility became higher when the holding time at the upper stress was prolonged, and when the upper stress was high. The occurrence of IGSCC for sensitized Type 304 stainless steel became easy due to the application of cyclic tensile stress in 290 C high purity water

  5. Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

    International Nuclear Information System (INIS)

    Lee, Woo Yong; Koh, Seong Ung; Kim, Kyoo Young

    2005-01-01

    The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. however, corrosion rate was not directly related to SSC susceptibility of steels

  6. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER)

    International Nuclear Information System (INIS)

    Matadamas C, N.

    1995-01-01

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H 3 BO 3 Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author)

  7. Relative Humidity and the Susceptibility of Austenitic Stainless Steel to Stress Corrosion Cracking in an impure Plutonium Oxide Environment

    Energy Technology Data Exchange (ETDEWEB)

    Zapp, P.; Duffey, J.; Lam, P.; Dunn, K.

    2010-05-05

    Laboratory tests to investigate the corrosivity of moist plutonium oxide/chloride salt mixtures on 304L and 316L stainless steel coupons showed that corrosion occurred in selected samples. The tests exposed flat coupons for pitting evaluation and 'teardrop' stressed coupons for stress corrosion cracking (SCC) evaluation at room temperature to various mixtures of PuO{sub 2} and chloride-bearing salts for periods up to 500 days. The exposures were conducted in sealed containers in which the oxide-salt mixtures were loaded with about 0.6 wt % water from a humidified helium atmosphere. Observations of corrosion ranged from superficial staining to pitting and SCC. The extent of corrosion depended on the total salt concentration, the composition of the salt and the moisture present in the test environment. The most significant corrosion was found in coupons that were exposed to 98 wt % PuO{sub 2}, 2 wt % chloride salt mixtures that contained calcium chloride and 0.6 wt% water. SCC was observed in two 304L stainless steel teardrop coupons exposed in solid contact to a mixture of 98 wt % PuO{sub 2}, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl{sub 2}. The cracking was associated with the heat-affected zone of an autogenous weld that ran across the center of the coupon. Cracking was not observed in coupons exposed to the headspace gas above the solid mixture, or in coupons exposed to other mixtures with either no CaCl{sub 2} or 0.92 wt% CaCl{sub 2}. SCC was present where the 0.6 wt % water content exceeded the value needed to fully hydrate the available CaCl{sub 2}, but was absent where the water content was insufficient. These results reveal the significance of the relative humidity in the austenitic stainless steels environment to their susceptibility to corrosion. The relative humidity in the test environment was controlled by the water loading and the concentration of the hydrating salts such as CaCl{sub 2}. For each salt or salt mixture there is a threshold

  8. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray

    Directory of Open Access Journals (Sweden)

    Chia-Hao Hsu

    2017-02-01

    Full Text Available 304 stainless steels (SS were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC. Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group.

  9. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  10. Standard Practice for Use of Mattsson's Solution of pH 7.2 to Evaluate the Stress- Corrosion Cracking Susceptibility of Copper-Zinc Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers the preparation and use of Mattsson's solution of pH 7.2 as an accelerated stress-corrosion cracking test environment for brasses (copper-zinc base alloys). The variables (to the extent that these are known at present) that require control are described together with possible means for controlling and standardizing these variables. 1.2 This practice is recommended only for brasses (copper-zinc base alloys). The use of this test environment is not recommended for other copper alloys since the results may be erroneous, providing completely misleading rankings. This is particularly true of alloys containing aluminum or nickel as deliberate alloying additions. 1.3 This practice is intended primarily where the test objective is to determine the relative stress-corrosion cracking susceptibility of different brasses under the same or different stress conditions or to determine the absolute degree of stress corrosion cracking susceptibility, if any, of a particular brass or brass component ...

  11. Advanced LMFBR fuel cladding susceptability to stress corrosion due to reprocessing impurities

    International Nuclear Information System (INIS)

    Henslee, S.P.

    1987-03-01

    The potential degradation of LMFBR fuel cladding alloys by chlorides, when used in metallic fuel systems, was evaluated. The alloys tested were D-9 and HT-9 stainless steels, austenitic and ferritic alloys respectively. These two alloys were tested in parallel with and their performance compared to the austenitic stainless steel Type 316. All alloys were tested for 7400 hours in a stress rupture environment with chloride exposure at either 550/degree/C 650/degree/C. None of the alloys tested were found to exhibit any degradation in time-to-rupture by the presence of chlorides under the conditions imposed during testing. 8 refs., 4 figs., 2 tabs

  12. Effect of nitrogen in austenitic stainless steel on deformation behavior and stress corrosion cracking susceptibility in BWR simulated environment

    International Nuclear Information System (INIS)

    Roychowdhury, S.; Kain, V.; Dey, G.K.

    2012-01-01

    Intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel (SS) components in boiling water reactor (BWR has been a serious issue and is generic in nature. Initial cracking incidences were attributed to weld induced sensitisation and low temperature sensitisation which was mitigated by the use of low carbon grade of SS and molybdenum and nitrogen containing nuclear grade SS. However, IGSCC has occurred in these SS in the non-sensitised condition which was attributed to residual weld induced strain. Strain hardening in SS has been identified as a major cause for enhanced IGSCC susceptibility in BWR environment. Nitrogen in SS has a significant effect on the strain hardening characteristics and has potential to affect the IGSCC susceptibility in BWR environment. Type 304LN stainless steel is a candidate material for use in future reactors with long design life like the Advanced Heavy Water Reactor (AHWR), in which the operating conditions are similar to BWR. This study reports the effect of nitrogen in type 304LN stainless steel on the strain hardening behaviour and deformation characteristics and its effect on the IGSCC susceptibility in BWR/AHWR environment. Two heats of type 304LN stainless steel were used containing different levels of nitrogen, 0.08 and 0.16 wt % (SS alloys A and B, respectively). Both the SS was strain hardened by cross rolling at 200℃ to simulate the strain hardened regions having higher IGSCC susceptibility in BWRs. Tensile testing was done at both room temperature and 288℃(temperature simulating operating BWR conditions) and the effect of nitrogen on the tensile properties were established. Tensile testing was done at strain rates similar to the crack tip strain rates associated with a growing IGSCC in SS. Detailed transmission electron microscopic (TEM) studies were done to establish the effect of nitrogen on the deformation modes. Results indicated twinning was the major mode of deformation during cross rolling while

  13. Effects of dissolved calcium and magnesium ions on lead-induced stress corrosion cracking susceptibility of nuclear steam generator tubing alloy in high temperature crevice solutions

    International Nuclear Information System (INIS)

    Lu, B.T.; Tian, L.P.; Zhu, R.K.; Luo, J.L.; Lu, Y.C.

    2011-01-01

    The effects of Ca 2+ and Mg 2+ ions on the stress corrosion cracking (SCC) susceptibility of UNS N08800 are investigated using constant extension rate tensile (CERT) tests at 300 o C in simulated crevice chemistries. The presence of lead contamination in the crevice chemistries increases significantly the SCC susceptibility of the alloy. The lead-assisted SCC (PbSCC) susceptibility is reduced markedly by the addition of Ca 2+ and Mg 2+ ions into the solution and this mitigating effect is enhanced by increasing the total concentration of Ca 2+ + Mg 2+ . The CERT test results are consistent with the types of fracture surfaces shown by Scanning Electron Microscopy (SEM). There is a reasonable correlation between the SCC susceptibility and the donor densities in the anodic films in accord with the role of lead-induced passivity degradation in PbSCC.

  14. Influence of microstructure on stress corrosion cracking susceptibility of alloys 600 and 690 in primary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Kergaravat, J.F.

    1996-01-01

    The mechanism(s) responsible for the stress corrosion cracking (SCC) of Alloy 600 steam generator tubes of pressurized water reactors remain misunderstood in spite of numerous studies on the subject. This failure mode presents several experimental similarities with intergranular creep fracture of austenitic stainless steels. As far as intergranular creep fracture is concerned, grain boundary sliding (GBS) was proved to favor failure. The aim of this work is to check the role played by GBS during SCC. It takes into account chemical (chromium content) and microstructural parameters (grain size, precipitation distribution and density). Therefore, to get a complete set of micro-structurally different samples, we have prepared solution annealed specimens (1100 deg C, 20 min., water quenched) from industrial tubes of Alloys 600 and 690. Each specimen was crept at 500 deg C (400 MPa), 430 deg C (425 MPa) and 360 deg C (475 MPa). Before testing, every sample were engraved with a 7 μm wide fiducial grid. This grid has allowed us to measure GBS after creep testing. GBS was observed for industrial and solution annealed samples for the three testing temperatures. GBS amplitude depends'on chromium content: for micro-structurally identical specimens, Alloy 600 exhibits more GB strain than Alloy 690. It also strongly depends on grain boundary precipitation characteristics: carbide free boundaries slide more easily. During in situ straining experiments performed in a transmission electronic microscope, GBS was evidenced at 320 deg C for Alloy 600 industrial samples. It consists in grain boundary dislocation motion in the interface plane. These dislocations originate from perfect dislocations gliding in the grain interior, encountering grain boundary and spreading in it. Metallic intergranular carbides provide strong obstacles to GBS so stress enhancements arise against them. These stress enhancements are released by micro-twin emission. Constant extension rate tensile tests were

  15. Susceptibility of 17-4PH stainless steel to stress corrosion cracking in aqueous environments by electrochemical techniques.; Estudio de la corrosion bajo tension del acero 17-4PH en medios acuosos usando tecnicas electroquimicas

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A C [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico)

    1998-12-31

    The susceptibility of a 17-4PH type steel to Stress Corrosion Cracking (SCC) in low pressure steam turbine environments was assessed using slow strain rate test at 90 Centigrade and at 1.35x10{sup -6} seg{sup -1}. Environments tested included different concentrated solutions of NaCl, NaOH and Na{sub 2}SO{sub 4}. It was concluded that this steel is susceptible to SCC in 20 % NaCl and pH=3 and in 20 % NaCl pH=neutral but under cathodic polarisation. The electrochemical potential noise of the specimen was monitored during the test. The naturally fluctuations in potential were arise due to spontaneous brake protective film and were characteristics of the kind of corrosion like pit or stress corrosion cracking. After that using Fast Fourier Transformer (FFT) the noise data set were analyzed to obtain power spectral density plots which showed differences between general corrosion and localized corrosion. Polarization curves were carry out at two different rates and them showed the general behavior of the systems. (Author).

  16. Investigation of irradiation induced inter-granular stress corrosion cracking susceptibility on austenitic stainless steels for PWR by simulated radiation induced segregation materials

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Toshio; Fujimoto, Koji; Kanasaki, Hiroshi; Iwamura, Toshihiko [Mitsubishi Heavy Industries Ltd., Takasago R and D Center, Takasago, Hyogo (Japan); Nakada, Shizuo; Ajiki, Kazuhide [Mitsubishi Heavy Industries Ltd., Kobe Shipyard and Machinery Works, Kobe, Hyogo (Japan); Urata, Sigeru [General Office of Nuclear and Fossil Power Production, Kansai Electric Power Co., Inc., Osaka (Japan)

    2000-07-01

    An Irradiation Assisted Stress Corrosion Cracking (IASCC) has not been found in Pressurized Water Reactors (PWRs). However, the authors have investigated on the possibility of IASCC so as to be able to estimate the degradation of PWR plants up to the end of their lifetime. In this study, the authors melted the test alloys whose bulk compositions simulated the grain boundary compositions of irradiated Type 304 and Type 316 CW stainless steels. Low chromium, high nickel and silicon (12%Cr-28%Ni-3%Si) steel showed high susceptibility to PWSCC (Primary Water Stress Corrosion Cracking) by SSRT (Slow Strain Rate Tensile) test in simulated PWR primary water. PWSCC susceptibility of the test steels increases with a decrease of chromium content and a increase of nickel and silicon contents. The aged test steel included coherent M{sub 23}C{sub 6} carbides with matrices at the grain boundaries showed low PWSCC susceptibility. This tendency is in very good agreement with that of the PWSCC susceptibility of nickel based alloys X-750 and 690. From these results, if there is the possibility of IASCC for austenitic stainless steels in PWRs, in the future, the IASCC shall be caused by the PWSCC as a result of irradiation induced grain boundary segregation. (author)

  17. Effect of heating produced by welding on the microstructure and on the stress corrosion cracking susceptibility of AA7028 alloy

    International Nuclear Information System (INIS)

    Calatayud, A.; Rodenas, M.; Ferrer, C.; Amigo, V.; Salvador, M.D.

    1997-01-01

    The microstructural and stress corrosion cracking changes due to welding are studied for the AA7028 aluminium alloy. Special attention is paid to the characterization of what is known as the white zone. The influence of the delay step between quenching and aging in a T73 treatment on the microstructure and on the characteristics of the heat-affected zone (HAZ) is also studied. Finally the effect of thermal treatments applied on this zone after the welding is analysed. (Author) 7 refs

  18. Pitting and Stress Corrosion Cracking Susceptibility of Nanostructured Al-Mg Alloys in Natural and Artificial Environments

    Science.gov (United States)

    Sharma, Mala M.; Ziemian, Constance W.

    2008-12-01

    The stress corrosion cracking (SCC) behavior of two developmental nanocrystalline 5083 alloys with varied composition and processing conditions was studied. The results were compared to a commercial aluminum AA 5083 (H111) alloy. The pitting densities, size and depths, and residual tensile strengths were measured after alternate immersion in artificial seawater and atmospheric exposure under different loading conditions. Optical and scanning electron microscopy (SEM) with EDX was used to analyze the fracture surfaces of failed specimen after removal at selected intervals and tensile testing. One of the nanostructured Al-Mg alloys exhibited significantly superior pitting resistance when compared to conventional microstructured AA 5083. Under conditions where pitting corrosion showed up as local tunnels toward phase inclusions, transgranular cracking was observed, whereas under conditions when pitting corrosion evolved along grain boundaries, intergranular cracking inside the pit was observed. Pit initiation resistance of the nano alloys appears to be better than that of the conventional alloys. However, long-term pit propagation is a concern and warrants further study. The objective of this investigation was to obtain information regarding the role that ultra-fine microstructures play in their degradation in marine environments and to provide insight into the corrosion mechanisms and damage processes of these alloys.

  19. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    Hydrogen embrittlement has been postulated as a cause of stress corrosion cracking in numerous alloy systems. Such an interrelationship is useful in design considerations because it permits the designer and working engineer to relate the literature from both fields to a potential environmental compatibility problem. The role of hydrogen in stress corrosion of high strength steels is described along with techniques for minimizing the susceptibility to hydrogen stress cracking. (U.S.)

  20. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Hongliang; Zhu, Ruolin [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En.-Hou.; Ke, Wei [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Su, Mingxing [Shanghai Research Center for Weld and Detection Engineering Technique of Nuclear Equipment, Shanghai 201306 (China)

    2016-07-04

    The microstructure, local mechanical properties and local stress corrosion cracking susceptibility of an SA508-52M-316LN domestic dissimilar metal welded safe-end joint used for AP1000 nuclear power plant prepared by automatic gas tungsten arc welding was studied in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction and an energy dispersive X-ray spectroscopy system), micro-hardness testing, local mechanical tensile testing and local slow strain rate tests. The micro-hardness, local mechanical properties and stress corrosion cracking susceptibility across this dissimilar metal weld joint vary because of the complex microstructure across the fusion area and the dramatic chemical composition change across the fusion lines. Briefly, Type I boundaries and Type II boundaries exist in 52Mb near the SA508-52Mb interface, a microstructure transition was found in SA508 heat affected zone, the residual strain and grain boundary character distribution changes as a function of the distance from the fusion boundary in 316LN heat affected zone, micro-hardness distribution and local mechanical properties along the DMWJ are heterogeneous, and 52Mw-316LN interface has the highest SCC susceptibility in this DMWJ while 316LN base metal has the lowest one.

  1. Corrosion and stress corrosion cracking in supercritical water

    Science.gov (United States)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  2. Assessment of the effects of surface preparation and coatings on the susceptibility of line pipe to stress-corrosion cracking

    International Nuclear Information System (INIS)

    Beavers, J.A.

    1992-01-01

    Objectives were to evaluate susceptibility of pipeline steel to SCC when coated with coal-tar enamel, fusion-bonded epoxy (FBE), and polyethylene tape coatings. The tests included standard cathodic disbondment tests, potential gradients beneath disbonded coatings, electrochemical measurements, and SCC tests. It was concluded that factors affecting relative SCC susceptibility of pipelines with different coatings are the disbonding resistance of the coating and the ability of the coating to pass cathodic protection (CP) current. FBE coated pipelines would be expected to exhibit good SCC resistance, since the FBE coating had high cathodic disbonding resistance and could pass CP current. Grit blasting at levels used at coating mills may be beneficial or detrimental to SCC susceptibility. Excellent correlation was found between th Almen strip deflection and change in SCC threshold stress. It appears to be beneficial to remove as much mill scale as possible, and a white surface finish probably should also be specified. 50 figs, 10 tabs

  3. Stress corrosion of low alloy steel forgings

    International Nuclear Information System (INIS)

    Thornton, D.V.; Mould, P.B.; Patrick, E.C.

    1976-01-01

    The catastrophic failure of a steam turbine rotor disc at Hinkley Point 'A' Power station was shown to have been caused by the growth of a stress corrosion crack to critical dimensions. This failure has promoted great interest in the stress corrosion susceptibility of medium strength low alloy steel forgings in steam environments. Consequently, initiation and growth of stress corrosion cracks of typical disc steels have been investigated in steam and also in water at 95 0 C. Cracking has been shown to occur, predominantly in an intergranular manner, with growth rates of between 10 -9 and 10 -7 mm sec. -1 . It is observed that corrosion pitting and oxide penetration prior to the establishment of a stress corrosion crack in the plain samples. (author)

  4. pitting corrosion susceptibility pitting corrosion susceptibility of aisi

    African Journals Online (AJOL)

    eobe

    2DEPARTMENT OF MECHANICAL ENGINEERING, UNIVERSITY OF BENIN, BENIN- CITY, EDO STATE, NIGERIA. E-mail addresses: ... fluids and aggressive chemicals. Pitting corrosion ... the kitchen, food manufacturing and dispensing and.

  5. Standard practice for determining the susceptibility of stainless steels and related Nickel-Chromium-Iron Alloys to stress-corrosion cracking in polythionic acids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for preparing and conducting the polythionic acid test at room temperature, 22 to 25°C (72 to 77°F), to determine the relative susceptibility of stainless steels or other related materials (nickel-chromiumiron alloys) to intergranular stress corrosion cracking. 1.2 This practice can be used to evaluate stainless steels or other materials in the “as received” condition or after being subjected to high-temperature service, 482 to 815°C (900 to 1500°F), for prolonged periods of time. 1.3 This practice can be applied to wrought products, castings, and weld metal of stainless steels or other related materials to be used in environments containing sulfur or sulfides. Other materials capable of being sensitized can also be tested in accordance with this test. 1.4 This practice may be used with a variety of stress corrosion test specimens, surface finishes, and methods of applying stress. 1.5 This standard does not purport to address all of the safety concerns, if any, ...

  6. A study on stress corrosion cracking of explosive plugged part

    International Nuclear Information System (INIS)

    Kaga, Seiichi; Fujii, Katsuhiro; Yamamoto, Yoshiaki; Sakuma, Koosuke; Hibi, Seiji; Morimoto, Hiroyoshi.

    1986-01-01

    Studies on the stress corrosion cracking of explosive plugged part are conducted. SUS 304 stainless steel is used as testing material. The distribution of residual stress in plug and tube plate after plugging is obtained. The effect of residual stress on the stress corrosion cracking is studied. Residual stress in tube plate near the plug is compressive and stress corrosion cracking dose not occur in the tube plate there, and it occurs on the inner surface of plug because of residual tensile stress in axial direction of the plug. Stress corrosion test in MgCl 2 solution under constant load is conducted. The susceptibility to stress corrosion cracking of the explosive bonded boundary is lower than that of base metal because of greater resistance to plastic deformation. Stress corrosion test in high temperature and high pressure pure water is also conducted by means of static type of autoclave but stress corrosion cracking does not occur under the testing condition used. (author)

  7. Crack growth testing of cold worked stainless steel in a simulated PWR primary water environment to assess susceptibility to stress corrosion cracking

    International Nuclear Information System (INIS)

    Tice, D.R.; Stairmand, J.W.; Fairbrother, H.J.; Stock, A.

    2007-01-01

    Although austenitic stainless steels do not show a high degree of susceptibility to stress corrosion cracking (SCC) in PWR primary environments, there is limited evidence from laboratory testing that crack propagation may occur under some conditions for materials in a cold-worked condition. A test program is therefore underway to examine the factors influencing SCC propagation in good quality PWR primary coolant. Type 304 stainless steel was subjected to cold working by either rolling (at ambient or elevated temperature) or fatigue cycling, to produce a range of yield strengths. Compact tension specimens were fabricated from these materials and tested in simulated high temperature (250-300 o C) PWR primary coolant. It was observed that the degree of crack propagation was influenced by the degree of cold work, the crack growth orientation relative to the rolling direction and the method of working. (author)

  8. Assessment of susceptibility of Type 304 stainless steel to intergranular stress corrosion cracking in simulated Savannah River Reactor environments

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Caskey, C.R. Jr.

    1989-01-01

    Intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel rate tests (CERT) of specimens machined was evaluated by constant extension from Savannah River Plant (SRP) decontaminated process water piping. Results from 12 preliminary CERT tests verified that IGSCC occurred over a wide range of simulated SRP envirorments. 73 specimens were tested in two statistical experimental designs of the central composite class. In one design, testing was done in environments containing hydrogen peroxide; in the other design, hydrogen peroxide was omitted but oxygen was added to the environment. Prediction equations relating IGSCC to temperature and environmental variables were formulated. Temperature was the most important independent variable. IGSCC was severe at 100 to 120C and a threshold temperature between 40C and 55C was identified below which IGSCC did not occur. In environments containing hydrogen peroxide, as in SRP operation, a reduction in chloride concentration from 30 to 2 ppB also significantly reduced IGSCC. Reduction in sulfate concentration from 50 to 7 ppB was effective in reducing IGSCC provided the chloride concentration was 30 ppB or less and temperature was 95C or higher. Presence of hydrogen peroxide in the environment increased IGSCC except when chloride concentration was 11 ppB or less. Actual concentrations of hydrogen peroxide, oxygen and carbon dioxide did not affect IGSCC. Large positive ECP values (+450 to +750 mV Standard Hydrogen Electrode (SHE)) in simulated SRP environments containing hydrogen peroxide and were good agreement with ECP measurements made in SRP reactors, indicating that the simulated environments are representative of SRP reactor environments. Overall CERT results suggest that the most effective method to reduce IGSCC is to reduce chloride and sulfate concentrations

  9. Accelerated Stress-Corrosion Testing

    Science.gov (United States)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  10. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER); Susceptibilidad a la corrosion bajo esfuerzo de barras de acero inoxidable AISI 321 y 12X18H10T en ambientes utilizados en reactores VVER

    Energy Technology Data Exchange (ETDEWEB)

    Matadamas C, N

    1996-12-31

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H{sub 3}BO{sub 3} Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author).

  11. Corrosion under stress of AISI 304 steel in thiocyanate solutions

    International Nuclear Information System (INIS)

    Perillo, P.M.; Duffo, G.S.

    1989-01-01

    Corrosion susceptibility under stress of AISI 304 steel sensitized in a sodium thiocyanate solution has been studied and results were compared with those obtained with solutions of thiosulfate and tetrathionate. Sensitized steel type 304 is highly susceptible to corrosion when under intergranular stress (IGSCC) in thiocyanate solutions but the aggressiveness of this anion is less than that of the other sulphur anions studied (thiosulfate and tetrathionate). This work has been partly carried out in the Chemistry Department. (Author) [es

  12. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  13. Stress corrosion in gaseous environment

    International Nuclear Information System (INIS)

    Miannay, Dominique.

    1980-06-01

    The combined influences of a stress and a gaseous environment on materials can lead to brittleness and to unexpected delayed failure by stress corrosion cracking, fatigue cracking and creep. The most important parameters affering the material, the environment, the chemical reaction and the stress are emphasized and experimental works are described. Some trends for further research are given [fr

  14. The relative stress-corrosion-cracking susceptibility of candidate aluminum-lithium alloys for aerospace structural applications

    Science.gov (United States)

    Pizzo, P. P.

    1980-01-01

    The microstructure and tensile properties of two powder metallurgy processed aluminum-lithium alloys were determined. Strength properties of 480 MPa yield and 550 MPa ultimate tensile strength with 5% strain to fracture were attained. Very little reduction in area was observed and fracture characteristics were brittle. The magnesium bearing alloy exhibited the highest strength and ductility, but fracture was intergranular. Recrystallization and grain growth, as well as coarse grain boundary precipitation, occurred in Alloy 2. The fracture morphology of the two alloys differed. Alloy 1 fractured along a plane of maximum shear stress, while Alloy 2 fractured along a plane of maximum tensile stress. It is found that a fixed orientation relationship exists between the shear fracture plane and the rolling direction which suggests that the PM alloys are strongly textured.

  15. Study of corrosion susceptibility of stainless steel-304 and stainless steel-316 under mechanical stress in diluted boiling nitric acid with chlorides

    International Nuclear Information System (INIS)

    Desjardins, D.; Puiggali, M.; El Kheloui, A.; Petit, M.C.; Clement, C.; Berge, J.P.

    1991-01-01

    A detailed study of corrosion of stressed 304 and 316 stainless steels in boiling solutions of diluted nitric acid in presence of chloride is presented. After a chemical study of the electrolyte, the different kinds of corrosion observed are represented on HNO 3 concentration - Cl - concentration diagrams. A more fundamental study based on several electrochemical techniques (forward scan and return potentiodynamic curves, potentiokinetic curves with different scan rates, sample depassivation by rapid straining under potentiostatic control) is carried out. The results allow to confirm the observations and to explain them in terms of competition between anodic dissolution, depassivation, repassivation processes with a precise analyze of the role of the solution and of the mechanical stress [fr

  16. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  17. Stress corrosion in a borosilicate glass nuclear wasteform

    International Nuclear Information System (INIS)

    Ringwood, A.E.; Willis, P.

    1984-01-01

    The authors discuss a typical borosilicate glass wasteform which, when exposed to water vapour and water for limited periods, exhibits evidence of stress corrosion cracking arising from the interaction of polar OH groups with stressed glass surfaces. Glass wasteforms may experience similar stress corrosion cracking when buried in a geological repository and exposed to groundwaters over an extended period. This would increase the effective surface areas available for leaching by groundwater and could decrease the lifetime of the wasteform. Conventional leach-testing methods are insensitive to the longer-term effects of stress corrosion cracking. It is suggested that specific fracture-mechanics tests designed to evaluate susceptibility to stress corrosion cracking should be used when evaluating the wasteforms for high-level nuclear wastes. (author)

  18. Stress corrosion cracking properties of 15-5PH steel

    Science.gov (United States)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  19. Effect of municipal liquid waste on corrosion susceptibility of ...

    African Journals Online (AJOL)

    This investigation studied the effect of municipal liquid waste discharged into the environment within Kano municipal area on the corrosion susceptibility of galvanized steel pipe burial underground. Six stagnant and six moving municipal liquid waste samples were used for the investigation. The corrosion rate of the ...

  20. Stress corrosion cracking and dealloying of copper-gold alloy in iodine vapor

    International Nuclear Information System (INIS)

    Galvez, M.F.; Bianchi, G.L.; Galvele, J.R.

    1993-01-01

    The susceptibility to stress corrosion cracking of copper-gold alloy in iodine vapor was studied and the results were analyzed under the scope of the surface mobility stress corrosion cracking mechanism. The copper-gold alloy undergoes stress corrosion cracking in iodine. Copper iodide was responsible of that behavior. The copper-gold alloy shows two processes in parallel: stress corrosion cracking and dealloying. As was predicted by the surface mobility stress corrosion cracking mechanism, the increase in strain rate induces an increase in the crack propagation rate. (Author)

  1. Stress corrosion and corrosion fatigue crack growth monitoring in metals

    International Nuclear Information System (INIS)

    Senadheera, T.; Shipilov, S.A.

    2003-01-01

    Environmentally assisted cracking (including stress corrosion cracking and corrosion fatigue) is one of the major causes for materials failure in a wide variety of industries. It is extremely important to understand the mechanism(s) of environmentally assisted crack propagation in structural materials so as to choose correctly from among the various possibilities-alloying elements, heat treatment of steels, parameters of cathodic protection, and inhibitors-to prevent in-service failures due to stress corrosion cracking and corrosion fatigue. An important step towards understanding the mechanism of environmentally assisted crack propagation is designing a testing machine for crack growth monitoring and that simultaneously provides measurement of electrochemical parameters. In the present paper, a direct current (DC) potential drop method for monitoring crack propagation in metals and a testing machine that uses this method and allows for measuring electrochemical parameters during stress corrosion and corrosion fatigue crack growth are described. (author)

  2. Study of stress corrosion cracking initiation of high alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav [Department of Materials Engineering, VSB - Technical University of Ostrava, tr. 17. listopadu 15, 708 33 Ostrava - Poruba (Czech Republic)

    2004-07-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  3. Study of stress corrosion cracking initiation of high alloy materials

    International Nuclear Information System (INIS)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav

    2004-01-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  4. Intergranular stress corrosion cracking of sensitized stainless steels. Final report

    International Nuclear Information System (INIS)

    Vyas, B.; Isaacs, H.S.; Weeks, J.R.

    1976-12-01

    A study was conducted of the intergranular stress corrosion cracking of materials used in Boiling Water Reactors (BWR) aimed at developing an understanding of the mechanism(s) of this mode of failure and at developing tests to determine the susceptibility of a given material to this form of attack

  5. Stress corrosion cracking of several high strength ferrous and nickel alloys

    Science.gov (United States)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  6. Study of the stress corrosion cracking susceptibility of type 304 austenitic stainless steel in aqueous solution of MgCl2 at 1250C using the slow - strain - rate technique

    International Nuclear Information System (INIS)

    Heck, N.C.

    1981-01-01

    A study has been made of the stress corrosion cracking susceptibility of type 304 austenitic stainless steel mainly in aqueous solution of MgCl 2 at 125 0 C using the slow strain-rate technique. A system is built up of a tensile test machine and the peripheric equipment. The efficacy of this system has been tested by running experiments for determination of critical potentials in MgCl 2 with or without aditions of NaNO 3 . Critical potentials are found to be between -145 and -160 mV sub(H) for pure MgCl 2 and between -90 and -100 mV sub(H) for MgCl 2 plus 2,5% NaNO 3 . Comparing these results with others of constant load tests, good agreement is found. (Author) [pt

  7. Electrochemical tests for pitting and crevice corrosion susceptibility

    International Nuclear Information System (INIS)

    Postlethwaite, J.

    1983-01-01

    Passive metals are being considered as container materials for the disposal of nuclear waste by deep burial. Localized corrosion is a potential problem and electrochemical techniques have an important role in the assessment of the susceptibility of these container materials to crevice and pitting corrosion. This paper critically reviews both the theoretical background and the experimental details of the electrochemical test methods presently used in both industrial and scientific studies of localized corrosion in both halide and non-halide solutions and identifies those areas where theory and experimental behaviour are in agreement and those areas for which there is neither well established theory nor an experimental test method

  8. Alternate immersion stress corrosion testing of 5083 aluminum

    International Nuclear Information System (INIS)

    Briggs, J.L.; Dringman, M.R.; Hausburg, D.E.; Jackson, R.J.

    1978-01-01

    The stress corrosion susceptibility of Type 5083 aluminum--magnesium alloy in plate form and press-formed shapes was determined in the short transverse direction. C-ring type specimens were exposed to alternate immersion in a sodium chloride solution. The test equipment and procedure, with several innovative features, are described in detail. Statistical test results are listed for seven thermomechanical conditions. A certain processing scheme was shown to yield a work-strengthened part that is not sensitized with respect to stress corrosion cracking

  9. Stress corrosion cracking of duplex stainless steels in caustic solutions

    Science.gov (United States)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  10. Compressive residual stresses as a preventive measure against stress corrosion cracking on turbine components

    International Nuclear Information System (INIS)

    Berger, C.; Ewald, J.; Fischer, K.; Gruendler, O.; Potthast, E.; Stuecker, E.; Winzen, G.

    1987-01-01

    Disk type low pressure turbine rotors have been designed for a large variety of power plant applications. Developing disk type rotors required a concerted effort to design a shaft/disk shrink fit with a minimum of tensile stress concentrations in order to aim for the lowest possible susceptibility to corrosive attack, i.e. stress corrosion cracking. As a result of stresses, the regions of greatest concern are the shrink fit boundaries and the keyways of turbine disks. These stresses are caused by service loading, i.e. centrifugal and shrinkage stresses and by manufacturing procedure, i.e. residual stresses. The compressive residual stresses partly compensate the tensile service stresses so that an increase of compressive residual stresses decreases the whole stress state of the component. Special manufacturing procedures, e.g. accelerated cooling after tempering can induce compressive residual stresses up to about 400 MPa in the hub bore region of turbine disk

  11. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  12. Stress corrosion cracking of Zircaloys. Final report

    International Nuclear Information System (INIS)

    Cubicciotti, D.; Jones, R.L.; Syrett, B.C.

    1980-03-01

    The overall aim has been to develop an improved understanding of the stress corrosion cracking (SCC) mechanism considered to be responsible for pellet-cladding interaction (PCI) failures of nuclear fuel rods. The objective of the present phase of the project was to investigate the potential for improving the resistance of Zircaloy to iodine-induced SCC by modifying the manufacturing techniques used in the commercial production of fuel cladding. Several aspects of iodine SCC behavior of potential relevance to cladding performance were experimentally investigated. It was found that the SCC susceptibility of Zircaloy tubing is sensitive to crystallographic texture, surface condition, and residual stress distribution and that current specifications for Zircaloy tubing provide no assurance of an optimum resistance to SCC. Additional evidence was found that iodine-induced cracks initiate at local chemical inhomogeneities in the Zircaloy surface, but laser melting to produce a homogenized surface layer did not improve the SCC resistance. Several results were obtained that should be considered in models of PCI failure. The ratio of axial to hoop stress and the temperature were both shown to affect the SCC resistance whereas the difference in composition between Zircaloy-2 and Zircaloy-4 had no detectable effect. Damage accumulation during iodine SCC was found to be nonlinear: generally, a given life fraction at low stress was more damaging than the same life fraction at higher stress. Studies of the thermochemistry of the zirconium-iodine system (performed under US Department of Energy sponsorship) revealed many errors in the literature and provided important new insights into the mechanism of iodine SCC of Zircaloys

  13. The influence of nitrogen, phosphorus, sulphur and nickel on the stress corrosion cracking of austenitic Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Cihal, V.

    1985-01-01

    From the results of the stress corrosion cracking tests it is evident that austenitic alloys with a phosphorus content 0.01% causes a strong increase in stress corrosion cracking susceptibility of alloys with a nickel content in the range 33 to 38%. With a nickel content of approx. 35%, an increase of nitrogen concentration to approx. 0.15% also produces a significant effect on stress corrosion cracking susceptibility. A sulphur content up to 0.033% does not produce a significant effect on stress corrosion cracking. (author)

  14. Stress corrosion of alloy 600: mechanism proposition

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A fissuring model by stress corrosion based on interactions corrosion-plasticity on the fissure top is proposed to describe the generally intergranular bursting of INCONEL 600 in the PWR. The calculation shows, and some observations check experimentally, that a pseudo intergranular cracking bound to the zigzag micro facets formation along the joints may be so that a completely intergranular bursting. This pseudo intergranular mode makes up a signature of the proposed mechanism. It may be suggested that it may exist one continuity mechanism between the trans and intergranular cracking by stress corrosion of ductile cubic centered faces materials. 2 figs

  15. Pitting Corrosion Susceptibility of AISI 301 Stainless Steel in ...

    African Journals Online (AJOL)

    The susceptibility of austenitic (AISI 301) stainless steel to pitting corrosion was evaluated in sodium chloride (NaCl) solutions - 0.1M, 0.2M, 0.3M, 0.5M and 0.7M and 1.0M. Tensile tests and microscopic examinations were performed on samples prepared from the steel after exposure in the various environments.

  16. Stress corrosion cracking prevention using solar electricity

    International Nuclear Information System (INIS)

    Harijan, K.; Uqaaili, M.A; Mirani, M.

    2004-01-01

    Metallic structures exposed to soil and water naturally experience corrosion due to electrolytic action. These structures are also subjected to sustained tensile stresses. The combined effects of corrosion and stress results stress corrosion cracking (SCC). Removal of either of these i.e. stress or corrosion prevents SCC. The cathodic protection (CP) prevents corrosion, and hence prevents stress corrosion. Solar Photo voltaic (PV) generated electricity can be best external power source for CP systems especially in remote areas. This paper presents CP system using solar PV generated electricity as an external power source for prevention of SCC of metallic structures. The paper also compares CP systems using solar electricity with those of CP systems using conventional electricity. The paper concludes that a solar electricity power system provides a reliable solution for powering CP stations especially in remote areas, enables the placing of CP units in any location, and thus ensures optimal current distribution for the exact protection requirements. The paper also concludes that solar electricity CP systems are well suited for SCC protection of metallic structures especially in remote areas of an energy deficit country like Pakistan. (author)

  17. Temperature effect on Zircaloy-4 stress corrosion cracking

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.

    1999-01-01

    Stress corrosion cracking (SCC) susceptibility of Zircaloy-4 alloy in chloride, bromide and iodide solutions with variables as applied electrode potential, deformation rate and temperature have been studied. In those three halide solutions the susceptibility to SCC is only observed at potentials close to pitting potential, the crack propagation rate increases with the increase of deformation rate, and that the temperature has a notable effect only for iodide solutions. For chloride and bromide solutions and temperatures ranging between 20 to 90 C degrees it was not found measurable changes in crack propagation rates. (author)

  18. Stress corrosion cracking of highly irradiated 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko; Nakajima, Nobuo; Furutani, Gen [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Mechanical property tests, grain boundary (GB) composition analysis and slow strain rate test (SSRT) in simulated PWR primary water changing dissolved hydrogen (DH) and dissolved oxygen (DO) content were carried out on cold-worked (CW) 316 stainless steels which were irradiated to 1-8x10{sup 26} n/m{sup 2} (E>0.1 MeV) in a Japanese PWR in order to evaluate irradiation-assisted stress corrosion cracking (IASCC) susceptibility. Highly irradiated stainless steels were susceptible to intergranular stress corrosion cracking (IGSCC) in both hydrogenated water and oxygenated water and to intergranular cracking in inert gas atmosphere. IASCC susceptibility increased with increasing DH content (0-45 ccH{sub 2}/kgH{sub 2}O). Hydrogen content of the section containing fracture surface was higher than that of the section far from fracture surface. These results suggest that hydrogen would have an important role for IASCC. While mechanical property was saturated, GB segregation and IASCC susceptibility increased with an increase in fluence, suggesting that GB segregation would have a dominant role for an increase in IASCC susceptibility at this high fluence region. (author)

  19. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongying [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Yang, Haijie [Modern Engineering Training Center, Anyang Institute of Technology, Anyang 455002 (China); Wang, Man [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Giron-Palomares, Benjamin [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Lefu [School of Nuclear Science and Engineering, Shanghai Jiaotong University, No 800 Dongchuan Road, Shanghai (China); Zhang, Guangming, E-mail: ustbzgm@163.com [School of Automobile & Transportation, Qingdao Technological University, Qingdao 266520 (China)

    2017-02-15

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  20. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    International Nuclear Information System (INIS)

    Sun, Hongying; Yang, Haijie; Wang, Man; Giron-Palomares, Benjamin; Zhou, Zhangjian; Zhang, Lefu; Zhang, Guangming

    2017-01-01

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe 2 O 3 and Fe 3 O 4 ) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  1. Interference fits and stress-corrosion failure. [aircraft parts fatigue life analysis

    Science.gov (United States)

    Hanagud, S.; Carter, A. E.

    1976-01-01

    It is pointed out that any proper design of interference fit fastener, interference fit bushings, or stress coining processes should consider both the stress-corrosion susceptibility and fatigue-life improvement together. Investigations leading to such a methodology are discussed. A service failure analysis of actual aircraft parts is considered along with the stress-corrosion susceptibility of cold-working interference fit bushings. The optimum design of the amount of interference is considered, giving attention to stress formulas and aspects of design methodology.

  2. Stress corrosion crack growth in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.

    1978-10-01

    Experimental techniques suitable for the determination of stress corrosion crack growth rates in irradiated Zircaloy tube have been developed. The techniques have been tested on unirradiated. Zircaloy and it was found that the results were in good agreement with the results of other investigations. Some of the results were obtained at very low stress intensities and the crack growth rates observed, gave no indication of the existance of a K sub(ISCC) for iodine induced stress corrosion cracking in Zircaloy. This is of importance both for fuel rod behavior after a power ramp and for long term storage of spent Zircaloy-clad fuel. (author)

  3. Seacoast stress corrosion cracking of aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  4. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  5. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  6. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions

    Directory of Open Access Journals (Sweden)

    R. K. Singh Raman

    2014-12-01

    Full Text Available This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC in a nitrite-containing chloride solution. Slow strain rate testing (SSRT in 30 wt. % MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution.

  7. Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy.

    Science.gov (United States)

    Harandi, Shervin Eslami; Banerjee, Parama Chakraborty; Easton, Christopher D; Singh Raman, R K

    2017-11-01

    It is essential for any temporary implant to possess adequate strength to maintain their mechanical integrity under the synergistic effects of mechanical loading characteristics of human body and the corrosive physiological environment. Such synergistic effects can cause stress corrosion cracking (SCC). The aim of the present study is to investigate the effect of the addition of bovine serum albumin (BSA) to Hanks' solution in corrosion and SCC susceptibility of AZ91D magnesium alloy. The electrochemical impedance spectroscopy (EIS) results indicated that the addition of BSA increased corrosion resistance of the alloy during the first 48h of immersion and then decreased it rapidly. The energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses indicated adsorption of BSA on the alloy surface during initial hours of immersion. However, with the increasing immersion time, BSA chelated with the corrosion products causing disruption of the protective film; thus, it accelerated the corrosion of the alloy. Both the mechanical data and fractographic evidence have confirmed susceptibility of the alloy to SCC. However, in the presence of BSA, the alloy suffered greater SCC which was attributed to its increased susceptibility towards localized corrosion. Copyright © 2017. Published by Elsevier B.V.

  8. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    Science.gov (United States)

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Iodine stress-corrosion cracking in irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    Mattas, R.F.; Yaggee, F.L.; Neimark, L.A.

    1979-01-01

    Irradiated Zircaloy cladding specimens, which had experienced fluences from 0.1 to 6 x 10 21 n/cm 2 (E>0.1 MeV), were gas-pressure tested in an iodine environment to investigate their stress-corrosion cracking (SCC) susceptibility. The test temperatures and hoop stresses ranged from 320 to 360 0 C and 150 to 500 MPa, respectively. The results indicate that irradiation, in general, increases the susceptibility of Zircaloy to iodine SCC. For specimens that experienced fluences >2 x 10 21 n/cm 2 (E>0.1 MeV), the 24-h failure stress was 177+-18 MPa, regardless of the preirradiation metallurgical condition. An analytical model for iodine SCC has been developed which agrees reasonably well with the test results

  10. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Fong, C.; Lee, Y.C. [Industrial Technology Research Inst., Taiwan (China); Yeh, T.K. [National Tsing Hua Univ., Taiwan (China)

    2014-07-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  11. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    International Nuclear Information System (INIS)

    Fong, C.; Lee, Y.C.; Yeh, T.K.

    2014-01-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  12. Stress corrosion cracking of an aluminum alloy used in external fixation devices.

    Science.gov (United States)

    Cartner, Jacob L; Haggard, Warren O; Ong, Joo L; Bumgardner, Joel D

    2008-08-01

    Treatment for compound and/or comminuted fractures is frequently accomplished via external fixation. To achieve stability, the compositions of external fixators generally include aluminum alloy components due to their high strength-to-weight ratios. These alloys are particularly susceptible to corrosion in chloride environments. There have been several clinical cases of fixator failure in which corrosion was cited as a potential mechanism. The aim of this study was to evaluate the effects of physiological environments on the corrosion susceptibility of aluminum 7075-T6, since it is used in orthopedic external fixation devices. Electrochemical corrosion curves and alternate immersion stress corrosion cracking tests indicated aluminum 7075-T6 is susceptible to corrosive attack when placed in physiological environments. Pit initiated stress corrosion cracking was the primary form of alloy corrosion, and subsequent fracture, in this study. Anodization of the alloy provided a protective layer, but also caused a decrease in passivity ranges. These data suggest that once the anodization layer is disrupted, accelerated corrosion processes occur. (c) 2007 Wiley Periodicals, Inc.

  13. Stress corrosion cracking of uranium--niobium alloys

    International Nuclear Information System (INIS)

    Magnani, N.J.

    1978-03-01

    The stress corrosion cracking behavior of U-2 1 / 4 , 4 1 / 2 , 6 and 8 wt % Nb alloys was evaluated in laboratory air and in aqueous Cl - solutions. Thresholds for crack propagation were obtained in these environments. The data showed that Cl - solutions are more deleterious than air environments. Tests were also conducted in pure gases to identify the species in the air responsible for cracking. These data showed the primary stress corrodent is water vapor for the most reactive alloy, U-2 1 / 4 % Nb, while O 2 is primarily responsible for cracking in the more corrosion resistant alloys, U-6 and 8% Nb. The 4 1 / 2 % alloy was found to be susceptible in both H 2 O and O 2 environments

  14. Intergranular corrosion susceptibility in supermartensitic stainless steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, J.M. [Sao Carlos Federal University (UFSCar), Materials Engineering Department, Rodovia Washington Luis, km 235, CEP 13565-905, Sao Carlos, SP (Brazil)], E-mail: dsek@power.ufscar.br; Della Rovere, C.A.; Kuri, S.E. [Sao Carlos Federal University (UFSCar), Materials Engineering Department, Rodovia Washington Luis, km 235, CEP 13565-905, Sao Carlos, SP (Brazil)

    2009-10-15

    The intergranular corrosion susceptibility in supermartensitic stainless steel (SMSS) weldments was investigated by the double loop - electrochemical potentiokinetic reactivation (DL-EPR) technique through the degree of sensitization (DOS). The results showed that the DOS decreased from the base metal (BM) to the weld metal (WM). The heat affected zone (HAZ) presented lower levels of DOS, despite of its complex precipitation mechanism along the HAZ length. Chromium carbide precipitate redissolution is likely to occur due to the attained temperature at certain regions of the HAZ during the electron beam welding (EBW). Scanning electron microscopy (SEM) images showed preferential oxidation sites in the BM microstructure.

  15. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    International Nuclear Information System (INIS)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X.; Zheng, W.; Guzonas, D.A.

    2012-01-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500 o C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  16. An evaluation of the susceptibility of V-4Cr-4Ti to stress corrosion cracking in room temperature DIII-D water

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, R.J.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Johnson, W.R.

    1997-04-01

    Two fatigue precracked compact tension (CT) specimens of V-4Cr-4Ti were statically loaded to a stress intensity factor of about 30 MPa{radical}m in room temperature DIII-D water. The first specimen was tested for a period of about 30 days and the second specimen for about 54 days. At the conclusion of each test the specimens were fractured, and the fracture surfaces examined with a scanning electron microscope (SEM) to determine if SCC had occurred. No SCC was found in either test specimen.

  17. Stress Corrosion of Ceramic Materials.

    Science.gov (United States)

    1986-08-01

    rupture directly, or are hydrolyzed by the water in the environment. This type of reaction is known to be important to the corrosion of glass in basic...covered .ith silanol groups so that the surface is virtually uncharged. As the pH is increased, the surface gradually hydrolyzes forming silanolate...is plotted assuming a decay distance of 0.3 nm. The data on lecithin is obtained by a non-fracture technique in which the layer spacing is determined

  18. Localized corrosion and stress corrosion cracking behavior of austenitic stainless steel weldments containing retained ferrite. Annual progress report, June 1, 1978--March 31, 1979

    International Nuclear Information System (INIS)

    Savage, W.F.; Duquette, D.J.

    1979-03-01

    Localized corrosion and stress corrosion cracking experiments have been performed on single phase 304 stainless steel alloys and autogeneous weldments containing retained delta ferrite as a second phase. The results of the pitting experiments show that the pressure of delta ferrite decreases localized corrosion resistance with pits initiating preferentially at delta ferrite--gamma austenite interphase boundaries. This increased susceptibility is reversible with elevated temperature heat treatments which revert the metastable ferrite phase to the equilibrium austenite phase

  19. The Sensitivity Of Carbon Steels' Susceptibility To Localized Corrosion To The pH Of Nitrate Based Nuclear Wastes

    International Nuclear Information System (INIS)

    Boomer, K.D.

    2010-01-01

    The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production, which is stored in 177 underground storage tanks. The tanks will be in use until waste processing operations are completed. The wastes tend to be high pH (over 10) and nitrate based. Under these alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However, the presence of nitrate and other aggressive species, can lead to pitting and stress corrosion cracking. This work is a continuation of previous work that investigated the propensity of steels to suffer pitting and stress corrosion cracking in various waste simulants. The focus of this work is an investigation of the sensitivity of the steels' pitting and stress corrosion cracking susceptibility tosimulant pH. Previous work demonstrated that wastes that are high in aggressive nitrate and low in inhibitory nitrite are susceptible to localized corrosion. However, the previous work involved wastes with pH 12 or higher. The current work involves wastes with lower pH of 10 or 11. It is expected that at these lower pHs that a higher nitrite-to-nitrate ratio will be necessary to ensure tank integrity. This experimental work involved both electrochemical testing, and slow strain rate testing at either the free corrosion potential or under anodic polarization. The results of the current work will be discussed, and compared to work previously presented.

  20. Stress Corrosion Cracking of Certain Aluminum Alloys

    Science.gov (United States)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  1. Stress corrosion cracking of copper canisters

    International Nuclear Information System (INIS)

    King, Fraser; Newman, Roger

    2010-12-01

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  2. Stress corrosion cracking of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))

    2010-12-15

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  3. Countermeasures to stress corrosion cracking by stress improvement

    International Nuclear Information System (INIS)

    Umemoto, Tadahiro

    1983-01-01

    One of the main factors of the grain boundary stress corrosion cracking occurred in the austenitic stainless steel pipes for reactor cooling system was the tensile residual stress due to welding, and a number of methods have been proposed to reduce the residual stress or to change it to compressive stress. In this paper, on the method of improving residual stress by high frequency heating, which has been applied most frequently, the principle, important parameters and the range of application are explained. Also the other methods of stress improvement are outlined, and the merit and demerit of respective methods are discussed. Austenitic stainless steel and high nickel alloys have good corrosion resistance, high toughness and good weldability, accordingly they have been used for reactor cooling system, but stress corrosion cracking was discovered in both BWRs and PWRs. It occurs when the sensitization of materials, tensile stress and the dissolved oxygen in high temperature water exceed certain levels simultaneously. The importance of the residual stress due to welding, induction heating stress improvement, and other methods such as heat sink welding, last pass heat sink welding, back lay welding and TIG torch heating stress improvement are described. (Kako, I.)

