WorldWideScience

Sample records for streptomyces antibioticus tyrosinase

  1. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C

    Directory of Open Access Journals (Sweden)

    Crnovčić I

    2017-04-01

    Full Text Available Ivana Crnovčić,1 Christian Rückert,2 Siamak Semsary,1 Manuel Lang,1 Jörn Kalinowski,2 Ullrich Keller1 1Institut für Chemie, Technische Universität Berlin, Berlin-Charlottenburg, 2Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany Abstract: Sequencing the actinomycin (acm biosynthetic gene cluster of Streptomyces antibioticus IMRU 3720, which produces actinomycin X (Acm X, revealed 20 genes organized into a highly similar framework as in the bi-armed acm C biosynthetic gene cluster of Streptomyces chrysomallus but without an attached additional extra arm of orthologues as in the latter. Curiously, the extra arm of the S. chrysomallus gene cluster turned out to perfectly match the single arm of the S. antibioticus gene cluster in the same order of orthologues including the the presence of two pseudogenes, scacmM and scacmN, encoding a cytochrome P450 and its ferredoxin, respectively. Orthologues of the latter genes were both missing in the principal arm of the S. chrysomallus acm C gene cluster. All orthologues of the extra arm showed a G +C-contents different from that of their counterparts in the principal arm. Moreover, the similarities of translation products from the extra arm were all higher to the corresponding translation products of orthologue genes from the S. antibioticus acm X gene cluster than to those encoded by the principal arm of their own gene cluster. This suggests that the duplicated structure of the S. chrysomallus acm C biosynthetic gene cluster evolved from previous fusion between two one-armed acm gene clusters each from a different genetic background. However, while scacmM and scacmN in the extra arm of the S. chrysomallus acm C gene cluster are mutated and therefore are non-functional, their orthologues saacmM and saacmN in the S. antibioticus acm C gene cluster show no defects seemingly encoding active enzymes with functions specific for Acm X biosynthesis. Both acm

  2. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C

    Science.gov (United States)

    Crnovčić, Ivana; Rückert, Christian; Semsary, Siamak; Lang, Manuel; Kalinowski, Jörn; Keller, Ullrich

    2017-01-01

    Sequencing the actinomycin (acm) biosynthetic gene cluster of Streptomyces antibioticus IMRU 3720, which produces actinomycin X (Acm X), revealed 20 genes organized into a highly similar framework as in the bi-armed acm C biosynthetic gene cluster of Streptomyces chrysomallus but without an attached additional extra arm of orthologues as in the latter. Curiously, the extra arm of the S. chrysomallus gene cluster turned out to perfectly match the single arm of the S. antibioticus gene cluster in the same order of orthologues including the the presence of two pseudogenes, scacmM and scacmN, encoding a cytochrome P450 and its ferredoxin, respectively. Orthologues of the latter genes were both missing in the principal arm of the S. chrysomallus acm C gene cluster. All orthologues of the extra arm showed a G +C-contents different from that of their counterparts in the principal arm. Moreover, the similarities of translation products from the extra arm were all higher to the corresponding translation products of orthologue genes from the S. antibioticus acm X gene cluster than to those encoded by the principal arm of their own gene cluster. This suggests that the duplicated structure of the S. chrysomallus acm C biosynthetic gene cluster evolved from previous fusion between two one-armed acm gene clusters each from a different genetic background. However, while scacmM and scacmN in the extra arm of the S. chrysomallus acm C gene cluster are mutated and therefore are non-functional, their orthologues saacmM and saacmN in the S. antibioticus acm C gene cluster show no defects seemingly encoding active enzymes with functions specific for Acm X biosynthesis. Both acm biosynthetic gene clusters lack a kynurenine-3-monooxygenase gene necessary for biosynthesis of 3-hydroxy-4-methylanthranilic acid, the building block of the Acm chromophore, which suggests participation of a genome-encoded relevant monooxygenase during Acm biosynthesis in both S. chrysomallus and S

  3. Crystallization, optimization and preliminary X-ray characterization of a metal-dependent PI-PLC from Streptomyces antibioticus

    International Nuclear Information System (INIS)

    Jackson, Michael R.; Selby, Thomas L.

    2012-01-01

    Crystallization and diffraction analysis of a Ca 2+ -dependent PI-PLC from Streptomyces is reported. Optimization of crystals was completed using a drop-pinning technique and heavy-atom soaks to achieve high-quality diffraction to 1.23 Å. A recombinant metal-dependent phosphatidylinositol-specific phospholipase C (PI-PLC) from Streptomyces antibioticus has been crystallized by the hanging-drop method with and without heavy metals. The native crystals belonged to the orthorhombic space group P222, with unit-cell parameters a = 41.26, b = 51.86, c = 154.78 Å. The X-ray diffraction results showed significant differences in the crystal quality of samples soaked with heavy atoms. Additionally, drop pinning, which increases the surface area of the drops, was also used to improve crystal growth and quality. The combination of heavy-metal soaks and drop pinning was found to be critical for producing high-quality crystals that diffracted to 1.23 Å resolution

  4. Isolation and characterization of mesophilic, oxalate-degrading Streptomyces from plant rhizosphere and forest soils

    Science.gov (United States)

    Sahin, Nurettin

    2004-10-01

    The present work was aimed at the isolation of additional new pure cultures of oxalate-degrading Streptomyces and its preliminary characterization for further work in the field of oxalate metabolism and taxonomic studies. Mesophilic, oxalate-degrading Streptomyces were enriched and isolated from plant rhizosphere and forest soil samples. Strains were examined for cultural, morphological (spore chain morphology, spore mass colour, diffusible and melanin pigment production), physiological (antibiosis, growth in the presence of inhibitory compounds, assimilation of organic acids and enzyme substrates) and chemotaxonomic characters (cellular lipid components and diagnostic cell-wall diamino acid). The taxonomic data obtained were analysed by using the simple matching (SSM) and Jaccard (SJ) coefficients, clustering was achieved using the UPGMA algorithm. All strains were able to utilize sodium-, potassium-, calcium- and ammonium-oxalate salts. Based on the results of numerical taxonomy, isolates were grouped into five cluster groups with a ≥70% SSM similarity level. Streptomyces rochei was the most common of the cluster groups, with a Willcox probability of P>0.8. Streptomyces antibioticus, S. anulatus, S. fulvissimus, S. halstedii and S. violaceusniger are newly reported as oxalate-utilizing Streptomyces.

  5. Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes.

    Science.gov (United States)

    Ko, Hyun-Sun; Jin, Rong-De; Krishnan, Hari B; Lee, Sang-Bog; Kim, Kil-Yong

    2009-12-01

    Several rhizobacteria play a vital role in plant protection, plant growth promotion and the improvement of soil health. In this study, we have isolated a strain of Lysobacter antibioticus HS124 from rhizosphere and demonstrate its antifungal activity against various pathogens including Phytophthora capsici, a destructive pathogen of pepper plants. L. antibioticus HS124 produced lytic enzymes such as chitinase, beta-1,3-glucanase, lipase, protease, and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, silica gel, sephadex LH-20 column chromatography and high performance liquid chromatography. The purified compound was identified as 4-hydroxyphenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. This antibiotic exhibited destructive activity toward P. capsici hyphae. In vivo experiments utilizing green house grown pepper plants demonstrated the protective effect of L. antibioticus HS124 against P. capsici. The growth of pepper plants treated with L. antibioticus culture was enhanced, resulting in greater protection from fungal disease. Optimum growth and protection was found when cultures were grown in presence of Fe(III). Additionally, the activities of pathogenesis-related proteins such as chitinase and beta-1,3-glucanase decreased in roots, but increased in leaves with time after treatment compared to controls. Our results demonstrate L. antibioticus HS124 as a promising candidate for biocontrol of P. capsici in pepper plants.

  6. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins

    NARCIS (Netherlands)

    Lai, Xuelei; Wichers, Harry J.; Soler-Lopez, Montserrat; Dijkstra, Bauke W.

    2018-01-01

    Melanin is the main pigment responsible for the color of human skin, hair and eye. Its biosynthesis requires three melanogenic enzymes, tyrosinase (TYR), and the tyrosinase-related proteins TYRP1 and TYRP2. The difficulty of isolating pure and homogeneous proteins from endogenous sources has

  7. Screening of Peruvian Medicinal Plants for Tyrosinase Inhibitory Properties: Identification of Tyrosinase Inhibitors in Hypericum laricifolium Juss.

    Science.gov (United States)

    Quispe, Yanymee Nimesia Guillen; Hwang, Seung Hwan; Wang, Zhiqiang; Lim, Soon Sung

    2017-03-04

    Tyrosinase inhibitors are of far-ranging importance in cosmetics, medicinal products, and food industries. Peru is a diverse country with a wide variety of plants that may contain excellent anti-tyrosinase inhibitors. In the present study, the tyrosinase inhibitory properties of 50 medicinal plant extracts from Peru were investigated using tyrosinase assay. Among plant extracts, those that showed an inhibition rate >50% were Hypericum laricifolium Juss ., Taraxacum officinale F.H.Wigg ., and Muehlenbeckia vulcanica Meisn ., with H. laricifolium Juss. showing the greatest anti-tyrosinase activity. Although H. laricifolium Juss. has been widely used as a medicinal plant by Peruvians, little is known regarding its bioactive components and effects on tyrosinase activity. For this reason, we attempted to discover tyrosinase inhibitors in H. laricifolium Juss. for the first time. The bioactive components were separated by Sephadex LH-20 chromatography and eluted with 100% methanol. Eight compounds were discovered and characterized by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD): protocatechuic acid, p -hydroxybenzoic acid, chlorogenic acid, vanilic acid, caffeic acid, kaempferol 3- O -glucuronide, quercetin, and kaempferol. In addition, the concentration of these compounds required for 50% inhibition (IC 50 ) of tyrosinase activity were evaluated. Quercetin exhibited the strongest tyrosinase inhibition (IC 50 14.29 ± 0.3 μM). Therefore, the Peruvian plant H. laricifolium Juss. could be a novel source for anti-tyrosinase activity.

  8. Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system

    NARCIS (Netherlands)

    Hsiao, Nai-hua; Kirby, Ralph

    DNA/DNA microarray hybridization was used to compare the genome content of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens with that of Streptomyces coelicolor A3(2). The array data showed an about 93% agreement with the genome sequence data

  9. On the Metal Cofactor in the Tyrosinase Family

    Directory of Open Access Journals (Sweden)

    Francisco Solano

    2018-02-01

    Full Text Available The production of pigment in mammalian melanocytes requires the contribution of at least three melanogenic enzymes, tyrosinase and two other accessory enzymes called the tyrosinase-related proteins (Trp1 and Trp2, which regulate the type and amount of melanin. The last two proteins are paralogues to tyrosinase, and they appeared late in evolution by triplication of the tyrosinase gene. Tyrosinase is a copper-enzyme, and Trp2 is a zinc-enzyme. Trp1 has been more elusive, and the direct identification of its metal cofactor has never been achieved. However, due to its enzymatic activity and similarities with tyrosinase, it has been assumed as a copper-enzyme. Recently, recombinant human tyrosinase and Trp1 have been expressed in enough amounts to achieve for the first time their crystallization. Unexpectedly, it has been found that Trp1 contains a couple of Zn(II at the active site. This review discusses data about the metal cofactor of tyrosinase and Trps. It points out differences in the studied models, and it proposes some possible points accounting for the apparent discrepancies currently appearing. Moreover, some proposals about the possible flexibility of the tyrosinase family to uptake copper or zinc are discussed.

  10. New halogenated phenylcoumarins as tyrosinase inhibitors.

    Science.gov (United States)

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Delogu, Giovanna; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2011-06-01

    With the aim to find out structural features for the tyrosinase inhibitory activity, in the present communication we report the synthesis and pharmacological evaluation of a new series of phenylcoumarin derivatives with different number of hydroxyl or ether groups and bromo substituent in the scaffold. The synthesized compounds 5-12 were evaluated as mushroom tyrosinase inhibitors showing, two of them, lower IC(50) than the umbelliferone. Compound 12 (IC(50)=215 μM) is the best tyrosinase inhibitor of this series. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Detection of Misdistribution of Tyrosinase from Melanosomes to Lysosomes and Its Upregulation under Psoralen/Ultraviolet A with a Melanosome-Targeting Tyrosinase Fluorescent Probe.

    Science.gov (United States)

    Zhou, Jin; Shi, Wen; Li, Lihong; Gong, Qiuyu; Wu, Xiaofeng; Li, Xiaohua; Ma, Huimin

    2016-04-19

    Tyrosinase is regarded as an important biomarker of melanoma cancer, and its metabolism is closely related to some severe skin diseases such as vitiligo. Since tyrosinase is mainly located in the melanosomes of melanocytes, a probe that can specifically detect and image tysosinase in melanosomes would be in urgent demand to study the behavior of the enzyme in cells, but unfortunately, no melanosome-targeting tyrosinase fluorescent probe has been reported so far to the best of our knowledge. In this work, we have developed such a new probe, Mela-TYR, which bears morpholine as a melanosome-targeting group and 4-aminophenol as a tyrosinase reaction group. The probe exhibits not only a highly sensitive and selective off-on response to tyrosinase via oxidization cleavage, but also an accurate targeting ability toward the acidic organelles of melanosomes and lyososomes, which is validated by colocalization experiments with mCherry-tagged melanosomes as well as DND-99 (a commercial dye). The probe has been used to image the relative contents of tyrosinase in different cells. Notably, because of the tyrosinase deficiency in normal lysosomes, the probe only fluoresces in melanosomes in principle although it can accumulate in other acidic organelles like lysosomes. By virtue of this property, the misdistribution of tyrosinase from melanosomes to lysosomes in murine melanoma B16 cells under the stimulation of inulavosin is imaged in real time for the first time. Moreover, the upregulation of melanosomal tyrosinase in live B16 cells under the stimulation of psoralen/ultraviolet A is detected with our probe, and this upregulation is further verified by standard colorimetric assay. The probe provides a simple, visual method to study the metabolism of tyrosinase in cells and shows great potential in clinical diagnosis and treatments of tyrosinase-associated diseases.

  12. Assays for mammalian tyrosinase: a comparative study

    International Nuclear Information System (INIS)

    Jara, J.R.; Solano, F.; Lozano, J.A.

    1988-01-01

    This work describes a comparative study of the tyrosinase activity determined using three methods which are the most extensively employed; two radiometric assays using L-tyrosine as substrate (tyrosine hydroxylase and melanin formation activities) and one spectrophotometric assay using L-dopa (dopa oxidase activity). The three methods were simultaneously employed to measure the activities of the soluble, melanosomal, and microsomal tyrosinase isozymes from Harding-Passey mouse melanoma through their purification processes. The aim of this study was to find any correlation among the tyrosinase activities measured by the three different assays and to determine whether that correlation varied with the isozyme and its degree of purification. The results show that mammalian tyrosinase has a greater turnover number for L-dopa than for L-tyrosine. Thus, enzyme activity, expressed as mumol of substrate transformed per min, is higher in assays using L-dopa as substrate than those using L-tyrosine. Moreover, the percentage of hydroxylated L-tyrosine that is converted into melanin is low and is affected by several factors, apparently decreasing the tyrosinase activity measured by the melanin formation assay. Bearing these considerations in mind, average interassay factors are proposed. Their values are 10 to transform melanin formation into tyrosine hydroxylase activity, 100 to transform tyrosine hydroxylase into dopa oxidase activity, and 1,000 to transform melanin formation into dopa oxidase activity. Variations in these values due to the presence in the tyrosinase preparations of either inhibitors or regulatory factors in melanogenesis independent of tyrosinase are also discussed

  13. An Updated Review of Tyrosinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Te-Sheng Chang

    2009-05-01

    Full Text Available Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed.

  14. Melanoma cells present high levels of HLA-A2-tyrosinase in association with instability and aberrant intracellular processing of tyrosinase.

    Science.gov (United States)

    Michaeli, Yael; Sinik, Keren; Haus-Cohen, Maya; Reiter, Yoram

    2012-04-01

    Short-lived protein translation products are proposed to be a major source of substrates for major histocompatibility complex (MHC) class I antigen processing and presentation; however, a direct link between protein stability and the presentation level of MHC class I-peptide complexes has not been made. We have recently discovered that the peptide Tyr((369-377)) , derived from the tyrosinase protein is highly presented by HLA-A2 on the surface of melanoma cells. To examine the molecular mechanisms responsible for this presentation, we compared characteristics of tyrosinase in melanoma cells lines that present high or low levels of HLA-A2-Tyr((369-377)) complexes. We found no correlation between mRNA levels and the levels of HLA-A2-Tyr((369-377)) presentation. Co-localization experiments revealed that, in cell lines presenting low levels of HLA-A2-Tyr((369-377)) complexes, tyrosinase co-localizes with LAMP-1, a melanosome marker, whereas in cell lines presenting high HLA-A2-Tyr((369-377)) levels, tyrosinase localizes to the endoplasmic reticulum. We also observed differences in tyrosinase molecular weight and glycosylation composition as well as major differences in protein stability (t(1/2) ). By stabilizing the tyrosinase protein, we observed a dramatic decrease in HLA-A2-tyrosinase presentation. Our findings suggest that aberrant processing and instability of tyrosinase are responsible for the high presentation of HLA-A2-Tyr((369-377)) complexes and thus shed new light on the relationship between intracellular processing, stability of proteins, and MHC-restricted peptide presentation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tyrosine-like condensed derivatives as tyrosinase inhibitors.

    Science.gov (United States)

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Serra, Silvia; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2012-05-01

    We report the pharmacological evaluation of a new series of 3-aminocoumarins differently substituted with hydroxyl groups, which have been synthesized because they include in their structures the tyrosine fragment (tyrosine-like compounds), with the aim of discovering structural features necessary for tyrosinase inhibitory activity. The synthesized compounds 4 and 7-9 were evaluated in vitro as mushroom tyrosinase inhibitors. Two of the described compounds showed lower IC50 (concentration giving 50% inhibition of tyrosinase activity) than umbelliferone, used as a reference compound. Compound 7 (IC50=53µm) was the best tyrosinase inhibitor of this small series, having an IC50 value 10-fold lower than umbelliferone. Compound 7 (3-amino-7-hydroxycoumarin) had amino and hydroxyl groups precisely mimicking the same positions that both groups occupy on the tyrosine molecule. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  16. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids.

    Science.gov (United States)

    Fais, Antonella; Corda, Marcella; Era, Benedetta; Fadda, M Benedetta; Matos, Maria Joao; Quezada, Elias; Santana, Lourdes; Picciau, Carmen; Podda, Gianni; Delogu, Giovanna

    2009-07-13

    In the present work we report on the contribution of the coumarin moiety to tyrosinase inhibition. Coumarin-resveratrol hybrids 1-8 have been resynthesized to investigate the structure-activity relationships and the IC(50) values of these compounds were measured. The results showed that these compounds exhibited tyrosinase inhibitory activity. Compound 3-(3',4',5'-trihydroxyphenyl)-6,8-dihydroxycoumarin (8)is the most potentcompound (0.27 mM), more so than umbelliferone (0.42 mM), used as reference compound. The kinetic studies revealed that compound 8 caused non-competitive tyrosinase inhibition.

  17. Tyrosinase expression in malignant melanoma, desmoplastic melanoma, and peripheral nerve tumors

    DEFF Research Database (Denmark)

    Boyle, Jenny L; Haupt, Helen M; Stern, Jere B

    2002-01-01

    of tyrosinase expression in the differential diagnosis of melanoma, desmoplastic melanoma, and peripheral nerve sheath tumors. DESIGN: Immunoreactivity for tyrosinase, HMB-45 (anti-gp100 protein), S100 protein, CD34, and vimentin was studied in 70 tumors, including 15 melanomas (5 desmoplastic, 4 amelanotic, 6...... at 121 degrees C. RESULTS: All melanomas demonstrated positive immunostaining for tyrosinase, HMB-45, and S100 protein. Immunoreactivity for HMB-45 was generally stronger than that for tyrosinase in amelanotic lesions and significantly stronger in 1 of the desmoplastic lesions. The 4 pigmented...... neurofibromas were focally positive for tyrosinase, but did not stain for HMB-45. The pigmented schwannoma was focally positive for both tyrosinase and HMB-45. The malignant peripheral nerve sheath tumors, dermatofibrosarcoma protuberans, and dermatofibromas were nonreactive for tyrosinase and HMB-45...

  18. Tyrosinase Inhibitor Activity of Coumarin-Resveratrol Hybrids

    Directory of Open Access Journals (Sweden)

    Giovanna Delogu

    2009-07-01

    Full Text Available In the present work we report on the contribution of the coumarin moiety to tyrosinase inhibition. Coumarin-resveratrol hybrids 1-8 have been resynthesized to investigate the structure-activity relationships and the IC50 values of these compounds were measured. The results showed that these compounds exhibited tyrosinase inhibitory activity. Compound 3-(3’,4’,5’-trihydroxyphenyl-6,8-dihydroxycoumarin (8is the most potentcompound (0.27 mM, more so than umbelliferone (0.42 mM, used as reference compound. The kinetic studies revealed that compound 8 caused non-competitive tyrosinase inhibition.

  19. SEARCH OF NEW SYNTHETIC INHIBITORS OF TYROSINASE

    Directory of Open Access Journals (Sweden)

    Yu. Shesterenko

    2017-11-01

    Full Text Available Melanin pigmentation of skin plays the most important role in the protection of organism against UV-irradiation, but the excessive accumulation of melanin brings to toxic melanodermia, melasma, lentigo and other skin lesions. Tyrosinase is the key enzyme of skin melanin pigment biosynthesis. In spite of certain progress in investigation of natural and synthetic tyrosinase inhibitors, actuality of such studies is of a high level, because the existing inhibitors are in some cases unstable, expensive, toxic, requires complex methods of synthesis or isolation from natural sources. The aim of the work is screening of new tyrosinase inhibitors, using the enzyme, isolated from Agaricus bisporus. Tyrosinase was isolated from Agaricus bisporus mushrooms by a modified method. It was found, that the introduction of polyethylene glycol 4000 in the extraction process promotes 3-fold reduction of polyphenol content, which leads to increase purity of enzyme with an increase in its activity by 25%. A search for new tyrosinase inhibitors among a wide range of compounds, including derivatives of 3-chloro-1,4-naphthoquinone, isatin, 3-hydroxy-2-naphthoic acid, etc was conducted. The studied substances did not displayed inhibitory effect at concentration of 0,1-0,5 mmol/dm3.

  20. Inactivation of tyrosinase photoinduced by pterin

    Energy Technology Data Exchange (ETDEWEB)

    Laura Dantola, M., E-mail: ldantola@inifta.unlp.edu.ar [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Boulevard 113 y 64, 1900, La Plata (Argentina); Gojanovich, Aldana D. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Boulevard 113 y 64, 1900, La Plata (Argentina); Thomas, Andres H., E-mail: athomas@inifta.unlp.edu.ar [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Boulevard 113 y 64, 1900, La Plata (Argentina)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Under UV-A radiation, tirosinase is photoinactivated by pterin. Black-Right-Pointing-Pointer The mechanism involves an electron transfer-initiated process. Black-Right-Pointing-Pointer The photochemical process affects both activities of tyrosinase. -- Abstract: Tyrosinase catalyzes in mammals the first and rate-limiting step in the biosynthesis of the melanin, the main pigment of the skin. Pterins, heterocyclic compounds able to photoinduce oxidation of DNA and its components, accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder in which the protection against UV radiation fails due to the lack of melanin. Aqueous solutions of tyrosinase were exposed to UV-A irradiation (350 nm) in the presence of pterin, the parent compound of oxidized pterins, under different experimental conditions. The enzyme activity in the irradiated solutions was determined by spectrophotometry and HPLC. In this work, we present data that demonstrate unequivocally that the enzyme is photoinactivated by pterin. The mechanism of the photosensitized process involves an electron transfer from tyrosinase to the triplet excited state of pterin, formed after UV-A excitation of pterin. The biological implications of the results are discussed.

  1. Inactivation of tyrosinase photoinduced by pterin

    International Nuclear Information System (INIS)

    Laura Dántola, M.; Gojanovich, Aldana D.; Thomas, Andrés H.

    2012-01-01

    Highlights: ► Under UV-A radiation, tirosinase is photoinactivated by pterin. ► The mechanism involves an electron transfer-initiated process. ► The photochemical process affects both activities of tyrosinase. -- Abstract: Tyrosinase catalyzes in mammals the first and rate-limiting step in the biosynthesis of the melanin, the main pigment of the skin. Pterins, heterocyclic compounds able to photoinduce oxidation of DNA and its components, accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder in which the protection against UV radiation fails due to the lack of melanin. Aqueous solutions of tyrosinase were exposed to UV-A irradiation (350 nm) in the presence of pterin, the parent compound of oxidized pterins, under different experimental conditions. The enzyme activity in the irradiated solutions was determined by spectrophotometry and HPLC. In this work, we present data that demonstrate unequivocally that the enzyme is photoinactivated by pterin. The mechanism of the photosensitized process involves an electron transfer from tyrosinase to the triplet excited state of pterin, formed after UV-A excitation of pterin. The biological implications of the results are discussed.

  2. Purification and characterization of RNA allied extracellular tyrosinase from Aspergillus species.

    Science.gov (United States)

    Inamdar, Shrirang; Joshi, Swati; Bapat, Vishwas; Jadhav, Jyoti

    2014-02-01

    Production of L-DOPA, an anti-Parkinson's drug, using biological sources is widely studied in which tyrosinase is known to play a vital role. Tyrosinase is an omnipresent type 3 copper enzyme participating in many essential biological functions. Understanding properties of tyrosinase is essential for developing useful tyrosinase-based applications. Hence, extracellular tyrosinase from Aspergillus flavus UWFP 570 was purified using ammonium sulphate precipitation and DEAE ion exchange chromatography up to 8.3-fold. Purified protein was a riboprotein in nature containing significant amount of RNA which was confirmed colorimetrically and by electrophoresis. Removal of RNA reduced the activity and altered the conformation of tyrosinase as suggested by spectroflurometric results. Optimum pH and temperature of this 140 kDa protein were 7 and 40 °C, respectively. Copper sulphate and magnesium chloride enhanced the activity whereas in contrast FeCl₃ inhibited the activity completely. Purified tyrosinase transformed L-tyrosine (5 mM) to L-DOPA within 5 h.

  3. Streptomyces rhizosphaerihabitans sp. nov. and Streptomyces adustus sp. nov., isolated from bamboo forest soil.

    Science.gov (United States)

    Lee, Hyo-Jin; Whang, Kyung-Sook

    2016-09-01

    Three novel isolates belonging to the genus Streptomyces, designated JR-35T, JR-46 and WH-9T, were isolated from bamboo forest soil in Damyang, Korea. The 16S rRNA gene sequences of strains JR-35T and JR-46 showed highest similarities with Streptomyces olivochromogenes NBRC 3178T (99.1 %), Streptomyces siamensis KC-038T (98.9 %), Streptomyces chartreusis NBRC 12753T (98.9 %), Streptomyces resistomycificus NRRL ISP-5133T (98.9 %) and Streptomyces bobili JCM 4627T (98.8 %), and strain WH-9Tshowed highest sequence similarities with Streptomyces. bobili JCM 4627T (99.2 %), Streptomyces phaeoluteigriseus NRRL ISP-5182T (99.2 %), Streptomyces alboniger NBRC 12738T (99.2 %), Streptomyces galilaeus JCM 4757T (99.1 %) and Streptomyces pseudovenezuelae NBRC 12904T (99.1 %). The predominant menaquinones were MK-9 (H6) and MK-9 (H8). The major fatty acids were anteiso-C15 : 0, iso-C16 : 0, iso-C14 : 0 and iso-C15 : 0 for strains JR-35T and JR-46 and anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0 for strain WH-9T. The G+C content of the genomic DNA of strains JR-35T, JR-46 and WH-9T were 69.4, 74.4 and 74.1 mol%, respectively. Based on the phenotypic and genotypic data, the three strains are assigned to two novel species of the genus Streptomyces, for which the names Streptomyces rhizosphaerihabitans sp. nov. (type stain JR-35T=KACC 17181T=NBRC 109807T) and Streptomyces adustus sp. nov. (type strain WH-9T=KACC 17197T=NBRC 109810T) are proposed.

  4. Investigation of the mechanisms by which UV irradiation activates the tyrosinase gene

    International Nuclear Information System (INIS)

    Bao, Y.

    2000-04-01

    Tyrosinase, tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2) are the enzymes involved in melanin pigment synthesis. They are expressed specifically in melanocytic cells. UV irradiation is the major physiological stimulant of melanogenesis. Tyrosinase is the rate-limiting enzyme in melanin synthesis and its activity is regulated by UV irradiation in melanocytes. The molecular mechanism underlying the activation of tyrosinase by UV is still not clear. In this thesis, the effects of UV irradiation on tyrosinase, TRP-1 and TRP-2 gene expression in mouse B16 melanoma cells were studied as well as the effects of UV irradiation on the activity of the tyrosinase promoter in mouse, and human melanoma cells. UV irradiation caused an increase in tyrosinase mRNA level, without change in either TRP-1 or TRP-2 mRNA levels, as determined by Northern blot analysis. In order to determine whether UV- induced increase of tyrosinase mRNA expression involved modulation of tyrosinase promoter activity, transient transfection approaches involving a series of constructs containing either chloramphenicol acetyl transferase (CAT) or luciferase reporter genes linked to different lengths of the tyrosinase gene- promoter were used. UV irradiation specifically induced CAT gene expression from both the mouse and the human tyrosinase promoters, suggesting that UV irradiation induced the transcription of the tyrosinase gene. These observations indicated that the promoter region between -250 and -150 bp of the human tyrosinase promoter may contain important cis-regulatory elements involved in the UV response. To localise the cis-regulatory elements responsible for the UV response of the tyrosinase promoter, the 100-bp between -250 bp and -150 bp of the tyrosinase promoter was inserted upstream of a CAT reporter. It was shown that transcription from the 100-bp promoter fragment was activated by UV irradiation. Mutations of a potential cAMP response element (CRE) motif

  5. RFLP for TaqI at the human tyrosinase locus

    Energy Technology Data Exchange (ETDEWEB)

    Spritz, R; Strunk, K; Oetting, W; King, R

    1988-10-25

    A 1.4-kb EcoRI-PstI fragment from the mouse tyrosinase cDNA plasmid pTyrs-33 containing virtually the complete coding sequences. TaqI identifies a two-allele polymorphism with fragments of either 2.8 kb or 2.4 kb that contain most of the tyrosinase coding region. Three weak (1.4 kb, 0.9 kb, and 0.6 kb) and two very weak (5.0 and 3.2 kb) constant bands are also seen. The human tyrosinase gene has been regionally mapped to 11q14->21, and a wealy cross-hybridizing tyrosinase-related sequence mapped to 11p11.2->cen. Co-dominant segregation has been shown in two families. The RFLP was observed under normal hybridization and wash conditions.

  6. Kinetics Investigation on Mushroom Tyrosinase Inhibition of Proso Millet

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2018-01-01

    Full Text Available Proso millet (Panicum miliaceum is rich in nutritive components and is widely used as a human food, feed and forage for animals, and fuel. This study investigated the effect of a proso millet extract on the inhibition of tyrosinase, a key enzyme in melanogenesis. High performance liquid chromatography analysis indicated that the proso millet extract contained phenolic tyrosinase inhibitors, such as syringic acid, p-coumaric acid, and ferulic acid. The extract had an IC50 for inhibition of tyrosinase activity of 14.02 mg/mL. A Lineweaver-Burk double reciprocal plot showed that the proso millet extract functioned as a mixed competitive and noncompetitive inhibitor. Proso millet has potential as a tyrosinase inhibitor that may have applications in the cosmetics industry.

  7. Ammonia Released by Streptomyces aburaviensis Induces Droplet Formation in Streptomyces violaceoruber.

    Science.gov (United States)

    Schmidt, Kathrin; Spiteller, Dieter

    2017-08-01

    Streptomyces violaceoruber grown in co-culture with Streptomyces aburaviensis produces an about 17-fold higher volume of droplets on its aerial mycelium than in single-culture. Physical separation of the Streptomyces strains by either a plastic barrier or by a dialysis membrane, which allowed communication only by the exchange of volatile compounds or diffusible compounds in the medium, respectively, still resulted in enhanced droplet formation. The application of molecular sieves to bioassays resulted in the attenuation of the droplet-inducing effect of S. aburaviensis indicating the absorption of the compound. 1 H-NMR analysis of molecular-sieve extracts and the selective indophenol-blue reaction revealed that the volatile droplet-inducing compound is ammonia. The external supply of ammonia in biologically relevant concentrations of ≥8 mM enhanced droplet formation in S. violaceoruber in a similar way to S. aburaviensis. Ammonia appears to trigger droplet production in many Streptomyces strains because four out of six Streptomyces strains exposed to ammonia exhibited induced droplet production.

  8. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity.

    Directory of Open Access Journals (Sweden)

    Paula Monteiro Souza

    Full Text Available The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05 tyrosinase inhibitory activity exhibiting the IC₅₀ value of 11.88 µg/mL, compared to kojic acid (IC₅₀ value of 13.14 µg/mL. Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC₅₀ value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations.

  9. 'Streptomyces caelicus', an antibiotic-producing species of the genus Streptomyces, and Streptomyces canchipurensis Li et al. 2015 are later heterotypic synonyms of Streptomyces muensis Ningthoujam et al. 2014.

    Science.gov (United States)

    Wink, Joachim; Schumann, Peter; Atasayar, Ewelina; Klenk, Hans-Peter; Zaburannyi, Nestor; Westermann, Martin; Martin, Karin; Glaeser, Stefanie P; Kämpfer, Peter

    2017-04-01

    'Streptomyces caelicus' DSM 40835 was first reported as the producer of the antibiotic griselimycin by some coworkers of Rhone Poulenc in 1971. The project on isolation of the antibiotic compound was stopped because of the bad solubility and selectivity of the compound towards Mycobacteria. At Sanofi-Aventis, Germany, the project was re-evaluated in 2007 and the gene cluster of griselimycin could be identified, characterized and was patented in 2013. At this time, 'S. caelicus' was an invalid name. During the strain characterization work, it was found that 'S. caelicus' belongs to the group of species of the genus Streptomyces which show an unusual heterogeneity of the 16S rRNA gene sequences. However, high 16S rRNA gene sequence similarities to Streptomyces muensis JCM 17576T and Streptomyces canchipurensis JCM 17575T were obvious. Here, we present a comparative description of 'Streptomyces caelicus' DS 9461 (=DSM 40835=NCCB 100592) with S. muensis and S. canchipurensis by use of a polyphasic taxonomy approach and additional comparison of some housekeeping genes by multilocus sequence analysis (MLSA). An emended description of Streptomyces muensis is provided as a result of this work.

  10. Data in support of covalent attachment of tyrosinase onto cyanuric chloride crosslinked magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Kourosh Abdollahi

    2016-12-01

    Full Text Available Preparation and characterization of cross linked amine-functionalized magnetic nanoparticles as an appropriate support for covalent immobilization on tyrosinase was presented in the study "Covalent immobilization of tyrosinase onto cyanuric chloride crosslinked amine-functionalized superparamagnetic nanoparticles: synthesis and characterization of the recyclable nanobiocatalyst" (Abdollahi et al., 2016 [1]. Herein, complementary data regarding X-ray powder diffraction (XRD to characterize the synthesized magnetic nanoparticles, and transmission electron microscopy (TEM to determine the size and morphology of tyrosinase immobilized magnetic nanoparticles (tyrosinase-MNPs were reported. The purification results of the extracted tyrosinase from mushroom Agaricus bisporus were provided in a purification table. The covalent immobilization of tyrosinase onto cyanuric chloride functionalized magnetic nanoparticles was proved by performing thermo-gravimetric and energy-dispersive X-ray spectroscopy analyses. The operational stability of immobilized tyrosinase was investigated by incubating tyrosinase-MNPs at different pH and temperatures.

  11. Identification by shape-based virtual screening and evaluation of new tyrosinase inhibitors

    Directory of Open Access Journals (Sweden)

    Qi Li

    2018-01-01

    Full Text Available Targeting tyrosinase is considered to be an effective way to control the production of melanin. Tyrosinase inhibitor is anticipated to provide new therapy to prevent skin pigmentation, melanoma and neurodegenerative diseases. Herein, we report our results in identifying new tyrosinase inhibitors. The shape-based virtual screening was performed to discover new tyrosinase inhibitors. Thirteen potential hits derived from virtual screening were tested by biological determinations. Compound 5186-0429 exhibited the most potent inhibitory activity. It dose-dependently inhibited the activity of tyrosinase, with the IC50 values 6.2 ± 2.0 µM and 10.3 ± 5.4 µM on tyrosine and L-Dopa formation, respectively. The kinetic study of 5186-0429 demonstrated that this compound acted as a competitive inhibitor. We believe the discoveries here could serve as a good starting point for further design of potent tyrosinase inhibitor.

  12. Taxonomic analyses of members of the Streptomyces cinnabarinus cluster, description of Streptomyces cinnabarigriseus sp. nov. and Streptomyces davaonensis sp. nov.

    Science.gov (United States)

    Landwehr, Wiebke; Kämpfer, Peter; Glaeser, Stefanie P; Rückert, Christian; Kalinowski, Jörn; Blom, Jochen; Goesmann, Alexander; Mack, Matthias; Schumann, Peter; Atasayar, Ewelina; Hahnke, Richard L; Rohde, Manfred; Martin, Karin; Stadler, Marc; Wink, Joachim

    2018-01-01

    Roseoflavin is the only known riboflavin (vitamin B2) analog with antibiotic properties. It is actively taken up by many micro-organisms and targets flavinmononucleotide riboswitches and flavoproteins. It is described as the product of the tentatively named 'Streptomyces davawensis' JCM 4913. Taxonomic analysis of this strain with a polyphasic approach showed that it is very closely related to Streptomyces cinnabarinus (DSM 40467). The two Streptomyces isolates were obtained from different geographical locations (the Philippines and the Kamchatka Peninsula, respectively), their genomes have been sequenced and the question was whether or not the two isolates were representatives of the same species. As we also worked with another isolate of Streptomyces cinnabarinus JS 360, the producer of the cinnabaramides, we wanted to clarify the taxonomic position of the three isolates by using a polyphasic approach. After analysis of the 16S rRNA gene sequence, we found in total 23 species of the genus Streptomyces that showed a similarity higher than 98.5 % to the three strains. We showed that 'S. davawensis' JCM 4913 and S. cinnabarinus DSM 40467 were very closely related but belong to two different species. Hence, we validate 'S. davawensis' as Streptomyces davaonensis sp. nov. with the type strain JCM 4913 T (=DSM 101723 T ). In addition, the cinnabaramide producer can be clearly differentiated from S. davaonensis and this isolate is described as Streptomyces cinnabarigriseus sp. nov. with strain JS360 T (=NCCB 100590 T =DSM 101724 T ) as the type strain.

  13. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Directory of Open Access Journals (Sweden)

    Małgorzata Cieńska

    Full Text Available Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA by immobilized tyrosinase in the presence of ascorbic acid (AH2, which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native to 30% (immobilized enzyme. To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme and 70% (immobilized. A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  14. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts.

    Science.gov (United States)

    Di Petrillo, Amalia; González-Paramás, Ana Maria; Era, Benedetta; Medda, Rosaria; Pintus, Francesca; Santos-Buelga, Celestino; Fais, Antonella

    2016-11-09

    Asphodelus microcarpus belongs to the family Liliaceae that include several medicinal plants. In the traditional medicine plants of the genus Asphodelus are used to treat skin disorders such as ectodermal parasites, psoriasis, microbial infection and for lightening freckles. In order to find novel skin depigmenting agents, the present work was carry out to evaluate antioxidant activity and tyrosinase inhibitory potential of leaves, flowers and tubers extracts of A. microcarpus. The phytochemical composition of the active extract was also evaluated. Three different extracts (water, methanol and ethanol) from leaves, flowers and tubers of A. microcarpus were evaluated for their inhibitory effect on tyrosinase activity using L-3,4-dihydroxyphenylalanine (L-DOPA) as substrate. Inhibition of cellular tyrosinase activity and melanin production was also investigated in melanoma B16F10 cells. Antioxidant activity, total phenolic and flavonoids contents were determined using standard in vitro methods. HPLC-DAD-MS was used to identify phenolic profile of the active extract. The results showed that all extracts have a direct inhibitory anti-tyrosinase activity, with ethanolic extract from flowers (FEE) exhibiting the stronger effect. Kinetic analysis revealed that FEE acts as an uncompetitive inhibitor with a Ki value of 0.19 mg/mL. The same effect was observed in murine melanoma B16F10 cells. Cellular tyrosinase activity as well as melanin content were reduced in FEE-treated cells. The results were comparable to that of the standard tyrosinase inhibitor (kojic acid). Furthermore, the same extract showed the highest antioxidant activity and an elevated levels of total phenolics and flavonoid content. Eleven phenolic components were identified as chlorogenic acid, luteolin derivates, naringenin and apigenin. Our findings showed that FEE from A. microcarpus inhibits tyrosinase and exerted antimelanogenesis effect in B16F10 cells. This extract also showed the highest scavenging

  15. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase.

    Science.gov (United States)

    Cieńska, Małgorzata; Labus, Karolina; Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.

  16. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase

    Science.gov (United States)

    Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity. PMID:27711193

  17. Identifying 8-hydroxynaringenin as a suicide substrate of mushroom tyrosinase.

    Science.gov (United States)

    Chang, Te-Sheng; Lin, Meng-Yi; Lin, Hsuan-Jung

    2010-01-01

    A biotransformed metabolite of naringenin was isolated from the fermentation broth of Aspergillus oryzae, fed with naringenin, and identified as 8-hydroxynaringenin based on the mass and (1)H- and (13)C-NMR spectral data. The compound showed characteristics of both an irreversible inhibitor and a substrate of mushroom tyrosinase in preincubation and HPLC analysis. These results demonstrate that 8-hydroxynaringenin belongs to a suicide substrate of mushroom tyrosinase. The partition ratio between the compound's molecules in the formation of product and in the inactivation of the enzyme was determined to be 283 +/- 21. The present study's results, together with our previous findings, which proved that both 8-hydroxydaidzein and 8-hydroxygenistein are suicide substrates of mushroom tyrosinase, show that 7,8,4'-trihydroxyl functional groups on flavonoids' skeletons play important roles in producing suicide substrate properties toward mushroom tyrosinase.

  18. The relationship between Na+/H+ exchanger expression and tyrosinase activity in human melanocytes

    International Nuclear Information System (INIS)

    Smith, Dustin R.; Spaulding, Deborah T.; Glenn, Hayden M.; Fuller, Bryan B.

    2004-01-01

    The activity of melanosome-associated tyrosinase in human melanocytes differs based on racial skin type. In melanocytes from Black skin, tyrosinase activity is high while in White melanocytes the activity of the enzyme is low. Recent studies suggest that low tyrosinase activity in White melanocytes may be due to an acidic pH environment within the melanosome. Because sodium/hydrogen (Na + /H + ) exchangers (NHEs) are known to regulate intracellular pH, melanocytes were treated with NHE inhibitors to determine what effect this inhibition might have on tyrosinase activity. Treatment of Black melanocytes with ethyl-isopropyl amiloride (EIPA) caused a rapid dose-dependent inhibition of tyrosinase activity. This inhibition was not due to either direct enzyme inhibition or to a decrease in tyrosinase abundance. In contrast, treatment of White melanocytes with EIPA, cimetidine, or clonidine resulted in little inhibition of tyrosinase activity. Reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis showed that both Black and White melanocytes expressed mRNA and protein for NHE-1, NHE-3, NHE-5, NHE-6, and NHE-7. Immunohistochemical analysis showed that NHE-7 and NHE-3 co-localized with the melanosomal protein, Tyrosinase Related Protein-1 (TRP-1). In addition, the vesicular proton pump, vesicular ATPase (V-ATPase), was found to be present in both White and Black melanosomes, indicating that organelles from both racial skin types are capable of being acidified. The results suggest that one or more NHEs may help regulate melanosome pH and tyrosinase activity in human melanocytes

  19. Antioxidant Activity of Some Plant Extracts Towards Xanthine Oxidase, Lipoxygenase and Tyrosinase

    Directory of Open Access Journals (Sweden)

    Pi-Yu Chen

    2009-08-01

    Full Text Available Natural products have the potential to be developed into new drugs for the treatment of various diseases. The aim of the present study was to screen the antioxidant activities of some common edible fruits, garden plants and medicinal plants indigenous to Taiwan. This was performed by assessing the activities of lipoxygenase, xanthine oxidase and tyrosinase following incubation with extracts from these plants. A further aim was to use HPLC-DAD and tyrosinase to chromatographically identify the antioxidative constituents obtained from an extract exhibiting strong antioxidative properties. The acetone extracts of 27 cultivated plant species from Taiwan were tested for antioxidant activities towards xanthine oxidase, tyrosinase and lipoxygenase using spectrophotometric assays. Koelreuteria henryi, Prunus campanulata, and Rhodiola rosea showed the highest xanthine oxidase inhibitory activities. Camellia sinensis, Rhodiola rosea, and Koelreuteria henryi exhibited good tyrosinase inhibitory activities and potent anti-lipoxygenase activities. As Koelreuteria henryi had notable significant inhibitory activities towards xanthine oxidase, tyrosinase, and lipoxygenase, it was further tested with tyrosinase and HPLC-DAD. The results from this part of the study revealed that the more powerful the antioxidant capability of the extracted component, the greater the decrease in peak height obtained after reacting with tyrosinase. Additional studies are warranted to further characterize the compounds responsible for the antioxidant properties of the examined extracts.

  20. Butenolides from Streptomyces albus J1074 Act as External Signals To Stimulate Avermectin Production in Streptomyces avermitilis.

    Science.gov (United States)

    Nguyen, Thao Bich; Kitani, Shigeru; Shimma, Shuichi; Nihira, Takuya

    2018-05-01

    In streptomycetes, autoregulators are important signaling compounds that trigger secondary metabolism, and they are regarded as Streptomyces hormones based on their extremely low effective concentrations (nM) and the involvement of specific receptor proteins. Our previous distribution study revealed that butenolide-type Streptomyces hormones, including avenolide, are a general class of signaling molecules in streptomycetes and that Streptomyces albus strain J1074 may produce butenolide-type Streptomyces hormones. Here, we describe metabolite profiling of a disruptant of the S. albus aco gene, which encodes a key biosynthetic enzyme for butenolide-type Streptomyces hormones, and identify four butenolide compounds from S. albus J1074 that show avenolide activity. The compounds structurally resemble avenolide and show different levels of avenolide activity. A dual-culture assay with imaging mass spectrometry (IMS) analysis for in vivo metabolic profiling demonstrated that the butenolide compounds of S. albus J1074 stimulate avermectin production in another Streptomyces species, Streptomyces avermitilis , illustrating the complex chemical interactions through interspecies signals in streptomycetes. IMPORTANCE Microorganisms produce external and internal signaling molecules to control their complex physiological traits. In actinomycetes, Streptomyces hormones are low-molecular-weight signals that are key to our understanding of the regulatory mechanisms of Streptomyces secondary metabolism. This study reveals that acyl coenzyme A (acyl-CoA) oxidase is a common and essential biosynthetic enzyme for butenolide-type Streptomyces hormones. Moreover, the diffusible butenolide compounds from a donor Streptomyces strain were recognized by the recipient Streptomyces strain of a different species, resulting in the initiation of secondary metabolism in the recipient. This is an interesting report on the chemical interaction between two different streptomycetes via Streptomyces

  1. Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr.

    Science.gov (United States)

    Piao, Chenyu; Zheng, Weiwei; Li, Yao; Liu, Chongxi; Jin, Liying; Song, Wei; Yan, Kai; Wang, Xiangjing; Xiang, Wensheng

    2017-09-01

    Two novel actinomycetes, designated strains 2C-SSA16(2) T and 1C-GS8 T , were isolated from the cuticle of Camponotus japonicus Mayr, collected from Northeast Agricultural University, Heilongjiang Province, north China. Both of them contained genes (involved in antibiotics biosynthesis) of the ketosynthase (KS) and methyl malonyl transferase domains (PKS-I) and the adenylation domain (NRPS). A polyphasic study was carried out to establish the taxonomic positions of these strains. The 16S rRNA gene sequence analysis showed that the two novel isolates 2C-SSA16(2) T and 1C-GS8 T exhibited 98.8% similarity with each other and that they are most closely related to Streptomyces umbrinus JCM 4521 T (99.0, 98.6%), Streptomyces ederensis JCM 4958 T (98.9, 98.7%), Streptomyces aurantiacus JCM 4453 T (98.6, 98.2%), Streptomyces glomeroaurantiacus JCM 4677 T (98.6, 98.1%), Streptomyces tauricus JCM4837 T (98.2, 98.0%) and Streptomyces phaeochromogenes JCM 4070 T (98.2, 99.2%). The corresponding phylogenetic analysis based on partial gyrB gene sequences showed that strains 2C-SSA16(2) T and 1C-GS8 T formed a cluster with the above-mentioned strains. The DNA-DNA hybridization data and phenotypic characteristics indicated that strains 2C-SSA16(2) T and 1C-GS8 T could be readily distinguished from each other and their closest phylogenetic relatives. Therefore, these two strains are suggested to represent two novel species of the genus Streptomyces, for which the names Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. are proposed. The type strains are 2C-SSA16(2) T (=CGMCC 4.7276 T  = DSM 100522 T ) and 1C-GS8 T (=CGMCC 4.7348 = DSM 103127 T ), respectively.

  2. Phenolic tyrosinase inhibitors from the stems of Cudrania cochinchinensis.

    Science.gov (United States)

    Zheng, Zong-Ping; Zhu, Qin; Fan, Chun-Lin; Tan, Hui-Yuan; Wang, Mingfu

    2011-05-01

    The phytochemcal profiles of Cudrania cochinchinensis leaf, twig, stem and root were compared by HPLC analysis. It was found that C. cochinchinensis stem extract contained some unknown natural products with potential tyrosinase inhibitory activities. Therefore, the chemical constitutes in extract (95% ethanol) of C. cochinchinensis stem were further investigated in this study. A new racemic mixture, (±)2,3-cis-dihydromorin, and fifteen known phenolic compounds, dihydrokaempferol 7-O-β-d-qlucopyranoside, skimmin, quercetin-7-O-β-d-glucoside, 2,3-dihydroquercetin 7-O-β-d-glucoside, kaempferol-7-O-β-glucopyranoside, quercetin-3,7-di-O-β-d-glucoside, morin-7-O-β-d-glucoside, 1,3,5,8-tetrahydroxyxanthen-9-one, 2,3-trans-dihydromorin, aromadendrin, oxyresveratrol, genistin, protocatechuic acid, kaempferol 3,7-di-O-β-glucopyranoside, and naringenin were isolated. Spectral techniques (MS, (1)H NMR and (13)C NMR) were utilized for their structural identification and their inhibitory activities on mushroom tyrosinase were also evaluated. The results showed that tyrosinase inhibitory activities of (±)2,3-cis-dihydromorin (IC(50) = 31.1 μM), 2,3-trans-dihydromorin (IC(50) = 21.1 μM), and oxyresveratrol (IC(50) = 2.33 μM), were more potent than that of kojic acid (IC(50) = 50.8 μM), a well-known tyrosinase inhibitor, indicating that Cudrania cochinchinensis stem will be a great potential agent for the development of effective natural tyrosinase inhibitors.

  3. Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis.

    Science.gov (United States)

    Bae, Young-An

    2017-04-01

    Codon usage bias (CUB) is a unique property of genomes and has contributed to the better understanding of the molecular features and the evolution processes of particular gene. In this study, genetic indices associated with CUB, including relative synonymous codon usage and effective numbers of codons, as well as the nucleotide composition, were investigated in the Clonorchis sinensis tyrosinase genes and their platyhelminth orthologs, which play an important role in the eggshell formation. The relative synonymous codon usage patterns substantially differed among tyrosinase genes examined. In a neutrality analysis, the correlation between GC 12 and GC 3 was statistically significant, and the regression line had a relatively gradual slope (0.218). NC-plot, i.e., GC 3 vs effective number of codons (ENC), showed that most of the tyrosinase genes were below the expected curve. The codon adaptation index (CAI) values of the platyhelminth tyrosinases had a narrow distribution between 0.685/0.714 and 0.797/0.837, and were negatively correlated with their ENC. Taken together, these results suggested that CUB in the tyrosinase genes seemed to be basically governed by selection pressures rather than mutational bias, although the latter factor provided an additional force in shaping CUB of the C. sinensis and Opisthorchis viverrini genes. It was also apparent that the equilibrium point between selection pressure and mutational bias is much more inclined to selection pressure in highly expressed C. sinensis genes, than in poorly expressed genes.

  4. Crystallization and preliminary X-ray analysis of the TetR-like efflux pump regulator SimR

    International Nuclear Information System (INIS)

    Le, Tung B. K.; Stevenson, Clare E. M.; Buttner, Mark J.; Lawson, David M.

    2011-01-01

    Crystals of SimR, a TetR-like efflux pump repressor from S. antibioticus, were obtained and X-ray data were recorded to a resolution of 2.3 Å. Crystals of SimR were grown by vapour diffusion. The protein crystallized with trigonal symmetry and X-ray data were recorded to a resolution of 2.3 Å from a single crystal at the synchrotron. SimR belongs to the TetR family of bacterial transcriptional regulators. In the absence of the antibiotic simocyclinone, SimR represses the transcription of a divergently transcribed gene encoding the simocyclinone efflux pump SimX in Streptomyces antibioticus by binding to operators in the simR–simX intergenic region. Simocyclinone binding causes SimR to dissociate from its operators, leading to expression of the SimX efflux pump. Thus, SimR represents an intimate link between the biosynthesis of simocyclinone and its export, which may also provide the mechanism of self-resistance to the antibiotic in the producer strain

  5. DMEM enhances tyrosinase activity in B16 mouse melanoma cells and human melanocytes

    Directory of Open Access Journals (Sweden)

    Panpen Diawpanich

    2008-07-01

    Full Text Available Media components may affect the activities of cultured cells. In this study, tyrosinase activity was evaluated by using B16-F10 mouse melanoma cell lines (B16-F10 and primary human melanocytes cultured in different media. An optical density measurement and a L-dopa reaction assay were used as the determination of the tyrosinase activity. The study of B16-F10 found the optical density to be 2010, 2246 and 2961 in cells cultured in RPMI Medium 1640 (RPMI1640,Minimum Essential Medium (MEM and Dulbecco’s Modified Eagle Medium (DMEM, respectively. Moreover, compared to RPMI 1640 and MEM, DMEM showed the darkest color of melanin formation in culture media and in cells after the L-dopa reaction assay. Addition of kojic acid showed a significant inhibitory effect on tyrosinase activity in all media.Whereas MCDB153 showed no significant effect on human melanocytes, DMEM caused a dramatic increase in tyrosinase activity after 4 days of cultivation. Addition of kojic acid showed a significant tyrosinase inhibitory effect in DMEM only. Furthermore, an active ingredient in green tea, epigallocathechin gallate (EGCG could inhibit tyrosinase activity in both B16-F10 and human melanocytes cultured in DMEM. In summary, these results suggest that DMEM is a suitable medium that provides high detection sensitivity in a tyrosinase inhibition assay.

  6. Purification and Characterization of Melanogenic Enzyme Tyrosinase from Button Mushroom

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme, tyrosinase, catalyzes the first and only rate-limiting steps in melanogenesis. Since the discovery of its melanogenic properties, tyrosinase has been in prime focus and microbial sources of the enzyme are sought. Agaricus bisporus widely known as the common edible mushroom, it’s taking place in high amounts of proteins, enzyme, carbohydrates, fibers, and low fat contents are frequently cited in the literature in relation to their nutritional value. In the present study tyrosinase from Agaricus bisporus was purified by ammonium sulphate precipitation, dialysis followed by gel filtration chromatography on Sephadex G-100, and ion exchange chromatography on DEAE-Cellulose; the enzyme was purified, 16.36-fold to give 26.6% yield on total activity in the crude extract and final specific activity of 52.19 U/mg. The SDS-PAGE electrophoresis showed a migrating protein band molecular weight of 95 kDa. The purified tyrosinase was optimized and the results revealed that the optimum values are pH 7.0 and temperature 35°C. The highest activity was reported towards its natural substrate, L-DOPA, with an apparent Km value of 0.933 mM. This indicated that tyrosinase purified from Agaricus bisporus is a potential source for medical applications.

  7. Oculocutaneous albinism type 1: link between mutations, tyrosinase conformational stability, and enzymatic activity.

    Science.gov (United States)

    Dolinska, Monika B; Kus, Nicole J; Farney, S Katie; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2017-01-01

    Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disorder caused by mutations in the tyrosinase gene. Two subtypes of OCA1 have been described: severe OCA1A with complete absence of tyrosinase activity and less severe OCA1B with residual tyrosinase activity. Here, we characterize the recombinant human tyrosinase intramelanosomal domain and mutant variants, which mimic genetic changes in both subtypes of OCA1 patients. Proteins were prepared using site-directed mutagenesis, expressed in insect larvae, purified by chromatography, and characterized by enzymatic activities, tryptophan fluorescence, and Gibbs free energy changes. The OCA1A mutants showed very low protein expression and protein yield and are enzymatically inactive. Mutants mimicking OCA1B were biochemically similar to the wild type, but exhibited lower specific activities and protein stabilities. The results are consistent with clinical data, which indicates that OCA1A mutations inactivate tyrosinase and result in severe phenotype, while OCA1B mutations partially inactivate tyrosinase and result in OCA1B albinism. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  8. Molecular Cloning and Characteristic Features of a Novel Extracellular Tyrosinase from Aspergillus niger PA2.

    Science.gov (United States)

    Agarwal, Pragati; Singh, Jyoti; Singh, R P

    2017-05-01

    Aspergillus niger PA2, a novel strain isolated from waste effluents of food industry, is a potential extracellular tyrosinase producer. Enzyme activity and L-DOPA production were maximum when glucose and peptone were employed as C source and nitrogen source respectively in the medium and enhanced notably when the copper was supplemented, thus depicting the significance of copper in tyrosinase activity. Tyrosinase-encoding gene from the fungus was cloned, and amplification of the tyrosinase gene yielded a 1127-bp DNA fragment and 374 amino acid residue long product that encoded for a predicted protein of 42.3 kDa with an isoelectric point of 4.8. Primary sequence analysis of A. niger PA2 tyrosinase had shown that it had approximately 99% identity with that of A. niger CBS 513.88, which was further confirmed by phylogenetic analysis. The inferred amino acid sequence of A. niger tyrosinase contained two putative copper-binding sites comprising of six histidines, a characteristic feature for type-3 copper proteins, which were highly conserved in all tyrosinases throughout the Aspergillus species. When superimposed onto the tertiary structure of A. oryzae tyrosinase, the conserved residues from both the organisms occupied same spatial positions to provide a di-copper-binding peptide groove.

  9. Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold.

    Science.gov (United States)

    Hong, Yanqing; Zhu, Xueke; Wang, Ping; Fu, Haitian; Deng, Chao; Cui, Li; Wang, Qiang; Fan, Xuerong

    2016-04-01

    Elastin has characteristics of elasticity, biological activity, and mechanical stability. In the present work, tyrosinase-mediated construction of a bioscaffold with silk fibroin and elastin was carried out, aiming at developing a novel medical biomaterial. The efficiency of enzymatic oxidation of silk fibroin and the covalent reaction between fibroin and elastin were examined by spectrophotometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and size exclusion chromatography (SEC). The properties of composite air-dried and nanofiber scaffolds were investigated. The results reveal that elastin was successfully bonded to silk fibroins, resulting in an increase in molecular weight of fibroin proteins. ATR-FTIR spectra indicated that tyrosinase treatment impacted the conformational structure of fibroin-based membrane. The thermal behaviors and mechanical properties of the tyrosinase-treated scaffolds were also improved compared with the untreated group. NIH/3T3 cells exhibited optimum densities when grown on the nanofiber scaffold, implying that the nanofiber scaffold has enhanced biocompatibility compared to the air-dried scaffold. A biological nanofiber scaffold constructed from tyrosinase-treated fibroin and elastin could potentially be utilized in biomedical applications.

  10. Molecular Docking Studies and Anti-Tyrosinase Activity of Thai Mango Seed Kernel Extract

    Directory of Open Access Journals (Sweden)

    Patchreenart Saparpakorn

    2009-01-01

    Full Text Available The alcoholic extract from seed kernels of Thai mango (Mangifera indica L. cv. ‘Fahlun’ (Anacardiaceae and its major phenolic principle (pentagalloylglucopyranose exhibited potent, dose-dependent inhibitory effects on tyrosinase with respect to L-DOPA. Molecular docking studies revealed that the binding orientations of the phenolic principles were in the tyrosinase binding pocket and their orientations were located in the hydrophobic binding pocket surrounding the binuclear copper active site. The results indicated a possible mechanism for their anti-tyrosinase activity which may involve an ability to chelate the copper atoms which are required for the catalytic activity of tyrosinase.

  11. Tyrosinase inhibitors from the wood of Artocarpus heterophyllus.

    Science.gov (United States)

    Nguyen, Nhan Trung; Nguyen, Mai Ha Khoa; Nguyen, Hai Xuan; Bui, Ngan Kim Nguyen; Nguyen, Mai Thanh Thi

    2012-11-26

    From the methanolic-soluble extract of the wood of Artocarpus heterophyllus, four new flavones, artocarmins A-D (1-4), and three new chalcones, artocarmitins A-C (5-7), have been isolated together with 13 known compounds. Their structures were determined on the basis of the spectroscopic data. Compounds 1-4, 6, 7, 9-16, and 20 displayed significant tyrosinase inhibitory activity. The most active compound, morachalcone A (12) (IC50, 0.013 μM), was 3000 times more active as a tyrosinase inhibitor than a positive control, kojic acid (IC50, 44.6 μM).

  12. Determination of Phytochemical Compounds, and Tyrosinase ...

    African Journals Online (AJOL)

    Purpose: To determine the phytochemical content, and tyrosinase inhibitory and antimicrobial activities of the wood ... problems from current whitening cosmetics such as ochronosis ... antibiotics may lead to drug resistance of many bacterial ...

  13. Preparation of tyrosinase inhibitors and antibrowning agents using green technology.

    Science.gov (United States)

    Dong, Xue; Zhang, Yinan; He, Jia-Liang; Zhang, Shuang; Zeng, Mao-Mao; Chen, Jie; Zheng, Zong-Ping

    2016-04-15

    Chalcones and their derivatives have attracted great interests in recent years for their comprehensive biological activities. In this study, 2,4,2',4'-tetrahydroxychalcone and its two derivatives, 1,3,5-tris-(2,4-dihydroxy-phenyl)pentane-1,5-dione (new compound) and 7,2',4'-trihydroxyflavanone, were synthesized through one-pot green procedure catalyzed by boric acid in polyethylene glycol 400. Their structures were identified by ESI-MS and NMR spectral. Tyrosinase inhibitory activity and antibrowning test results showed that compounds 1-3 exhibited strong tyrosinase inhibitory activities and significant antibrowning effects on the fresh-cut lotus root slices at room temperature in 48 h. Among them, 0.01% 1,3,5-tris-(2,4-dihydroxy-phenyl)pentane-1,5-dione combined with 0.5% VC showed the best antibrowning ability. In brief, this study offers a protocol for one-pot green synthesis of high efficiency tyrosinase inhibitors which may be suitable as antibrowning agents for fresh-cut vegetables. More important, this study developed a new type of 1,5-dione derivative which may serve as new lead structures for novel tyrosinase inhibitors discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Inhibitory Effects of Resveratrol Analogs on Mushroom Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Nádia Rezende Barbosa Raposo

    2012-10-01

    Full Text Available Skin pigmentation disorders typically involve an overproduction or uneven distribution of melanin, which results in skin spots. Resveratrol can inhibit tyrosinase, the active enzyme in the synthesis of melanin, but it does not inhibit the synthesis of melanin to an extent that enables its use alone as a skin whitening agent in pharmaceutical formulations, so its use as a coadjuvant in treatment of hyperpigmentation is suggested. Six resveratrol analogs were tested for tyrosinase inhibitory activity in vitro. Among the analogs tested, compound D was the most powerful tyrosinase inhibitor (IC50 = 28.66 µg/mL, two times more active than resveratrol (IC50 = 57.05 µg/mL, followed by the analogs A, E, B, F and C, respectively. This demonstrated that the hydroxylation at C4' on the phenolic ring was the molecular modification with most importance for the observed activity.

  15. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Jiexia Chen

    2016-01-01

    Full Text Available A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs-modified indium-tin oxide (ITO electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates.

  16. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection

    Science.gov (United States)

    Chen, Jiexia; Liu, Yifan; Zhao, Guang-Chao

    2016-01-01

    A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs)-modified indium-tin oxide (ITO) electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates. PMID:26805846

  17. Antibiotics produced by Streptomyces.

    Science.gov (United States)

    Procópio, Rudi Emerson de Lima; Silva, Ingrid Reis da; Martins, Mayra Kassawara; Azevedo, João Lúcio de; Araújo, Janete Magali de

    2012-01-01

    Streptomyces is a genus of Gram-positive bacteria that grows in various environments, and its shape resembles filamentous fungi. The morphological differentiation of Streptomyces involves the formation of a layer of hyphae that can differentiate into a chain of spores. The most interesting property of Streptomyces is the ability to produce bioactive secondary metabolites, such as antifungals, antivirals, antitumorals, anti-hypertensives, immunosuppressants, and especially antibiotics. The production of most antibiotics is species specific, and these secondary metabolites are important for Streptomyces species in order to compete with other microorganisms that come in contact, even within the same genre. Despite the success of the discovery of antibiotics, and advances in the techniques of their production, infectious diseases still remain the second leading cause of death worldwide, and bacterial infections cause approximately 17 million deaths annually, affecting mainly children and the elderly. Self-medication and overuse of antibiotics is another important factor that contributes to resistance, reducing the lifetime of the antibiotic, thus causing the constant need for research and development of new antibiotics. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.

  18. Chemical components and tyrosinase inhibitors from the twigs of Artocarpus heterophyllus.

    Science.gov (United States)

    Zheng, Zong-Ping; Chen, Sibao; Wang, Shiyun; Wang, Xia-Chang; Cheng, Ka-Wing; Wu, Jia-Jun; Yang, Dajiang; Wang, Mingfu

    2009-08-12

    An HPLC method was developed and validated to compare the chemical profiles and tyrosinase inhibitors in the woods, twigs, roots, and leaves of Artocarpus heterophyllus . Five active tyrosinase inhibitors including dihydromorin, steppogenin, norartocarpetin, artocarpanone, and artocarpesin were used as marker compounds in this HPLC method. It was discovered that the chemical profiles of A. heterophyllus twigs and woods are quite different. Systematic chromatographic methods were further applied to purify the chemicals in the twigs of A. heterophyllus. Four new phenolic compounds, including one isoprenylated 2-arylbenzofuran derivative, artoheterophyllin A (1), and three isoprenylated flavonoids, artoheterophyllin B (2), artoheterophyllin C (3), and artoheterophyllin D (4), together with 16 known compounds, were isolated from the ethanol extract of the twigs of A. heterophyllus. The structures of compounds 1-4 were elucidated by spectroscopic analysis. However, the four new compounds did not show significant inhibitory activities against mushroom tyrosinase compared to kojic acid. It was found that similar compounds, such as norartocarpetin and artocarpesin in the twigs and woods of A. heterophyllus, contributed to their tyrosinase inhibitory activity.

  19. Bioremediation of acid fast red dye by Streptomyces globosus under ...

    African Journals Online (AJOL)

    Two different azo dyes known as acid fast red (AFR) and Congo red (CR) were examined for their decolorization by five strains of actinomycetes (Streptomyces globosus, Streptomyces alanosinicus, Streptomyces ruber, Streptomyces gancidicus, and Nocardiopsis aegyptia) under shake and static conditions. Streptomyces ...

  20. Integrative Gene Cloning and Expression System for Streptomyces sp. US 24 and Streptomyces sp. TN 58 Bioactive Molecule Producing Strains

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2009-01-01

    Full Text Available Streptomyces sp. US 24 and Streptomyces sp. TN 58, two strains producing interesting bioactive molecules, were successfully transformed using E. coli ET12567 (pUZ8002, as a conjugal donor, carrying the integrative plasmid pSET152. For the Streptomyces sp. US 24 strain, two copies of this plasmid were tandemly integrated in the chromosome, whereas for Streptomyces sp. TN 58, the integration was in single copy at the attB site. Plasmid pSET152 was inherited every time for all analysed Streptomyces sp. US 24 and Streptomyces sp. TN 58 exconjugants under nonselective conditions. The growth, morphological differentiation, and active molecules production of all studied pSET152 integrated exconjugants were identical to those of wild type strains. Consequently, conjugal transfer using pSET152 integration system is a suitable means of genes transfer and expression for both studied strains. To validate the above gene transfer system, the glucose isomerase gene (xylA from Streptomyces sp. SK was expressed in strain Streptomyces sp. TN 58. Obtained results indicated that heterologous glucose isomerase could be expressed and folded effectively. Glucose isomerase activity of the constructed TN 58 recombinant strain is of about eighteenfold higher than that of the Streptomyces sp. SK strain. Such results are certainly of importance due to the potential use of improved strains in biotechnological process for the production of high-fructose syrup from starch.