  4. Determination of susceptibility to intergranular corrosion of stainless steels type X5CrNi18-10 in field

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2016-12-01

    Full Text Available In this paper, the DL EPR method (electrochemical potentiokinetic reactivation with double loop was modified and used to study the susceptibility to intergranular corrosion and stress corrosion cracking of a stainless steel type X5CrNi18-10. The tests were performed in a special electrochemical cell, with the electrolyte in the gel form. Modified DL EPR method is characterized by simple and high accuracy measurements as well as repeatability of the test results. The indicator of susceptibility to intergranular corrosion (Qr/QpGBA obtained by modified DL EPR method is in a very good agreement with the same indicator obtained by standard DL EPR method. The modified DL EPR method is quantitative and highly selective method. Small differences in the susceptibility of the stainless steel type CrNi18-10 to intergranular corrosion and stress corrosion cracking can be determined. Test results can be obtained in a short time. The cost of tests performed by modified DL EPR method is much lower than the cost of tests by conventional chemical methods. Modified DL EPR method can be applied in the field on the stainless steels constructions.

  5. Stress corrosion cracking of the tubing materials for nuclear steam generators in an environment containing lead

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, Uh Chul; Lee, Eun Hee; Hwang, Seong Sik

    2004-01-01

    Steam generator tube materials show a high susceptibility to stress corrosion cracking (SCC) in an environment containing lead species and some nuclear power plants currently have degradation problems associated with lead-induced stress corrosion cracking in a caustic solution. Effects of an applied potential on SCC is tested for middle-annealed Alloy 600 specimens since their corrosion potential can be changed when lead oxide coexists with other oxidizing species like copper oxide in the sludge. In addition, all the steam generator tubing materials used for nuclear power plants being operated and currently under construction in Korea are tested in a caustic solution with lead oxide. (author)

  6. Stress corrosion cracking of Zircaloy-4 in non-aqueous iodine solutions

    International Nuclear Information System (INIS)

    Gomez Sanchez, Andrea V.

    2006-01-01

    In the present work the susceptibility to intergranular attack and stress corrosion cracking of Zircaloy-4 in different iodine alcoholic solutions was studied. The influence of different variables such as the molecular weight of the alcohols, the water content of the solutions, the alcohol type (primary, secondary or tertiary) and the temperature was evaluated. To determine the susceptibility to stress corrosion cracking the slow strain rate technique was used. Specimens of Zircaloy-4 were also exposed between 0.5 and 300 hours to the solutions without applied stress to evaluate the susceptibility to intergranular attack. The electrochemical behavior of the material in the corrosive media was studied by potentiodynamic polarization tests. It was determined that the active species responsible for the stress corrosion cracking of Zircaloy-4 in iodine alcoholic solutions is a molecular complex between the alcohol and iodine. The intergranular attack precedes the 'true' stress corrosion cracking phenomenon (which is associated to the transgranular propagation of the crack) and it is controlled by the diffusion of the active specie to the tip of the crack. Water acts as inhibitor to intergranular attack. Except for methanolic solutions, the minimum water content necessary to inhibit stress corrosion cracking was determined. This critical water content decreases when increasing the molecular weight of the alcohol. An explanation for this behavior is proposed. The susceptibility to stress corrosion cracking also depends on the type of the alcohol used as solvent. The temperature dependence of the crack propagation rate is in agreement with a thermal activated process, and the activation energy is consistent with a process controlled by the volume diffusion of the active species. (author) [es

  7. Stainless steel waste containers: an assessment of the probability of stress corrosion cracking

    International Nuclear Information System (INIS)

    Wanklyn, J.N.; Naish, C.C.

    1991-06-01

    The paper summarises information obtained from the literature and discussions held with corrosion experts from universities and industry, relevant to the possibility that stainless steel radioactive waste containers containing low level and intermediate level radioactive waste (LLW and ILW) could, when buried in concrete, suffer one or more of the forms of stress corrosion cracking (SCC). Stress corrosion cracking is caused by the simultaneous and synergistic action of a corrosive environment and stress. The initiation and propagation of SCC depend on a number of factors being present, namely a certain level of stress, an environment which will cause cracking and a susceptible metal or alloy. Generally the susceptibility of a metal or alloy to SCC increases as its strength level increases. The susceptibility in a specific environment will depend on: solution concentration, pH, temperature, and electrochemical potential of the metal/alloy. It is concluded that alkaline stress corrosion cracking is unlikely to occur under even the worst case conditions, that chloride stress corrosion cracking is a distinct possibility at the higher end of the temperature range (25-80 o C) and that stress corrosion related to sensitization of the steel will not be a problem for the majority of container material which is less than 5 mm in cross section. Thicker section material could become sensitized leading to a local problem in these areas. Contact with metals that are electrochemically more negative in corrosion potential is likely to reduce the incidence of SCC, at least locally. Measurement of repassivation potentials and rest potentials in solutions of relevant composition would provide a firmer prediction of the extent to which a high pH could reduce the likelihood of SCC caused by chlorides. (author)

  8. Stress Corrosion Cracking of Aluminum Alloys

    Science.gov (United States)

    2012-09-10

    Hossain and B. J, O’Toole: Stress Corrosion Cracking of Martensitic Stainless Steel for Transmutation Application, Presented at 2003 International...SCC of marternsitic stainless steel by Roy,[12] and learn the annealing effect on SCC of carbon steel by Haruna.[13] The application of slow...observations. In his study on SCC of AISI 304 stainless steel , Roychowdhury[3] detected no apparent SCC in solutions containing 1 ppm thiosulfate and

  9. Stress corrosion crack growth rate in dissimilar metal welds

    International Nuclear Information System (INIS)

    Fernandez, M. P.; Lapena, J.; Lancha, A. M.; Perosanz, F. J.; Navas, M.

    2000-01-01

    Dissimilar welds, used to join different sections in light water reactors, are potentially susceptible to stress corrosion cracking (SCC) in aqueous mediums characteristic of nuclear plants. However, the study of these The ma has been limited to evaluating the weld material susceptibility in these mediums. Little scarce data are available on crack growth rates due, fundamentally, to inadequate testing techniques. In order to address this lack of information the crack growth rate at the interface of ferritic SA 533 B-1 alloy and alloy I-82, in a dissimilar weld (SA533B-1/I-82/316L), was studied. Experiments were conducted in water at 288 degree centigrade, 8 ppm of O 2 and 1 μS/cm conductivity. (Author) 33 refs

  10. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Mehta, M.L.

    1981-01-01

    Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)

  11. Stress Corrosion Cracking of Steel and Aluminum in Sodium Hydroxide: Field Failure and Laboratory Test

    Directory of Open Access Journals (Sweden)

    Y. Prawoto

    2012-01-01

    Full Text Available Through an investigation of the field failure analysis and laboratory experiment, a study on (stress corrosion cracking SCC behavior of steel and aluminum was performed. All samples were extracted from known operating conditions from the field failures. Similar but accelerated laboratory test was subsequently conducted in such a way as to mimic the field failures. The crack depth and behavior of the SCC were then analyzed after the laboratory test and the mechanism of stress corrosion cracking was studied. The results show that for the same given stress relative to ultimate tensile strength, the susceptibility to SCC is greatly influenced by heat treatment. Furthermore, it was also concluded that when expressed relative to the (ultimate tensile strength UTS, aluminum has similar level of SCC susceptibility to that of steel, although with respect to the same absolute value of applied stress, aluminum is more susceptible to SCC in sodium hydroxide environment than steel.

  12. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  13. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  14. Slow strain rate stress corrosion cracking under multiaxial deformation conditions: technique and application to admiralty brass

    International Nuclear Information System (INIS)

    Blanchard, W.K.; Heldt, L.A.; Koss, D.

    1984-01-01

    A set of straightforward experimental techniques are described for the examination of slow strain rate stress corrosion cracking (SCC) of sheet deforming under nearly all multiaxial deformation conditions which result in sheet thinning. Based on local fracture strain as a failure criterion, the results contrast stress corrosion susceptibility in uniaxial tension with those in both plane strain and balanced biaxial tension. These results indicate that the loss of ductility of the brass increases as the stress state changes from uniaxial toward balanced biaxial tension

  15. Development of stress corrosion techniques for structural integrity evaluation and life extension of PWR facilities

    International Nuclear Information System (INIS)

    Moreira, Pedro A.L.D.L. Pinheiro; Vilela, Jeferson J.; Lorenzo, Roberto F. Di; Lopes, Jadir A.M.

    2000-01-01

    The stress corrosion is a mechanism of degradation present in the nuclear plants. To extend the life of the plants components, this corrosion type it should be known. An evaluation for the implantation of methodologies of stress corrosion study in CDTN/CNEN, shows that the technique of slow deformation can be used in the evaluation of integrity structural nuclear power stations. This technique consists of straining a sample slowly, usually, in strain rate between 10 -4 and 10- 8 s -1 and in conditions that simulate the reactivity of the metal in environment (pressure, temperature, chemical composition of the water and etc) similar to the found at the nuclear power power stations. This simulation allows evaluating susceptibility the stress corrosion of components mechanical and structure that operate in central nuclear. (author)

  16. Stress corrosion of low alloy steels used in external bolting on pressurised water reactors

    International Nuclear Information System (INIS)

    Skeldon, P.; Hurst, P.; Smart, N.R.

    1992-01-01

    The stress corrosion cracking (SCC) susceptibility of AISI 4140 and AISI 4340 steels has been evaluated in five environments, three simulating a leaking aqueous boric acid environment and two simulating ambient external conditions ie moist air and salt spray. Both steels were found to be highly susceptible to SCC in all environments at hardnesses of 400 VPN and above. The susceptibility was greatly reduced at hardnesses below 330 VPN but in one environment, viz refluxing PWR primary water, SCC was observed at hardnesses as low as 260VPN. Threshold stress intensities for SCC were frequently lower than those in the literature

  17. Preliminary assessment of stress corrosion cracking of nickel based alloy 182 in nuclear reactor environment

    International Nuclear Information System (INIS)

    Lima, Luciana Iglesias Lourenco; Bracarense, Alexandre Queiroz; Schvartzman, Monica Maria de Abreu Mendonca; Quinan, Marco Antonio Dutra

    2010-01-01

    Stress corrosion crack (SCC) in a primary circuit of a nuclear pressurized water reactor consists of a degradation process in which aggressive media, stress and material susceptibility are present. Over the last thirty years, SCC has been observed in dissimilar metal welds. This study presents a comparative work between the SCC in the alloy 182 filler metal weld in two different hydrogen concentrations (25 e 50 cm 3 H 2 /kg H 2 O) in primary water. The susceptibility to stress corrosion cracking was assessed using the slow strain rate tensile (SSRT) test. The results of the SSRT test indicated that the material is more susceptible to SCC at 25 cm 3 H 2 /kg H 2 O. (author)

  18. Study on the fabrication of the Stress Corrosion Crack by vapor pressure in the Alloy 600 Pipe

    International Nuclear Information System (INIS)

    Kim, Jae Seong; An, Ju Seon; Hwang, Woong Ki; Lee, Bo Young

    2010-01-01

    The stress corrosion crack is one of the life-limiting mechanisms in nuclear power plant conditions. During the operation of a power plant stress corrosion cracks can initiate and grow in dissimilar metal weld pipe joints of primary loop components. In particular, stress corrosion cracking usually occurs when the following three factors exist at the same time; susceptible material, corrosive environment, and tensile stress (including residual stress). Thus, residual stress becomes very critical for stress-corrosion cracking when it is difficult to improve the material corrosivity of the components and their environment under operating conditions. Since the research conducted by Coriou et al., it is well known that Ni-based alloy is susceptible to stress corrosion cracking(SCC) in deaerated pure water at high temperature and the SCC is difficult to be reproduced in laboratory. The aim of this study was to fulfill the need by developing an artificial SCC manufacturing method, which would produce realistic SCC in the Alloy 600 pipe

  19. Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test

    International Nuclear Information System (INIS)

    Li Songjie; Zhang Zuogui; Akiyama, Eiji; Tsuzaki, Kaneaki; Zhang Boping

    2010-01-01

    To evaluate susceptibilities of high strength steels to delayed fracture, slow strain rate tests (SSRT) of notched bar specimens of AISI 4135 with tensile strengths of 1300 and 1500 MPa and boron-bearing steel with 1300 MPa have been performed after cyclic corrosion test (CCT). During SSRT the humidity around the specimen was kept high to keep absorbed diffusible hydrogen. The fracture stresses of AISI 4135 steels decreased with increment of diffusible hydrogen content which increased with CCT cycles. Their delayed fracture susceptibilities could be successfully evaluated in consideration of both influence of hydrogen content on mechanical property and hydrogen entry.

  20. Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test

    Energy Technology Data Exchange (ETDEWEB)

    Li Songjie [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China); Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhang Zuogui [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Akiyama, Eiji [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: AKIYAMA.Eiji@nims.go.jp; Tsuzaki, Kaneaki [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhang Boping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China)

    2010-05-15

    To evaluate susceptibilities of high strength steels to delayed fracture, slow strain rate tests (SSRT) of notched bar specimens of AISI 4135 with tensile strengths of 1300 and 1500 MPa and boron-bearing steel with 1300 MPa have been performed after cyclic corrosion test (CCT). During SSRT the humidity around the specimen was kept high to keep absorbed diffusible hydrogen. The fracture stresses of AISI 4135 steels decreased with increment of diffusible hydrogen content which increased with CCT cycles. Their delayed fracture susceptibilities could be successfully evaluated in consideration of both influence of hydrogen content on mechanical property and hydrogen entry.

  1. Review of current research and understanding of irradiation-assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Nelson, J.L.; Andresen, P.L.

    1992-01-01

    Concerns for irradiation-assisted stress corrosion cracking (IASCC) of reactor internals are increasing, especially for components that are not readily replaceable. Both laboratory and field data show that intergranular stress corrosion cracking of stainless steels and nickel-base alloys can result from long term exposure to the high energy neutron and gamma radiation that exists in the core of light water reactors (LWR's). Radiation affects cracking susceptibility via changes in material micro-chemistry (radiation induced segregation, or RIS), water chemistry (radiolysis) and material properties/stress (e.g., radiation induced creep and hardening). Based on many common dependencies, e.g., to solution purity, corrosion potential, crevicing and stress, IASCC falls within the continuum of environmental cracking phenomenon in high temperature water

  2. Stress corrosion cracking of 350 maraging steel in 3.5 Wt. % NaCl solution

    International Nuclear Information System (INIS)

    Hussain, I.; Hussain, T.; Tauqir, A.; Hashmi, F.H.; Khan, A.Q.

    1993-01-01

    Stress corrosion behavior of 350 maraging steel in 3.5 wt.% NaCl solution was investigated. The results suggest that the steel is susceptible to stress corrosion cracking as the time to failure was always considerably shorter, as compared to those in air at the same stress level. The fracture mode was nearly intergranular and occasionally transgranular. There was no definite trend for the different modes of failure. The strain rate effect was also considered and the results show that the stress corrosion cracks were absent at strain rate high than 1.97 x 10/sup -4/S/sup -1/ and lower than 1.29 x 10/sup -7/S/sup -1/. The critical strain rate range was found to be between 6.4 x 10/sup -7/ to 3.24 x10/sup -5/S /sup -1/. (author)

  3. Effects of thermal aging and stress triaxiality on PWSCC initiation susceptibility of nickel-based Alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Tae Ho; Kim, Ji Hyun [Dept. of Nuclear Science and Engineering, School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-10-15

    In present study, effects of thermal aging and triaxial stress were investigated in terms of primary water stress corrosion cracking susceptibility. The thermal aging was applied via heat treatment at 400°C and triaxial stress was applied via notched tensile test specimen. The crack initiation time of each specimen were then measured by direct current potential drop method during slow strain rate test at primary water environment. Alloys with 10 years thermal aging exhibited the highest susceptibility to stress corrosion cracking and asreceived specimen shows lowest susceptibility. The trend was different with triaxial stress applied; 20 years thermal aging specimen shows highest susceptibility and as-received specimen shows lowest. It would be owing to change of precipitate morphology during thermal aging and different activated slip system in triaxial stress state.

  4. AN ASSESSMENT OF THE SERVICE HISTORY AND CORROSION SUSCEPTIBILITY OF TYPE IV WASTE TANKS

    International Nuclear Information System (INIS)

    Wiersma, B

    2008-01-01

    Type IV waste tanks were designed and built to store waste that does not require auxiliary cooling. Each Type IV tank is a single-shell tank constructed of a steel-lined pre-stressed concrete tank in the form of a vertical cylinder with a concrete domed roof. There are four such tanks in F-area, Tanks 17-20F, and four in H-Area, Tanks 21-24H. Leak sites were discovered in the liners for Tanks 19 and 20F in the 1980's. Although these leaks were visually observed, the investigation to determine the mechanism by which the leaks had occurred was not completed at that time. Therefore, a concern was raised that the same mechanism which caused the leak sites in the Tanks in F-area may also be operable in the H-Area tanks. Data from the construction of the tanks (i.e., certified mill test reports for the steel, no stress-relief), the service history (i.e., waste sample data, temperature data), laboratory tests on actual wastes and simulants (i.e., electrochemical testing), and the results of the visual inspections were reviewed. The following observations and conclusions were made: (1) Comparison of the compositional and microstructural features indicate that the A212 material utilized for construction of the H-Area tanks are far more resistant to SCC than the A285 materials used for construction of the F-Area tanks. (2) A review of the materials of construction, temperature history, service histories concluded that F-Area tanks likely failed by caustic stress corrosion cracking. (3) The environment in the F-Area tanks was more aggressive than that experienced by the H-Area tanks. (4) Based on a review of the service history, the H-Area tanks have not been exposed to an environment that would render the tanks susceptible to either nitrate stress corrosion cracking (i.e., the cause of failures in the Type I and II tanks) or caustic stress corrosion cracking. (5) Due to the very dilute and uninhibited solutions that have been stored in Tank 23H, vapor space corrosion has

  5. Environmental stress-corrosion cracking of fiberglass: Lessons learned from failures in the chemical industry

    International Nuclear Information System (INIS)

    Myers, T.J.; Kytoemaa, H.K.; Smith, T.R.

    2007-01-01

    Fiberglass reinforced plastic (FRP) composite materials are often used to construct tanks, piping, scrubbers, beams, grating, and other components for use in corrosive environments. While FRP typically offers superior and cost effective corrosion resistance relative to other construction materials, the glass fibers traditionally used to provide the structural strength of the FRP can be susceptible to attack by the corrosive environment. The structural integrity of traditional FRP components in corrosive environments is usually dependent on the integrity of a corrosion-resistant barrier, such as a resin-rich layer containing corrosion resistant glass fibers. Without adequate protection, FRP components can fail under loads well below their design by an environmental stress-corrosion cracking (ESCC) mechanism when simultaneously exposed to mechanical stress and a corrosive chemical environment. Failure of these components can result in significant releases of hazardous substances into plants and the environment. In this paper, we present two case studies where fiberglass components failed due to ESCC at small chemical manufacturing facilities. As is often typical, the small chemical manufacturing facilities relied largely on FRP component suppliers to determine materials appropriate for the specific process environment and to repair damaged in-service components. We discuss the lessons learned from these incidents and precautions companies should take when interfacing with suppliers and other parties during the specification, design, construction, and repair of FRP components in order to prevent similar failures and chemical releases from occurring in the future

  6. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X. [Univ. of Alberta, Dept. of Chemical and Materials Engineering, Edmonton, Alberta (Canada); Zheng, W. [Materials Technology Laboratory, NRCan, Ottawa, Ontario (Canada); Guzonas, D.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500{sup o}C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  7. Effect of corrosion product layer on SCC susceptibility of copper containing type 304 stainless steel in 1 M H2SO4

    International Nuclear Information System (INIS)

    Asawa, M.; Devasenapathi, A.; Fujisawa, M.

    2004-01-01

    The effect of surface corrosion product layer on the stress corrosion cracking (SCC) susceptibility of type 304 stainless steel with Cu was studied in 1 kmol/m 3 (1 M) sulfuric acid at 353 K temperature. Studies based on the intermittent removal of surface corrosion product layer indicated that the surface film governs the SCC behavior of the alloy by accelerating both the crack initiation and propagation stages. The electrochemical impedance and polarization studies showed the surface layer to be promoting SCC initiation by lowering the uniform corrosion rate and the propagation by shifting the surface corrosion potential to a more noble direction. The elemental analysis of the corrosion product both by the energy dispersive X-ray (EDX) spectroscopy and by X-ray diffraction (XRD) analysis along with the thermodynamic calculations showed the layer to be constituted mainly of metallic copper (Cu) and the mono-hydrated iron sulfate which acts as cathode promoting SCC

  8. Corrosion characteristics of unprotected post-tensioning strands under stress.

    Science.gov (United States)

    2014-05-01

    An investigation was conducted to determine the effect of stress condition : and environmental exposure on corrosion of post-tensioned strands during ungrouted periods. : Exposures for periods of up to 4 weeks of stressed, as-received strand placed i...

  9. An overview of materials degradation by stress corrosion in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P. M. [Framatome ANP, Tour Areva, 92084 Paris La Defense Cedex (France)

    2004-07-01

    The aging of water cooled and moderated nuclear steam supply systems has given rise to many material corrosion problems of which stress corrosion cracking has proved to be one of the most serious. The aim of this paper is to review some examples of corrosion and particularly stress corrosion problems from the author's experience of interpreting and modelling these phenomena in PWR systems. Examples of stress corrosion cracking in PWR systems described include the major issue of Alloy 600 intergranular cracking in primary PWR coolants, for which it is generally perceived that both adequate life prediction models and remedial measures now exist. Intergranular corrosion and stress corrosion cracking of Alloy 600 steam generator tubes that occur in occluded superheated crevices on the secondary side of steam generators due to hide-out and concentration of water borne impurities are also addressed. Rather less extensive or well known examples are discussed such as the stress corrosion cracking of carbon and low alloy steels and of stainless steels in occluded dead-leg situations where it is sometimes difficult to guarantee adequate control of water chemistry, particularly at plant start-up. Reference is also be made to the use of high strength fastener materials in PWR systems as well as to the emerging issue of the effect of high neutron doses on the stress corrosion resistance of core structural components fabricated from austenitic stainless steels. (authors)

  10. An overview of materials degradation by stress corrosion in PWRs

    International Nuclear Information System (INIS)

    Scott, P. M.

    2004-01-01

    The aging of water cooled and moderated nuclear steam supply systems has given rise to many material corrosion problems of which stress corrosion cracking has proved to be one of the most serious. The aim of this paper is to review some examples of corrosion and particularly stress corrosion problems from the author's experience of interpreting and modelling these phenomena in PWR systems. Examples of stress corrosion cracking in PWR systems described include the major issue of Alloy 600 intergranular cracking in primary PWR coolants, for which it is generally perceived that both adequate life prediction models and remedial measures now exist. Intergranular corrosion and stress corrosion cracking of Alloy 600 steam generator tubes that occur in occluded superheated crevices on the secondary side of steam generators due to hide-out and concentration of water borne impurities are also addressed. Rather less extensive or well known examples are discussed such as the stress corrosion cracking of carbon and low alloy steels and of stainless steels in occluded dead-leg situations where it is sometimes difficult to guarantee adequate control of water chemistry, particularly at plant start-up. Reference is also be made to the use of high strength fastener materials in PWR systems as well as to the emerging issue of the effect of high neutron doses on the stress corrosion resistance of core structural components fabricated from austenitic stainless steels. (authors)

  11. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  12. Alloy SCR-3 resistant to stress corrosion cracking

    International Nuclear Information System (INIS)

    Kowaka, Masamichi; Fujikawa, Hisao; Kobayashi, Taiki

    1977-01-01

    Austenitic stainless steel is used widely because the corrosion resistance, workability and weldability are excellent, but the main fault is the occurrence of stress corrosion cracking in the environment containing chlorides. Inconel 600, most resistant to stress corrosion cracking, is not necessarily safe under some severe condition. In the heat-affected zone of SUS 304 tubes for BWRs, the cases of stress corrosion cracking have occurred. The conventional testing method of stress corrosion cracking using boiling magnesium chloride solution has been problematical because it is widely different from actual environment. The effects of alloying elements on stress corrosion cracking are remarkably different according to the environment. These effects were investigated systematically in high temperature, high pressure water, and as the result, Alloy SCR-3 with excellent stress corrosion cracking resistance was found. The physical constants and the mechanical properties of the SCR-3 are shown. The states of stress corrosion cracking in high temperature, high pressure water containing chlorides and pure water, polythionic acid, sodium phosphate solution and caustic soda of the SCR-3, SUS 304, Inconel 600 and Incoloy 800 are compared and reported. (Kako, I.)

  13. effect of municipal liquid waste on corrosion susceptibility

    African Journals Online (AJOL)

    DR. AMINU

    Kogo, A. A.. Department of Integrated Science, Federal College of Education, Kano, Nigeria. ... The corrosion rate of the galvanized steel pipe was measured using the gravimetric ... Key words: Liquid waste, galvanized steel, weight loss, gravimetric, corrosion, leaking ... the side of the test tubes, so that each side would be.

  14. Stress corrosion cracking of candidate materials for nuclear waste containers

    International Nuclear Information System (INIS)

    Maiya, P.S.; Shack, W.J.; Kassner, T.F.

    1989-09-01

    Types 304L and 316L stainless steel (SS), Incoloy 825, Cu, Cu-30%Ni, and Cu-7%Al have been selected as candidate materials for the containment of high-level nuclear waste at the proposed Yucca Mountain Site in Nevada. The susceptibility of these materials to stress corrosion cracking has been investigated by slow-strain-rate tests (SSRTs) in water which simulates that from well J-13 (J-13 water) and is representative of the groundwater present at the Yucca Mountain site. The SSRTs were performed on specimens exposed to simulated J-13 water at 93 degree C and at a strain rate 10 -7 s -1 under crevice conditions and at a strain rate of 10 -8 s -1 under both crevice and noncrevice conditions. All the tests were interrupted after nominal elongation strains of 1--4%. Examination by scanning electron microscopy showed some crack initiation in virtually all specimens. Optical microscopy of metallographically prepared transverse sections of Type 304L SS suggests that the crack depths are small (<10 μm). Preliminary results suggest that a lower strain rate increases the severity of cracking of Types 304L and 316L SS, Incoloy 825, and Cu but has virtually no effect on Cu-30%Ni and Cu-7%Al. Differences in susceptibility to cracking were evaluated in terms of a stress ratio, which is defined as the ratio of the increase in stress after local yielding in the environment to the corresponding stress increase in an identical test in air, both computed at the same strain. On the basis of this stress ratio, the ranking of materials in order of increasing resistance to cracking is: Types 304L SS < 316L SS < Incoloy 825 congruent Cu-30%Ni < Cu congruent Cu-7%Al. 9 refs., 12 figs., 7 tabs

  15. Stress corrosion cracking resistance of 22% Cr duplex stainless steel in simulated sour environments

    International Nuclear Information System (INIS)

    Kudo, T.; Tsuge, H.; Moroishi, T.

    1989-01-01

    This paper reports the effect of nickel and nitrogen contents on stress corrosion cracking (SCC) of 22%Cr - 3%Mo-base duplex stainless steel investigated in simulated sour environments with respect to both the base metal and the heat-affected zone (HAZ) of welding. The threshold stress and the critical chloride concentration for SCC were evaluated as a function of the ferrite content (α-content) in the alloy. The threshold stress is highest at the α-content of 40 to 45%, and is lowered with decreasing and increasing the α-content from its value. The alloy whose α-content exceeds 80% at the HAZ has also high susceptibilities to pitting corrosion and intergranular corrosion (ICG). The critical chloride concentration for cracking increases with the decrease in the α-content. Moreover, the contents of chromium, nickel and molybdenum in the α-phase are considered to be an important factor for determining the critical chloride concentration

  16. Stress corrosion in high-strength aluminum alloys

    Science.gov (United States)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  17. Stress corrosion cracking of alloy 182 weld in a PWR water environment

    International Nuclear Information System (INIS)

    Lima, Luciana Iglesias Lourenco; Schvartzman, Monica Maria de Abreu Mendonca; Quinan, Marco Antonio Dutra; Soares, Antonio Edicleto Gomes; Piva, Stephano P.T.

    2011-01-01

    The weld used to connect two different metals is known as dissimilar metal welds (DMW). In the nuclear power plant, this weld is used to join stainless steel nipples to low alloy carbon steel components on the nuclear pressurized water reactor (PWR). In most cases, nickel alloys are used to joint these materials. These alloys are known to accommodate the differences in composition and thermal expansion of the two materials. The stress corrosion cracking (SCC) is a phenomenon that occurs in nuclear power plants metallic components where susceptibility materials are subjected to the simultaneously effect of mechanical stress and an aggressive media with different compositions. SCC is one of degradation process that gradually introduces damage of components, change their characteristics with the operation time. The nickel alloy 600, and their weld metals (nickel alloys 82 and 182), originally selected due to its high corrosion resistance, it exhibit after long operation period (20 years), susceptibility to the SCC. This study presents a comparative work between the SCC in the Alloy 182 filler metal weld in two different temperatures (303 deg C and 325 deg C) in primary water. The susceptibility to stress corrosion cracking was assessed using the slow strain rate tensile (SSRT) test. The results of the SSRT tests indicated that SCC is a thermally-activated mechanism and that brittle fracture caused by the corrosion process was observed at 325 deg C. (author)

  18. Stress corrosion cracking of titanium alloys

    Science.gov (United States)

    May, R. C.; Beck, F. H.; Fontana, M. G.

    1971-01-01

    Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.

  19. BWR alloy 182 stress Corrosion Cracking Experience

    International Nuclear Information System (INIS)

    Horn, R.M.; Hickling, J.

    2002-01-01

    Modern Boiling Water Reactors (BWR) have successfully operated for more than three decades. Over that time frame, different materials issues have continued to arise, leading to comprehensive efforts to understand the root cause while concurrently developing different mitigation strategies to address near-term, continued operation, as well as provide long-term paths to extended plant life. These activities have led to methods to inspect components to quantify the extent of degradation, appropriate methods of analysis to quantify structural margin, repair designs (or strategies to replace the component function) and improved materials for current and future application. The primary materials issue has been the occurrence of stress corrosion cracking (SCC). While this phenomenon has been primarily associated with austenitic stainless steel, it has also been found in nickel-base weldments used to join piping and reactor internal components to the reactor pressure vessel consistent with fabrication practices throughout the nuclear industry. The objective of this paper is to focus on the history and learning gained regarding Alloy 182 weld metal. The paper will discuss the chronology of weld metal cracking in piping components as well as in reactor internal components. The BWR industry has pro-actively developed inspection processes and procedures that have been successfully used to interrogate different locations for the existence of cracking. The recognition of the potential for cracking has also led to extensive studies to understand cracking behavior. Among other things, work has been performed to characterize crack growth rates in both oxygenated and hydrogenated environments. The latter may also be relevant to PWR systems. These data, along with the understanding of stress corrosion cracking processes, have led to extensive implementation of appropriate mitigation measures. (authors)

  20. Irradiation-assisted stress corrosion cracking of austenitic alloys

    International Nuclear Information System (INIS)

    Was, G.S.; Atzmon, M.

    1991-01-01

    An experimental program has been conducted to determine the mechanism of irradiation-assisted stress-corrosion cracking (IASCC) in austenitic stainless steel. High-energy protons have been used to produce grain boundary segregation and microstructural damage in samples of controlled impurity content. The densities of network dislocations and dislocation loops were determined by transmission electron microscopy and found to resemble those for neutron irradiation under LWR conditions. Grain boundary compositions were determined by in situ fracture and Auger spectroscopy, as well as by scanning transmission electron microscopy. Cr depletion and Ni segregation were observed in all irradiated samples, with the degree of segregation depending on the type and amount of impurities present. P, and to a lesser extent P, impurities were observed to segregate to the grain boundaries. Irradiation was found to increase the susceptibility of ultra-high-purity (UHP), and to a much lesser extent of UHP+P and UHP+S, alloys to intergranular SCC in 288 degree C water at 2 ppm O 2 and 0.5 μS/cm. No intergranular fracture was observed in arcon atmosphere, indicating the important role of corrosion in the embrittlement of irradiated samples. The absence of intergranular fracture in 288 degree C argon and room temperature tests also suggest that the embrittlement is not caused by hydrogen introduced by irradiation. Contrary to common belief, the presence of P impurities led to a significant improvement in IASCC over the ultrahigh purity alloy

  1. Intergranular stress corrosion cracking of low alloy and carbon steels in high temperature pure water

    International Nuclear Information System (INIS)

    Tsubota, M.; Sakamoto, H.; Tsuzuki, R.

    1993-01-01

    Stress corrosion cracking (SCC) behavior of low alloy steels (A508 and SNCM630) and a carbon steel (SGV480) in high temperature water has been examined with relation to the heat treatment condition, including a long time aging, and the mechanical properties. Intergranular stress corrosion cracking (IGSCC) as observed in the highly hardened specimens, and there was observed in the highly hardened specimens, and there was observed in the highly hardened specimens, and there was observed a close relationship between hardness and SCC susceptibility. From the engineering point of view, it was concluded that adequate SR (stress relief) or tempering heat treatment is necessary to avoid the IGSCC of the welded structures made of low alloy and carbon steels. A508 heat treated with specified quench and temper did not show the SCC susceptibility, even after aging 10000 hours at 350, 400 and 450 degrees C. Tensile properties corresponding to the critical hardness for SSC susceptibility coincided with the values at the 'necking point' in the true stress-strain curve. Ductile-brittle transition observed in the fracture toughness test also occurred at around the critical hardness for SCC susceptibility. Therefore, it was conjectured that the limitation of plasticity was an absolute cause for the SCC susceptibility of the steels

  2. Stress corrosion cracking of zirconium and its alloys in halogenide solutions

    International Nuclear Information System (INIS)

    Farina, Silvia B.

    2001-01-01

    A doctoral thesis developed at the corrosion labs in CNEA a few years ago showed that zirconium and Zircaloy-4 were susceptible to stress corrosion cracking (SCC) in chloride aqueous solutions at potentials above the pitting potential. However, the nature of the phenomenon was not elucidated. On the other hand, references about the subject were scarce and contradictory. The development of new SCC models, in particular, the surface mobility SCC mechanism suggested a review of zirconium and Zircaloy-4 SCC in halogenide aqueous solutions. This mechanism predicts that zirconium should be susceptible to SCC not only in chloride solutions but also in bromide and iodide solutions due to the low melting point of the surface compounds formed by the interaction between the metal and the environment. The present work was aimed to determine the conditions under which SCC takes place and the mechanism operating during this process. For that purpose, the effect of electrochemical potential, strain rate and temperature on the SCC susceptibility of both, zirconium and Zircaloy-4 in chloride, bromide and iodide solutions was investigated. It was observed that those materials undergo stress corrosion cracking only at potentials higher than the breakdown potential. The crack velocity increased slightly with the applied potential, and the strain rate had an accelerating effect on the crack propagation rate. In both materials two steps were found during cracking. The first one was characterized as intergranular attack assisted by stress due to an anodic dissolution process. This step is followed by a transition to a transgranular mode of propagation, which was considered as the 'true' stress corrosion cracking step. The intergranular attack is the rate-determining step due to the fact that the transgranular propagation rate is higher than the intergranular propagation rate. Several stress corrosion cracking mechanisms were analyzed to explain the transgranular cracking. The predictions

  3. Effects of Laser Etching on the Corrosion Susceptibility of SAVY 4000 and Hagan Containers

    Energy Technology Data Exchange (ETDEWEB)

    Hyer, Holden Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Duque, Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-22

    Since the late 1990’s, the Hagan container was used as the primary container for packaging of plutonium-bearing materials. The Hagan design consisted of a threaded closure, a Viton® ORing, a carbon-carbon filter, and a 304L stainless steel (SS) body. Over the years, Hagans have shown vulnerability in their design [1]. In 2008, The Department of Energy (DOE) issued DOE M 441.1-1, Nuclear Material Packaging Manual, which detailed an approach to obtain highconfidence in containers by including specific design requirements, material contents and an approach to determine life span from said contents, and surveillance techniques [2]. In response to both the vulnerability issues with the Hagan and DOE M 441.1-1, the SAVY 4000 container with its twist style closure, Viton® O-Ring, Fiberfrax-Gortex filter, and annealed 316L SS body, was designed as the replacement for Hagan containers, but only for a short term lifespan of 5 years [1]. However, both the Hagan and SAVY 4000 are being pushed to maintain a lifespan of 40 years. Therefore, proper confidence must be placed on each component of each container to last a minimum of 40 years. So far, the biggest concern found during surveillance of these containers is corrosion and the potential for failure by corrosion. One concern is that the containers fail due to stress corrosion cracking (SCC), especially around the weld between the collar and the body as welds leave residual stresses. One advantage the SAVY 4000 has is that the body is annealed, but its weld is still susceptible as it was welded after annealing [3, 4]. Moreover, 316L SS is known to have a higher pitting resistance (pits are a precursor to SCC and can also lead to extensive failure of the material), than 304L SS [4]. During recent surveillance activities, two SAVY 4000’s containing Solution Assay Instrument (SAI) solutions were opened. The SAI SAVY 4000’s contained plutonium (Pu) in 3M HCl solution in plastic volumetric flasks placed inside of

  4. An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  5. Electrochemical polarization measurements on pitting corrosion susceptibility of nickel-rich Alloy 825

    International Nuclear Information System (INIS)

    McCright, R.D.; Fleming, D.L.

    1991-10-01

    Alloy 825 contains approximately 40% Ni, 30% Fe, 20% Cr, 3.5% Mo, 2% Cu, and 1% Ti. Alloy 825 has a number of performance features that make it attractive as a candidate material for nuclear waste containers. However, under certain environmental conditions Alloy 825 is susceptible to localized forms of corrosion, and the focus of this paper is determination of those conditions. Electrochemical polarization was used to determine the critical potential for passive film breakdown, a process which leads to localized corrosion attack. Results indicated that quite high levels of chloride ion concentrations coupled with low pH are required to lower the critical potential to approach the corrosion potential

  6. Stress corrosion evaluation on stainless steel 304 pipes in Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    1996-01-01

    Inside the frame of the project IAEA/MEX-41044 'Stress corrosion as a starting event of accidents in nuclear plants', and of the institutional project IA-252 under the same name, it was required from the Laguna Verde Nuclear Plant, material equivalent to the one employed in the piping of the primary recycling system. Laguna Verde Nuclear Plant granted two tracks of tubes, that could be used to substitute the ones that are in operation, as is the tube SA-358TP304 CL-QC with transversal welding, designated as ER-316-LQA. According to the report entitles 'Revision of the operational experience related to corrosion in the nuclear plants' it was found that the stress corrosion is the principal mechanism of corrosion present in the nuclear plants. Previous records indicate that sensitized stainless steels are resistant to stress corrosion in testings of constant loading in sea water (3.5% of chlorides approximately) to 80 Centigrade and to 80% of the limit of conveyance and that a solution of 22% of NaCl to 90 Centigrade, produces cracking due to stress corrosion in highly sensitized steels, in tests of speed of slow extension (SSRT), to a speed of 1x10 -6 s -1 . Daniels reports that there is a direct relation between the speed limit of detection of the SSRT test and the concentration of chlorides, for stainless steels tested to 100 Centigrade. The minimum detection speed of susceptibility to stress corrosion for solution to 20% of NaCl, is of 1x10 -7 s -1 . Taking into account these considerations, the employment of a solution with 22% of NaCl to 90 Centigrade to a speed of 1x10 -6 s -1 seems a good choice for the evaluation of stainless steel. (Author)

  7. Initiation model for intergranular stress corrosion cracking in BWR pipes

    International Nuclear Information System (INIS)

    Hishida, Mamoru; Kawakubo, Takashi; Nakagawa, Yuji; Arii, Mitsuru.

    1981-01-01

    Discussions were made on the keys of intergranular stress corrosion cracking of austenitic stainless steel in high-temperature water in laboratories and stress corrosion cracking incidents in operating plants. Based on these discussions, a model was set up of intergranular stress corrosion cracking initiation in BWR pipes. Regarding the model, it was presumed that the intergranular stress corrosion cracking initiates during start up periods whenever heat-affected zones in welded pipes are highly sensitized and suffer dynamic strain in transient water containing dissolved oxygen. A series of BWR start up simulation tests were made by using a flowing autoclave system with slow strain rate test equipment. Validity of the model was confirmed through the test results. (author)

  8. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    Science.gov (United States)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  9. Stress Corrosion Cracking of Type 304 Stainless Steel

    National Research Council Canada - National Science Library

    Louthan, M

    1964-01-01

    Stress corrosion cracking of type 304 stainless steel exposed in dilute chloride solutions is being investigated at the Savannah River Laboratory in attempts to develop a fundamental understanding of the phenomenon...

  10. effect of municipal liquid waste on corrosion susceptibility

    African Journals Online (AJOL)

    DR. AMINU

    categories: complete immersion in seawater or exposure to an environment charged with salts particles or solutions, both categories are subjected to many variables and pollutants (Kareem, 2006). Also the corrosion behaviour of galvanized steel in industrial effluents discharged into the environment, was found to corrode ...

  11. [Stress-corrosion test of TIG welded CP-Ti].

    Science.gov (United States)

    Li, H; Wang, Y; Zhou, Z; Meng, X; Liang, Q; Zhang, X; Zhao, Y

    2000-12-01

    In this study TIG (Tungsten Inert Gas) welded CP-Ti were subjected to stress-corrosion test under 261 MPa in artificial saliva of 37 degrees C for 3 months. No significant difference was noted on mechanical test (P > 0.05). No color-changed and no micro-crack on the sample's surface yet. These results indicate that TIG welded CP-Ti offers excellent resistance to stress corrosion.

  12. Residual stresses and stress corrosion cracking in pipe fittings

    International Nuclear Information System (INIS)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique

  13. Microstructural evolution and stress-corrosion-cracking behavior of thermally aged Ni-Cr-Fe alloy

    International Nuclear Information System (INIS)

    Yoo, Seung Chang; Choi, Kyoung Joon; Kim, Taeho; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun

    2016-01-01

    Highlights: • Effects of long-term thermal aging on the nickel-based Alloy 600 were investigated. • Heat treatments simulating thermal aging were conducted by considering Cr diffusion. • Nano-indentation test results show hardening of thermally aged materials. • Thermally aged materials are more susceptible to stress corrosion cracking. • The property changes are attributed to the formation and evolution of precipitates. - Abstract: To understand the effect of long-term thermal aging in power plant systems, representative thick-walled Alloy 600 was prepared and thermally aged at 400 °C to fabricate samples with thermal aging effects similar to service operating conditions. Changes of microstructures, mechanical properties, and stress corrosion cracking susceptibility were investigated mainly through electron backscatter diffraction, nanoindentation, and high-temperature slow strain rate test. The formation of abundant semi-continuous precipitates with chromium depletion at grain boundaries was observed after thermally aged for 10 equivalent years. Also, alloys thermally aged for 10 equivalent years of thermal aging exhibited the highest susceptibility to stress corrosion cracking.

  14. Fundamental approaches to predicting stress corrosion: 'Quantitative micro-nano' (QMN) approach to predicting stress corrosion cracking in water cooled nuclear plants

    International Nuclear Information System (INIS)

    Staehle, R.W.

    2010-01-01

    This paper describes the modeling and experimental studies of stress corrosion cracking with full disciplinary set at the atomic level. Its objective is to develop an intellectual structure for quantitative prediction of stress corrosion cracking in water cooled reactors.

  15. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    Science.gov (United States)

    Farina, S.; Schulz Rodriguez, F.; Duffó, G.

    2013-07-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drumscontaining the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina) , it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums.

  16. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    International Nuclear Information System (INIS)

    Farina, S.; Schulz Rodriguez, F.; Duffo, G.

    2013-01-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina), it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. (authors)

  17. Monitoring and modeling stress corrosion and corrosion fatigue damage in nuclear reactors

    International Nuclear Information System (INIS)

    Andresen, P.L.; Ford, F.P.; Solomon, H.D.; Taylor, D.F.

    1990-01-01

    Stress corrosion and corrosion fatigue are significant problems in many industries, causing economic penalties from decreased plant availability and component repair or replacement. In nuclear power reactors, environmental cracking occurs in a wide variety of components, including reactor piping and steam generator tubing, bolting materials and pressure vessels. Life assessment for these components is complicated by the belief that cracking is quite irreproducible. Indeed, for conditions which were once viewed as nominally similar, orders of magnitude variability in crack growth rates are observed for stress corrosion and corrosion fatigue of stainless steels and low-alloy steels in 288 degrees C water. This paper shows that design and life prediction approaches are destined to be overly conservative or to risk environmental failure if life is predicted by quantifying only the effects of mechanical parameters and/or simply ignoring or aggregating environmental and material variabilities. Examples include the Nuclear Regulatory Commission (NRC) disposition line for stress-corrosion cracking of stainless steel in boiling water reactor (BWR) water and the American Society of Mechanical Engineers' Section XI lines for corrosion fatigue

  18. Observations on the influence of tube manufacturing technique on iodine stress corrosion cracking of unirradiated Zircaloy

    International Nuclear Information System (INIS)

    Syrett, B.C.; Cubicciotti, D.; Jones, R.L.

    1979-01-01

    Closed-end tube pressurization tests at 593 K were used to compare the susceptibilities to iodine stress corrosion cracking (SCC) of two lots of Zircaloy-2 tubing manufactured by different suppliers. Although both tubings were produced to exactly the same specifications in terms of dimensions, chemical composition, burst strength, and certain other properties, as-received specimens from the two lots exhibited markedly different behavior in iodine SCC tests. The tubing from one supplier had a lower SCC threshold stress and failed about 30 times more quickly than the tubing from the other supplier. However, it was found that this difference in SCC susceptibility was eliminated if the internal surfaces of the specimens were polished to a 3 μm finish prior to testing. These observations are discussed in terms of possible effects of surface or near-surface chacteristics of the tubing on SCC susceptibility

  19. Electrochemical studies on stress corrosion cracking of incoloy-800 in caustic solution. Part II: Precracking samples

    Directory of Open Access Journals (Sweden)

    Dinu Alice

    2006-01-01

    Full Text Available Stress corrosion cracking (SCC in a caustic medium may affect the secondary circuit tubing of a CANDU NPP cooled with river water, due to an accidental formation of a concentrated alkaline environment in the areas with restricted circulation, as a result of a leakage of cooling water from the condenser. To evaluate the susceptibility of Incoloy-800 (used to manufacture steam generator tubes for CANDU NPP to SCC, some accelerated corrosion tests were conducted in an alkaline solution (10% NaOH, pH = 13. These experiments were performed at ambient temperature and 85 °C. We used the potentiodynamic method and the potentiostatic method, simultaneously monitoring the variation of the open circuit potential during a time period (E corr/time curve. The C-ring method was used to stress the samples. In order to create stress concentrations, mechanical precracks with a depth of 100 or 250 μm were made on the outer side of the C-rings. Experimental results showed that the stressed samples were more susceptible to SCC than the unstressed samples whereas the increase in temperature and crack depth lead to an increase in SCC susceptibility. Incipient micro cracks of a depth of 30 μm were detected in the area of the highest peak of the mechanical precrack.

  20. Influence of delta ferrite on corrosion susceptibility of AISI 304 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Lawrence O. Osoba

    2016-12-01

    Full Text Available In the current study, the influence of delta (δ ferrite on the corrosion susceptibility of AISI 304 austenitic stainless steel was evaluated in 1Molar concentration of sulphuric acid (H2SO4 and 1Molar concentration of sodium chloride (NaCl. The study was performed at ambient temperature using electrochemical technique—Tafel plots to evaluate the corrosive tendencies of the austenitic stainless steel sample. The as-received (stainless steel specimen and 60% cold-worked (stainless steel specimens were isothermally annealed at 1,100°C for 2 h and 1 h, respectively, and quenched in water. The results obtained show that the heat-treated specimen and the 60% cold-worked plus heat-treated specimen exhibited higher corrosion susceptibility than the as-received specimen, which invariably contained the highest fraction of δ ferrite particles. The finding shows that the presence of δ ferrite, in which chromium (Cr, the main corrosion inhibitor segregates, does not degrade and or reduces the resistance to aqueous corrosion of the austenitic stainless steel material.

  1. Study on mitigation of stress corrosion cracking by peening

    International Nuclear Information System (INIS)

    Maeguchi, Takaharu; Tsutsumi, Kazuya; Toyoda, Masahiko; Ohta, Takahiro; Okabe, Taketoshi; Sato, Tomonobu

    2010-01-01

    In order to verify stability of residual stress improvement effect of peeing for mitigation of stress corrosion cracking in components of PWR plant, relaxation behavior of residual stress induced by water jet peening (WJP) and ultrasonic shot peening (USP) on surface of alloy 600 and its weld metal was investigated under various thermal aging and stress condition considered for actual plant operation. In the case of thermal aging at 320-380degC, surface residual stress relaxation was observed at the early stage of thermal aging, but no significant stress relaxation was observed after that. Applied stress below yield stress does not significantly affect stress relaxation behavior of surface residual stress. Furthermore, it was confirmed that cyclic stress does not accelerate stress relaxation. (author)

  2. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Keith J., E-mail: leonardk@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Stevens, Jacqueline N. [AREVA Inc., Lynchburg, VA (United States); Busby, Jeremy T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-11-15

    Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In the present work, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lack of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. The cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material.

  3. Evaluation of the cracking by stress corrosion in nuclear reactor environments type BWR

    International Nuclear Information System (INIS)

    Arganis J, C. R.

    2010-01-01

    The stress corrosion cracking susceptibility was studied in sensitized, solution annealed 304 steel, and in 304-L welded with a heat treatment that simulated the radiation induced segregation, by the slow strain rate test technique, in a similar environment of a boiling water reactor (BWR), 288 C, 8 MPa, low conductivity and a electrochemical corrosion potential near 200 mV. vs. standard hydrogen electrode (She). The electrochemical noise technique was used for the detection of the initiation and propagation of the cracking. The steels were characterized by metallographic studies with optical and scanning electronic microscopy and by the electrochemical potentiodynamic reactivation of single loop and double loop. In all the cases, the steels present delta ferrite. The slow strain rate tests showed that the 304 steel in the solution annealed condition is susceptible to transgranular stress corrosion cracking (TGSCC), such as in a normalized condition showed granulated. In the sensitized condition the steel showed intergranular stress corrosion cracking, followed by a transition to TGSCC. The electrochemical noise time series showed that is possible associated different time sequences to different modes of cracking and that is possible detect sequentially cracking events, it is means, one after other, supported by the fractographic studies by scanning electron microscopy. The parameter that can distinguish between the different modes of cracking is the re passivation rate, obtained by the current decay rate -n- in the current transients. This is due that the re passivation rate is a function of the microstructure and the sensitization. Other statistic parameters like the localized index, Kurtosis, Skew, produce results that are related with mixed corrosion. (Author)

  4. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    International Nuclear Information System (INIS)

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-01-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC. The

  5. A survey on the corrosion susceptibility of Alloy 800 CANDU steam generator tubing materials

    International Nuclear Information System (INIS)

    Lu, Y.C.; Dupuis, M.; Burns, D.