  1. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Science.gov (United States)

    Dolinska, Monika B; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2014-01-01

    Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. The intra-melanosomal domain of human tyrosinase (residues 19-469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  2. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Monika B Dolinska

    Full Text Available Tyrosinase (TYR catalyzes the rate-limiting, first step in melanin production and its gene (TYR is mutated in many cases of oculocutaneous albinism (OCA1, an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.The intra-melanosomal domain of human tyrosinase (residues 19-469 and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  3. Laboratory Course on "Streptomyces" Genetics and Secondary Metabolism

    Science.gov (United States)

    Siitonen, Vilja; Räty, Kaj; Metsä-Ketelä, Mikko

    2016-01-01

    The "'Streptomyces' genetics and secondary metabolism" laboratory course gives an introduction to the versatile soil dwelling Gram-positive bacteria "Streptomyces" and their secondary metabolism. The course combines genetic modification of "Streptomyces"; growing of the strain and protoplast preparation, plasmid…

  4. The Effect of D-(−-arabinose on Tyrosinase: An Integrated Study Using Computational Simulation and Inhibition Kinetics

    Directory of Open Access Journals (Sweden)

    Hong-Jian Liu

    2012-01-01

    Full Text Available Tyrosinase is a ubiquitous enzyme with diverse physiologic roles related to pigment production. Tyrosinase inhibition has been well studied for cosmetic, medicinal, and agricultural purposes. We simulated the docking of tyrosinase and D-(−-arabinose and found a binding energy of −4.5 kcal/mol for theup-formof D-(−-arabinose and −4.4 kcal/mol for thedown-form of D-(−-arabinose. The results of molecular dynamics simulation suggested that D-(−-arabinose interacts mostly with HIS85, HIS259, and HIS263, which are believed to be in the active site. Our kinetic study showed that D-(−-arabinose is a reversible, mixed-type inhibitor of tyrosinase (α-value =6.11±0.98, Ki=0.21±0.19 M. Measurements of intrinsic fluorescence showed that D-(−-arabinose induced obvious tertiary changes to tyrosinase (binding constant K=1.58±0.02 M−1, binding number n=1.49±0.06. This strategy of predicting tyrosinase inhibition based on specific interactions of aldehyde and hydroxyl groups with the enzyme may prove useful for screening potential tyrosinase inhibitors.

  5. Characterization of Ethanolic Extract of Streptomyces sp. as a Pancreatic Lipase Inhibitors Produced by Endophytic Streptomyces sp. AEBg12

    Directory of Open Access Journals (Sweden)

    Lenni Fitri

    2017-07-01

    Full Text Available Endophytic Streptomyces sp. AEBg12 isolated from Zingiber cassumunar (Bangle is known to produce pancreatic lipase inhibitory compound. However, the characteristics of this active compound has not been reported yet. This study aimed to determine the characteristics of pancreatics inhibitory compound produced by Streptomyces sp. AEBg12 and to assess the role of endophytic actinobacteria in producing pancreatic lipase inhibitor using endophytic-free bangle tissue culture, wild bangle and compared with the activity of Streptomyces sp. AEBg12 endophytes. Supernatant of Streptomyces sp. AEBg12 was extracted using ethanol, ethyl acetate, and n-hexane solvents. Toxicity test was performed using larvae of shrimp Artemia salina. The results showed that the best solvent to obtain pancreatic lipase inhibitor compounds was ethanol. Phytochemical analysis showed that ethanolic extract of endophytic Streptomyces sp. AEBg12 contained flavonoids. IC50 value of ethanol extract was 180.83 µg/ml. The result of TLC showed that ethanolic extract of Streptomyces AEBg12 had a blue luminescence band indicated that there were either flavone, flavanones, flavonols or isoflavones. Inhibitory activity of Streptomyces sp. AEBg12 was higher than wild bangle and bangle tissue culture. The information from this study can be be used as a basic data for further characterization of the active compound, which might be developed as an antiobesity agent through its pancreatic lipase inhibitory activity.

  6. Streptomyces ciscaucasicus Sveshnikova et al. 1983 is a later subjective synonym of Streptomyces canus Heinemann et al. 1953.

    Science.gov (United States)

    Kämpfer, Peter; Rückert, Christian; Blom, Jochen; Goesmann, Alexander; Wink, Joachim; Kalinowski, Jörn; Glaeser, Stefanie P

    2018-01-01

    Streptomyces canuswas described in 1953 and the name was listed in the Approved List of Bacterial Names in 1980. Three years later, Streptomyces ciscaucasicus was published and the name was subsequently validated in Validation List no. 22 in 1986. On the basis of genome comparison and multilocus sequence analysis of the type strains of Streptomyces canus and Streptomyces ciscaucasicus it can now be shown that these two species despite some phenotypic differences are subjective synonyms. In such a case Rule 24 of the Bacteriological Code applies, in which priority of names is determined by the date of the original publication. Hence, we propose that S. ciscaucasicus is a later subjective synonym of S. canus.

  7. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues.

    Science.gov (United States)

    Ochiai, Akihito; Tanaka, Seiya; Imai, Yuta; Yoshida, Hisashi; Kanaoka, Takumi; Tanaka, Takaaki; Taniguchi, Masayuki

    2016-06-01

    Tyrosinase, a rate-limiting enzyme in melanin biosynthesis, catalyzes the hydroxylation of l-tyrosine to 3,4-dihydroxy-l-phenylalanine (l-dopa) (monophenolase reaction) and the subsequent oxidation of l-dopa to l-dopaquinone (diphenolase reaction). Thus, tyrosinase inhibitors have been proposed as skin-lightening agents; however, many of the existing inhibitors cannot be widely used in the cosmetic industry due to their high cytotoxicity and instability. On the other hand, some tyrosinase inhibitory peptides have been reported as safe. In this study, we found that the peptide TH10, which has a similar sequence to the characterized inhibitory peptide P4, strongly inhibits the monophenolase reaction with a half-maximal inhibitory concentration of 102 μM. Seven of the ten amino acid residues in TH10 were identical to P4; however, TH10 possesses one N-terminal tyrosine, whereas P4 contains three tyrosine residues located at its N-terminus, center, and C-terminus. Subsequent analysis using sequence-shuffled variants indicated that the tyrosine residues located at the N-terminus and center of P4 have little to no contribution to its inhibitory activity. Furthermore, docking simulation analysis of these peptides with mushroom tyrosinase demonstrated that the active tyrosine residue was positioned close to copper ions, suggesting that TH10 and P4 bind to tyrosinase as a substrate analogue. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    Directory of Open Access Journals (Sweden)

    Kamal Uddin Zaidi

    2014-01-01

    Full Text Available Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented.

  9. Streptomyces aridus sp. nov., isolated from a high altitude Atacama Desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957.

    Science.gov (United States)

    Idris, Hamidah; Labeda, David P; Nouioui, Imen; Castro, Jean Franco; Del Carmen Montero-Calasanz, Maria; Bull, Alan T; Asenjo, Juan A; Goodfellow, Michael

    2017-05-01

    A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9 T , was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces. 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9 T is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448 T . The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9 T (=NCIMB 14965 T =NRRL B65268 T ). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given.

  10. Streptomyces xylanilyticus sp. nov., isolated from soil.

    Science.gov (United States)

    Moonmangmee, Duangtip; Kanchanasin, Pawina; Phongsopitanun, Wongsakorn; Tanasupawat, Somboon; Moonmangmee, Somporn

    2017-10-01

    A novel actinomycete, strain SR2-123 T , belonging to the genus Streptomyces, was isolated from a soil sample collected from the Sakaerat Environmental Research Station, Thailand Institute of Scientific and Technological Research, Nakhon Ratchasima Province, Thailand. The taxonomic position of the strain was characterized using a polyphasic study. Strain SR2-123 T contained ll-diaminopimelic acid, glucose, mannose and ribose in whole-cell hydrolysates. The N-acyl type of muramic acid was acetyl. Menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The predominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C17 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, an unknown phospholipid, unknown glycolipids, an unknown aminophospholipid, unknown lipids and an unknown aminolipid. The DNA G+C content was 74.8 mol%. The strain was closely related to Streptomyces coeruleorubidus JCM 4359 T (98.5 %), Streptomyces flavofungini JCM 4753 T (98.5 %), Streptomyces coerulescens NBRC 12758 T (98. 5 %) and Streptomyces alboflavus JCM 4615 T (98.4 %), based on 16S rRNA gene sequence similarities. The novel strain exhibited low DNA-DNA relatedness values with the type strains (11.4-25.0 %) of closely related species. On the basis of phenotypic and genotypic characteristics, strain SR2-123 T could be distinguished from closely related species of the genus Streptomyces and represents a novel species of the genus Streptomyces for which the name Streptomyces xylanilyticus sp. nov. is proposed. The type strain is SR2-123 T (=TISTR 2493 T =KCTC 39909 T ).

  11. Pathogenic Streptomyces spp. abundance affected by potato cultivars.

    Science.gov (United States)

    Nahar, Kamrun; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Whitney, Sean

    2018-04-16

    Potato cultivars vary in their tolerance to common scab (CS), however how they affect CS-causing Streptomyces spp. populations over time is poorly understood. This study investigated the effects of potato cultivar on pathogenic Streptomyces spp. abundance, measured using quantitative PCR, in three spatial locations in a CS-infested field: 1) soil close to the plant (SCP); 2) rhizosphere (RS); and 3) geocaulosphere (GS) soils. Two tolerant (Gold Rush, Hindenburg) and two susceptible cultivars (Green Mountain, Agria) were tested. The abundance of pathogenic Streptomyces spp. significantly increased in late August compared with other dates in RS of susceptible cultivars in both years. Abundance of pathogenic Streptomyces spp., when averaged over locations and time, was significantly greater in susceptible cultivars compared with tolerant cultivars in 2014. Principal coordinates analysis showed that SCP and RS soil properties (pH, organic carbon and nitrogen concentrations) explained 68% and 76% of total variation in Streptomyces spp. abundance among cultivars in 2013, respectively, suggesting that cultivars influenced CS pathogen growth conditions. The results suggested that the genetic background of potato cultivars influenced the abundance of pathogenic Streptomyces spp., with 5 to 6 times more abundant Streptomyces spp. in RS of susceptible cultivars compared with tolerant cultivars, which would result in substantially more inoculum left in the field after harvest.  .

  12. Potent microbial and tyrosinase inhibitors from stem bark of Bauhinia rufescens (Fabaceae).

    Science.gov (United States)

    Muhammad, Aminu; Sirat, Hasnah Mohd

    2013-10-01

    The stem bark extracts of Bauhinia rufescens Lam. (Fabaceae) yielded 6-methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, alpha-amyrin acetate, beta-sitosterol 3-O-beta-D-xylopyranoside, 4-(2'-Hydroxyphenethyl)-5-methoxy-2-methylphenol, menisdaurin and sequoyitol. Their structures were determined using spectroscopic methods and comparisons with the literature data. For the antimicrobial assay Gram-positive and Gram-negative bacterial and fungal strains were tested, while the tyrosinase inhibition assay utilized L-DOPA as a substrate for the tyrosinase enzyme. 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, a-amyrin acetate, beta-sitosterol 3-O-D-xylopyranoside, menisdaurin and sequoyitol showed weak to moderate activities with minimum inhibition concentration (MIC) values in the range of 112.5-900 microg/mL against all bacterial strains, while the MIC values for the fungal strains were in the range of 28.1-450 microg/mL. In the tyrosinase inhibition assay, a-amyrin acetate was found to be moderately active against tyrosinase with an inhibition of 62% at 0.1 mg/mL. This activity was lower than that of the positive control, kojic acid (85%).

  13. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase.

    Science.gov (United States)

    Ashraf, Zaman; Rafiq, Muhammad; Seo, Sung-Yum; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf

    2015-09-01

    The purpose of the present study was to discover the extent of contribution to antityrosinase activity by adding hydroxy substituted benzoic acid, cinnamic acid and piperazine residues to vanillin. The study showed the transformation of vanillin into esters as shown in (4a-4d), (6a-6b), and (8a-8b). In addition, the relationship between structures of these esters and their mushroom tyrosinase inhibitory activity was explored. The kinetics of inhibition on mushroom tyrosinase by these esters was also investigated. It was found that hydroxyl substituted benzoic acid derivatives were weak inhibitors; however hydroxy or chloro substituted cinnamic acid and piperazine substituted derivatives were able to induce significant tyrosinase inhibition. The mushroom tyrosinase (PDBID 2ZWE) was docked with synthesized vanillin derivatives and their calculated binding energies were compared with experimental IC50 values which provided positive correlation. The most potent derivative 2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6a) possesses hydroxy substituted cinnamic acid scaffold having IC50 value 16.13 μM with binding energy of -7.2 kcal/mol. The tyrosinase inhibitory activity of (6a) is comparable with standard kojic acid. Kinetic analysis indicated that compound 6a was mixed-type tyrosinase inhibitor with inhibition constant values Ki (13 μM) and Ki' (53 μM) and formed reversible enzyme inhibitor complex. The active vanillin analog (6a) was devoid of toxic effects as shown in cytotoxic studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters

    Science.gov (United States)

    2011-01-01

    Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed. PMID:22032628

  15. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Science.gov (United States)

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content. PMID:23781272

  16. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    Directory of Open Access Journals (Sweden)

    Hwayong Park

    2013-01-01

    Full Text Available To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content.

  17. Streptomyces fuscichromogenes sp. nov., an actinomycete from soil.

    Science.gov (United States)

    Zhang, Hao; Zheng, Jimei; Zhuang, Junli; Xin, Yuhua; Zheng, Xiaowei; Zhang, Jianli

    2017-01-01

    A novel actinomycete, designated strain m16T, was isolated from a soil sample collected from the tropical rain forest of Xishuangbanna, a prefecture in Yunnan Province, south-west China, and characterized by using polyphasic taxomomy. Cells were aerobic and Gram-reaction-positive, and spore chains were observed to be of the helical type, with elliptical spores and smooth spore surfaces. The novel strain grew over a temperature range of 15-35 °C, at pH 5.0-11.0 and in the presence of 0-3 % (w/v) NaCl. The DNA G+C content of strain m16T was 70.0 mol%. The main fatty acids were iso-C16 : 0 (29.3 %), iso-C15: 0 (15.4 %) and anteiso-C15:0 (14.6 %), and the predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). Comparative 16S rRNA gene sequence analysis showed that strain m16T was most closely related to Streptomyces jiujiangensis KCTC 29262T (98.7 %), Streptomyces panaciradicis KACC 17632T (98.7 %), Streptomyces rhizophilus NBRC 108885T (98.5 %), Streptomyces shenzhenensis DSM 42034T (98.4 %), Streptomyces graminisoli JR-19T (98.4 %) and Streptomyces gramineus JR-43T (98.3 %). Phylogenetic, chemotaxonomic and phenotypic analyses indicated that strain m16T represents a novel species within the genus Streptomyces, for which the name Streptomyces fuscichromogenes is proposed. The type strain is m16T (=CGMCC 4.7110T=KCTC 29195T).

  18. Streptomyces exploration is triggered by fungal interactions and volatile signals.

    Science.gov (United States)

    Jones, Stephanie E; Ho, Louis; Rees, Christiaan A; Hill, Jane E; Nodwell, Justin R; Elliot, Marie A

    2017-01-03

    It has long been thought that the life cycle of Streptomyces bacteria encompasses three developmental stages: vegetative hyphae, aerial hyphae and spores. Here, we show interactions between Streptomyces and fungi trigger a previously unobserved mode of Streptomyces development. We term these Streptomyces cells 'explorers', for their ability to adopt a non-branching vegetative hyphal conformation and rapidly transverse solid surfaces. Fungi trigger Streptomyces exploratory growth in part by altering the composition of the growth medium, and Streptomyces explorer cells can communicate this exploratory behaviour to other physically separated streptomycetes using an airborne volatile organic compound (VOC). These results reveal that interkingdom interactions can trigger novel developmental behaviours in bacteria, here, causing Streptomyces to deviate from its classically-defined life cycle. Furthermore, this work provides evidence that VOCs can act as long-range communication signals capable of propagating microbial morphological switches.

  19. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans

    OpenAIRE

    Jayapal, Karthik P; Lian, Wei; Glod, Frank; Sherman, David H; Hu, Wei-Shou

    2007-01-01

    Abstract Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Res...

  20. Association of Tyrosinase (TYR and Tyrosinase-related Protein 1 (TYRP1 with Melanic Plumage Color in Korean Quails (

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2013-11-01

    Full Text Available TYR (Tyrosinase and TYRP1 (Tyrosinase-related protein 1 play crucial roles in determining the coat color of birds. In this paper, we aimed to characterize the relationship of TYR and TYRP1 genes with plumage colors in Korean quails. The SNPs were searched by cDNA sequencing and PCR-SSCP in three plumage color Korean quails (maroon, white and black plumage. Two SNPs (367T→C and 1153C→T were found in the coding region of TYRP1 gene, but had no significant association with plumage phenotype in Korean quails. The expression of TYR was higher in black plumage quails than that in maroon plumage quails. In contrast, the expression of TYRP1 was lower in black plumage quails than that in maroon plumage quails. This study suggested that the melanic plumage color in Korean quails may be associated with either increased production of TYR or decreased production of TYRP1.

  1. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov

    Science.gov (United States)

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these oth...

  2. Screening Marker Components Of Tyrosinase Inhibitor From Xylocarpus Granatum Stem

    Directory of Open Access Journals (Sweden)

    Latifah K Darusman

    2017-03-01

    Full Text Available The aim of our research was to screen the marker components of tyrosinase inhibitor from Xylocarpus granatum stem collected from Pulau Sebuku, South Kalimantan, Indonesia.  The screening method started from selection of part of X. granatum, stem or stem bark.  Stem and stem bark of X. granatum were dried and grounded before submitted to methanol.  The stem extracts is more potent as tyrosinase inhibitor (IC50 for monophenolase is 45.12 μg/ml and diphenolase is 31.59μg/ml compared to the bark extracts. The IC50 values of kojic acid as positive control are 17.43μg/ml for monophenolase and 20.69 μg/ml for diphenolase. The stem extract then separated with silica gel column chromatography and preparative thin layer chromatography.  The results showed that component with Rf 0,25 and 0.63 (TLC analysis with stationary phase silica gel GF254 and mobile phase ethyl acetic: methanol (8:2 are the marker components as tyrosinase inhibitor for X. granatum.

  3. Recent advances in understanding Streptomyces

    Science.gov (United States)

    Chater, Keith F.

    2016-01-01

    About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for Streptomyces developmental biology, Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome

  4. Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region.

    Directory of Open Access Journals (Sweden)

    Marioara B Marin

    Full Text Available EDEM1 is a mannosidase-like protein that recruits misfolded glycoproteins from the calnexin/calreticulin folding cycle to downstream endoplasmic reticulum associated degradation (ERAD pathway. Here, we investigate the role of EDEM1 in the processing of tyrosinase, a tumour antigen overexpressed in melanoma cells. First, we analyzed and modeled EDEM1 major domains. The homology model raised on the crystal structures of human and Saccharomyces cerevisiae ER class I α1,2-mannosidases reveals that the major mannosidase domain located between aminoacids 121-598 fits with high accuracy. We have further identified an N-terminal region located between aminoacids 40-119, predicted to be intrinsically disordered (ID and susceptible to adopt multiple conformations, hence facilitating protein-protein interactions. To investigate these two domains we have constructed an EDEM1 deletion mutant lacking the ID region and a triple mutant disrupting the glycan-binding domain and analyzed their association with tyrosinase. Tyrosinase is a glycoprotein partly degraded endogenously by ERAD and the ubiquitin proteasomal system. We found that the degradation of wild type and misfolded tyrosinase was enhanced when EDEM1 was overexpressed. Glycosylated and non-glycosylated mutants co-immunoprecipitated with EDEM1 even in the absence of its intact mannosidase-like domain, but not when the ID region was deleted. In contrast, calnexin and SEL 1L associated with the deletion mutant. Our data suggest that the ID region identified in the N-terminal end of EDEM1 is involved in the binding of glycosylated and non-glycosylated misfolded proteins. Accelerating tyrosinase degradation by EDEM1 overexpression may lead to an efficient antigen presentation and enhanced elimination of melanoma cells.

  5. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying; He, Hongping; Schulz, Stefan; Liu, Xin; Fusetani, Nobushino; Xiong, Hairong; Xiao, Xiang; Qian, Peiyuan

    2010-01-01

    of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared

  6. Inhibitory Effects of 5,6,7-Trihydroxyflavones on Tyrosinase

    Directory of Open Access Journals (Sweden)

    Jun Kawabata

    2007-01-01

    Full Text Available Baicalein (1, 6-hydroxyapigenin (6, 6-hydroxygalangin (13 and 6-hydroxy-kaempferol (14, which are naturally occurring flavonoids from a set of 14 hydroxy-flavones tested, exhibited high inhibitory effects on tyrosinase with respect to L-DOPA,while each of the 5,6,7-trihydroxyflavones 1, 6, 13 or 14 acted as a cofactor tomonophenolase. Moreover, 6-hydroxykaempferol (14 showed the highest activity andwas a competitive inhibitor of tyrosinase compared to L-DOPA. 5,6,7-Trihydroxyflavones 1, 6, 13 or 14 showed also high antioxidant activities. Hence, weconclude that the 5,6,7-trihydroxy-flavones are useful as good depigmentation agentswith inhibitory effects in addition to their antioxidant properties.

  7. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation.

    Science.gov (United States)

    Kim, Nam Young; Kwon, Hee Souk; Lee, Hyeon Yong

    2017-09-01

    This work presents the first report that A. rugosa could have tyrosinase and melanogenesis inhibition and that its activities also be improved by fermentation with Lactobacillus rhamnosus and Lactobacillus paracasei. It was found that the tyrosinase and melanogenesis inhibition was correlated with antioxidant activity of acacetin, the major biologically active substances in A. rugosa. we pursued an improvement in tyrosinase and melanogenesis inhibition of A. rugosa extract by fermentation process. A. rugosa was extracted by lactic acid fermentation process; we measured antioxidant activities and tyrosinase and melanogenesis inhibition of A. rugosa extracts. In particular, reducing power of the extract from fermentation process (FE) was measured as 0.562 (O.D.), whereas reducing power of the extracts from 70% ethanol extraction (EE) was lower than the FE as 0.496 (O.D.). Polyphenols and flavonoids in the FE were higher than the EE: 69.3 mg/g vs. 60.5 mg/g, and 187 mg/g vs. 138 mg/g. The FE was estimated as 51.04% tyrosinase inhibition and 41.88% for the EE. Similarly, melanin inhibition in melanocyte B16F10 was observed as 66.60% vs. 42.23% for the FE and EE. The increase in tyrosinase and melanogenesis inhibition activity was confirmed by high elution of acacetin through fermentation process such as 289.97 mg/100 g vs. 198.04 mg/100 g in the FE and EE. These results indicate that tyrosinase and melanogenesis inhibition activities of the extracts should be associated with antioxidant activity because acacetin is known to have strong antioxidant activity, which can also positively affect whitening activities. © 2016 Wiley Periodicals, Inc.

  8. Transposition of Tn5096 from a temperature-sensitive transducible plasmid in Streptomyces spp.

    OpenAIRE

    McHenney, M A; Baltz, R H

    1991-01-01

    Transposon Tn5096 was inserted into a derivative of the temperature-sensitive plasmid pMT660 containing the bacteriophage FP43 pac site. The resulting plasmid, pRHB126, was transduced by FP43 into several Streptomyces species. Tn5096 transposed from pRHB126 into different sites in the genomes of Streptomyces ambofaciens, Streptomyces cinnamonensis, Streptomyces coelicolor A3(2), Streptomyces fradiae, Streptomyces griseofuscus, and Streptomyces thermotolerans.

  9. Streptomyces verrucosisporus sp. nov., isolated from marine sediments.

    Science.gov (United States)

    Phongsopitanun, Wongsakorn; Kudo, Takuji; Ohkuma, Moriya; Pittayakhajonwut, Pattama; Suwanborirux, Khanit; Tanasupawat, Somboon

    2016-09-01

    Five actinomycete isolates, CPB1-1T, CPB2-10, BM1-4, CPB3-1 and CPB1-18, belonging to the genus Streptomyces were isolated from marine sediments collected from Chumphon Province, Thailand. They produced open loops of warty spore chains on aerial mycelia. ll-Diaminopimelic acid, glucose and ribose were found in their whole-cell hydrolysates. Polar lipids found were diphosphatidylglycerol, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. Menaquinones were MK-9(H6), MK-9(H8), MK-10(H6) and MK-10(H8). Major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The taxonomic position of the strains was described using a polyphasic approach. blastn analysis of the 16S rRNA gene sequence revealed that these five strains exhibited the highest similarities with 'Streptomyces mangrovicola' GY1 (99.0 %), Streptomyces fenghuangensisGIMN4.003T (98.6 %), Streptomyces barkulensisRC 1831T (98.5 %) and Streptomyces radiopugnans R97T (98.3 %). However, their phenotypic characteristics and 16S rRNA gene sequences as well as DNA-DNA relatedness differentiated these five strains from the other species of the genus Streptomyces. Here, we propose the novel actinomycetes all being representatives of the same novel species, Streptomyces verrucosisporus, with type strain CPB1-1T (=JCM 18519T=PCU 343T=TISTR 2344T).

  10. Streptomyces krungchingensis sp. nov., isolated from soil.

    Science.gov (United States)

    Sripreechasak, Paranee; Phongsopitanun, Wongsakorn; Tamura, Tomohiko; Tanasupawat, Somboon

    2017-01-01

    A novel actinomycete, designated strain KC-035T, was isolated from soil collected from Krung Ching Waterfall National Park, Nakhon Si Thammarat Province, Thailand. Its taxonomic position was determined using a polyphasic approach. The strain had morphological and chemotaxonomic properties typical of members of the genus Streptomyces: flexuous spore chain; ll-diaminopimelic acid in the cell-wall peptidoglycan; MK-9(H8), MK-9(H6) and MK-9(H4) as menaquinones; diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside as phospholipids; anteiso-C15 : 0, C16 : 0, iso-C16 : 0, iso-C15 : 0 and iso-C14 : 0 as major cellular fatty acids; and DNA G+C content of 72 mol%. 16S rRNA gene sequence analysis revealed that strain KC-035T showed high similarity to Streptomyces albiflavescens n20T (99.16 %) and Streptomyces siamensis KC-038T (98.43 %) as well as formed a monophyletic clade with them in the phylogenetic tree. On the basis of comparison of phenotypic properties and the low level of DNA-DNA relatedness, strain KC-035T could be distinguished from its closely related Streptomyces species and is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces krungchingensis sp. nov. is proposed. The type strain is KC-035T (=NBRC 110087T=KCTC 29503T=TISTR 2402T).

  11. Streptomyces solisilvae sp. nov., isolated from tropical forest soil.

    Science.gov (United States)

    Zhou, Shuangqing; Yang, Xiaobo; Huang, Dongyi; Huang, Xiaolong

    2017-09-01

    A novel streptomycete (strain HNM0141T) was isolated from tropical forest soil collected from Bawangling mountain of Hainan island, PR China and its taxonomic position was established in a polyphasic study. The organism had chemical and morphological properties consistent with its classification as a member of the Streptomyces violaceusnigerclade. On the basis of the results of 16S rRNA gene sequence analysis, HNM0141T showed highest similarity to Streptomyces malaysiensisCGMCC4.1900T (99.4 %), Streptomyces samsunensis DSM 42010T (98.9 %), Streptomyces yatensis NBRC 101000T (98.3 %), Streptomyces rhizosphaericus NBRC 100778T (98.0 %) and Streptomyces sporoclivatus NBRC 100767T (97.9 %). The strain formed a well-delineated subclade with S. malaysiensis CGMCC4.1900T and S. samsunensis DSM 42010T. The levels of DNA-DNA relatedness between HNM0141T and S. malaysiensis CGMCC4.1900T and S. samsunensis DSM 42010T were 62 and 44 %, respectively. On the basis of phenotypic and genotypic characteristics, HNM0141T represents a novel species in the S. violaceusnigerclade for which the name Streptomyces solisilvae sp. nov. is proposed. The type strain is HNM0141 T (=CCTCC AA 2016045T=KCTC 39905T).

  12. Melanogenesis-Inducing Effect of Cirsimaritin through Increases in Microphthalmia-Associated Transcription Factor and Tyrosinase Expression

    Directory of Open Access Journals (Sweden)

    Hyo Jung Kim

    2015-04-01

    Full Text Available The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP response element-binding protein (CREB in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.

  13. Development of Streptomyces sp. FR-008 as an emerging chassis

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2016-09-01

    Full Text Available Microbial-derived natural products are important in both the pharmaceutical industry and academic research. As the metabolic potential of original producer especially Streptomyces is often limited by slow growth rate, complicated cultivation profile, and unfeasible genetic manipulation, so exploring a Streptomyces as a super industrial chassis is valuable and urgent. Streptomyces sp. FR-008 is a fast-growing microorganism and can also produce a considerable amount of macrolide candicidin via modular polyketide synthase. In this study, we evaluated Streptomyces sp. FR-008 as a potential industrial-production chassis. First, PacBio sequencing and transcriptome analyses indicated that the Streptomyces sp. FR-008 genome size is 7.26 Mb, which represents one of the smallest of currently sequenced Streptomyces genomes. In addition, we simplified the conjugation procedure without heat-shock and pre-germination treatments but with high conjugation efficiency, suggesting it is inherently capable of accepting heterologous DNA. In addition, a series of promoters selected from literatures was assessed based on GusA activity in Streptomyces sp. FR-008. Compared with the common used promoter ermE*-p, the strength of these promoters comprise a library with a constitutive range of 60–860%, thus providing the useful regulatory elements for future genetic engineering purpose. In order to minimum the genome, we also target deleted three endogenous polyketide synthase (PKS gene clusters to generate a mutant LQ3. LQ3 is thus an “updated” version of Streptomyces sp. FR-008, producing fewer secondary metabolites profiles than Streptomyces sp. FR-008. We believe this work could facilitate further development of Streptomyces sp. FR-008 for use in biotechnological applications.

  14. Inhibitory Effects of Urginea maritima (L. Baker, Zhumeria majdae Rech. F. and Wendelbo and Physalis divaricata D. Don Ethanolic Extracts on Mushroom Tyrosinase

    Directory of Open Access Journals (Sweden)

    Foroogh Namjoyan, Alireza Jahangiri, Mohammad Ebrahim Azemi, Hamideh Mousavi

    2016-06-01

    Full Text Available Background: Tyrosinase is a key enzyme in melanin synthesis from tyrosine. To prevent or treat pigmentation disorders, tyrosinase inhibitors have been used increasingly for medicinal and cosmetic products. The aim of this study is to evaluate inhibitory effects of Urginea maritima (L. Baker, Zhumeria majdae Rech.f. & Wendelbo and Physalis divaricata D.Don on mushroom tyrosinase. Methods: The inhibitory activities of the hydroalcoholic extracts of plants against oxidation of L-DOPA (as a substrate by mushroom tyrosinase were investigated. The amount of formed DOPAchrome was determined at 475 nm as optical density. Results: The extracts showed anti-tyrosinase activity weaker than positive control (Kojic acid. The inhibitory activity of tested plants: U.maritima, Z.majdae and P.divaricata against mushroom tyrosinase were 38.61, 29.70 and 25.74 % at 1.67 mg/mL, respectively. Conclusion: The most tyrosinase inhibitory activity was seen for U.maritima. However more investigations on human tyrosinase, toxicological and clinical studies are needed to confirm its activity.

  15. Tyrosinase inhibitory effects and antioxidative activities of saponins from Xanthoceras Sorbifolia nutshell.

    Directory of Open Access Journals (Sweden)

    Hongmei Zhang

    Full Text Available Certain saponins are bioactive compounds with anticancer, antivirus and antioxidant activities. This paper discussed inhibitory effects of saponins from Xanthoceras Sorbifolia on tyrosinase, through the research of the rate of tyrosinase catalyzed L-DOPA oxidation. The inhibition rate of tyrosinase activity presented non-linear changes with the saponins concentration. The rate reached 52.0% when the saponins concentration was 0.96 mg/ml. Antioxidant activities of saponins from Xanthoceras Sorbifolia were evaluated by using hydroxyl and superoxide radical scavenging assays. The hydroxyl radical scavenging effects of the saponins were 15.5-68.7%, respectively at the concentration of 0.18-2.52 mg/ml. The superoxide radical scavenging activity reduced from 96.6% to 7.05% with the time increasing at the concentration of 1.44 mg/ml. All the above antioxidant evaluation indicated that saponins from Xanthoceras Sorbifolia exhibited good antioxidant activity in a concentration- dependent manner.

  16. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on mushroom tyrosinase.

    Science.gov (United States)

    Tokiwa, Y; Kitagawa, M; Raku, T

    2007-03-01

    A novel tyrosinase inhibitor, an arbutin derivative having undecylenic acid at the 6-position of its glucose moiety, was enzymatically synthesized. Its inhibitory activity was studied in vitro by using catechol and phenol as substrates. The IC(50) value of the arbutin ester on tyrosinase using catechol (4 x 10(-4) M) was 1% of that when arbutin (4 x 10(-2) M) was used. Using phenol, IC(50) of the arbutin ester (3 x 10(-4) M) as substrate was 10% of that of arbutin (3 x 10(-3) M). These results suggest that the arbutin ester inhibits the latter part of the tyrosinase reaction, which consists of hydroxylation and oxidation.

  17. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    Science.gov (United States)

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC 50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  18. Inhibitory and Acceleratory Effects of Inonotus obliquus on Tyrosinase Activity and Melanin Formation in B16 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Zheng-Fei Yan

    2014-01-01

    Full Text Available The aim of the present study is to preliminarily investigate the antimelanogenesis effect of Inonotus obliquus extracts by cell-free mushroom tyrosinase assay. It was found that petroleum ether and n-butanol extracts might contain unknown potential tyrosinase inhibitors, while its ethyl acetate extract might contain some unknown accelerators. Six compounds were isolated and their structures were identified by interpretation of NMR data and nicotinic acid was first discovered in Inonotus obliquus. In cells testing, betulin and trametenolic acid decreased tyrosinase activity and melanin content, while inotodiol and lanosterol significantly increased tyrosinase activity and melanin content, showing an AC⁡50 of 9.74 and 8.43 μM, respectively. Nicotinie acid, 3β,22,25-trihydroxy-lanosta-8-ene, had a little or no effect on tyrosinase. Betulin exhibited a mode of noncompetitive inhibition with a KI=KIS of 0.4 μM on tyrosinase activity showing an IC50 of 5.13 μM and being more effective than kojic acid (6.43 μM, and trametenolic acid exhibited a mode of mixed inhibition with a KI of 0.9 μM, KIS of 0.5 μM, and an IC50 of 7.25 μM. We proposed betulin and trametenolic acid as a new candidate of potent tyrosinase inhibitors and inotodiol and lanosterol as accelerators that could be used as therapeutic agent.