    2008-01-01

    To provide support for a proactive steam generator (SG) aging management strategy, a survey on the corrosion susceptibility of the archived Alloy 800 tubing from CANDU SGs under plausible crevice chemistry conditions was conducted to assess the potential material degradation issues in CANDU SGs. Archived Alloy 800 samples were collected from four CANDU utilities. High-temperature electrochemical analysis was carried out to assess the corrosion susceptibility of the archived SG tubing under simulated CANDU crevice chemistry conditions at both 150 o C and 300 o C. The potentiodynamic polarization results obtained from the archived CANDU SG tubes were compared to the data from ex-service tubes removed from Darlington Nuclear Generating Station (DNGS) SGs and a reference nuclear grade Alloy 800 tubing. It was found that the removed Darlington SG tubes, with signs of in-service degradation, were more susceptible to pitting corrosion than the reference nuclear grade Alloy 800 tubing. At 150 o C, under the same neutral crevice chemistry conditions, the potentiodynamic polarization curve of the ex-service Darlington SG tubing has an active peak, which is a sign of propensity to crevice/underdeposit corrosion. This active peak was not observed in any of the potentiodynamic polarization curves of all archived Alloy 800 CANDU SG tubing indicating that archived CANDU SG tubes are less susceptible to the underdeposit corrosion under SG startup conditions. The corrosion behaviour of the archived Alloy 800 tubes from CANDU SG was similar to that of the reference nuclear grade Alloy 800 tubing. The results of this survey suggest that the Alloy 800 tubing materials used in the existing CANDU utilities (other than ex-service DNGS tubing) will continue to have reliable performance under specified CANDU operating conditions. Ex-service SG tubing from DNGS, although showing lower than average corrosion resistance, still has a wide acceptable operating margin and the in

  6. The effects of water radiolysis on the corrosion and stress corrosion behavior of type 316 stainless steel in pure water

    International Nuclear Information System (INIS)

    Wyllie, W.E. II; Duquette, D.J.; Steiner, D.

    1994-11-01

    In the ITER Conceptual Design Activity, water will be used as coolant for the major reactor components, which will be made of solution-annealed 316 SS. A concern is that the radiolysis products may increase the stress corrosion cracking (SCC) susceptibility of 316 SS. The corrosion and stress corrosion of 316 SS was observed under irradiated and nonirradiated conditions. Gamma irradiation produced a 100 mV potential shift in the active direction, probably from the polarizing effect of reducing radiolysis products. The irradiation also resulted in nearly an order of magnitude increase in the passive current density of 316 SS, probably from increased surface reaction rates involving radiolysis products as well as increased corrosion rates; however the latter was considered insignificant. Computer simulations of pure water radiolysis at 50, 90, and 130 C and dose rates of 10 18 -10 24 were performed; effects of hydrogen, argon, and argon + 20% oxygen deaeration were also studied. Slow strain rate suggest that annealed and sensitized 316 SS was not suscepible to SCC in hydrogen- or argon-deaerated water at 50 C. Modeling of irradiated water chemistry was performed. Open circuit potential of senstizied and annealed 316 SS had a shift of 800 mV in the noble (positive) direction. Steady-state potentials of -0.180 V for sensitized 316 SS wire and -0.096 V vs Hg/HgSO 4 for annealed 316 SS wire were independent of oxygen presence. The -0.180 V shift is likely to promote SCC

  7. Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments

    Science.gov (United States)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  8. Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments

    Science.gov (United States)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1983-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  9. Stress corrosion crack tip microstructure in nickel-based alloys

    International Nuclear Information System (INIS)

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content

  10. Localized corrosion and stress corrosion cracking of candidate materials for high-level radioactive waste disposal containers in the US: A literature review

    International Nuclear Information System (INIS)

    Farmer, J.C.; McCright, R.D.

    1988-01-01

    Container materials may undergo any of several modes of degradation in this environment, including: undesirable phase transformations due to lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This paper is an analysis of data from the literature relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of these alloys. Though all three austenitic candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these forms of localized attack. Both types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented for Alloy 825 under comparable conditions. Gamma irradiation has been found to enhance SCC of Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while microbiologically induced corrosion effects have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. Of the copper-based alloys, CDA 715 has the best overall resistance to localized attack. Its resistance to pitting is comparable to that of CDA 613 and superior to that of CDA 102. Observed rates of dealloying in CDA 715 are less than those observed in CDA 613 by orders of magnitude. The resistance of CDA 715 to SCC in tarnishing ammonical environments is comparable to that of CDA 102 and superior to that of CDA 613. Its resistance to SCC in nontarnishing ammonical environments is comparable to that of CDA 613 and superior to that of CDA 102. 22 refs., 8 figs., 4 tabs

  11. Standard practice for preparation and use of direct tension stress-corrosion test specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This practice covers procedures for designing, preparing, and using ASTM standard tension test specimens for investigating susceptibility to stress-corrosion cracking. Axially loaded specimens may be stressed quantitatively with equipment for application of either a constant load, constant strain, or with a continuously increasing strain. 1.2 Tension test specimens are adaptable for testing a wide variety of product forms as well as parts joined by welding, riveting, or various other methods. 1.3 The exposure of specimens in a corrosive environment is treated only briefly because other standards are being prepared to deal with this aspect. Meanwhile, the investigator is referred to Practices G35, G36, G37, and G44, and to ASTM Special Technical Publication 425 (1).

  12. Stress corrosion cracking tests on high-level-waste container materials in simulated tuff repository environments

    International Nuclear Information System (INIS)

    Abraham, T.; Jain, H.; Soo, P.

    1986-06-01

    Types 304L, 316L, and 321 austenitic stainless steel and Incoloy 825 are being considered as candidate container materials for emplacing high-level waste in a tuff repository. The stress corrosion cracking susceptibility of these materials under simulated tuff repository conditions was evaluated by using the notched C-ring method. The tests were conducted in boiling synthetic groundwater as well as in the steam/air phase above the boiling solutions. All specimens were in contact with crushed Topopah Spring tuff. The investigation showed that microcracks are frequently observed after testing as a result of stress corrosion cracking or intergranular attack. Results showing changes in water chemistry during test are also presented

  13. Three-dimensional characterization of stress corrosion cracks

    DEFF Research Database (Denmark)

    Lozano-Perez, S.; Rodrigo, P.; Gontard, Lionel Cervera

    2011-01-01

    the best spatial resolution. To illustrate the power of these techniques, different parts of dominant stress corrosion cracks in Ni-alloys and stainless steels have been reconstructed in 3D. All relevant microstructural features can now be studied in detail and its relative orientation respect......Understanding crack propagation and initiation is fundamental if stress corrosion cracking (SCC) mechanisms are to be understood. However, cracking is a three-dimensional (3D) phenomenon and most characterization techniques are restricted to two-dimensional (2D) observations. In order to overcome...

  14. Initiation of Stress Corrosion Cracking of 26Cr-1Mo Ferritic Stainless Steels in Hot Chloride Solution

    International Nuclear Information System (INIS)

    Kwon, H. S.; Hehemann, R. F.

    1987-01-01

    Elongation measurements of 26Cr-1Mo ferritic stainless steels undergoing stress corrosion in boiling LiCl solution allow the induction period to be distinguished from the propagation period of cracks by the deviation of elongation from the logarithmic creep law. Localised corrosion cells are activated exclusively at slip steps by loading and developed into corrosion trenches. No cracks have developed from the corrosion trenches until the induction period is exceeded. The induction period is regarded as a time for localised corrosion cells to achieve a critical degree of occlusion for crack initiation. The repassivation rate of exposed metal by creep or emergence of slip steps decreases as the load increases and is very sensitive to the microstructural changes that affect slip tep height. The greater susceptibility to stress corrosion cracking of either prestrained or grain coarsened 26Cr-1Mo alloy compared with that of mill annealed material results from a significant reduction of repassivation rate associated with the increased slip step height. The angular titanium carbonitrides particles dispersed in Ti-stabilized 26Cr-1Mo alloy have a detrimental effect on the resistance to stress corrosion cracking

  15. A Study on the Residual Stress Improvement of PWSCC(Primary Water Stress Corrosion Cracking) in DMW(Dissimilar Metal Weld)

    International Nuclear Information System (INIS)

    Kang, Sung Sik; Kim, Seok Hun; Lee, Seung Gun; Park, Heung Bae

    2010-01-01

    Since 2000s, most of the cracks are found in welds, especially in (DMW) dissimilar metal welds such as pressurizer safety relief nozzle, reactor head penetration, reactor bottom mounted instrumentation (BMI), and reactor nozzles. Even the cracks are revealed as a primary water stress corrosion cracking (PWSCC), it is difficult to find the cracks by current non destructive examination. The PWSCC is occurred by three incident factors, such as susceptible material, environmental corrosive condition, and welding residual stress. If one of the three factors can be erased or decreased, the PWSCC could be prevented. In this study, we performed residual stress analysis for DMW and several residual stress improvement methods. As the preventive methods of PWSCC, we used laser peening(IP) method, inlay weld(IW) method, and induction heating stress improvement(IHSI) method. The effect of residual stress improvement for preventive methods was compared and discussed by finite element modeling and residual stress of repaired DMW

  16. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  17. Evaluation of the current status of hydrogen embrittlement and stress-corrosion cracking in steels

    Energy Technology Data Exchange (ETDEWEB)

    Moody, N.R.

    1981-12-01

    A review of recent studies on hydrogen embrittlement and stress-corrosion cracking in steels shows there are several critical areas where data is either ambiguous, contradictory, or non-existent. A relationship exists between impurity segregation and hydrogen embrittlement effects but it is not known if the impurities sensitize a preferred crack path for hydrogen-induced failure or if impurity and hydrogen effects are additive. Furthermore, grain boundary impurities may enhance susceptibility through interactions with some environments. Some studies show that an increase in grain size increases susceptibility; at least one study shows an opposite effect. Recent work also shows that fracture initiates at different locations for external and internal hydrogen environments. How this influences susceptibility is unknown.

  18. Evaluation of the susceptibility to corrosion by pites of supermartensitic stainless steel with different superficial finishing

    International Nuclear Information System (INIS)

    Freitas, Mario Jose Bueno de Souza

    2015-01-01

    The objective of this study is to evaluate the susceptibility by pitting corrosion in a supermartensitic stainless steel (13%Cr) with different surface finishes, in an environment that simulates the conditions found in the range of the Brazilian marine subsoil before the dense layer of salt - the so-called pre-salt. In this study were conducted electrochemical tests of potentiodynamic anodic polarization and electrochemical impedance spectroscopy (EIS) in environment containing 35, 50 and 190 g/L of NaCl and dissolved oxygen concentrations <10, 100 and 500ppb. Were also used the techniques of Moessbauer spectroscopy and EDS (Energy Dispersive Spectrometry) coupled to a scanning electron microscope (SEM) for microstructural characterization of 13%Cr steel. It was observed by the electrochemical tests, the increase in the concentration of chloride ions in solution makes the studied steel more susceptible to localized corrosion. It was also observed that the material showed less susceptibility to pitting corrosion when its surface was less rough. (author)

  19. Correlation between passive film-induced stress and stress corrosion cracking of α-Ti in a methanol solution at various potentials

    International Nuclear Information System (INIS)

    Guo, X.Z.; Gao, K.W.; Chu, W.Y.; Qiao, L.J.

    2003-01-01

    The flow stress of a specimen of α-Ti before unloading is different with the yield stress of the same specimen after unloading and forming a passive film through immersing in a methanol solution at various constant potentials. The difference is the passive film-induced stress. The film-induced stress and susceptibility to stress corrosion cracking (SCC) in the methanol solution at various potentials were measured. At the stable open-circuit potential and under anodic polarization, both film-induced tensile stress σ p and susceptibility to SCC had a maximum value. The film-induced stress and SCC susceptibility, however, decreased steeply with a decrease in potential under cathodic polarization. When the potential V≤-280 mV SCE , the film-induced stress became compressive; correspondingly, susceptibility to SCC was zero. Therefore, the variation of film-induced stress with potential was consistent with that of susceptibility to SCC. A large film-induced tensile stress is the necessary condition for SCC of α-Ti in the methanol solution. The symbol and amount of the film-induced stress were related to the compositions of the passive film, which have been analyzed using the X-ray photoelectron spectrum (XPS)

  20. Phenomena of the ionic transport in the stress corrosion of metals

    International Nuclear Information System (INIS)

    Gravano, S.M.

    1986-07-01

    For the study of electrochemical conditions of propagation, a model which calculates the concentrations and potential profiles inside cracks or localized corrosion cavities, was developed. Considering transport by difussion and migration it was applied to pure metals (Zn, Fe) in solutions where pitting occurs (NaCl or Na2SO4, with borate buffer), and also extended to systems where stress corrosion cracking is present, such as Cu and yellow brass in NaNO2. Physical bases of the 'constant intermediate elongation rate technique' to predict stress corrosion cracking susceptibility was analized, studying by mathematical models: 1) dissolution current, that should be the result of superposition of repassivation transients on the fresh metal, exposed to corrosive medium by strain, with the same rate of that of a static specimen; 2) ohmic drop, that in some systems could be quite important and it must be considered in the overpotential evaluation; and 3) metallic ion concentration that, instead of what happens in a crack, never attains saturation in the analized cases. For repassivation transient according to the crak propagation models proposed by Scully and Ford it was found that, at the tip of the crack, it is unlikely that the same repassivation transients occur as in the constant intermediate elongation rate experiments. (M.E.L.)

  1. Effect of thermomechanical treatment of the stress corrosion cracking of metastable beta III titanium

    International Nuclear Information System (INIS)

    Seats, J.H.; Condit, D.O.

    1974-01-01

    Results of studies on the relations of microstructural changes with stress corrosion of Ti--11.5 Mo--6 Zr--4.5 Sn (Beta III) alloys are presented. It was found that this alloy is virtually immune to stress corrosion cracking if no imperfections in the surface are present. Specimens that had not been cold worked showed surface deterioration, but it was not serious enough to cause any marked reduction in yield strengths. The alloy is, however, susceptible to SCC if the surface contains an imperfection such as a fatigue crack where high stresses can concentrate during testing. These high stress levels at the crack tip may cause mechanical destruction of the passivating oxide and allow a higher concentration of chloride ions near the fresh metal surfaces. However, even with precracked specimens, crack propagation is slow as evidenced by no failures within the 720 hour test period. The extreme notch sensitivity of Beta III prevented initiation of fatigue cracks in the sections of the alloy with 20 and 50 percent cold work. More research must be done to test Beta III in this condition. However, on the basis of the research conducted thus far, SCC susceptibility of Beta III titanium alloy appears to be independent of thermomechanical pretreatment. (U.S.)

  2. Chemical milling solution reveals stress corrosion cracks in titanium alloy

    Science.gov (United States)

    Braski, D. N.

    1967-01-01

    Solution of hydrogen flouride, hydrogen peroxide, and water reveals hot salt stress corrosion cracks in various titanium alloys. After the surface is rinsed in water, dried, and swabbed with the solution, it can be observed by the naked eye or at low magnification.

  3. Statistical model of stress corrosion cracking based on extended

    Indian Academy of Sciences (India)

    The mechanism of stress corrosion cracking (SCC) has been discussed for decades. Here I propose a model of SCC reflecting the feature of fracture in brittle manner based on the variational principle under approximately supposed thermal equilibrium. In that model the functionals are expressed with extended forms of ...

  4. Statistical model of stress corrosion cracking based on extended ...

    Indian Academy of Sciences (India)

    2016-09-07

    Sep 7, 2016 ... Abstract. In the previous paper (Pramana – J. Phys. 81(6), 1009 (2013)), the mechanism of stress corrosion cracking (SCC) based on non-quadratic form of Dirichlet energy was proposed and its statistical features were discussed. Following those results, we discuss here how SCC propagates on pipe wall ...

  5. The effect of single overloading on stress corrosion cracking

    International Nuclear Information System (INIS)

    Ito, Yuzuru; Saito, Masahiro

    2008-01-01

    In the normal course of nuclear power plant operation in Japan, proof testing has been performed after periodic plant inspections. In this proof test procedure, the reactor pressure vessel and pipes of the primary coolant loop are subjected to a specified overload with a slightly higher hydraulic pressure than during normal operation. This specified overload is so called a single overload' in material testing. It is well known that the fatigue crack growth rate is decreased after a single overload has been applied to the specimen. However, it is not clear whether the stress corrosion cracking rate is also decreased after a single overload. In this study, the effect of a single overload on the stress corrosion cracking rate under simulated boiling water reactor environment was evaluated by examining a singly overloaded WOL (wedge opening load) specimen. The WOL specimen for the stress corrosion cracking test was machined from sensitized 304 type austenitic stainless steel. Since the crack extension length was 3.2% longer in the case of a more severely overloaded specimen, it was observed than the stress corrosion cracking rate is also decreased after the single overload has been applied to the specimen. (author)

  6. Electromagnetic modeling of stress corrosion cracks in Inconel welds

    International Nuclear Information System (INIS)

    Huang, Haoyu; Miya, Kenzo; Yusa, Noritaka; Hashizume, Hidetoshi; Sera, Takehiko; Hirano, Shinro

    2011-01-01

    This study evaluates suitable numerical modeling of stress corrosion cracks appearing in Inconel welds from the viewpoint of electromagnetic nondestructive evaluations. The stress corrosion cracks analyzed in this study are five artificial ones introduced into welded flat plate, and three natural ones found in a pressurized nuclear power plant. Numerical simulations model a crack as a planar region having a uniform conductivity inside and a constant width, and evaluate the width and conductivity that reproduce the maximum eddy current signals obtained by experiments. The results obtained validate the existence of the minimum value of the equivalent resistance, which is defined by the width divided by conductivity. In contrast, the values of the width and conductivity themselves vary across a wide range. The results also lead to a discussion about (1) the effect of probe utilized on the numerical model, (2) the difference between artificial and natural stress corrosion cracks, and (3) the difference between stress corrosion cracks in base metals and those in Inconel welds in their models. Electromagnetic characteristics of four different Inconel weld alloys are additionally evaluated using a resistance tester and a vibrating sample magnetometer to support the validity of the numerical modeling and the generality of results obtained. (author)

  7. Reducing Stress-Corrosion Cracking in Bearing Alloys

    Science.gov (United States)

    Paton, N. E.; Dennies, D. P.; Lumsden, I., J.b.

    1986-01-01

    Resistance to stress-corrosion cracking in some stainless-steel alloys increased by addition of small amounts of noble metals. 0.75 to 1.00 percent by weight of palladium or platinum added to alloy melt sufficient to improve properties of certain stainless steels so they could be used in manufacture of high-speed bearings.

  8. Parametric studies for stress corrosion in Type 304 stainless steel pipe

    International Nuclear Information System (INIS)

    Horn, R.M.

    1984-01-01

    Stress corrosion tests were conducted in the General Electric Pipe Test Laboratory using 4-inch diameter welded pipe to evaluate the role of stress, oxygen level, cyclic loading rate, temperature, and material composition on the intergranular stress corrosion cracking (IGSCC) behavior of welded Type-304 stainless steel in high temperature, high purity water. The role of applied stress was evaluated in environments containing either 0.2 ppm or 8 ppm oxygen. The tests established that applied stress is the dominant variable among those studied. An increase in applied axial stress from 116 MPa (16.9 ksi) to 254 MPa (36.9 ksi) produced up to a 30 old decrease in lifetime. The change in oxygen level from 0.2 to 8 ppm produced up to a factor of four decrease in lifetime. The role of cyclic loading rate, investigated with only limited tests, was found to accelerate failure at high applied stresses. Finally one test was conducted at 232 0 C with no effect on pipe lifetime. The effects of the above parameters were defined using one heat of material. To compare the results with that of other susceptible heats, additional tests were conducted using material taken from an archive heat that had cracked in the field and from a second heat with lower carbon content that had not cracked in the field. The archive heat exhibited lifetimes that were consistent with the other test results. The low carbon material did not fail demonstrating its much reduced cracking tendency

  9. Effect of microstructure on the sulphide stress cracking susceptibility of a high strength pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, E. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico); Gonzalez-Rodriguez, J.G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico)], E-mail: ggonzalez@uaem.mx; Torres-Islas, A.; Serna, S. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico); Campillo, B. [Intituto de Ciencias Fisicas-Facultad de Quimicas-Universidad Nacional Autonoma de Mexico Cuernavaca, Mor. (Mexico); Dominguez-Patino, G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico); Juarez-Islas, J.A. [Instituto de Investigaciones en Materiales-Universidad Nacional Autonoma de Mexico, Circuito Exterior S/N, Cd. Universitaria, C.P. 04510, Mexico, D.F. (Mexico)

    2008-12-15

    The sulphide stress cracking (SSC) susceptibility of a newly developed high strength microalloyed steel with three different microstructures has been evaluated using the slow strain rate testing (SSRT) technique. Studies were complemented with potentiodynamic polarization curves and hydrogen permeation measurements. Material included a C-Mn steel having Ni, Cu, and Mo as main microalloying elements with three microstructures: martensitic, ferritic and ferritic + bainitic. Testing temperatures included 25, 50, 70 and 90 deg. C. Detailed SEM observations of the microstructure and fracture surfaces were done to identify possible degradation mechanisms. The results showed that in all cases, the corrosion rate, number of hydrogen atoms at the surface and the percentage reduction in area increased with temperature. The steel with a martensitic microstructure had the highest SSC susceptibility at all temperatures, whereas the ferritic steels were susceptible only at 25 deg. C, and the most likely mechanism is hydrogen embrittlement assisted by anodic dissolution.

  10. Stress corrosion of Zircaloy-4. Fracture mechanics study of the intergranular - transgranular transition

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.

    2003-01-01

    Stress corrosion cracking susceptibility of Zircaloy-4 wires was studied in 1M NaCl, 1M KBr and 1M KI aqueous solutions, and in iodine alcoholic solutions. In all cases, intergranular attack preceded transgranular propagation. It is generally accepted that the intergranular-transgranular transition occurs when a critical value of the stress intensity factor is reached. In the present work it was confirmed that the transition from intergranular to transgranular propagation cracking in Zircaloy-4 wires also occurs when a critical value of the stress intensity factor is reached. This critical stress intensity factor in wire samples is independent of the solution tested and close to 10 MPa.m-1/2. This value is in good agreement with those reported in the literature measured by different techniques. (author)

  11. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  12. Effects of external stresses on hot corrosion behavior of stainless steel TP347HFG

    International Nuclear Information System (INIS)

    Fu, Jiapeng; Zhou, Qulan; Li, Na; Liu, Zhuhan; Liu, Taisheng

    2016-01-01

    Highlights: • Hot corrosion tests of TP347HFG under different stresses were conducted. • The corrosion resistance was strengthened by the exertion of tensile stresses. • External stresses promoted faster formation of the protective Cr_2O_3 layer. • Specimens under critical stress 40 MPa condition present the best resistance. - Abstract: Hot corrosion experiments of alloy TP347HFG under different stresses were conducted. Corroded specimens were examined by means of corrosion products, morphology and compositional changes in corrosion scales. The corrosion behavior was strongly associated with the formation of oxides layers. The corrosion resistance was strengthened by the external stress. It seemed that the exertion of stresses caused many micro cracks and defects, which acted as faster and easier diffusion paths for Cr atoms to diffuse to the surface, and thus, promote faster formation of the protective Cr_2O_3 oxide layer. Critical stress 40 MPa was found, specimens under which present the best resistance.

  13. Alkaline stress corrosion of iron-nickel-chromium austenitic alloys

    International Nuclear Information System (INIS)

    Hocquellet, Dominique

    1984-01-01

    This research thesis reports the study of the behaviour in stress corrosion of austenitic iron-nickel-chromium alloys by means of tensile tests at imposed strain rate, in a soda solution at 50 pc in water and 350 degrees C. The author shows that the mechanical-chemical model allows the experimental curves to be found again, provided the adjustment of characteristic parameters, on the one hand, of corrosion kinetics, and on the other hand, of deformation kinetics. A classification of the studied alloys is proposed [fr

  14. Dissolution of copper in chloride/ammonia mixtures and the implications for the stress corrosion cracking of copper containers

    International Nuclear Information System (INIS)

    King, F.; Greidanus, G.; Jobe, D.J.

    1999-05-01

    Stress-corrosion cracking is a possible failure mechanism for copper nuclear fuel waste disposal containers. One species known to cause the stress corrosion of copper alloys is ammonia. It is conceivable that ammonia could be produced in a disposal vault under certain, very specific conditions. There are a number of conditions, however, that mitigate against container failure by stress corrosion, one of which is the presence of chloride ions in deep Canadian Shield groundwaters. There are a number of reports in the literature that suggest that Cl - has an inhibitive effect on the stress corrosion of Cu alloys in ammonia solutions. The electrochemical behaviour of Cu in Cl - /ammonia solutions has been studied as a function of ammonia concentration, pH, the rate of mass transport and electrochemical potential. In particular, the effects of these parameters on the formation Of Cu 2 O films and the steady-state dissolution behaviour have been determined. All experiments were carried out in 0.1 mol·dm -3 NaC1 as a base solution. A series of aqueous speciation and equilibrium potential/pH diagrams are also presented for the quaternary system Cu-C1 - NH 3 /NH 4 + H 2 O. These diagrams are used to interpret the results of the electrochemical experiments reported here. In addition, it is demonstrated how these diagrams could be used to predict the time-dependence of the susceptibility to stress corrosion cracking of Cu containers in a disposal vault. (author)

  15. Stress corrosion cracking experience in steam generators at Bruce NGS

    International Nuclear Information System (INIS)

    King, P.J.; Gonzalez, F.; Brown, J.

    1993-01-01

    In late 1990 and through 1991, units 1 and 2 at the Bruce A Nuclear Generating Station (BNGS-A) experienced a number of steam generator tube leaks. Tube failures were identified by eddy current to be circumferential cracks at U-bend supports on the hot-leg side of the boilers. In late 1991, tubes were removed from these units for failure characterization. Two active failure modes were found: corrosion fatigue in both units 1 and 2 and stress corrosion cracking (SCC) in unit 2. In unit 2, lead was found in deposits, on tubes, and in cracks, and the cracking was mixed-mode: transgranular and intergranular. This convincingly indicated the involvement of lead in the stress corrosion cracking failures. A program of inspection and tube removals was carried out to investigate more fully the extent of the problem. This program found significant cracking only in lead-affected boilers in unit 2, and also revealed a limited extent of non-lead-related intergranular stress corrosion cracking in other boilers and units. Various aspects of the failures and tube examinations are presented in this paper. Included is discussion of the cracking morphology, measured crack size distributions, and chemical analysis of tube surfaces, crack faces, and deposits -- with particular emphasis on lead

  16. Iodine stress corrosion cracking in Zircaloy

    International Nuclear Information System (INIS)

    Andrade, A.H.P. de; Pelloux, R.M.N.

    1983-01-01

    The subcritical growth of iodine-induced cracks in unirradiated Zircaloy plates is investigated as a function of the stress intensity factor K. The testing variables are: crystallographic texture (f-Number), microstructure (grain directionaly), heat treatment (stress relieved vs recrystallized plate), and temperature. The iodine partial pressure is 40Pa. (author) [pt

  17. The influence of lead on stress corrosion cracking of steam generator tubing

    International Nuclear Information System (INIS)

    Ryan Curtis Wolfe

    2015-01-01

    Lead (Pb) is present at low concentrations on the secondary side of steam generators, but is known to accumulate in steam generator sludge and become concentrated in crevices and cracks. Pb is known to have played a role in the degradation of Alloy 600MA tubing, necessitating the replacement of those steam generators. There is new evidence which indicates that Pb has also played a role in the stress corrosion cracking (SCC) of Alloy 600TT. Furthermore. laboratory testing indicates that advanced tubing alloys such as Alloy 690TT and Alloy 800NG area also susceptible to this attack. In response to these vulnerabilities, utilities are attempting to manufacture tubing using processes which will impart optimal corrosion resistance, fabricate and operate SG's to minimize stress in the tubing, undertake efforts to identify and remove the sources of Pb, reduce the existing inventory of Pb using chemical or mechanical cleaning processes, and maintain rigorous chemistry controls. Research is warranted to qualify chemical methods to mitigate PbSCC that may be observed in service. This presentation will review work performed through the Electric Power Research Institute (EPRI) to address the issue of Pb-assisted stress corrosion cracking of steam generator tubing. (author)

  18. Primary water stress corrosion cracking resistance of alloy 690 heat affected zones of butt welds

    International Nuclear Information System (INIS)

    Fournier, L.; Calonne, O.; Toloczko, M.B.; Bruemmer, S.M.; Massoud, J.P.; Lemaire, E.; Gerard, R.; Somville, F.; Richnau, A.; Lagerstrom, J.

    2015-01-01

    A wide V-groove butt weld was fabricated from Alloy 690 plates using Alloy 152 filler material, maximum allowable heat input, and very stiff strong-backs. Alloy 690 heat affected zones (HAZ) was characterized in terms of microstructure and plastic strains induced by weld shrinkage. Crack initiation tests were carried out in pure hydrogenated steam at 400 C. degrees for 4000 h. Crack growth rate tests were performed in simulated PWR primary water at a temperature of 360 C. degrees. A maximum plastic strain around 5% was measured in the vicinity of the fusion line, which decreased almost linearly with the distance from the fusion line. Crack initiation tests on Alloy 690 HAZ specimens as well as on 30% cold-rolled Alloy 690 specimens were performed in pure hydrogenated steam at 400 C. degrees (partial pressure of hydrogen = 0.7 bar) for a total of 4000 h using cylindrical notched tensile specimens, reverse U-bends and flat micro-tensile specimens. No crack initiation was detected. Stress corrosion propagation rates revealed extremely low SCC (Stress Corrosion Cracking) growth rates both in the base metal and in the HAZ region whose magnitudes are of no engineering significance. Overall, the results indicated limited plastic strain induced by weld shrinkage in butt weld HAZ, and to no particular susceptibility of primary water stress corrosion cracking. (authors)

  19. Fuel element failures caused by iodine stress corrosion

    International Nuclear Information System (INIS)

    Videm, K.; Lunde, L.

    1976-01-01

    Sections of unirradiated cladding tubes were plugged in both ends by mechanical seals and internally pressurized with argon containing iodine. The time to failure and the strain at failure as a function of stress was determined for tubing with different heat treatments. Fully annealed tubes suffer cracking at the lowest stress but exhibit the largest strains at failure. Elementary iodine is not necessary for stress corrosion: small amounts of iodides of zirconium, iron and aluminium can also give cracking. Moisture, however, was found to act as an inhibitor. A deformation threshold exists below which stress corrosion failure does not occur regardless of the exposure time. This deformation limit is lower the harder the tube. The deformation at failure is dependent on the deformation rate and has a minimum at 0.1%/hr. At higher deformation rates the failure deformation increases, but only slightly for hard tubes. Fuel was over-power tested at ramp rates varying between 0.26 to 30 W/cm min. For one series of fuel pins the failure deformations of 0.8% at high ramp rates were in good agreement with predictions based on stress corrosion experiments. For another series of experiments the failure deformation was surprisingly low, about 0.2%. (author)

  20. Electrochemical study of stress corrosion cracking of copper alloys

    International Nuclear Information System (INIS)

    Malki, Brahim

    1999-01-01

    This work deals with the electrochemical study of stress corrosion of copper alloys in aqueous environment. Selective dissolution and electrochemical oxidation are two key-points of the stress corrosion of these alloys. The first part of this thesis treats of these aspects applied to Cu-Au alloys. Measurements have been performed using classical electrochemical techniques (in potentio-dynamic, potentio-static and galvano-static modes). The conditions of occurrence of an electrochemical noise is analysed using signal processing techniques. The impact on the behavior of Cu 3 Au are discussed. In the second part, the stress corrosion problem is addressed in the case of surface oxide film formation, in particular for Cu-Zn alloys. We have found useful to extend this study to mechanical stress oxidation mechanisms in the presence of an oscillating potential electrochemical system. The aim is to examine the influence of these new electrochemical conditions (galvano-static mode) on the behavior of stressed brass. Finally, the potential distribution at crack tip is calculated in order to compare the different observations [fr

  1. Investigation of Stress Corrosion Cracking in Magnesium Alloys by Quantitative Fractography Methods

    Directory of Open Access Journals (Sweden)

    Sozańska M.

    2017-06-01

    Full Text Available The article shows that the use of quantitative fracture description may lead to significant progress in research on the phenomenon of stress corrosion cracking of the WE43 magnesium alloy. Tests were carried out on samples in air, and after hydrogenation in 0.1 M Na2SO4 with cathodic polarization. Fracture surfaces were analyzed after different variants of the Slow Strain Rate Test. It was demonstrated that the parameters for quantitative evaluation of fracture surface microcracks can be closely linked with the susceptibility of the WE43 magnesium alloy operating under complex state of the mechanical load in corrosive environments. The final result of the study was the determination of the quantitative relationship between Slow Strain Rate Test parameters, the mechanical properties, and the parameters of the quantitative evaluation of fracture surface (microcracks.

  2. Effects of material property changes on irradiation assisted stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    Irradiation assisted stress corrosion cracking (IASCC) susceptibility and radiation-induced material changes in microstructure and microchemistry under pressurized water reactor (PWR) environment were examined on irradiated stainless steels (SSs), post-irradiation annealed SSs and post-irradiation deformed SS. The yield stress and grain boundary segregation were considerably high in SSs highly irradiated to 1-8 x 10{sup 26}n/m{sup 2} (E > 0.1 MeV) in PWR at 290-320degC, resulting in a high IASCC susceptibility. Following post-irradiation annealing of highly irradiated SSs, IASCC susceptibility showed significant recovery from 89% (as-irradiated) to 8% (550degC) of %IGSCC, while the hardness recovered from Hv375 (400degC) to Hv315 (550degC). Apparent recovery of segregation at grain boundaries was not observed. The SSs irradiated to 5.3 x 10{sup 24}n/m{sup 2} (E>1MeV) in the Japan Materials Testing Reactor (JMTR) at < 400degC, which had grain boundary segregation and low hardness, showed no IASCC susceptibility. Due to post-irradiation deforming for JMTR irradiated SS, the hardness increased but IASCC did not occur. These results suggested that the hardening would be a key factor for IASCC initiation under PWR hydrogenated water and that a yield stress threshold for IASCC initiation under slow strain rate tensile (SSRT) testing would the about 600MPa. (author)

  3. Effects of material property changes on irradiation assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko

    2002-01-01

    Irradiation assisted stress corrosion cracking (IASCC) susceptibility and radiation-induced material changes in microstructure and microchemistry under pressurized water reactor (PWR) environment were examined on irradiated stainless steels (SSs), post-irradiation annealed SSs and post-irradiation deformed SS. The yield stress and grain boundary segregation were considerably high in SSs highly irradiated to 1-8 x 10 26 n/m 2 (E > 0.1 MeV) in PWR at 290-320degC, resulting in a high IASCC susceptibility. Following post-irradiation annealing of highly irradiated SSs, IASCC susceptibility showed significant recovery from 89% (as-irradiated) to 8% (550degC) of %IGSCC, while the hardness recovered from Hv375 (400degC) to Hv315 (550degC). Apparent recovery of segregation at grain boundaries was not observed. The SSs irradiated to 5.3 x 10 24 n/m 2 (E>1MeV) in the Japan Materials Testing Reactor (JMTR) at < 400degC, which had grain boundary segregation and low hardness, showed no IASCC susceptibility. Due to post-irradiation deforming for JMTR irradiated SS, the hardness increased but IASCC did not occur. These results suggested that the hardening would be a key factor for IASCC initiation under PWR hydrogenated water and that a yield stress threshold for IASCC initiation under slow strain rate tensile (SSRT) testing would the about 600MPa. (author)

  4. Stress-corrosion mechanisms in silicate glasses

    International Nuclear Information System (INIS)

    Ciccotti, Matteo

    2009-01-01

    The present review is intended to revisit the advances and debates in the comprehension of the mechanisms of subcritical crack propagation in silicate glasses almost a century after its initial developments. Glass has inspired the initial insights of Griffith into the origin of brittleness and the ensuing development of modern fracture mechanics. Yet, through the decades the real nature of the fundamental mechanisms of crack propagation in glass has escaped a clear comprehension which could gather general agreement on subtle problems such as the role of plasticity, the role of the glass composition, the environmental condition at the crack tip and its relation to the complex mechanisms of corrosion and leaching. The different processes are analysed here with a special focus on their relevant space and time scales in order to question their domain of action and their contribution in both the kinetic laws and the energetic aspects.

  5. Electro chemical studies on stress corrosion cracking of Incoloy-800 in caustic solution, part I: As received samples

    Directory of Open Access Journals (Sweden)

    Dinu Alice

    2005-01-01

    Full Text Available Many non-volatile impurities accidentally introduced into the steam generator tend to Concentrate on its surface in restricted flow areas. In this way these impurities can lead to stress corrosion cracking (SCC on stressed tubes of the steam generator. Such impurities can be strong alkaline or acid solutions. To evaluate the effect of alkaline concentrated environments on SCC of steam generator tubes, the tests were con ducted on stressed samples of Incoloy-800 in 10% NaOH solution. To accelerate the SCC process, stressed specimens were anodically polarised in a caustic solution in an electro chemical cell. The method of stressing of Incoloy-800 tubes used in our experiments was the C-ring. Using the cathodic zone of the potentiodynamic curves it was possible to calculate the most important electrochemical parameters: the corrosion current, the corrosion rate, and the polarization resistance. We found that the value of the corrosion potential to initiate the SCC microcracks was -100 mV. The tested samples were examined using the metallographic method. The main experimental results showed that the in crease of the stress state promoted the in crease of the SCC susceptibility of Incoloy-800 samples tested under the same conditions, and that the length of the SCC-type microcracks in creased with the growth of the stress value.

  6. The stress-corrosion cracking behavior of high-strength aluminum powder metallurgy alloys

    Science.gov (United States)

    Pickens, J. R.; Christodoulou, L.

    1987-01-01

    The susceptibility to stress-corrosion cracking (SCC) of rapidly solidified (RS) aluminum powder metallurgy (P/M) alloys 7090 and 7091, mechanically alloyed aluminum P/M alloy IN* 9052, and ingot metallurgy (I/M) alloys of similar compositions was compared using bolt-loaded double cantilever beam specimens. In addition, the effects of aging, grain size, grain boundary segregation, pre-exposure embrittlement, and loading mode on the SCC of 7091 were independently assessed. Finally, the data generated were used to elucidate the mechanisms of SCC in the three P/M alloys. The IN 9052 had the lowest SCC susceptibility of all alloys tested in the peak-strength condition, although no SCC was observed in the two RS alloys in the overaged condition. The susceptibility of the RS alloys was greater in the underaged than the peak-aged temper. We detected no significant differences in susceptibility of 7091 with grain sizes varying from 2 to 300 μm. Most of the crack advance during SCC of 7091 was by hydrogen embrittlement (HE). Furthermore, both RS alloys were found to be susceptible to preexposure embrittlement—also indicative of HE. The P/M alloys were less susceptible to SCC than the I/M alloys in all but one test.

  7. Stress corrosion cracking behavior of annealed and cold worked 316L stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sáez-Maderuelo, A., E-mail: alberto.saez@ciemat.es; Gómez-Briceño, D.

    2016-10-15

    Highlights: • The alloy 316L is susceptible to stress corrosion cracking in supercritical water. • The susceptibility of alloy 316L increases with temperature and plastic deformation. • Dynamic strain ageing processes may be active in the material. - Abstract: The supercritical water reactor (SCWR) is one of the more promising designs considered by the Generation IV International Forum due to its high thermal efficiency and improving security. To build this reactor, standardized structural materials used in light water reactors (LWR), like austenitic stainless steels, have been proposed. These kind of materials have shown an optimum behavior to stress corrosion cracking (SCC) under LWR conditions except when they are cold worked. It is known that physicochemical properties of water change sharply with pressure and temperature inside of the supercritical region. Owing to this situation, there are several doubts about the behavior of candidate materials like austenitic stainless steel 316L to SCC in the SCWR conditions. In this work, alloy 316L was studied in deaerated SCW at two different temperatures (400 °C and 500 °C) and at 25 MPa in order to determine how changes in this variable influence the resistance of this material to SCC. The influence of plastic deformation in the behavior of alloy 316L to SCC in SCW was also studied at both temperatures. Results obtained from these tests have shown that alloy 316L is susceptible to SCC in supercritical water reactor conditions where the susceptibility of this alloy increases with temperature. Moreover, prior plastic deformation of 316L SS increased its susceptibility to environmental cracking in SCW.

  8. An Electrochemical Framework to Explain Intergranular Stress Corrosion Cracking in an Al-5.4%Cu-0.5%Mg-0.5%Ag Alloy

    Science.gov (United States)

    Little, D. A.; Connolly, B. J.; Scully, J. R.

    2001-01-01

    A modified version of the Cu-depletion electrochemical framework was used to explain the metallurgical factor creating intergranular stress corrosion cracking susceptibility in an aged Al-Cu-Mg-Ag alloy, C416. This framework was also used to explain the increased resistance to intergranular stress corrosion cracking in the overaged temper. Susceptibility in the under aged and T8 condition is consistent with the grain boundary Cu-depletion mechanism. Improvements in resistance of the T8+ thermal exposure of 5000 h at 225 F (T8+) compared to the T8 condition can be explained by depletion of Cu from solid solution.

  9. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    Science.gov (United States)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  10. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    International Nuclear Information System (INIS)

    Duffo, Gustavo S.; Farina, Silvia B.; Schulz, Fatima M.; Marotta, Francesca

    2010-01-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  11. Corrosion susceptibility study of candidate pin materials for ALTC (Active Lithium/Thionyl Chloride) batteries

    Science.gov (United States)

    Bovard, Francine S.; Cieslak, Wendy R.

    1987-09-01

    The corrosion susceptibilities of eight alternate battery pin material candidates for ALTC (Active Lithium/Thionyl Chloride) batteries in 1.5M LiAlCl4/SOCl2 electrolyte have been investigated using ampule exposure and electrochemical tests. The thermal expansion coefficients of these candidate materials are expected to match Sandia-developed Li-corrosion resistant glasses. The corrosion resistances of the candidate materials, which included three stainless steels (15-5 PH, 17-4 PH, and 446), three Fe-Ni glass sealing alloys (Kovar, Alloy 52, and Niromet 426), a Ni-based alloy (Hastelloy B-2) and a zirconium-based alloy (Zircaloy), were compared to the reference materials Ni and 316L SS. All of the candidate materials showed some evidence of corrosion and, therefore, did not perform as well as the reference materials. The Hastelloy B-2 and Zircaloy are clearly unacceptable materials for this application. Of the remaining alternate materials, the 446 SS and Alloy 52 are the most promising candidates.

  12. Influence of mechanical stress level in preliminary stress-corrosion testing on fatigue strength of a low-carbon steel

    International Nuclear Information System (INIS)

    Aleskerova, S.A.; Pakharyan, V.A.

    1978-01-01

    Effect of corrosion and mechanical factors of preliminary stress corrosion of a metal in its fatigue strength, has been investigated. Smooth cylindrical samples of 20 steel have been tested. Preliminary corrosion under stress has been carried out under natural sea conditions. It is shown that mechanical stresses in the case of preliminary corrosion affect fatigue strength of low-carbon steels, decreasing the range of limited durability and fatigue limit. This effect increases with the increase of stress level and agressivity of corrosive medium

  13. Tensile stress corrosion cracking of type 304 stainless steel irradiated to very high dose

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J.

    2001-09-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20--100 displacement per atom or dpa) by the end of life. The data bases and mechanistic understanding of, the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high dose, i.e., is it purely mechanical failure or is it stress-commotion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-11 reactor after irradiation to {approximately}50 dpa at {approximately}370 C. Slow-strain-rate tensile tests were conducted at 289 C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microcopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at low ECP, and this susceptibility led to poor work-hardening capability and low ductility.

  14. Stress corrosion cracking of A515 grade 60 carbon steel

    International Nuclear Information System (INIS)

    Moore, E.L.

    1971-01-01

    An investigation was conducted to evaluate the effect of welding method plate thickness, and subsequent stress relief treatment on the stress corrosion cracking propensity of ASTM A515 Grade 60 carbon steel plate exposed to a 5 M NaNO 3 solution at 190 0 F for eight weeks. It was found that all weld coupons receiving no thermal stress relief treatment cracked within eight weeks; all weld coupons given a vibratory stress relief cracked within eight weeks; two of the eight weld coupons stress relieved at 600 0 F for one hour cracked within eight weeks; none of the weld coupons stress relieved at 1100 0 F for one hour cracked within eight weeks; and that cracking was generally more severe in coupons fabricated from 7/8 inch plate by shielded metal arc welding than it was in coupons fabricated by other welding methods. (U.S.)

  15. Stress corrosion cracking of austenitic stainless steel in glycerol solution and chloride solution at elevated temperature

    International Nuclear Information System (INIS)

    Haftirman; Maruhum Tua Lubis

    2009-01-01

    Stress Corrosion Cracking (SCC) is an environmentally assisted failure caused by exposure to a corrodant while under a sustained tensile stress. SCC is most often rapid, unpredictable and catastrophic. Failure can occur in as little as a few hours or take years to happen. Most alloys are susceptible to SCC in one or more environments requiring careful consideration of alloy type in component design. In aqueous chloride environments austenitic stainless steels and many nickel based alloys are known to perform poorly. One of products Oleo chemical is glycerol solution. Glycerol solution contains chloride with concentration 50 ppm - 150 ppm. Austenitic stainless steel is usually used in distillation construction tank and pipe line of glycerol. Material AISI 304 will be failure in this glycerol solution with this concentration in 5 years. In production process, concentration of chloride in glycerol becomes more than 150 ppm at temperature 150 degree Celsius. The reason is that the experiment I conducted in high chloride with concentration such as 6000 ppm, 9000 ppm, and 12000 ppm. The stress corrosion cracking of the austenitic stainless steels of types AISI 304, 316 and 316L in glycerol solution at elevated temperature 150 degree Celsius is investigated as a function variation of chloride concentration, namely 50, 6000, 9000 and 12000 ppm using a constant load method with two kinds of initial tensile stress as 50 % and 70 % yield strength. The experiment uses a spring loaded fixture type and is based on ASTM G49 for experiment method, and E292 for geometry of specimen. Pitting corrosion occurs on the surface specimen until the stress level reaches the ultimate strength. Pitting corrosion attack and depletion occur on the surface as initiation of SCC failure as the stress reaches the ultimate strength. Failure has occurred in catastrophic brittle fracture type of transgranular. AISI 304 was more susceptible for all conditions. In chloride solution with concentration of

  16. Neuronal substrates underlying stress resilience and susceptibility in rats

    DEFF Research Database (Denmark)

    Febbraro, Fabia; Svenningsen, Katrine; Thao Phuong Tran

    2017-01-01

    attention has been devoted to understand resiliency to stress. The aim of the present study was to identify changes in neuronal activity, associated with stress-resilient and stress-susceptible chronic mild stress endophenotypes, by examining c-Fos expression in 13 different brain areas. Changes in c...... responses was done by semi-automated profile counting procedures and design-based stereology. RESULTS: Exposure to chronic mild stress significantly altered c-Fos expression in a total of 6 out of 13 investigated areas. Chronic mild stress was found to suppress the c-Fos response within the magnocellular...

  17. Growth, carcase and meat characteristics of stress susceptible and ...

    African Journals Online (AJOL)

    Growth, carcase and meat characteristics of stress susceptible and stress resistant. South African Landrace gilts. P.H. Heinze*. Animal and Dairy Science Research Institute, Private Bag X2, Irene, 1675Republic of South Africa. G. Mitchell. Department of Physiology, Medical School, University of the Witwatersrand, York ...

  18. Stress corrosion on austenitic stainless steels components after sodium draining

    International Nuclear Information System (INIS)

    Champeix, L.; Baque, P.; Chairat, C.

    1980-04-01

    The damage study performed on 316 pipes of a loop after two leakages allows to conclude that a stress corrosion process in sodium hydroxide environment has induced trans-crystaline cracks. The research of conditions inducing such a phenomenon is developed, including parametric tests under uniaxial load and some tests on pipe with welded joints. In aqueous sodium hydroxide, two corrosion processes have been revealed: a general oxidization increasing with environment aeration and a transcrystalline cracking appearing for stresses of the order of yield strength. Other conditions such a temperature (upper than 100 0 C) and time exposures (some tens of hours) are necessary. Cautions in order to limit introduction of wet air into drained loop and a choice of appropriate preheating conditions when restarting the installation must permit to avoid such a type of incident

  19. Iodine-induced stress corrosion cracking of fixed deflection stressed slotted rings of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Sejnoha, R.; Wood, J.C.

    1978-01-01

    Stress corrosion cracking of Zircaloy fuel cladding by fission products is thought to be an important mechanism influencing power ramping defects of water-reactor fuels. We have used the fixed-deflection stressed slotted-ring technique to demonstrate cracking. The results show both the sensitivity and limitations of the stressed slotted-ring method in determining the responses of tubing to stress corrosion cracking. They are interpreted in terms of stress relaxation behavior, both on a microscopic scale for hydrogen-induced stress-relief and on a macroscopic scale for stress-time characteristics. Analysis also takes account of nonuniform plastic deformation during loading and residual stress buildup on unloading. 27 refs

  20. Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking

    International Nuclear Information System (INIS)

    Mochizuki, Masahito

    2007-01-01

    The availability of several techniques for residual stress control is discussed in this paper. The effectiveness of these techniques in protecting from fatigue and stress-corrosion cracking is verified by numerical analysis and actual experiment. In-process control during welding for residual stress reduction is easier to apply than using post-weld treatment. As an example, control of the welding pass sequence for multi-pass welding is applied to cruciform joints and butt-joints with an X-shaped groove. However, residual stress improvement is confirmed for post-weld processes. Water jet peening is useful for obtaining a compressive residual stress on the surface, and the tolerance against both fatigue and stress-corrosion cracking is verified. Because cladding with a corrosion-resistant material is also effective for preventing stress-corrosion cracking from a metallurgical perspective, the residual stress at the interface of the base metal is carefully considered. The residual stress of the base metal near the clad edge is confirmed to be within the tolerance of crack generation. Controlling methods both during and after welding processes are found to be effective for ensuring the integrity of welded components

  1. Investigation of thermally sensitised stainless steels as analogues for spent AGR fuel cladding to test a corrosion inhibitor for intergranular stress corrosion cracking

    Science.gov (United States)

    Whillock, Guy O. H.; Hands, Brian J.; Majchrowski, Tom P.; Hambley, David I.

    2018-01-01

    A small proportion of irradiated Advanced Gas-cooled Reactor (AGR) fuel cladding can be susceptible to intergranular stress corrosion cracking (IGSCC) when stored in pond water containing low chloride concentrations, but corrosion is known to be prevented by an inhibitor at the storage temperatures that have applied so far. It may be necessary in the future to increase the storage temperature by up to ∼20 °C and to demonstrate the impact of higher temperatures for safety case purposes. Accordingly, corrosion testing is needed to establish the effect of temperature increases on the efficacy of the inhibitor. This paper presents the results of studies carried out on thermally sensitised 304 and 20Cr-25Ni-Nb stainless steels, investigating their grain boundary compositions and their IGSCC behaviour over a range of test temperatures (30-60 °C) and chloride concentrations (0.3-10 mg/L). Monitoring of crack initiation and propagation is presented along with preliminary results as to the effect of the corrosion inhibitor. 304 stainless steel aged for 72 h at 600 °C provided a close match to the known pond storage corrosion behaviour of spent AGR fuel cladding.