  19. Tyrosinase Inhibitory and Antioxidant Activities of Silk Cocoons and Mulberry Leaves

    International Nuclear Information System (INIS)

    Thongphasuk, Jarunee; Thongphasuk, Piyanuch

    2005-10-01

    Silk cocoons and mulberry leaves have been used in the field of medicines, cosmetics, and foods. The objective of this study is to determine the antioxidant activities of silk cocoons and mulberry leaves using 1,1-diphenyl-2-picryl-hydrazyl radical and thin-layer chromatography (TLC), and to determine tyrosinase inhibitory activities using dihydroxyphenylalanine. The water and ethanol extracts from silk cocoons (Nang Noi, U B1, and Lao) and mulberry leaves showed antioxidants and tyrosinase inhibitory activities. However, the extracts from all samples at 1,000 μg/reaction mixture inhibited tyrosinase in the range of 12.28-45.98%, which was much lower than the standard whitening agent kojic acid (IC50 0.45 μg/reaction mixture). The results from TLC showed that the ethanol extracts from the 3 species of cocoons contained flavonoids, but only the extract from Nang Noi contained carotenoid. In addition, the separation destroyed the fraction with high antioxidant activity. Therefore, the disadvantage of the extract separation is increased cost and decreased antioxidant activities

  20. Tyrosinase Inhibitory and Antioxidant Activities of Silk Cocoons and Mulberry Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Thongphasuk, Jarunee [Office of Atoms for Peace, Bangkok (Thailand); Thongphasuk, Piyanuch [Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rangsit University, Pathumthani (Thailand)

    2005-10-15

    Silk cocoons and mulberry leaves have been used in the field of medicines, cosmetics, and foods. The objective of this study is to determine the antioxidant activities of silk cocoons and mulberry leaves using 1,1-diphenyl-2-picryl-hydrazyl radical and thin-layer chromatography (TLC), and to determine tyrosinase inhibitory activities using dihydroxyphenylalanine. The water and ethanol extracts from silk cocoons (Nang Noi, U B1, and Lao) and mulberry leaves showed antioxidants and tyrosinase inhibitory activities. However, the extracts from all samples at 1,000 {mu}g/reaction mixture inhibited tyrosinase in the range of 12.28-45.98%, which was much lower than the standard whitening agent kojic acid (IC50 0.45 {mu}g/reaction mixture). The results from TLC showed that the ethanol extracts from the 3 species of cocoons contained flavonoids, but only the extract from Nang Noi contained carotenoid. In addition, the separation destroyed the fraction with high antioxidant activity. Therefore, the disadvantage of the extract separation is increased cost and decreased antioxidant activities.

  1. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes

    Science.gov (United States)

    Lin, Rong-Dih; Chen, Mei-Chuan; Liu, Yan-Ling; Lin, Yi-Tzu; Lu, Mei-Kuang; Hsu, Feng-Lin; Lee, Mei-Hsien

    2015-01-01

    Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics. PMID:26633381

  2. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes

    Directory of Open Access Journals (Sweden)

    Rong-Dih Lin

    2015-12-01

    Full Text Available Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9 and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13, as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics.

  3. Determination of the Bridging Ligand in the Active Site of Tyrosinase

    Directory of Open Access Journals (Sweden)

    Congming Zou

    2017-10-01

    Full Text Available Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule.

  4. Crystal Structure of Agaricus bisporus Mushroom Tyrosinase : Identity of the Tetramer Subunits and Interaction with Tropolone

    NARCIS (Netherlands)

    Ismaya, Wangsa T.; Rozeboom, Henriette J.; Weijn, Amrah; Mes, Jurriaan J.; Fusetti, Fabrizia; Wichers, Harry J.; Dijkstra, Bauke W.

    2011-01-01

    Tyrosinase catalyzes the conversion of phenolic compounds into their quinone derivatives, which are precursors for the formation of melanin, a ubiquitous pigment in living organisms. Because of its importance for browning reactions in the food industry, the tyrosinase from the mushroom Agaricus

  5. Crystal Structure of Agaricus bisporus Mushroom Tyrosinase: Identity of the Tetramer Subunits and Interaction with Tropolone

    NARCIS (Netherlands)

    Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W.

    2011-01-01

    Tyrosinase catalyzes the conversion of phenolic compounds into their quinone derivatives, which are precursors for the formation of melanin, a ubiquitous pigment in living organisms. Because of its importance for browning reactions in the food industry, the tyrosinase from the mushroom Agaricus

  6. HybProbes-based real-time PCR assay for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei, the potato common scab pathogens.

    Science.gov (United States)

    Xu, R; Falardeau, J; Avis, T J; Tambong, J T

    2016-02-01

    The aim of this study was to develop and validate a HybProbes-based real-time PCR assay targeting the trpB gene for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei. Four primer pairs and a fluorescent probe were designed and evaluated for specificity in identifying S. scabies and Streptomyces europaeiscabiei, the potato common scab pathogens. The specificity of the HybProbes-based real-time PCR assay was evaluated using 46 bacterial strains, 23 Streptomyces strains and 23 non-Streptomyces bacterial species. Specific and strong fluorescence signals were detected from all nine strains of S. scabies and Streptomyces europaeiscabiei. No fluorescence signal was detected from 14 strains of other Streptomyces species and all non-Streptomyces strains. The identification was corroborated by the melting curve analysis that was performed immediately after the amplification step. Eight of the nine S. scabies and S. europaeiscabiei strains exhibited a unique melting peak, at Tm of 69·1°C while one strain, Warba-6, had a melt peak at Tm of 65·4°C. This difference in Tm peaks could be attributed to a guanine to cytosine mutation in strain Warba-6 at the region spanning the donor HybProbe. The reported HybProbes assay provides a more specific tool for accurate identification of S. scabies and S. europaeiscabiei strains. This study reports a novel assay based on HybProbes chemistry for rapid and accurate identification of the potato common scab pathogens. Since the HybProbes chemistry requires two probes for positive identification, the assay is considered to be more specific than conventional PCR or TaqMan real-time PCR. The developed assay would be a useful tool with great potential in early diagnosis and detection of common scab pathogens of potatoes in infected plants or for surveillance of potatoes grown in soil environment. © 2015 Her Majesty the Queen in Right of Canada © 2015 The Society for Applied Microbiology.

  7. Lineage-specific expansion and loss of tyrosinase genes across platyhelminths and their induction profiles in the carcinogenic oriental liver fluke, Clonorchis sinensis.

    Science.gov (United States)

    Kim, Seon-Hee; Bae, Young-An

    2017-09-01

    Tyrosinase provides an essential activity during egg production in diverse platyhelminths by mediating sclerotization of eggshells. In this study, we investigated the genomic and evolutionary features of tyrosinases in parasitic platyhelminths whose genomic information is available. A pair of paralogous tyrosinases was detected in most trematodes, whereas they were lost in cyclophyllidean cestodes. A pseudophyllidean cestode displaying egg biology similar to that of trematodes possessed an orthologous gene. Interestingly, one of the paralogous tyrosinases appeared to have been multiplied into three copies in Clonorchis sinensis and Opisthorchis viverrini. In addition, a fifth tyrosinase gene that was minimally transcribed through all developmental stages was further detected in these opisthorchiid genomes. Phylogenetic analyses demonstrated that the tyrosinase gene has undergone duplication at least three times in platyhelminths. The additional opisthorchiid gene arose from the first duplication. A paralogous copy generated from these gene duplications, except for the last one, seemed to be lost in the major neodermatans lineages. In C. sinensis, tyrosinase gene expressions were initiated following sexual maturation and the levels were significantly enhanced by the presence of O2 and bile. Taken together, our data suggest that tyrosinase has evolved lineage-specifically across platyhelminths related to its copy number and induction mechanism.

  8. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase

    Energy Technology Data Exchange (ETDEWEB)

    Miyaji, Akimitsu [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kohno, Masahiro [Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-G1-25 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Inoue, Yoshihiro [Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543 (Japan); Baba, Toshihide, E-mail: tbaba@chemenv.titech.ac.jp [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that {sup 1}O{sub 2} generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte. - Highlights: • Generation of singlet oxygen was observed during tyrosinase-catalyzed tyrosine oxidation. • The singlet oxygen generated when tyrosine was converted into dopachrome. • The amount of singlet oxygen is not sufficient for cell toxicity. • It decreased when the hydroxyl radicals and/or superoxide anions were trapped.

  9. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis

    NARCIS (Netherlands)

    Lai, Xuelei; Wichers, Harry J.; Soler-Lopez, Montserrat; Dijkstra, Bauke W.

    2017-01-01

    Tyrosinase-related protein 1 (TYRP1) is one of three tyrosinase-like glycoenzymes in human melanocytes that are key to the production of melanin, the compound responsible for the pigmentation of skin, eye, and hair. Difficulties with producing these enzymes in pure form have hampered the

  10. Identification of tyrosinase specific inhibitors from Xanthium strumarium fruit extract using ultrafiltration-high performance liquid chromatography.

    Science.gov (United States)

    Wang, Zhiqiang; Hwang, Seung Hwan; Huang, Bo; Lim, Soon Sung

    2015-10-01

    In this study, a strategy based on ultrafiltration-high performance liquid chromatography coupled with diode array detection (UF-HPLC-DAD) was proposed for screening tyrosinase specific inhibitors in Xanthii fructus. The false negatives were distinguished by optimizing the UF-HPLC-DAD parameters to reduce the background noise; the false positives were distinguished by introducing a blocked tyrosinase in the control group for comparison. To obtain the best blocker, the competitive experiments were performed using various known ligands. Using this strategy, three competitive inhibitors (protocatechuic acid; 3,5-di-O-caffeoylquinic acid; and 1,5-di-O-caffeoylquinic acid) and one mixed-type inhibitor (chlorogenic acid) were identified. These results were verified using tyrosinase inhibition assay, kinetic analysis, and structural simulation of the complex. Our experimental results suggest that the proposed strategy could be useful for high-throughput identification of tyrosinase specific inhibitors in natural products. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Condensed Tannins from Longan Bark as Inhibitor of Tyrosinase: Structure, Activity, and Mechanism.

    Science.gov (United States)

    Chai, Wei-Ming; Huang, Qian; Lin, Mei-Zhen; Ou-Yang, Chong; Huang, Wen-Yang; Wang, Ying-Xia; Xu, Kai-Li; Feng, Hui-Ling

    2018-01-31

    In this study, the content, structure, antityrosinase activity, and mechanism of longan bark condensed tannins were evaluated. The findings obtained from mass spectrometry demonstrated that longan bark condensed tannins were mixtures of procyanidins, propelargonidins, prodelphinidins, and their acyl derivatives (galloyl and p-hydroxybenzoate). The enzyme analysis indicated that these mixtures were efficient, reversible, and mixed (competitive is dominant) inhibitor of tyrosinase. What's more, the mixtures showed good inhibitions on proliferation, intracellular enzyme activity and melanogenesis of mouse melanoma cells (B 16 ). From molecular docking, the results showed the interactions between inhibitors and tyrosinase were driven by hydrogen bond, electrostatic, and hydrophobic interactions. In addition, high levels of total phenolic and extractable condensed tannins suggested that longan bark might be a good source of tyrosinase inhibitor. This study would offer theoretical basis for the development of longan bark condensed tannins as novel food preservatives and medicines of skin diseases.

  12. Recombinant Tyrosinase from Polyporus arcularius: Overproduction in Escherichia coli, Characterization, and Use in a Study of Aurones as Tyrosinase Effectors

    Czech Academy of Sciences Publication Activity Database

    Marková, Eva; Kotík, Michael; Křenková, Alena; Man, Petr; Haudecoeur, R.; Boumendjel, A.; Hardré, R.; Mekmouche, Y.; Dezord-Courvoisier, E.; Réglier, M.; Martínková, Ludmila

    2016-01-01

    Roč. 64, č. 14 (2016), s. 2925-2931 ISSN 0021-8561 R&D Projects: GA MŠk LD12049; GA MŠk LO1509; GA TA ČR TA04021212 Institutional support: RVO:61388971 Keywords : tyrosinase * Polyporus arcularius * Escherichia coli Subject RIV: CE - Biochemistry Impact factor: 3.154, year: 2016

  13. Tyrosinase, could it be a missing link in ochronosis in alkaptonuria?

    Science.gov (United States)

    Taylor, Adam M; Kammath, Vishnu; Bleakley, Aaron

    2016-06-01

    The hypothesis that is proposed is that tyrosinase, an enzyme widely found within the human body is implicated in the ochronosis that occurs in alkaptonuria; an autosomal recessive condition first used by Archibald Garrod to describe the theory of "Inborn Errors of Metabolism." The disease results from the absence of a single enzyme in the liver that breaks down homogentisic acid; this molecule becomes systemically elevated in sufferers. The condition is characterised by a clinical triad of symptoms; homogentisic aciduria from birth, ochronosis (darkening) of collagenous tissues (from ∼30years of age) and ochronotic osteoarthropathy in weight bearing joints due to long term ochronosis in them (from ∼40years of age). Tyrosinase, a polyphenol oxidase has been shown in many species to contribute to the darkening of tissues in many organisms; including humans in the production of melanin. Tyrosinase under the right conditions shows alterations in its substrate specificity and may contribute to the darkening seen in AKU where it moves away from polymerising tyrosine but also homogentisic acid, the causative molecule in alkaptonuria, that is present in excess. Copyright © 2016. Published by Elsevier Ltd.

  14. Taxonomic evaluation of Streptomyces hirsutus and related species using multi-locus sequence analysis

    Science.gov (United States)

    Phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species having very similar gross morphology. These species, including Streptomyces bambergiensis, Streptomyces chlorus, Streptomyces...

  15. Taxonomy of Streptomyces strains isolated from rhizospheres of ...

    African Journals Online (AJOL)

    Taxonomy of Streptomyces strains isolated from rhizospheres of various plant species grown in Taif region, KSA, having antagonistic activities against some microbial tissue ... African Journal of Biotechnology ... Keywords: Taxonomy, Streptomyces, microbial tissue culture contaminants, antagonistic activities, 16S rRNA

  16. Streptomyces phaeopurpureus Shinobu 1957 (Approved Lists 1980) and Streptomyces griseorubiginosus (Ryabova and Preobrazhenskaya 1957) Pridham et al. 1958 (Approved Lists 1980) are heterotypic subjective synonyms.

    Science.gov (United States)

    Kämpfer, Peter; Rückert, Christian; Blom, Jochen; Goesmann, Alexander; Wink, Joachim; Kalinowski, Jörn; Glaeser, Stefanie P

    2017-08-01

    On the basis of whole genome comparisons of Streptomyces griseorubiginosus and Streptomyces phaeopurpureus it could by shown that these two species are subjective synonyms. The names of both species have been published in the Approved Lists of Bacterial Names and, in such a case, normally Rule 24b (1) of the Prokaryotic Code applies, which reads: 'If two names compete for priority and if both names date from 1 January 1980 on an Approved List, the priority shall be determined by the date of the original publication of the name before 1 January 1980'. Streptomyces griseorubiginosus and Streptomyces phaeopurpureus were both effectively published in 1957, and for both publications, the exact date cannot be obtained. In this case a further statement of Rule 24 applies, which reads: 'If the names or epithets are of the same date, the author who first unites the taxa has the right to choose one of them, and his choice must be followed.' Hence we propose that Streptomyces phaeopurpureus is a later heterotypic subjective synonym of Streptomyces griseorubiginosus.

  17. Streptomyces development in colonies and soils

    DEFF Research Database (Denmark)

    Manteca, Angel; Sanchez, Jesus

    2009-01-01

    Streptomyces development was analyzed under conditions resembling those in soil. The mycelial growth rate was much lower than that in standard laboratory cultures, and the life span of the previously named first compartmentalized mycelium was remarkably increased.......Streptomyces development was analyzed under conditions resembling those in soil. The mycelial growth rate was much lower than that in standard laboratory cultures, and the life span of the previously named first compartmentalized mycelium was remarkably increased....

  18. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    International Nuclear Information System (INIS)

    Muñoz-Muñoz, Jose Luis; Berna, Jose; García-Molina, María del Mar; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon

    2012-01-01

    Highlights: ► The action the copper complexes and tyrosinase on phenols is equivalent. ► Isotope effect showed that nucleophilic attack to copper atom may be the slower step. ► The value of ρ (Hammett constant) supports an electrophilic aromatic substitution. ► Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k cat m and the Michaelis constant, K M m . Analysis of these data taking into account chemical shifts of the carbon atom supporting the hydroxyl group (δ) and σ p + , enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E ox (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant ρ of −1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k cat f n /k cat f 0 against n (atom fractions of deuterium), where k cat f n is the catalytic constant for a molar fraction of deuterium (n) and k cat f 0 is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that only one of the proton transfer processes from the hydroxyl groups involved the catalytic cycle is responsible for the isotope effects. We suggest that this step is the proton transfer from the hydroxyl group

  19. Streptomyces effect on the bacterial microbiota associated to Crassostrea sikamea oyster.

    Science.gov (United States)

    García Bernal, M; Trabal Fernández, N; Saucedo Lastra, P E; Medina Marrero, R; Mazón-Suástegui, J M

    2017-03-01

    To determine the composition and diversity of the microbiota associated to Crassostrea sikamea treated during 30 days with Streptomyces strains N7 and RL8. DNA was extracted from oysters followed by 16S rRNA gene amplification and pyrosequencing. The highest and lowest species diversity richness was observed in the initial and final control group, whereas Streptomyces-treated oysters exhibited intermediate values. Proteobacteria was the most abundant phylum (81·4-95·1%), followed by Bacteroidetes, Actinobacteria and Firmicutes. The genera Anderseniella, Oceanicola, Roseovarius, Ruegeria, Sulfitobacter, Granulosicoccus and Marinicella encompassed the core microbiota of all experimental groups. The genus Bacteriovorax was detected in all groups except in the final control and the depurated N7, whereas Vibrio remained undetected in all Streptomyces-treated groups. RL8 was the only group that harboured the genus Streptomyces in its microbiota. Principal component analysis showed that Streptomyces strains significantly changed oyster microbiota with respect to the initial and final control. Crassostrea sikamea treated with Streptomyces showed high species diversity and a microbiota composition shift, characterized by keeping the predator genus Bacteriovorax and decreasing the pathogenic Vibrio. This is the first culture-independent study showing the effect of Streptomyces over the oyster microbiota. It also sheds light about the potential use of Streptomyces to improve mollusc health and safety for consumers after the depuration process. © 2016 The Society for Applied Microbiology.

  20. Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor

    International Nuclear Information System (INIS)

    Anh, Tuan Mai; Dzyadevych, Sergei V.; Prieur, Nicolas; Duc, Chien Nguyen; Pham, T.D.; Renault, Nicole Jaffrezic; Chovelon, Jean-Marc

    2006-01-01

    A conductometric tyrosinase biosensor for the detection of some toxic compounds including diuron, atrazine, and copper ions was developed. The work of this biosensor is based on the principle of change of conductivity of the enzyme membrane when tyrosinase either interacts with 4-chlorophenol substrate or is inhibited by pollutants. The different samples tested were solutions containing diuron, atrazine, copper, lead and zinc ions, mixtures of copper/atrazine or copper/diuron and real water samples coming from a Vietnamese river. In the last case, classical techniques such as GC-MS or atomic absorption spectrometry were used in order to estimate exact concentration of these species in real water samples. Results have shown that such a biosensor could be used as an early warning system for the detection of these pollutants, as no matrix effect coming from the real sample was observed and no synergetic or antagonist effects were found for the mixture of toxic compounds. In addition, results were coherent with the content of the tyrosinase inhibitors

  1. Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Anh, Tuan Mai [Laboratoire d' Application de la Chimie a l' Environnement, UMR CNRS 5634, Universite Claude Bernard Lyon I, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex (France); International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Dzyadevych, Sergei V. [Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev 03143 (Ukraine); Prieur, Nicolas [Institute of Natural Products Chemistry, Vietnam National Centre for Science and Technology, Hoang Quoc Viet Str., Hanoi, Vietnam (Viet Nam); Duc, Chien Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Pham, T.D. [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Renault, Nicole Jaffrezic [Ecole Centrale de Lyon, CEGELY, UMR CNRS 5005, 36 Avenue Guy de Collongue, 69134 Ecully Cedex (France); Chovelon, Jean-Marc [Laboratoire d' Application de la Chimie a l' Environnement, UMR CNRS 5634, Universite Claude Bernard Lyon I, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex (France)]. E-mail: chovelon@univ-lyon1.fr

    2006-03-15

    A conductometric tyrosinase biosensor for the detection of some toxic compounds including diuron, atrazine, and copper ions was developed. The work of this biosensor is based on the principle of change of conductivity of the enzyme membrane when tyrosinase either interacts with 4-chlorophenol substrate or is inhibited by pollutants. The different samples tested were solutions containing diuron, atrazine, copper, lead and zinc ions, mixtures of copper/atrazine or copper/diuron and real water samples coming from a Vietnamese river. In the last case, classical techniques such as GC-MS or atomic absorption spectrometry were used in order to estimate exact concentration of these species in real water samples. Results have shown that such a biosensor could be used as an early warning system for the detection of these pollutants, as no matrix effect coming from the real sample was observed and no synergetic or antagonist effects were found for the mixture of toxic compounds. In addition, results were coherent with the content of the tyrosinase inhibitors.

  2. Streptomyces communities in soils polluted with heavy metals

    Science.gov (United States)

    Grishko, V. N.; Syshchikova, O. V.

    2009-02-01

    The contents of differently mobile heavy metal compounds and their influence on the formation of microbial cenoses (particularly, streptomyces communities) in technogenically disturbed soils are considered. Elevated concentrations of mobile Cu, Zn, Ni, Cd, and Fe compounds are shown to determine structural-functional changes in microbial cenoses that are displayed in a decreasing number of microorganisms and a narrower spectrum of the streptomyces species. Some specific features of the formation of streptomyces communities in technogenic soils were revealed on the basis of the analysis of their species structure with the use of the Margalef, Berger-Parker, and Sorensen indices of biodiversity.

  3. Occurrence of Streptomyces aurantiacus in Mangroves of Bhitarkanika

    Directory of Open Access Journals (Sweden)

    Gupta, N.

    2007-01-01

    Full Text Available Thirteen strains of Streptomyces were isolated from phyllosphere of nine mangrove tree species found in Bhitarkanika mangrove ecosystem of Orissa. According to physiological, biochemical data, all 13 of the isolates were taxonomically identified to the genus Streptomyces as aurantiacus species. All strains are grayish, spirals and forming amorphous colony. Almost all utilized araginose, produced H2S, resistant towards rifampicin and penicillin, urea except few strains. However, they exhibited different extracellular activity like phosphate solubilization, lipase and L asparaginase production. This is a unique report from this mangrove ecosystem as far as Streptomyces occurrence is concerned.

  4. Strain-Level Diversity of Secondary Metabolism in Streptomyces albus

    Science.gov (United States)

    Seipke, Ryan F.

    2015-01-01

    Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty. PMID:25635820

  5. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.

    Science.gov (United States)

    Ismaya, Wangsa T; Rozeboom, Henriëtte J; Weijn, Amrah; Mes, Jurriaan J; Fusetti, Fabrizia; Wichers, Harry J; Dijkstra, Bauke W

    2011-06-21

    Tyrosinase catalyzes the conversion of phenolic compounds into their quinone derivatives, which are precursors for the formation of melanin, a ubiquitous pigment in living organisms. Because of its importance for browning reactions in the food industry, the tyrosinase from the mushroom Agaricus bisporus has been investigated in depth. In previous studies the tyrosinase enzyme complex was shown to be a H(2)L(2) tetramer, but no clues were obtained of the identities of the subunits, their mode of association, and the 3D structure of the complex. Here we unravel this tetramer at the molecular level. Its 2.3 Å resolution crystal structure is the first structure of the full fungal tyrosinase complex. The complex comprises two H subunits of ∼392 residues and two L subunits of ∼150 residues. The H subunit originates from the ppo3 gene and has a fold similar to other tyrosinases, but it is ∼100 residues larger. The L subunit appeared to be the product of orf239342 and has a lectin-like fold. The H subunit contains a binuclear copper-binding site in the deoxy-state, in which three histidine residues coordinate each copper ion. The side chains of these histidines have their orientation fixed by hydrogen bonds or, in the case of His85, by a thioether bridge with the side chain of Cys83. The specific tyrosinase inhibitor tropolone forms a pre-Michaelis complex with the enzyme. It binds near the binuclear copper site without directly coordinating the copper ions. The function of the ORF239342 subunits is not known. Carbohydrate binding sites identified in other lectins are not conserved in ORF239342, and the subunits are over 25 Å away from the active site, making a role in activity unlikely. The structures explain how calcium ions stabilize the tetrameric state of the enzyme.

  6. Characterization of a New Flavone and Tyrosinase Inhibition Constituents from the Twigs of Morus alba L.

    Science.gov (United States)

    Zhang, Long; Tao, Guanjun; Chen, Jie; Zheng, Zong-Ping

    2016-09-02

    The twigs of Morus alba L. were found to show strong tyrosinase inhibition activity, and the responsible active components in the extract were further investigated in this study. A flavone, named morusone (1), and sixteen known compounds 2-17 were isolated from M. alba twigs and their structures were identified by interpretation of the corresponding ESI-MS and NMR spectral data. In the tyrosinase inhibitory test, the compounds steppogenin (IC50 0.98 ± 0.01 µM), 2,4,2',4'-tetrahydroxychalcone (IC50 0.07 ± 0.02 µM), morachalcone A (IC50 0.08 ± 0.02 µM), oxyresveratrol (IC50 0.10 ± 0.01 µM), and moracin M (8.00 ± 0.22 µM) exhibited significant tyrosinase inhibition activities, much stronger than that of the positive control kojic acid. These results suggest that M. alba twig extract should served as a good source of natural tyrosinase inhibitors for use in foods as antibrowning agents or in cosmetics as skin-whitening agents.

  7. Characterization of a New Flavone and Tyrosinase Inhibition Constituents from the Twigs of Morus alba L.

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2016-09-01

    Full Text Available The twigs of Morus alba L. were found to show strong tyrosinase inhibition activity, and the responsible active components in the extract were further investigated in this study. A flavone, named morusone (1, and sixteen known compounds 2–17 were isolated from M. alba twigs and their structures were identified by interpretation of the corresponding ESI-MS and NMR spectral data. In the tyrosinase inhibitory test, the compounds steppogenin (IC50 0.98 ± 0.01 µM, 2,4,2′,4′-tetrahydroxychalcone (IC50 0.07 ± 0.02 µM, morachalcone A (IC50 0.08 ± 0.02 µM, oxyresveratrol (IC50 0.10 ± 0.01 µM, and moracin M (8.00 ± 0.22 µM exhibited significant tyrosinase inhibition activities, much stronger than that of the positive control kojic acid. These results suggest that M. alba twig extract should served as a good source of natural tyrosinase inhibitors for use in foods as antibrowning agents or in cosmetics as skin-whitening agents.

  8. Streptomyces Exploration: Competition, Volatile Communication and New Bacterial Behaviours.

    Science.gov (United States)

    Jones, Stephanie E; Elliot, Marie A

    2017-07-01

    Streptomyces bacteria are prolific producers of specialized metabolites, and have a well studied, complex life cycle. Recent work has revealed a new type of Streptomyces growth termed 'exploration' - so named for the ability of explorer cells to rapidly traverse solid surfaces. Streptomyces exploration is stimulated by fungal interactions, and is associated with the production of an alkaline volatile organic compound (VOC) capable of inducing exploration by other streptomycetes. Here, we examine Streptomyces exploration from the perspectives of interkingdom interactions, pH-induced morphological switches, and VOC-mediated communication. The phenotypic diversity that can be revealed through microbial interactions and VOC exposure is providing us with insight into novel modes of microbial development, and an opportunity to exploit VOCs to stimulate desired microbial behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Extracts of Morus nigra L. Leaves Standardized in Chlorogenic Acid, Rutin and Isoquercitrin: Tyrosinase Inhibition and Cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Marcela Medeiros de Freitas

    Full Text Available Melanogenesis is a process responsible for melanin production, which is stored in melanocytes containing tyrosinase. Inhibition of this enzyme is a target in the cosmetics industry, since it controls undesirable skin conditions such as hyperpigmentation due to the overproduction of melanin. Species of the Morus genus are known for the beneficial uses offered in different parts of its plants, including tyrosinase inhibition. Thus, this project aimed to study the inhibitory activity of tyrosinase by extracts from Morus nigra leaves as well as the characterization of its chromatographic profile and cytotoxicity in order to become a new therapeutic option from a natural source. M. nigra leaves were collected, pulverized, equally divided into five batches and the standardized extract was obtained by passive maceration. There was no significant difference between batches for total solids content, yield and moisture content, which shows good reproducibility of the extraction process. Tyrosinase enzymatic activity was determined for each batch, providing the percentage of enzyme inhibition and IC50 values obtained by constructing dose-response curves and compared to kojic acid, a well-known tyrosinase inhibitor. High inhibition of tyrosinase activity was observed (above 90% at 15.625 μg/mL. The obtained IC50 values ranged from 5.00 μg/mL ± 0.23 to 8.49 μg/mL ± 0.59 and were compared to kojic acid (3.37 μg/mL ± 0.65. High Performance Liquid Chromatography analysis revealed the presence of chlorogenic acid, rutin and, its major compound, isoquercitrin. The chromatographic method employed was validated according to ICH guidelines and the extract was standardized using these polyphenols as markers. Cytotoxicity, assessed by MTT assay, was not observed on murine melanomas, human keratinocytes and mouse fibroblasts in tyrosinase IC50 values. This study demonstrated the potential of M. nigra leaf extract as a promising whitening agent of natural source

  10. Discovering potential Streptomyces hormone producers by using disruptants of essential biosynthetic genes as indicator strains.

    Science.gov (United States)

    Thao, Nguyen B; Kitani, Shigeru; Nitta, Hiroko; Tomioka, Toshiya; Nihira, Takuya

    2017-10-01

    Autoregulators are low-molecular-weight signaling compounds that control the production of many secondary metabolites in actinomycetes and have been referred to as 'Streptomyces hormones'. Here, potential producers of Streptomyces hormones were investigated in 40 Streptomyces and 11 endophytic actinomycetes. Production of γ-butyrolactone-type (IM-2, VB) and butenolide-type (avenolide) Streptomyces hormones was screened using Streptomyces lavendulae FRI-5 (ΔfarX), Streptomyces virginiae (ΔbarX) and Streptomyces avermitilis (Δaco), respectively. In these strains, essential biosynthetic genes for Streptomyces hormones were disrupted, enabling them to respond solely to the externally added hormones. The results showed that 20% of each of the investigated strains produced IM-2 and VB, confirming that γ-butyrolactone-type Streptomyces hormones are the most common in actinomycetes. Unlike the γ-butyrolactone type, butenolide-type Streptomyces hormones have been discovered in recent years, but their distribution has been unclear. Our finding that 24% of actinomycetes (12 of 51 strains) showed avenolide activity revealed for the first time that the butenolide-type Streptomyces hormone is also common in actinomycetes.

  11. Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-05-10

    Antibiotic resistance is one of the most serious public health problems. Among bacterial resistance, β-lactam antibiotic resistance is the most prevailing and threatening area. Antibiotic resistance is thought to originate in antibiotic-producing bacteria such as Streptomyces. In this review, β-lactamases and penicillin-binding proteins (PBPs) in Streptomyces are explored mainly by phylogenetic analyses from the viewpoint of self-resistance. Although PBPs are more important than β-lactamases in self-resistance, phylogenetically diverse β-lactamases exist in Streptomyces. While class A β-lactamases are mostly detected in their enzyme activity, over two to five times more classes B and C β-lactamase genes are identified at the whole genomic level. These genes can subsequently be transferred to pathogenic bacteria. As for PBPs, two pairs of low affinity PBPs protect Streptomyces from the attack of self-producing and other environmental β-lactam antibiotics. PBPs with PASTA domains are detectable only in class A PBPs in Actinobacteria with the exception of Streptomyces. None of the Streptomyces has PBPs with PASTA domains. However, one of class B PBPs without PASTA domain and a serine/threonine protein kinase with four PASTA domains are located in adjacent positions in most Streptomyces. These class B type PBPs are involved in the spore wall synthesizing complex and probably in self-resistance. Lastly, this paper emphasizes that the resistance mechanisms in Streptomyces are very hard to deal with, despite great efforts in finding new antibiotics.

  12. Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities

    Directory of Open Access Journals (Sweden)

    Surached Thitimuta

    2017-03-01

    Full Text Available The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE (Camellia sinensis L.. The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl4-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE’s principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl4-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl4 intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins.

  13. Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities.

    Science.gov (United States)

    Thitimuta, Surached; Pithayanukul, Pimolpan; Nithitanakool, Saruth; Bavovada, Rapepol; Leanpolchareanchai, Jiraporn; Saparpakorn, Patchreenart

    2017-03-04

    The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE) ( Camellia sinensis L.). The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl₄-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA) oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE's principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl₄-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl₄ intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins.

  14. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    OpenAIRE

    Chin-Feng Chan; Ching-Cheng Huang; Ming-Yuan Lee; Yung-Sheng Lin

    2014-01-01

    Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  15. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase

    International Nuclear Information System (INIS)

    Toussaint, O.; Lerch, K.

    1987-01-01

    The usual substrates of tyrosinase, a copper-containing monooxygenase (EC 1.14.18.1), are monophenols and o-diphenols which are both converted to o-quinones. In this paper, the authors studied the reaction of this enzyme with two new classes of substrates: aromatic amines and o-aminophenols, structural analogues of monophenols and o-diphenols, respectively. They undergo the same catalytic reactions (ortho hydroxylation and oxidation), as documented by product analysis and kinetic studies. In the presence of tyrosinase, arylamines and o-aminophenols are converted to o-quinone imines, which are isolated as quinone anils or phenoxazones. As an example, in the presence of tyrosinase, 2-amino-3-hydroxybenzoic acid (an o-aminophenol) is converted to cinnabarinic acid, a well-known phenoxazone, while p-aminotoluene (an aromatic amine) gives rise to the formation of 5-amino-2-methyl-1,4-benzoquinone 1-(4-methylanil). Kinetic studies using an oxygen electrode show that arylamines and the corresponding monophenols exhibit similar Michaelis constants. In contrast, the reaction rates observed for aromatic amines are relatively slow as compared to monophenols. The enzymatic conversion of arylamines by tryosinase is different from the typical ones: N-oxidation and ring hydroxylation without further oxidation. This difference originates from the regiospecific hydroxylation (ortho position) and subsequent oxidation of the intermediate o-aminophenol to the corresponding o-quinone imine. Finally, the well-know monooxygenase activity of tyrosinase was also confirmed for the aromatic amine p-aminotoluene, with 18 O 2

  16. Streptomyces palmae sp. nov., isolated from oil palm (Elaeis guineensis) rhizosphere soil.

    Science.gov (United States)

    Sujarit, Kanaporn; Kudo, Takuji; Ohkuma, Moriya; Pathom-Aree, Wasu; Lumyong, Saisamorn

    2016-10-01

    Actinomycete strain CMU-AB204T was isolated from oil palm rhizosphere soil collected in Chiang Mai University (Chiang Mai, Thailand). Based on morphological and chemotaxonomic characteristics, the organism was considered to belong to the genus Streptomyces. Whole cell-wall hydrolysates consisted of ll-diaminopimelic acid, glucose, ribose and galactose. The predominant menaquinones were MK-9(H4), MK-9(H6), MK-9(H2) and MK-8(H4). The fatty acid profile contained iso-C15 : 0, iso-C16 : 0 and anteiso-C15 : 0 as major components. The principal phospholipids detected were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The DNA G+C content of strain CMU-AB204T was 70.9 mol%. Based on 16S rRNA gene sequence similarity, strain CMU-AB204T was closely related to Streptomyces orinoci JCM 4546T (98.7 %), Streptomyces lilacinus NBRC 12884T (98.5 %), Streptomyces abikoensis CGMCC 4.1662T (98.5 %), Streptomyces griseocarneus JCM 4905T (98.4 %) and Streptomyces xinghaiensis JCM 16958T (98.3 %). Phylogenetic trees revealed that the new strain had a distinct taxonomic position from closely related type strains of the genus Streptomyces. Spiny to hairy spores clearly differentiated strain CMU-AB204T from the five most closely related Streptomyces species, which produced smooth spores. On the basis of evidence from this polyphasic study, it is proposed that strain CMU-AB204T represents a novel species of the genus Streptomyces, namely Streptomyces palmae sp. nov. The type strain is CMU-AB204T (=JCM 31289T=TBRC 1999T).

  17. Chemometric profile, antioxidant and tyrosinase inhibitory activity of Camel's foot creeper leaves (Bauhinia vahlii).

    Science.gov (United States)

    Panda, Pritipadma; Dash, Priyanka; Ghosh, Goutam

    2018-03-01

    The present study is the first effort to a comprehensive evaluation of antityrosinase activity and chemometric analysis of Bauhinia vahlii. The experimental results revealed that the methanol extract of Bauhinia vahlii (BVM) possesses higher polyphenolic compounds and total antioxidant activity than those reported elsewhere for other more conventionally and geographically different varieties. The BVM contain saturated fatty acids such as hexadecanoic acid (10.15%), octadecanoic acid (1.97%), oleic acid (0.61%) and cis-vaccenic acid (2.43%) along with vitamin E (12.71%), α-amyrin (9.84%), methyl salicylate (2.39%) and β-sitosterol (17.35%), which were mainly responsible for antioxidant as well as tyrosinase inhibitory activity. Tyrosinase inhibitory activity of this extract was comparable to that of Kojic acid. These findings suggested that the B. vahlii leaves could be exploited as potential source of natural antioxidant and tyrosinase inhibitory agent, as well.

  18. Streptomyces xinjiangensis sp. nov., an actinomycete isolated from Lop Nur region.

    Science.gov (United States)

    Cheng, Cong; Li, Yu-Qian; Asem, Mipeshwaree Devi; Lu, Chun-Yan; Shi, Xiao-Han; Chu, Xiao; Zhang, Wan-Qin; Di An, Deng-; Li, Wen-Jun

    2016-10-01

    A novel actinobacterial strain, designated LPA192(T), was isolated from a soil sample collected from Lop Nur, Xinjiang Uygur Autonomous Region, Northwest China. A polyphasic approach was used to investigate the taxonomic position of strain LPA192(T). The isolate showed morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Peptidoglycan was found to contain LL-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H6) and MK-10(H4). Polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol. Major cellular fatty acids consist of C16:0, anteiso-C15:0 and C18:1 ω9c. The sugar in whole-cell hydrolysates was mannose. Phylogenetic analysis indicated that strain LPA192(T) is closely related to Streptomyces tanashiensis LMG 20274(T) (99.3 %), Streptomyces gulbargensis DAS131(T) (99.3 %), Streptomyces nashvillensis NBRC 13064(T) (99.3 %), Streptomyces roseolus NBRC 12816(T) (99.2 %) and Streptomyces filamentosus NBRC 12767(T) (99.1 %) while showing below 98.5 % sequencing similarities with other validly published Streptomyces species. However, DNA-DNA relatedness values between LPA192(T) and the closely related type strains were below 40 %, which are much lower than 70 % threshold value for species delineation. The genomic DNA G + C content of strain LPA192(T) was 69.3 mol %. Based on the differences in genotypic and phenotypic characteristics from the closely related strains, strain LPA192(T) is considered to represent a novel species of the genus Streptomyces for which the name Streptomyces xinjiangensis sp. nov. is proposed. The type strain is LPA192(T) (=KCTC 39601(T) = CGMCC 4.7288(T)).

  19. Toxin detection using a tyrosinase-coupled oxygen electrode.

    Science.gov (United States)

    Smit, M H; Rechnitz, G A

    1993-02-15

    An enzyme-based "electrochemical canary" is described for the detection of cyanide. The sensing system imitates cyanide's site of toxicity in the mitochondria. The terminal sequence of electron transfer in aerobic respiration is mimicked by mediator coupling of tyrosinase catalysis to an electro-chemical system. An enzyme-coupled oxygen electrode is created which is sensitive to selective poisoning. Biocatalytic reduction of oxygen is promoted by electrochemically supplying tyrosinase with electrons. Thus, ferrocyanide is generated at a cathode and mediates the enzymatic reduction of oxygen to water. An enzyme-dependent reductive current can be monitored which is inhibited by cyanide in a concentration-dependent manner. Oxygen depletion in the reaction layer can be minimized by addressing enzyme activity using a potential pulsing routine. Enzyme activity is electrochemically initiated and terminated and the sensor becomes capable of continuous monitoring. Cyanide poisoning of the biological component is reversible, and it can be reused after rinsing. The resulting sensor detects cyanide based on its biological activity rather than its physical or chemical properties.

  20. [Progress in developing and applying Streptomyces chassis - A review].

    Science.gov (United States)

    Xiao, Liping; Deng, Zixin; Liu, Tiangang

    2016-03-04

    Natural products and their derivatives play an important role in modern healthcare. Their diversity in bioactivity and chemical structure inspires scientists to discover new drug entities for clinical use. However, chemical synthesis of natural compounds has insurmountable difficulties in technology and cost. Also, many original-producing bacteria have disadvantages of needing harsh cultivation conditions, having low productivity and other shortcomings. In addition, some gene clusters responsible for secondary metabolite biosynthesis are silence in the original strains. Therefore, it is of great significance to exploit strategy for the heterologous expression of natural products guided by synthetic biology. Recently, researchers pay more attention on using actinomycetes that are the main source of many secondary metabolites, such as antibiotics, anticancer agents, and immunosuppressive drugs. Especially, with huge development of genome sequencing, abundant resources of natural product biosynthesis in Streptomyces have been discovered, which highlight the special advantages on developing Streptomyces as the heterologous expression chassis cells. This review begins with the significance of the development of Streptomyces chassis, focusing on the strategies and the status in developing Streptomyces chassis cells, followed by examples to illustrate the practical applications of a variety of Streptomyces chassis.

  1. Experiment study of tyrosinase gene's expression in HEK293 cell by MR

    International Nuclear Information System (INIS)

    Yuan Jianpeng; Liang Biling; Zhong Jinglian; Xie Bangkun; Zhang Weidong; Zhang Lin

    2004-01-01

    Objective: To transfect the tyrosinase gene into HEK293 cell as a reporter gene, and to evaluate the tyrosinase gene's expression by using MRI based on the gene's property of synthesizing large amount of melanin, and to search a way for evaluating the results of gene expression by MR in vitro. Methods: The plasmid of pcDNA3tyr which carried the full-length cDNA of tyrosinase gene was transfected into HEK293 cell by lipofectin, and MR signals of expressed melanin was observed by scanning the transfected cells with MR sequences of T 1 WI, T 1 WI/SPIR, and T 2 WI. Fontana stain and electric microscopy were used to search for melanin granules in transfected cells, and RT-PCR method was used to search for cDNA of tyrosinase gene. Results: (1) Plasmids of pcDNA3tyr could be transfected into HEK293 cells and could synthesize a large amount of melanin in them. The synthetic melanin in 10 6 cells, which had been transfected with 5 μg, 10 μg, and 20 μg plasmids of pcDNA3tyr separately, were all sufficient to be detected by MR and appeared as high signal on MR T 1 WI, T 1 WI/SPIR, and T 2 WI sequences. The more the amounts of transfected plasmids, the higher the signal intensities of MR imaging. On the other hand, 6.25 x 10 4 cells with 20 μg-plasmid of pcDNA3tyr transfection could also be detected by MR; (2) The melanin granules could be found in HEK293 cells in Fontana stain; (3) The melanin granules and their front bodies could be found in intracytoplasm of HEK293 cell by electric microscopy. (4) The cDNA fragment of tyrosinase gene could be detected in transfected HEK293 cells by RT-PCR. Conclusion: The fact that MR could detect the synthetic melanin in HEK293 cells controlled by expression of exogenous gene demonstrated that medical imaging combined with molecular biology technology could evaluate the result of gene expression in vitro, and it also indicated that medical imaging could play an important role in the evaluation of gene therapy following the development

  2. Antimicrobial activity of Streptomyces spp. Isolates from vegetable plantation soil

    Directory of Open Access Journals (Sweden)

    Isnaeni

    2016-05-01

    Full Text Available Fifteen Streptomyces isolates were isolated from soil in some different location on vegetable plantation at agriculture standard condition. The isolates were assessed for their antibacterial activity against Mycobacterium tuberculosis (MTB ATCC H37RV and mycobacterial which isolated from Dr. Soetomo Hospital patients in Surabaya. The International Streptomyces Project 4 (ISP4 and Middlebrook 7H9 (MB7H9 wwere used as growth or fermentation medium. The screening of inhibition activity was performed using turbidimetry and spot-test on agar medium. Results shown that 33.3% of the isolates (5 isolates have anti-mycobacterial activities. The first line anti tuberculosis drug rifampicin, (RIF, ethambutol (EMB, isoniazid (INH, and pyrazinamide (PZA were used as standards or positive controls with concentration 20 ppm. Optical density of crude fermentation broth concentrated from five isolates relatively lower than five anti-tuberculosis drug activity standard, although their activities against some microbial were similar to the standard at spot-test. The most efficient isolate shown anti-mycobacterial activity was Streptomyces B10 which identified as Streptomyces violaceousniger. In addition, fatty acid methyl ester (FAME profile of gas chromatography-mass spectrometry chromatogram of each isolates were studied and compared to Streptomyces spp. Keywords: Anti-mycobacterial, Mycobacterium tuberculosis, Streptomyces spp.

  3. Inhibitory effects of constituents of Morinda citrifolia seeds on elastase and tyrosinase.

    Science.gov (United States)

    Masuda, Megumi; Murata, Kazuya; Fukuhama, Akiko; Naruto, Shunsuke; Fujita, Tadashi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2009-07-01

    A 50% ethanolic extract (MCS-ext) from seeds of Morinda citrifolia ("noni" seeds) showed more potent in vitro inhibition of elastase and tyrosinase, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than extracts of M. citrifolia leaves or flesh. Activity-guided fractionation of MCS-ext using in vitro assays led to the isolation of ursolic acid as an active constituent of elastase inhibitory activity. 3,3'-Bisdemethylpinoresinol, americanin A, and quercetin were isolated as active constituents having both tyrosinase inhibitory and radical scavenging activities. Americanin A and quercetin also showed superoxide dismutase (SOD)-like activity. These active compounds were isolated from noni seeds for the first time.

  4. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    Science.gov (United States)

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase.

  5. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    Directory of Open Access Journals (Sweden)

    Chin-Feng Chan

    2014-08-01

    Full Text Available Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  6. Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity.

    Science.gov (United States)

    Jhan, J-K; Chung, Y-C; Chen, G-H; Chang, C-H; Lu, Y-C; Hsu, C-K

    2016-06-01

    The seed coat of black soya bean (SCBS) contains high amount of anthocyanins and shows antioxidant and anti-mushroom tyrosinase activities. The objectives of this study were to analyse the anthocyanins in SCBS with different solvents and to find the relationship between anthocyanin profile with anti-human and anti-mushroom tyrosinase activities. SCBS was extracted with hot water, 50 and 80% ethanol, 50 and 80% acetone and 50 and 80% acidified acetone. Total phenol and total flavonoid contents in the extracts were determined. Anthocyanins in the extracts were analysed using HPLC and LC/MS/MS. A genetically engineered human tyrosinase was used to evaluate the anti-tyrosinase potential of the extracts from SCBS. 80% acetone extract from SCBS obtained the highest total phenol, total flavonoid and cyanidin-3-O-glucoside (C3G) contents among all the extracts, whereas the hot water extract showed the lowest antioxidant contents. Three anthocyanin compounds were found in all the extracts from SCBS, and the analysis of HPLC and LC/MS/MS indicated that they were C3G, delphinidin-3-O-glucoside (D3G) and peonidin-3-O-glucoside (P3G). The ratios of C3G (2.84 mg g(-1) ), D3G (0.34 mg g(-1) ) and P3G (0.35 mg g(-1) ) in 80% acidified acetone extract were 76.6, 9.1 and 9.3%, respectively. All the extracts from SCBS possessed anti-human tyrosinase activity. Moreover, a good correlation was found between the anti-human tyrosinase activities and C3G contents in the extracts. Antioxidants in SCBS also possess anti-human and anti-mushroom tyrosinase activities. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: Anti-melanogenesis and antioxidant activities, and computational molecular modeling studies.

    Science.gov (United States)

    Pintus, Francesca; Matos, Maria J; Vilar, Santiago; Hripcsak, George; Varela, Carla; Uriarte, Eugenio; Santana, Lourdes; Borges, Fernanda; Medda, Rosaria; Di Petrillo, Amalia; Era, Benedetta; Fais, Antonella

    2017-03-01

    Melanogenesis is a physiological pathway for the formation of melanin. Tyrosinase catalyzes the first step of this process and down-regulation of its activity is responsible for the inhibition of melanogenesis. The search for molecules capable of controlling hyperpigmentation is a trend topic in health and cosmetics. A series of heteroarylcoumarins have been synthesized and evaluated. Compounds 4 and 8 exhibited higher tyrosinase inhibitory activities (IC 50 =0.15 and 0.38μM, respectively), than the reference compound, kojic acid (IC 50 =17.9μM). Compound 4 acts as competitive, while compound 8 as uncompetitive inhibitor of mushroom tyrosinase. Furthermore, compounds 2 and 8 inhibited tyrosinase activity and melanin production in B16F10 cells. In addition, compounds 2-4 and 8 proved to have an interesting antioxidant profile in both ABTS and DPPH radicals scavenging assays. Docking experiments were carried out in order to study the interactions between these heteroarylcoumarins and mushroom tyrosinase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Munoz, Jose Luis [GENZ - Grupo de Investigacion Enzimologia, Departamento de Bioquimica y Biologia Molecular-A, Facultad de Biologia, Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Berna, Jose [Grupo de Quimica Organica Sintetica, Departamento de Quimica Organica, Facultad de Quimica Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia (Spain); Garcia-Molina, Maria del Mar; Garcia-Molina, Francisco [GENZ - Grupo de Investigacion Enzimologia, Departamento de Bioquimica y Biologia Molecular-A, Facultad de Biologia, Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia, E-30100 Espinardo, Murcia (Spain); Garcia-Ruiz, Pedro Antonio [QCPAI - Grupo de Quimica de Carbohidratos, Polimeros y Aditivos Industriales, Departamento de Quimica Organica, Facultad de Quimica Campus Internacional de Excelencia Campus Mare Nostrum, Universidad de Murcia (Spain); Varon, Ramon [Departamento de Quimica-Fisica, Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla la Mancha, Avda. Espana s/n. Campus Universitario, E-02071 Albacete (Spain); and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer The action the copper complexes and tyrosinase on phenols is equivalent. Black-Right-Pointing-Pointer Isotope effect showed that nucleophilic attack to copper atom may be the slower step. Black-Right-Pointing-Pointer The value of {rho} (Hammett constant) supports an electrophilic aromatic substitution. Black-Right-Pointing-Pointer Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k{sub cat}{sup m} and the Michaelis constant, K{sub M}{sup m}. Analysis of these data taking into account chemical shifts of the carbon atom supporting the hydroxyl group ({delta}) and {sigma}{sub p}{sup +}, enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E{sub ox} (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant {rho} of -1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k{sub cat}{sup f{sub n}}/k{sub cat}{sup f{sub 0}} against n (atom fractions of deuterium), where k{sub cat}{sup f{sub n}} is the catalytic constant for a molar fraction of deuterium (n) and k{sub cat}{sup f{sub 0}} is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that

  9. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves.

    Science.gov (United States)

    Cespedes, Carlos L; Balbontin, Cristian; Avila, Jose G; Dominguez, Mariana; Alarcon, Julio; Paz, Cristian; Burgos, Viviana; Ortiz, Leandro; Peñaloza-Castro, Ignacio; Seigler, David S; Kubo, Isao

    2017-11-01

    It is reported in this study the effect of isolates from leaves of Aristotelia chilensis as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes. The aim of the paper was to evaluate the activity of A. chilensis towards different enzymes. In addition to pure compounds, extracts rich in alkaloids and phenolics were tested. The most active F5 inhibited AChE (79.5% and 89.8% at 10.0 and 20.0 μg/mL) and against BChE (89.5% and 97.8% at 10.0 and 20.0 μg/mL), showing a strong mixed-type inhibition against AChE and BChE. F3 (a mixture of flavonoids and phenolics acids), showed IC 50 of 90.7 and 59.6 μg/mL of inhibitory activity against AChE and BChE, inhibiting the acetylcholinesterase competitively. Additionally, F3 showed and high potency as tyrosinase inhibitor with IC 50 at 8.4 μg/mL. Sample F4 (anthocyanidins and phenolic composition) presented a complex, mixed-type inhibition of tyrosinase with a IC 50 of 39.8 μg/mL. The findings in this investigation show that this natural resource has a strong potential for future research in the search of new phytotherapeutic treatments for cholinergic deterioration ailments avoiding the side effects of synthetic drugs. This is the first report as cholinesterases and tyrosinase inhibitors of alkaloids and phenolics from A. chilensis leaves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Structure and activity studies of tyrosinases and related proteins

    NARCIS (Netherlands)

    Lai, Xuelei

    2017-01-01

    The copper-containing enzyme tyrosinase catalyzes the conversion of tyrosine into DOPAquinone, which is the precursor of melanin in almost all organisms. In humans, melanin is an essential pigment that protects the skin and eyes against the UV radiation from the sun. Mutations in the genes of the

  11. Streptomyces bryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta).

    Science.gov (United States)

    Li, Chuang; Jin, Pinjiao; Liu, Chongxi; Ma, Zhaoxu; Zhao, Junwei; Li, Jiansong; Wang, Xiangjing; Xiang, Wensheng

    2016-09-01

    A novel endophytic actinomycete, designated strain NEAU-HZ10(T) was isolated from moss and characterised using a polyphasic approach. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Streptomyces. Strain NEAU-HZ10(T) formed grayish aerial mycelia, which differentiated into straight to flexuous chains of cylindrical spores. The cell wall peptidoglycan was found to contain LL-diaminopimelic acid. Predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The polar lipid profile was found to consist of phosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. The major fatty acids were identified as iso-C16:0, anteiso-C15:0 and C16:0. 16S rRNA gene sequence similarity studies showed that strain NEAU-HZ10(T) belongs to the genus Streptomyces and exhibits high sequence similarity to Streptomyces cocklensis DSM 42063(T) (98.9 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-HZ10(T) clustered with S. cocklensis DSM 42063(T), Streptomyces yeochonensis CGMCC 4.1882(T) (98.7 %), Streptomyces paucisporeus CGMCC 4.2025(T) (98.4 %) and Streptomyces yanglinensis CGMCC 4.2023(T) (98.1 %). However, a combination of DNA-DNA hybridisation results and some phenotypic characteristics indicated that strain NEAU-HZ10(T) can be distinguished from its phylogenetically closely related strains. Therefore, it is proposed that strain NEAU-HZ10(T) represents a novel species of the genus Streptomyces for which the name Streptomyces bryophytorum sp. nov. is proposed. The type strain is NEAU-HZ10(T) (= CGMCC 4.7151(T) = DSM 42138(T)).

  12. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.

    Science.gov (United States)

    Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-07-25

    Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.

  13. Antagonistic Activities of Streptomyces against Root Knot Nematode of Kiwifruit

    Directory of Open Access Journals (Sweden)

    S. Bashiri

    2016-02-01

    Full Text Available Introduction: Iran is among the world leading kiwifruit producers with 2.816 ha cultivated and 31.567 tones production. Plant parasitic nematodes cause damages to a variety of agricultural crops throughout the world. Interest in biological control of nematodes has increased because of the need for alternative methods to fumigant and non-fumigant nematicides and overall improvement of IPM programs. Bacterial species with nematicidal activity have also been used with some success for controlling root-knot diseases, including Streptomyces spp., Serratia spp., Bacillus spp. and Pseudomonas spp. The goal of the current study was to isolate, identify and investigate the potential of local Streptomyces bacteria for controlling and reducing root-knot nematode population in the north of Iran. Materials and Methods: In order to evaluate the effect of antagonistic bacteria on control of root-knot nematode of Kiwifruit, 100 isolates of bacteria were collected from Kiwifruit rhizosphere in the north of Iran and screened for pigmented microorganisms especially Streptomyces by applying standard serial dilution plate technique, using starch casein nitrate agar and glycerol asparagine agar. Morphological characterizations were achieved by the microscopic method. The microscopic characterization was done by cover slip culture method. The mycelium structure, color and arrangement of conidiospore and arthrospore on the mycelium were observed through the oil immersion (100X. The observed structure was compared with Bergey’s Manual of Determinative Bacteriology and the organism was identified. Various biochemical tests performed for the identification of the potent isolates are as follows: casein hydrolysis, starch hydrolysis, urea hydrolysis, esculin hydrolysis, acid production from sugar, NaCl resistance, temperature tolerance. Soil samples (100g were collected, and then processed for nematode egg and larvae extraction Hussey method. The suspension was pipetted

  14. Genome-based phylogenetic analysis of Streptomyces and its relatives

    NARCIS (Netherlands)

    Alam, Mohammad Tauqeer; Merlo, Maria Elena; Takano, Eriko; Breitling, Rainer

    Motivation: Streptomyces is one of the best-studied genera of the order Actinomycetales due to its great importance in medical science, ecology and the biotechnology industry. A comprehensive, detailed and robust phylogeny of Streptomyces and its relatives is needed for understanding how this group

  15. Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase.

    Science.gov (United States)

    Muñoz-Muñoz, Jose Luis; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon; Tudela, Jose; Rodriguez-Lopez, Jose N; Garcia-Canovas, Francisco

    2011-12-01

    The kinetics of tyrosinase acting on o-aminophenols and aromatic amines as substrates was studied. The catalytic constants of aromatic monoamines and o-diamines were both low, these results are consistent with our previous mechanism in which the slow step is the transfer of a proton by a hydroxyl to the peroxide in oxy-tyrosinase (Fenoll et al., Biochem. J. 380 (2004) 643-650). In the case of o-aminophenols, the hydroxyl group indirectly cooperates in the transfer of the proton and consequently the catalytic constants in the action of tyrosinase on these compounds are higher. In the case of aromatic monoamines, the Michaelis constants are of the same order of magnitude than for monophenols, which suggests that the monophenols bind better (higher binding constant) to the enzyme to facilitate the π-π interactions between the aromatic ring and a possible histidine of the active site. In the case of aromatic o-diamines, both the catalytic and Michaelis constants are low, the values of the catalytic constants being lower than those of the corresponding o-diphenols. The values of the Michaelis constants of the aromatic o-diamines are slightly lower than those of their corresponding o-diphenols, confirming that the aromatic o-diamines bind less well (lower binding constant) to the enzyme. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Evolutionary Relationships among Actinophages and a Putative Adaptation for Growth in Streptomyces spp.

    Science.gov (United States)

    Hendrix, Roger W.; Dedrick, Rebekah; Mitchell, Kaitlin; Ko, Ching-Chung; Russell, Daniel; Bell, Emma; Gregory, Matthew; Bibb, Maureen J.; Pethick, Florence; Jacobs-Sera, Deborah; Herron, Paul; Buttner, Mark J.; Hatfull, Graham F.

    2013-01-01

    The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. PMID:23995638

  17. Antioxidant, Iron Chelating and Tyrosinase Inhibitory Activities of Extracts from Talinum triangulare Leach Stem

    Directory of Open Access Journals (Sweden)

    Ana Paula Oliveira Amorim

    2013-07-01

    Full Text Available The aim of this work is to evaluate the antioxidant activity against the radical species DPPH, the reducing capacity against Fe II ions, and the inhibitory activity on the tyrosinase enzyme of the T. triangulare. Hydromethanolic crude extract provided two fractions after the liquid/liquid partition with chloroform. The Folin-Ciocalteu method determined the total phenolic content of the crude extract (CE and the hydromethanolic fraction (Fraction 1, resulting in a concentration of 0.5853 g/100 g for Fraction 1, and 0.1400 g/100 g for the CE. Taking into account the results of the DPPH, the free radical scavenging capacity was confirmed. The formation of complexes with Fe II ions was evaluated by UV/visible spectrometry; results showed that CE has complexing power similar to the positive control (Gingko biloba extract.The inhibitory capacity of samples against the tyrosinase enzyme was determined by the oxidation of L-DOPA, providing IC50 values of 13.3 μg·mL−1 (CE and 6.6 μg·mL−1 (Fraction 1. The values indicate that Fraction 1 was more active and showed a higher inhibitory power on the tyrosinase enzyme than the ascorbic acid, used as positive control. The hydromethanolic extract of T. triangulare proved to have powerful antioxidant activity and to inhibit the tyrosinase enzyme; its potential is increased after the partition with chloroform.

  18. Enhancement of clavulanic acid production by Streptomyces sp MU ...

    African Journals Online (AJOL)

    Purpose: To enhance clavulanic acid production using UV-mutagenesis on Streptomyces sp. NRC77. Methods: UV-mutagenesis was used to study the effect of Streptomyces sp. NRC77 on CA production. Phenotypic and genotypic identification methods of the promising mutant strain were characterized. Optimization of the ...

  19. Bioactive benzopyrone derivatives from new recombinant fusant of marine Streptomyces.

    Science.gov (United States)

    El-Gendy, Mervat M A; Shaaban, M; El-Bondkly, A M; Shaaban, K A

    2008-07-01

    In our searching program for bioactive secondary metabolites from marine Streptomycetes, three microbial benzopyrone derivatives (1-3), 7-methylcoumarin (1) and two flavonoides, rhamnazin (2) and cirsimaritin (3), were obtained during the working up of the ethyl acetate fraction of a marine Streptomyces fusant obtained from protoplast fusion between Streptomyces strains Merv 1996 and Merv 7409. The structures of the three compounds (1-3) were established by nuclear magnetic resonance, mass, UV spectra, and by comparison with literature data. Marine Streptomyces strains were identified based on their phenotypic and chemotypic characteristics as two different bioactive strains of the genus Streptomyces. We described here the fermentation, isolation, as well as the biological activity of these bioactive compounds. The isolated compounds (1-3) are reported here as microbial products for the first time.

  20. Skin protective effect of guava leaves against UV-induced melanogenesis via inhibition of ORAI1 channel and tyrosinase activity.

    Science.gov (United States)

    Lee, Dong-Ung; Weon, Kwon Yeon; Nam, Da-Yeong; Nam, Joo Hyun; Kim, Woo Kyung

    2016-12-01

    Ultraviolet (UV) irradiation is a major environmental factor affecting photoageing, which is characterized by skin wrinkle formation and hyperpigmentation. Although many factors are involved in the photoageing process, UV irradiation is thought to play a major role in melanogenesis. Tyrosinase is the key enzyme in melanin synthesis; therefore, many whitening agents target tyrosinase through various mechanisms, such as direct interference of tyrosinase catalytic activity or inhibition of tyrosinase mRNA expression. Furthermore, the highly selective calcium channel ORAI1 has been shown to be associated with UV-induced melanogenesis. Thus, ORAI1 antagonists may have applications in the prevention of melanogenesis. Here, we aimed to identify the antimelanogenesis agents from methanolic extract of guava leaves (Psidium guajava) that can inhibit tyrosinase and ORAI1 channel. The n-butanol (47.47%±7.503% inhibition at 10 μg/mL) and hexane (57.88%±7.09% inhibition at 10 μg/mL) fractions were found to inhibit ORAI1 channel activity. In addition, both fractions showed effective tyrosinase inhibitory activity (68.3%±0.50% and 56.9%±1.53% inhibition, respectively). We also confirmed that the hexane fraction decreased the melanin content induced by UVB irradiation and the ET-1-induced melanogenesis in murine B16F10 melanoma cells. These results suggest that the leaves of P. guajava can be used to protect against direct and indirect UV-induced melanogenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Plumbagin Suppresses α-MSH-Induced Melanogenesis in B16F10 Mouse Melanoma Cells by Inhibiting Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-02-01

    Full Text Available Recent studies have shown that plumbagin has anti-inflammatory, anti-allergic, antibacterial, and anti-cancer activities; however, it has not yet been shown whether plumbagin suppresses alpha-melanocyte stimulating hormone (α-MSH-induced melanin synthesis to prevent hyperpigmentation. In this study, we demonstrated that plumbagin significantly suppresses α-MSH-stimulated melanin synthesis in B16F10 mouse melanoma cells. To understand the inhibitory mechanism of plumbagin on melanin synthesis, we performed cellular or cell-free tyrosinase activity assays and analyzed melanogenesis-related gene expression. We demonstrated that plumbagin directly suppresses tyrosinase activity independent of the transcriptional machinery associated with melanogenesis, which includes micropthalmia-associated transcription factor (MITF, tyrosinase (TYR, and tyrosinase-related protein 1 (TYRP1. We also investigated whether plumbagin was toxic to normal human keratinocytes (HaCaT and lens epithelial cells (B3 that may be injured by using skin-care cosmetics. Surprisingly, lower plumbagin concentrations (0.5–1 μM effectively inhibited melanin synthesis and tyrosinase activity but do not cause toxicity in keratinocytes, lens epithelial cells, and B16F10 mouse melanoma cells, suggesting that plumbagin is safe for dermal application. Taken together, these results suggest that the inhibitory effect of plumbagin to pigmentation may make it an acceptable and safe component for use in skin-care cosmetic formulations used for skin whitening.

  2. Streptomyces jeddahensis sp. nov., an oleaginous bacterium isolated from desert soil.

    Science.gov (United States)

    Röttig, Annika; Atasayar, Ewelina; Meier-Kolthoff, Jan Philipp; Spröer, Cathrin; Schumann, Peter; Schauer, Jennifer; Steinbüchel, Alexander

    2017-06-01

    A novel strain, G25T, was isolated from desert soil collected near Jeddah in Saudi Arabia. The strain could accumulate nearly 65 % of its cell dry weight as fatty acids, grow on a broad range of carbon sources and tolerate temperatures of up to 50 °C. With respect to to its 16S rRNA gene sequence, G25T is most closely related to Streptomyces massasporeus DSM 40035T, Streptomyces hawaiiensis DSM 40042T, Streptomyces indiaensis DSM 43803T, Streptomyces luteogriseus DSM 40483T and Streptomyces purpurascens DSM 40310T. Conventional DNA-DNA hybridization (DDH) values ranged from 18.7 to 46.9 % when G25T was compared with these reference strains. Furthermore, digital DDH values between the draft genome sequence of G25T and the genome sequences of other species of the genus Streptomyces were also significantly below the threshold of 70 %. The DNA G+C content of the draft genome sequence, consisting of 8.46 Mbp, was 70.3 %. The prevalent cellular fatty acids of G25T comprised anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The polar lipids profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and phosphatidylinositol mannosides as well as unidentified phospholipids and phosphoaminolipids. The cell wall contained ll-diaminopimelic acid. Whole-cell sugars were predominantly glucose with small traces of ribose and mannose. The results of the polyphasic approach confirmed that this isolate represents a novel species of the genus Streptomyces, for which the name Streptomyces jeddahensis sp. nov. is proposed. The type strain of this species is G25T (=DSM 101878T =LMG 29545T =NCCB 100603T).

  3. Lignocellulose-Adapted Endo-Cellulase Producing Streptomyces Strains for Bioconversion of Cellulose-Based Materials.

    Science.gov (United States)

    Ventorino, Valeria; Ionata, Elena; Birolo, Leila; Montella, Salvatore; Marcolongo, Loredana; de Chiaro, Addolorata; Espresso, Francesco; Faraco, Vincenza; Pepe, Olimpia

    2016-01-01

    Twenty-four Actinobacteria strains, isolated from Arundo donax, Eucalyptus camaldulensis and Populus nigra biomass during natural biodegradation and with potential enzymatic activities specific for the degradation of lignocellulosic materials, were identified by a polyphasic approach. All strains belonged to the genus Streptomyces ( S .) and in particular, the most highly represented species was Streptomyces argenteolus representing 50% of strains, while 8 strains were identified as Streptomyces flavogriseus (synonym S. flavovirens ) and Streptomyces fimicarius (synonyms Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies , and Streptomyces flavofuscus ), and the other four strains belonged to the species Streptomyces drozdowiczii, Streptomyces rubrogriseus, Streptomyces albolongus , and Streptomyces ambofaciens . Moreover, all Streptomyces strains, tested for endo and exo-cellulase, cellobiase, xylanase, pectinase, ligninase, peroxidase, and laccase activities using qualitative and semi-quantitative methods on solid growth medium, exhibited multiple enzymatic activities (from three to six). The 24 strains were further screened for endo-cellulase activity in liquid growth medium and the four best endo-cellulase producers ( S. argenteolus AE58P, S. argenteolus AE710A, S. argenteolus AE82P, and S. argenteolus AP51A) were subjected to partial characterization and their enzymatic crude extracts adopted to perform saccharification experiments on A. donax pretreated biomass. The degree of cellulose and xylan hydrolysis was evaluated by determining the kinetics of glucose and xylose release during 72 h incubation at 50°C from the pretreated biomass in the presence of cellulose degrading enzymes (cellulase and β-glucosidase) and xylan related activities (xylanase and β-xylosidase). The experiments were carried out utilizing the endo-cellulase activities from the selected S. argenteolus strains supplemented with commercial β-gucosidase and

  4. Molecular studies on some soil-Streptomyces strains of western ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-05-08

    May 8, 2013 ... Random amplified polymorphic of DNA-polymerase chain reaction (RAPD-PCR) analysis of the DNA extracted from seven Streptomyces strains of western region, KSA was the aim of this study. Partial sequence of 16S rRNA gene of Streptomyces polychromogenes was also attempted. Results show that.

  5. Streptomyces bacteria as potential probiotics in aquaculture

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2016-02-01

    Full Text Available In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations.

  6. Identification of geranic acid, a tyrosinase inhibitor in lemongrass (Cymbopogon citratus).

    Science.gov (United States)

    Masuda, Toshiya; Odaka, Yuka; Ogawa, Natsuko; Nakamoto, Katsuo; Kuninaga, Hideki

    2008-01-23

    Lemongrass is a popular Asian herb having a lemon-like flavor. Very recently, potent tyrosinase inhibitory activity has been found in lemongrass in addition to various biological activities reported in the literature. The aim of the present study is to identify the active compounds in the lemongrass. An assay-guided purification revealed that one of the active substances was geranic acid. Geranic acid has two stereoisomers, which are responsible for the trans and cis geometry on the conjugated double bond. Both isomers are present in the active ethyl acetate-soluble extract of the lemongrass, and their IC50 values were calculated to be 0.14 and 2.3 mM, respectively. The structure requirement of geranic acid for the potent tyrosinase inhibitory activity was investigated using geranic acid-related compounds.