  2. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  3. Remote detection of stress corrosion cracking: Surface composition and crack detection

    Science.gov (United States)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  4. Fractures in high-strength bolts due to hydrogen induced stress corrosion. Causes and corrective actions

    International Nuclear Information System (INIS)

    Hoche, Holger; Oechsner, Matthias

    2017-01-01

    Delayed brittle fractures of high-strength bolts of the strength class 10.9 are presented, taking the example of three damage cases. The respective damage mechanisms could be attributed to hydrogen induced stress corrosion which was caused, in turn, by hydrogen absorption during operation. The examples were chosen with a particular focus on the material condition's susceptibility which explains the cause for the occurrence of the damage mechanism. However, in only one of the three cases the susceptibility was evident and could be explained by violations of normative specifications and an unfavorable material choice. Whereas in the two other examples, only slight or no deviations from the standards and/or regulations could be found. The influencing parameters that caused the damage, those that further promoted the damage, as well as possible corrective actions are discussed taking into account the three exemplary damage cases.

  5. Stress corrosion cracking of nickel alloys in bicarbonate and chloride solutions

    International Nuclear Information System (INIS)

    Ares, A. E.; Carranza, R. M.; Giordano, C. M.; Zadorozne, N. S.; Rebak, R.B.

    2013-01-01

    Alloy 22 is one of the candidates for the manufacture of high level radioactive waste containers. These containers provide services in natural environments characterized by multi-ionics solutions, it is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate at temperatures above 60°C and applied potentials around +400 mVSCE are necessary in order to produce cracking, . This susceptibility may be associated to the instability of the passive film formed and to the formation of an anodic current peak in the polarization curves in these media. Until now, it is unclear the role played by each alloying element (Ni, Cr or Mo) in the SCC susceptibility of Alloy 22 in these media The aim of this work is to evaluate the SCC susceptibility of nickel-based alloys in media containing bicarbonate and chloride ions, at high temperature. Slow Strain Rate Testing (SSRT) was conducted to samples of different alloys: 22 (Ni-Cr-Mo), 600 (Ni-Cr-Fe), 800H (Ni-Fe-Cr) y 201 (99.5% Ni).This tests were conducted in 1.1 mol/L NaHCO 3 +1.5 mol/L NaCl a 90°C and different applied potentials (+200mVSCE,+300 mVSCE, +400 mVSCE). These results were complemented with those obtained in a previous work, where we studied the anodic electrochemical behavior of nickel base alloys under the same conditions. It was found that alloy 22 showed a current peak in a potential range between +200 mVSCE and +300 mVSCE when immersed in bicarbonate ions containing solutions. This peak was attributed to the presence of chromium in the alloys. The SSRT showed that only alloy 22 has a clear indication of stress corrosion cracking. The current results suggested that the presence of an anodic peak in the polarization curves was not a sufficient condition for cracking. (author)

  6. Stress corrosion in low alloy steels

    International Nuclear Information System (INIS)

    Scott, P.M.; Tice, D.R.

    1988-01-01

    The main variables affecting environmentally induced crack initiation and growth in low alloy pressure vessel steels exposed to high temperature aqueous environments are reviewed. Considerable background knowledge is available on many of the important factors such as stress, crack tip stress intensity, strain rate, steel composition and microstructure, environmental temperature, chemistry, oxidising capacity and flowrate. This information is also compared with known plant incidents of environmentally induced or assisted cracking. Certain gaps in these data and their interpretation are judged to remain particularly in the case where oxygenated water is present. These arise predominantly in the definition of margins available on plant water chemistry specifications before risk of environmentally induced cracking becomes unacceptable and in quantifying the beneficial effect of high water flowrates. (orig.)

  7. Stress corrosion in low alloy steels

    International Nuclear Information System (INIS)

    Scott, P.M.; Tice, D.R.

    1990-01-01

    The main variables affecting environmentally induced crack initiation and growth in low alloy pressure vessel steels exposed to high temperature aqueous environments are reviewed. Considerable background knowledge is available on many of the important factors such as stress, crack tip stress intensity, strain rate, steel composition and microstructure, environmental temperature, chemistry, oxidising capacity and flowrate. This information is also compared with known plant incidents of environmentally induced or assisted cracking. Certain gaps in these data and their interpretation are judged to remain particularly in the case where oxygenated water is present. These arise predominantly in the definition of margins available on plant water chemistry specifications before risk of environmentally incuced cracking becomes unacceptable and in quantifying the beneficial effect of high water flowrates. (orig.)

  8. The Effect of Applied Tensile Stress on Localized Corrosion in Sensitized AA5083

    Science.gov (United States)

    2015-09-01

    corrosion, but if exposed to elevated temperature for prolonged periods of time the alloy becomes sensitized. Since the β phase is more anodic than the...degree of localized corrosion for sensitized AA5083 under an applied tensile stress. AA5083 is an aluminum -magnesium alloy that experiences severe...direction. 14. SUBJECT TERMS Aluminum alloy , AA5083, IGSCC, intergranular stress corrosion cracking, localized corrosion, sensitized aluminum 15

  9. Effect of refining techniques on stress corrosion cracking behaviour of Inconel X-750

    International Nuclear Information System (INIS)

    Mishra, B.; Moore, J.J.

    1988-01-01

    High-strength age-hardenable nickel-base superalloy Inconel X-750, is susceptible to severe intergranular stress corrosion cracking (IGSCC) when used in the triple heat-treated condition. In this research, the slow strain-rate technique has been employed to evaluate the stress corrosion cracking susceptibility of alloy X-750 under simulated nuclear pressurized water reactor (PWR) conditions, using an automated autoclave system at 8 x 10 6 N m -2 pressure and 289 0 C temperature. The alloys produced via electroslag refining (ESR) or vacuum arc refining (VAR) processing routes containing 0.004% and 0.011% sulphur, respectively, were solution annealed at either 1075 or 1240 0 C for 2 h and water quenched followed by ageing in the 704 to 871 0 C temperature range for up to 200 h, followed by air cooling or furnace cooling. The scanning electron microscopy performed on fractured surfaces revealed that Inconel X-750 processed through the ESR route, solution annealed at 1240 0 C for 2 h and water quenched, aged at 871 0 C for 200 h and furnace cooled provided the best combination of strength, ductility and resistance to SCC. A less sensitized area adjacent to the grain boundary was responsible for the improvement in properties and the alloy X-750 is recommended for PWR applications in the above conditions of processing and heat treatment. (author)

  10. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    International Nuclear Information System (INIS)

    Gordon, G.

    2004-01-01

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the performance of Alloy 22

  11. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    Energy Technology Data Exchange (ETDEWEB)

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the

  12. Effect of heat treatment and composition on stress corrosion cracking of steam generation tubing materials

    International Nuclear Information System (INIS)

    Kim, H. P.; Hwang, S. S.; Kuk, I. H.; Kim, J. S.; Oh, C. Y.

    1998-01-01

    Effects of heat treatment and alloy composition on stress corrosion cracking (SCC) of steam generator tubing materials have been studied in 40% NaOH at 315.deg.C at potential of +200mV above corrosion potential using C-ring specimen and reverse U bend specimen. The tubing materials used were commercial Alloy 600, Alloy 690 and laboratory alloys, Ni-χCr-10Fe. Commercial Alloy 600, Alloy 690 were mill annealed or thermally treated.Laboratory alloy Ni-χCr-10Fe, and some of Alloy 600 and Alloy 690 were solution annealed. Polarization curves were measured to find out any relationship between SCC susceptibility and electrochemical behaviour. The variation in thermal treatment of Alloy 600 and Alloy 690 had no effect on polarization behaviour probably due to small area fraction of carbide and Cr depletion zone near grain boundary. In anodic polarization curves, the first and second anodic peaks at about 170mV and about at 260mV, respectively, above corrosion potential were independent of Cr content, whereas the third peak at 750mV above corrosion potential and passive current density in-creased with Cr content. SCC susceptibility decreased with Cr content and thermal treatment producing semicontinuous grain boundary decoration. Examination of cross sectional area of C-ring specimen showed deep SCC cracks for the alloys with less than 17%Cr and many shallow attacks for alloy 690. The role of Cr content in steam generator tubing materials and grain boundary carbide on SCC were discussed

  13. Stress corrosion cracking lifetime prediction of spring screw

    International Nuclear Information System (INIS)

    Koh, S. K.; Ryu, C. H.

    2004-01-01

    A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw

  14. Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1986-01-01

    Laboratory experiments performed at Brookhaven National Laboratory have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of approximately 3.5mm per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant-lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H 2 S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. (author)

  15. Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    Laboratory experiments performed at BNL have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of several tenths of an inch per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant/lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H 2 S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. 13 refs

  16. Stress corrosion cracking of nuclear reactor pressure vessel and piping steels

    International Nuclear Information System (INIS)

    Speidel, M.O.; Magdowski, R.M.

    1988-01-01

    This paper presents an extensive investigation of stress corrosion cracking of nuclear reactor pressure vessel and piping steels exposed to hot water. Experimental fracture mechanics results are compared with data from the literature and other laboratories. Thus a comprehensive overview of the present knowledge concerning stress corrosion crack growth rates is provided. Several sets of data confirm that 'fast' stress corrosion cracks with growth rates between 10 -8 and 10 -7 m/s and threshold stress intensities around 20 MN m -3/2 can occur under certain conditions. However, it appears possible that specific environmental, mechanical and metallurgical conditions which may prevail in reactors can result in significantly lower stress corrosion crack growth rates. The presently known stress corrosion crack growth rate versus stress intensity curves are discussed with emphasis on their usefulness in establishing safety margins against stress corrosion cracking of components in service. Further substantial research efforts would be helpful to provide a data base which permits well founded predictions as to how stress corrosion cracking in pressure vessels and piping can be reliably excluded or tolerated. It is emphasized, however, that the nucleation of stress corrosion cracks (as opposed to their growth) is difficult and may contribute substantially to the stress corrosion free service behaviour of the overwhelming majority of pressure vessels and pipes. (author)

  17. Residual stresses and stress corrosion effects in cast steel nuclear waste overpacks

    International Nuclear Information System (INIS)

    Attinger, R.O.; Mercier, O.; Knecht, B.; Rosselet, A.; Simpson, J.P.

    1991-01-01

    In the concepts for final disposal of high-level radioactive waste in Switzerland, one engineered barrier consists of an overpack made out of cast steel GS-40. Whenever tensile stresses are expected in the overpack, the issue of stress corrosion cracking must be expected. A low-strength steel was chosen to minimize potential problems associated with stress corrosion cracking. A series of measurements on stress corrosion cracking under the conditions as expected in the repository confirmed that the corrosion allowance of 50 mm used for the design of the reference overpack is sufficient over the 1000 years design lifetime. Tensile stresses are introduced by the welding process when the overpack is closed. For a multipass welding, the evolution of deformations, strains and stresses were determined in a finite-element calculation. Assuming an elastic-plastic material behavior without creep, the residual stresses are high; considering creep would reduce them. A series of creep tests revealed that the initial creep rate is important for cast steel already at 400deg C. (orig.)

  18. Theoretical aspects of stress corrosion cracking of Alloy 22

    Science.gov (United States)

    Lee, Sang-Kwon; Macdonald, Digby D.

    2018-05-01

    Theoretical aspects of the stress corrosion cracking of Alloy 22 in contact with saturated NaCl solution are explored in terms of the Coupled Environment Fracture Model (CEFM), which was calibrated upon available experimental crack growth rate data. Crack growth rate (CGR) was then predicted as a function of stress intensity, electrochemical potential, solution conductivity, temperature, and electrochemical crack length (ECL). From the dependence of the CGR on the ECL and the evolution of a semi-elliptical surface crack in a planar surface under constant loading conditions it is predicted that penetration through the 2.5-cm thick Alloy 22 corrosion resistant layer of the waste package (WP) could occur 32,000 years after nucleation. Accordingly, the crack must nucleate within the first 968,000 years of storage. However, we predict that the Alloy 22 corrosion resistant layer will not be penetrated by SCC within the 10,000-year Intermediate Performance Period, even if a crack nucleates immediately upon placement of the WP in the repository.

  19. Irradiation Assisted Stress Corrosion Cracking of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) of austenitic stainless steels in oxygenated high temperature water was studied. The IASCC failure has been considered as a degradation phenomenon potential not only in the present light water reactors but rather common in systems where the materials are exposed simultaneously to radiation and water environments. In this study, effects of the material and environmental factors on the IASCC of austenitic stainless steels were investigated in order to understand the underlying mechanism. The following three types of materials were examined: a series of model alloys irradiated at normal water-cooled research reactors (JRR-3M and JMTR), the material irradiated at a spectrally tailored mixed-spectrum research reactor (ORR), and the material sampled from a duct tube of a fuel assembly used in the experimental LMFBR (JOYO). Post-irradiation stress corrosion cracking tests in a high-temperature water, electrochemical corrosion tests, etc., were performed at hot laboratories. Based on the results obtained, analyses were made on the effects of alloying/impurity elements, irradiation/testing temperatures and material processing, (i.e., post-irradiation annealing and cold working) on the cracking behavior. On the basis of the analyses, possible remedies against IASCC in the core internals were discussed from viewpoints of complex combined effects among materials, environment and processing factors. (author). 156 refs.

  20. Pitting and stress corrosion cracking of stainless steel

    Science.gov (United States)

    Saithala, Janardhan R.

    An investigation has been performed to determine the pitting resistance of stainless steels and stress corrosion cracking of super duplex stainless steels in water containing chloride ions from 25 - 170°C. The steels studied are 12% Cr, FV520B, FV566, 304L, Uranus65, 2205, Ferallium Alloy 255, and Zeron 100. All these commercial materials used in very significant industrial applications and suffer from pitting and stress corrosion failures. The design of a new experimental setup using an autoclave enabled potentiodynamic polarisation experiments and slow strain rate tests in dilute environments to be conducted at elevated temperatures. The corrosion potentials were controlled using a three electrode cell with computer controlled potentiostat.The experimental programme to determine pitting potentials was designed to simulate the service conditions experienced in most industrial plants and develop mathematical model equations to help a design engineer in material selection decision. Stress corrosion resistance of recently developed Zeron100 was evaluated in dilute environments to propose a mechanism in chloride solutions at high' temperatures useful for the nuclear and power generation industry. Results have shown the significance of the composition of alloying elements across a wide range of stainless steels and its influence on pitting. Nitrogen and molybdenum added to modern duplex stainless steels was found to be unstable at higher temperatures. The fractographic results obtained using the scanning electron microscope (SEM) has given insight in the initiation of pitting in modem duplex and super duplex stainless steels. A mathematical model has been proposed to predict pitting in stainless steels based on the effect of environmental factors (temperature, chloride concentration, and chemical composition). An attempt has been made to identify the mechanism of SCC in Zeron100 super duplex stainless steel.The proposed empirical models have shown good correlation

  1. Stress corrosion cracking of nickel base alloys characterization and prediction

    International Nuclear Information System (INIS)

    Santarini, G.; Pinard-Legry, G.

    1988-01-01

    For many years, studies have been carried out in several laboratories to characterize the IGSCC (Intergranular Stress Corrosion Cracking) behaviour of nickel base alloys in aqueous environments. For their relative shortness, CERTs (Constant Extension Rate Tests) have been extensively used, especially at the Corrosion Department of the CEA. However, up to recently, the results obtained with this method remained qualitative. This paper presents a first approach to a quantitative interpretation of CERT results. The basic datum used is the crack trace depth distribution determined on a specimen section at the end of a CERT. It is shown that this information can be used for the calculation of initiation and growth parameters which quantitatively characterize IGSCC phenomenon. Moreover, the rationale proposed should lead to the determination of intrinsic cracking parameters, and so, to in-service behaviour prediction

  2. Workshop on initiation of stress corrosion cracking under LWR conditions: Proceedings

    International Nuclear Information System (INIS)

    Nelson, J.L.; Cubicciotti, D.; Licina, G.J.

    1988-05-01

    A workshop titled ''Initiation of Stress Corrosion Cracking under LWR Conditions'' was held in Palo Alto, California on November 13, 1986, hosted by the Electric Power Research Institute. Participants were experts on the topic from nuclear steam supply and component manufacturers, public and private research laboratories, and university environments. Presentations included discussions on the definition of crack initiation, the effects of environmental and electrochemical variables on cracking susceptibility, and detection methods for the determination of crack initiation events and measurement of critical environmental and stress parameters. Examination of the questions related to crack initiation and its relative importance to the overall question of cracking of LWR materials from these perspectives provided inputs to EPRI project managers on the future direction of research efforts designed to prevent and control cracking. Thirteen reports have been cataloged separately

  3. Evaluation of stress-corrosion cracking of sensitized 304SS in low-temperature borated water

    International Nuclear Information System (INIS)

    Jones, R.H.; Johnson, A.B. Jr.; Bruemmer, S.M.

    1981-05-01

    Intergranular stress corrosion cracking has been observed in constant extension rate tests, CERT and constant load tests of 304SS tested at 32 0 C in borated water plus 15 ppM C1 - . Evidence of IGSCC was obtained in CERT tests of welded pipe samples only when the original inner diameter surface was intact and with 15 ppM C1 - added to the borated water while IGSCC occurred in a furnace sensitized pipe sample after 500 h at a constant stress of 340 MPa in borated water containing 15 ppM C1 - . These results indicate that surface features associated with weld preparation grinding contributed to the susceptibility of sensitized 304SS to IGSCC in low temperature borated water; however, the constant load test indicates that such surface defects are not necessary for IGSCC in low temperature borated water

  4. Stress corrosion cracking studies on ferritic low alloy pressure vessel steel - water chemistry and modelling aspects

    International Nuclear Information System (INIS)

    Tipping, P.; Ineichen, U.; Cripps, R.

    1994-01-01

    The susceptibility of low alloy ferritic pressure vessel steels (A533-B type) to stress corrosion cracking (SCC) degradation has been examined using various BWR type coolant chemistries. Fatigue pre-cracked wedge-loaded double cantilever beams and also constantly loaded 25 mm thick compact tension specimens have shown classical SCC attack. The influence of parameters such as dissolved oxygen content, water impurity level and conductivity, material chemical composition (sulphur content) and stress intensity level are discussed. The relevance of SCC as a life-limiting degradation mechanism for low alloy ferritic nuclear power plant PV steel is examined. Some parameters, thought to be relevant for modelling SCC processes in low alloy steels in simulated BWR-type coolant, are discussed. 8 refs., 1 fig., 4 tabs

  5. Developing Field Test Procedures for Chloride Stress Corrosion Cracking in the Arabian Gulf

    Directory of Open Access Journals (Sweden)

    Hanan Farhat

    2018-01-01

    Full Text Available Oil and gas production and petrochemical plants in the Arabian Gulf are exposed to severe environmental conditions of high temperature and humidity. This makes these plants susceptible to chloride-induced stress corrosion cracking (CSCC. The laboratory testing fails to provide the exact field environmental conditions. A cost efficient field test setup for CSCC was designed and developed for the Arabian Gulf. The setup included designing self-sustained loading devices, samples, and sample racks. The samples were exposed to a stress equivalent to 80% and 100% of their yield strength. This paper describes the developed test procedures to establish testing with high level of accuracy and repeatability. It also discusses the design aspects and the challenges that were met.

  6. Effect of heat treatments and minor elements on caustic stress corrosion cracking of type 304 stainless steel

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo; Kowaka, Masamichi

    1983-01-01

    The effect of heat treatments and minor elements (C, S, P, N) on caustic stress corrosion cracking of Type 304 stainless steel in boiling 34% NaOH solution at 393 K was studied. The results obtained as follows: (1) Susceptibility to IGSCC (intergranular stress corrosion cracking) in NaOH solution was increased with the intergranular precipitation of chromium carbides by the sensitizing heat treatments, but was not completely consistent with the susceptibility to IGC (intergranular corrosion) by Strauss test in H 2 SO 4 + CuSO 4 solution. (2) SCC in NaOH solution took place in three potential ranges of about -100 to +150 mV (vs SCE), -600 to -300 mV and -1100 to -900 mV. Transglanular cracking predominantly occurred in the first region and intergranular cracking occurred in the latter two regions. IGC occurred in the potential range of about -400 to 0 mV. No IGC was observed at corrosion potential. (3) Among minor elements carbon and sulfur had a detrimental effect on SCC, but no effect of phosphorus and nitrogen was almost observed on SCC in NaOH solution. (author)

  7. Prevention of stress corrosion cracking in nuclear waste storage tanks

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1983-01-01

    At the Savannah River Plant, stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste is prevented by stress relief and specification of limits on waste composition and temperature. Actual cases of cracking have occurred in the primary steel shell of tanks designed and built before 1960 and were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also, as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh wastes, concentrations of the inhibitor ions are maintained within specific ranges to protect against nitrate cracking. The concentration and temperature range limits to prevent cracking were determined by a series of statistically designed experiments

  8. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    Stress corrosion cracking (SCC)can cause failures of CANDU Zircaloy-4 fuel sheathing. The process occurs when a corrosive element (i.e.,iodine) interacts with a susceptible material that is under sufficient strain at a high temperature. Currently, there is an ongoing effort to improve SCC mitigation strategies for future iterations of CANDU reactors. A potential mechanism for SCC mitigation involves utilizing alkali metal oxides and alkaline earth metal oxides that will sequester corrosive iodine while actively repairing a protective oxide layer on the sheath. SCC tests performed with sodium oxide (Na{sub 2}O) and calcium oxide (CaO) have shown to decrease significantly the sheath degradation. (author)

  9. Characterization of sensitization and stress corrosion cracking behavior of stabilized stainless steels under BWR conditions

    International Nuclear Information System (INIS)

    Kilian, R.; Ilg, U.; Meier, V.; Teichmann, H.; Wachter, O.

    1995-01-01

    Stress corrosion cracking occurs if the three parameters -- material condition, tensile stress and water chemistry -- are in a critical range. In this study the material conditions especially of Ti- and Nb-stabilized steels are considered. The purpose of this work is to show the influence of the degree of sensitization of Ti- and Nb-stabilized stainless steels on stress corrosion cracking susceptibility in BWR water chemistry. This is an on-going research program. Preliminary results will be presented. Different types of stabilized, and for comparison unstabilized, stainless steels are examined in various heat treatment conditions with regard to their sensitization behavior by EPR tests (double loop) and TEM. The results are plotted in sensitization diagrams. The sensitization behavior depends on many parameters such as carbon content, stabilization element, stabilization ratio and materials history, e.g. solution heat treatment or cold working. The obtained EPR sensitization diagrams are compared with the well known sensitization diagrams from the literature, which were determined by standard IC test according to e.g. German standard DIN 50914 (equivalent to ASTM A 262, Pract. E). Based on the obtained EPR sensitization diagrams material conditions for SSRT tests were selected. The EPR values (Ir/Ia x 100%) of the tested Ti-stabilized stainless steel are in the range of ∼ 0.1--20%. The SSRT tests are carried out in high-temperature water with 0.4 ppm O 2 , a conductivity of 0.5 microS/cm and a strain rate of 1x10 -6-1 . The test temperature is 280 C. Ti-stabilized stainless steel with Ir/Ia x 100% > 1% suffered intergranular stress corrosion cracking under these conditions. The SCC tests for Nb-stabilized stainless steel are still in progress. The correlation between EPR value, chromium depletion and SSRT result will be shown for a selected material condition of sensitized Ti-stabilized stainless steel

  10. Mitigation of caustic stress corrosion cracking of steam generator tube materials by blowdown -a case study

    International Nuclear Information System (INIS)

    Dutta, Anu; Patwegar, I.A.; Chaki, S.K.; Venkat Raj, V.

    2000-01-01

    The vertical U-tube steam generators are among the most important equipment in nuclear power plants as they form the vital link between the reactor and the turbogenerator. Over ∼ 35 years of operating experience of water cooled reactor has demonstrated that steam generator tubes are susceptible to various forms of degradation. This degradation leads to failure and outages of the power plant. A majority of these failures have been attributed to concentrated alkali attacks in the low flow areas such as crevices in the tube to tube sheet joints, baffle plate location and the areas of sludge deposits. Free hydroxides can be produced by improper maintenance of phosphate chemical control in the secondary side of the steam generators and also by the thermal decomposition of impurities present in the condenser cooling water which may leak into the feed water through the condenser tubes. The free hydroxides concentrate in the low flow areas. This buildup of free hydroxide in combination with residual stress leads to caustic stress corrosion cracking. In order to mitigate caustic stress corrosion cracking of Inconel 600 tubes, the trend is to avoid phosphate dosing. Instead All Volatile Treatment (AVT) for secondary water is used backed by full flow condensate polishing. Sodium hydroxide concentration is now being considered as the basis for steam generator blowdown. A methodology has been established for determining the blowdown requirement in order to mitigate caustic stress corrosion cracking in the secondary side of the vertical U-tube natural circulation steam generator. A case study has been carried out for zero solid treatment (AVT coupled with full flow condensate polishing plant) water chemistry. Only continuous blowdown schemes have been studied based on maximum caustic concentration permissible in the secondary side of the steam generator. The methodology established can also be used for deciding concentration of any other impurities

  11. Stress corrosion cracking of equipment materials in domestic pressurized water reactors and the relevant safety management

    International Nuclear Information System (INIS)

    Sun Haitao

    2015-01-01

    International and domestic research and project state about stress corrosion cracking of nuclear equipments and materials (including austenitic stainless steel and nickel based alloys) in pressurized water reactor are discussed, and suggestions on how to prevent, mitigate ana deal with the stress corrosion cracking issues in domestic reactors are given in this paper based on real case analysis and study ondomestic nuclear equipment and material stress corrosion cracking failure. (author)

  12. 13 reasons why the brain is susceptible to oxidative stress

    OpenAIRE

    James Nathan Cobley; Maria Luisa Fiorello; Damian Miles Bailey

    2018-01-01

    The human brain consumes 20% of the total basal oxygen (O2) budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood...

  13. Statistical analysis of failure time in stress corrosion cracking of fuel tube in light water reactor

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi

    1991-01-01

    This report is to show how the life due to stress corrosion cracking breakdown of fuel cladding tubes is evaluated by applying the statistical techniques to that examined by a few testing methods. The statistical distribution of the limiting values of constant load stress corrosion cracking life, the statistical analysis by making the probabilistic interpretation of constant load stress corrosion cracking life, and the statistical analysis of stress corrosion cracking life by the slow strain rate test (SSRT) method are described. (K.I.)

  14. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  15. Stress corrosion cracking of nickel base alloys in PWR primary water

    International Nuclear Information System (INIS)

    Guerre, C.; Chaumun, E.; Crepin, J.; De Curieres, I.; Duhamel, C.; Heripre, E.; Herms, E.; Laghoutaris, P.; Molins, R.; Sennour, M.; Vaillant, F.

    2013-01-01

    Stress corrosion cracking (SCC) of nickel base alloys and associated weld metals in primary water is one of the major concerns for pressurized water reactors (PWR). Since the 90's, highly cold-worked stainless steels (non-sensitized) were also found to be susceptible to SCC in PWR primary water ([1], [2], [3]). In the context of the life extension of pressurized water reactors, laboratory studies are performed in order to evaluate the SCC behaviour of components made of nickel base alloys and of stainless steels. Some examples of these laboratory studies performed at CEA will be given in the talk. This presentation deals with both initiation and propagation of stress corrosion cracks. The aims of these studies is, on one hand, to obtain more data regarding initiation time or crack growth rate and, one the other hand, to improve our knowledge of the SCC mechanisms. The aim of these approaches is to model SCC and to predict components life duration. Crack growth rate (CGR) tests on Alloy 82 with and without post weld heat treatment are performed in PWR primary water (Figure 1). The heat treatment seems to be highly beneficial by decreasing the CGR. This result could be explained by the effect of thermal treatment on the grain boundary nano-scopic precipitation in Alloy 82 [4]. The susceptibility to SCC of cold worked austenitic stainless steels is also studied. It is shown that for a given cold-working procedure, SCC susceptibility increases with increasing cold-work ([2], [5]). Despite the fact that the SCC behaviour of Alloy 600 has been widely studied for many years, recent laboratory experiments and analysis ([6], [7], [8]) showed that oxygen diffusion is not a rate-limiting step in the SCC mechanism and that chromium diffusion in the bulk close the crack tip could be a key parameter. (authors)

  16. Iodine induced stress corrosion cracking of zircaloy cladding tubes

    International Nuclear Information System (INIS)

    Brunisholz, L.; Lemaignan, C.

    1984-01-01

    Iodine is considered as one of the major fission products responsible for PCI failure of Zry cladding by stress corrosion cracking (SCC). Usual analysis of SCC involves both initiation and growth as sequential processes. In order to analyse initiation and growth independently and to be able to apply the procedures of fracture mechanics to the design of cladding, with respect to SCC, stress corrosion tests of Zry cladding tubes were undertaken with a small fatigue crack (approx. 200 μm) induced in the inner wall of each tube before pressurization. Details are given on the techniques used to induce the fatigue crack, the pressurization test procedure and the results obtained on stress releaved or recrystallized Zry 4 tubings. It is shown that the Ksub(ISCC) values obtained during these experiments are in good agreement with those obtained from large DCB fracture mechanics samples. Conclusions will be drawn on the applicability of linear elastic fracture mechanics (LEFM) to cladding design and related safety analysis. The work now underway is aimed at obtaining better understanding of the initiation step. It includes the irradiation of Zry samples with heavy ions to simulate the effect of recoil fragments implanted in the inner surface of the cladding, that could create a brittle layer of about 10 μm

  17. SRNL SHELF LIFE STUDIES - SCC STUDIES AT ROOM TEMPERTURE [stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Duffey, J.

    2014-11-12

    Phase II, Series 2 corrosion testing performed by the Savannah River National Laboratory (SRNL) for the Department of Energy 3013 container has been completed. The corrosion tests are part of an integrated plan conducted jointly by Los Alamos National Laboratory and the Savannah River Site. SRNL was responsible for conducting corrosion studies in small-scale vessels to address the influence of salt composition, water loading, and type of oxide/salt contact on the relative humidity inside a 3013 container and on the resulting corrosion of Type 304L and 316L stainless steel (304L and 316L). This testing was conducted in two phases: Phase I evaluated a broad spectrum of salt compositions and initial water loadings on the salt mixtures exposed to 304L and 316L and the resulting corrosion; Phase II evaluated the corrosion of 304L at specific water loadings and a single salt composition. During Phase I testing at high initial moisture levels (0.35 to 1.24 wt%)a, the roomtemperature corrosion of 304L exposed to a series of plutonium oxide/chloride salt mixtures ranged from superficial staining to pitting and stress corrosion cracking (SCC). 304L teardrop coupons that exhibited SCC were directly exposed to a mixture composed of 98 wt % PuO2, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl2. Cracking was not observed in a 316L teardrop coupon. Pitting was also observed in this environment for both 304L and 316L with depths ranging from 20 to 100 μm. Neither pitting nor SCC was observed in mixtures with a greater chloride salt concentration (5 and 28 wt%). These results demonstrated that for a corrosive solution to form a balance existed between the water loading and the salt chloride concentration. This chloride solution results from the interaction of loaded water with the hydrating CaCl2 salt. In Phase II, Series 1 tests, the SCC results were shown to be reproducible with cracking occurring in as little as 85 days. The approximate 0.5 wt% moisture level was found to

  18. Potential drop technique for monitoring stress corrosion cracking growth

    International Nuclear Information System (INIS)

    Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Moreira, Pedro A.L.D.P.L.P.

    2002-01-01

    Stress corrosion cracking is one of most severe damage mechanisms influencing the lifetime of components in the operation of nuclear power plants. To assess the initiation stages and kinetics of crack growth as the main parameters coming to residual lifetime determination, the testing facility should allow active loading of specimens in the environment which is close to the real operation conditions of assessed component. Under cooperation of CDTN/CNEN and International Atomic Energy Agency a testing system has been developed by Nuclear Research Institute, Czech Republic, that will be used for the environmentally assisted cracking testing at CDTN/CNEN. The facility allows high temperature autoclave corrosion mechanical testing in well-defined LWR water chemistry using constant load, slow strain rate and rising displacement techniques. The facility consists of autoclave and refreshing water loop enabling testing at temperatures up to 330 deg C. Active loading system allows the maximum load on a specimen as high as 60 kN. The potential drop measurement is used to determine the instant crack length and its growth rate. The paper presents the facility and describes the potential drop technique, that is one of the most used techniques to monitor crack growth in specimens under corrosive environments. (author)

  19. Stress corrosion crack preventive method for long housing

    International Nuclear Information System (INIS)

    Sugano, Maki.

    1992-01-01

    If a neutron flux monitoring housing or a control rod driving mechanism (CRD) housing, as a long housing, is welded to reactor container, a portion of the long housing put under the effect of heat upon welding is converted to a sensitized austenite stainless steel, to cause stress corrosion cracks (SCC). Then, the inner surface of the a region of the long housing put under the effect of heat by welding is melted by a relatively low amount of heat input so that δ-ferrite tissues are caused to deposit in this region. With such procedures, crack sensitivity can be lowered, thereby enabling to improve SCC resistance. (T.M.)

  20. Irradiation-assisted stress-corrosion cracking in austenitic alloys

    International Nuclear Information System (INIS)

    Was, G.S.; Andresen, P.L.

    1992-01-01

    Irradiation-assisted stress-corrosion cracking (IASCC) in austentic alloys is a complicated phenomenon that poses a difficult problem for designers and operators of nuclear plants. Because IASCC accelerates the deterioration of various reactor components, it is imperative that it be understood and modeled to maintain reactor safety. Unfortunately, the costs and dangers of gathering data on radiation effects are high, and the phenomenon itself is so complex that it is difficult to enumerate all of the causes. This article reviews current knowledge of IASCC and describes the goals of ongoing work

  1. Mitigation of stress corrosion cracking in boiling water reactors

    International Nuclear Information System (INIS)

    Hanneman, R.E.; Cowan, R.L. II

    1980-01-01

    Intergranular stress corrosion cracking (IGSCC) has occurred in a statistically small number of weld heat affected zones (HAZ) of 304 SS piping in BWR's. A range of mitigating actions have been developed and qualified that provide viable engineering solutions to the unique aspects of (1) operating plants, (2) plants under various stages of construction, and (3) future plants. This paper describes the technical development of each mitigating concept, relates it to the fundamental causal factors for IGSCC, and discusses its applicability to operating, in-construction and new BWR's. 31 refs

  2. Stress corrosion cracking of Ni-Fe-Cr alloys in acid sulfate environments relevant to CANDU steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, S.Y.; Carcea, A.G., E-mail: suraj.persaud@mail.utoronto.ca [Univ. of Toronto, Toronto, ON (Canada); Huang, J.; Korinek, A.; Botton, G.A. [McMaster Univ., Hamilton, ON (Canada); Newman, R.C. [Univ. of Toronto, Toronto, ON (Canada)

    2014-07-01

    Ni-Fe-Cr alloys used in nuclear plants have been found susceptible to stress corrosion cracking (SCC) in acid sulfate environments. Electrochemical measurements and SCC tests were done using Ni, Alloy 600, and Alloy 800 in acid sulfate solutions at 315 {sup o}C. Electrochemical measurements suggested that sulfate is a particularly aggressive anion in mixed chloride systems. Cracks with lengths in excess of 300 μm were present on stressed Alloy 800 samples after 60 hours. High resolution analytical electron microscopy was used to extract a crack tip from an Alloy 800 sample and draw final conclusions with respect to the mechanism of SCC. (author)

  3. Oxidation and stress corrosion cracking of stainless steels in SCWRs

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Castro, L.; Blazquez, F.

    2008-01-01

    SCWRs are high-temperature, high-pressure, water-cooled reactors that operate above the thermodynamic critical point of water (374 deg C, 22.1 MPa). The SCWR offers many advantages compared to state-of- the-art LWRs including the use of a single phase coolant with high enthalpy, the elimination of components such as steam generators and steam separators and dryers, a low coolant mass inventory resulting in smaller components, and a much higher efficiency ∼ 44% vs. 33% in current LWRs). In these systems high pressure (25 MPa) coolant enters the vessel at 280 deg C which is heated to about 500 deg C and delivered to a power conversion cycle. Supercritical water (SCW) exhibits properties significantly different from those of liquid water below the critical point. Supercritical water acting essentially as a non-polar dense gas with solvation properties approaching those of a low-polarity organic. In this conditions, can dissolve gases like oxygen to complete miscibility. Depending upon what species are present and how much oxygen is present in the solution can becomes a very aggressive oxidising environment. Most of the data on corrosion in supercritical water are from fossil plant or oxidation waste disposal systems. However there is very limited data on corrosion in low conductivity de-aerated SCW and less on stress corrosion cracking behaviour under operating conditions foreseen for SCWR. Candidate materials for structural components are materials for high temperatures and include ferritic-martensitic alloys; oxide dispersion strengthened (ODS) ferritic/martensitic steels and strengthened steels by precipitation and for lower temperatures the austenitic stainless steels, such as 304 and 316, used in the LWR. Low swelling austenitic steels are also of high interest for areas with high dpa and high temperature. A review of the available information on corrosion and stress corrosion behaviour of different types of stainless steels in supercritical water at high

  4. Evaluation of stress corrosion crack growth in BWR piping systems

    International Nuclear Information System (INIS)

    Kassir, M.; Sharma, S.; Reich, M.; Chang, M.T.

    1985-05-01

    This report presents the results of a study conducted to evaluate the effects of stress intensity factor and environment on the growth behavior of intergranular stress corrosion cracks in type 304 stainless steel piping systems. Most of the detected cracks are known to be circumferential in shape, and initially started at the inside surface in the heat affected zone near girth welds. These cracks grow both radially in-depth and circumferentially in length and, in extreme cases, may cause leakage in the installation. The propagation of the crack is essentially due to the influence of the following simultaneous factors: (1) the action of applied and residual stress; (2) sensitization of the base metal in the heat affected zone adjacent to girth weld; and (3) the continuous exposure of the material to an aggressive environment of high temperature water containing dissolved oxygen and some levels of impurities. Each of these factors and their effects on the piping systems is discussed in detail in the report. The report also evaluates the time required for hypothetical cracks in BWR pipes to propagate to their critical size. The pertinent times are computed and displayed graphically. Finally, parametric study is performed in order to assess the relative influence and sensitivity of the various input parameters (residual stress, crack growth law, diameter of pipe, initial size of defect, etc.) which have bearing on the growth behavior of the intergranular stress corrosion cracks in type 304 stainless steel. Cracks in large-diameter as well as in small-diameter pipes are considered and analyzed. 27 refs., 25 figs., 10 tabs

  5. A contribution to the question of stress-corrosion cracking of austenitic stainless steel cladding in nuclear power plants

    International Nuclear Information System (INIS)

    Kupka, I.; Mrkous, P.

    1977-01-01

    A brief review is presented of the basic types of corrosion damage (uniform corrosion, intergranular corrosion, stress corrosion) and their influence on operational safety are estimated. Corrosion cracking is analyzed of austenitic stainless steel cladding taking into account the adverse impact of coolant and stress (both operational and residual) in a light water reactor primary circuit. Experimental data are given of residual stresses in the stainless steel clad material, as well as their magnitude and distribution after cladding and heat treatment. (author)

  6. The effect of texture, heat treatment and elongation rate on stress corrosion cracking in irradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.; Stany, W.; Hellstrand, E.

    1979-03-01

    Irradiated zircaloy samples with different textures and heat treatments have been tested concerning stress corrosion. Irradiated samples of Zr-1Nb, pure Zr and beta quenched zircaloy have also been investigated. Stress-relieve annealled zircaloy is even after irradiation more sensitive to stress corrosion than recrystallized zircaloy. Zr-1Nb and beta quenched zircaloy are much more sinsitive to stress corrosion than the samples with different textures. As a rule irradiated zircaloy is sensitive to stress corrosion at stresses far below the yield point. The breaking stress decreases with the elongation rate. The extension of cracks is much faster in irradiated zircaloy than in unirradiated zircaloy. There is no simple failure criterium for irradiated zircaloy. However for a certain stress and a certain elongation rate the probability for a failure before this stress is reached with a constant elongation rate can be given. (E.R.)

  7. Influence of microstructure on stress corrosion cracking of mild steel in synthetic caustic-nitrate nuclear waste solution

    International Nuclear Information System (INIS)

    Sarafian, P.G.

    1975-12-01

    The influence of alloy microstructure on stress corrosion cracking of mild steel in caustic-nitrate synthetic nuclear waste solutions was studied. An evaluation was made of the effect of heat treatment on a representative material (ASTM A 516 Grade 70) used in the construction of high activity radioactive waste storage tanks at Savannah River Plant. Several different microstructures were tested for susceptibility to stress corrosion cracking. Precracked fracture specimens loaded in either constant load or constant crack opening displacement were exposed to a variety of caustic-nitrate and nitrate solutions. Results were correlated with the mechanical and corrosion properties of the microstructures. Crack velocity and crack arrest stress intensity were found to be related to the yield strength of the steel microstructures. Fractographic evidence indicated pH depletion and corrosive crack tip chemistry conditions even in highly caustic solutions. Experimental results were compatible with crack growth by a strain-assisted anodic dissolution mechanism; however, hydrogen embrittlement also was considered possible

  8. 13 reasons why the brain is susceptible to oxidative stress

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2018-05-01

    Full Text Available The human brain consumes 20% of the total basal oxygen (O2 budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity through redox signalling (i.e. positive functionality. Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality. To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.

  9. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    Yonezawa, T.; Onimura, K.

    1987-01-01

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 360 0 C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  10. Influence of local microplastic strains on stress corrosion of 08Kh18N10T steel

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Efimov, A.A.; Sherman, Ya.I.; Fedorova, T.I.

    1987-01-01

    Study on specific features of microhomogeneous strain in the process of plastic strain development and their role in stress corrosion of 08Kh18N10T steel sheet specimens subject to preliminary strain by 1, 3, 6, 16 and 23% and subsequent tests of stress corrosion in magnesium chloride solution at 150 deg C 140 MPa has been carried out. Analysis of test results has shown that microplastic strain is distributed over a specimen nonuniformly and is accompanied with the slip bands formation which are sources of corrosion crack origination and development. 08Kh18N10T steel manifests the highest trend to stress corrosion under 1% microplastic strain

  11. Stress corrosion cracking behavior of Nd:YAG laser-treated aluminum alloy 7075

    International Nuclear Information System (INIS)

    Yue, T.M.; Yan, L.J.; Chan, C.P.

    2006-01-01

    Nd-YAG laser surface treatment was conducted on 7075-T651 aluminum alloy with the aim of improving the stress corrosion cracking resistance of the alloy. Laser surface treatment was performed under two different gas environments, air and nitrogen. After the laser treatment, coarse constituent particles were removed and fine cellular/dendritic structures had formed. In addition, for the N 2 -treated specimen, an AlN phase was detected. The results of the stress corrosion test showed that after 30 days of immersion, the untreated specimen had been severely attacked by corrosion, with intergranular cracks having formed along the planar grain boundaries of the specimen. For the air-treated specimen, some relatively long stress corrosion cracks and a small number of relatively large corrosion pits were found. The cracks mainly followed the interdendritic boundaries; the fusion boundary was found to be acting as an arrestor to corrosion attacks. In contrast, only few short stress corrosion cracks appeared in the N 2 -treated specimen, indicating an improvement in corrosion initiation resistance. The superior corrosion resistance was attributed to the formation of the AlN phase in the surface of the laser-melted layer, which is an electrical insulator. The electrochemical impedance measurements taken during the stress corrosion test showed that the film resistance of the laser-treated specimens was always higher than that of the untreated specimen, with the N 2 -treated specimen showing the highest resistance

  12. A multiscale constitutive model for intergranular stress corrosion cracking in type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Siddiq, A; Rahimi, S

    2013-01-01

    Intergranular stress corrosion cracking (IGSCC) is a fracture mechanism in sensitised austenitic stainless steels exposed to critical environments where the intergranular cracks extends along the network of connected susceptible grain boundaries. A constitutive model is presented to estimate the maximum intergranular crack growth by taking into consideration the materials mechanical properties and microstructure characters distribution. This constitutive model is constructed based on the assumption that each grain is a two phase material comprising of grain interior and grain boundary zone. The inherent micro-mechanisms active in the grain interior during IGSCC is based on crystal plasticity theory, while the grain boundary zone has been modelled by proposing a phenomenological constitutive model motivated from cohesive zone modelling approach. Overall, response of the representative volume is calculated by volume averaging of individual grain behaviour. Model is assessed by performing rigorous parametric studies, followed by validation and verification of the proposed constitutive model using representative volume element based FE simulations reported in the literature. In the last section, model application is demonstrated using intergranular stress corrosion cracking experiments which shows a good agreement

  13. Propagation of stress-corrosion cracks in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Norring, K.; Haag, Y.; Wikstroem, C.

    1982-01-01

    Propagation of iodine-induced stress-corrosion cracks in Zircaloy was studied using pre-cracked and internally pressurized cladding tubes. These were recrystallized at different temperatures, to obtain grain sizes between 4 μm and 10 μm. No statistically significant difference in propagation rate due to the difference in grain size was observed. If the obtained data, with Ksub(I) values ranging from 4 to 11 MNmsup(-3/2), were log-log plotted (da/dt = CKsub(I)sup(N)), as usual, they fell within the scatter-band of data reported earlier. But from this plot it could also be seen that the Ksub(I) interval can be divided into two separate parts having different da/dt-Ksub(I) relations. The transition takes place at a Ksub(I) value of about 8 MNmsup(-3/2). The region with lower Ksub(I) values shows a substantially lower n value than the upper region (2.4 and 9.8 respectively), and earlier reported values (n = 7 to 10). This transition is in good agreement with a transition from an intergranular to a transgranular propagation mode of the stress-corrosion crack. (orig.)

  14. Stress-corrosion cracking in BWR and PWR piping

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1983-07-01

    Intergranular stress-corrosion cracking of weld-sensitized wrought stainless steel piping has been an increasingly ubiquitous and expensive problem in boiling-water reactors over the last decade. In recent months, numerous cracks have been found, even in large-diameter lines. A number of potential remedies have been developed. These are directed at providing more resistant materials, reducing weld-induced stresses, or improving the water chemistry. The potential remedies are discussed, along with the capabilities of ultrasonic testing to find and size the cracks and related safety issues. The problem has been much less severe to date in pressurized-water reactors, reflecting the use of different materials and much lower coolant oxygen levels

  15. Effect of heating rate on caustic stress corrosion cracking

    International Nuclear Information System (INIS)

    Indig, M.E.; Hoffman, N.J.

    1977-01-01

    To evaluate effects of a large water leak into the sodium side of a steam generator in a Liquid Metal Fast Breeder Reactor the Liquid Metal Engineering Center (LMEC) at Canoga Park, California, is performing a series of tests in a Large Leak Test Rig (LLTR). This test series involves heating a large steam generator that possibly contains localized pockets of aqueous caustic retained from a previous sodium-water reaction. Such pockets of caustic solution could be in contact with welds and other components that contain residual stresses up to the yield point. The LMEC and General Electric (GE) ran a series of tests to evaluate the effect of heating rate on caustic stress corrosion cracking (SCC) for alloys either used or considered for the LLTR. A summary of the temperatures and caustic concentration ranges that can result in caustic SCC for carbon steel and Type-304 stainless steel is given

  16. Dissolution of copper in chloride/ammonia mixtures and the implications for the stress corrosion cracking of copper containers

    Energy Technology Data Exchange (ETDEWEB)

    King, F.; Greidanus, G.; Jobe, D.J

    1999-05-01

    Stress-corrosion cracking is a possible failure mechanism for copper nuclear fuel waste disposal containers. One species known to cause the stress corrosion of copper alloys is ammonia. It is conceivable that ammonia could be produced in a disposal vault under certain, very specific conditions. There are a number of conditions, however, that mitigate against container failure by stress corrosion, one of which is the presence of chloride ions in deep Canadian Shield groundwaters. There are a number of reports in the literature that suggest that Cl{sup -} has an inhibitive effect on the stress corrosion of Cu alloys in ammonia solutions. The electrochemical behaviour of Cu in Cl{sup -}/ammonia solutions has been studied as a function of ammonia concentration, pH, the rate of mass transport and electrochemical potential. In particular, the effects of these parameters on the formation Of Cu{sub 2}O films and the steady-state dissolution behaviour have been determined. All experiments were carried out in 0.1 mol{center_dot}dm{sup -3} NaC1 as a base solution. A series of aqueous speciation and equilibrium potential/pH diagrams are also presented for the quaternary system Cu-C1{sup -}NH{sub 3}/NH{sub 4{sup +}}H{sub 2}O. These diagrams are used to interpret the results of the electrochemical experiments reported here. In addition, it is demonstrated how these diagrams could be used to predict the time-dependence of the susceptibility to stress corrosion cracking of Cu containers in a disposal vault. (author)

  17. Inhibition of stress corrosion cracking of alloy AA8090 T-8171 by addition of rare earth salts

    International Nuclear Information System (INIS)

    Davo, B.; Conde, A.; Damborenea, J.J. de

    2005-01-01

    Aluminium-lithium alloys are suitable for aeronautical purposes because of their good mechanical properties and high damage tolerance. Although these alloys are less susceptible to stress corrosion cracking than conventional alloys, Al-Li-Cu-Mg alloy (8090-T8171) still experiences this problem in a NaCl + H 2 O 2 solution. In this work it has been demonstrated that the addition of 10,000 ppm of CeCl 3 to the medium inhibits the stress corrosion cracking of 8090 alloy by precipitation of cerium oxides/hydroxides. The deposition of these compounds on the alloy surface decreases the pit density and slows the crack growth through the grain boundaries by hindering the anodic dissolution of T phases

  18. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  19. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE-SHELL TANKS

    International Nuclear Information System (INIS)

    Brown, M.H.

    2008-01-01

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program

  20. Tensile and stress corrosion cracking properties of type 304 stainless steel irradiated to a very high dose

    International Nuclear Information System (INIS)

    Chung, H.M.; Strain, R.V.; Shack, W.J.

    2001-01-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20-100 displacement per atom or dpa) by the end of life. Our databases and mechanistic understanding of the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high doses, i.e. is it purely mechanical failure or is it stress-corrosion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-II reactor after irradiation to ∼50 dpa at ∼370 deg. C. Slow-strain-rate tensile tests were conducted at 289 degree sign C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microscopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at a low ECP, and this susceptibility led to a poor work-hardening capability and low ductility

  1. System for stress corrosion conditions tests on PWR reactors

    International Nuclear Information System (INIS)

    Castro, Andre Cesar de Jesus

    2007-01-01

    The study of environmentally assisted cracking (EAC) involves the consideration and evaluation of the inherent compatibility between a material and the environment under conditions of either applied or residual stress. EAC is a critical problem because equipment, components and structure are subject to the influence of mechanical stress, water environment of different composition, temperature and different material history. Testing for resistance to EAC is one of the most effective ways to determine the interrelationships among this variables on the process of EAC. Up to now, several experimental techniques have been developed worldwide, which address different aspects of environmental caused damage. Constant loading of CT specimens test is a typical example of test, which is used for the estimation of parameters of stress corrosion cracking. To assess the initiation stages and kinetics of crack growth, the testing facility should allow active loading of specimens in the environment that is close to the actual operation conditions of assessed component. This paper presents a testing facility for stress corrosion cracking to be installed at CDTN, which was designed and developed at CDTN. The facility is used to carry out constant load tests under simulated PWR environment, where temperature, water pressure and chemistry are controlled, which are considered the most important factors in SCC. Also, the equipment operational conditions, its applications, and restrictions are presented. The system was developed to operate at temperature until 380 degree C and pressure until 180 bar. It consists in a autoclave stuck at a mechanical system, responsible of producing load , a water treatment station, and a data acquisition system. This testing facility allows the evaluation of cracking progress, especially at PWR reactor. (author) operational conditions. (author)

  2. Atmospheric-Induced Stress Corrosion Cracking of Grade 2205 Duplex Stainless Steel—Effects of 475 °C Embrittlement and Process Orientation

    Directory of Open Access Journals (Sweden)

    Cem Örnek

    2016-07-01

    Full Text Available The effect of 475 °C embrittlement and microstructure process orientation on atmospheric-induced stress corrosion cracking (AISCC of grade 2205 duplex stainless steel has been investigated. AISCC tests were carried out under salt-laden, chloride-containing deposits, on U-bend samples manufactured in rolling (RD and transverse directions (TD. The occurrence of selective corrosion and stress corrosion cracking was observed, with samples in TD displaying higher propensity towards AISCC. Strains and tensile stresses were observed in both ferrite and austenite, with similar magnitudes in TD, whereas, larger strains and stresses in austenite in RD. The occurrence of 475 °C embrittlement was related to microstructural changes in the ferrite. Exposure to 475 °C heat treatment for 5 to 10 h resulted in better AISCC resistance, with spinodal decomposition believed to enhance the corrosion properties of the ferrite. The austenite was more susceptible to ageing treatments up to 50 h, with the ferrite becoming more susceptible with ageing in excess of 50 h. Increased susceptibility of the ferrite may be related to the formation of additional precipitates, such as R-phase. The implications of heat treatment at 475 °C and the effect of process orientation are discussed in light of microstructure development and propensity to AISCC.