  7. High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System.

    Science.gov (United States)

    Wang, Y; Cobb, R E; Zhao, H

    2016-01-01

    Next-generation sequencing technologies have rapidly expanded the genomic information of numerous organisms and revealed a rich reservoir of natural product gene clusters from microbial genomes, especially from Streptomyces, the largest genus of known actinobacteria at present. However, genetic engineering of these bacteria is often time consuming and labor intensive, if even possible. In this chapter, we describe the design and construction of pCRISPomyces, an engineered Type II CRISPR/Cas system, for targeted multiplex gene deletions in Streptomyces lividans, Streptomyces albus, and Streptomyces viridochromogenes with editing efficiency ranging from 70% to 100%. We demonstrate pCRISPomyces as a powerful tool for genome editing in Streptomyces. © 2016 Elsevier Inc. All rights reserved.

  8. Molecular studies on some soil- Streptomyces strains of western ...

    African Journals Online (AJOL)

    Random amplified polymorphic of DNA-polymerase chain reaction (RAPD-PCR) analysis of the DNA extracted from seven Streptomyces strains of western region, KSA was the aim of this study. Partial sequence of 16S rRNA gene of Streptomyces polychromogenes was also attempted. Results show that a total number of ...

  9. Substrate-Dependent Kinetics in Tyrosinase-based Biosensing: Amperometry vs. Spectrophotometry

    NARCIS (Netherlands)

    Rassaei, Liza; Cui, Jin; Goluch, E.D.; Lemay, Serge Joseph Guy

    2012-01-01

    Despite the broad use of enzymes in electroanalytical biosensors, the influence of enzyme kinetics on the function of prototype sensors is often overlooked or neglected. In the present study, we employ amperometry as an alternative or complementary method to study the kinetics of tyrosinase, whose

  10. SCREEN-PRINTED TYROSINASE-CONTAINING ELECTRODES FOR THE BIOSENSING OF ENZYME INHIBITORS

    Science.gov (United States)

    Disposal amperometric inhibition biosensors have been microfabricated by screen printing a tyrosinase-containing carbon ink. The decrease in the substrate (catechol) steady-state current, caused by the addition of various pesticides and herbicides, offers convenient quantitation ...

  11. Plant growth-promoting activities of Streptomyces spp. in sorghum and rice.

    Science.gov (United States)

    Gopalakrishnan, Subramaniam; Srinivas, Vadlamudi; Sree Vidya, Meesala; Rathore, Abhishek

    2013-01-01

    Five strains of Streptomyces (CAI-24, CAI-121, CAI-127, KAI-32 and KAI-90) were earlier reported by us as biological control agents against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri (FOC). In the present study, the Streptomyces were characterized for enzymatic activities, physiological traits and further evaluated in greenhouse and field for their plant growth promotion (PGP) of sorghum and rice. All the Streptomyces produced lipase, β-1-3-glucanase and chitinase (except CAI-121 and CAI-127), grew in NaCl concentrations of up to 6%, at pH values between 5 and 13 and temperatures between 20 and 40°C and were highly sensitive to Thiram, Benlate, Captan, Benomyl and Radonil at field application level. When the Streptomyces were evaluated in the greenhouse on sorghum all the isolates significantly enhanced all the agronomic traits over the control. In the field, on rice, the Streptomyces significantly enhanced stover yield (up to 25%; except CAI-24), grain yield (up to 10%), total dry matter (up to 18%; except CAI-24) and root length, volume and dry weight (up to 15%, 36% and 55%, respectively, except CAI-24) over the control. In the rhizosphere soil, the Streptomyces significantly enhanced microbial biomass carbon (except CAI-24), nitrogen, dehydrogenase (except CAI-24), total N, available P and organic carbon (up to 41%, 52%, 75%, 122%, 53% and 13%, respectively) over the control. This study demonstrates that the selected Streptomyces which were antagonistic to FOC also have PGP properties.

  12. TLC-bioautographic evaluation of in vitro anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil.

    Science.gov (United States)

    Misra, Biswapriya B; Dey, Satyahari

    2013-02-01

    Sandalwood oil, rich in sesquiterpenoid alcohols, has been used in traditional medicinal systems as a relaxant and coolant. Besides, sandalwood oil is used as an ingredient in numerous skin fairness enhancing cosmetics. However, there is no available information on biological activities that relate to the above applications. Hence, the anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil were probed by both TLC-bioautographic and colorimetric methods. Results obtained from colorimetric assays indicated that sandalwood oil is a potent inhibitor of tyrosinase (IC50 = 171 microg mL(-1)) and cholinesterases (IC50 = 4.8-58 microg mL(-1)), in comparison with the positive controls used in the assays, kojic acid and physostigmine, respectively. The TLC-bioautographic assays indicated that alpha-santalol, the major constituent of the oil, is a strong inhibitor of both tyrosinase and cholinesterase. These in vitro results indicate that there is a great potential of this essential oil for use in the treatment of Alzheimer's disease, as well as in skin-care.

  13. Genomics of Sponge-Associated Streptomyces spp. Closely Related to Streptomyces albus J1074: Insights into Marine Adaptation and Secondary Metabolite Biosynthesis Potential

    Science.gov (United States)

    Ian, Elena; Malko, Dmitry B.; Sekurova, Olga N.; Bredholt, Harald; Rückert, Christian; Borisova, Marina E.; Albersmeier, Andreas; Kalinowski, Jörn; Gelfand, Mikhail S.; Zotchev, Sergey B.

    2014-01-01

    A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway). Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts. PMID:24819608

  14. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  15. Streptomyces ovatisporus sp. nov., isolated from deep marine sediment.

    Science.gov (United States)

    Veyisoglu, Aysel; Cetin, Demet; Inan Bektas, Kadriye; Guven, Kiymet; Sahin, Nevzat

    2016-11-01

    The taxonomic position of a Gram-staining-positive strain, designated strain S4702T was isolated from a marine sediment collected from the southern Black Sea coast, Turkey, determined using a polyphasic approach. The isolate was found to have chemotaxonomic, morphological and phylogenetic properties consistent with its classification as representing a member of the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree. S4702T was found to be most closely related to the type strains of Streptomyces marinus(DSM 41968T; 97.8 % sequence similarity) and Streptomyces abyssalis (YIM M 10400T; 97.6 %). 16S rRNA gene sequence similarities with other members of the genus Streptomyces were lower than 97.5 %. DNA-DNA relatedness of S4702T and the most closely related strain S. marinus DSM 41968T was 21.0 %. The G+C content of the genomic DNA was 72.5 mol%. The cell wall of the strain contained l,l-diaminopimelic acid and the cell-wall sugars were glucose and ribose. The major cellular fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C15 : 0. The predominant menaquinone was MK-9(H8). The polar lipid profile of S4702T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. S4702T could be distinguished from its closest phylogenetic neighbours using a combination of chemotaxonomic, morphological and physiological properties. Consequently, it is proposed that S4702T represents a novel species of the genus Streptomyces, for which the name Streptomyces ovatisporus sp. nov. is proposed. The type strain is S4702T (DSM 42103T=KCTC 29206T=CGMCC 4.7357T).

  16. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency.

    Science.gov (United States)

    Reish, O; Townsend, D; Berry, S A; Tsai, M Y; King, R A

    1995-01-01

    Deficiency of cystathionine beta-synthase (CBS) is a genetic disorder of transsulfuration resulting in elevated plasma homocyst(e)ine and methionine and decreased cysteine. Affected patients have multisystem involvement, which may include light skin and hair. Reversible hypopigmentation in treated homocystinuric patients has been infrequently reported, and the mechanism is undefined. Two CBS-deficient homocystinuric patients manifested darkening of their hypopigmented hair following treatment that decreased plasma homocyst(e)ine. We hypothesized that homocyst(e)ine inhibits tyrosinase, the major pigment enzyme. The activity of tyrosinase extracted from pigmented human melanoma cells (MNT-1) that were grown in the presence of homocysteine was reduced in comparison to that extracted from cells grown without homocysteine. Copper sulfate restored homocyst(e)ine-inhibited tyrosinase activity when added to the culture cell media at a proportion of 1.25 mol of copper sulfate per 1 mol of DL-homocysteine. Holo-tyrosinase activity was inhibited by adding DL-homocysteine to the assay reaction mixture, and the addition of copper sulfate to the reaction mixture prevented this inhibition. Other tested compounds, L-cystine and betaine did not affect tyrosinase activity. Our data suggest that reversible hypopigmentation in homocystinuria is the result of tyrosinase inhibition by homocyst(e)ine and that the probable mechanism of this inhibition is the interaction of homocyst(e)ine with copper at the active site of tyrosinase. Images Figure 1 PMID:7611281

  17. Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces

    Science.gov (United States)

    The identification and classification of species within the genus Streptomyces is difficult because there are presently 576 validly described species and this number increases every year. The value of the application of multilocus sequence analysis scheme to the systematics of Streptomyces species h...

  18. The Prevalence and Distribution of Neurodegenerative Compound-Producing Soil Streptomyces spp.

    Science.gov (United States)

    Watkins, Anna L.; Ray, Arpita; R. Roberts, Lindsay; Caldwell, Kim A.; Olson, Julie B.

    2016-01-01

    Recent work from our labs demonstrated that a metabolite(s) from the soil bacterium Streptomyces venezuelae caused dopaminergic neurodegeneration in Caenorhabditis elegans and human neuroblastoma cells. To evaluate the capacity for metabolite production by naturally occurring streptomycetes in Alabama soils, Streptomyces were isolated from soils under different land uses (agriculture, undeveloped, and urban). More isolates were obtained from agricultural than undeveloped soils; there was no significant difference in the number of isolates from urban soils. The genomic diversity of the isolates was extremely high, with only 112 of the 1509 isolates considered clones. A subset was examined for dopaminergic neurodegeneration in the previously established C. elegans model; 28.3% of the tested Streptomyces spp. caused dopaminergic neurons to degenerate. Notably, the Streptomyces spp. isolates from agricultural soils showed more individual neuron damage than isolates from undeveloped or urban soils. These results suggest a common environmental toxicant(s) within the Streptomyces genus that causes dopaminergic neurodegeneration. It could also provide a possible explanation for diseases such as Parkinson’s disease (PD), which is widely accepted to have both genetic and environmental factors. PMID:26936423

  19. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    OpenAIRE

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Ro, Hyunju; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in ? -melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respect...

  20. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere.

    Science.gov (United States)

    Essarioui, Adil; LeBlanc, Nicholas; Kistler, Harold C; Kinkel, Linda L

    2017-07-01

    Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this work, we characterized antagonistic activities and nutrient use among Streptomyces and Fusarium from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) plants growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Streptomyces from monoculture were more antagonistic against Fusarium than those from polyculture. In contrast, Fusarium isolates from polyculture had greater inhibitory capacities against Streptomyces than isolates from monoculture. Although Fusarium isolates had on average greater niche widths, the collection of Streptomyces isolates in total used a greater diversity of nutrients for growth. Plant richness, but not plant host, influenced the potential for resource competition between the two taxa. Fusarium isolates had greater niche overlap with Streptomyces in monoculture than polyculture, suggesting greater potential for Fusarium to competitively challenge Streptomyces in monoculture plant communities. In contrast, Streptomyces had greater niche overlap with Fusarium in polyculture than monoculture, suggesting that Fusarium experiences greater resource competition with Streptomyces in polyculture than monoculture. These patterns of competitive and inhibitory phenotypes among Streptomyces and Fusarium populations are consistent with selection for Fusarium-antagonistic Streptomyces populations in the presence of strong Fusarium resource competition in plant monocultures. Similarly, these results suggest selection for Streptomyces-inhibitory Fusarium populations in the presence of strong Streptomyces resource competition in more diverse plant communities. Thus, landscape-scale variation in plant species richness may be

  1. Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants.

    Science.gov (United States)

    Salla, Tamiris Daros; da Silva, Ramos; Astarita, Leandro Vieira; Santarém, Eliane Romanato

    2014-12-01

    The genus Eucalyptus comprises economically important species, such as Eucalyptus grandis and Eucalyptus globulus, used especially as a raw material in many industrial sectors. Species of Eucalyptus are very susceptible to pathogens, mainly fungi, which leads to mortality of plant cuttings in rooting phase. One alternative to promote plant health and development is the potential use of microorganisms that act as agents for biological control, such as plant growth-promoting rhizobacteria (PGPR). Rhizobacteria Streptomyces spp have been considered as PGPR. This study aimed at selecting strains of Streptomyces with ability to promote plant growth and modulate secondary metabolism of E. grandis and E. globulus in vitro plants. The experiments assessed the development of plants (root number and length), changes in key enzymes in plant defense (polyphenol oxidase and peroxidase) and induction of secondary compounds(total phenolic and quercetinic flavonoid fraction). The isolate Streptomyces PM9 showed highest production of indol-3-acetic acid and the best potential for root induction. Treatment of Eucalyptus roots with Streptomyces PM9 caused alterations in enzymes activities during the period of co-cultivation (1-15 days), as well as in the levels of phenolic compounds and flavonoids. Shoots also showed alteration in the secondary metabolism, suggesting induced systemic response. The ability of Streptomyces sp. PM9 on promoting root growth, through production of IAA, and possible role on modulation of secondary metabolism of Eucalyptus plants characterizes this isolate as PGPR and indicates its potential use as a biological control in forestry.

  2. Streptomyces tremellae sp. nov., isolated from a culture of the mushroom Tremella fuciformis.

    Science.gov (United States)

    Wen, Zhi-Qiang; Chen, Bingzhi; Li, Xiao; Li, Bing-Bing; Li, Cheng-Huan; Huang, Qing-Hua; Zhang, Qi-Hui; Dai, Wei-Hao; Jiang, Yu-Ji

    2016-12-01

    A novel actinomycete strain, designated Js-1T, was isolated from Tremella fuciformis collected from Gutian, Fujian Province, in southeastern China. The taxonomic status of this strain was determined by a polyphasic approach, which demonstrated that the novel strain was a member of the genus Streptomyces. The cell walls of this strain were found to contain ll-diaminopimelic acid, muramic acid and glycine. An analysis of whole-cell hydrolysates revealed that no characteristic sugar was present. The key identified menaquinones were MK-9 (H6) and MK-9 (H8), while the diagnostic polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylmethylethanolamine and phosphatidylglycerol. The main cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and iso-C16 : 0. An analysis of an almost complete 16S rRNA gene sequence showed that the strain shared the highest levels of sequence similarity with Streptomyces sannanensisKC-7038T (97.87 %), Streptomyces hebeiensis YIM 001T (97.84 %), Streptomyces pathocidini NBRC 13812T (97.80 %), Streptomyces cocklensis BK168T (97.25 %), Streptomyces coerulescens NBRC 12758T (97.12 %), Streptomyces aurantiogriseus NBRC 12842T (97.06 %) and Streptomyces rimosussubsp. rimosus ATCC 10970T (97.04 %). The DNA G+C content of the genomic DNA of strain Js-1T was 70.1 mol%. Furthermore, DNA-DNA hybridization tests revealed that the relatedness values between strain Js-1T and the most closely related species ranged from 15.10 to 47.20 %. Based on its phenotypic and genotypic characteristics, strain Js-1T (=CCTCC M 2011365T=JCM 30846T) is considered to represent a novel species within the genus Streptomyces, which we classified as Streptomycestremellae sp. nov.

  3. Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces

    Directory of Open Access Journals (Sweden)

    Hooi-Leng Ser

    2017-11-01

    Full Text Available Human life expectancy is rapidly increasing with an associated increasing burden of chronic diseases, such as neurodegenerative diseases and cancer. However, there is limited progress in finding effective treatment for these conditions. For this reason, members of the genus Streptomyces have been explored extensively over the past decades as these filamentous bacteria are highly efficient in producing bioactive compounds with human health benefits. Being ubiquitous in nature, streptomycetes can be found in both terrestrial and marine environments. Previously, two Streptomyces strains (MUSC 137T and MUM 256 isolated from mangrove sediments in Peninsular Malaysia demonstrated potent antioxidant and cytotoxic activities against several human cancer cell lines on bioactivity screening. These results illustrate the importance of streptomycetes from underexplored regions aside from the terrestrial ecosystem. Here we provide the insights and significance of Streptomyces species in the search of anticancer and/or chemopreventive agents and highlight the impact of next generation sequencing on drug discovery from the Streptomyces arsenal.

  4. Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces

    Science.gov (United States)

    Ser, Hooi-Leng; Tan, Loh Teng-Hern; Law, Jodi Woan-Fei; Chan, Kok-Gan; Duangjai, Acharaporn; Saokaew, Surasak; Pusparajah, Priyia; Ab Mutalib, Nurul-Syakima; Khan, Tahir Mehmood; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Human life expectancy is rapidly increasing with an associated increasing burden of chronic diseases, such as neurodegenerative diseases and cancer. However, there is limited progress in finding effective treatment for these conditions. For this reason, members of the genus Streptomyces have been explored extensively over the past decades as these filamentous bacteria are highly efficient in producing bioactive compounds with human health benefits. Being ubiquitous in nature, streptomycetes can be found in both terrestrial and marine environments. Previously, two Streptomyces strains (MUSC 137T and MUM 256) isolated from mangrove sediments in Peninsular Malaysia demonstrated potent antioxidant and cytotoxic activities against several human cancer cell lines on bioactivity screening. These results illustrate the importance of streptomycetes from underexplored regions aside from the terrestrial ecosystem. Here we provide the insights and significance of Streptomyces species in the search of anticancer and/or chemopreventive agents and highlight the impact of next generation sequencing on drug discovery from the Streptomyces arsenal. PMID:29163380

  5. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract

    Science.gov (United States)

    2012-01-01

    Background This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. Methods Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. Results Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 μg/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 μg/ml and 15.88 μg/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively. Catechin, epicatechin, ellagic acid and gallic acid were found in all cultivars, of which ellagic acid was the most abundant comprising

  6. Evaluation of Cinnamomum osmophloeum Kanehira Extracts on Tyrosinase Suppressor, Wound Repair Promoter, and Antioxidant

    Directory of Open Access Journals (Sweden)

    Man-Gang Lee

    2015-01-01

    Full Text Available Cinnamomum osmophloeum Kanehira belongs to the Lauraceae family of Taiwan’s endemic plants. In this study, C. osmophloeum Kanehira extract has shown inhibition of tyrosinase activity on B16-F10 cellular system first. Whether extracts inhibited mushroom tyrosinase activity was tested, and a considerable inhibition of mushroom tyrosinase activity by in vitro assays was presented. Animal experiments of C. osmophloeum Kanehira were carried out by observing animal wound repair, and the extracts had greater wound healing power than the vehicle control group (petroleum jelly with 8% DMSO, w/v. In addition, the antioxidant capacity of C. osmophloeum Kanehira extracts in vitro was evaluated. We measured C. osmophloeum Kanehira extract’s free radical scavenging capability, metal chelating, and reduction power, such as biochemical activity analysis. The results showed that a high concentration of C. osmophloeum Kanehira extract had a significant scavenging capability of free radical, a minor effect of chelating ability, and moderate reducing power. Further exploration of the possible physiological mechanisms and the ingredient components of skincare product for skin-whitening, wound repair, or antioxidative agents are to be done.

  7. Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface

    NARCIS (Netherlands)

    Claessen, Dennis; Wösten, Han A.B.; Keulen, Geertje van; Faber, Onno G.; Alves, Alexandra M.C.R.; Meijer, Wim G.; Dijkhuizen, Lubbert

    The filamentous bacteria Streptomyces coelicolor and Streptomyces lividans exhibit a complex life cycle. After a branched submerged mycelium has been established, aerial hyphae are formed that may septate to form chains of spores. The aerial structures possess several surface layers of unknown

  8. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF Expression

    Directory of Open Access Journals (Sweden)

    Shu-Mei Lee

    2015-01-01

    Full Text Available Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  9. In vitro immunobiological activity of an Antarctic streptomyces polysaccharide

    International Nuclear Information System (INIS)

    Toshkova, R.; Yossifova, L.; Gardeva, E.; Zvetkova, E.; Ivanova, V.

    2010-01-01

    Antarctic Streptomyces sp. 1010, were obtained from sea water samples (Livingston Island, Antarctica), during the Third Bulgarian Antarctic Scientific Expedition (1994-1995). The ecophysiological methods for isolation and characterization of these active, cold-adapted, Gram-positive microorganisms (psychrophiles) in morphological, phenotypic, genetic and taxonomic aspects, have been earlier reported. In this study, a new extracellular polysaccharide (heteropolysaccharide) has been isolated and purified from cultured broth of the Antarctic Streptomyces sp. 1010. The monosaccharide content of the Antarctic streptomyces heteropolysaccharide has been examined by TLC and GC/MS. The mitogenic and immuno potential properties of the purified Antarctic Streptomyces polysaccharide (ASMP) have been studied in vitro - in the short-term cultures of human peripheral blood mononuclear cells (hPBMCs - lymphocytes and monocytes) and mouse spleen lymphocytes (mouse splenocytes - mSps). The results obtained show that ASMP has a double lectin-like effect on the proliferative activity of hPBMCs: similar to this of Con A on the lymphoid cells (preliminary T-lymphocytes) and to the effect of LPS on the mononuclear from monocyte-macrophage lineage. Expressed as proliferative index (PI), the mitogenic response of mSps to the in vitro influence of ASMP was also higher than PI in the negative, as well as in the positive controls (mSps, cultured in the presence of PHA, Con A and LPS). The new Antarctic Streptomyces' heteropolysaccharide examined could be useful in the future as an immunomodulative biologically active substance and its extracellular production may contribute to the development of thermobiochemistry, immunomodulative drug therapy and immunopharmaceutical industry. (authors)

  10. Neurospora crassa glucose - repressible gene -1(Grg-1) promoter controls the expression of neurospora tyrosinase gene in a clock-controlled manner

    International Nuclear Information System (INIS)

    Tarawneh, A. K

    1997-01-01

    In this study sphareroplastes of white Neurospora crassa mutant auxotroph for aromatic am no acids a rom 9 q a-2 inv, was transformed by the pKF-Tyr7-wt DNA construct. This construct contains the promoter of neurospora crassa glucose-repressible gene-1 (G rg-1) usp stream of Neurospora tyrosinase gene. The co transformation of this mutant with pKF-Tyr-7-wt cincture's and the pKAL-1, a plasmid which contains the Neurospora q a-2+ gene transform it to photophor. The transform ant contains the tyrosinase gene which catalyzes the unique step in the synthesis of the black pigment melanin. The activity of the tyrosinase in this transform ant was followed by measuring the absorbance of the dark coloured pigment at 332 nm. The maximum of the tyrosinase activity was shown at 16.36 and 56 hours after the shift of the transformed mycelia from constant light (L L) to constant dark (Dd). The rate of the enzyme activity was changed according to ci radian cycle of 20 hours. This G rg 1/tyrosinase construct provides a good system to study to study the temporal control of gene expression and the interaction between the different environmental c uses that affects gene expression. (author). 20 refs., 4 figs

  11. Colonization of lettuce rhizosphere and roots by tagged Streptomyces

    OpenAIRE

    Maria eBonaldi; Xiaoyulong eChen; Andrea eKunova; Cristina ePizzatti; Marco eSaracchi; Paolo eCortesi

    2015-01-01

    Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plas...

  12. Biological effects of N+ ion implantation and UV radiation on streptomyces albus

    International Nuclear Information System (INIS)

    Wu Jian; Dai Guifu

    2005-01-01

    The results of both 30 keV N + ion implantation and UV irradiation of Streptomyces albus showed complicate biological effects. The 'saddle shape' pattern of the dose-dependent curve formed by N + ion implantation with low energy was studied, and it proved that vacuum was not the reason, and the fact, the 'saddle shape' curve may be regarded as a HRS/IRR (hyper-radiosensitivity/increased radiaoresistance) effect caused by low dose irradiation. But Streptomyces albus UV irradiated after vacuum treatment only showed IRR effect or hormesis (survival rate >100%). The streptomycin resistance mutation of Streptomyces albus caused by low energy N + ion implantation and UV irradiation was also studied. the results showed that UV radiation is one effective means for streptomyces albus breeding. (authors)

  13. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr.

    Science.gov (United States)

    Bai, Lu; Liu, Chongxi; Guo, Lifeng; Piao, Chenyu; Li, Zhilei; Li, Jiansong; Jia, Feiyu; Wang, Xiangjing; Xiang, Wensheng

    2016-02-01

    During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinomycete with antifungal activity, designated strain 1H-GS9(T), was isolated from the head of a Camponotus japonicus Mayr ant, which were collected from Northeast Agricultural University (Harbin, Heilongjiang, China). Strain 1H-GS9(T) was characterised using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain 1H-GS9(T) belongs to the genus Streptomyces with high sequence similarities to Streptomyces scopuliridis DSM 41917(T) (98.8 %) and Streptomyces mauvecolor JCM 5002(T) (98.6 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that it forms a monophyletic clade with Streptomyces kurssanovii JCM 4388(T) (98.6 %), Streptomyces xantholiticus JCM 4282(T) (98.6 %) and Streptomyces peucetius JCM 9920(T) (98.5 %). Thus, a combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-GS9(T) and the above-mentioned five strains, which further clarified their relatedness and demonstrated that strain 1H-GS9(T) could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces formicae sp. nov. is proposed. The type strain is 1H-GS9(T) (=CGMCC 4.7277(T) = DSM 100524(T)).

  14. New and bioactive compounds from Streptomyces strains residing in the wood of Celastraceae.

    Science.gov (United States)

    Pullen, Christian; Schmitz, Petra; Meurer, Kristina; Bamberg, Daniel D v; Lohmann, Stephanie; De Castro França, Suzelei; Groth, Ingrid; Schlegel, Brigitte; Möllmann, Ute; Gollmick, Friedrich; Gräfe, Udo; Leistner, Eckhard

    2002-11-01

    Wood from three different plants of the Celastraceae growing in their natural habitats in Brazil (Maytenus aquifolia Mart.) and South Africa [Putterlickia retrospinosa van Wyk and Mostert, P. verrucosa (E. Meyer ex Sonder) Szyszyl.] was established as a source of endophytic bacteria using a medium selective for actinomycetes. Two isolates were identified as Streptomyces setonii and S. sampsonii whereas two others were not assignable to any of the known Streptomyces species. They were preliminarily named Streptomyces Q21 and Streptomyces MaB-QuH-8. The latter strain produces a new chloropyrrol and chlorinated anthracyclinone. The chloropyrrol showed high activity against a series of multiresistent bacteria and mycobacteria.

  15. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    Science.gov (United States)

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the

  16. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1.

    Science.gov (United States)

    De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela

    2017-02-01

    Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces

    Science.gov (United States)

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; Kelly, Peter J.; Choudoir, Mallory J.

    2016-01-01

    ABSTRACT We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift. PMID:27073097

  18. Establishing a high yielding streptomyces-based cell-free protein synthesis system.

    Science.gov (United States)

    Li, Jian; Wang, He; Kwon, Yong-Chan; Jewett, Michael C

    2017-06-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform for applied biotechnology and synthetic biology, with a range of applications in synthesizing proteins, evolving proteins, and prototyping genetic circuits. To expand the current CFPS repertoire, we report here the development and optimization of a Streptomyces-based CFPS system for the expression of GC-rich genes. By developing a streamlined crude extract preparation protocol and optimizing reaction conditions, we were able to achieve active enhanced green fluorescent protein (EGFP) yields of greater than 50 μg/mL with batch reactions lasting up to 3 h. By adopting a semi-continuous reaction format, the EGFP yield could be increased to 282 ± 8 μg/mL and the reaction time was extended to 48 h. Notably, our extract preparation procedures were robust to multiple Streptomyces lividans and Streptomyces coelicolor strains, although expression yields varied. We show that our optimized Streptomyces lividans system provides benefits when compared to an Escherichia coli-based CFPS system for increasing percent soluble protein expression for four Streptomyces-originated high GC-content genes that are involved in biosynthesis of the nonribosomal peptides tambromycin and valinomycin. Looking forward, we believe that our Streptomyces-based CFPS system will contribute significantly towards efforts to express complex natural product gene clusters (e.g., nonribosomal peptides and polyketides), providing a new avenue for obtaining and studying natural product biosynthesis pathways. Biotechnol. Bioeng. 2017;114: 1343-1353. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces

    Directory of Open Access Journals (Sweden)

    Cheryl P. Andam

    2016-04-01

    Full Text Available We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.

  20. (melanin) production in Streptomyces

    African Journals Online (AJOL)

    GRACE

    Nine strains among 180 Streptomyces isolates produce a diffusible dark brown pigment on both peptone-yeast extract agar and synthetic tyrosine-agar. They also show the positive reaction to L- tyrosine or L-dopa substrates. The pigment has been referred to be as merely as dark brown water- soluble pigment, as melanoid ...

  1. Tyrosinase inhibitors from Calceolaria integrifolia s.l.: Calceolaria talcana aerial parts.

    Science.gov (United States)

    Muñoz, Evelyn; Avila, Jose G; Alarcón, Julio; Kubo, Isao; Werner, Enrique; Céspedes, Carlos L

    2013-05-08

    As a defense mechanism of the aerial parts of Calceolaria talcana (Calceolariaceae; formerly Scrophulariaceae) against herbivore offenses and insect pest attack, diterpenoids, triterpenoids, phenylethanoids, flavonoids, and iridoids are rapidly accumulated along the aerial parts, resulting in a unique natural biopesticide complex from this plant. In addition to verbascoside a series of known compounds were screened for their inhibitory activity against mushroom tyrosinase and protease enzymes. Ethyl acetate and n-hexane extracts, together with cyclopropyl-7,15-ent-pimaradiene (1), abietatriene (2), ursolic acid (3), α-lupeol (4), β-sitosterol (5), 2-hydroxy-3-(1,1-dimethylallyl)-1,4-naphthoquinone (6), α-dunnione (7), verbascoside (8), martynoside (9), and some known model compounds proved to be inhibitors of oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by tyrosinase (EC 1.14.18.1) with an IC50 between 10.0 and 200 ppm or μM, respectively, suggesting that phenolic moieties in the molecules assayed are important for the activity.

  2. New carbasugars from Streptomyces lincolnensis

    Czech Academy of Sciences Publication Activity Database

    Sedmera, Petr; Halada, Petr; Pospíšil, Stanislav

    2009-01-01

    Roč. 47, č. 5 (2009), s. 519-522 ISSN 0749-1581 Institutional research plan: CEZ:AV0Z50200510 Keywords : H-1 NMR * C-13 NMR * Streptomyces lincolnensis Subject RIV: EE - Microbiology, Virology Impact factor: 1.612, year: 2009

  3. Development and application of a tyrosinase-based time-temperature indicator (TTI) for determining the quality of turbot sashimi

    Science.gov (United States)

    Xu, Fengjuan; Ge, Lei; Li, Zhenxing; Lin, Hong; Mao, Xiangzhao

    2017-10-01

    Time-temperature indicators (TTIs) are convenient intuitive devices that are widely used to predict food quality. The aim of this study is to develop a new simple device which can be attached to food packages as a quality indicator for turbot sashimi. In this study, a solid TTI based on the reaction between tyrosinase and tyrosine was developed. The Arrhenius behavior of this enzymatic TTI was studied. The kinetics of the tyrosinase-based TTI was investigated in the form of color change from colorless to dark black induced by the enzymatic reaction. The mathematical formula for the color alterations as a function of time and temperature was established. The longest indication time for the developed TTI was 50 hours at 4°C. The activation energy of the tyrosinase-based TTI was 0.409 kJ mol-1. The suitability of the tyrosinase-based TTI was validated for turbot sashimi using total plate count. The feasibility of using this TTI as a quality indicator for turbot sashimi was assessed based on the activation energy and indication time. Therefore, the tyrosinasebased TTI system developed in this study could be used as an effective tool for monitoring the quality changes of turbot sashimi during the distribution and storage.

  4. ISOLASI STREPTOMYCES SPP. PADA KAWASAN HUTAN PROVINSI BALI SERTA UJI DAYA HAMBATNYA TERHADAP LIMA STRAIN DIARRHEAGENIC ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    I WAYAN EKA DHARMAWAN

    2014-04-01

    Full Text Available An exploration study of natural resources soil bacteria antibiotic-producer, Streptomyces spp. was done in two steps. The first step was isolation of Streptomyces and the second involved testing their inhibition activities against five strains diarrheagenic Escherichia coli. Soil samples were collected from ten forest areas in Bali. As many as 55 isolates were collected with various macroscopic dan microscopic characters. Most isolates (eight Streptomyces isolates were collected from forest area in Penulisan, Kintamani (RTK. 20. The diversities of isolates are influenced by environment condition. All Streptomyces isolated were tested against five strains diarrheagenic Escherichia coli to check antibiotic activity for inhibit growth of E. coli. Streptomycine was used as a control. The result showed that the largest inhibition zones of Streptomyces against E. coli strains EHEC, ETEC, EIEC, EPEC and DAEC were produced by Streptomyces PK5 (48,67 ± 0,58 mm, Streptomyces GAA4 (29,00 ± 2,00 mm, Streptomyces GBK3 (42,67 ± 2,08 mm, Streptomyces SkBB5 (29,00 ± 2,65 mm and Streptomyces GM3 (33,67 ± 3,21 mm respectively.

  5. Screening of wild type Streptomyces isolates able to overproduce clavulanic acid

    Directory of Open Access Journals (Sweden)

    Daniela A. Viana Marques

    2014-09-01

    Full Text Available The selection of new microorganisms able to produce antimicrobial compounds is hoped for to reduce their production costs and the side effects caused by synthetic drugs. Clavulanic acid is a β-lactam antibiotic produced by submerged culture, which is widely used in medicine as a powerful inhibitor of β-lactamases, enzymes produced by bacteria resistant to antibiotics such penicillin and cephalosporin. The purpose of this work was to select the best clavulanic acid producer among strains of Streptomyces belonging to the Microorganism Collection of the Department of Antibiotics of the Federal University of Pernambuco (DAUFPE. Initially, the strains were studied for their capacity to inhibit the action of β-lactamases produced by Klebsiella aerogenes ATCC 15380. From these results, five strains were selected to investigate the batch kinetics of growth and clavulanic acid production in submerged culture carried out in flasks. The results were compared with the ones obtained by Streptomyces clavuligerus ATCC 27064 selected as a control strain. The best clavulanic acid producer was Streptomyces DAUFPE 3060, molecularly identified as Streptomyces variabilis, which increased the clavulanic acid production by 28% compared to the control strain. This work contributes to the enlargement of knowledge on new Streptomyces wild strains able to produce clavulanic acid by submerged culture.