  3. Stress corrosion cracking behavior of zircaloy-2 in iodine environment

    International Nuclear Information System (INIS)

    Ikeda, Seiichi

    1983-01-01

    The effects of strain rates, iodine partial pressure and testing temperature on SCC behavior of zircaloy-2 in iodine environment were studied by means of slow strain rate technique (SSRT). SCC behavior of recrystallized specimens in iodine environment was remarkably influenced by the testing temperatures, and the susceptibility to SCC of specimens tested at 623 K was higher than that at 573 K. The susceptibility to SCC of recrystallized specimens increased with increasing iodine partial pressure at the lower strain rates of 4.2 x 10 -6 s -1 and 8.3 x 10 -7 s -1 . Cold worked specimens indicate no SCC failure in iodine environment regardless of strain rates, although those were tested only at 573 K. Fractographic observation revealed that SCC features of recrystallized specimens can be classified into two groups. One group, mostly specimens tested at 573 K, are characterized by the fact that cracks are initiated from corrosion pits. The other group are characterized by transgranuler SCC in the absence of pitting. This type of crack is found on specimens tested in environments containing more than 570 Pa iodine and seems to be produced by iodine embrittlement. (author)

  4. Stress corrosion cracking of austenitic stainless steels in NaCl-AlCl/sub 3/ at 175C

    International Nuclear Information System (INIS)

    Smyrl, W.H.

    1987-01-01

    Austenitic stainless steels are susceptible to stress corrosion cracking in chloride media. A test that is often used to determine the susceptibility of a new alloy involves boiling aqueous MgCl/sub 2/ solutions. The compositions of the solution is not controlled in the tests, and changes as water is evaporated. The pH may change as well. Such poorly defined conditions make any mechanistic interpretation very tenuous, and the results may be tabulated as purely empirical data. the choice of the molten salt in the present investigation was made for two reasons. First, the studies could be carried in the molten salt media with the exclusion of H/sub 2/O. Second, the crack propagation could be investigated under well controlled electrochemical conditions. Therefore, the results may help to identify the controlling processes that occur during stress corrosion cracking, and the comparison to results in boiling MgCl/sub 2/ may help to reveal the controlling processes in that medium as well. Crack propagation has been studied for several nitronic stainless steels in the molten salt medium under controlled electrochemical potential conditions. The alloys were studied under fully austenitic conditions. The material was studied in the annealed and work hardened condition, and both were susceptible to cracking in the molten salt. The velocity of cracking was studied as a function of applied stress at several electrochemical potentials

  5. Topical problems of corrosion research for nuclear power purposes

    International Nuclear Information System (INIS)

    Eremias, B.

    1978-01-01

    Currently, research is focused on stress corrosion, intergranular corrosion, corrosion in water and steam, hydrogen-induced corrosion and corrosion in liquid sodium. The effort to limit stress corrosion resulted in the application of high nickel content austenitic steels. In these steels, the susceptibility to stress corrosion is mainly affected by previous heat treatment and the presence of chloride ions. Attention is also paid to medium and high-alloy chromium steels and susceptibility is studied to intergranular corrosion and stress corrosion. Of low-alloy steels the 21/4Cr-1Mo type steels stabilized with Nb or nonstabilized are studied with respect to decarburization kinetics and changes in mechanical properties in the presence of hydrogen. Of nonferrous metals zirconium alloys are studied used as cladding materials for fuel elements, mainly Zircaloy 2 and 4, with regard to their resistance to high-temperature oxidation, high-pressure steam action, etc. (J.F.)

  6. Mechanical and environmental effects on stress corrosion cracking of low carbon pipeline steel in a soil solution

    International Nuclear Information System (INIS)

    Contreras, A.; Hernández, S.L.; Orozco-Cruz, R.; Galvan-Martínez, R.

    2012-01-01

    Highlights: ► Mechanical and environmental effects on SCC of X52 steel were investigated. ► Slow strain rate tests (SSRT) were performed in a soil solution (NS4). ► Different levels of polarization potentials were applied to mitigating SCC. ► SSRT results indicate that X52 pipeline steel was susceptible to SCC. ► SCC susceptibility increase as the yielding and ultimate tensile stress increase. -- Abstract: Mechanical and environmental effects on stress corrosion cracking (SCC) susceptibility of X52 pipeline steel were investigated using slow strain rate tests (SSRT) performed in a glass autoclave containing a soil solution at strain rate of 1 × 10 −6 in./s at room temperature. Polarization potentials of −100, −200 and −400 mV referred to open circuit potential (OCP) was applied in order to establish the effectiveness of cathodic protection in mitigating SCC of X52 pipeline steel. Electrochemical impedance spectroscopy (EIS) tests and scanning electron microscopy (SEM) observations were done in order to analyze the SCC process. SSRT results indicate that X52 pipeline steel was susceptible to SCC. Susceptibility to SCC increase as the yielding stress (YS) and ultimate tensile stress (UTS) increase. The EIS results showed that the highest corrosion of the steel sample was obtained when the highest cathodic over potential was applied. SEM observations of these specimens showed a brittle type of fracture with transgranular appearance. The failure and SCC of X52 steel in soil solution was explained by hydrogen mechanism.

  7. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  8. Some radiation damage-stress corrosion synergisms in austenitic stainless steel

    International Nuclear Information System (INIS)

    Jones, R.H.

    1985-02-01

    Since radiolytic effects on stress corrosion cracking does not appear to be a major concern, an assessment of the effect of radiation induced microstructure and microchemistry changes on stress corrosion has been undertaken. The results of two of these evaluations: (1) radiation enhanced creep effects on crack growth rates; and (2) radiation enhanced grain boundary P segregation and IGSCC are reported in this paper

  9. Stress Corrosion Cracking of Zircaloy-4 in Halide Solutions: Effect of Temperature

    Directory of Open Access Journals (Sweden)

    Farina S.B.

    2002-01-01

    Full Text Available Zircaloy-4 was found to be susceptible to stress corrosion cracking in 1 M NaCl, 1 M KBr and 1 M KI aqueous solutions at potentials above the pitting potential. In all the solutions tested crack propagation was initially intergranular and then changed to transgranular. The effect of strain rate and temperature on the SCC propagation was investigated. An increase in the strain rate was found to lead to an increase in the crack propagation rate. The crack propagation rate increases in the three solutions tested as the temperatures increases between 20 and 90 °C. The Surface-Mobility SCC mechanism accounts for the observation made in the present work, and the activation energy predicted in iodide solutions is similar to that found in the literature.

  10. Effect of thermal stabilization on the low-temperature stress-corrosion cracking of Inconel 600

    International Nuclear Information System (INIS)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    The propensity to low-temperature stress-corrosion cracking (SCC) of thermally stabilized Inconel 600 in sulfur-bearing environments has been investigated using U-bends and slow-strain-rate testing. The results have been compared with those of sensitized Inconel 600. The potential dependence of crack-propagation rate has been established in a single test by using several U-bends held at different potentials, by choosing an appropriate electrical circuitry. The difference in SCC susceptibility of the sensitized and stabilized materials is discussed in terms of the grain-boundary chromium depletion and resulting intergranular attack in boiling ferric sulfate-sulfuric acid tests, and electrochemical potentiokinetic reactivation (EPR) tests. 10 figures

  11. Temperature factors effect on occurrence of stress corrosion cracking of main gas pipeline

    Science.gov (United States)

    Nazarova, M. N.; Akhmetov, R. R.; Krainov, S. A.

    2017-10-01

    The purpose of the article is to analyze and compare the data in order to contribute to the formation of an objective opinion on the issue of the growth of stress corrosion defects of the main gas pipeline. According to available data, a histogram of the dependence of defects due to stress corrosion on the distance from the compressor station was constructed, and graphs of the dependence of the accident density due to stress corrosion in the winter and summer were also plotted. Data on activation energy were collected and analyzed in which occurrence of stress corrosion is most likely constructed, a plot of activation energy versus temperature is plotted, and the process of occurrence of stress corrosion by the example of two different grades of steels under the action of different temperatures was analyzed.

  12. Irradiation-assisted stress corrosion cracking considerations at temperatures below 288 degree C

    International Nuclear Information System (INIS)

    Simonen, E.P.; Jones, R.H.; Bruemmer, S.M.

    1995-03-01

    Irradiation-assisted stress corrosion cracking (IASCC) occurs above a critical neutron fluence in light-water reactor (LWR) water environments at 288 C, but very little information exists to indicate susceptibility as temperatures are reduced. Potential low-temperature behavior is assessed based on the temperature dependencies of intergranular (IG) SCC in the absence of irradiation, radiation-induced segregation (RIS) at grain boundaries and micromechanical deformation mechanisms. IGSCC of sensitized SS in the absence of irradiation exhibits high growth rates at temperatures down to 200 C under conditions of anodic dissolution control, while analysis of hydrogen-induced cracking suggests a peak crack growth rate near 100 C. Hence from environmental considerations, IASCC susceptibility appears to remain likely as water temperatures are decreased. Irradiation experiments and model predictions indicate that RIS also persists to low temperatures. Chromium depletion may be significant at temperatures below 100C for irradiation doses greater than 10 displacements per atom (dpa). Macromechanical effects of irradiation on strength and ductility are not strongly dependent on temperature below 288 C. However, temperature does significantly affect radiation effects on SS microstructure and micromechanical deformation mechanisms. The critical conditions for material susceptibility to IASCC at low temperatures may be controlled by radiation-induced grain boundary microchemistry, strain localization due to irradiation microstructure and irradiation creep processes. 39 refs

  13. Influence of Thermal Aging on Primary Water Stress Corrosion Cracking of Cast Duplex Stainless Steels

    International Nuclear Information System (INIS)

    Yamada, T.; Totsuka, N.; Nakajima, N.; Arioka, K.; Negishi, K.

    2002-01-01

    In order to evaluate the SCC (stress corrosion cracking) susceptibility of cast duplex stainless steels which are used for the main coolant piping material of pressurized water reactors (PWRs), the slow strain rate test (SSRT) and the constant load test (CLT) were performed in simulated PWR primary water at 360 C. The main coolant piping materials contain ferrite phase with ranging from 8 to 23 % and its mechanical properties are affected by long time thermal aging. The 23% ferrite material was prepared for test as the maximum ferrite content of main coolant pipes in Japanese PWRs. The brittle fracture in the non-aged materials after SSRT is mainly caused by quasi-cleavage fracture in austenitic phase. On the other hand, a mixture of quasi-cleavage fracture in austenite and ferrite phases was observed on long time aged material. Also on CLT, (2 times σ y ), after 3,000 hours exposure, microcracks were observed on the surface of non-aged and aged for 10,000 hours at 400 C materials. The crack initiation site of CLT is similar to that of SSRT. The SCC susceptibility of the materials increases with aging time. It is suggested that the ferrite hardening with aging affect SCC susceptibility of cast duplex stainless steels. (authors)

  14. Modelling of stress corrosion cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Fandeur, O.; Rouillon, L.; Pilvin, P.; Jacques, P.; Rebeyrolle, V.

    2001-01-01

    During normal and incidental operating conditions, PWR power plants must comply with the first safety requirement, which is to ensure that the cladding wall is sound. Indeed some severe power transients potentially induce Stress Corrosion Cracking (SCC) of the zirconium alloy clad, due to strong Pellet Cladding Interaction (PCI). Since, at present, the prevention of this risk has some consequences on the French reactors manoeuvrability, a better understanding and forecast of the clad damage related to SCC/PCI is needed. With this aim, power ramp tests are performed in experimental reactors to assess the fuel rod behaviour and evaluate PCI failure risks. To study in detail SCC mechanisms, additional laboratory experiments are carried out on non-irradiated and irradiated cladding tubes. Numerical simulations of these tests have been developed aiming, on the one hand, to evaluate mechanical state variables and, on the other hand, to study consistent mechanical parameters for describing stress corrosion clad failure. The main result of this simulation is the determination of the validity ranges of the stress intensity factor, which is frequently used to model SCC. This parameter appears to be valid only at the onset of crack growth, when crack length remains short. In addition, the role of plastic strain rate and plastic strain as controlling parameters of the SCC process has been analysed in detail using the above mechanical description of the crack tip mechanical fields. Finally, the numerical determination of the first-order parameter(s) in the crack propagation rate law is completed by the development of laboratory tests focused on these parameters. These tests aim to support experimentally the results of the FE simulation. (author)

  15. Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices

    International Nuclear Information System (INIS)

    Sierros, Konstantinos A.; Morris, Nicholas J.; Ramji, Karpagavalli; Cairns, Darran R.

    2009-01-01

    Stress corrosion cracking of transparent conductive layers of indium tin oxide (ITO), sputtered on polyethylene terephthalate (PET) substrates, is an issue of paramount importance in flexible optoelectronic devices. These components, when used in flexible device stacks, can be in contact with acid containing pressure-sensitive adhesives or with conductive polymers doped in acids. Acids can corrode the brittle ITO layer, stress can cause cracking and delamination, and stress-corrosion cracking can cause more rapid failure than corrosion alone. The combined effect of an externally-applied mechanical stress to bend the device and the corrosive environment provided by the acid is investigated in this work. We show that acrylic acid which is contained in many pressure-sensitive adhesives can cause corrosion of ITO coatings on PET. We also investigate and report on the combined effect of external mechanical stress and corrosion on ITO-coated PET composite films. Also, it is shown that the combination of stress and corrosion by acrylic acid can cause ITO cracking to occur at stresses less than a quarter of those needed for failure with no corrosion. In addition, the time to failure, under ∼ 1% tensile strain can reduce the total time to failure by as much as a third

  16. Intergranular stress corrosion cracking of ion irradiated 304L stainless steel in PWR environment

    International Nuclear Information System (INIS)

    Gupta, Jyoti

    2016-01-01

    IASCC is irradiation - assisted enhancement of intergranular stress corrosion cracking susceptibility of austenitic stainless steel. It is a complex degrading phenomenon which can have a significant influence on maintenance time and cost of PWRs' core internals and hence, is an issue of concern. Recent studies have proposed using ion irradiation (to be specific, proton irradiation) as an alternative of neutron irradiation to improve the current understanding of the mechanism. The objective of this study was to investigate the cracking susceptibility of irradiated SA 304L and factors contributing to cracking, using two different ion irradiations; iron and proton irradiations. Both resulted in generation of point defects in the microstructure and thereby causing hardening of the SA 304L. Material (unirradiated and iron irradiated) showed no susceptibility to intergranular cracking on subjection to SSRT with a strain rate of 5 * 10 -8 s -1 up to 4 % plastic strain in inert environment. But, irradiation (iron and proton) was found to increase intergranular cracking severity of material on subjection to SSRT in simulated PWR primary water environment at 340 C. Correlation between the cracking susceptibility and degree of localization was studied. Impact of iron irradiation on bulk oxidation of SA 304L was studied as well by conducting an oxidation test for 360 h in simulated PWR environment at 340 C. The findings of this study indicate that the intergranular cracking of 304L stainless steel in PWR environment can be studied using Fe irradiation despite its small penetration depth in material. Furthermore, it has been shown that the cracking was similar in both iron and proton irradiated samples despite different degrees of localization. Lastly, on establishing iron irradiation as a successful tool, it was used to study the impact of surface finish and strain paths on intergranular cracking susceptibility of the material. (author) [fr

  17. An acceleration test for stress corrosion cracking using humped specimen

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Fukumura, Takuya; Totsuka, Nobuo

    2003-01-01

    By using the humped specimen, which is processed by the humped die, in the slow strain rate technique (SSRT) test, fracture facet due to stress corrosion cracking (SCC) can be observed in relatively short duration. Although the cold work and concentrated stress and strain caused by the characteristic shape of the specimen accelerate the SCC, to date these acceleration effects have not been examined quantitatively. In the present study, the acceleration effects of the humped specimen were examined through experiments and finite element analyses (FEA). The experiments investigated the SCC of alloy 600 in the primary water environment of a pressurized water reactor. SSRT tests were conducted using two kinds of humped specimen: one was annealed after hump processing in order to eliminate the cold work, and the other was hump processed after the annealing treatment. The work ratio caused by the hump processing and stress/strain conditions during SSRT test were evaluated by FEA. It was found that maximum work ratio of 30% is introduced by the hump processing and that the distribution of the work ratio is not uniform. Furthermore, the work ratio is influenced by the friction between the specimen and dies as well as by the shape of dies. It was revealed that not only the cold work but also the concentrated stress and strain during SSRT test accelerate the crack initiation and growth of the SCC. (author)

  18. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  19. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    Science.gov (United States)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  20. Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment.

    Science.gov (United States)

    Jafari, Sajjad; Raman, R K Singh; Davies, Chris H J; Hofstetter, Joelle; Uggowitzer, Peter J; Löffler, Jörg F

    2017-01-01

    Magnesium (Mg) alloys have attracted great attention as potential materials for biodegradable implants. It is essential that an implant material possesses adequate resistance to cracking/fracture under the simultaneous actions of corrosion and mechanical stresses, i.e., stress corrosion cracking (SCC) and/or corrosion fatigue (CF). This study investigates the deformation behaviour of a newly developed high-strength low-alloy Mg alloy, MgZn1Ca0.3 (ZX10), processed at two different extrusion temperatures of 325 and 400°C (named E325 and E400, respectively), under slow strain tensile and cyclic tension-compression loadings in air and modified simulated body fluid (m-SBF). Extrusion resulted in a bimodal grain size distribution with recrystallised grain sizes of 1.2 μm ± 0.8 μm and 7 ± 5 μm for E325 and E400, respectively. E325 possessed superior tensile and fatigue properties to E400 when tested in air. This is mainly attributed to a grain-boundary strengthening mechanism. However, both E325 and E400 were found to be susceptible to SCC at a strain rate of 3.1×10 -7 s -1 in m-SBF. Moreover, both E325 and E400 showed similar fatigue strength when tested in m-SBF. This is explained on the basis of crack initiation from localised corrosion following tests in m-SBF. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. The intergranular corrosion susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling

    International Nuclear Information System (INIS)

    Wang, Zhixiu; Chen, Peng; Li, Hai; Fang, Bijun; Song, Renguo; Zheng, Ziqiao

    2017-01-01

    Highlights: • No intergranular corrosion occured for the peak–re–aged and over–re–aged 2024 Al alloy. • Absence of intergranular corrosion in the re–aged samples resulted from no continuous grain boundary S–Al_2CuMg phase. • Aggregated pits were observed in the over–re–aged samples. • Aggregated pitting corrosion was related to the preferential precipitation of S–phase on the dislocation cell walls. - Abstract: The intergranular corrosion (IGC) susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling was investigated by accelerated corrosion testing, open circuit potential testing, transmission electron microscopy and scanning electron microscopy. The absence of IGC in both the peak–re–aged and over–re–aged samples is related to the dislocation pile–ups which prevent the supersaturated solutes from diffusing into the grain boundaries and precipitating the continuous S–Al_2CuMg phase. The aggregated pitting corrosion in the over–re–aged samples arises from the S–phase precipitates on the dislocation cell walls which accelerate the anodic dissolution of the cell interiors.

  2. Mechanistic differences between transgranular and intergranular stress corrosion cracking

    International Nuclear Information System (INIS)

    Serebrinsky, Santiago A.; Galvele, Jose R.

    2000-01-01

    Constant extension rate tests (CERT or CSRT) with the strain rate (SR) covering a 7 orders of magnitude range were applied to the study of many systems. In particular, the kinetics of SCC were measured via the stress corrosion (SCC) crack propagation rate (CPR). The main experimental findings are: a) increasing SR produces a monotonic (logarithmic) increase in CPR; b) the slopes α in log CPR vs. log SR plots take distinct values depending on the morphology: intergranular (IG) cracks are more steeply accelerated by SR than transgranular (TG), with α lG =0.4 to 0.7 and α TG =0.2 to 0.3; c) an increase in SR only shifts the log CPR vs. potential curves to higher CPR values, without changing its shape. Quantitative evaluation shows that dislocations piled-up at grain boundaries may combine with the surface mobility mechanism to give the experimental results. (author)

  3. Two-phase flow experiments through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Collier, R.P.; Norris, D.M.

    1984-01-01

    Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flows rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate

  4. Toward the multiscale nature of stress corrosion cracking

    Directory of Open Access Journals (Sweden)

    Xiaolong Liu

    2018-02-01

    Full Text Available This article reviews the multiscale nature of stress corrosion cracking (SCC observed by high-resolution characterizations in austenite stainless steels and Ni-base superalloys in light water reactors (including boiling water reactors, pressurized water reactors, and supercritical water reactors with related opinions. A new statistical summary and comparison of observed degradation phenomena at different length scales is included. The intrinsic causes of this multiscale nature of SCC are discussed based on existing evidence and related opinions, ranging from materials theory to practical processing technologies. Questions of interest are then discussed to improve bottom-up understanding of the intrinsic causes. Last, a multiscale modeling and simulation methodology is proposed as a promising interdisciplinary solution to understand the intrinsic causes of the multiscale nature of SCC in light water reactors, based on a review of related supporting application evidence.

  5. Estimation of flow rates through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Collier, R.P.; Norris, D.M.

    1984-01-01

    Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flow rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate

  6. Relationship between stress corrosion cracking and low frequency fatigue-corrosion of alloy 600 in PWR primary water

    International Nuclear Information System (INIS)

    Bosch, C.

    1998-01-01

    Stress corrosion cracking of PWR vessel head adapters is a main problem for nuclear industry. With the aim to better understand the influence of the mechanical parameters on the cracking phenomena (by stress corrosion (SCC) or fatigue corrosion (FC)) of alloy 600 exposed to primary PWR coolant, a parametrical study has been carried out. Crack propagation tests on CT test specimens have been implemented under static loads (stress corrosion tests) or low frequency cyclic loads (fatigue corrosion tests). Results (frequency influence, type of cycles, ratio charge on velocities and propagation modes of cracks) have allowed to characterize the transition domain between the crack phenomena of SCC and FC. With the obtained results, it has been possible too to differentiate the effects due to environmental factors and the effects due to mechanical factors. At last, a quantitative fractographic study and the observations of the microstructure at the tip of crack have led to a better understanding of the transitions of the crack propagation mode between the SCC and the FC. (O.M.)

  7. Experimental Study of Laser - enhanced 5A03 Aluminum Alloy and Its Stress Corrosion Resistance

    Science.gov (United States)

    Wang, Guicheng; Chen, Jing; Pang, Tao

    2018-02-01

    Based on the study of improving the stress corrosion resistance of 5A03 aluminum alloy for ship, this paper mainly studied the tensile test, surface morphology and residual stress under laser shock, high temperature and stress corrosion. It is found that the residual compressive stress and the grain refinement on the surface of the material during the heat strengthening process increase the breaking strength of the sample in the stress corrosion environment. Appropriate high temperature maintenance helps to enhance the effect of deformation strengthening. In the 300°C environment insulation, due to recrystallization of the material, the performance decreased significantly. This study provides an experimental basis for effectively improving the stress corrosion resistance of 5A03 aluminum alloy.

  8. Low maternal care exacerbates adult stress susceptibility in the chronic mild stress rat model of depression

    DEFF Research Database (Denmark)

    Henningsen, Kim; Johannesen, Mads Dyrvig; Bouzinova, Elena

    2012-01-01

    In the present study we report the finding that the quality of maternal care, in early life, increased the susceptibility to stress exposure in adulthood, when rats were exposed to the chronic mild stress paradigm. Our results indicate that high, as opposed to low maternal care, predisposed rats...... to a differential stress-coping ability. Thus rats fostered by low maternal care dams became more prone to adopt a stress-susceptible phenotype developing an anhedonic-like condition. Moreover, low maternal care offspring had lower weight gain and lower locomotion, with no additive effect of stress. Subchronic...... exposure to chronic mild stress induced an increase in faecal corticosterone metabolites, which was only significant in rats from low maternal care dams. Examination of glucocorticoid receptor exon 17 promoter methylation in unchallenged adult, maternally characterized rats, showed an insignificant...

  9. Demonstration through EPR tests of the sensitivity of austeno-ferritic steels to intergranular corrosion and stress corrosion cracking

    International Nuclear Information System (INIS)

    Lopez, Nathalie

    1997-01-01

    Duplex stainless steels can be sensitised to intergranular corrosion and stress corrosion cracking (SCC) under some conditions (heat treatments, welding). The aim of this work is to contribute to the validation of the EPR (Electrochemical Potentiodynamic Reactivation) test in order to determine conditions for normalisation. This method, based on the dissolution of chromium depleted areas due to precipitation of σ-phase, provides a degree of sensitisation to intergranular corrosion. The test is broaden considering the mechanical stress by the way of slow strain rate tests, performed in chloride magnesium and in a solution similar to the EPR solution. A metallurgical study puts on the precipitates and the structural modifications due to welding and heat treatments, in order to make a critical analysis of the EPR test. (author) [fr

  10. Blood lactate kinetics in normal and stress-susceptible pigs

    International Nuclear Information System (INIS)

    Darrah, P.S.; Beitz, D.C.; Topel, D.G.; Christian, L.L.

    1981-01-01

    In vitro rates of lactate metabolism were determined in stress-susceptible (SS) and stress-resistant (SR) pigs. Three SR and three SS pigs were given 20 muCi of [U-/sup 14/C] L-lactate by a single injection method and resting blood lactate kinetics were measured. Seventeen blood samples were taken during the 60 min after injection. Lactate was separated from the deproteinized plasma by silicic acid column chromatography, and specific radioactivity was determined. Kinetic characteristics were calculated from plots of specific activity versus time. Pigs met steady-state requirements during the sampling period. There were no differences in kinetic characteristics of resting SS and SR pigs. Later, a second isotope injection was given after 5 min of electrical stress. Lactate pool sizes increased similarly in both types of pigs after stress; however, SS pigs had greater plasma lactate concentrations after stress. It is concluded that SS and SR pigs respond differently to stress but have similar capacities to metabolize lactate while resting

  11. Effects of potential and concentration of bicarbonate solution on stress corrosion cracking of annealed carbon steel

    International Nuclear Information System (INIS)

    Haruna, Takumi; Zhu, Liehong; Murakami, Makoto; Shibata, Toshio

    2000-01-01

    Effects of potential and concentration of bicarbonate on stress corrosion cracking (SCC) of annealed SM 400 B carbon steel has been investigated in bicarbonate solutions at 343 K. The surface of annealed specimen had decarburized layer of about 0. 5 mm thickness. A potentiostatic slow strain rate testing apparatus equipped with a charge coupled device camera system was employed to evaluate SCC susceptibility from the viewpoint of the crack behavior. In a constant bicarbonate concentration of 1 M, cracks were observed in the potential range from -800 to 600 mV Ag/ A gCl . and especially, the initiation and the propagation of the cracks were accelerated at -600 mV. At a constant potential of -600 mV, cracks were observed in the concentration range from 0.001 to 1 M, and the initiation and the propagation of the cracks were suppressed as the concentration decreased. Polarization curves for the decarburized surface were measured with two different scan rates. High SCC susceptibility may be expected in the potential range where the difference between the two current densities is large. It was found in this system that the potential with the maximum difference in the current density was -600 mV for 1 M bicarbonate solution, and the potential increased with a decrease in the concentration of bicarbonate. This means that an applied potential of -600 mV provides the highest SCC susceptibility for 1 M bicarbonate solution, and that the SCC susceptibility decreases as the concentration decreases. These findings support the dependence of the actual SCC behavior on the potential and the concentration of bicarbonate. (author)

  12. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.B. [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Yu, C.; Shiue, R.K. [Department of Materials Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsay, L.W., E-mail: b0186@mail.ntou.edu.tw [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-10-15

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  13. Stress corrosion cracking of austenitic weld deposits in a salt spray environment

    International Nuclear Information System (INIS)

    Cai, J.B.; Yu, C.; Shiue, R.K.; Tsay, L.W.

    2015-01-01

    ER 308L and 309LMo were utilized as the filler metals for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. U-bend and weight-loss tests were conducted by testing the welds in a salt spray containing 10 wt% NaCl at 120 °C. The dissolution of the skeletal structure in the fusion zone (FZ) caused the stress corrosion cracking (SCC) of the weld. The FZ in the cold-rolled condition showed the longest single crack length in the U-bend tests. Moreover, sensitization treatment at 650 °C for 10 h promoted the formation of numerous fine cracks, which resulted in a high SCC susceptibility. The weight loss of the deposits was consistent with the SCC susceptibility of the welds in a salt spray. The 309LMo deposit was superior to the 308L deposit in the salt spray. - Highlights: • ER 308L and 309LMo were utilized as fillers for the groove and overlay welds of a 304L SS. • U-bend and weight-loss tests in a salt spray containing 10 wt% NaCl at 120 °C were performed. • The dissolution of solidified structure caused the SCC of the welds in a salt spray. • Sensitization treatment increased the weight loss and SCC susceptibility of the deposits. • The weight loss of the weld deposits was related to their SCC susceptibility in a salt spray.

  14. Protection of type 316 austenitic stainless steel from intergranular stress corrosion cracking by thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi; Tsuji, Hirokazu; Kondo, Tatsuo

    1980-03-01

    Thermomechanical treatment that causes carbide stabilizing aging of cold worked material followed by recrystallization heating made standard stainless steels highly resistant to intergranular corrosion and stress corrosion cracking in different test environments. After a typical thermal history of simulated welding, several IGSCC susceptibility tests were made. The results showed that the treatment was successful in type 316 steel in wide range of conditions, while type 304 was protected only to a small extent even by closely controlled treatment. Response of the materials to the sensitizing heating in terms of impurity segregation at grain boundaries was also examined by means of microchemical analysis. Advantage of method is that no special care is required in selecting heats of material, so that conventional type 316 is usable by improving the mechanical properties substantially through the treatment. In some optimized cases the mechanical property improvement was typically recognized by the yield strength by about 20% higher at room temperature, compared with the material mill annealed. (author)

  15. Investigation with slow traction conditions of the stress corrosion of carbon steels in alkaline media. Role of passivating inhibitors

    International Nuclear Information System (INIS)

    Miroud, Lakhdar

    1991-01-01

    The stress corrosion cracking (S.C.C.) sensitivity of carbon steels in basic media, such as carbonates, is well known. A constant strain-rate test have allowed to observe two steels (A42 [E26] and XC38) behaviour in such conditions at pH 9. The S.C.C. potentials susceptibility range has been found. Inter and Trans-granular cracking have been revealed and measured with micrographic methods. A crack growth rate has been studied as a function of strain rate: an experimental rate has been compared to calculated values from methods which have proposed previously, and methods which have been elaborated in this work. These last permit a best approach of cracking in our case. The chromates use, as inhibitor ions, has permit to decrease the corrosive attack and to cancel the crack growth rate. (author) [fr

  16. Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover two tests as follows: 1.1.1 Method A, Ferric Sulfate-Sulfuric Acid Test (Sections 3-10, inclusive)—This test method describes the procedure for conducting the boiling ferric sulfate—50 % sulfuric acid test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to intergranular corrosion (see Terminology G 15), which may be encountered in certain service environments. The uniform corrosion rate obtained by this test method, which is a function of minor variations in alloy composition, may easily mask the intergranular corrosion components of the overall corrosion rate on alloys N10276, N06022, N06059, and N06455. 1.1.2 Method B, Mixed Acid-Oxidizing Salt Test (Sections 11-18, inclusive)—This test method describes the procedure for conducting a boiling 23 % sulfuric + 1.2 % hydrochloric + 1 % ferric chloride + 1 % cupric chloride test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to display a step function increa...

  17. Effect of water impurities on stress corrosion cracking in a boiling water reactor

    International Nuclear Information System (INIS)

    Ljungbery, L.G.; Cubicciotti, D

    1985-01-01

    A series of stress corrosion tests, including corrosion potential and water chemistry measurements, has been performed in the Swedish Ringhals-1 boiling water reactor. Tests have been run under reactor start-up and reactor power operation with normal reactor water conditions and with alternate water chemistry in which hydrogen is added to the feedwater to suppress stress corrosion cracking. During one alternate water chemistry test, there was significant intergranular corrosion cracking of sensitized stainless specimens. It is shown that nitrate and sulfate, arising from an accidental resin intrusion, are likely causes. Nitrate increases the oxidizing power of the water, and sulfate enhances cracking under oxidizing conditions. During another test under start-up conditions, enhanced transgranular stress corrosion cracking in low alloy steels and possibly initiation of cracking in a nickel base alloy was observed as a result of resin intrusion into the reactor water. The intrusion produced acid and sulfate, which are believed to enhance hydrogen cracking conditions

  18. Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress

    International Nuclear Information System (INIS)

    Amirat, A.; Mohamed-Chateauneuf, A.; Chaoui, K.

    2006-01-01

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. Reliability analysis is recognized as a powerful decision-making tool for risk-based design and maintenance. Both the residual stresses generated during the manufacturing process and in-service corrosion reduce the ability to resist internal and external loading. In this study, the residual stress distribution in large diameter pipes has been characterized experimentally in order to be coupled with the corrosion model. During the pipe lifetime, residual stress relaxation occurs due to the loss of pipe thickness as material layers are consumed by corrosion. The reliability-based assessment of residual stress effects is applied to underground pipelines under a roadway, with and without active corrosion. It has been found that the residual stress greatly increases the failure probability, especially in the early stage of the pipe lifetime

  19. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  20. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  1. Allowing for surface preparation in stress corrosion cracking modelling

    International Nuclear Information System (INIS)

    Berge, P.; Buisine, D.; Gelpi, A.

    1997-01-01

    When a 600 alloy component is significantly deformed during installation, by welding, rolling, bending, its stress corrosion cracking in Pressurized Water Nuclear Reactor's primary coolant, is significantly changed by the initial surface treatment. Therefore, the crack initiated time may be reduced by several orders of magnitude for certain surfaces preparations. Allowing for cold working of the surface, for which modelling is proposed, depends less on the degree of cold work then on the depths of the hardened layers. Honing hardens the metal over depths of about one micron for vessel head penetrations, for example, and has little influence on subsequent behaviour after the part deforms. On the other hand, coarser turning treatment produces cold worked layers which can reach several tens of microns and can very significantly reduce the initiation time compared to fine honing. So evaluation after depths of hardening is vital on test pieces for interpreting laboratory results as well as on service components for estimating their service life. Suppression by mechanical or chemical treatment of these layers, after deformation, seems to be the most appropriate solution for reducing over-stressing connected with surface treatment carried out before deformation. (author)

  2. Evaluation of local stress for stress corrosion crack initiation by three-dimensional polycrystal model

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Kitamura, Takayuki

    2006-01-01

    In order to understand the initiation behavior of microstructurally small cracks in a stress corrosion cracking condition, it is important to know the tensile normal stress acting on the grain boundary (normal G.B. stress). The local stress in a polycrystalline body is greatly influenced by deformation constraint which is caused by anisotropic and/or inhomogeneous property of each grain. In present study, the local normal G.B. stress on bi- and tri-crystal bodies and a three-dimensional polycrystalline body consisting of 100 grains were evaluated by the finite element method under a remote uniform tensile stress condition. The polycrystalline body was generated by using a Monte Carlo procedure and random orientations were assigned to each grain. It was revealed that the local normal G.B. stress on the polycrystalline body is inhomogeneous under uniform applied stress. The stress tends to be large near the triple points due to the deformation constraint caused by adjacent grains, even though the grain boundary inclination to the load axis has large influence. It was also shown that particular high stress was not observed at corners of the polycrystalline body. (author)

  3. Effects of Aging on the Localized and Stress Corrosion of AlLi 2090 Alloy in Deaerated 3.5% NaCl

    International Nuclear Information System (INIS)

    Kim, Hee San; Suh, Min Suk; Kwon, Hyuk Sang; Lee, Weung Jo

    1995-01-01

    Effects of aging on the localized and stress corrosion of AlLi 2090 alloy were investigated by measuring relevant critical potentials using cyclic polarization test and constant extention rate test (CERT) in a deaerated 3.5% NaCl solution at 30 .deg. C. The resistance to localized corrosion, when evaluated in terms of the film breakdown potential (E b ) and repassivation potential (E rp ) from cyclic polarization curve measured potentiodynamically, decreased with aging. Pitting corrosion initiated at Al-Fe-Cu particles, which was confirmed by the enrichment of Fe and Cu inside of pit. Stress corrosion cracking of 2090 alloy aged did not occur under freely corroding condition when load applied in longitudinal transverse direction. The susceptibility to SCC of the alloy, however, was very sensitive to applied potentials. At applied potentials above E b , the SCC susceptibility increased with applied potential. On the other hand, at potentials below E rp , the SCC susceptibility decreased with decreasing the applied potential. The critical cracking potential (E cc ) of aged 2090 alloy was found to exist between E b and E rp when SCC was assumed to occur at the strain to failure ratio (ε NaCl /ε air ) lower than 0.8. The resistance to SCC decreased in the order of underaging, peak aging and overaging, that is, with aging. The cracking mechanism of the alloy was well explained by the active path mechanism

  4. Localized Corrosion Susceptibility Of Alloy 22 In Na-K-Cl()NO3 Brines At 110 To 150?C

    International Nuclear Information System (INIS)

    Lian, T; Felker, S J; Hailey, P D; Staggs, K J; Gdowski, G E

    2006-01-01

    Electrochemical cyclic potentiodynamic polarization experiments were conducted to assess crevice corrosion of Alloy 22 in de-aerated aqueous solutions of chloride and nitrate salts of potassium and sodium in the temperature range 110-150 C. The tests were run in neutral and slightly acidic aqueous solutions. The Alloy 22 specimens were multiple creviced weld prisms. No evidence of crevice corrosion was observed in the range 125-150 C. In the 120 to 160 C temperature range, the anionic concentration of stable aqueous solutions is dominated by nitrate relative to chloride. At nominally 120 C, the minimum nitrate to chloride ratio is about 4.5, and it increases to about 22 at nominally 155 C. The absence of localized corrosion susceptibility in these solutions is attributed to the known inhibiting effect of the nitrate anion. Aqueous solution chemistry studies indicate that nitrate to chloride ratios of less than 0.5 are possible for temperatures up to nominally 116 C. At 110 C, aqueous solutions can have dissolved chloride well in excess of nitrate. Localized corrosion was observed at nitrate to chloride ratios up to 1.0, the highest ratio tested. The extent of localized corrosion was confined to the crevice region of the samples, and was limited for nitrate to chloride ratios greater than or equal to 0.3

  5. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Song, R.G.; Dietzel, W.; Zhang, B.J.; Liu, W.J.; Tseng, M.K.; Atrens, A.

    2004-01-01

    The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg-Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement

  6. Effect of strain-path on stress corrosion cracking of AISI 304L stainless steel in PWR primary environment at 360 deg. C

    International Nuclear Information System (INIS)

    Couvant, T.; Vaillant, F.; Boursier, JM.; Delafosse, D.

    2004-01-01

    Austenitic stainless steels (ASS) are widespread in primary and auxiliary circuits of PWR. Moreover, some components suffer stress corrosion cracking (SCC) under neutron irradiation. This degradation could be the result of the increase of hardness or the modification of chemical composition at the grain boundary by irradiation. In order to avoid complex and costly corrosion facilities, the effects of irradiation on the material are commonly simulated by applying a cold work on non-irradiated material prior to stress corrosion cracking tests. Slow strain rate tests were conducted on an austenitic stainless steel (SS) AISI 304L in PWR environment (360 deg. C). Particular attention was directed towards pre-straining effects on crack growth rate (CGR) and crack growth path (CGP). Results have demonstrated that the susceptibility of 304L to SCC in high-temperature hydrogenated water was enhanced by pre-straining. It seemed that IGSCC was enhanced by complex strain paths. (authors)

  7. Mitigation of stress corrosion cracking in pressurized water reactor (PWR) piping systems using the mechanical stress improvement process (MSIPR) or underwater laser beam welding

    International Nuclear Information System (INIS)

    Rick, Grendys; Marc, Piccolino; Cunthia, Pezze; Badlani, Manu

    2009-01-01

    A current issue facing pressurized water reactors (PWRs) is primary water stress corrosion cracking (PWSCC) of bi metallic welds. PWSCC in a PWR requires the presence of a susceptible material, an aggressive environment and a tensile stress of significant magnitude. Reducing the potential for SCC can be accomplished by eliminating any of these three elements. In the U.S., mitigation of susceptible material in the pressurizer nozzle locations has largely been completed via the structural weld overlay (SWOL) process or NuVision Engineering's Mechanical Stress Improvement Process (MSIP R) , depending on inspectability. The next most susceptible locations in Westinghouse designed power plants are the Reactor Vessel (RV) hot leg nozzle welds. However, a full SWOL Process for RV nozzles is time consuming and has a high likelihood of in process weld repairs. Therefore, Westinghouse provides two distinctive methods to mitigate susceptible material for the RV nozzle locations depending on nozzle access and utility preference. These methods are the MSIP and the Underwater Laser Beam Welding (ULBW) process. MSIP applies a load to the outside diameter of the pipe adjacent to the weld, imposing plastic strains during compression that are not reversed after unloading, thus eliminating the tensile stress component of SCC. Recently, Westinghouse and NuVision successfully applied MSIP on all eight RV nozzles at the Salem Unit 1 power plant. Another option to mitigate SCC in RV nozzles is to place a barrier between the susceptible material and the aggressive environment. The ULBW process applies a weld inlay onto the inside pipe diameter. The deposited weld metal (Alloy 52M) is resistant to PWSCC and acts as a barrier to prevent primary water from contacting the susceptible material. This paper provides information on the approval and acceptance bases for MSIP, its recent application on RV nozzles and an update on ULBW development

  8. The role of stress in self-ordered porous anodic oxide formation and corrosion of aluminum

    Science.gov (United States)

    Capraz, Omer Ozgur

    The phenomenon of plastic flow induced by electrochemical reactions near room temperature is significant in porous anodic oxide (PAO) films, charging of lithium batteries and stress-corrosion cracking (SCC). As this phenomenon is poorly understood, fundamental insight into flow from our work may provide useful information for these problems. In-situ monitoring of the stress state allows direct correlation between stress and the current or potential, thus providing fundamental insight into technologically important deformation and failure mechanisms induced by electrochemical reactions. A phase-shifting curvature interferometry was designed to investigate the stress generation mechanisms on different systems. Resolution of our curvature interferometry was found to be ten times more powerful than that obtained by state-of-art multiple deflectometry technique and the curvature interferometry helps to resolve the conflicting reports in the literature. During this work, formation of surface patterns during both aqueous corrosion of aluminum and formation of PAO films were investigated. Interestingly, for both cases, stress induced plastic flow controls the formation of surface patterns. Pore formation mechanisms during anodizing of the porous aluminum oxide films was investigated . PAO films are formed by the electrochemical oxidation of metals such as aluminum and titanium in a solution where oxide is moderately soluble. They have been used extensively to design numerous devices for optical, catalytic, and biological and energy related applications, due to their vertically aligned-geometry, high-specific surface area and tunable geometry by adjusting process variables. These structures have developed empirically, in the absence of understanding the process mechanism. Previous experimental studies of anodizing-induced stress have extensively focused on the measurement of average stress, however the measurement of stress evolution during anodizing does not provide

  9. [Emotional stress-induced Shanghuo syndrome increases disease susceptibility].

    Science.gov (United States)

    Zhu, Si-Rui; Luo, Xiang; Li, Yi-Fang; Hiroshi, Kurihara; He, Rong-Rong

    2018-04-01

    Shanghuo(excessive internal heat) is a special organic state based on the concept of traditional Chinese medicine(TCM), commonly known as the abnormal heating syndrome of body in folks. With the acceleration of modern life rhythm and the increase of the social competition pressure, emotional stress has become an important cause for the spread of Shanghuo symptoms. What's more, Shanghuo can impact the body physiological functions to cause the onset, recurrence and progression of common diseases, harming the health of the body. According to the long-term research findings, the author found that Shanghuo referred to the imbalance of multiple physiological functions, such as nerve, immunity and metabolism, caused by emotional stress. "Shanghuo" is not a disease itself, but it can increase the susceptibility to a variety of diseases. This study reviewed the traditional medicine theory and the modern medical studies, and explored the relevance and correlation mechanisms between the Shanghuo symptoms and disease susceptibility, so as to provide a reference to improve the state of sub-health and prevent or treat modern diseases. Copyright© by the Chinese Pharmaceutical Association.

  10. Acoustic emission reviling and danger level evaluation of stress corrosion cracking in stainless steel pipes

    International Nuclear Information System (INIS)

    Muravin, Gregory; Muravin, Boris; Lezvinsky, Luidmila

    2000-01-01

    Breakdowns and catastrophic damage occurring during the operation of nuclear power stations pipelines cause substantial economic and social loss annually throughout the world. Stress corrosion, vibration, fatigue, erosion, water shock, dynamic load, construction defects/errors are the main causes of pipes failures. For these reasons and in view of the age of nuclear power station pipes, there is an increased interest in finding means to prevent potential pipe failures. Nevertheless, statistical data of pipe failures continues to show significant numbers of accidents mainly due to stress corrosion cracking (about 65-80% of total number). To this end, a complex of investigations was carried out for the reliable AE diagnosis of pipes undergone stress corrosion cracking. These include: finding AE indications (fingerprints) of flaws developing in the metal in original condition as well as in metal subjected to stress corrosion; preparing AE criteria for evaluating the danger level of defects. (author)

  11. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    Science.gov (United States)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  12. Pacific Northwest National Laboratory Investigation of the Stress Corrosion Cracking in Nickel-Base Alloys, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.

    2012-03-01

    The objective of this program is to evaluate the primary water stress corrosion cracking (PWSCC) susceptibility of high chromium alloy 690 and its weld metals, establish quantitative measurements of crack-growth rates and determine relationships among cracking susceptibility, environmental conditions and metallurgical characteristics. Stress-corrosion, crack-growth rates have been determined for 12 alloy 690 specimens, 11 alloy 152/52/52M weld metal specimens, 4 alloy 52M/182 overlay specimens and 2 alloy 52M/82 inlay specimens in simulated PWR primary water environments. The alloy 690 test materials included three different heats of extruded control-rod-drive mechanism (CRDM) tubing with variations in the initial material condition and degree of cold work for one heat. Two cold-rolled (CR) alloy 690 plate heats were also obtained and evaluated enabling comparisons to the CR CRDM materials. Weld metal, overlay and inlay specimens were machined from industry mock ups to provide plant-representative materials for testing. Specimens have been tested for one alloy 152 weld, two alloy 52 welds and three alloy 52M welds. The overlay and inlay specimens were prepared to propagate stress-corrosion cracks from the alloy 182 or 82 material into the more resistant alloy 52M. In all cases, crack extension was monitored in situ by direct current potential drop (DCPD) with length resolution of about +1 µm making it possible to measure extremely low growth rates approaching 5x10-10 mm/s. Most SCC tests were performed at 325-360°C with hydrogen concentrations from 11-29 cc/kg; however, environmental conditions were modified during a few experiments to evaluate the influence of temperature, water chemistry or electrochemical potential on propagation rates. In addition, low-temperature (~50°C) cracking behavior was examined for selected alloy 690 and weld metal specimens. Extensive characterizations have been performed on material microstructures and stress-corrosion cracks by

  13. Influence of surface treatments on corrosion resistance of stainless steels. Residual stresses in metals

    International Nuclear Information System (INIS)

    Berge, J. Philippe

    1968-05-01

    In a first part, this research thesis proposes presentation of the definition of a surface condition: chemical characteristics such as passivity and contamination, physical characteristics (obtained through micrographic methods, X ray diffusion, magnetic methods), and micro-geometrical characteristics. The author notably discusses the measurement of characteristics either by appropriate conventional methods or by an original method in the case of passivity. In a second part, the author reports the study of the influence of surface condition on different types of corrosion of stainless steels in chemical environments (corrosion in sulphuric acid, intergranular corrosion, stress corrosion cracking in magnesium chloride, pitting corrosion) and of high temperature oxidation (corrosion in pressurized water, oxidation in dry vapour or in carbon dioxide)

  14. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    Science.gov (United States)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  15. Prediction of the remaining lifetime of stainless steels under conditions of stress corrosion cracking

    International Nuclear Information System (INIS)

    Tandler, M.; Vehovar, L.; Dolecek, V.; Rotnik, U.

    2003-01-01

    The prediction of the lifetime of metal structures and equipment under conditions of stress corrosion is very complicated because of the complexity of this process of degradation. Recently a new method, based on the so-called corrosion elongation curves, has been found, which can be used to predict the time to failure under these conditions. By upgrading of these curves (and thus obtaining Upgraded Corrosion Elongation Curves - UCEC's) it has been possible to obtain a precise definition of the time needed for the initiation of the corrosion crack, and for its stable growth. It is upon this basis that diagrams for the prediction of remaining lifetime (DPRL's) have been developed. DPRL's can also be used to predict the values of various critical parameters which have to be achieved if a stress corrosion crack is to occur. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [de

  16. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Feilong [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); China Building Material Test & Certification Group Co. Ltd., Beijing 100024 (China); Ren, Shuai [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); Li, Zhong [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G6 (Canada); Liu, Zhiyong, E-mail: liuzhiyong7804@ustb.edu.cn [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); Li, Xiaogang; Du, Cuiwei [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China)

    2017-02-08

    The stress corrosion cracking (SCC) behavior of X70 steel in simulated shallow and deep sea environments was studied using potentiodynamic polarization measurement, a slow strain rate tensile (SSRT) test and scanning electron microscopy (SEM). The results indicate that the predominant cathodic reaction changes from an oxygen reduction reaction to the hydrogen evolution reaction as the dissolved oxygen (DO) content decreases. In the simulated deep sea environment, the SCC susceptibility of X70 steel decreased first, reached its lowest point at 15 MPa and then increased as the simulated sea hydrostatic pressure (HP) further increased. This is consistent with the regularity for the change of the cathodic hydrogen evolution reaction current density i{sub H} at E{sub corr}, which indicates that the HP may influence the SCC susceptibility of X70 steel by changing the permeated hydrogen concentration.