  6. A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus.

    OpenAIRE

    Jackson, I J; Chambers, D M; Tsukamoto, K; Copeland, N G; Gilbert, D J; Jenkins, N A; Hearing, V

    1992-01-01

    We have cloned and sequenced mouse cDNAs corresponding to a third member of a family of melanocyte-specific mRNAs, which encode tyrosinase and related proteins. This new member, tyrosinase-related protein-2 (TRP-2), has approximately 40% amino acid identity with the two other proteins in the family and has the same structural features including two copper binding sites, two cysteine-rich regions, a signal peptide and a transmembrane domain. We now show that one of the cysteine-rich regions in...

  7. Streptomyces cerasinus sp. nov., isolated from soil in Thailand.

    Science.gov (United States)

    Kanchanasin, Pawina; Moonmangmee, Duangtip; Phongsopitanun, Wongsakorn; Tanasupawat, Somboon; Moonmangmee, Somporn

    2017-10-01

    A novel actinomycete, strain SR3-134 T , belonging to the genus Streptomyces, was isolated from soil collected from the Sakaerat Environmental Research Station, Thailand Institute of Scientific and Technological Research, Nakhon Ratchasima Province, Thailand. The taxonomic position of the strain was characterized by using a polyphasic approach. ll-Diaminopimelic acid, glucose, mannose and ribose were detected in its whole-cell hydrolysates. The N-acyl type of muramic acid was acetyl. The menaquinones were MK-9(H8), MK-9(H6), MK-9(H4) and MK-9(H2). The predominant cellular fatty acids were anteiso-C15 : 0, iso-C16 : 0, C16 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C14 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. blast analysis of the almost-complete 16S rRNA gene showed 98.7 % sequence similarities to Streptomyces lanatus JCM 4588 T and Streptomyces psammoticus JCM 4434 T . The DNA G+C content was 71.4 mol%. Strain SR3-134 T showed low DNA-DNA relatedness (12.9±4.0-44.1±1.0 %) to S. lanatus JCM 4588 T and S. psammoticus JCM 4434 T . The new strain could also be distinguished from its closely related strains by differences in their phenotypic characteristics. The results of taxonomic analysis suggested that strain SR3-134 T represented a novel species of the genus Streptomyces for which the name Streptomyces cerasinus sp. nov. is proposed. The type strain is SR3-134 T (=TISTR 2494 T =KCTC 39910 T ).

  8. 40 CFR 180.1253 - Streptomyces lydicus WYEC 108; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Streptomyces lydicus WYEC 108... RESIDUES IN FOOD Exemptions From Tolerances § 180.1253 Streptomyces lydicus WYEC 108; exemption from the... the microbial pesticide Streptomyces lydicus WYEC 108 when used in or on all agricultural commodities...

  9. Synthetic Biology in Streptomyces Bacteria

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Actinomycete bacteria of the genus Streptomyces are major producers of bioactive compounds for the biotechnology industry. They are the source of most clinically used antibiotics, as well as of several widely used drugs against common diseases, including cancer . Genome sequencing has revealed that

  10. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts

    Directory of Open Access Journals (Sweden)

    Elena Neagu

    2018-03-01

    Full Text Available In this study several investigations and tests were performed to determine the antioxidant activity and the acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum aqueous extracts (10% mass and ethanolic extracts (10% mass and 70% ethanol, respectively. Moreover, for each type of the prepared extracts of P. officinalis and of C. umbellatum the content in the biologically active compounds – polyphenols, flavones and proanthocyanidins was determined. The antioxidant activity was assessed using two methods, namely the 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and reducing power assay. The analyzed plant extracts showed a high acetylcholinesterase and tyrosinase inhibitory activity in the range of 72.24–94.24% (at the highest used dose – 3 mg/mL, 66.96% and 94.03% (at 3 mg/mL, respectively correlated with a high DPPH radical inhibition – 70.29–84.9% (at 3 mg/mL. These medicinal plants could provide a potential natural source of bioactive compounds and could be beneficial to the human health, especially in the neurodegenerative disorders and as sources of natural antioxidants in food industry. Keywords: Acetylcholinesterase inhibitory activity, Tyrosinase inhibitory activity, Antioxidant activity, Pulmonaria officinalis and Centarium umbellatum

  11. Streptomyces euryhalinus sp. nov., a new actinomycete isolated from a mangrove forest.

    Science.gov (United States)

    Biswas, Kaushik; Choudhury, Jayanta D; Mahansaria, Riddhi; Saha, Malay; Mukherjee, Joydeep

    2017-06-01

    A Gram-positive, aerobic, non-motile actinomycete (strain MS 3/20 T ) was isolated from the sediment of the Sundarbans mangrove forest in India. On International Streptomyces Project (ISP) medium 2, the isolate produced yellowish brown to red aerial hyphae that carried spiny-surfaced spores in a retinaculum-apertum arrangement. Whole-cell hydrolysate of the strain contained LL-diaminopimelic acid and galactose. Predominant menaquinones were MK-9(H 8 ) and MK-9(H 6 ). Diagnostic polar lipids were glycolipid, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unidentified phospholipid and unidentified amino lipid. The major fatty acids were anteiso-C 15:0 (17.53%), iso-C 16:0 (23.89%) and anteiso-C 17:0 (10.29%). The strain showed 100% 16S ribosomal RNA (rRNA) gene sequence similarity with Streptomyces variabilis NBRC 12825 T , Streptomyces erythrogriseus LMG 19406 T , Streptomyces griseoincarnatus LMG 19316 T and Streptomyces labedae NBRC 15864 T . However, strain MS 3/20 T could be distinguished from these and seven other closely related species based on low levels of DNA-DNA relatedness (27.2-53.8%), supported by the unique banding pattern obtained from random amplified polymorphic DNA-PCR amplification and the distinctive matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) profile of whole-cell proteins acquired for strain MS 3/20 T in comparison with its phylogenetic relatives. Disparate morphological, physiological and chemotaxonomic features, principally growth in NaCl, further corroborated the distinction of strain MS 3/20 T from other phylogenetic relatives. Strain MS 3/20 T is therefore suggested to be a novel species of the genus Streptomyces, for which the name Streptomyces euryhalinus sp. nov. is proposed. The type strain is MS 3/20 T (=CICC 11032 T =DSM 103378 T ).

  12. A whole genome analysis reveals the presence of a plant PR1 sequence in the potato pathogen Streptomyces scabies and other Streptomyces species.

    Science.gov (United States)

    Armijos-Jaramillo, Vinicio; Santander-Gordón, Daniela; Soria, Rosa; Pazmiño-Betancourth, Mauro; Echeverría, María Cristina

    2017-09-01

    Streptomyces scabies is a common soil bacterium that causes scab symptoms in potatoes. Strong evidence indicates horizontal gene transfer (HGT) among bacteria has influenced the evolution of this plant pathogen and other Streptomyces spp. To extend the study of the HGT to the Streptomyces genus, we explored the effects of the inter-domain HGT in the S. scabies genome. We employed a semi-automatic pipeline based on BLASTp searches and phylogenetic reconstruction. The data show low impact of inter-domain HGT in the S. scabies genome; however, we found a putative plant pathogenesis related 1 (PR1) sequence in the genome of S. scabies and other species of the genus. It is possible that this gene could be used by S. scabies to out-compete other soil organisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Overproduction of lactimidomycin by cross-overexpression of genes encoding Streptomyces antibiotic regulatory proteins.

    Science.gov (United States)

    Zhang, Bo; Yang, Dong; Yan, Yijun; Pan, Guohui; Xiang, Wensheng; Shen, Ben

    2016-03-01

    The glutarimide-containing polyketides represent a fascinating class of natural products that exhibit a multitude of biological activities. We have recently cloned and sequenced the biosynthetic gene clusters for three members of the glutarimide-containing polyketides-iso-migrastatin (iso-MGS) from Streptomyces platensis NRRL 18993, lactimidomycin (LTM) from Streptomyces amphibiosporus ATCC 53964, and cycloheximide (CHX) from Streptomyces sp. YIM56141. Comparative analysis of the three clusters identified mgsA and chxA, from the mgs and chx gene clusters, respectively, that were predicted to encode the PimR-like Streptomyces antibiotic regulatory proteins (SARPs) but failed to reveal any regulatory gene from the ltm gene cluster. Overexpression of mgsA or chxA in S. platensis NRRL 18993, Streptomyces sp. YIM56141 or SB11024, and a recombinant strain of Streptomyces coelicolor M145 carrying the intact mgs gene cluster has no significant effect on iso-MGS or CHX production, suggesting that MgsA or ChxA regulation may not be rate-limiting for iso-MGS and CHX production in these producers. In contrast, overexpression of mgsA or chxA in S. amphibiosporus ATCC 53964 resulted in a significant increase in LTM production, with LTM titer reaching 106 mg/L, which is five-fold higher than that of the wild-type strain. These results support MgsA and ChxA as members of the SARP family of positive regulators for the iso-MGS and CHX biosynthetic machinery and demonstrate the feasibility to improve glutarimide-containing polyketide production in Streptomyces strains by exploiting common regulators.

  14. Carbon catabolite regulation in Streptomyces: new insights and lessons learned.

    Science.gov (United States)

    Romero-Rodríguez, Alba; Rocha, Diana; Ruiz-Villafán, Beatriz; Guzmán-Trampe, Silvia; Maldonado-Carmona, Nidia; Vázquez-Hernández, Melissa; Zelarayán, Augusto; Rodríguez-Sanoja, Romina; Sánchez, Sergio

    2017-09-01

    One of the most significant control mechanisms of the physiological processes in the genus Streptomyces is carbon catabolite repression (CCR). This mechanism controls the expression of genes involved in the uptake and utilization of alternative carbon sources in Streptomyces and is mostly independent of the phosphoenolpyruvate phosphotransferase system (PTS). CCR also affects morphological differentiation and the synthesis of secondary metabolites, although not all secondary metabolite genes are equally sensitive to the control by the carbon source. Even when the outcome effect of CCR in bacteria is the same, their essential mechanisms can be rather different. Although usually, glucose elicits this phenomenon, other rapidly metabolized carbon sources can also cause CCR. Multiple efforts have been put through to the understanding of the mechanism of CCR in this genus. However, a reasonable mechanism to explain the nature of this process in Streptomyces does not yet exist. Several examples of primary and secondary metabolites subject to CCR will be examined in this review. Additionally, recent advances in the metabolites and protein factors involved in the Streptomyces CCR, as well as their mechanisms will be described and discussed in this review.

  15. Mushroom Tyrosinase: A Model System to Combine Experimental Investigation of Enzyme-Catalyzed Reactions, Data Handling Using R, and Enzyme-Inhibitor Structural Studies

    Science.gov (United States)

    Nairn, Robert; Cresswell, Will; Nairn, Jacqueline

    2015-01-01

    The activity of mushroom tyrosinase can be measured by monitoring the conversion of phenolic compounds into quinone derivatives using spectrophotometry. This article describes a series of experiments which characterize the functional properties of tyrosinase, the analysis of the resulting data using R to determine the kinetic parameters, and the…

  16. Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives

    Science.gov (United States)

    Yagüe, Paula; López-García, Maria T.; Rioseras, Beatriz; Sánchez, Jesús; Manteca, Ángel

    2013-01-01

    Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we review the current knowledge on Streptomyces pre-sporulation stages of Streptomyces differentiation. PMID:23496097

  17. Penggunaan Streptomyces sp. Sebagai Biokontrol Penyakit Layu Pada Tanaman Cabai Merah (Capsicum annuum L. yang Disebabkan Oleh Fusarium oxysporum f.sp. capsici

    Directory of Open Access Journals (Sweden)

    ANINDA OKTAVIA RAHARINI

    2014-01-01

    Full Text Available A research has been conducted to find out Streptomyces bacteria at Bukit Jimbaran, to inhibitionpotency of Streptomyces sp. to pathogenic fungi Fusarium oxysporum f.sp. capsici, and to find outantifungal activity of Streptomyces filtrate to F.oxysporum f.sp. capsici in chili (Capsicum annuumL. plants. Streptomyces sp. isolation was done by platting method with selective media YMA (ISP4.Identification of Streptomyces sp. used Bergey’s book entitled Manual Determinative Bacteriology.Test inhibition against F.oxysporum f.sp. capsici and in vivo test used by dying the roots of the chili(C.annuum L. plant with F.oxysporum f.sp. capsici and after 30 seconds the roots were dying withStreptomyces sp. culture, furthermore sterile soil on polybag watered by F.oxysporum f.sp. capsicispore and Streptomyces sp. culture at the same time. The result found five isolates Streptomyces sp.with different morphological. The antagonis test showed Streptomyces sp. 4 had ability (82% againstFusarium, Streptomyces sp.1 (72%, Streptomyces sp.2 (64%, Streptomyces sp.3 (76%, andStreptomyces sp. 5 (32%. All Streptomyces suppressed the growth of Fusarium on chili plants inglass house (p<0,05. Streptomyces sp.4 suppressed Fusarium wilt disease in chili from 80% in controlto 8%.

  18. Effects of Fumarprotocetraric Acid, a Depsidone from the Lichen Cladonia verticillaris, on Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Luiz Fabrício Gardini Brandão

    2017-10-01

    Full Text Available Lichens are widely distributed around the world. Their phenolic compounds, consisting mainly of depsides and depsidones, have been extensively studied for important biological activities. More recently, these compounds have been evaluated for their inhibitory activity against enzymes such as tyrosinase, a key agent in melanin biosynthesis. In the present investigation, the depsidone fumarprotocetraric acid isolated from the lichen Cladonia verticillaris (Raddi Fr. was evaluated for its inhibitory activity against this critical enzyme. Kinetic study showed that depsidone at 0.6 mM inhibited tyrosinase activity by 39.8%. Lineweaver–Burk plots revealed that fumarprotocetraric acid can act as an uncompetitive or mixed-type inhibitor, depending on concentration. DOI: http://dx.doi.org/10.17807/orbital.v9i4.999 

  19. Endophytic Streptomyces spp. as Biocontrol Agents of Rice Bacterial Leaf Blight Pathogen (Xanthomonas oryzae pv. oryzae

    Directory of Open Access Journals (Sweden)

    RATIH DEWI HASTUTI

    2012-12-01

    Full Text Available Xanthomonas oryzae pv. oryzae (Xoo, a causal agent of bacterial leaf blight (BLB, is one of the most important pathogens of rice. The effectiveness of ten Streptomyces spp. isolates in suppressing Xoo disease was assessed in planta and in vitro. In planta experiments were carried out in a greenhouse and arranged in a randomized completely block design (RCBD with three replications. Twenty treatments were tested which included plants inoculated with both Streptomyces spp. and Xoo, and plants inoculated with only Streptomyces spp. Plants inoculated with Xoo and sprayed with a chemical bactericide, and plants inoculated with only Xoo served as positive controls, whereas plants not inoculated with either Streptomyces spp. or Xoo were used as negative controls. The results showed that the effect of endophytic Streptomyces spp. on BLB disease expressed as area under disease progress curve (AUDPC was not significantly different to that on control plants (P > 0.05. However, plants inoculated with endophytic Streptomyces spp. were significantly taller and produced higher tiller number than control plants (P < 0.05. Streptomyces spp. isolate AB131-1 gave the highest plant height. In vitro studies on biocontrol mechanisms of selected Streptomyces spp. isolates showed that isolate LBR02 gave the highest inhibition activity on Xoo growth, followed by AB131-1 and AB131-2. Two isolates (AB131-1 and LBR02 were able to produce chitinase, phosphatase, and siderophore which included biocontrol characteristics. Morphological and colonization studies under SEM and light microscopy confirmed that the three isolates were endophytic Streptomyces spp. from different species. These studies found that the paddy plant which was inoculated with endophytic Streptomyces spp. AB131-1 and infected by Xoo could increase the height of plant and number of tillers.

  20. Recent advances in understanding Streptomyces [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Keith F. Chater

    2016-11-01

    Full Text Available About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for Streptomyces developmental biology, Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of

  1. Streptomyces castaneus sp. nov., a novel actinomycete isolated from the rhizosphere of Peucedanum praeruptorum Dunn.

    Science.gov (United States)

    Zhou, Shuyu; Li, Zhilei; Bai, Lu; Yan, Kai; Zhao, Junwei; Lu, Chang; Liu, Chongxi; Wang, Xiangjing; Xiang, Wensheng

    2017-01-01

    During an investigation of microbial diversity in medicinal herbs, a novel actinomycete, strain NEAU-QHHV11 T was isolated from the rhizosphere of Peucedanum praeruptorum Dunn collected from Xianglu Mountain in Heilongjiang Province, northeast China and characterized using a polyphasic approach. The organism was found to have typical characteristics of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequence also indicated that strain NEAU-QHHV11 T belongs to the genus Streptomyces and was most closely related to Streptomyces graminilatus NBRC 108882 T (98.7 % sequence similarity) and Streptomyces turgidiscabies NBRC 16080 T (98.7 % sequence similarity). The results of DNA-DNA hybridization and some phenotypic characteristics indicated that strain NEAU-QHHV11 T could be distinguished from its close phylogenetic relatives. Thus, strain NEAU-QHHV11 T represents a novel species of the genus Streptomyces, for which the name Streptomyces castaneus sp. nov. is proposed. The type strain is NEAU-QHHV11 T (=CGMCC 4.7235 T  = DSM 100520 T ).

  2. A cDNA Cloning of a Novel Alpha-Class Tyrosinase of Pinctada fucata: Its Expression Analysis and Characterization of the Expressed Protein

    Directory of Open Access Journals (Sweden)

    Ryousuke Takgi

    2014-01-01

    Full Text Available Tyrosinase plays an important role in the formation of the shell matrix and melanin synthesis in mollusks shells. A cDNA clone encoding a 47 kDa protein was isolated from the pearl oyster Pinctada fucata. The cDNA was 1,957 base pairs long and encodes a 417 residue protein that has extensive sequence identity with tyrosinase (polyphenol oxidase: EC 1.14.18.1. This tyrosinase-like protein, termed PfTy, contains an N-terminal signal sequence and the two copper-binding domain signatures (CuA and CuB, suggesting that PfTy belongs to the α-subclass of type-3 copper proteins. Enzyme activity of PfTy was examined by a spectrophotometric method using the translation product derived from an S30 T7 high-yield protein expression system. Tyrosinase activity was seen in this recombinant product. RT-PCR analysis showed that PfTy mRNA was expressed in the mantle pallial, but not in the mantle edge. Therefore, PfTy may participate in insoluble shell matrix formation of the nacreous layer. PfTy expression was also observed in the foot, liver, and adductor muscle, suggesting that PfTy participates in the synthesis of melanins, which are effective scavengers of free radicals formed in multiple intracellular oxidative processes. This is the first report of a novel α-class tyrosinase from the pearl oyster P. fucata.

  3. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil.

    Science.gov (United States)

    Cordovez, Viviane; Carrion, Victor J; Etalo, Desalegn W; Mumm, Roland; Zhu, Hua; van Wezel, Gilles P; Raaijmakers, Jos M

    2015-01-01

    In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  4. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    Directory of Open Access Journals (Sweden)

    Viviane eCordovez

    2015-10-01

    Full Text Available In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs. VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogues of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

  5. Streptomyces lacrimifluminis sp. nov., a novel actinobacterium that produces antibacterial compounds, isolated from soil.

    Science.gov (United States)

    Zhang, Binglin; Tang, Shukun; Chen, Ximing; Zhang, Ling; Zhang, Gaoseng; Zhang, Wei; Liu, Guangxiu; Chen, Tuo; Li, Shiweng; Dyson, Paul

    2016-12-01

    A novel actinobacterial strain, designated Z1027T, was isolated from a soil sample collected near the Tuotuo River, Qinghai-Tibet Plateau (China). The strain exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. The taxonomic position of strain Z1027T was determined using a polyphasic approach. The organism had chemotaxonomic and morphological properties consistent with its classification in the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree, together with Streptomyces turgidiscabies ATCC 700248T (99.19 % similarity), Streptomyces graminilatus JL-6T (98.84 %) and Streptomyces reticuliscabiei CFBP 4531T (98.36 %). The genomic DNA G+C content of strain Z1027T was 74±1 mol%. The DNA-DNA relatedness values between strain Z1027T and Streptomyces turgidiscabies ATCC 700248T and Streptomyces reticuliscabiei CFBP 4531T were 38.5±0.4 and 26.2±1.2 %, respectively, both of them significantly lower than 70 %. Chemotaxonomic data revealed that strain Z1027T possessed MK-9(H6) and MK-9(H8) as the major menaquinones, ll-diaminopimelic acid as the diagnostic diamino acid and galactose as a whole-cell sugar. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatydilinositol and seven other unknown polar lipids were detected; iso-C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0 were the major fatty acids. On the basis of these genotypic and phenotypic data, it is proposed that isolate Z1027T (=CGMCC 4.7272T=JCM 31054T) should be classified as the type strain of a novel species of the genus Streptomyces,Streptomyces lacrimifluminis sp. nov.

  6. Determination of ionophore antibiotics nactins produced by fecal Streptomyces from sheep.

    Science.gov (United States)

    Wang, Jun; Tan, Hongming; Lu, Yu; Cao, Lixiang

    2014-04-01

    To investigate the correlation between fecal actinobacteria and host animals, Streptomyces was isolated from fresh faeces of healthy sheep and secondary metabolites were analyzed. The most frequently isolated strain S161 with antibiotic activity against bacteria and fungi were analyzed. The S161 showed the highest 99 % similarity to Streptomyces canus DSB17 based on the 16S rRNA gene sequence analysis. Metabolite analysis based on MS and NMR spectra showed that S161 produces nactins, cyclotetralactones derived from nonactic acid and homononactic acid as building units of ionophoretic character. Due to ionophores are antimicrobial compounds that are commonly fed to ruminant animals to improve feed efficiency, stable beneficial interactions between Streptomyces bacteria and vertebrates have been demonstrated.

  7. Streptomyces gamaensis sp. nov., a novel actinomycete with antifungal activity isolated from soil in Gama, Chad.

    Science.gov (United States)

    Zhao, Shanshan; Ye, Lan; Liu, Chongxi; Abagana, Adam Yacoub; Zheng, Weiwei; Sun, Pengyu; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing

    2017-04-01

    During an investigation exploring potential sources of novel species and natural products, a novel actinomycete with antifungal activity, designated strain NEAU-Gz11 T , was isolated from a soil sample, which was collected from Gama, Chad. The isolate was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain NEAU-Gz11 T belongs to the genus Streptomyces with high sequence similarity to Streptomyces hiroshimensis JCM 4098 T (98.0 %). Similarities to other type strains of the genus Streptomyces were lower than 98.0 %. However, the physiological and biochemical characteristics and low levels of DNA-DNA relatedness could differentiate the isolate genotypically and phenotypically from S. hiroshimensis JCM 4098 T . Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces gamaensis sp. nov. is proposed. The type strain is NEAU-Gz11 T (=CGMCC 4.7304 T =DSM 101531 T ).

  8. ISOLATION AND PURIFICATION OF STREPTOMYCES SPP. PRODUCING VANCOMYCIN

    International Nuclear Information System (INIS)

    EL-KABBANY, H.M.I.

    2008-01-01

    Soil samples obtained from different governments in Egypt were analyzed to determine the presence of types of antibiotic producing actinomycetes using starch-nitrite agar, starch-casein nitrate agar and Czapek's Dox agar as culture media. Different Streptomyces spp. were isolated. The Streptomyces (S.) isolates encountered were S. violochromogens, S. violaceus-nigar and S. orientalis and known as standard Vancomycin producers. The optimum conditions of S. orientalis; incubation period, initial pH and incubation temperature, were determined. In addition, physical properties; appearance, melting point, solubility, mass spectrophotometer of ultra violet (UV) and the effect of gamma rays, were also determined

  9. Antimicrobial Activity and Morphological Changes of Streptomyces Ascendable and Streptomyces Eighty-three's as Affected by Environmental Conditions and Gamma Radiation

    International Nuclear Information System (INIS)

    Moussa, L.A.A.; Abou El-Nour, S.A.M.; Mansour, F.A.; Serag, M.S.

    2004-01-01

    Fourteen actinomycetes out of thirty isolates were recovered from different Egyptian soils and exhibited antimicrobial activities. Streptomyces ascendable and Streptomyces eighty-three's used in the present work showed the most active antimicrobial potentialities against bacteria, moulds and yeasts. The optimum temperature and acidity for their growth and production of microbial activity were 50 degree and ph 7.0, while the maximum biomass yield and the highest antimicrobial activity were attained 10 days of incubation. Among carbon sources starch at 30 gm/L highly supported the growth and antimicrobial activity by the two species, while sodium nitrate (3 gm/L) and dipotassium hydrogen phosphate (0.75 gm/L) were the most favorable for both isolates. The presence of microelements such as manganese chloride, zinc sulphate, ferrous sulphate and copper sulphate in the growth medium at a concentration of 1 mg/L for each had a good stimulatory effect on the growth and antimicrobial activity for both Streptomyces species. As different irradiation doses were used (up to 5.0 kGy), the high levels clearly affected the morphological characteristics of both tested isolates either in the first or second generation

  10. 40 CFR 180.1120 - Streptomyces sp. strain K61; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Streptomyces sp. strain K61; exemption... FOOD Exemptions From Tolerances § 180.1120 Streptomyces sp. strain K61; exemption from the requirement of a tolerance. The biological pesticide Streptomyces sp. strain K61 is exempted from the requirement...

  11. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis

    Science.gov (United States)

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T formed a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these ot...

  12. Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp

    Science.gov (United States)

    Viegelmann, Christina; Margassery, Lekha Menon; Kennedy, Jonathan; Zhang, Tong; O’Brien, Ciarán; O’Gara, Fergal; Morrissey, John P.; Dobson, Alan D. W.; Edrada-Ebel, RuAngelie

    2014-01-01

    Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8) isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1), 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2), and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3) that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont. PMID:24893324

  13. Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Christina Viegelmann

    2014-06-01

    Full Text Available Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8 isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1, 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2, and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3 that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont.

  14. Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766).

    Science.gov (United States)

    Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Zucchi, Tiago Domingues; Pansa, Camila Cristiane; de Figueiredo Vasconcellos, Rafael Leandro; Crevelin, Eduardo José; de Moraes, Luiz Alberto Beraldo; Melo, Itamar Soares

    2016-11-01

    The taxonomic position of a novel marine actinomycete isolated from a marine sponge, Aplysina fulva, which had been collected in the Archipelago of Saint Peter and Saint Paul (Equatorial Atlantic Ocean), was determined by using a polyphasic approach. The organism showed a combination of morphological and chemotaxonomic characteristics consistent with its classification in the genus Streptomyces and forms a distinct branch within the Streptomyces somaliensis 16S rRNA gene tree subclade. It is closely related to Streptomyces violascens ISP 5183 T (97.27 % 16S rRNA gene sequence similarity) and Streptomyces hydrogenans NBRC 13475 T (97.15 % 16S rRNA gene sequence similarity). The 16S rRNA gene similarities between the isolate and the remaining members of the subclade are lower than 96.77 %. The organism can be distinguished readily from other members of the S. violacens subclade using a combination of phenotypic properties. On the basis of these results, it is proposed that isolate 103 T (=NRRL B-65309 T  = CMAA 1378 T ) merits recognition as the type strain of a new Streptomyces species, namely Streptomyces atlanticus sp. nov.

  15. Structural insight with mutational impact on tyrosinase and PKC-β interaction from Homo sapiens: Molecular modeling and docking studies for melanogenesis, albinism and increased risk for melanoma.

    Science.gov (United States)

    Banerjee, Arundhati; Ray, Sujay

    2016-10-30

    Human tyrosinase, is an important protein for biosynthetic pathway of melanin. It was studied to be phosphorylated and activated by protein kinase-C, β-subunit (PKC-β) through earlier experimentations with in vivo evidences. Documentation documents that mutation in two essentially vital serine residues in C-terminal end of tyrosinase leads to albinism. Due to the deficiency of protective shield like enzyme; melanin, albinos are at an increased peril for melanoma and other skin cancers. So, computational and residue-level insight including a mutational exploration with evolutionary importance into this mechanism lies obligatory for future pathological and therapeutic developments. Therefore, functional tertiary models of the relevant proteins were analyzed after satisfying their stereo-chemical features. Evolutionarily paramount residues for the activation of tyrosinase were perceived via multiple sequence alignment phenomena. Mutant-type tyrosinase protein (S98A and S102A) was thereby modeled, maintaining the wild-type proteins' functionality. Furthermore, this present comparative study discloses the variation in the stable residual participation (for mutant-type and wild-type tyrosinase-PKCβ complex). Mainly, an increased number of polar negatively charged residues from the wild-type tyrosinase participated with PKC-β, predominantly. Fascinatingly supported by evaluation of statistical significances, mutation even led to a destabilizing impact in tyrosinase accompanied by conformational switches with a helix-to-coil transition in the mutated protein. Even the allosteric sites in the protein got poorly hampered upon mutation leading to weaker tendency for binding partners to interact. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A diterpenoid sugiol from Metasequoia glyptostroboides with α-glucosidase and tyrosinase inhibitory potential

    Directory of Open Access Journals (Sweden)

    Vivek K. Bajpai

    2014-08-01

    Full Text Available Nowadays use of plant derived natural compounds have become a topic of increasing interest in food and medicine industries due to their multitude of biological and therapeutic properties. In this study, a diterpenoid compound sugiol, isolated from Metasequoia glyptostroboides was evaluated for α–glucosidase and tyrosinase inhibitory efficacy in terms of its potent anti-diabetic and anti-melanogenesis potential, respectively. As a result, sugiol at the concentration range of (100-10,000 µg/mL and (20-500 µg/mL showed potent efficacy on inhibiting α-glucosidase and tyrosinase enzymes in vitro ranging from 12.34-63.47% and 28.22-67.43%, respectively. These findings confirm the therapeutic potential of diterpenoid compound sugiol from M. glyptostroboides as a novel candidate for using in food and medicine industry which may have practical potential to cure skin and diabetes mellitus type-2 related disorders.

  17. Isolation, characterization and antimicrobial activity of Streptomyces ...

    African Journals Online (AJOL)

    DR TONUKARI

    2013-12-18

    Dec 18, 2013 ... Available online at http://www.academicjournals.org/AJB ... Key words: Characterization, streptomyces, antimicrobial activity, hot ... MATERIALS AND METHODS ..... chain reaction (PCR) which is currently used as a sen-.

  18. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  19. Central Carbon Metabolic Pathways in Streptomyces

    NARCIS (Netherlands)

    van Keulen, Geertje; Siebring, Jeroen; Dijkhuizen, Lubbert; Dyson, Paul

    Streptomyces and other actinomycetes are fascinating soil bacteria of major economic importance. They produce 70% of antibiotics known to man and numerous other pharmaceuticals for treatment of, e.g. cancer, a range of infections, high cholesterol, or have immunosuppressive activity. It is not

  20. Lethal and mutagenic effects of fast neutrons of different energy on Streptomyces griseus spores

    International Nuclear Information System (INIS)

    Podgorskaya, M.E.; Tulina, G.G.; Serdechnaya, A.I.; Matselyukh, B.P.

    1986-01-01

    A study was made of lethal and mutagenic effects of fast neutrons of different energy on spores of prototrophic and auxotrophic strains of Streptomyces griseus. Relative biological effectiveness of fast neutrons is higher than that of γ-rays and depends on beam energy. Neutrons of 22-50 MeV induce Streptomyces griseus mutations more frequently (by one order of magnitude) than neutrons of 1.4-1.6 MeV do. The obtained mutants can be used in studying Streptomyces griseus genetics

  1. Streptomyces phyllanthi sp. nov., isolated from the stem of Phyllanthus amarus.

    Science.gov (United States)

    Klykleung, Nattaporn; Phongsopitanun, Wongsakorn; Pittayakhajonwut, Pattama; Ohkuma, Moriya; Kudo, Takuji; Tanasupawat, Somboon

    2016-10-01

    The novel endophytic actinomycete strain PA1-07T was isolated from the stem of Phyllanthus amarus. The strain displayed the consistent characteristics of members of the genus Streptomyces. The strain produced short spiral spore chains on aerial mycelia. It grew at pH 5-9, at 40 °C and with a maximum of 5 % (w/v) NaCl. It contained ll-diaminopimelic acid, glucose and ribose in the whole-cell hydrolysate. The major cellular menaquinones were MK-9(H4), MK-9(H6) and MK-9(H8), while the major cellular fatty acids were C16 : 0, iso-C14 : 0, iso-C16 : 0 and anteiso-C15 : 0. The polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside and four unknown lipids. The DNA G+C content of the strain was 71 mol%. The strain showed the highest 16S rRNA gene sequence similarity with Streptomyces curacoi JCM 4219T (98.77 %). The DNA-DNA relatedness values between strain PA1-07T and S. curacoi JCM 4219T were lower than 70 %, the cut-off level for assigning strains to the same species. On the basis of these phenotypic and genotypic characteristics, the strain could be distinguished from closely related species of the genus Streptomyces and thus represents a novel species of the genus Streptomyces, for which the name Streptomyces phyllanthi sp. nov. is proposed. The type strain is PA1-07T (=JCM 30865T=KCTC 39785T=TISTR 2346T).

  2. Large-scale recombinant expression and purificatoin of human tyrosinase suitabel for structural studies

    NARCIS (Netherlands)

    Lai, X.; Soler-Lopez, M.; Wichers, H.J.; Dijkstra, Bouke

    2016-01-01

    Human tyrosinase (TYR) is a glycoprotein that initiates the first two reactions in the melanin biosynthesis pathway. Mutations in its encoding gene cause Oculocutaneous Albinism type I (OCA1), the most severe form of albinism, which is a group of autosomal recessive disorders characterized by

  3. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  4. Streptomyces songpinggouensis sp. nov., a Novel Actinomycete Isolated from Soil in Sichuan, China.

    Science.gov (United States)

    Guan, Xuejiao; Li, Wenchao; Liu, Chongxi; Jin, Pinjiao; Guo, Siyu; Wang, Xiangjing; Xiang, Wensheng

    2016-12-01

    During a screening for novel and biotechnologically useful actinobacteria, a novel actinobacteria with weak antifungal activity, designated strain NEAU-Spg19 T , was isolated from a soil sample collected from pine forest in Songpinggou, Sichuan, southwest China. The strain was characterized using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth occurred at a temperature range of 10-30 °C, pH 5.0-11.0 and NaCl concentrations of 0-5 %. The cell wall peptidoglycan consisted of LL-diaminopimelic acid and glycine. The major menaquinones were MK-9(H 6 ), MK-9(H 8 ) and MK-9(H 4 ). The phospholipid profile contained diphosphatidylglycerol (DPG), phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were iso-C 15:0 , iso-C 16:0 , and C 16:0 . 16S rRNA gene sequence similarity studies showed that strain NEAU-Spg19 T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces tauricus JCM 4837 T (98.6 %) and Streptomyces rectiviolaceus JCM 9092 T (98.3 %). Some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from S. tauricus JCM 4837 T and S. rectiviolaceus JCM 9092 T . Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NEAU-Spg19 T represents a novel species of the genus Streptomyces, for which the name Streptomyces songpinggouensis sp. nov. is proposed. The type strain is NEAU-Spg19 T (=CGMCC 4.7140 T =DSM 42141 T ).