  17. Investigation into the stress corrosion cracking properties of AA2099, an aluminum-lithium-copper alloy

    Science.gov (United States)

    Padgett, Barbara Nicole

    Recently developed Al-Li-Cu alloys show great potential for implementation in the aerospace industry because of the attractive mix of good mechanical properties and low density. AA2099 is an Al-Li-Cu alloy with the following composition Al-2.69wt%Cu-1.8wt%Li-0.6wt%Zn-0.3wt%Mg-0.3wt%Mn-0.08wt%Zr. The environmental assisted cracking and localized corrosion behavior of the AA2099 was investigated in this thesis. The consequences of uncontrolled grain boundary precipitation via friction stir welding on the stress corrosion cracking (SCC) behavior of AA2099 was investigated first. Using constant extension rate testing, intergranular corrosion immersion experiments, and potentiodynamic scans, the heat-affected zone on the trailing edge of the weld (HTS) was determined to be most susceptible of the weld zones. The observed SCC behavior for the HTS was linked to the dissolution of an active phase (Al2CuLi, T1) populating the grain boundary. It should be stated that the SCC properties of AA2099 in the as-received condition were determined to be good. Focus was then given to the electrochemical behavior of precipitate phases that may occupy grain and sub-grain boundaries in AA2099. The grain boundary micro-chemistry and micro-electrochemistry have been alluded to within the literature as having significant influence on the SCC behavior of Al-Li-Cu alloys. Major precipitates found in this alloy system are T1 (Al 2CuLi), T2 (Al7.5Cu4Li), T B (Al6CuLi3), and theta (Al2 Cu). These phases were produced in bulk form so that the electrochemical nature of each phase could be characterized. It was determined T1 was most active electrochemically and theta was least. When present on grain boundaries in the alloy, electrochemical behavior of the individual precipitates aligned with the observed corrosion behavior of the alloy (e.g. TB was accompanied by general pitting corrosion and T 1 was accompanied by intergranular corrosion attack). In addition to the electrochemical behavior of

  18. Finite element analysis of the influence of elastic anisotropy on stress intensification at stress corrosion cracking initiation sites in fcc alloys

    Science.gov (United States)

    Meric de Bellefon, G.; van Duysen, J. C.

    2018-05-01

    A recent finite-element method (FEM)-based study from the present authors quantified the effect of elastic anisotropy of grains on stress intensification at potential intergranular stress corrosion cracking (IGSCC) initiation sites in austenitic stainless steels. In particular, it showed that the auxetic behavior of grains (negative Poisson's ratio) in some directions plays a very important role in IGSCC initiation, since it can induce local stress intensification factors of about 1.6. A similar effect is expected for other fcc alloys such as Ni-based alloys. The present article confirms those results and paves the way to the definition of an IGSCC susceptibility index by identifying grain configurations that are the most favorable for crack initiation. The index will rely on the probability to get those configurations on surface of specimens.

  19. The stress corrosion cracking of copper nuclear waste containers

    International Nuclear Information System (INIS)

    King, F.; Litke, C.D.; Ikeda, B.M.

    1999-01-01

    The extent of stress corrosion cracking (SCC) of copper nuclear waste containers is being predicted on the basis of a 'limited propagation' argument. In this argument, it is accepted that crack initiation may occur, but it is argued that the environmental conditions and material properties required for a through-wall crack to propagate will not be present. In this paper, the effect of one environmental parameter, the supply of oxidant (J ox ), on the crack growth rate is examined. Experiments have been conducted on two grades of Cu in NANO 2 environments using two loading techniques. The supply of oxidant has been varied either electrochemically in bulk solution using different applied current densities or by embedding the loaded test specimens in compacted buffer material containing O 2 as the oxidant. Measured and theoretical crack growth rates as a function of J ox are compared with the predicted oxidant flux to the containers in a disposal vault and an estimate of the maximum crack depth on a container obtained. (author)

  20. The stress corrosion cracking of copper nuclear waste containers

    International Nuclear Information System (INIS)

    King, F.; Litke, C.D.; Ikeda, B.M.

    1999-01-01

    The extent of stress corrosion cracking (SCC) of copper nuclear waste containers is being predicted on the basis of a limited propagation argument. In this argument, it is accepted that crack initiation may occur, but it is argued that the environmental conditions and material properties required for a through-wall crack to propagate will not be present. In this paper, the effect of one environmental parameter, the supply of oxidant (J OX ), on the crack growth rate is examined. Experiments have been conducted on two grades of Cu in NaNO 2 environments using two loading techniques. The supply of oxidant has been varied either electrochemically in bulk solution using different applied current densities or by embedding the loaded test specimens in compacted buffer material containing O 2 as the oxidant. Measured and theoretical crack growth rates as a function of J OX are compared with the predicted oxidant flux to the containers in a disposal vault and an estimate of the maximum crack depth on a container obtained

  1. Towards modeling intergranular stress corrosion cracks on grain size scales

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2012-01-01

    Highlights: ► Simulating the onset and propagation of intergranular cracking. ► Model based on the as-measured geometry and crystallographic orientations. ► Feasibility, performance of the proposed computational approach demonstrated. - Abstract: Development of advanced models at the grain size scales has so far been mostly limited to simulated geometry structures such as for example 3D Voronoi tessellations. The difficulty came from a lack of non-destructive techniques for measuring the microstructures. In this work a novel grain-size scale approach for modelling intergranular stress corrosion cracking based on as-measured 3D grain structure of a 400 μm stainless steel wire is presented. Grain topologies and crystallographic orientations are obtained using a diffraction contrast tomography, reconstructed within a detailed finite element model and coupled with advanced constitutive models for grains and grain boundaries. The wire is composed of 362 grains and over 1600 grain boundaries. Grain boundary damage initialization and early development is then explored for a number of cases, ranging from isotropic elasticity up to crystal plasticity constitutive laws for the bulk grain material. In all cases the grain boundaries are modeled using the cohesive zone approach. The feasibility of the approach is explored.

  2. Methodology for formulating predictions of stress corrosion cracking life

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Hattori, Shigeo; Shindo, Takenori; Kuniya, Jiro

    1994-01-01

    This paper presents a methodology for formulating predictions to evaluate the stress corrosion cracking (SCC) potential of each light-water reactor component, where an index is introduced as a life index or F index. The index denotes the SCC time ratio of a given SCC system to be evaluated against a reference SCC system. The life index is expressed by the products of several subdivided life indexes, which correspond to each SCC influencing factor. Each subdivided life index is constructed as a function containing the influencing factor variable, obtained by analyzing experimental SCC life data. The methodology was termed the subdivided factor method. Application of the life index to SCC life data and field data showed that it was effective for evaluating the SCC potential, i.e. the SCC life. Accordingly, the proposed methodology can potentially describe a phenomenon expressed by a function which consists of the variables of several influencing factors whether there are formulae which unite as a physical model or not. ((orig.))

  3. Stress corrosion cracking in superheater and reheater austenitic tubing

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, R. Barry [Structural Integrity Associates, Inc., Charlotte, NC (United States); Bursik, Albert [PowerPlant Chemistry GmbH, Neulussheim (Germany)

    2011-02-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: - There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. - There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This eights lesson is focused on Stress Corrosion Cracking in Superheater and Reheater Austenitic Tubing. (orig.)

  4. Stress corrosion cracking of 316 SS and Incoloy-800 in high temperature aqueous containing sulfate and chloride

    International Nuclear Information System (INIS)

    Zhang Weiguo; Lin Fangliang; Gao Fengqin; Zhou Hongyi; Cao Xiaoning

    1992-03-01

    The stress corrosion cracking (SCC) susceptibility of 316 stainless steel (SS) which was welded for primary pipe and Incoloy-800 (shot peening) for steam generator (SG) tube have been investigated by a slow strain rate test (SSRT) at a strain rate of 4.2 x 10 -6 /s. Tests were conducted at 315 C degree for 316 SS and 270 C degree for In-800 in the oxygenated simulated resin intrusion environment (acidic sulfate). Tests of the effect of combination of SO 4 2- and Cl - on SCC of Incoloy-800 were also carried out. The results indicate that Incoloy-800 is unsusceptible to SCC either in the environment with SO 4 2- (from a few ppm to 1000 ppm, pH 3 ∼ 4) or in the environment of combination of SO 4 2- (1000 ppm) and Cl - (from 2 to 1000 ppm). The 316 NG SS is susceptible to transgranular stress corrosion cracking (TGSCC) in the resin intrusion environment with SO 4 2- in high temperature water

  5. A new stress corrosion cracking model for Inconel 600 in PWR media

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A model of cracking in corrosion under stress, based on corrosion-plasticity interactions at cracking points, is proposed to describe the generally intergranular breakage of Inconel 600 in PWR medium. It is shown by calculation, and verified experimentally by observations in SEM, that a pseudo-intergranular breakage connected to the formation of micro facets in zigzags along the joints is possible, as well as a completely intergranular breakage. This allows us to assume that a continuity of mechanisms exists between the trans- and intergranular cracking by corrosion under material stress. (author)

  6. Electrochemical noise measurements techniques and the reversing dc potential drop method applied to stress corrosion essays

    International Nuclear Information System (INIS)

    Aly, Omar Fernandes; Andrade, Arnaldo Paes de; MattarNeto, Miguel; Aoki, Idalina Vieira

    2002-01-01

    This paper aims to collect information and to discuss the electrochemical noise measurements and the reversing dc potential drop method, applied to stress corrosion essays that can be used to evaluate the nucleation and the increase of stress corrosion cracking in Alloy 600 and/or Alloy 182 specimens from Angra I Nuclear Power Plant. Therefore we will pretend to establish a standard procedure to essays to be realized on the new autoclave equipment on the Laboratorio de Eletroquimica e Corrosao do Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo - Electrochemical and Corrosion Laboratory of the Chemical Engineering Department of Polytechnical School of Sao Paulo University, Brazil. (author)

  7. Stress corrosion cracking for 316 stainless steel clips in a condensate stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Al-Awar, A.; Aldajah, S.; Harhara, A. [Department of Mechanical Engineering, United Arab Emirates University, P. O. Box 17555 Al-AIn 17555 (United Arab Emirates)

    2011-09-15

    In one of the gas processing facilities in Abu Dhabi, UAE; a case of 316L stainless steel material failure occurred in the fractionating column due to stress cracking corrosion twice in a cycle of less than 2 years. This paper studies the stress corrosion cracking behavior of the 316L stainless steel in an accelerated corrosion environment and compares it with a higher corrosion resistant nickel alloy (Inconel 625). The experimental work was designed according to ASTM G36 standard, the samples were immersed in a boiling magnesium chloride medium which provided the accelerated corrosion environment and the tested samples were shaped into U-bend specimens as they underwent both plastic and elastic stresses. The specimens were then tested to determine the time required for cracks to initiate. The results of the experimental work showed that the main mode of failure was stress corrosion cracking initiated by the proven presence of chlorides, hydrogen sulfide, and water at elevated temperatures. Inconel 625 samples placed in the controlled environment showed better corrosion resistance as it took them an average of 56 days to initiate cracks, whereas it took an average of 24 days to initiate cracks in the stainless steel 316L samples. The scanning electron microscopy (SEM) micrographs showed that the cracks in the stainless steel 316L samples were longer, wider, and deeper compared to the cracks of Inconel 625. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Stress corrosion cracking behaviour of Alloy 600 in high temperature water

    International Nuclear Information System (INIS)

    Webb, G.L.; Burke, M.G.

    1995-01-01

    The stress corrosion cracking (SCC) susceptibility of Alloy 600 in deaerated water at 360 deg. C, as measured with statistically-loaded U-bend specimens, is dependent upon microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures, as determined by light optical metallography (LOM). In CWA tubing materials one crack dominated and grew to a large size that was observable by visual inspection. HWA materials with a low hot-working finishing temperature (below 925 deg. C) and final anneals at temperatures ranging from 1010 deg. C to 1065 deg. C developed both large cracks, similar to those found in CWA materials, and also small intergranular microcracks, which are detectable only by destructive metallographic examination. HWA materials with a high hot-working finishing temperature (above 980 deg. C) and high-temperature final anneal (above 1040 deg. C), with grain boundaries that are fully decorated, developed only microcracks, which were observed in all specimens examined. These materials developed no large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 deg. C for 7h), which reduced or eliminates SCC in Alloy 600, did not eliminate microcrack formation in the high temperature processed HWA materials. Detailed microstructural characterization using conventional metallographic and analytical electron microscopy (AEM) techniques was performed on selected materials to identify the factors responsible for the observed differences in cracking behaviour. 11 refs, 12 figs, 3 tabs

  9. Intercrystalline Stress Corrosion of Inconel 600 Inspection Tubes in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Groenwall, B; Ljungberg, L; Huebner, W; Stuart, W

    1966-08-15

    caustic solutions and in plain, pure high-temperature water. At this stage it seems most difficult to establish which of these cases is relevant to the Aagesta failure. This is especially true as both these conditions give the same type of intercrystalline cracks, The possible influence of cold work, i. e. residual stresses, originating from milling, indicate the necessity of more stringent delivery control. Also the probable effect of carbides and other precipitates should be avoided by selecting a low carbon, pure iron-nickel-chromium alloy, preferably vacuum-melted. The failures encountered show that Inconel 600 under certain conditions may be susceptible to inter-crystalline stress corrosion cracking in alkaline high-temperature water. It remains to be shown if a satisfactory performance of Inconel 600 for long operating periods can be obtained under similar conditions in water-cooled reactors by proper manufacturing control and judicious design, omitting high stresses and crevices.

  10. Intercrystalline Stress Corrosion of Inconel 600 Inspection Tubes in the Aagesta Reactor

    International Nuclear Information System (INIS)

    Groenwall, B.; Ljungberg, L.; Huebner, W.; Stuart, W.

    1966-08-01

    solutions and in plain, pure high-temperature water. At this stage it seems most difficult to establish which of these cases is relevant to the Aagesta failure. This is especially true as both these conditions give the same type of intercrystalline cracks, The possible influence of cold work, i. e. residual stresses, originating from milling, indicate the necessity of more stringent delivery control. Also the probable effect of carbides and other precipitates should be avoided by selecting a low carbon, pure iron-nickel-chromium alloy, preferably vacuum-melted. The failures encountered show that Inconel 600 under certain conditions may be susceptible to inter-crystalline stress corrosion cracking in alkaline high-temperature water. It remains to be shown if a satisfactory performance of Inconel 600 for long operating periods can be obtained under similar conditions in water-cooled reactors by proper manufacturing control and judicious design, omitting high stresses and crevices

  11. Corrosion susceptibility study of candidate pin materials for ALTC (active lithium/thionyl chloride) batteries. [Active lithium/thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Bovard, F.S.; Cieslak, W.R.

    1987-09-01

    (ALTC = active lithium/thionyl chloride.) We have investigated the corrosion susceptibilities of eight alternate battery pin materials in 1.5M LiAlCl/sub 4//SOCl/sub 2/ electrolyte using ampule exposure and electrochemical tests. The thermal expansion coefficients of these candidate materials are expected to match Sandia-developed Li-corrosion resistant glasses. The corrosion resistances of the candidate materials, which included three stainless steels (15-5 PH, 17-4 PH, and 446), three Fe-Ni glass sealing alloys (Kovar, Alloy 52, and Niromet 426), a Ni-based alloy (Hastelloy B-2) and a zirconium-based alloy (Zircaloy), were compared to the reference materials Ni and 316L SS. All of the candidate materials showed some evidence of corrosion and, therefore, did not perform as well as the reference materials. The Hastelloy B-2 and Zircaloy are clearly unacceptable materials for this application. Of the remaining alternate materials, the 446 SS and Alloy 52 are the most promising candidates.

  12. Modeling of primary water stress corrosion cracking at control rod drive mechanism nozzles of pressurized water reactors

    International Nuclear Information System (INIS)

    Aly, Omar Fernandes

    2006-01-01

    One of the main failure mechanisms that cause risks to pressurized water reactors is the primary water stress corrosion cracking (PWSCC) occurring in alloys. It can occurs, besides another places, at the control reactor displacement mechanism nozzles. It is caused by the joint effect of tensile stress, temperature, susceptible metallurgical microstructure and environmental conditions of the primary water. These cracks can cause accidents that reduce nuclear safety by blocking the rod's displacement and may cause leakage of primary water, reducing the reactor's life. In this work it is proposed a study of the existing models and a modeling proposal to primary water stress corrosion cracking in these nozzles in a nickel based Alloy 600. It is been superposed electrochemical and fracture mechanics models, and validated using experimental and literature data. The experimental data were obtained at CDTN-Brazilian Nuclear Technology Development Center, in a recent installed slow strain rate testing equipment. In the literature it is found a diagram that indicates a thermodynamic condition for the occurrence of some PWSCC sub modes in Alloy 600: it was used potential x pH diagrams (Pourbaix diagrams), for Alloy 600 in high temperature primary water (300 deg C till 350 deg C). Over it, were located the PWSCC sub modes, using experimental data. It was added a third parameter called 'stress corrosion strength fraction'. However, it is possible to superpose to this diagram, other parameters expressing PWSCC initiation or growth kinetics from other models. Here is the proposition of the original contribution of this work: from an original experimental condition of potential versus pH, it was superposed, an empiric-comparative, a semi-empiric-probabilistic, an initiation time, and a strain rate damage models, to quantify respectively the PWSCC susceptibility, the failure time, and in the two lasts, the initiation time of stress corrosion cracking. It was modeling from our

  13. Implications of recent developments in the plastic fracture mechanics field to the PCI stress corrosion problem

    International Nuclear Information System (INIS)

    Smith, E.

    1980-01-01

    Fractographic observations on irradiated Zircaloy cladding stress corrosion fracture surfaces are considered against the background of recent developments in the plastic fracture mechanics field. Dimples have been observed on the fracture surfaces of failed cladding, even though the cracks in metallographic sections are tight, i.e., crack propagation is associated with a low crack tip opening angle. This result is interpreted as providing evidence for an environmentally assisted ductile mode of fracture. The presence of this fracture mode forms the basis of an argument, which adds further support for the view that power ramp stress corrosion cladding failures are caused by stress concentrations that produce stress gradients in the cladding. (orig.)

  14. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  15. Determination of Stress-Corrosion Cracking in Aluminum-Lithium Alloy ML377

    Science.gov (United States)

    Valek, Bryan C.

    1995-01-01

    The use of aluminum-lithium alloys for aerospace applications is currently being studied at NASA Langley Research Center's Metallic Materials Branch. The alloys in question will operate under stress in a corrosive environment. These conditions are ideal for the phenomena of Stress-Corrosion Cracking (SCC) to occur. The test procedure for SCC calls for alternate immersion and breaking load tests. These tests were optimized for the lab equipment and materials available in the Light Alloy lab. Al-Li alloy ML377 specimens were then subjected to alternate immersion and breaking load tests to determine residual strength and resistance to SCC. Corrosion morphology and microstructure were examined under magnification. Data shows that ML377 is highly resistant to stress-corrosion cracking.

  16. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.)

  17. The Influence Of Modified Water Chemistries On Metal Oxide Films, Activity Build-Up And Stress Corrosion Cracking Of Structural Materials In Nuclear Power Plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1998-07-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of activated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (author)

  18. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for {sup 60}Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.) 127 refs.

  19. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    Science.gov (United States)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  20. Correlation between oxidation and stress corrosion cracking of U-4.5 wt.% Nb

    International Nuclear Information System (INIS)

    Magnani, N.J.; Holloway, P.H.

    1976-01-01

    To investigate the mechanisms causing stress corrosion cracking on uranium alloys, the kinetics of crack propagation and oxide film growth for U-4.5 percent Nb were investigated at temperatures between 0 0 C and 200 0 C in oxygen, water vapor and oxygen-water vapor mixtures. Three regions of crack velocity rate versus stress intensity were observed in laboratory air. At low stress intensities (but above an effective K/sub ISCC/ of 22 MN/m/sup 3 / 2 /) crack velocity varied approximately as K 70 . In an intermediate stress intensity region (region II) the crack velocity was dependent upon K 4 . In the high stress intensity region, mechanical overloading was observed and crack velocities varied approximately as K 12 . Both cracking (region II) and oxidation rates were characterized by an activation energy of 7 kcal/mole. For stress corrosion cracking it was shown that oxygen was the primary stress corrodent, but a synergistic effect upon crack propagation rates was observed for oxygen-water vapor mixtures. Crack velocities were dependent upon the pressure of oxygen (P/sub O 2 //sup 1 / 3 /) and water vapor, while the oxidation rate was essentially independent of the pressure of these species. Stress sorption and oxide film formation stress corrosion cracking mechanisms were considered and reconciled with the stress corrosion and oxidation data

  1. Some remarks on the analysis of stress-corrosion cracking of austenitic stainless-steel cladding

    International Nuclear Information System (INIS)

    Kupka, I.; Nrkous, P.

    1977-01-01

    Stress-corrosion cracking is greatly influenced by tensile stresses in the material. The occurrence of tensile stresses in the material under consideration results from residual stresses brought about during manufacturing processes and from stress caused by operation. In the case of an austenitic steel cladding the residual stresses arise in the course of welding and thermal treatment. The technique of residual stress measurement in austenitic cladding materials is described and the results are given. Both the longitudinal and transverse components of the stresses show in all cases similar behaviour not only prior to, but also after heat treatment. (J.B.)

  2. Quantification of Applied Stresses of C-Ring Specimens for Stress Corrosion Cracking Tests

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sun Jae; Rhee, Chang Kyu; Kuk, Il Hiun; Choi, Jong Ho

    1997-01-01

    For comparing their resistances for stress-corrosion cracking(SCC) in the K600-MA, K690-MA, and K600-TT tubes, C-ring specimens were fabricated with the various thermal-treatments to control the distributions of the precipitates like Cr-carbides. The bending stresses were analyzed to determine the amounts to make the stress quantitatively to all the C-ring samples, and then the stresses were calculated with the relation to the outer diameter(O.D) deflection(δ) of the C-rings. To measure accurately the bending strains of the C-ring specimens, the strain gauges were used and the compression test was also carried out. In the elastic region, the stresses in both the transverse and the circumferential directions were different with the locations of the strain gauges as attached at α= 30 .deg., 45 .deg., and 90 .deg. to the principal stress direction, but those in the longitudinal direction were independent of their attached locations. Calculated stresses from the strains obtained using the strain gauges were well agreed with the theoretical. In the plastic region over δ=1.0mm, the stresses for the TT tubes showed lower values of about 400MPa than those for the MA tubes. However, the stresses among the TT tubes showed almost the similar values in this region. Therefore, the states of the stresses applied to the C-ring specimens would be different with the material conditions, i.e, the chemical compositions, the thermal treatments such as MA and TT

  3. Combined Effect of Alternating Current Interference and Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Environment

    Directory of Open Access Journals (Sweden)

    Liwei Wang

    2018-03-01

    Full Text Available Influence of alternating current (AC on pitting corrosion and stress corrosion cracking (SCC behavior of X70 pipeline steel in the near-neutral pH environment under cathodic protection (CP was investigated. Both corrosion and SCC are inhibited by −0.775 VSCE CP without AC interference. With the superimposition of AC current (1–10 mA/cm2, the direct current (DC potential shifts negatively under the CP of −0.775 VSCE and the cathodic DC current decreases and shifts to the anodic direction. Under the CP potential of −0.95 VSCE and −1.2 VSCE, the applied AC current promotes the cathodic reaction and leads to the positive shift of DC potential and increase of cathodic current. Local anodic dissolution occurs attributing to the generated anodic current transients in the positive half-cycle of the AC current, resulting in the initiation of corrosion pits (0.6–2 μm in diameter. AC enhances the SCC susceptibility of X70 steel under −0.775 VSCE CP, attributing to the promotion of anodic dissolution and hydrogen evolution. Even an AC current as low as 1 mA/cm2 can enhance the SCC susceptibility.

  4. Review of provisions on corrosion fatigue and stress corrosion in WWER and Western LWR Codes and Standards

    International Nuclear Information System (INIS)

    Buckthorpe, D.; Filatov, V.; Tashkinov, A.; Evropin, S.V.; Matocha, K.; Guinovart, J.

    2003-01-01

    Results are presented from a collaborative project performed on behalf of the European Commission, Working Group Codes and Standards. The work covered the contents of current codes and standards, plant experience and R and D results. Current fatigue design rules use S-N curves based on tests in air. Although WWER and LWR design curves are often similar they are derived, presented and used in different ways and it is neither convenient nor appropriate to harmonise them. Similarly the fatigue crack growth laws used in the various design and in-service inspection rules differ significantly with respect to both growth rates in air and the effects of water reactor environments. Harmonised approaches to the effects of WWER and LWR environments are possible based on results from R and D programmes carried out over the last decade. For carbon and low alloy steels a consistent approach to both crack initiation and growth can be formulated based on the superposition of environmentally assisted cracking effects on the fatigue crack development. The approach indicates that effects of the water environment are minimal given appropriate control of the oxygen content of the water and/or the sulphur content of the steel. For austenitic stainless steels a different mechanisms may apply and a harmonised approach is possible at present only for S-N curves. Although substantial progress has been made with respect to corrosion fatigue, more data and a clearer understanding are required in order to write code provisions particularly in the area of high cycle fatigue. Reactor operation experience shows stress corrosion cracking of austenitic steels is the most common cause of failure. These failures are associated with high residual stresses combined with high levels of dissolved oxygen or the presence of contaminants. For primary circuit internals there is a potential threat to integrity from irradiated assisted stress corrosion cracking. Design and in-service inspection rules do not at

  5. Stress corrosion cracking in 3,5 NiCrMoV steel in a 403 K potential-PH diagram

    International Nuclear Information System (INIS)

    Hitomi, Itoh; Takashi, Momoo

    2001-01-01

    3,5 NiCrMoV steel is used in low-pressure turbine rotors and discs. It has been pointed out that intergranular stress corrosion cracking may occur in this material in the wet region at temperatures of about 400 K. Accordingly, the authors focused on the environmental conditions under which stress corrosion cracking (SCC) occurs. A potential-pH diagram was used to investigate the region in which SCC occurs in the high strength materials that are particularly susceptible to SCC. The investigation found that SCC is initiated in this material not only in the high caustic region but in the neutral region as well. The investigation also found that initiation and propagation were accelerated in dissolved oxygen environments with increased chemical potential in the neutral region. Since careful observation of the starting point of cracks has shown that corrosion pits trigger SCC, subsequent immersion tests under constant potential were conducted. The results showed that corrosion pits are generated at the high potential range. These results led to the development of an acceleration test environment for laboratory to determine the susceptibility of SCC in field turbine disc and rotor materials. (author)

  6. Propagation of stress corrosion cracks in alpha-brasses

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, Dennis Vinton [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1981-01-01

    Transgranular and intergranular stress corrosion cracks were investigated in alpha-brasses in a tarnishing ammoniacal solution. Surface observation indicated that the transgranular cracks propagated discontinuously by the sudden appearance of a fine crack extending several microns ahead of the previous crack tip, often associated with the detection of a discrete acoustic emission (AE). By periodically increasing the deflection, crack front markings were produced on the resulting fracture surfaces, showing that the discontinuous propagation of the crack trace was representative of the subsurface cracking. The intergranular crack trace appeared to propagate continuously at a relatively blunt crack tip and was not associated with discrete AE. Under load pulsing tests with a time between pulses, Δt greater than or equal to 3 s, the transgranular fracture surfaces always exhibited crack front markings which corresponded with the applied pulses. The spacing between crack front markings, Δx, decreased linearly with Δt. With Δt less than or equal to 1.5 s, the crack front markings were in a one-to-one correspondence with applied pulses only at relatively long crack lengths. In this case, Δx = Δx* which approached a limiting value of 1 μm. No crack front markings were observed on intergranular fracture surfaces produced during these tests. It is concluded that transgranular cracking occurs by discontinuous mechanical fracture of an embrittled region around the crack tip, while intergranular cracking results from a different mechanism with cracking occurring via the film-rupture mechanism.

  7. Ultrasonic inspection reliability for intergranular stress corrosion cracks

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, P G; Taylor, T T; Spanner, J C; Doctor, S R; Deffenbaugh, J D [Pacific Northwest Lab., Richland, WA (USA)

    1990-07-01

    A pipe inspection round robin entitled Mini-Round Robin'' was conducted at Pacific Northwest Laboratory from May 1985 through October 1985. The research was sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research under a program entitled Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors.'' The Mini-Round Robin (MRR) measured the intergranular stress corrosion (GSC) crack detection and sizing capabilities of inservice inspection (ISI) inspectors that had passed the requirements of IEB 83-02 and the Electric Power Research Institute (EPRI) sizing training course. The MRR data base was compared with an earlier Pipe Inspection Round Robin (PIRR) that had measured the performance of inservice inspection prior to 1982. Comparison of the MRR and PIRR data bases indicates no significant change in the inspection capability for detecting IGSCC. Also, when comparing detection of long and short cracks, no difference in detection capability was measured. An improvement in the ability to differentiate between shallow and deeper IGSCC was found when the MRR sizing capability was compared with an earlier sizing round robin conducted by the EPRI. In addition to the pipe inspection round robin, a human factors study was conducted in conjunction with the Mini-Round Robin. The most important result of the human factors study is that the Relative Operating Characteristics (ROC) curves provide a better methodology for describing inspector performance than only probability of detection (POD) or single-point crack/no crack data. 6 refs., 55 figs., 18 tabs.

  8. Standard practice for preparation and use of Bent-Beam stress-corrosion test specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers procedures for designing, preparing, and using bent-beam stress-corrosion specimens. 1.2 Different specimen configurations are given for use with different product forms, such as sheet or plate. This practice applicable to specimens of any metal that are stressed to levels less than the elastic limit of the material, and therefore, the applied stress can be accurately calculated or measured (see Note 1). Stress calculations by this practice are not applicable to plastically stressed specimens. Note 1—It is the nature of these practices that only the applied stress can be calculated. Since stress-corrosion cracking is a function of the total stress, for critical applications and proper interpretation of results, the residual stress (before applying external stress) or the total elastic stress (after applying external stress) should be determined by appropriate nondestructive methods, such as X-ray diffraction (1). 1.3 Test procedures are given for stress-corrosion testing by ex...

  9. Stress field determination in an alloy 600 stress corrosion crack specimen

    International Nuclear Information System (INIS)

    Rassineux, B.; Labbe, T.

    1995-05-01

    In the context of EDF studies on stress corrosion cracking rates in the Alloy 600 steam generators tubes, we studied the influence of strain hardened surface layers on the different stages of cracking for a tensile smooth specimen (TLT). The stress field was notably assessed to try and explain the slow/rapid-propagation change observed beyond the strain hardened layers. The main difficulty is to simulate in a finite element model the inner and outer surfaces of these strain hardened layers, produced by the final manufacturing stages of SG tubes which have not been heat treated. In the model, the strain hardening is introduced by simulating a multi-layer material. Residual stresses are simulated by an equivalent fictitious thermomechanical calculation, realigned with respect to X-ray measurements. The strain hardening introduction method was validated by an analytical calculation giving identical results. Stress field evolution induced by specimen tensile loading were studied using an elastoplastic 2D finite element calculations performed with the Aster Code. The stress profile obtained after load at 660 MPa shows no stress discontinuity at the boundary between the strain hardened layer and the rest of the tube. So we propose that a complementary calculation be performed, taking into account the multi-cracked state of the strain hardened zones by means of a damage variable. In fact, this state could induce stress redistribution in the un-cracked area, which would perhaps provide an explanation of the crack-ground rate change beyond the strain hardened zone. The calculations also evidence the harmful effects of plastic strains on a strain hardened layer due to the initial state of the tube (not heat-treated), to grit blasting or to shot peening. The initial compressive stress condition of this surface layer becomes, after plastic strain, a tensile stress condition. These results are confirmed by laboratory test. (author). 10 refs., 18 figs., 9 tabs., 2 appends

  10. FY17 Status Report: Research on Stress Corrosion Cracking of SNF Interim Storage Canisters.

    Energy Technology Data Exchange (ETDEWEB)

    Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alexander, Christopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This progress report describes work done in FY17 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY17 refined our understanding of the chemical and physical environment on canister surfaces, and evaluated the relationship between chemical and physical environment and the form and extent of corrosion that occurs. The SNL corrosion work focused predominantly on pitting corrosion, a necessary precursor for SCC, and process of pit-to-crack transition; it has been carried out in collaboration with university partners. SNL is collaborating with several university partners to investigate SCC crack growth experimentally, providing guidance for design and interpretation of experiments.

  11. Investigation of Stress Concentration and Casing Strength Degradation Caused by Corrosion Pits

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2016-01-01

    Full Text Available Downhole casing and tubing are subjected to corrosion in many cases because of the exposure to corrosive environment. A more serious problem is that pitting corrosion occurs in the casing inner surface. Meanwhile, downhole strings are subjected to various forms of mechanical loads, for example, internal pressure load, external collapse load, or both. These loads acting on the corrosion pits will cause stress concentration and degrade the casing strength. Thus, it is essential to evaluate the stress concentration degree reasonably. The SCF (stress concentration factor is usually used to characterize the degree of stress concentration induced by corrosion pits. This paper presented a comparison on the SCFs regarding the analytical method for a single pit and experimental method for double pits. The results show that the SCF of a single pit depends mainly on the depth of the corrosion pit; however, the SCF of the double pits strongly depends on the pits distance. A correction factor of 1.3 was recommended in the double pits SCF prediction model.

  12. An analysis of static loading results on slotted ring samples to allow for further investigation of stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    Stress corrosion cracking can cause failures of CANDU Zircaloy-4 fuel sheathing. A series of static loading tests were performed on slotted ring samples in support of ongoing efforts to analyze the effects of iodine concentration, temperature, and stress levels on the corrosion of Zircaloy-4. The corrosive degradation of Zircaloy-4 was evaluated using deflection measurements. A regression analysis determined that iodine concentration and temperature have had a linear effect on deflection results thus far, while the stress level has not. (author)

  13. The importance of the strain rate and creep on the stress corrosion cracking mechanisms and models

    International Nuclear Information System (INIS)

    Aly, Omar F.; Mattar Neto, Miguel; Schvartzman, Monica M.A.M.

    2011-01-01

    Stress corrosion cracking is a nuclear, power, petrochemical, and other industries equipment and components (like pressure vessels, nozzles, tubes, accessories) life degradation mode, involving fragile fracture. The stress corrosion cracking failures can produce serious accidents, and incidents which can put on risk the safety, reliability, and efficiency of many plants. These failures are of very complex prediction. The stress corrosion cracking mechanisms are based on three kinds of factors: microstructural, mechanical and environmental. Concerning the mechanical factors, various authors prefer to consider the crack tip strain rate rather than stress, as a decisive factor which contributes to the process: this parameter is directly influenced by the creep strain rate of the material. Based on two KAPL-Knolls Atomic Power Laboratory experimental studies in SSRT (slow strain rate test) and CL (constant load) test, for prediction of primary water stress corrosion cracking in nickel based alloys, it has done a data compilation of the film rupture mechanism parameters, for modeling PWSCC of Alloy 600 and discussed the importance of the strain rate and the creep on the stress corrosion cracking mechanisms and models. As derived from this study, a simple theoretical model is proposed, and it is showed that the crack growth rate estimated with Brazilian tests results with Alloy 600 in SSRT, are according with the KAPL ones and other published literature. (author)

  14. Comparative Investigations on the Stress Corrosion Behavior of α -Al Bronze and α Brass in Sodium Nitrite

    International Nuclear Information System (INIS)

    Ashour, E.A.

    1995-01-01

    The stress corrosion behavior of α- Aluminum bronze (copper [Cu] -7% Al) (UNS C 61400) has been investigated as compared to α- brass under slow strain in sodium nitrite solutions under open - circuit and different anodic potentials. While α- brass was quite susceptible to SCC, α- Al bronze was found to be resistant to SCC. The ratios of time to failure in solution to that in air and of maximum stress in solution to that in air decreased sharply with increase of anodic potential for α-brass but remained virtually constant for α- Al bronze. The mode of failure was predominantly ductile for α- Al bronze under various conditions. The stress corrosion cracking of α - brass has been shown to be promoted by relatively concentrated Na N O 2 and high anodic potentials. Previous explanations for the change of the mode of failure from intergranular at open circuit potential (OCP) to transgranular cracking under anodic potential were confirmed. The bronzes resistance to SCC was attributed to the presence of Al 2 O 3 on the alloy surface. 10 Figs

  15. A fundamental study on stress corrosion cracking of SUS 304 steel in high temperature water

    International Nuclear Information System (INIS)

    Mukai, Yoshihiko; Murata, Masato

    1985-01-01

    SCC susceptibility of sensitized SUS 304 stainless steel in high temperature water was studied. The results obtained are as follows. SCC susceptibility was increased by adding crevices to the tensile specimen surface, for the corrodent became acidified by hydrolysis in crevices. SCC susceptibility was best fit to TTS curve obtained by EPR test, not by other corrosion tests such as Strauss test or the grain boundary corrosion test in high temperature water. In addition, by giving a simulated weld thermal cycle before the sensitizing heat treatment, the sensitization was clearly promoted. This seemed to be caused by the reason that nucleation of carbide occured in the simulated weld thermal cycle process and it promoted the carbide growth and the formation of Cr poor layer around carbide in the subsequent sensitization process. (author)

  16. Candidate hippocampal biomarkers of susceptibility and resilience to stress in a rat model of depression

    DEFF Research Database (Denmark)

    Henningsen, Kim; Palmfeldt, Johan; Christiansen, Sofie Friis

    2012-01-01

    -scale proteomics was used to map hippocampal protein alterations in different stress states. Membrane proteins were successfully captured by two-phase separation and peptide based proteomics. Using iTRAQ labeling coupled with mass spectrometry, more than 2000 proteins were quantified and 73 proteins were found......Susceptibility to stress plays a crucial role in the development of psychiatric disorders such as unipolar depression and post-traumatic stress disorder. In the present study the chronic mild stress rat model of depression was used to reveal stress-susceptible and stress-resilient rats. Large...... to be differentially expressed. Stress susceptibility was associated with increased expression of a sodium-channel protein (SCN9A) currently investigated as a potential antidepressant target. Differential protein profiling also indicated stress susceptibility to be associated with deficits in synaptic vesicle release...

  17. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    International Nuclear Information System (INIS)

    Meng, F.; Xu, X.; Liu, X.; Wang, J.

    2014-01-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  18. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    Energy Technology Data Exchange (ETDEWEB)

    Meng, F.; Xu, X.; Liu, X. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Wang, J. [Chinese Academy of Sciences, Institute of Metal Research, Shenyang (China)

    2014-07-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  19. The effects of strain induced martensite on stress corrosion cracking in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Lee, W. S.; Kwon, S. I.

    1989-01-01

    The effects of strain induced martensite on stress corrosion cracking behavior in AISI 304 stainless steel in boiling 42 wt% MgCl 2 solution were investigated using monotonic SSRT and cyclic SSRT with R=0.1 stress ratio. As the amount of pre-strain increased, the failure time of the specimens in monotonic SSRT test decreased independent of the existence of strain induced martensite. The strain induced martensite seems to promote the crack initiation but to retard the crack propagation during stress corrosion cracking

  20. Design and fabrication of an apparatus to study stress corrosion cracking

    International Nuclear Information System (INIS)

    Buscarlet, Carol

    1977-01-01

    In this research thesis, the author first gives a large overview of tests methods of stress corrosion cracking: definition and generalities, stress corrosion cracking in the laboratory (test methods with imposed deformation, load or strain rate, theories of hydrogen embrittlement, of adsorption, of film breaking, and electrochemical theories), stress corrosion cracking in alkaline environment (in light water reactors, of austenitic stainless steels), and conventional tests on polycrystals and monocrystals of stainless steels in sodium hydroxide. The next parts address the core of this research, i.e. the design of an autoclave containing a tensile apparatus, the fabrication of this apparatus, the stress application device, the sample environment, pressurization, control and command, preliminary tests in a melt salt, and the first cracking tests [fr

  1. Elastic and plastic strains and the stress corrosion cracking of austenitic stainless steels. Final report

    International Nuclear Information System (INIS)

    Vaccaro, F.P.; Hehemann, R.F.; Troiano, A.R.

    1979-08-01

    The influence of elastic (stress) and plastic (cold work) strains on the stress corrosion cracking of a transformable austenitic stainless steel was studied in several aqueous chloride environments. Initial polarization behavior was active for all deformation conditions as well as for the annealed state. Visual observation, potential-time, and current-time curves indicated the development of a pseudo-passive (flawed) film leading to localized corrosion, occluded cells and SCC. SCC did not initiate during active corrosion regardless of the state of strain unless severe low temperature deformation produced a high percentage of martensite. Both elastic and plastic deformation increased the sensitivity to SCC when examined on the basis of percent yield strength. The corrosion potential, the critical cracking potential, and the potential at which the current changes from anodic to cathodic were essentially unaffected by deformation. It is apparent that the basic electrochemical parameters are independent of the bulk properties of the alloy and totally controlled by surface phenomena

  2. Numerical Investigation on Stress Concentration of Tension Steel Bars with One or Two Corrosion Pits

    Directory of Open Access Journals (Sweden)

    Jian Hou

    2015-01-01

    Full Text Available Pitting corrosion has been observed in steel bars of existing reinforced concrete (RC structures in different erosion environments and has been identified as a potential origin for fatigue crack nucleation. In the present study, under uniaxial tension loading, stress distribution in the steel bars with one or two semiellipsoidal corrosion pits has systematically been investigated by conducting a series of three-dimensional semiellipsoidal pitted models. Based on the finite element analyses, it is shown that stress concentration factor (SCF increases linearly with increasing pit aspect ratio (a/b and increases nonlinearly with increasing pit relative depth (a/R for single corrosion pit problem. For double corrosion pits problem, the SCF decreases nonlinearly with increasing angle of two transverse pits (θ. The interaction of two longitudinal pits can be ignored in the calculation of SCF even if the distance of two pits (d is very small.

  3. Stress corrosion cracking of X80 pipeline steel exposed to high pH solutions with different concentrations of bicarbonate

    Science.gov (United States)

    Fan, Lin; Du, Cui-wei; Liu, Zhi-yong; Li, Xiao-gang

    2013-07-01

    Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HCO{3/-} at a passive potential of -0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HCO{3/-} were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhanced susceptibility to SCC with the concentration of HCO{3/-} increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO{3/-} not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO{3/-} for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.

  4. ''C-ring'' stress corrosion cracking scoping experiment for Zircaloy spent fuel cladding

    International Nuclear Information System (INIS)

    Smith, H.D.

    1986-03-01

    This document describes the purpose and execution of the stress corrosion cracking scoping experiment using ''C-ring'' cladding specimens. The design and operation of the ''C-ring'' stressing apparatus is described and discussed. The experimental procedures and post-experiment sample evaluation are described

  5. Contribution to surface physicochemical factors to stress corrosion resistance in stainless steels

    International Nuclear Information System (INIS)

    Gras, Jean-Marie

    1974-01-01

    The author of this research thesis first presents and discusses the various aspects of stress corrosion cracking of Fe-Cr-Ni alloys of high purity: experimental conditions (alloy elaboration, sample preparation), corrosion results (Schaeffer diagram, crack morphology, intergranular corrosion), influence of addition elements in ferritic alloys. He reports an electrochemical study of stainless steels in magnesium chloride (experimental conditions, influence of metallurgic and environmental parameters on polarization resistance, current-voltage curves), and an analytical study of layers formed in the magnesium chloride

  6. Metallurgical and mechanical parameters controlling alloy 718 stress corrosion cracking resistance in PWR primary water

    International Nuclear Information System (INIS)

    Deleume, J.

    2007-11-01

    Improving the performance and reliability of the fuel assemblies of the pressurized water reactors requires having a perfect knowledge of the operating margins of both the components and the materials. The choice of alloy 718 as reference material for this study is justified by the industrial will to identify the first order parameters controlling the excellent resistance of this alloy to Stress Corrosion Cracking (SCC). For this purpose, a specific slow strain rate (SSR) crack initiation test using tensile specimen with a V-shaped hump in the middle of the gauge length was developed and modeled. The selectivity of such SSR tests in simulated PWR primary water at 350 C was clearly established by characterizing the SCC resistance of nine alloy 718 thin strip heats. Regardless of their origin and in spite of a similar thermo-mechanical history, they did not exhibit the same susceptibility to SCC crack initiation. All the characterized alloy 718 heats develop oxide scale of similar nature for various exposure times to PWR primary medium in the temperature range [320 C - 360 C]. δ phase precipitation has no impact on alloy 718 SCC initiation behavior when exposed to PWR primary water, contrary to interstitial contents and the triggering of plastic instabilities (PLC phenomenon). (author)

  7. Stress corrosion cracking of Alloy 600 in primary water of PWR: study of chromium diffusion

    International Nuclear Information System (INIS)

    Chetroiu, Bogdan-Adrian

    2015-01-01

    Alloy 600 (Ni-15%Cr-10%Fe) is known to be susceptible to Stress Corrosion Cracking (SCC) in primary water of Pressurized Water Reactors (PWR). Recent studies have shown that chromium diffusion is a controlling rate step in the comprehension of SCC mechanism. In order to improve the understanding and the modelling of SCC of Alloy 600 in PWR primary medium the aim of this study was to collect data on kinetics diffusion of chromium. Volume and grain boundary diffusion of chromium in pure nickel and Alloy 600 (mono and poly-crystals) has been measured in the temperature range 678 K to 1060 K by using Secondary Ions Mass Spectroscopy (SIMS) and Glow Discharge-Optical Spectrometry (GD-OES) techniques. A particular emphasis has been dedicated to the influence of plastic deformation on chromium diffusion in nickel single crystals (orientated <101>) for different metallurgical states. The experimental tests were carried out in order to compare the chromium diffusion coefficients in free lattice (not deformed), in pre-hardening specimens (4% and 20%) and in dynamic deformed tensile specimens at 773 K. It has been found that chromium diffusivity measured in dynamic plastic deformed creep specimens were six orders of magnitude greater than those obtained in not deformed or pre-hardening specimens. The enhancement of chromium diffusivity can be attributed to the presence of moving dislocations generated during plastic deformation. (author)

  8. SCAP: the Nea project on stress corrosion cracking and cable ageing

    International Nuclear Information System (INIS)

    Yamamoto, A.; Huerta, A.; Gott, K.; Koshy, T.

    2007-01-01

    Two subjects - stress corrosion cracking (SCC) and degradation of cable insulation - were selected as the focus of the SCC and Cable Ageing Project (SCAP) due to their relevance for plant ageing assessments and their implication on inspection practices. Fourteen NEA member countries agreed to contribute to the project. The main SCAP objectives are to: establish a complete database with regard to major ageing phenomena for SCC and degradation of cable insulation through collective efforts by OECD/NEA members; establish a knowledge base in these areas by compiling and evaluating the collected data and information systematically; perform an assessment of the data and identify the basis for commendable practices which would help regulators and operators to enhance ageing management. The aim of the knowledge base is to provide a state-of-the-art description of the degradation mechanisms, the main influencing factors, the most susceptible materials and locations, and common strategies available for mitigation and repair. The SCAP project is currently in the development phase, defining and refining the database performance requirements, data format and coding guidelines. The project is scheduled to last four years. It is anticipated that the database definition and the collection of data from member countries will take approximately two years. The subsequent assessment and the commendable practices report are expected to take one year each

  9. An accurately controllable imitative stress corrosion cracking for electromagnetic nondestructive testing and evaluations

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Uchimoto, Tetsuya; Takagi, Toshiyuki; Hashizume, Hidetoshi

    2012-01-01

    Highlights: ► We propose a method to simulate stress corrosion cracking. ► The method offers nondestructive signals similar to those of actual cracking. ► Visual and eddy current examinations validate the method. - Abstract: This study proposes a simple and cost-effective approach to fabricate an artificial flaw that is identical to stress corrosion cracking especially from the viewpoint of electromagnetic nondestructive evaluations. The key idea of the approach is to embed a partially-bonded region inside a material by bonding together surfaces that have grooves. The region is regarded as an area of uniform non-zero conductivity from an electromagnetic nondestructive point of view, and thus simulates the characteristics of stress corrosion cracking. Since the grooves are introduced using electro-discharge machining, one can control the profile of the imitative stress corrosion cracking accurately. After numerical simulation to evaluate the spatial resolution of conventional eddy current testing, six specimens made of type 316L austenitic stainless steel were fabricated on the basis of the results of the simulations. Visual and eddy current examinations were carried out to demonstrate that the artificial flaws well simulated the characteristics of actual stress corrosion cracking. Subsequent destructive test confirmed that the bonding did not change the depth profiles of the artificial flaw.

  10. Stress-corrosion cracks behavior under underground disposal environment of radioactive wastes

    International Nuclear Information System (INIS)

    Isei, Takehiro; Seto, Masahiro; Ogata, Yuji; Wada, Yuji; Utagawa, Manabu; Kosugi, Masayuki

    2000-01-01

    This study is composed by two sub-theme of study on stress-corrosion cracking under an environment of disposal on radioactive wastes and control technique on microscopic crack around the disposal cavity, and aims at experimental elucidation on forming mechanism of stress-corrosion cracking phenomenon on rocks and establishment of its control technique. In 1998 fiscal year, together with an investigation on effect of temperature on fracture toughness and on stress-corrosion cracks performance of sedimentary rocks (sandy rocks), an investigation on limit of the stress-corrosion cracking by addition of chemicals and on crack growth in a rock by in-situ observation using SEM were carried out. As a result, it was formed that fracture toughness of rocks reduced at more than 100 centigrade of temperature, that a region showing an equilibrium between water supply to crack end and crack speed appeared definitely, that a limit of stress-corrosion cracking appeared by addition of chemicals, and that as a result of observing crack advancement of saturated rock by in-situ observation of crack growth using SEM, a process zone was formed at the front of main crack due to grain boundary fracture. (G.K.)

  11. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  12. Erosion and corrosion of nuclear power plant materials

    International Nuclear Information System (INIS)

    1994-01-01

    This conference is composed of 23 papers, grouped in 3 sessions which main themes are: analysis of corrosion and erosion damages of nuclear power plant equipment and influence of water chemistry, temperature, irradiations, metallurgical and electrochemical factors, flow assisted cracking, stress cracking; monitoring and control of erosion and corrosion in nuclear power plants; susceptibility of structural materials to erosion and corrosion and ways to improve the resistance of materials, steels, coatings, etc. to erosion, corrosion and cracking

  13. Iodine stress corrosion cracking (SCC) of unirradiated Zircaloy-4 tubing by means of internal gas pressurization, (1)

    International Nuclear Information System (INIS)

    Onchi, Takeo; Inoue, Tadashi

    1982-01-01

    The internal gas pressurization tests were conducted at 360 0 C, to examine the influence of iodine concentration on the iodine stress corrosion cracking (SCC) susceptibility of Zircaloy-4 tubing of 17 x 17 type PWR design. The iodine contents studied were ranging of 0.06 to 6 mg/cm 2 , corresponding to 30 from 0.3 mg/cm 3 . Applied hoop stress vs. time-to-failure relationships were obtained in argon gas with iodine, as well as without iodine, from the tests of maximum holding times up to 72 hrs. The relationships obtained were insensitive to iodine contents. The applied stress lowering in iodine atmosphere approached a threshold stress below which SCC failure did not occur within the holding time, but not in argon gas alone. The threshold stresses were approximately 25.5 kg/mm 2 (250 Mpa), independent on iodine concentrations. Based on fracture mechanics approach and fractographic analysis, an interpretation was made of those applied stress and time-to-failure relationships. (author)

  14. Effect of aging on the general corrosion and stress corrosion cracking of uranium--6 wt % niobium alloy

    International Nuclear Information System (INIS)

    Koger, J.W.; Ammons, A.M.; Ferguson, J.E.

    1975-11-01

    Mechanical properties of the uranium-6 wt percent niobium alloy change with aging time and temperature. In general, the ultimate tensile strength and hardness reach a peak, while elongation becomes a minimum at aging temperatures between 400 and 500 0 C. The first optical evidence of a second phase was in the 400 0 C-aged alloy, while complete transformation to a two-phase structure was seen in the 600 0 C-aged alloy. The maximum-strength conditions correlate with the minimum stress corrosion cracking (SCC) resistance. The maximum SCC resistance is found in the as-quenched and 150, 200, and 600 0 C-aged specimens. The as-quenched and 300 0 C-aged specimens had the greatest resistance to general corrosion in aqueous chloride solutions; the 600 0 C-aged specimen had the least resistance

  15. Corrosion of metals exposed to 25% magnesium chloride solution and tensile stress: Field and laboratory studies

    Directory of Open Access Journals (Sweden)

    Xianming Shi

    2017-12-01

    Full Text Available The use of chemicals for snow and ice control operations is a common practice for improving the safety and mobility of roadways in cold climate, but brings significant concerns over their risks including the corrosive effects on transportation infrastructure and motor vehicles. The vast majority of existing studies and methods to test the deicer corrosivity have been restricted to laboratory environments and unstressed metals, which may not reliably simulate actual service conditions. As such, we report a case study in which stainless steel SS 304 (unstressed and externally tensile stressed, aluminum (Al 1100 and low carbon steel (C1010 coupons were exposed to 25% MgCl2 under field conditions for six weeks. A new corrosion test-bed was developed in Montana to accelerate the field exposure to this deicer. To further investigate the observed effect of tensile stress on the corrosion of stainless steel, SS 304 (unstressed and externally stressed coupons were exposed to 25% MgCl2 solution under the laboratory conditions. The C 1010 exhibited the highest percentage of rust area and suffered the most weight loss as a result of field exposure and MgCl2 sprays. In terms of ultimate tensile strength, the Al 1100 coupons saw the greatest reduction and the unstressed and externally stressed SS 304 coupons saw the least. The ability of MgCl2 to penetrate deep into the matrix of aluminum alloy poses great risk to such structural material. Tensile stressed SS 304 suffered more corrosion than unstressed SS 304 in both the field and laboratory conditions. Results from this case study may shed new light on the deicer corrosion issue and help develop improved field testing methods to evaluate the deicer corrosivity to metals in service.

  16. Effects of metallurgical factors on stress corrosion cracking of Ni-base alloys in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, T.; Sasaguri, N.; Onimura, K.

    1988-01-01

    Nickel-base Alloy 600 is the principal material used for the steam generator tubes of PWRs. Generally, this alloy has been proven to be satisfactory for this application, however when it is subjected to extremely high stress level in PWR primary water, it may suffer from stress corrosion cracking. The authors have systematically studied the effects of test temperature and such metallurgical factors as cold working, chemical composition and heat treatment on the stress corrosion cracking of Alloy 600 in high temperature water, and also on that of Alloy 690 which is a promising material for the tubes and may provide improved crrosion resistance for steam generators. The test materials, the stress corrosion cracking test and the test results are reported. When the test temperature was raise, the stress corrosion cracking of the nickel-base alloys was accelerated. The time of stress corrosion cracking occurrence decreased with increasing applied stress, and it occurred at the stress level higher than the 0.2 % offset proof stress of Alloy 600. In Alloy 690, stress corrosion cracking was not observed at such stress level. Cold worked Alloy 600 showed higher resistance to stress corrosion cracking than the annealed alloy. (Kako, I.)

  17. Galvanic and stress corrosion of copper canisters in repository environment. A short review

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Koenig, M.

    2001-02-01

    The Swedish Nuclear Power Inspectorate, SKI, has studied different aspects of canister and copper corrosion as part of the general improvement of the knowledge base within the area. General and local corrosion has earlier been treated by experiments as well as by thermodynamic calculations. For completeness also galvanic and stress corrosion should be treated. The present work is a short review, intended to indicate areas needing further focus. The work consists of two parts, the first of which contains a judgement of statements concerning risk of galvanic corrosion of copper in the repository. The second part concerns threshold values for the stress intensity factor of stress corrosion in copper. A suggestion is given on how such values possibly could be measured for copper at repository conditions. In early investigations by SKB, galvanic corrosion is not mentioned or at least not treated. In later works it is treated but often in a theoretical way without indications of any further treatment or investigation. Several pieces of work indicate that further investigations are required to ensure that different types of corrosion, like galvanic, cannot occur in the repository environment. There are for example effects of grain size, grain boundary conditions, impurities and other factors that could influence the appearance of galvanic corrosion that are not treated. Those factors have to be considered to be completely sure that galvanic corrosion and related effects does not occur for the actual canister in the specific environment of the repository. The circumstances are so specific, that a rather general discussion indicating that galvanic corrosion is not probable just is not enough. Experiments should also be performed for verification. It is concluded that the following specific areas, amongst others, could benefit from further consideration. Galvanic corrosion of unbreached copper by inhomogeneities in the environment and in the copper metal should be addressed

  18. Galvanic and stress corrosion of copper canisters in repository environment. A short review

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P.; Koenig, M. [Studsvik Nuclear AB, Nykoeping (Sweden)

    2001-02-01

    The Swedish Nuclear Power Inspectorate, SKI, has studied different aspects of canister and copper corrosion as part of the general improvement of the knowledge base within the area. General and local corrosion has earlier been treated by experiments as well as by thermodynamic calculations. For completeness also galvanic and stress corrosion should be treated. The present work is a short review, intended to indicate areas needing further focus. The work consists of two parts, the first of which contains a judgement of statements concerning risk of galvanic corrosion of copper in the repository. The second part concerns threshold values for the stress intensity factor of stress corrosion in copper. A suggestion is given on how such values possibly could be measured for copper at repository conditions. In early investigations by SKB, galvanic corrosion is not mentioned or at least not treated. In later works it is treated but often in a theoretical way without indications of any further treatment or investigation. Several pieces of work indicate that further investigations are required to ensure that different types of corrosion, like galvanic, cannot occur in the repository environment. There are for example effects of grain size, grain boundary conditions, impurities and other factors that could influence the appearance of galvanic corrosion that are not treated. Those factors have to be considered to be completely sure that galvanic corrosion and related effects does not occur for the actual canister in the specific environment of the repository. The circumstances are so specific, that a rather general discussion indicating that galvanic corrosion is not probable just is not enough. Experiments should also be performed for verification. It is concluded that the following specific areas, amongst others, could benefit from further consideration. Galvanic corrosion of unbreached copper by inhomogeneities in the environment and in the copper metal should be addressed

  19. Initiation of stress corrosion cracking in pre-stained austenitic stainless steels exposed to primary water

    International Nuclear Information System (INIS)

    Huguenin, P.

    2012-01-01

    Austenitic stainless steels are widely used in primary circuits of Pressurized Water Reactors (PWR) plants. However, a limited number of cases of Intergranular Stress Corrosion Cracking (IGSCC) has been detected in cold-worked (CW) areas of non-sensitized austenitic stainless steel components in French PWRs. A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with a cyclic loading favoured SCC. The present study aims at better understanding the role of pre-straining on crack initiation and at developing an engineering model for IGSCC initiation of 304L and 316L stainless steels in primary water. Such model will be based on SCC initiation tests on notched (not pre-cracked) specimens under 'trapezoidal' cyclic loading. The effects of pre-straining (tensile versus cold rolling), cold-work level and strain path on the SCC mechanisms are investigated. Experimental results demonstrate the dominating effect of strain path on SCC susceptibility for all pre-straining levels. Initiation can be understood as crack density and crack depth. A global criterion has been proposed to integrate both aspects of initiation. Maps of SCC initiation susceptibility have been proposed. A critical crack depth between 10 and 20 μm has been demonstrated to define transition between slow propagation and fast propagation for rolled materials. For tensile pre-straining, the critical crack depth is in the range 20 - 50 μm. Experimental evidences support the notion of a KISCC threshold, whose value depends on materials, pre-straining ant load applied. The initiation time has been found to depend on the applied loading as a function of (σ max max/YV) 11,5 . The effect of both strain path and surface hardening is indirectly taken into account via the yield stress. In this study, material differences rely on strain path effect on mechanical properties. As a result, a stress

  20. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion

    Science.gov (United States)

    Bartholomew, Paul D.; Guthrie, W. Spencer; Mazzeo, Brian A.

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  1. Study on fracture and stress corrosion cracking behavior of casing sour service materials

    International Nuclear Information System (INIS)

    Sequera, C.; Gordon, H.

    2003-01-01

    Present work describes sulphide stress corrosion cracking and fracture toughness tests performed to high strength sour service materials of T-95, C-100 and C-110 oil well tubular grades. P-110 was considered as a reference case, since it is one of the high strength materials included in specification 5CT of American Petroleum Institute, API. Sulphide stress corrosion cracking, impact and fracture toughness values obtained in the tests show that there is a correspondence among them. A decreasing classification order was established, namely C-100, T-95, C-110 and P-110. Special grades steels studied demonstrated a better behavior in the evaluated properties than the reference case material grade: P-110. Results obtained indicate that a higher sulphide stress corrosion cracking resistance is related to a higher toughness. The fracture toughness results evidence the hydrogen influence on reducing the toughness values. (author)

  2. The manufacturing of Stress Corrosion Crack (SCC) on Inconel 600 tube

    International Nuclear Information System (INIS)

    Bae, Seunggi; Bak, Jaewoong; Kim, Seongcheol; Lee, Sangyul; Lee, Boyoung

    2014-01-01

    The Stress Corrosion Crack (SCC), taken a center stage in recently accidents about nuclear power plants, is one of the environmentally induced cracking occurred when a metallic structure under tensile stress is exposed to corrosive environment. In this study, the SCC was manufactured in the simulated corrosive environmental conditions on Inconel 600 tube that widely applied in the nuclear power plants. The tensile stress which is one of the main factors to induce SCC was given by GTAW welding in the inner surface of the specimen. The corrosive environment was simulated by using the sodium hydroxide (NaOH) and sodium sulfide (Na 2 S). In this study, SCC was manufactured in the simulated corrosive environmental conditions with Inconel 600 tube that widely applied in the nuclear power plants. 1) The SCC was manufactured on Inconel 600 tube in simulated operational environments of nuclear power plants. In the experiment, the welding heat input which is enough to induce the cracking generated the SCC near the welding bead. So, in order to prevent the SCC, the residual stress on structure should be relaxed. 2) The branch-type cracking was detected

  3. Control of stress corrosion cracking in storage tanks containing radioactive waste

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Rideout, S.P.; Donovan, J.A.

    1978-01-01

    Stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste, at the Savannah River Plant is controlled by specification of limits on waste composition and temperature. Cases of cracking have been observed in the primary steel shell of tanks designed and built before 1960 that were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh waste, concentrations of the inhibitor ions are maintained within specified ranges to protect against nitrate cracking. Tanks designed and built since 1960 have been made of steels with greater resistance to stress corrosion; these tanks have also been heat treated after fabrication to relieve residual stresses from construction operations. Temperature limits are also specified to protect against stress corrosion at elevated temperatures

  4. Preparation Femtosecond Laser Prevention for the Cold-Worked Stress Corrosion Crackings on Reactor Grade Low Carbon Stainless Steel

    CERN Document Server

    John Minehara, Eisuke

    2004-01-01

    We report here that the femtosecond lasers like low average power Ti:Sapphire lasers, the JAERI high average power free-electron laser and others could peel off and remove two stress corrosion cracking (SCC) origins of the cold-worked and the cracking susceptible material, and residual tensile stress in hardened and stretched surface of low-carbon stainless steel cubic samples for nuclear reactor internals as a proof of principle experiment except for the third origin of corrosive environment. Because a 143 °C and 43% MgCl2 hot solution SCC test was performed for the samples to simulate the cold-worked SCC phenomena of the internals to show no crack at the laser-peered off strip on the cold-worked side and ten-thousands of cracks at the non-peeled off on the same side, it has been successfully demonstrated that the femtosecond lasers could clearly remove the two SCC origins and could resultantly prevent the cold-worked SCC.

  5. A Fundamental study of remedial technology development to prevent stress corrosion cracking of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Park, In Gyu; Lee, Chang Soon [Sunmoon University, Asan (Korea)

    1998-04-01

    Most of the PWR Steam generators with tubes in Alloy 600 alloy are affected by Stress Corrosion Cracking, such as PWSCC(Primary Water Stress Corrosion Cracking) and ODSCC(Outside Diameter Stress Corrosion Cracking). This study was undertaken to establish the background for remedial technology development to prevent SCC. in the report are included the following topics: (1) General: (i) water chemistry related factors, (ii) Pourbaix(Potential-pH) Diagram, (iii) polarization plot, (iv) corrosion mode of Alloy 600, 690, and 800, (v) IGA/SCC growth rate, (vi) material suspetibility of IGA/SCC, (vii) carbon solubility of Alloy 600 (2) Microstructures of Alloy 600 MA, Alloy 600 TT, Alloy 600 SEN Alloy 690 TT(Optical, SEM, and TEM) (3) Influencing factors for PWSCC initiation rate of Alloy 600: (i) microstructure, (ii) water chemistry(B, Li), (iii) temperature, (iv) plastic deformation, (v) stress relief annealing (4) Influencing factors for PWSCC growth rate of Alloy 600: (i) water chemistry(B, Li), (ii) Scott Model, (iii) intergranular carbide, (iv) temperature, (v) hold time (5) Laboratory conditions for ODSCC initiation rate: 1% NaOH, 316 deg C; 1% NaOH, 343 deg C; 50% NaOH, 288 deg C; 10% NaOH, 302 deg C; 10% NaOH, 316 deg C; 50% NaOH, 343 deg C (6) Sludge effects for ODSCC initiation rate: CuO, Cr{sub 2}O{sub 3}, Fe{sub 3}O{sub 4} (7) Influencing factors for PWSCC growth rate of Alloy 600: (i) Caustic concentration effect, (ii) carbonate addition effect (8) Sulfate corrosion: (i) sulfate ratio and pH effect, (ii) wastage rate of Alloy 600 and Alloy 690 (9) Crevice corrosion: (i) experimental setup for crevice corrosion, (ii) organic effect, (iii) (Na{sub 2}SO{sub 4} + NaOH) effect (10) Remedial measures for SCC: (i) Inhibitors, (ii) ZnO effect. (author). 30 refs., 174 figs., 51 tabs.

  6. Stress Corrosion Cracking Behavior of LD10 Aluminum Alloy in UDMH and N2O4 propellant

    Science.gov (United States)

    Zhang, Youhong; Chang, Xinlong; Liu, Wanlei

    2018-03-01

    The LD10 aluminum alloy double cantilever beam specimens were corroded under the conditions of Unsymmetric Uimethyl Hydrazine (UDMH), Dinitrogen Tetroxide (N2O4), and 3.5% NaCl environment. The crack propagation behavior of the aluminum alloy in different corrosion environment was analyzed. The stress corrosion cracking behavior of aluminum alloy in N2O4 is relatively slight and there are not evident stress corrosion phenomenons founded in UDMH.

  7. Susceptibility to corrosion and in vitro biocompatibility of a laser-welded composite orthodontic arch wire.

    Science.gov (United States)

    Zhang, Chao; Sun, Xinhua; Zhao, Shuang; Yu, Wenwen; Sun, Daqian

    2014-01-01

    Composite arch-wire (CoAW) is an arch wire formed by solder connection of nickel titanium shape memory alloy and stainless steel wire. The purpose of the present study was to investigate the biocompatibility of CoAW as an important foundation for its clinical application. The electrochemical corrosion and ion release behavior of CoAW upon immersion in solutions simulating oral cavity conditions were measured to evaluate the corrosion behavior of CoAW. Murine L-929 cells were co-cultured with CoAW extract to evaluate the cytotoxicity of the corrosion products in vitro. Polarization tests indicated that CoAW is resistant to corrosion in the tested artificial saliva (AS)-based solutions (chloric solution, simple AS, fluorinated AS, and protein-containing AS), and the amount of toxic copper ions released after immersion was lower than average daily dietary intake levels. The cytotoxicity experiments demonstrated the in vitro biocompatibility of CoAW. Based on the combined advantages of its base materials CoAW, with its resistance to biocorrosion and in vitro cytocompatibility, is a promising alternative material for use in orthodontic fixation applications.

  8. Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System

    Science.gov (United States)

    Torres, P. D.

    2015-01-01

    A stress corrosion evaluation was performed on Inconel 625, Hastelloy C276, titanium commercially pure (TiCP), Ti-6Al-4V, Ti-6Al-4V extra low interstitial, and Cronidur 30 steel as a consequence of a change in formulation of the pretreatment for processing the urine in the International Space Station Environmental Control and Life Support System Urine Processing Assembly from a sulfuric acid-based to a phosphoric acid-based solution. The first five listed were found resistant to stress corrosion in the pretreatment and brine. However, some of the Cronidur 30 specimens experienced reduction in load-carrying ability.

  9. Utilization of the molecular dynamic to study the effect of hydrogen in the stress corrosion

    International Nuclear Information System (INIS)

    Arnoux, P.

    2007-01-01

    Many microscopic and theoretical models of stress corrosion have been proposed, in particularly to explain the grain boundary cracking of stainless steels and nickel base. In this work calculus of molecular dynamic have been used to propose a mechanism of stress corrosion at the atomic scale. The author aims to reproduce, by molecular dynamic, the mechanism of an open crack in irradiated stainless steel in PWR reactor and show that the growth of the oxide at the crack back produce hydrogen. (A.L.B.)

  10. Fabrication of imitative stress corrosion cracking specimens suitable for electromagnetic nondestructive evaluations using solid state bonding

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi; Uchimoto, Tetsuya; Takagi, Toshiyuki

    2010-01-01

    This study proposes a method to fabricate artificial defects that is almost identical to stress corrosion cracking from the viewpoint of electromagnetic nondestructive evaluations. The key idea is to realize a region having electrical resistance embedded inside a conductive materials using solid state bonding. A rough region is introduced into the surface of the materials so that the region is partially bonded to realize electrical resistance. The validity of the method is demonstrated using type 316L austenitic stainless steels. Eddy current tests and subsequent destructive tests confirm that signals due to the fabricated specimens are very similar to those due to stress corrosion cracks. (author)

  11. Corrosion fatigue and stress corrosion cracking of magnesium alloys in a simulated physiological environment

    OpenAIRE

    Jafari, Sajjad

    2017-01-01

    Magnesium (Mg) alloys have attracted great attention as potential materials for temporary implants in uses such as pins, screws, plates and stents. The usage of Mg alloys is appealing as it avoids the need for a follow-up surgery commonly undertaken when implants are constructed out of traditional materials such as titanium alloys, stainless steels and cobalt-chromium alloys. This reduces health care costs and inconvenience for patients. However, the poor corrosion resistanc...

  12. Brain Potentials and Personality: A New Look at Stress Susceptibility.

    Science.gov (United States)

    1987-09-01

    disinhibition (Dis) measures a hedonistic , extraverted lifestyle including drinking, parties, sex, and gambling; boredom susceptibility (BS) indicates an...adventure seeking; ES = Experience seeking; Dis = Disinhibition; BS = Boredom susceptibility. 1 14 I N i*5’ Table 4 Correlation of Auditory Evoked...20. aTAS = Thrill and adventure seeking; ES = Experience seeking; Dis = Disinhibition; BS = Boredom susceptibility. < .05. 15 I The present study

  13. Study on the corrosion assessment of overpack welds-III (Joint research)

    International Nuclear Information System (INIS)

    Mitsui, Hiroyuki; Takahashi, Rieko; Otsuki, Akiyoshi; Asano, Hidekazu; Taniguchi, Naoki; Yui, Mikazu

    2006-12-01

    There is some possibility that the corrosion resistance of overpack welds is different from that of base metal due to the differences of material properties. In this study, corrosion behavior of welded joint for carbon steel was compared with base metal using the specimens taken from welded joint model fabricated by TIG, MAG and EBW respectively. The corrosion tests were performed for following four items. Passivation behavior and corrosion type. Propagation of general corrosion, pitting corrosion and crevice corrosion under aerobic condition. Stress corrosion cracking susceptibility. Propagation of general corrosion and hydrogen embrittlement under anaerobic condition. The results of these corrosion tests indicated that the corrosion resistance of welded metal by TIG and MAG was inferior to base metal for general corrosion, pitting corrosion and crevice corrosion. It was implied that the filler materials used for welding affected the corrosion resistance. No deterioration of corrosion resistance was observed in any corrosion modes for EBW, which does not need filler material. The susceptibility to stress corrosion cracking of welded metal and heat affected zone was lower than that of base metal. (author)

  14. Electrochemical potential measurements in boiling water reactors; relation to water chemistry and stress corrosion

    International Nuclear Information System (INIS)

    Indig, M.E.; Cowan, R.L.

    1981-01-01

    Electrochemical potential measurements were performed in operating boiling water reactors to determine the range of corrosion potentials that exist from cold standby to full power operation and the relationship of these measurements to reactor water chemistry. Once the corrosion potentials were known, experiments were performed in the laboratory under electrochemical control to determine potentials and equivalent dissolved oxygen concentrations where intergranular stress corrosion cracking (IGSCC) would and would not occur on welded Type-304 stainless steel. At 274 0 C, cracking occurred at potentials that were equivalent to dissolved oxygen concentration > 40 to 50 ppb. With decreasing temperature, IGSCC became more difficult and only severely sensitized stainless steel would crack. Recent in-reactor experiments combined with the previous laboratory data, have shown that injection of small concentrations of hydrogen during reactor operation can cause a significant decrease in corrosion potential which should cause immunity to IGSCC. (author)

  15. Storage of spent fuels: implementation of a research program on the risk of waste container rupture due to stress corrosion induced by fission products

    International Nuclear Information System (INIS)

    Parise, M.; Walle, E.; Foct, J.

    2001-01-01

    The following topics were dealt with: research programm on stress corrosion of spent fuel casks materials due to fission products, such as iodine, chemical interactions with zirconium, chemical aspects of stress corrosion, rupture risk assessment

  16. Influence of dissolved hydrogen and temperature on primary water stress corrosion cracking of mill annealed alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Nobuo; Nishikawa, Yoshito [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Nakajima, Nobuo

    2002-09-01

    The influence of dissolved hydrogen and temperature on primary water stress corrosion cracking (PWSCC) of alloy 600 was experimentally studied at temperature ranging from 310 to 360degC and hydrogen contents ranging from 0 to 4 ppm using slow strain rate tensile technique (SSRT) and constant load tensile test. As a result, it was revealed that the PWSCC susceptibility of alloy 600 has a maximum near 3 ppm of dissolved hydrogen at 360degC and the peak shifts to 1 ppm at 320degC. The mechanism of the peak shift is not clear yet, however, it is possibly explained by the change of absorbed hydrogen in the metal caused by the change of hydrogen recombination reaction and/or change of the surface film. (author)

  17. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  18. Quantitative characterization of initiation and propagation in stress corrosion cracking. An approach of a phenomenological model

    International Nuclear Information System (INIS)

    Raquet, O.

    1994-01-01

    A purely phenomenological study of stress corrosion cracking was performed using the couple Z2CN 18.10 (304L) austenitic stainless steel/boiling MgCl 2 aqueous solution. The exploitation of the morphological information (shape of the cracks and size distribution) available after constant elongation rate tests led to the proposal of an analytical expression of the crack initiation and growth rates. This representation allowed to quantitatively characterize the influence of the applied strain rate as well as the effect of corrosion inhibitors on the crack initiation and propagation phases. It can be used in the search for the stress corrosion cracking mechanisms as a 'riddle' for the determination of the rate controlling steps. As a matter of fact, no mechanistic hypothesis has been used for its development. (author)

  19. Stress corrosion of nickel alloys: influence of metallurgical, chemical and physicochemical parameters

    International Nuclear Information System (INIS)

    Gras, J.M.; Pinard-Legry, G.

    1997-01-01

    Stress corrosion of nickel alloys (alloys 600, X-750, 182, 82..)is the main problem of corrosion in PWR type reactors. This article gives the main knowledge about this question, considering particularly the influence of the mechanical, microstructural and physicochemical factors on cracks under stress of the alloy 600 in water at high temperature. The acquired knowledge allows nowadays to better anticipate and control the phenomenon. On the industrial point of view, they have allowed to improve the resistance of in service or future materials. While a lot of advances have been carried out in the understanding of the influence of parameters, several uncertainties still remain concerning the corrosion mechanism and the part of some factors. (O.M.)

  20. Solvent effects on stress corrosion cracking of zirconium and Zircaloy-4 in iodine

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.

    2000-01-01

    Localized corrosion (pitting, intergranular attack and stress corrosion cracking) of Zircaloy-4 and its principal component, zirconium, was investigated in solutions of iodine in different alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-octanol). Intergranular attack was found in all of the solutions tested, and the attack velocity increases when the size of the alcohol molecule decreases. In some cases it was found that intergranular attack is accompanied by pitting. Slow strain-rate experiments showed that the propagation rate of stress corrosion cracks also depends on the size of the solvent molecule. From these results it may be inferred that the cause of the variation in the velocity is the steric hindrance of the alcohol molecules. The surface mobility SCC mechanism may account for these results. (author)

  1. Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.T., E-mail: jiasqq1225@126.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Zhang, Y.K. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Chen, J.F.; Zhou, J.Y.; Ge, M.Z.; Lu, Y.L.; Li, X.L. [School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China)

    2015-10-28

    7075 aluminum alloy weldments were processed by an intensive process known as laser shock peening (LSP), meanwhile its stress corrosion behaviors were observed by scanning electron microscopy (SEM) and slow strain rate tensile (SSRT) tests. Results showed that the effect of LSP on corrosion behavior of the joint was fairly useful and obvious. With LSP, the elongation, time of fracture and static toughness after the SSRT test were improved by 11.13%, 20% and 100%, respectively. At the same time, the location of the fracture also changed. LSP led to a transition of the fracture type from transgranular to intergranular The reasons for these enhancements of the joint on corrosion behavior were caused by microstructure, residual stress, micro-hardness, and fracture appearance.

  2. Improvement of detection of stress corrosion cracks with ultrasonic phased array probes

    International Nuclear Information System (INIS)

    Wustenberg, H.; Mohrle, W.; Wegner, W.; Schenk, G.; Erhard, A.

    1986-01-01

    Probes with linear arrays can be used for the detection of stress corrosion cracks especially if the variability of the sound field is used to change the skewing angle of angle beam probes. The phased array concept can be used to produce a variable skewing angle or a variable angle of incidence depending on the orientation of the linear array on the wedge. This helps to adapt the direction of the ultrasonic beam to probable crack orientations. It has been demonstrated with artificial reflectors as well as with corrosion cracks, that the detection of misoriented cracks can be improved by this approach. The experiences gained during the investigations are encouraging the application of phased array probes for stress corrosion phenomena close to the heat effected zone of welds. Probes with variable skewing angles may find some interesting applications on welds in tubular structures e.g., at off shore constructions and on some difficult geometries within the primary circuit of nuclear power plants

  3. Effect of tensile stress on the 3D reversible and irreversible differential magnetic susceptibilities

    International Nuclear Information System (INIS)

    Mao, Weihua; Atherton, David L.

    2001-01-01

    Magnetic hysteresis loops in three orthogonal directions are measured for a line pipe steel sample while the external magnetic field is applied in a direction perpendicular to the tensile stress direction. The total magnetization vector is calculated. This tends to the stress direction when tensile stress is applied. The reversible and irreversible differential magnetic susceptibilities are derived. It is found that the susceptibilities in all three directions are enhanced with increasing tensile stress, although the increase in the stress direction is much larger than in the other directions. [copyright] 2001 American Institute of Physics

  4. Pitting corrosion susceptibility study of zirconium alloys in the presence of the chloride ions

    International Nuclear Information System (INIS)

    Radulescu, M.; Pirvan, I.; Velciu, L.

    1997-01-01

    Pitting corrosion mechanism is specific to metal/aggressive environment systems. The influence of both components of the process was thoroughly investigated. After reviewing the principal steps of the pitting corrosion and of the electrochemical reactions associated, there were presented the physico-chemical methods used for the determination of the corrosion pitting parameters completed with the metallographic techniques of investigation of the attacked surfaces. Reported are the results of determinations of the pit initiation (E np ) and pit passivation (E pp ) potentials in the systems Zy-4 (Zr)/ Cl - provided from the following solutions: HCl, FeCl 3 , NaCl and LiCl. In the case of the last two solutions, the measurements were carried out also in the range of alkaline pH values. It was also determined the dependence of E np and E pp potential on the Cl - ions concentration in NaCl and HCl solutions, and also the reaction order 'n' in presence of several chloride concentration. Finally, on the basis of the experimental data, we established the kinetic characteristics specific to different steps of pitting. (authors)

  5. Assessment of corrosion and stress corrosion cracking results for SCWR development: gaps and needs

    International Nuclear Information System (INIS)

    Zheng, W.; Gu, G.; Guzonas, D.; Luo, J.

    2010-01-01

    International efforts on materials evaluation for the development of supercritical water-cooled reactors (SCWRs) have produced a considerable amount of corrosion test data in the open literature. These data are helping guide the selection of candidate alloys for further, longer-term evaluation. As continuing research in this area advances, the gaps and limitations in the published data are being identified. These gaps can be seen in several areas, including the test environment and the severity of test condition as compared with reactor service/operating condition. While some of these gaps can be filled readily with existing capabilities, others require major investments in advanced test facilities. (author)

  6. Study of the Susceptibility of Oxygen-Free Phosphorous Doped Copper to Corrosion in Simulated Groundwater in the Presence of Chloride and Sulfide

    International Nuclear Information System (INIS)

    Escobar, Ivan; Lamas, Claudia; Werme, Lars; Oversby, Virginia

    2007-01-01

    Oxygen free high conductivity copper, doped with phosphorus (Cu OFP) has been chosen as the material for the fabrication of high level nuclear waste containers in Sweden. This material will be the corrosion barrier for spent fuel in the environment of a deep geological repository in granitic rock. The service life of this container is expected to exceed 1,000,000 years. During this time, which includes several glaciations, water of different compositions, including high concentration of chloride ions, will contact the copper surface. This work reports a study of the susceptibility of Cu OFP to corrosion when chloride ions are present, in deionized water (DW) and in synthetic groundwater (SGW). The techniques used were electrochemical methods such as corrosion potential evolution and Tafel curves. The system was studied with Electrochemical Impedance Spectroscopy (EIS). We also used as characterization techniques Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The main conclusions are that copper is more susceptible to corrosion at high chloride ion concentration. When the chloride concentration is low, it is possible to form copper chloride crystals, but at the highest concentration, copper chloride complexes are formed, leaving the copper surface without deposits. When the chloride concentration is low ( -5 M), copper corrosion in the presence of chloride is controlled by diffusional processes, while at higher concentrations corrosion is controlled by charge transfer processes. (authors)

  7. Stress corrosion of the alloy U-7.5 Nb-2.5 Zr

    International Nuclear Information System (INIS)

    Lepoutre, D.; Nomine, A.M.; Miannay, D.

    1983-09-01

    Oxide formed on U-7.5 Nb-2.5 Zr at room temperature during stress corrosion cracking in oxygen is identical to the natural oxide of the alloy. It is formed by UO 2 with Nb and Zr and is associated with an increased Nb content at the interface. This oxide would be responsible for cracking [fr

  8. Stress corrosion of very high purity stainless steels in alkaline media

    International Nuclear Information System (INIS)

    Hechmat-Dehcordi, Ebrahim

    1981-01-01

    This research thesis reports the study of stress corrosion resistance of stainless steels in caustic environments. It notably concerns the electronuclear industrial sector, the production of soda by electrolysis, and the preparation of hydrogen as energy vector. After a presentation of the experimental conditions, the author highlights the influence of purity on stress corrosion cracking of 20Cr-25Ni-type austenitic alloys. The specific action of a high number of addition metallic and non-metallic elements has been studied. Stress corrosion tests have been also performed in autoclave on austeno-ferritic (21 to 25 pc Cr - 6 to 10 pc Ni) as well as ferritic (26 pc Cr) grades. The author reports the study of electrochemical properties of stainless steel in soda by means of potentiostatic techniques with an application of Pourbaix thermodynamic equilibrium diagrams, and the study of the chemical composition of passivation thin layers by Auger spectroscopy. He more particularly studies the influence of electrode potential and of some addition elements on the chemical characteristics of oxides developed at the surface of austenite. Then, the author tries to establish correlations between strain hardening microstructure of the various steels and their sensitivity to stress corrosion [fr

  9. Inter granular stress corrosion cracking of Ignalina NPP austenitic piping of outside diameter 325 mm

    International Nuclear Information System (INIS)

    Nedzinskas, L.; Klimasauskas, A.

    2003-01-01

    The Inter Granular Stress Corrosion Cracking (IGSCC) of Ignalina NPP main circulation circuit piping, produced from austenitic stainless steel is presented covering current performances and further 'Ageing Management' related actions and plans as well as experience (lessons learned) on solving IGSCC phenomenon, which is currently under investigations and no yet comprehensive answer how to avoid it. (author)

  10. Effect of Solution Annealing on Susceptibility to Intercrystalline Corrosion of Stainless Steel with 20% Cr and 8% Ni

    Science.gov (United States)

    Taiwade, R. V.; Patil, A. P.; Patre, S. J.; Dayal, R. K.

    2013-06-01

    In general, as-received (AR) austenitic stainless steels (ASSs) contain complex carbide precipitates due to manufacturing operations, subsequent annealing treatment, or due to the fabrication processes such as welding. The presence of pre-existing carbides leads to cumulative sensitization and make the steel susceptible to intercrystalline corrosion (ICC)/intergranular corrosion (IGC) which causes premature failure during service. Solution annealing (SA) is one of the ways to deal with such situations. In this present investigation, the AR (hot rolled and mill annealed) chromium-nickel (Cr-Ni) ASS is compared with SA Cr-Ni ASS. The extent of ICC/IGC was evaluated qualitatively and quantitatively by various electrochemical tests including ASTM standard A-262 Practice A and Practice E, double loop electrochemical potentiokinetic reactivation and electrochemical impedance spectroscopy. The degree of sensitization for hot rolled mill annealed AR condition is found to be substantially higher (51.55%) than that of SA condition (26.9%) for thermally aged samples (at 700 °C). The chemical composition across the grain boundary was measured using electron probe micro-analyzer for both (AR and SA) conditions and confirms that the pre-sensitization effect was completely removed after SA treatment.

  11. Novel implementation of the use of the EPR-in situ technique (Electrochemical potentiodynamic reactivation) to identify intergranular corrosion susceptability of stainless steels exposed to high temperatures

    International Nuclear Information System (INIS)

    Munoz, N.; Pineda, Y.; Vera, E.; Sepulveda, H.; Heyn, Andreas

    2010-01-01

    Austenitic stainless steels (18 % Cr), are often used in pieces that are exposed to temperatures of 450 o C to 900 o C (heat exchangers). At these temperatures sensibilization occurs on the grain boundaries, becoming a key factor in the appearance of intergranular corrosion. In order to prevent this phenomena from occurring 0.3% to 0.8% of niobium is added as an alloying element in the manufacturing process, which prevents the carbon present in the steel combines with the chromium, avoiding the formation of carbides. An electrochemical method for in-situ application was developed to evaluate the corrosive behavior of stainless steel and its susceptibility and degree of sensibilizaton to an intergranular attack. This work shows the effectiveness of this technique in evaluating niobium's inhibitory effect in preventing the formation of chromium carbides on the grain boundaries of 18% chromium steel, and also shows the technique's potentiality in determining how susceptible these steels are to intercrystalline corrosion

  12. A fracture mechanics model for iodine stress corrosion crack propagation in Zircaloy tubing

    International Nuclear Information System (INIS)

    Crescimanno, P.J.; Campbell, W.R.; Goldberg, I.

    1984-01-01

    A fracture mechanics model is presented for iodine-induced stress corrosion cracking in Zircaloy tubing. The model utilizes a power law to relate crack extension velocity to stress intensity factor, a hyperbolic tangent function for the influence of iodine concentration, and an exponential function for the influence of temperature and material strength. Comparisons of predicted to measured failure times show that predicted times are within a factor of two of the measured times for a majority of the specimens considered

  13. Irradiation-assisted stress corrosion cracking in HTH Alloy X-750 and Alloy 625

    International Nuclear Information System (INIS)

    Bajaj, R.; Mills, W.J.; Lebo, M.R.; Hyatt, B.Z.; Burke, M.G.

    1995-01-01

    In-reactor testing of bolt-loaded compact tension specimens was performed in 360 C water to determine the irradiation-assisted stress corrosion cracking (IASCC) behavior of HTH Alloy X-750 and direct-aged Alloy 625. New data confirm previous results showing that high irradiation levels reduce SCC resistance in Alloy X-750. Heat-to-heat variability correlates with boron content, with low boron heats showing improved IASCC properties. Alloy 625 is resistant to IASCC, as no cracking was observed in any Alloy 625 specimens. Microstructural, microchemical and deformation studies were performed to characterize the mechanisms responsible for IASCC in Alloy X-750 and the lack of an effect in Alloy 625. The mechanisms under investigation are: boron transmutation effects, radiation-induced changes in microstructure and deformation characteristics, and radiation-induced segregation. Irradiation of Alloy X-750 caused significant strengthening and ductility loss that was associated with the formation of cavities and dislocation loops. High irradiation levels did not cause significant segregation of alloying or trace elements in Alloy X-750. Irradiation of Alloy 625 resulted in the formation of small dislocation loops and a fine body-centered-orthorhombic phase. The strengthening due to the loops and precipitates was apparently offset by a partial dissolution of γ double-prime precipitates, as Alloy 625 showed no irradiation-induced strengthening or ductility loss. In the nonirradiated condition, an IASCC susceptible HTH heat containing 28 ppm B showed grain boundary segregation of boron, whereas a nonsusceptible HTH heat containing 2 ppm B and Alloy 625 with 20 ppm B did not show significant boron segregation. Transmutation of boron to helium at grain boundaries, coupled with matrix strengthening, is believed to be responsible for IASCC in Alloy X-750, and the absence of these two effects results in the superior IASCC resistance displayed by Alloy 625

  14. Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire.

    Science.gov (United States)

    Segal, Nadav; Hell, Jess; Berzins, David W

    2009-06-01

    The purpose of this investigation was to study the effect of stress and phase transformation on the corrosion properties of a superelastic nickel-titanium orthodontic wire. The phase transformation profiles of superelastic nickel-titanium (Sentalloy, GAC International, Bohemia, NY) and beta-titanium (TMA, Ormco, Orange, Calif) archwires were analyzed by using differential scanning calorimetry. The force/deflection behavior of the wires at 37 degrees C was measured in a 3-point bending test per modified American Dental Association specification no. 32. Electrochemical testing consisted of monitoring the open circuit potential (OCP) for 2 hours followed by polarization resistance and cyclic polarization tests on archwire segments engaged in a 5-bracket simulation apparatus with bend deflections of 0.75, 1.5, or 3 mm in artificial saliva at 37 degrees C. Nondeflected segments were also tested. Sentalloy was additionally examined for bending and corrosion at 5 degrees C, where it exists as martensite and is devoid of stress-induced phase transformation. OCP at 2 hours and corrosion current density (i(corr)) were analyzed by using ANOVA and Tukey tests (alpha = .05) (n = 10 per deflection). Significant differences (P Sentalloy wires at 5 degrees C, but not for Sentalloy at 37 degrees C. Significant differences (P Sentalloy (37 degrees C) peaked at 0.75 mm deflection before the wire's stress-induced phase transformation point and then decreased with further deflection and transformation. The i(corr) values for TMA and Sentalloy at 5 degrees C, both of which do not undergo phase transformation with deformation, continuously increased from 0 to 1.5 mm deflection before decreasing at the 3.0-mm deflection. Stress increased the corrosion rate in nickel-titanium and beta-titanium orthodontic wires. Alterations in stress/strain associated with phase transformation in superelastic nickel-titanium might alter the corrosion rate in ways different from wires not undergoing phase

  15. Corrosion Susceptibility of AA5083-H116 in Biologically Active Atmospheric Marine Environments

    Science.gov (United States)

    2014-03-01

    Ahn, D. J. Quesnel, S. B. Jung, "Behavior of beta phase (A13Mg2) in AA 5083 during friction stir welding ," Intermetallics 35 (2013) p. 120-127. 4. R... Metallurgy and Materials Science 43A, 13 (2012) p. 4933-4939. 7. D. Mizuno, R. G. Kelly, "Galvanically Induced Intergranular Corrosion of AA5083-H131 Under...Behavior of Al-5083," Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 42A, 2 (2011) p. 348-355. 13. R. L. Holtz, P

  16. Application of Kelvin probe Force Microscopy (KFM) to evidence localized corrosion of over-aged aeronautical 2024 aluminum alloy

    OpenAIRE

    Radutoiu, Nicoleta; Alexis, Joël; Lacroix, Loïc; Abrudeanu, Marioara; Petit, Jacques-Alain

    2013-01-01

    International audience; The 2xxx serie aluminum alloys are characterized by good mechanical performances and low density, however they are susceptible to different forms of localized corrosion: pitting corrosion, intergranular corrosion and stress corrosion cracking. The 2024-T351 aluminum alloy is used in the aircraft industry for numerous applications such as fuselage and door skin. Corrosion damage of the material is also very detrimental for the structural integrity of the aircraft. The p...

  17. Study of the localized corrosion of over-aged aeronautical 2024 aluminum alloy. Kelvin probe Force Microscopy (KFM) application

    OpenAIRE

    Radutoiu , Nicoleta; Lacroix , Loïc; Alexis , Joël; Abrudeanu , Marioara; Petit , Jacques-Alain

    2012-01-01

    International audience; The 2xxx serie aluminum alloys are characterized by good mechanical performances and low density, however they are susceptible to different forms of localized corrosion: pitting corrosion, intergranular corrosion and stress corrosion cracking. The 2024-T351 aluminum alloy is used in the aircraft industry for numerous applications such as fuselage and door skin. Corrosion damage of the material is also very detrimental for the structural integrity of the aircraft. The p...

  18. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    Science.gov (United States)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  19. Failure of MPC overpack and inner container under corrosion and mechanical stresses in a backfilled drift

    International Nuclear Information System (INIS)

    Ladkany, S.G.; Rajagopalan, R.

    1995-01-01

    The thickness and time at failure of the 100mm thick overpack and the 9.5mm thick inner container of a Multi-purpose canister have been assessed due to loads resulting from temperature, overburden, backfill pressure and seismic loads. Critical stresses at various reduced thicknesses, resulting from pitting corrosion over the years of emplacement, have been evaluated using Finite element analysis. Both simple and continuous support conditions of the overpack have been considered in the analysis. The anticipated failure time due to corrosion of overpack and inner container is further reduced due to overburden, self and seismic loads

  20. Fractographic investigation of stress corrosion cracking of steels for high-strength bolts

    International Nuclear Information System (INIS)

    Gladshtejn, L.I.; Goritskij, V.M.; Evtushenko, N.A.; Sokolov, S.P.; Panfilova, L.M.

    1980-01-01

    By the methods of quantitative fractography studied is the effect of chemical composition on stress corrosion cracking resistance in the mean agressive medium (pH=2.2) and the fracture structure of cylindrical delta samples with the notch (K=2.75) of high-strength chromium steel. It is shown that the alloying of the 40 steel with Cr, Si, V increases its strength under short-time loading but leads to forming of brittle areas in fracture under long time effect of corrosion medium

  1. Study of alloy 600'S stress corrosion cracking mechanisms in high temperature water

    International Nuclear Information System (INIS)

    Rios, R.

    1994-06-01

    In order to better understand the mechanisms involved in Alloy 600's stress corrosion cracking in PWR environment, laboratory tests were performed. The influence of parameters pertinent to the mechanisms was studies : hydrogen and oxygen overpressures, local chemical composition, microstructure. The results show that neither hydrogen nor dissolution/oxidation, despite their respective roles in the process, are sufficient to account for experimental facts. SEM observation of micro-cleavage facets on specimens' fracture surfaces leads to pay attention to a new mechanism of corrosion/plasticity interactions. (author). 113 refs., 73 figs., 15 tabs., 4 annexes

  2. Study of alloy 600 (NC15Fe) stress corrosion cracking mechanisms in high temperature water

    International Nuclear Information System (INIS)

    Rios, Richard

    1993-01-01

    In order to better understand the mechanisms involved in Alloy 600's stress corrosion cracking in PWR environment, laboratory tests were performed. The influence of parameters pertinent to the mechanisms was studies: hydrogen and oxygen overpressures, local chemical composition, microstructure. The results show that neither hydrogen nor dissolution/oxidation, despite their respective roles in the process, are sufficient to account for experimental facts. SEM observation of micro-cleavage facets on specimens' fracture surfaces leads to pay attention to a new mechanism of corrosion/plasticity interactions. (author) [fr

  3. Proceedings: Primary water stress corrosion cracking: 1989 EPRI remedial measures workshop

    International Nuclear Information System (INIS)

    Gorman, J.A.

    1990-04-01

    A meeting on ''PWSCC Remedial Measures'' was organized to give those working in this area an opportunity to share their results, ideas and plans with regard to development and application of remedial measures directed against the primary water stress corrosion cracking (PWSCC) phenomenon affecting alloy 600 steam generator tubes. Topics discussed included: utility experience and strategies; nondestructive examination (NDE) methods for PWSCC; technical topics ranging from predictive methods for occurrence of PWSCC to results of corrosion tests; and services provided by vendors that can help prevent the occurrence of PWSCC or can help address problems caused by PWSCC once it occurs

  4. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  5. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization.

    Science.gov (United States)

    Li, Dongsheng; Yang, Wei; Zhang, Wenyao

    2017-05-01

    Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic parameter figure. A particle swarm optimization cluster method was developed to determine the relationship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types of clustering data, the mean value of each damage pattern's AE characteristic parameters was determined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE particle swarm optimization cluster analysis based on principal component analysis was also proposed. This method can completely distinguish the four types of damage sources and simplifies the determination of the evolution process of corrosion damage and broken wire signals. Copyright © 2017. Published by Elsevier B.V.

  6. Depassivation and repassivation of austenitic stainless steels. Consequences on stress corrosion cracking

    International Nuclear Information System (INIS)

    Helie, M.; Desjardins, D.; Puiggali, M.; Petit, M.C.

    1983-06-01

    The influence of strain rate and solution temperature on depassivation and repassivation processes, and the consequences on stress corrosion cracking phenomenon are presented. The tests are performed in concentrated magnesium chloride solutions at various boiling temperatures (160 0 C, 153 0 C, 140 0 C, 130 0 C, 125 0 C, 110 0 C, 102 0 C) to which potassium dichromate is added in some cases. The depassivation and repassivation of the tested wires are analysed in term of current-time curves at fixed potential. The wire is placed into a ''corrosion cell'' with the boiling chloride solution on a tensile testing machine. Tests at 153 0 C on 304L and 309L stainless steels show that competition between passivation and depassivation depends on applied strain rate: at low strain rates rupture is mainly due to mechanical stress, at high strain rates the wire shows track of corrosion and the rupture is ductile. Between the two, stress corrosion cracking presents a maximum and in this case the rupture is mainly brittle. Influence of temperature shows the existence of a transitional temperature 130 0 C for a 304L. The cracking velocity is 100 times higher above 130 0 C than below and the cracking mode is transgranular and mainly intergranular below 130 0 C. Addition of potassium dichromate modifies both electrochemical and mechanical properties; it is more difficult to obtain a frank depassivation and the repassivation rate is higher

  7. A study on the fractures of iodine induced stress corrosion cracking of new zirconium alloys

    International Nuclear Information System (INIS)

    Peng Qian; Zhao Wenjin; Li Weijun; Tang Zhenghua; Heng Xuemei

    2005-10-01

    The morphology and chemical compositions of I-SCC fractures of new zirconium alloys were investigated by SEM and EDXA. The feature on fracture surface for I-SCC samples, such as corrosion products, the secondary cracking, intergranular cracking and pseudo-cleavage transgranular cracking, have been observed. And the fluting, the typical characteristic of I-SCC also has been found. Intergranular cracking is visible at crack initiation stage and transgranular cracking is distinguished at crack propagation stage. The corrosion products are mainly composed of Zr and O; and I can be detected on the local pseudocleavage zone. The most of grooves on the fractures of relieved-stress annealing samples are parallel with the roll plane. The intergranular cracking in relieved-stress annealing samples is not obvious. When the test temperature increases, the activity of iodine increases and the stress on crack tip is easier to be released, thus the corrosion products on fracture also increase and intergranular cracking is visible. The partial pressure of iodine influents the thickness of corrosion products, and intergranular cracking is easier to be found when iodine partial pressure is high enough. (authors)

  8. Localized corrosion and stress corrosion cracking of candidate materials for high-level radioactive waste disposal containers in U.S

    International Nuclear Information System (INIS)

    Farmer, J.C.; McCright, R.D.

    1989-01-01

    Three ion-based to nickel-based austenitic alloys and three copper-based alloys are being considered in the United States as candidate materials for the fabrication of high-level radioactive waste containers. The austenitic alloys are Types 304L and 316L stainless steels as well as the high-nickel material Alloy 825. The copper-based alloys are CDA 102 (oxygen-free copper) CDA 613 (Cu7Al), and CDA 715 (Cu-30Ni). Waste in the forms of spent fuel assemblies from reactors and borosilicate glass will be sent to a proposed repository at Yucca Mountain, Nevada. The decay of radionuclides will result in the generation of substantial heat and in gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including: undesirable phase transformations due to a lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This paper is an analysis of data from the literature relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of these alloys

  9. Applied methods for mitigation of damage by stress corrosion in BWR type reactors

    International Nuclear Information System (INIS)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C.

    1998-01-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  10. Genetic susceptibility of newborn daughters to oxidative stress

    DEFF Research Database (Denmark)

    Decordier, Ilse; De Bont, Kelly; De Bock, Kirsten

    2007-01-01

    A central question in risk assessment is whether newborns' susceptibility to mutagens is different from that of adults. Therefore we investigated whether genotype and/or the DNA strand break repair phenotype in combination with the MN assay would allow estimation of the relative sensitivity of a ...

  11. Aqueous stress-corrosion cracking of high-toughness D6AC steel

    Science.gov (United States)

    Gilbreath, W. P.; Adamson, M. J.

    1976-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history, and test technique, under sustained load in filtered natural seawater, 3.3 per cent sodium chloride solution, and distilled water, was investigated. Reported investigations of D6AC were considered in terms of the present study with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, and threshold. Both threshold and growth kinetics were found to be relatively insensitive to these test parameters. The apparent incubation period was dependent on technique, both detection sensitivity and precracking stress intensity level.

  12. The effect of crack branching on the residual lifetime of machine components containing stress corrosion cracks

    International Nuclear Information System (INIS)

    Magdowski, R.M.; Uggowitzer, P.J.; Speidel, M.O.

    1985-01-01

    A comparison is presented of theoretical, numerical and experimental investigations concerning the effect of crack branching on the reduction of stress intensity at the tip of single cracks. The results indicate that the division of a single crack into n branches reduces the stress intensity at the branch tips by a factor of about 1/√n. This permits branched cracks to grow to larger depths before becoming critical. The implication is that longer residual lifetimes and longer operating times between inspections can be calculated for machine components with growing branched stress corrosion cracks. (author)

  13. Detection of stress corrosion cracks and wastage in reactor pressure vessels and primary coolant system studs

    International Nuclear Information System (INIS)

    Light, G.M.; Joshi, N.R.

    1986-01-01

    Over the last few years, nuclear plants have experienced stud bolt failures due to stress corrosion cracking and corrosion wastage. Many of these stud bolts were over 1 m long and had no heater hole. The use of conventional longitudinal wave inspection for bolts longer than 1 m has shown inconsistent results. A nondestructive testing technique was needed to inspect the stud bolts in place. The cylindrically guided wave technique was developed to inspect stud bolts of various lengths (up to 3 m) and various diameters. This technique is based on the fact that an ultrasonic wave traveling in a long cylinder becomes guided by the geometry of the cylinder. The wave begins to spread in the cylinder as interaction with the outer wall produces mode conversions. A large number of model stud bolts were tested to verify that the cylindrically guided wave technique could be used to detect crack-like defects and simulated corrosion wastage. This work shows that the cylindrically guided wave technique can be used on a wide variety of stud bolt configurations, and that the technique can be used to effectively detect the two most common modes of stud bolt failure (corrosion cracking and corrosion wastage) at early stages of development

  14. Stress corrosion cracking of AISI 321 stainless steel in acidic ...

    Indian Academy of Sciences (India)

    Unknown

    Aeronautical Technology 1981),. ,a. FKπσ. = .... Chinese Educational Department for Overseas Student. References ... 7th APCCC (Beijing: International Academic Publi- shers) pp ... Handbook of stress intensity factor (Beijing: PRC Science.

  15. Mitigating the Risk of Stress Corrosion of Austenitic Stainless Steels in Advanced Gas Cooled Reactor Boilers

    International Nuclear Information System (INIS)

    Bull, A.; Owen, J.; Quirk, G.; G, Lewis; Rudge, A.; Woolsey, I.S.

    2012-09-01

    Advanced Gas-Cooled Reactors (AGRs) operated in the UK by EDF Energy have once-through boilers, which deliver superheated steam at high temperature (∼500 deg. C) and pressure (∼150 bar) to the HP turbine. The boilers have either a serpentine or helical geometry for the tubing of the main heat transfer sections of the boiler and each individual tube is fabricated from mild steel, 9%Cr1%Mo and Type 316 austenitic stainless steel tubing. Type 316 austenitic stainless steel is used for the secondary (final) superheater and steam tailpipe sections of the boiler, which, during normal operation, should operate under dry, superheated steam conditions. This is achieved by maintaining a specified margin of superheat at the upper transition joint (UTJ) between the 9%Cr1%Mo primary superheater and the Type 316 secondary superheater sections of the boiler. Operating in this mode should eliminate the possibility of stress corrosion cracking of the Type 316 tube material on-load. In recent years, however, AGRs have suffered a variety of operational problems with their boilers that have made it difficult to maintain the specified superheat margin at the UTJ. In the case of helical boilers, the combined effects of carbon deposition on the gas side and oxide deposition on the waterside of the tubing have resulted in an increasing number of austenitic tubes operating with less than the specified superheat margin at the UTJ and hence the possibility of wetting the austenitic section of the boiler. Some units with serpentine boilers have suffered creep-fatigue damage of the high temperature sections of the boiler, which currently necessitates capping the steam outlet temperature to prevent further damage. The reduction in steam outlet temperature has meant that there is an increased risk of operation with less than the specified superheat margin at the UTJ and hence stress corrosion cracking of the austenitic sections of the boiler. In order to establish the risk of stress

  16. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  17. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    Science.gov (United States)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  18. Manufacturing method for intragranular stress corrosion cracking-induced test specimen for stainless steel pipeline

    International Nuclear Information System (INIS)

    Futagawa, Kiyoshi.

    1994-01-01

    In a manufacturing step for intragranular stress corrosion cracking-induced for stainless steel pipelines, pipe are abutted against with each other and welded, and a heat affected portion is applied with a sensitizing heat treatment. Further, a crevice jig is attached near the heat affected portion at the inner surface of the pipe and kept in a chlorine ion added water under high temperature and high pressure at a predetermined period of time. If tap water is used instead of purified water for C.P.T. test in a step of forming sample of IGSCC (intergranular stress corrosion cracking), since the chlorine ion concentration in the tap water is relatively high, TGSCC (intragranular stress corrosion crackings caused in all of the samples. A heat input and an interlayer temperature are determined for the material of stainless pipe having a carbon content of more than 0.05% so that the welding residual stress on the inner surface is applied as tension. The condition for the heat treatment is determined as, for example, 500degC x 24hr, and the samples are kept under water at high temperature and high pressure applied with chlorine ions for 500 to 200hours. As a result, since samples of TGSCC can be formed by utilizing the manufacturing step for IGSCC, there is no requirement for providing devices for applying environmental factors separately. (N.H.)

  19. Laboratory results of stress corrosion cracking of steam generator tubes in a complex environment - An update

    Energy Technology Data Exchange (ETDEWEB)

    Horner, Olivier; Pavageau, Ellen-Mary; Vaillant, Francois [EDF R and D, Materials and Mechanics of Components Department, 77818 Moret-sur-Loing (France); Bouvier, Odile de [EDF Nuclear Engineering Division, Centre d' Expertise et d' Inspection dans les Domaines de la Realisation et de l' Exploitation, 93206 Saint Denis (France)

    2004-07-01

    Stress corrosion cracking occurs in the flow-restricted areas on the secondary side of steam generator tubes of Pressured Water Reactors (PWR), where water pollutants are likely to concentrate. Chemical analyses carried out during the shutdowns gave some insight into the chemical composition of these areas, which has evolved during these last years (i.e. less sodium as pollutants). It has been modeled in laboratory by tests in two different typical environments: the sodium hydroxide and the sulfate environments. These models satisfactorily describe the secondary side corrosion of steam generator tubes for old plant units. Furthermore, a third typical environment - the complex environment - which corresponds to an All Volatile Treatment (AVT) environment containing alumina, silica, phosphate and acetic acid has been recently studied. This particular environment satisfactorily reproduces the composition of the deposits observed on the surface of the steam generator tubes as well as the degradation of the tubes. A review of the recent laboratory results obtained by considering the complex environment are presented here. Several tests have been carried out in order to study initiation and propagation of secondary side corrosion cracking for some selected materials in such an environment. 600 Thermally Treated (TT) alloy reveals to be less sensitive to secondary side corrosion cracking than 600 Mill Annealed (MA) alloy. Finally, the influence of some related factors like stress, temperature and environmental factors are discussed. (authors)

  20. Laboratory results of stress corrosion cracking of steam generator tubes in a complex environment - An update

    International Nuclear Information System (INIS)

    Horner, Olivier; Pavageau, Ellen-Mary; Vaillant, Francois; Bouvier, Odile de

    2004-01-01

    Stress corrosion cracking occurs in the flow-restricted areas on the secondary side of steam generator tubes of Pressured Water Reactors (PWR), where water pollutants are likely to concentrate. Chemical analyses carried out during the shutdowns gave some insight into the chemical composition of these areas, which has evolved during these last years (i.e. less sodium as pollutants). It has been modeled in laboratory by tests in two different typical environments: the sodium hydroxide and the sulfate environments. These models satisfactorily describe the secondary side corrosion of steam generator tubes for old plant units. Furthermore, a third typical environment - the complex environment - which corresponds to an All Volatile Treatment (AVT) environment containing alumina, silica, phosphate and acetic acid has been recently studied. This particular environment satisfactorily reproduces the composition of the deposits observed on the surface of the steam generator tubes as well as the degradation of the tubes. A review of the recent laboratory results obtained by considering the complex environment are presented here. Several tests have been carried out in order to study initiation and propagation of secondary side corrosion cracking for some selected materials in such an environment. 600 Thermally Treated (TT) alloy reveals to be less sensitive to secondary side corrosion cracking than 600 Mill Annealed (MA) alloy. Finally, the influence of some related factors like stress, temperature and environmental factors are discussed. (authors)

  1. Effect of surface stress states on the corrosion behavior of alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Mo; Shim, Hee Sang; Seo, Myung Ji; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The test environment simulated the primary water chemistry in PWRs. Dissolved oxygen (DO), dissolved hydrogen (DH), pH and conductivity were monitored at room temperature using sensors manufactured by Orbisphere and Mettler Toledo. The temperature and pressure were maintained at 330 .deg. C and 150 bars during the corrosion test. The condition of the test solution was lithium (LiOH) 2 ppm and boron (H3BO4) 1,200 ppm, DH 35 cc/kg (STP) and less than 5 ppb DO. The flow rate of the loop system was 3.8 L/hour. Corrosion tests were conducted for 500 hours. The corrosion release rate was evaluated by a gravimetric analysis method using a two-step alkaline permanganate-ammonium citrate (AP/AC) descaling process. Compressive residual stress is induced by shot peening treatment but its value reveals some different trend between the shot peening intensity on the surface of Alloy 690 TT. A higher shot peening intensity causes a reduction in the corrosion rate and it is considered that the compressive residual stress beneath the surface layer suppresses the metal ion transfer in an alloy matrix.

  2. Feedlot cattle susceptibility to heat stress: an animal specific model

    Science.gov (United States)

    The extreme effects of heat stress in a feedlot situation can cause losses exceeding 5% of all the cattle on feed in a single feedlot. These losses can be very devastating to a localized area of feedlot producers. Animal stress is a result of the combination of three different components: environm...

  3. Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen

    Science.gov (United States)

    Xiang, Longhao; Pan, Juyi; Chen, Songying

    2018-06-01

    The influence of pit shape and size on local stress concentration in the tensile specimen and the stress corrosion cracks inception was studied by employing the element remove technique. The maximum stress located in the bottom of pit on FV520B tensile specimen. The location of maximum strain was near the mouth of the pit or the shoulder and plastic strain existed in this region. Stress concentration factor and plastic deformation on four different geometrical shape pits of hemisphere, semi-ellipsoid, bullet and butterfly were numerically investigated, respectively. The simulation results showed that butterfly pit got the biggest stress concentration factor. The plastic strain rate during pit growth was in the sensitivity range of stress corrosion cracks inception, indicating that stress corrosion cracks were more likely to nucleate near the pit tip or the shoulder.

  4. Stress corrosion cracking of Inconel in high temperature water; Corrosion fissurante sous contrainte de l'Inconel dans l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Coriou,; Grall,; Gall, Le; Vettier, [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Some Inconel samples were subjected to hot water corrosion testing (350 deg. C), under stress slightly above the elastic limit. It has been observed that different types of alloys - with or without titanium - could suffer serious intergranular damage, including a complete rupture, within a three months period. In one case, we observed an unusual intergranular phenomenon which appeared quite different from common intergranular corrosion. (author) [French] Des essais de corrosion d'Inconel sont realises dans l'eau a 350 deg. C, et sous contrainte legerement superieure a la limite elastique. On constate que differentes varietes d'alliage avec ou sans titane donnent lieu a des accidents intergranulaires graves allant jusqu'a rupture complete en 3 mois. Dans un cas, on observe un phenomene intergranulaire particulier tres different de la corrosion intergranulaire classique. (auteur)

  5. A countermeasure for external stress corrosion cracking in piping components by means of residual stress improvement on the outer surface

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiro; Umemoto, Tadahiro

    1988-01-01

    Many techniques have been proposed as countermeasures for the External Stress Corrosion Cracking (ESCC) on austenitic stainless steel piping caused by sea salt particles. However, not one seems perfect. The method proposed here is an expansion of IHSI (Induction Heating Stress Improvement) which has been successfully implemented in many nuclear power plants as a remedy for Intergranular Stress Corrossion Cracking. The proposed method named EIHSI (External IHSI) can make the residual stress compressive on the outer surface of the piping components. In order to confirm the effectiveness of EIHSI, one series of tests were conducted on a weld joint between the pipe flange and the straight pipe. The measured residual stresses and also the results of the cracking test revealed that EIHSI is a superior method to suppress the ESCC. The outline of EIHSI and the verification tests are presented in this paper. (author)

  6. Intergranular stress corrosion in soldered joints of stainless steel 304

    International Nuclear Information System (INIS)

    Zamora R, L.

    1994-01-01

    The intergranular stress cracking of welded joints of austenitic stainless steel, AISI 304, is a serious problem in BWR type reactors. It is associated with the simultaneous presence of three factors; stress, a critical media and sensibilization (DOS). EPR technique was used in order to verify the sensibilization degree in the base metal, and the zone affected by heat and welding material. The characterization of material was done. The objective of this work is the study of microstructure and the evaluation of EPR technique used for the determination of DOS in a welded plate of austenitic stainless steel AISI 304. (Author)

  7. Modeling the initiation of Primary Water Stress Corrosion Cracking in nickel base alloys 182 and 82 of Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Wehbi, Mickael

    2014-01-01

    Nickel base welds are widely used to assemble components of the primary circuit of Pressurized Water Reactors (PWR) plants. International experience shows an increasing number of Stress Corrosion Cracks (SCC) in nickel base welds 182 and 82 which motivates the development of models predicting the time to SCC initiation for these materials. SCC involves several parameters such as materials, mechanics or environment interacting together. The goal of this study is to have a better understanding of the physical mechanisms occurring at grains boundaries involved in SCC. In-situ tensile test carried out on oxidized alloy 182 evidenced dispersion in the susceptibility to corrosion of grain boundaries. Moreover, the correlation between oxidation and cracking coupled with micro-mechanical simulations on synthetic polycrystalline aggregate, allowed to propose a cracking criterion of oxidized grain boundaries which is defined by both critical oxidation depth and local stress level. Due to the key role of intergranular oxidation in SCC and since significant dispersion is observed between grain boundaries, oxidation tests were performed on alloys 182 and 82 in order to model the intergranular oxidation kinetics as a function of chromium carbides precipitation, temperature and dissolved hydrogen content. The model allows statistical analyses and is embedded in a local initiation model. In this model, SCC initiation is defined by the cracking of the intergranular oxide and is followed by slow and fast crack growth until the crack depth reaches a given value. Simplifying assumptions were necessary to identify laws used in the SCC model. However, these laws will be useful to determine experimental conditions of future investigations carried out to improve the calibration used parameters. (author)

  8. Statistical study on applied stress dependence of failure time in stress corrosion cracking of Zircaloy-4 alloy

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi; Tanaka, Akiei.

    1988-01-01

    Effects of applied stress on failure time in stress corrosion cracking of Zircaloy-4 alloy were investigated by Weibull distribution method. Test pieces in the evaculated silica tubes were annealed at 1,073 K for 7.2 x 10 3 s, and then quenched into ice-water. These species under constant applied stresses of 40∼90 % yield stress were immersed in CH 3 OH-1 w% I 2 solution at room temperature. The probability distribution of failure times under applied stress of 40 % of yield stress was described as single Weibull distribution, which had one shape parameter. The probability distributions of failure times under applied stress above 60 % of yield stress were described as composite and mixed Weibull distributions, which had the two shape parameters of Weibull distributions for the regions of the shorter time and longer one of failure. The values of these shape parameters in this study were larger than the value of 1 which corresponded to that of wear out failure. The observation of fracture surfaces and the stress dependence of the shape parameters indicated that the shape parameters both for the times of failure under 40 % of yield stress and for the longer ones above 60 % of yield stress corresponded to intergranular cracking, and that for shorter times of failure corresponded to transgranular cracking and dimple fracture. (author)

  9. Hydrogen embrittlement and hydrogen induced stress corrosion cracking of high alloyed austenitic materials; Wasserstoffversproedung und wasserstoffinduzierte Spannungsrisskorrosion hochlegierter austenitischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Mummert, K; Uhlemann, M; Engelmann, H J [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    1998-11-01

    The susceptiblity of high alloyed austenitic steels and nickel base alloys to hydrogen-induced cracking is particularly determined by 1. the distribution of hydrogen in the material, and 2. the microstructural deformation behaviour, which last process is determined by the effects of hydrogen with respect to the formation of dislocations and the stacking fault energy. The hydrogen has an influence on the process of slip localization in slip bands, which in turn affects the microstructural deformation behaviour. Slip localization increases with growing Ni contents of the alloys and clearly reduces the ductility of the Ni-base alloy. Although there is a local hydrogen source involved in stress corrosion cracking, emanating from the corrosion process at the cathode, crack growth is observed only in those cases when the hydrogen concentration in a small zone ahead of the crack tip reaches a critical value with respect to the stress conditions. Probability of onset of this process gets lower with growing Ni content of the alloy, due to increasing diffusion velocity of the hydrogen in the austenitic lattice. This is why particularly austenitic steels with low Ni contents are susceptible to transcrystalline stress corrosion cracking. In this case, the microstructural deformation process at the crack tip is also influenced by analogous processes, as could be observed in hydrogen-loaded specimens. (orig./CB) [Deutsch] Die Empfindlichkeit von hochlegierten austentischen Staehlen und Nickelbasislegierungen gegen wasserstoffinduziertes Risswachstum wird im wesentlichen bestimmt durch 1. die Verteilung von Wasserstoff im Werkstoff und 2. das mikrostrukturelle Verformungsverhalten. Das mikrostrukturelle Deformationsverhalten ist wiederum durch den Einfluss von Wasserstoff auf die Versetzungsbildung und die Stapelfehlerenergie charakterisiert. Das mikrostrukturelle Verformungsverhalten wird durch wasserstoffbeeinflusste Gleitlokalisierung in Gleitbaendern bestimmt. Diese nimmt mit

  10. Stress field determination in an alloy 600 stress corrosion crack specimen; Determination du champ de contraintes dans une eprouvette de corrosion sous contrainte de l`alliage 600

    Energy Technology Data Exchange (ETDEWEB)

    Rassineux, B.; Labbe, T.

    1995-05-01

    In the context of EDF studies on stress corrosion cracking rates in the Alloy 600 steam generators tubes, we studied the influence of strain hardened surface layers on the different stages of cracking for a tensile smooth specimen (TLT). The stress field was notably assessed to try and explain the slow/rapid-propagation change observed beyond the strain hardened layers. The main difficulty is to simulate in a finite element model the inner and outer surfaces of these strain hardened layers, produced by the final manufacturing stages of SG tubes which have not been heat treated. In the model, the strain hardening is introduced by simulating a multi-layer material. Residual stresses are simulated by an equivalent fictitious thermomechanical calculation, realigned with respect to X-ray measurements. The strain hardening introduction method was validated by an analytical calculation giving identical results. Stress field evolution induced by specimen tensile loading were studied using an elastoplastic 2D finite element calculations performed with the Aster Code. The stress profile obtained after load at 660 MPa shows no stress discontinuity at the boundary between the strain hardened layer and the rest of the tube. So we propose that a complementary calculation be performed, taking into account the multi-cracked state of the strain hardened zones by means of a damage variable. In fact, this state could induce stress redistribution in the un-cracked area, which would perhaps provide an explanation of the crack-ground rate change beyond the strain hardened zone. The calculations also evidence the harmful effects of plastic strains on a strain hardened layer due to the initial state of the tube (not heat-treated), to grit blasting or to shot peening. The initial compressive stress condition of this surface layer becomes, after plastic strain, a tensile stress condition. These results are confirmed by laboratory test. (author). 10 refs., 18 figs., 9 tabs., 2 appends.

  11. Stress corrosion cracking resistance of aluminum alloy 7000 series after two-step aging

    Directory of Open Access Journals (Sweden)

    Jegdić Bore V.

    2015-01-01

    Full Text Available The effect of one step-and a new (short two-step aging on the resistance to stress corrosion cracking of an aluminum alloy 7000 series was investigated, using slow strain rate test and fracture mechanics method. Aging level in the tested alloy was evaluated by means of scanning electron microscopy and measurements of electrical resistivity. It was shown that the alloy after the new two-step aging is significantly more resistant to stress corrosion cracking. Values of tensile properties and fracture toughness are similar for both thermal states. Processes that take place at the crack tip have been considered. The effect of the testing solution temperature on the crack growth rate on the plateau was determined. Two values of the apparent activation energy were obtained. These values correspond to different processes that control crack growth rate on the plateau at higher and lower temperatures. [Projekat Ministarstva nauke Republike Srbije, br. TR 34028 i br. TR 34016

  12. Service experience and stress corrosion of Inconel 600 bellows expansion joints in turbine steam environments

    International Nuclear Information System (INIS)

    Kramer, L.D.; Michael, S.T.; Pement, F.W.

    The purpose of this paper is to discuss the service history of Inconel 600 expansion bellows, to illustrate a typical case of failure, propose S.C.C. mechanisms, and to rationalize the most probable mechanism. Inconel 600 is fully resistant to high-purity power plant steam (720 deg F maximum) for on-going service lifetimes which greatly exceed the incubation periods which are reported or postulated in the literature for delayed stress corrosion cracking in high-purity water tests (630-660 deg F). The only observed stress corrosion environments which are sufficiently rapidly deleterious to be consistent with failure lifetimes are molten NaOH in superheated steam or a very concentrated aqueous caustic solution containing silica contamination. (author)

  13. Stress Corrosion Evaluation of Nitinol 60 for the International Space Station Water Recycling System

    Science.gov (United States)

    Torres, P. D.

    2016-01-01

    A stress corrosion cracking (SCC) evaluation of Nitinol 60 was performed because this alloy is considered a candidate bearing material for the Environmental Control and Life Support System (ECLSS), specifically in the Urine Processing Assembly of the International Space Station. An SCC evaluation that preceded this one during the 2013-2014 timeframe included various alloys: Inconel 625, Hastelloy C-276, titanium (Ti) commercially pure (CP), Ti 6Al-4V, extra-low interstitial (ELI) Ti 6Al-4V, and Cronidur 30. In that evaluation, most specimens were exposed for a year. The results of that evaluation were published in NASA/TM-2015-218206, entitled "Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System,"1 available at the NASA Scientific and Technical Information program web page: http://www.sti.nasa.gov. Nitinol 60 was added to the test program in 2014.

  14. Hydrogen-related stress corrosion cracking in line pipe steel

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo

    1997-01-01

    A correlation between hydrogen concentration (C0) and the critical stress intensity factor for propagation of hydrogen-related cracks has been established by fracture mechanical testing of CT-specimens for the heat affected zone of an X-70 pipeline steel. This has been compared with field...

  15. Effects of neutron radiation and residual stresses on the corrosion of welds in light water reactor internals

    International Nuclear Information System (INIS)

    Schaaf, Bob van der; Gavillet, Didier; Lapena, Jesus; Ohms, Carsten; Roth, Armin; Dyck, Steven van

    2006-01-01

    After many years of operation in Light Water Reactors (LWR) Irradiation Assisted Stress Corrosion Cracking (IASCC) of internals has been observed. In particular the heat-affected zone (HAZ) has been associated with IASCC attack. The welding process induces residual stresses and micro-structural modifications. Neutron irradiation affects the materials response to mechanical loading. IASCC susceptibility of base materials is widely studied, but the specific conditions of irradiated welds are rarely assessed. Core component relevant welds of Type 304 and 347 steels have been fabricated and were irradiated in the High Flux Reactor (HFR) in Petten to 0.3 and 1 dpa (displacement per atom). In-service welds were cut from the thermal shield of the decommissioned BR-3 reactor. Residual stresses, measured using neutron diffraction, ring core tests and X-ray showed residual stress levels up to 400 MPa. Micro-structural characterization showed higher dislocation densities in the weld and HAZ. Neutron radiation increased the dislocation density, resulting in hardening and reduced fracture toughness. The sensitization degree of the welds, measured with the electrochemical potentio-dynamic reactivation method, was negligible. The Slow Strain Rate Tensile (SSRT) tests, performed at 290 deg. C in water with 200 ppb dissolved oxygen, (DO), did not reveal inter-granular cracking. Inter-granular attack of in-service steel is observed in water with 8 ppm (DO), attributed not only to IASCC, but also to IGSCC from thermal sensitization during fabrication. Stress-relieve annealing has caused Cr-grain boundary precipitation, indicating the sensitization. The simulated internal welds, irradiated up to 1.0 dpa, did not show inter-granular cracking with 8 ppm DO. (authors)

  16. Study of the Effect of Swelling on Irradiation Assisted Stress Corrosion Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, Sebastien Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the methodology used to study the effect of swelling on the crack growth rate of an irradiation-assisted stress corrosion crack that is propagating in highly irradiated stainless steel 304 material irradiated to 33 dpa in the Experimental Breeder Reactor-II. The material selection, specimens design, experimental apparatus and processes are described. The results of the current test are presented.

  17. Constant load and constant displacement stress corrosion in simulated water reactor environments

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1987-02-01

    The stress corrosion behaviour of selected water reactor constructional materials, as determined by constant load or constant displacement test techniques, is reviewed. Experimental results obtained using a very wide range of conditions have been collected in a form for easy reference. A discussion is given of some apparent trends in these data. The possible reasons for these trends are considered together with a discussion of how the observed discrepancies may be resolved. (author)

  18. Characterization of acoustic emission signals generated by water flow through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Claytor, T.N.; Kupperman, D.S.

    1985-05-01

    A program is under way at Argonne National Laboratory (ANL) to develop an independent capability to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. The program will establish whether meaningful quantitative data on flow rates and leak location can be obtained from acoustic signatures of leaks due to intergranular stress corrosion cracks (TGSCCs) and fatigue cracks, and whether these can be distinguished from other types of leaks. 5 refs., 3 figs

  19. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    Science.gov (United States)

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  20. Evidence of Deep Water Penetration in Silica during Stress Corrosion Fracture

    OpenAIRE

    Lechenault, F.; Rountree, C. L.; Cousin, F.; Bouchaud, J.-P.; Ponson, L.; Bouchaud, E.

    2011-01-01

    We measure the thickness of the heavy water layer trapped under the stress corrosion fracture surface of silica using neutron reflectivity experiments. We show that the penetration depth is 65-85 \\aa ngstr\\"{o}ms, suggesting the presence of a damaged zone of $\\approx$ 100 \\aa ngstr\\"{o}ms extending ahead of the crack tip during its propagation. This estimate of the size of the damaged zone is compatible with other recent results.

  1. Stress corrosion cracking studies of reactor pressure vessel steels. Final report

    International Nuclear Information System (INIS)

    Van Der Sluys, W.A.

    1996-10-01

    The objective of this project was to perform a critical review of the information available in open literature on stress corrosion cracking of reactor pressure vessel materials in simulated light-water-reactor (LWR) conditions, develop a test procedure for conducting stress corrosion crack growth experiments in simulated LWR environments, and conduct a test program in an effort to duplicate some of the data available from the literature. The authors concluded that stress corrosion crack growth has been observed in pressure vessel steels under laboratory test conditions. The composition of the water in most cases where growth was observed is outside of the composition specified for operating conditions. Crack growth was observed in the experiments performed in this program, and it was intermittent. The cracking would start and stop for no apparent reason. In most instances, it would not restart without the change of some external variable. In a few instances, it restarted on its own. Crack growth rates as high as 3.6 x 10 -9 m/sec were observed in pressure vessel steels in high-purity water with 8 ppm oxygen. These high crack growth rates were observed for extremely short bursts in crack extension. They could not be sustained for crack growth extensions greater than a few tenths of a millimeter. From the results of this project it appears highly unlikely that stress corrosion cracking will be observed in operating nuclear plants where the coolant composition is maintained within water chemistry guidelines. However, more work is needed to better define the contaminations that cause crack growth. The crack growth rates are so high and the threshold values for crack nucleation are so low that the conditions causing them need to be well defined and avoided

  2. Effect of ETA treatment on corrosion fatigue in rotors and blades and stress corrosion cracking in 3.5 NiCrMoV steel low-pressure turbine discs

    International Nuclear Information System (INIS)

    Hitomi, Itoh; Takashi, Momoo; Takayuki, Shiomi

    2001-01-01

    In recent years, to increase the reliability and reduce the amount of feed water iron to prevent of fouling of steam generator tubes, ethanolamine (ETA) treatment has been adopted into the secondary system. In this investigation, the authors verified that ethanolamine treatment does not adversely affect the susceptibility of either stress corrosion cracking (SCC) in the turbine discs that are the principal units in the secondary system or corrosion fatigue (CF) in rotors and blades. In the first stage, a laboratory investigation was made of (1) SCC initiation and propagation in 3,5 NiCrMoV steel and (2) CF in 3,5 NiCrMoV steel and blade steels, in both cases using deaerated water to which had been added ethanolamine with few organic acids that is 10 times the estimated concentration. It was confirmed that the ethanolamine treatment had almost no effect. In the second stage, test pieces (removed from the disc steel inserted into the turbine extraction chamber before the ethanolamine treatment was started) were used to observe the initiation and propagation of SCC. Even after long-term observation, ethanolamine treatment into the secondary system was found to have almost no effect on the susceptibility of SCC in discs. (author)

  3. Preliminary study for extension and improvement on modeling of primary water stress corrosion cracking at control rod drive mechanism nozzles of pressurized water reactors

    International Nuclear Information System (INIS)

    Aly, Omar F.; Mattar Neto, Miguel M.; Schvartzman, Monica M.M.A.M.

    2009-01-01

    This study is for to extend, to improve the existing models, and to propose a local approach to assess the primary water stress corrosion cracking in nickel-based components. It is includes a modeling of new data for Alloy 182 and new considerations about initiation and crack growth according a developing method based on EPRI-MRP-115 (2004), and USNRC NUREG/CR-6964 (2008). The experimental data is obtained from CDTN-Brazilian Nuclear Technology Development Center, by tests through slow strain rate test (SSRT) equipment. The model conception assumed is a built diagram which indicates a thermodynamic condition for the occurrence of corrosion submodes in essayed materials, through Pourbaix diagrams, for Nickel Alloys in high temperature primary water. Over them, are superimposed different models, including a semi-empiric-probabilistic one to quantify the primary water stress corrosion cracking susceptibility, and a crack growth model. These constructed models shall be validated with the experimental data. This development aims to extent some of the models obtained to weld metals like the Alloy 182, and to improve the originals obtained according methodologies exposed in above referred reports. These methodologies comprise laboratory testing procedures, data collecting, data screening, modeling procedures, assembling of data from some laboratories in the world, plotting of results, compared analysis and discussion of these results. Preliminary results for Alloy 182 will be presented. (author)

  4. Preliminary study for extension and improvement on modeling of primary water stress corrosion cracking at control rod drive mechanism nozzles of pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Omar F.; Mattar Neto, Miguel M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: ofaly@ipen.br, e-mail: mmattar@ipen.br; Schvartzman, Monica M.M.A.M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)], e-mail: monicas@cdtn.br

    2009-07-01

    This study is for to extend, to improve the existing models, and to propose a local approach to assess the primary water stress corrosion cracking in nickel-based components. It is includes a modeling of new data for Alloy 182 and new considerations about initiation and crack growth according a developing method based on EPRI-MRP-115 (2004), and USNRC NUREG/CR-6964 (2008). The experimental data is obtained from CDTN-Brazilian Nuclear Technology Development Center, by tests through slow strain rate test (SSRT) equipment. The model conception assumed is a built diagram which indicates a thermodynamic condition for the occurrence of corrosion submodes in essayed materials, through Pourbaix diagrams, for Nickel Alloys in high temperature primary water. Over them, are superimposed different models, including a semi-empiric-probabilistic one to quantify the primary water stress corrosion cracking susceptibility, and a crack growth model. These constructed models shall be validated with the experimental data. This development aims to extent some of the models obtained to weld metals like the Alloy 182, and to improve the originals obtained according methodologies exposed in above referred reports. These methodologies comprise laboratory testing procedures, data collecting, data screening, modeling procedures, assembling of data from some laboratories in the world, plotting of results, compared analysis and discussion of these results. Preliminary results for Alloy 182 will be presented. (author)

  5. Effect of pH Value on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in the Dilute Bicarbonate Solutions

    Science.gov (United States)

    Cui, Z. Y.; Liu, Z. Y.; Wang, L. W.; Ma, H. C.; Du, C. W.; Li, X. G.; Wang, X.

    2015-11-01

    In this work, effects of pH value on the electrochemical and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the dilute bicarbonate solutions were investigated using electrochemical measurements, slow strain rate tensile tests and surface analysis techniques. Decrease of the solution pH from 6.8 to 6.0 promotes the anodic dissolution and cathodic reduction simultaneously. Further decrease of the pH value mainly accelerates the cathodic reduction of X70 pipeline steel. As a result, when the solution pH decreases form 6.8 to 5.5, SCC susceptibility decreases because of the enhancement of the anodic dissolution. When the solution pH decreases from 5.5 to 4.0, SCC susceptibility increases gradually because of the acceleration of cathodic reactions.

  6. Fundamental aspects of stress corrosion cracking of copper relevant to the Swedish deep geologic repository concept

    International Nuclear Information System (INIS)

    Bhaskaran, Ganesh; Carcea, Anatolie; Ulaganathan, Jagan; Wang, Shengchun; Huang, Yin; Newman, Roger C.

    2013-03-01

    Phosphorus-doped oxygen-free copper will be used as the outer barrier in canisters that will contain spent nuclear fuel in the proposed Swedish underground repository. The possibility of stress corrosion cracking (SCC) is a concern, in view of isolated reports of cracking or intergranular corrosion of pure copper in sulfide solutions. This concern was addressed in the present work using copper tensile specimens provided by SKB. Methods included slow strain rate testing, constant strain tensile testing, electrochemical and surface analytical studies of corrosion products, and electron backscatter diffraction analysis of grain orientation effects on corrosion. The base solutions were prepared from NaCl or synthetic sea water with addition of varying amounts of sodium sulfide at room temperature and 80 degree Celsius. No SCC was found in any of the testing, for a range of sulfide concentrations from 5-50 mM at room temperature or 8 C, including tests where small anodic or cathodic potential displacements were applied from the open-circuit (corrosion) potential. Neither was SCC found in constant-strain immersion testing with very large strain. The Cu2S corrosion product is generally very coarse, fragile, and easily spalled off in severe corrosion environments, i.e. high sulfide concentration, high temperature, less perfect de aeration, etc. But it could also consist of very fine grains, relatively compact and adherent, on particular grain orientations when it was formed on an electro polished surface in a very well-deaerated solution. These orientations have not yet been identified statistically, although some preference for thin, adherent films was noted on orientations close to (100). The notion that the corrosion reaction is always controlled by inward aqueous-phase diffusion of sulfide may thus not be unconditionally correct for this range of sulfide concentrations; however it is hard to distinguish the role of diffusion within pores in the film. In the actual

  7. Fundamental aspects of stress corrosion cracking of copper relevant to the Swedish deep geologic repository concept

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, Ganesh; Carcea, Anatolie; Ulaganathan, Jagan; Wang, Shengchun; Huang, Yin; Newman, Roger C. [Dept. of Chemical Engineering and Applied Chemistry, Univ. of Toronto, Toronto (Canada)

    2013-03-15

    Phosphorus-doped oxygen-free copper will be used as the outer barrier in canisters that will contain spent nuclear fuel in the proposed Swedish underground repository. The possibility of stress corrosion cracking (SCC) is a concern, in view of isolated reports of cracking or intergranular corrosion of pure copper in sulfide solutions. This concern was addressed in the present work using copper tensile specimens provided by SKB. Methods included slow strain rate testing, constant strain tensile testing, electrochemical and surface analytical studies of corrosion products, and electron backscatter diffraction analysis of grain orientation effects on corrosion. The base solutions were prepared from NaCl or synthetic sea water with addition of varying amounts of sodium sulfide at room temperature and 80 degree Celsius. No SCC was found in any of the testing, for a range of sulfide concentrations from 5-50 mM at room temperature or 8 C, including tests where small anodic or cathodic potential displacements were applied from the open-circuit (corrosion) potential. Neither was SCC found in constant-strain immersion testing with very large strain. The Cu2S corrosion product is generally very coarse, fragile, and easily spalled off in severe corrosion environments, i.e. high sulfide concentration, high temperature, less perfect de aeration, etc. But it could also consist of very fine grains, relatively compact and adherent, on particular grain orientations when it was formed on an electro polished surface in a very well-deaerated solution. These orientations have not yet been identified statistically, although some preference for thin, adherent films was noted on orientations close to (100). The notion that the corrosion reaction is always controlled by inward aqueous-phase diffusion of sulfide may thus not be unconditionally correct for this range of sulfide concentrations; however it is hard to distinguish the role of diffusion within pores in the film. In the actual

  8. Caustic stress corrosion cracking of Inconel-600, Incoloy-800, and Type 304 stainless steel

    International Nuclear Information System (INIS)

    Theus, G.J.

    1976-01-01

    High-temperature electrochemical tests have resulted in the stress corrosion cracking of Inconel-600 and Incoloy-800 (registered trademarks, International Nickel Company), and Type 304 stainless steel in caustic solutions. Results show that stress corrosion cracking of these alloys can be prevented or accelerated by varying their electrochemical potential. To a certain extent, the same effect can be achieved by altering the gas atmosphere above the test solution from a pure nitrogen cover gas to a mixture of 5 percent H 2 and 95 percent N 2 . The effect of the cover gas can then be negated by adjusting the specimen's electrochemical potential either to cause or to inhibit stress corrosion cracking. Some specifics of the test results reveal that in deoxygenated caustic solutions, Inconel-600 cracks intergranularly at mildly anodic potentials; Incoloy-800 cracks transgranularly at reduced potentials (at or near the open circuit potential) and intergranularly at highly oxidizing potentials; and cracking is mixed (transgranular/intergranular) for Type 304 stainless steel at or near the open circuit potential. The severity of cracking for both Inconel-600 and Incoloy-800 in deoxygenated caustic solutions is reduced by giving the materials a simulated post-weld heat treatment (1150 0 F for 18 h). Test results on Inconel-600 show that high-carbon (0.06 percent) material cracks less severely than low-carbon (0.02 percent) material, in both the simulated post-weld heat-treated condition and the mill-annealed condition

  9. Evaluation of stress corrosion cracking as a function of its resistance to eddy currents

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Hashizume, Hidetoshi

    2009-01-01

    This study discusses the equivalent conductivity, the equivalent width, and the equivalent resistance of stress corrosion cracks from the viewpoint of eddy current testing. Four artificial stress corrosion cracks were prepared for this study, and their eddy current signals were gathered using two absolute pancake probes and two differential type plus point probes. Then their numerical models were evaluated using finite element simulations on the basis of the measured eddy current signals and their profiles revealed by destructive tests. The results of this study revealed that whereas the equivalent conductivity and the equivalent width depend on the exciting frequency utilized, the equivalent resistance of a crack has much less dependency, which agrees well with an earlier report. This study also revealed that the resistance of a crack depends on probe utilized. Larger probes tend to lead to smaller crack resistance. Pancake type probes tend to lead to larger crack resistance than plus point probes. Analyzing the results together with earlier reports indicates that cracks with a large equivalent conductivity tend to have large equivalent width, and supports the validity of assuming the minimum resistance of a stress corrosion crack whereas considering the conductivity and the width individually would not be viable.

  10. Slow strain rate stress corrosion tests on A508-III and A533B steel in de-ionized and PWR water at 563K

    International Nuclear Information System (INIS)

    Hurst, P.; Appleton, D.A.; Banks, P.; Raffel, A.S.

    1985-01-01

    An experimental programme is being undertaken to assess the extent to which PWR pressure vessel steels, including weldments, may be susceptible to stress corrosion cracking under relevant water chemistry and flow rate conditions. Initial results from slow strain rate tests on parent A533B and A508-III steels together with a weldment are described. No susceptibility to stress corrosion was observed for either steel, when tested in the rolling (L) direction, at a potential characteristic of normal quality PWR water. For cracking to occur on such specimens the potential must be displaced by 400 to 500 mV in the positive direction, requiring (in the case of high flow de-ionized water) the presence of ca 200 ppb oxygen. Some cracking was observed on transverse (S) direction specimens in water containing 2 , indicating that there may be micro-structural features which can cause cracking even in low oxygen water. This orientation is not directly relevant to pressure vessels and the cracking may only arise as a consequence of the deformation encountered in the slow strain rate test. (author)

  11. A phenomenological model for iodine stress corrosion cracking of zircaloy

    International Nuclear Information System (INIS)

    Miller, A.K.; Tasooji, A.

    1981-01-01

    To predict the response of Zircaloy tubing in iodine environments under conditions where either crack initiation or crack propagation predominates, a unified model of the SCC process has been developed based on the local conditions (the local stress, local strain, and local iodine concentration) within a small volume of material at the cladding inner surface or the crack tip. The methodology used permits computation of these values from simple equations. A nonuniform distribution of local stress and strain results once a crack has initiated. The local stress can be increased due to plastic constraint and triaxiality at the crack tip. Iodine penetration is assumed to be a surface diffusion-controlled process. Experimental data are used to derive criteria for intergranular failure, transgranular failure, and ductile rupture in terms of the local conditions. The same failure criteria are used for both crack initiation and crack propagation. Irradiation effects are included in the model by changing the value of constants in the equation governing iodine penetration and by changing the values used to represent the mechanical properties of the Zircaloy. (orig./HP)

  12. Zircaloy-4 stress corrosion by iodine: crack kinetics and influence of irradiation on the crack initiation

    International Nuclear Information System (INIS)

    Serres, A.

    2008-01-01

    During the PWR power transients, iodine-induced stress corrosion cracking (I-SCC) is one of the potential failure modes of Zircaloy-4 fuel claddings under Pellet-Cladding Interaction conditions. The primary objective of this study is to distinguish the parameters that contribute to the I-SCC phenomenon in iodized methanol solutions at ambient temperature, on notched tensile specimens, using crack growth rate measurements provided by Direct Current Potential Drop. The results show that for a KI lower than 20 MPa.m 1/2 , the IG and mixed IG/TG velocity of propagation is a linear function of KI, regardless of the propagation mode. Between 20 and 25 MPa.m 1/2 , the TG crack growth rate also depends linearly on KI, but increases at a faster rate with respect to KI than during the IG and mixed IG/TG propagation steps. The crack propagation direction and plane (LT and TL) have an impact on the propagation modes, but no impact on the kinetics. The increase of iodine content induces an increase of the crack growth rate for a given KI, and a decrease of the KI, threshold, allowing the crack propagation. This work enables us to quantify the effect of iodine content and of KI on the crack propagation step, propose a propagation law taking into accounts these parameters, and improve the I-SCC description for models. During operation, a zirconium cladding is neutron-irradiated, modifying its microstructure and deformation modes. The second objective of the study is therefore to investigate the impact of these modifications on I-SCC. For that purpose, smooth specimens in recrystallized Zircaloy-4 are proton-irradiated to 2 dpa at 305 C, the microstructure and deformation modes of unirradiated and irradiated Zircaloy-4 are characterized by TEM and SEM, and the influence of these radiation-induced modifications on the I-SCC susceptibility is studied. The Laves phases precipitates are slightly modified by irradiation. The formation of P -type dislocation loops correlated with

  13. Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels

    International Nuclear Information System (INIS)

    Busby, J.T.; Was, G.S.; Kenik, E.A.

    2002-01-01

    Post-irradiation annealing was used to help identify the role of radiation-induced segregation (RIS) in irradiation-assisted stress corrosion cracking (IASCC) by preferentially removing dislocation loop damage from proton-irradiated austenitic stainless steels while leaving the RIS of major and minor alloying elements largely unchanged. The goal of this study is to better understand the underlying mechanisms of IASCC. Simulations of post-irradiation annealing of RIS and dislocation loop microstructure predicted that dislocation loops would be removed preferentially over RIS due to both thermodynamic and kinetic considerations. To verify the simulation predictions, a series of post-irradiation annealing experiments were performed. Both a high purity 304L (HP-304L) and a commercial purity 304 (CP-304) stainless steel alloy were irradiated with 3.2 MeV protons at 360 deg. C to doses of 1.0 and 2.5 dpa. Following irradiation, post-irradiation anneals were performed at temperatures ranging from 400 to 650 deg. C for times between 45 and 90 min. Grain boundary composition was measured using scanning transmission electron microscopy with energy-dispersive spectrometry in both as-irradiated and annealed samples. The dislocation loop population and radiation-induced hardness were also measured in as-irradiated and annealed specimens. At all annealing temperatures above 500 deg. C, the hardness and dislocation densities decreased with increasing annealing time or temperature much faster than RIS. Annealing at 600 deg. C for 90 min removed virtually all dislocation loops while leaving RIS virtually unchanged. Cracking susceptibility in the CP-304 alloy was mitigated rapidly during post-irradiation annealing, faster than RIS, dislocation loop density or hardening. That the cracking susceptibility changed while the grain boundary chromium composition remained essentially unchanged indicates that Cr depletion is not the primary determinator for IASCC susceptibility. For the same

  14. A comparing study of alloy 600 and alloy 690 on resistance to intergranular stress corrosion cracking(IGSCC)

    International Nuclear Information System (INIS)

    Lee, Jae Hun

    1993-02-01

    In order to compare the effect of senitization on the intergranular stress corrosion cracking(IGSCC) between Alloy 600 and Alloy 690, these alloys have been sensitized for 1 to 100 hours at 700 .deg. C. The degree of sensitization(DOS) has evaluated by the ratio of Ir(the maximum current density at anodic scan) to Ia(the maximum current density at reverse scan) in the modified double loop EPR(electrochemical potentiokinetic reactivation) test in 0.01M H 2 SO 4 + 0.0001M KSCN at 25 .deg. C and at scan rate of 0.5mV/sec. The susceptibility to IGSCC has been measured in 0.01M Na 2 S 4 O 6 solution using CERT(constant extension rate tester) at strain rate of 1.0 x 10 -6 S -1 . With increasing sensitization time the DOS of Alloy 600 increases to the maximum value at 5 hours and decreases gradually due to the replenishment of Cr to the Cr-depleted grain boundaries. For Alloy 600 samples except those sensitized for less than 1 hour, the DOS measured by the modified EPR test parallel to susceptibility to IGSCC revealed by the ratio of strain to failure (εf, Na 2 S 4 O 6 /εf, Air). It appears that the susceptibility to IGSCC is closely associated with the depth in Cr-depleted concentration profile across grain boundary. For the sensitized Alloy 690 samples exhibited extremely low value of Ir/Ia less than 0.074% and also were immune to IGSCC. The good resistance of Alloy 690 to IGSCC is considered to be attributed to the higher Cr concentration to avoid serious Cr-depletion problems adjacent to grain boundary

  15. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress.

    Science.gov (United States)

    Hodes, Georgia E; Pfau, Madeline L; Leboeuf, Marylene; Golden, Sam A; Christoffel, Daniel J; Bregman, Dana; Rebusi, Nicole; Heshmati, Mitra; Aleyasin, Hossein; Warren, Brandon L; Lebonté, Benoit; Horn, Sarah; Lapidus, Kyle A; Stelzhammer, Viktoria; Wong, Erik H F; Bahn, Sabine; Krishnan, Vaishnav; Bolaños-Guzman, Carlos A; Murrough, James W; Merad, Miriam; Russo, Scott J

    2014-11-11

    Depression and anxiety disorders are associated with increased release of peripheral cytokines; however, their functional relevance remains unknown. Using a social stress model in mice, we find preexisting individual differences in the sensitivity of the peripheral immune system that predict and promote vulnerability to social stress. Cytokine profiles were obtained 20 min after the first social stress exposure. Of the cytokines regulated by stress, IL-6 was most highly up-regulated only in mice that ultimately developed a susceptible behavioral phenotype following a subsequent chronic stress, and levels remained elevated for at least 1 mo. We confirmed a similar elevation of serum IL-6 in two separate cohorts of patients with treatment-resistant major depressive disorder. Before any physical contact in mice, we observed individual differences in IL-6 levels from ex vivo stimulated leukocytes that predict susceptibility versus resilience to a subsequent stressor. To shift the sensitivity of the peripheral immune system to a pro- or antidepressant state, bone marrow (BM) chimeras were generated by transplanting hematopoietic progenitor cells from stress-susceptible mice releasing high IL-6 or from IL-6 knockout (IL-6(-/-)) mice. Stress-susceptible BM chimeras exhibited increased social avoidance behavior after exposure to either subthreshold repeated social defeat stress (RSDS) or a purely emotional stressor termed witness defeat. IL-6(-/-) BM chimeric and IL-6(-/-) mice, as well as those treated with a systemic IL-6 monoclonal antibody, were resilient to social stress. These data establish that preexisting differences in stress-responsive IL-6 release from BM-derived leukocytes functionally contribute to social stress-induced behavioral abnormalities.

  16. Use of Noninvasive Bone Structural Measurements to Evaluate Stress Fracture Susceptibility Among Female Recruits in U.S. Marine Corps Basic Training: Individual Profiles of Stress Fracture Susceptibility Among Female Recruits in U.S. Marine Corps Basic Training

    National Research Council Canada - National Science Library

    Shaffer, Rick

    1996-01-01

    The objective of this study was to derive predictive models of stress fracture susceptibility in female military recruits by administering a questionnaire highlighting exercise and health habits prior...

  17. Effect of cold working and annealing on stress corrosion cracking of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Yeon, Y.M.; Kwun, S.I.

    1983-01-01

    A study was made of the effects of cold working and annealing on the stress corrosion cracking of AISI 304 stainless steel in boiling 42% MgCl 2 solution. When the 60% or 76% of yield stress was applied, the resistance to SCC showed maximum at 30% of cold work. However, when the same load was applied to the annealed specimens after cold working, the resistance to SCC decreased abruptly at 675degC annealing. The fracture mode changed mode change mixed → intergranular → transgranular as the amount of cold work increased. (Author)

  18. The stress corrosion cracking of hard 2 1/4 CrMo steel in water at 2000 and 3000C

    International Nuclear Information System (INIS)

    Hurst, P.; Appleton, D.A.; Hurley, J.R.F.; Pennington, C.

    1983-01-01

    An account is given of experiments performed in 200 0 or 300 0 C water to evaluate the susceptibility of the quench-hardened steel to stress corrosion cracking. The work has covered self-stressed specimens (U-bends and C-rings), and constant load tests tensile specimens and tube/tube plate welds of the type used for the UK Prototype Fast Reactor. At 200 0 C, the effects have been examined of strength, stress and oxygen level; at 300 0 C the effect of quenching temperature (1400 or 1050 0 C) has been studied. Different mechanisms may be responsible at the two test temperatures. Hydrogen absorption in the region of any localised corrosion is believed to be mechanistically significant in the case of 200 0 C cracking, but general embrittlement does not occur. At 300 0 C the cracking has been linked with the increased probability of grain boundary segregation arising from the higher quenching temperature. The value of shot-peening as a means of inducing surface compressive stress, and hence reducing the risk of cracking, has been demonstrated and the factors that could counter-act its usefulness have been identified. (author)

  19. Presynaptic plasticity as a hallmark of rat stress susceptibility and antidepressant response.

    Directory of Open Access Journals (Sweden)

    Jose Luis Nieto-Gonzalez

    Full Text Available Two main questions are important for understanding and treating affective disorders: why are certain individuals susceptible or resilient to stress, and what are the features of treatment response and resistance? To address these questions, we used a chronic mild stress (CMS rat model of depression. When exposed to stress, a fraction of rats develops anhedonic-like behavior, a core symptom of major depression, while another subgroup of rats is resilient to CMS. Furthermore, the anhedonic-like state is reversed in about half the animals in response to chronic escitalopram treatment (responders, while the remaining animals are resistant (non-responder animals. Electrophysiology in hippocampal brain slices was used to identify a synaptic hallmark characterizing these groups of animals. Presynaptic properties were investigated at GABAergic synapses onto single dentate gyrus granule cells.