  5. Streptomyces sp. Sebagai Biofungisida Patogen Fusarium oxysporum (Schlecht. f.sp. lycopersici (Sacc. Snyd. et Hans. Penyebab Penyakit Layu Pada Tanaman Tomat (Solanum lycopersicum L.

    Directory of Open Access Journals (Sweden)

    NURI MANDAN SARI

    2014-01-01

    Full Text Available A research was conducted to isolate Streptomyces sp. of soil Udayana University campus in theBukit-Jimbaran, to obtain the most effective Streptomyces sp. which is effective in inhibit the growth ofFusarium oxysporum f.sp. lycopersici, and to test response of tomato plants with Streptomyces sp.culture against Fusarium wilt desease. Implementation phases of the research consisted of isolation andidentification of Streptomyces sp, test the inhibition against F. oxysporum f.sp. lycopersici, and in vivotest used by dyeing the roots of the tomato plant (Solanum lycopersicum with Fusarium spores andafter 30 seconds the roots were dyeing Streptomyces culture. Furthermore, sterile soil in polybagwatered by Fusarium spores and Streptomyces culture at the same time. Based on morphologicalcharacteristic it found five isolates of Streptomyces sp.. The antagonist test showed Streptomyces sp.1 had ability (75% against Fusarium, Streptomyces sp 2 (68,3%, Streptomyces sp. 3 (71,6%,Streptomyces sp. 4 (63,3%, and Streptomyces sp. 5 (21,6%. All Streptomyces suppressed thegrowth of Fusarium on tomato plants in glass house (p<0,05. Streptomyces sp.3 suppressed Fusariumwilt disease in tomato from 88% in control to 20%.

  6. Antibiofilm activity of Streptomyces toxytricini Fz94 against Candida albicans ATCC 10231

    Directory of Open Access Journals (Sweden)

    Sheir DH

    2017-06-01

    Full Text Available Candida albicans is a significant cause of morbidity and mortality in immunocompromised patients worldwide. Biofilm formation by Candida species is a significant virulence factor for disease pathogenesis. Keeping in view the importance of Streptomyces' metabolites, the present study was initiated during the bioprospecting programme of Egyptian Streptomyces carried by the authors since 2013. Native Streptomyces isolates were recovered from soil samples collected from different governorates. Antifungal activity of forty isolates of Streptomyces were performed against planktonic (free cells of C. albicans ATCC 10231 and resistant clinical Candida isolates. Streptomyces isolates showed high inhibition activity against free cells of Candida were further assayed against biofilm of C. albicans reference strain. The most active Streptomyces sp. (no.6 was identified phenotypically, biochemically and by using 16S rRNA. The 16S rRNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KM052378 as S. toxytricini Fz94. Screening of S. toxytricini Fz94 extract capability in prevention and destruction of C. albicans reference strain biolfilm was assessed by resazurin dye adopted technique. In the pre-exposure scheme, the lowest concentration of 5 gL-1 showed biofilm viability inhibition of 92% after 120 min, while Ketoconazole® gave 90 % inhibition at concentration of 2 gL-1. In post exposure, the concentration of S. toxytricini Fz94 extract 7gL-1 caused 82 % inhibition of biofilms viability after 120 min, while Ketoconazole did not show any destruction capability. The cytotoxicity of S. toxytricini Fz94 crude extract results showed that it was nontoxic at 10 gL-1. S. toxytricini Fz94 is maintained in the Fungarium of Arab Society for Fungal Conservation (ASFC with accession number FSCU-2017-1110.

  7. Mutation effect of streptomyces kitasatoensis after exposure to heavy ions radiation

    International Nuclear Information System (INIS)

    Liu Jing; Chen Jihong; Wang Shuyang; Li Wenjian

    2011-01-01

    To define the optimum dose of heavy ion beams for selecting high productive strains, we should study mortality and mutation effects of Streptomyces kitasatoensis irradiated by heavy ion beams in different doses. In this research, spores of Streptomyces kitasatoensis were irradiated by heavy ion beams with different doses. And survival rate, mortality rate, positive mutation and negative mutation were analyzed statistically. The results showed that high mortality rate appeared from 5 Gy and then the mortality rate curve became gently. Compared the positive and negative mutations in different doses, highest positive mutation was obtained in 40 Gy, while the negative mutation was lower in this dose, and the survival rate was 0.92%. So we defined that optimum dose of heavy ions radiation for Streptomyces kitasatoensis selection was 40 Gy in this experiment. (authors)

  8. Discovery of Highly Potent Tyrosinase Inhibitor, T1, with Significant Anti-Melanogenesis Ability by zebrafish in vivo Assay and Computational Molecular Modeling

    Science.gov (United States)

    Chen, Wang-Chuan; Tseng, Tien-Sheng; Hsiao, Nai-Wan; Lin, Yun-Lian; Wen, Zhi-Hong; Tsai, Chin-Chuan; Lee, Yu-Ching; Lin, Hui-Hsiung; Tsai, Keng-Chang

    2015-01-01

    Tyrosinase is involved in melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders that can be treated with depigmenting agents. A natural product T1, bis(4-hydroxybenzyl)sulfide, isolated from the Chinese herbal plant, Gastrodia elata, is a strong competitive inhibitor against mushroom tyrosinase (IC50 = 0.53 μM, Ki = 58 +/- 6 nM), outperforms than kojic acid. The cell viability and melanin quantification assay demonstrate that 50 μM of T1 apparently attenuates 20% melanin content of human normal melanocytes without significant cell toxicity. Moreover, the zebrafish in vivo assay reveals that T1 effectively reduces melanogenesis with no adverse side effects. The acute oral toxicity study evidently confirms that T1 molecule is free of discernable cytotoxicity in mice. Furthermore, the molecular modeling demonstrates that the sulfur atom of T1 coordinating with the copper ions in the active site of tyrosinase is essential for mushroom tyrosinase inhibition and the ability of diminishing the human melanin synthesis. These results evident that T1 isolated from Gastrodia elata is a promising candidate in developing pharmacological and cosmetic agents of great potency in skin-whitening.

  9. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp

    DEFF Research Database (Denmark)

    Kim, Ki Hyun; Ramadhar, Timothy R.; Beemelmanns, Christine

    2014-01-01

    We report a preliminary functional and complete structural characterization of a highly unusual geldanamycin analog, natalamycin A, that was isolated from Streptomyces strain M56 recovered from a South African nest of Macrotermes natalensis termites. Bioassay-guided fractionation based on antifun......We report a preliminary functional and complete structural characterization of a highly unusual geldanamycin analog, natalamycin A, that was isolated from Streptomyces strain M56 recovered from a South African nest of Macrotermes natalensis termites. Bioassay-guided fractionation based...

  10. Streptomyces plicatus as a model biocontrol agent.

    Science.gov (United States)

    Abd-Allah, E F

    2001-01-01

    Three hundred and seventy two isolates belonging to the genus Streptomyces were isolated and screened for chitinase production. Streptomyces plicatus was found to be the best producer. The highest chitinase production were incubated for 3 d at 30 degrees C on buffered culture medium (pH 8.0) containing chitin plus sucrose and calcium nitrate as carbon and nitrogen sources. S. plicatus chitinase had a highly significant inhibitory effect on spore germination, germ tube elongation and radial growth of Fusarium oxysporum f.sp. lycopersici, Altrernaria alternata and Verticillium albo-atrum, the causal organisms of Fusarium wilt, stem canker and Verticillium wilt diseases of tomato. Application of S. plicatus to the root system of tomato plants before transplantation markedly protected tomato plants against the tested phytopathogenic fungi in vivo.

  11. Phenols removal by immobilized tyrosinase reactor in on-line high performance liquid chromatography

    International Nuclear Information System (INIS)

    Girelli, Anna Maria; Mattei, Enrico; Messina, Antonella

    2006-01-01

    The development of an immobilized enzyme reactor (IMER) based on tyrosinase immobilized on aminopropyl-controlled pore glass (AP-CPG) for the removal of phenols from model aqueous solutions was reported. To elucidate the influence of the substrate nature, the apparent (V ' max , K ' m ) and the inherent (V max , K m ) Michaelis-Menten constants were determined by Lineweaver-Burk method and the external diffusional contributions on measured enzyme activities were removed by a graphical method. The dephenolization process was realized by recycling the phenol solutions through the bioreactor connected to a chitosan trap in order to remove the colored quinone-type products of the tyrosinase reactions. The results indicated that a complete removal of phenol derivatives in the range of 150-300min, with the exception of 60% removal for phenol reached in 400min, was obtained. The observed sequence: cresol>4-methylcathecol>catechol>4-Cl-phenol-bar phenol was in accordance to the V ' max /K ' m values

  12. T Cell Receptors that Recognize the Tyrosinase Tumor Antigen | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute, Surgery Branch, Tumor Immunology Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize T Cells Attacking Cancer: T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

  13. Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces

    Directory of Open Access Journals (Sweden)

    Bradon R. McDonald

    2017-06-01

    Full Text Available Lateral gene transfer (LGT profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces. Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution.

  14. Discoloration of Ancient Egyptian Mural Paintings by Streptomyces Strains and Methods of Its Removal

    Directory of Open Access Journals (Sweden)

    Akmal Ali SAKR

    2012-12-01

    Full Text Available Streptomyces isolated from mural paintings at Tell Basta and Tanis tombs were identified using 16S rDNA sequencing method. These Streptomyces strains caused discoloration of mural paintings with irreversible red stains of carotenoid pigment. A mixture of n-hexan and acetone (92:8 v/v was the best solvent for extracting and purification of red pigment from biomass of Streptomyces. Dimethyl sulfoxide (DMSO and N,N-dimethylformamide (DMF were the most effective in treatment of these red stains without changing the paintings or stone surfaces.

  15. Analysis of the Pho regulon in Streptomyces tsukubaensis.

    Science.gov (United States)

    Ordóñez-Robles, María; Santos-Beneit, Fernando; Rodríguez-García, Antonio; Martín, Juan F

    2017-12-01

    Phosphate regulation of antibiotic biosynthesis in Streptomyces has been studied due to the importance of this genus as a source of secondary metabolites with biological activity. Streptomyces tsukubaensis is the main producer of tacrolimus (or FK506), an immunosuppressant macrolide that generates important benefits for the pharmaceutical market. However, the production of tacrolimus is under a negative control by phosphate and, therefore, is important to know the molecular mechanism of this regulation. Despite its important role, there are no reports about the Pho regulon in S. tsukubaensis. In this work we combined transcriptional studies on the response to phosphate starvation with the search for PHO boxes in the whole genome sequence of S. tsukubaensis. As a result, we identified a set of genes responding to phosphate starvation and containing PHO boxes that include common Pho regulon members but also new species-specific candidates. In addition, we demonstrate for the first time the functional activity of PhoP from S. tsukubaensis through complementation studies in a Streptomyces coelicolor ΔphoP strain. For this purpose, we developed an anhydrotetracycline inducible system that can be applied to the controlled expression of target genes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae

    DEFF Research Database (Denmark)

    Yagüe, Paula; Willemse, Joost; Koning, Roman I

    2016-01-01

    Bacteria of the genus Streptomyces are a model system for bacterial multicellularity. Their mycelial life style involves the formation of long multinucleated hyphae during vegetative growth, with occasional cross-walls separating long compartments. Reproduction occurs by specialized aerial hyphae......, which differentiate into chains of uninucleoid spores. While the tubulin-like FtsZ protein is required for the formation of all peptidoglycan-based septa in Streptomyces, canonical divisome-dependent cell division only occurs during sporulation. Here we report extensive subcompartmentalization in young...... vegetative hyphae of Streptomyces coelicolor, whereby 1 μm compartments are formed by nucleic acid stain-impermeable barriers. These barriers possess the permeability properties of membranes and at least some of them are cross-membranes without detectable peptidoglycan. Z-ladders form during the early growth...

  17. Albinism in the american mink (Neovison vison) is associated with a tyrosinase nonsense mutation

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Fredholm, Merete; Christensen, Knud

    2008-01-01

    Albino phenotypes are documented in various species including the American mink. In other species the albino phenotypes are associated with tyrosinase (TYR) gene mutations; therefore TYR was considered the candidate gene for albinism in mink. Four microsatellite markers were chosen in the prodicted...

  18. Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi.

    Science.gov (United States)

    Cho, Gyeongjun; Kim, Junheon; Park, Chung Gyoo; Nislow, Corey; Weller, David M; Kwak, Youn-Sig

    2017-07-01

    Streptomyces spp. have the ability to produce a wide variety of secondary metabolites that interact with the environment. This study aimed to discover antifungal volatiles from the genus Streptomyces and to determine the mechanisms of inhibition. Volatiles identified from Streptomyces spp. included three major terpenes, geosmin, caryolan-1-ol and an unknown sesquiterpene. antiSMASH and KEGG predicted that the volatile terpene synthase gene clusters occur in the Streptomyces genome. Growth inhibition was observed when fungi were exposed to the volatiles. Biological activity of caryolan-1-ol has previously not been investigated. Fungal growth was inhibited in a dose-dependent manner by a mixture of the main volatiles, caryolan-1-ol and the unknown sesquiterpene, from Streptomyces sp. S4-7. Furthermore, synthesized caryolan-1-ol showed similar antifungal activity. Results of chemical-genomics profiling assays showed that caryolan-1-ol affected the endomembrane system by disrupting sphingolipid synthesis and normal vesicle trafficking in the fungi. © 2017 The Authors.

  19. Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees

    Science.gov (United States)

    A polyphasic study was carried out to establish the taxonomic status of an Atacama Desert isolate, Streptomyces strain C34T, which synthesises novel antibiotics, the chaxalactins and chaxamycins. The organism was shown to have chemotaxonomic, cultural, and morphological properties consistent with it...

  20. Antioxidative Potential of a Streptomyces sp. MUM292 Isolated from Mangrove Soil

    Directory of Open Access Journals (Sweden)

    Loh Teng-Hern Tan

    2018-01-01

    Full Text Available Mangrove derived microorganisms constitute a rich bioresource for bioprospecting of bioactive natural products. This study explored the antioxidant potentials of Streptomyces bacteria derived from mangrove soil. Based on 16S rRNA phylogenetic analysis, strain MUM292 was identified as the genus Streptomyces. Strain MUM292 showed the highest 16S rRNA gene sequence similarity of 99.54% with S. griseoruber NBRC12873T. Furthermore, strain MUM292 was also characterized and showed phenotypic characteristics consistent with Streptomyces bacteria. Fermentation and extraction were performed to obtain the MUM292 extract containing the secondary metabolites of strain MUM292. The extract displayed promising antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging and also metal-chelating activities. The process of lipid peroxidation in lipid-rich product was also retarded by MUM292 extract and resulted in reduced MDA production. The potential bioactive constituents of MUM292 extract were investigated using GC-MS and preliminary detection showed the presence of pyrazine, pyrrole, cyclic dipeptides, and phenolic compound in MUM292 extract. This work demonstrates that Streptomyces MUM292 can be a potential antioxidant resource for food and pharmaceutical industries.

  1. Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine.

    Science.gov (United States)

    Siñeriz, Manuel Louis; Kothe, Erika; Abate, Carlos Mauricio

    2009-09-01

    46 actinomycetes were isolated from two polluted sites and one unpolluted site. One strain, F4, was selected through primary qualitative screening assays because of its cadmium resistance, and physiologically and taxonomically characterized. F4 was able to grow at 7.5% NaCl and 100 microg/ml lysozyme and at a pH between 6 and 10. 16S rDNA sequence analysis showed that F4 was closely related to Streptomyces tendae. Growth of Streptomyces sp. F4 on culture medium with 8 mg/l Cd(2+) for 8 days showed 80% inhibition. Maximum specific biosorption was 41.7 mg Cd(2+)/g dry weight after 7 days of growth and highest Cd(2+ )concentration was found in the cell wall (41.2%). The exopolysaccharide layer only contained 7.4%, whereas 39.4% of Cd(2+) was found in the cytosolic fraction. Twelve % was found in the ribosomes and membrane fraction. This was verified with TEM, showing Streptomyces sp. F4 cytoplasm with dark granulate appearance. This study could present the potential capacity of Streptomyces sp. F4 for Cd(2+) bioremediation. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Use of Mushroom Tyrosinase to Introduce Michaelis-Menten Enzyme Kinetics to Biochemistry Students

    Science.gov (United States)

    Flurkey, William H.; Inlow, Jennifer K.

    2017-01-01

    An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is…

  3. Streptomyces capitiformicae sp. nov., a novel actinomycete producing angucyclinone antibiotics isolated from the head of Camponotus japonicus Mayr.

    Science.gov (United States)

    Jiang, Shanwen; Piao, Chenyu; Yu, Yang; Cao, Peng; Li, Chenxu; Yang, Fan; Li, Mutong; Xiang, Wensheng; Liu, Chongxi

    2018-01-01

    A novel actinomycete, designated strain 1H-SSA4 T , was isolated from the head of an ant (Camponotus japonicus Mayr) and was found to produce angucyclinone antibiotics. A polyphasic approach was used to determine the taxonomic status of strain 1H-SSA4 T . The DNA G+C content of the draft genome sequence, consisting of 11.4 Mbp, was 70.0 mol%. 16S rRNA gene sequence similarity studies showed that strain 1H-SSA4 T belongs to the genus Streptomyces with the highest sequence similarity to Streptomyces hygroscopicus subsp. ossamyceticus NBRC 13983 T (98.9 %), and phylogenetically clustered with this species, Streptomyces torulosus LMG 20305 T (98.8 %), Streptomyces ipomoeae NBRC 13050 T (98.5 %) and Streptomyces decoyicus NRRL 2666 T (98.4 %). The morphological and chemotaxonomic properties of the strain were also consistent with those members of the genus Streptomyces. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-SSA4 T and the above-mentioned strains, which further clarified their relatedness and demonstrated that strain 1H-SSA4 T could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces capitiformicae sp. nov. is proposed. The type strain is 1H-SSA4 T (=CGMCC 4.7403 T =DSM 104537 T ).

  4. The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces

    Science.gov (United States)

    Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire

    2014-01-01

    Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only putative helicase-nuclease-encoding genes identified were homologous to M. tuberculosis adnAB genes. These genes are conserved as a single copy in all sequenced genomes of Streptomyces. The disruption of adnAB in Streptomyces ambofaciens and Streptomyces coelicolor could not be achieved unless an ectopic copy was provided, indicating that adnAB is essential for growth. Both adnA and adnB genes were shown to be inducible in response to DNA damage (mitomycin C) and to be independently transcribed. Introduction of S. ambofaciens adnAB genes in an E. coli recB mutant restored viability and resistance to UV light, suggesting that Streptomyces AdnAB could be a functional homologue of RecBCD and be involved in DNA damage resistance. PMID:24837284

  5. Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces.

    Science.gov (United States)

    McDonald, Bradon R; Currie, Cameron R

    2017-06-06

    Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution. IMPORTANCE Tree-based phylogenetics and the use of species as units of diversity lie at the foundation of modern biology. In bacteria, these pillars of evolutionary theory have been called into question due to the observation of thousands of lateral gene transfer (LGT) events within and between lineages. Here, we show that acquisition and retention of genes through LGT are exceedingly rare in the bacterial genus Streptomyces , with merely one gene acquired in Streptomyces lineages every 100,000 years. These findings stand in contrast to the current assumption of rampant genetic exchange, which has become the dominant hypothesis used to explain bacterial diversity. Our results support a more nuanced understanding of genetic exchange, with LGT impacting evolution over short timescales but playing a significant role over long timescales. Deeper understanding of LGT provides new

  6. Streptopyrrole: An antimicrobial metabolite from Streptomyces armeniacus

    DEFF Research Database (Denmark)

    Breinholt, J.; Gürtler, Hanne; Kjær, Anders

    1998-01-01

    A colourless, crystalline metabolite, C14H12ClNO4, named streptopyrrole, has been isolated from submerged fermentation cultures of Streptomyces armeniacus by extraction, followed by chromatographic purification. Its tricyclic molecular framework, seemingly without natural product precedents. as w...

  7. Streptomyces pini sp. nov., an actinomycete isolated from phylloplane of pine (Pinus sylvestris L.) needle-like leaves.

    Science.gov (United States)

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Saravanan, Venkatakrishnan Sivaraj; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah; Pragatheswari, Dhandapani; Santhanakrishnan, Palani; Kim, Soo-Jin; Weon, Hang-Yeon; Kwon, Soon-Wo

    2016-10-01

    A novel siderophore-producing actinomycete, designated PL19T, was isolated from the Scots-pine needle-like leaves collected from TNAU campus, Coimbatore, India. The isolate was chemoorganotrophic in nutrition and able to grow at 30 °C, and the optimum pH and NaCl facilitated the growth pH 6-11 and 0-8 % (w/v), respectively. The cells are filamentous and the mycelia formed are basically of wide and intricately branched substrate mycelium from which aerial mycelia arises, later gets differentiated into spores that are warty and arranged spirally. The 16S rRNA gene of strain PL19T was sequenced and was highly similar to the type strains of species of the genus Streptomyces, including Streptomyces barkulensis RC1831T (98.8 % pairwise similarity), Streptomyces fenghuangensis GIMN4.003T (98.2 %), Streptomyces nanhaiensis SCSIO 01248T (98.0 %), Streptomyces radiopugnans R97T (97.9 %), Streptomyces atacamensis C60T (97.8 %) and Streptomyces macrosporus NBRC 14749T (97.2 %), all of which were subjected to taxonomical characterization using a polyphasic approach. The strains showed unique carbon utilization patterns, and it possesses iso-C16 : 0 anteiso-C15 : 0 and anteiso-C17 : 0 as a major cellular fatty acids. The cell-wall was dominated with ll-type diaminopimelic acid, and the menaquinone type was MK-9(H6, H8). These chemotaxonomic evidences placed strain PL19T within the genus Streptomyces. The determination of G+C ratio (69.5 mol%) and DNA-DNA hybridization values (13.4-31.8 % with the phylogenetically related species) helped in further hierarchical classification of strain PL19T. Based on morphological, physiological and chemotaxonomic data as well as DNA-DNA hybridization values, strain PL19T could be distinguished from the evolutionarily closest species currently available. All these collective data show that strain PL19T represents a novel species of the genus Streptomyces, for which the name Streptomyces pini sp. nov. is proposed

  8. Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris.

    Science.gov (United States)

    Li, Yi; Xu, Yanting; Zheng, Tianling; Wang, Hailei

    2017-09-01

    In this study, an actinomycete Streptomyces sp. hsn06 with the ability to harvest Chlorella vulgaris biomass was used to investigate the flocculation mechanism. Streptomyces sp. hsn06 exhibited flocculation activity on algal cells through mycelial pellets with adding calcium. Calcium was determined to promote flocculation activity of mycelial pellets as a bridge binding with mycelial pellets and algal cells, which implied that calcium bridging is the main flocculation mechanism for mycelial pellets. Characteristics of flocculation activity confirmed proteins in mycelial pellets involved in flocculation procedure. The morphology and structure of mycelial pellets also caused dramatic effects on flocculation activity of mycelial pellets. According to the results, Streptomyces sp. hsn06 can be used as a novel flocculating microbial resource for high-efficiency harvesting of microalgae biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A rational workflow for sequential virtual screening of chemical libraries on searching for new tyrosinase inhibitors.

    Science.gov (United States)

    Le-Thi-Thu, Huong; Casanola-Martín, Gerardo M; Marrero-Ponce, Yovani; Rescigno, Antonio; Abad, Concepcion; Khan, Mahmud Tareq Hassan

    2014-01-01

    The tyrosinase is a bifunctional, copper-containing enzyme widely distributed in the phylogenetic tree. This enzyme is involved in the production of melanin and some other pigments in humans, animals and plants, including skin pigmentations in mammals, and browning process in plants and vegetables. Therefore, enzyme inhibitors has been under the attention of the scientist community, due to its broad applications in food, cosmetic, agricultural and medicinal fields, to avoid the undesirable effects of abnormal melanin overproduction. However, the research of novel chemical with antityrosinase activity demands the use of more efficient tools to speed up the tyrosinase inhibitors discovery process. This chapter is focused in the different components of a predictive modeling workflow for the identification and prioritization of potential new compounds with activity against the tyrosinase enzyme. In this case, two structure chemical libraries Spectrum Collection and Drugbank are used in this attempt to combine different virtual screening data mining techniques, in a sequential manner helping to avoid the usually expensive and time consuming traditional methods. Some of the sequential steps summarize here comprise the use of drug-likeness filters, similarity searching, classification and potency QSAR multiclassifier systems, modeling molecular interactions systems, and similarity/diversity analysis. Finally, the methodologies showed here provide a rational workflow for virtual screening hit analysis and selection as a promissory drug discovery strategy for use in target identification phase.

  10. Synthesis of chiral pyrazolo[4,3-e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity.

    Science.gov (United States)

    Mojzych, Mariusz; Tarasiuk, Paweł; Kotwica-Mojzych, Katarzyna; Rafiq, Muhammad; Seo, Sung-Yum; Nicewicz, Michał; Fornal, Emilia

    2017-12-01

    A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC 50 0.037, 0.044 and 0.042 μM, respectively, while IC 50 of thiourea is 20.9 μM.

  11. Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products

    Science.gov (United States)

    Sarmiento-Vizcaíno, Aida; Espadas, Julia; Martín, Jesús; Braña, Alfredo F.; Reyes, Fernando; García, Luis A.; Blanco, Gloria

    2018-01-01

    A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyces species in the atmosphere able to

  12. Detection and properties of A-factor-binding protein from Streptomyces griseus

    International Nuclear Information System (INIS)

    Miyake, K.; Horinouchi, S.; Yoshida, M.; Chiba, N.; Mori, K.; Nogawa, N.; Morikawa, N.; Beppu, T.

    1989-01-01

    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The inducing material virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding 3 H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein

  13. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    International Nuclear Information System (INIS)

    Kondoh, H.; Mishima, Y.; Hiratsuka, J.; Iwakura, M.

    2000-01-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with 10 B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of 10 B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  14. Genome Content and Phylogenomics Reveal both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species

    Science.gov (United States)

    Huguet-Tapia, Jose C.; Lefebure, Tristan; Badger, Jonathan H.; Guan, Dongli; Stanhope, Michael J.

    2016-01-01

    Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer. PMID:26826232

  15. Phenols removal by immobilized tyrosinase reactor in on-line high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Girelli, Anna Maria [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy)]. E-mail: annamaria.girelli@uniroma1.it; Mattei, Enrico [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Messina, Antonella [Dipartimento di Chimica, Universita degli Studi di Roma ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy)

    2006-11-24

    The development of an immobilized enzyme reactor (IMER) based on tyrosinase immobilized on aminopropyl-controlled pore glass (AP-CPG) for the removal of phenols from model aqueous solutions was reported. To elucidate the influence of the substrate nature, the apparent (V{sup '}{sub max}, K{sup '}{sub m}) and the inherent (V{sub max}, K{sub m}) Michaelis-Menten constants were determined by Lineweaver-Burk method and the external diffusional contributions on measured enzyme activities were removed by a graphical method. The dephenolization process was realized by recycling the phenol solutions through the bioreactor connected to a chitosan trap in order to remove the colored quinone-type products of the tyrosinase reactions. The results indicated that a complete removal of phenol derivatives in the range of 150-300min, with the exception of 60% removal for phenol reached in 400min, was obtained. The observed sequence: cresol>4-methylcathecol>catechol>4-Cl-phenol-bar phenol was in accordance to the V{sup '}{sub max}/K{sup '}{sub m} values.

  16. Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants.

    Science.gov (United States)

    Gohain, Anwesha; Gogoi, Animesh; Debnath, Rajal; Yadav, Archana; Singh, Bhim P; Gupta, Vijai K; Sharma, Rajeev; Saikia, Ratul

    2015-10-01

    Endophytic actinomycetes are one of the primary groups that share symbiotic relationships with medicinal plants and are key reservoir of biologically active compounds. In this study, six selective medicinal plants were targeted for the first time for endophytic actinomycetes isolation from Gibbon Wild Life Sanctuary, Assam, India, during winter and summer and 76 isolates were obtained. The isolates were found to be prevalent in roots followed by stem and leaves. 16S rRNA gene sequence analysis revealed 16 genera, including rare genera, Verrucosispora, Isoptericola and Kytococcus, which have never been previously reported as endophytic. The genus Streptomyces (66%) was dominant in both seasons. Shannon's diversity index showed that Azadirachta indica (1.49), Rauwolfia serpentina (1.43) and Emblica officinalis (1.24) were relatively good habitat for endophytic actinomycetes. Antimicrobial strains showed prevalence of polyketide synthase (PKS) type-II (85%) followed by PKS type-I (14%) encoded in the genomes. Expression studies showed 12-fold upregulation of PKSII gene in seventh day of incubation for Streptomyces antibioticus (EAAG90). Our results emphasize that the actinomycetes assemblages within plant tissue exhibited biosynthetic systems encoding for important biologically active compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. The Level of AdpA Directly Affects Expression of Developmental Genes in Streptomyces coelicolor ▿ †

    OpenAIRE

    Wolański, Marcin; Donczew, Rafał; Kois-Ostrowska, Agnieszka; Masiewicz, Paweł; Jakimowicz, Dagmara; Zakrzewska-Czerwińska, Jolanta

    2011-01-01

    AdpA is a key regulator of morphological differentiation in Streptomyces. In contrast to Streptomyces griseus, relatively little is known about AdpA protein functions in Streptomyces coelicolor. Here, we report for the first time the translation accumulation profile of the S. coelicolor adpA (adpASc) gene; the level of S. coelicolor AdpA (AdpASc) increased, reaching a maximum in the early stage of aerial mycelium formation (after 36 h), and remained relatively stable for the next several hour...

  18. Growth Promotion and Disease Suppression Ability of a Streptomyces sp. CB-75 from Banana Rhizosphere Soil

    Science.gov (United States)

    Chen, Yufeng; Zhou, Dengbo; Qi, Dengfeng; Gao, Zhufen; Xie, Jianghui; Luo, Yanping

    2018-01-01

    An actinomycete strain, CB-75, was isolated from the soil of a diseased banana plantation in Hainan, China. Based on phenotypic and molecular characteristics, and 99.93% sequence similarity with Streptomyces spectabilis NBRC 13424 (AB184393), the strain was identified as Streptomyces sp. This strain exhibited broad-spectrum antifungal activity against 11 plant pathogenic fungi. Type I polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) were detected, which were indicative of the antifungal compounds that Streptomyces sp. CB-75 could produce. An ethyl acetate extract from the strain exhibited the lowest minimum inhibitory concentration (MIC) against Colletotrichum musae (ATCC 96167) (0.78 μg/ml) and yielded the highest antifungal activity against Colletotrichum gloeosporioides (ATCC 16330) (50.0 μg/ml). Also, spore germination was significantly inhibited by the crude extract. After treatment with the crude extract of Streptomyces sp. CB-75 at the concentration 2 × MIC, the pathogenic fungi showed deformation, shrinkage, collapse, and tortuosity when observed by scanning electron microscopy (SEM). By gas chromatography-mass spectrometry (GC-MS) of the crude extract, 18 chemical constituents were identified; (Z)-13-docosenamide was the major constituent. Pot experiments showed that the incidence of banana seedlings was reduced after using Streptomyces sp. CB-75 treatment. The disease index was 10.23, and the prevention and control effect was 83.12%. Furthermore, Streptomyces sp. CB-75 had a growth-promoting effect on banana plants. The chlorophyll content showed 88.24% improvement, the leaf area, root length, root diameter, plant height, and stem showed 88.24, 90.49, 136.17, 61.78, and 50.98% improvement, respectively, and the shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight showed 82.38, 72.01, 195.33, and 113.33% improvement, respectively, compared with treatment of fermentation broth without Streptomyces sp. CB-75

  19. The small laccase from Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan; Skálová, Tereza; Ostergaard, L. H.; Ostergaard, P. R.; Hašek, Jindřich

    2009-01-01

    Roč. 16, 1a (2009), b4-b5 ISSN 1211-5894. [Discussions in Structural Molecular Biology /7./. 12.03.2009-14.03.2009, Nové Hrady] R&D Projects: GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : laccase * Streptomyces coelicolor * enzymer Subject RIV: CD - Macromolecular Chemistry

  20. Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations.

    Science.gov (United States)

    Khordadpoor-Deilamani, Faravareh; Akbari, Mohammad Taghi; Karimipoor, Morteza; Javadi, Gholamreza

    2015-01-01

    Albinism is a heterogeneous genetic disorder of melanin synthesis that results in hypopigmented eyes (in patients with ocular albinism) or hair, skin, and eyes (in individuals with oculocutaneous albinism). It is associated with decreased visual acuity, nystagmus, strabismus, and photophobia. The tyrosinase gene is known to be involved in both oculocutaneous albinism and autosomal recessive ocular albinism. In this study, we aimed to screen the mutations in the TYR gene in the nonsyndromic OCA and autosomal recessive ocular albinism patients from Iran. The tyrosinase gene was examined in 23 unrelated patients with autosomal recessive ocular albinism or nonsyndromic OCA using DNA sequencing and bioinformatics analysis. TYR gene mutations were identified in 14 (app. 60%) albinism patients. We found 10 mutations, 3 of which were novel. No mutation was found in our ocular albinism patients, but one of them was heterozygous for the p.R402Q polymorphism.

  1. SIGNALS AND REGULATORS THAT GOVERN STREPTOMYCES DEVELOPMENT

    Science.gov (United States)

    McCormick, Joseph R.; Flärdh, Klas

    2012-01-01

    Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the Gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex, and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae, first to form specialized aerial hyphae, and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from “-omics” studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve. PMID:22092088

  2. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying

    2010-02-01

    Biofouling causes huge economic loss and a recent global ban on organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. Five structurally similar compounds were isolated from the crude extract of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared to probe structure-activity relationships of compounds. The functional moiety responsible for antifouling activity lies in the 2-furanone ring and that the lipophilicity of compounds substantially affects their antifouling activities. Based on these findings, a compound with a straight alkyl side-chain was synthesized and proved itself as a very effective non-toxic, anti-larval settlement agent against three major fouling organisms. The strong antifouling activity, relatively low toxicity, and simple structures of these compounds make them promising candidates for new antifouling additives. © 2009 Elsevier Ltd. All rights reserved.

  3. Novel piperonal 1,3,4-thiadiazolium-2-phenylamines mesoionic derivatives: Synthesis, tyrosinase inhibition evaluation and HSA binding study.

    Science.gov (United States)

    Lopes, Natália Drumond; Chaves, Otávio Augusto; de Oliveira, Márcia C C; Sant'Anna, Carlos Mauricio R; Sousa-Pereira, Danilo; Netto-Ferreira, José Carlos; Echevarria, Aurea

    2018-06-01

    A novel series of piperonal mesoionic derivatives (PMI 1-6) was synthesized. Tyrosinase inhibition in the presence of PMI-1, -2, -3, -4, -5 and -6 as well as human serum albumin (HSA) binding studies with PMI-5 and PMI-6 were done by spectroscopic and theoretical methods. The mesoionic compound PMI-5 is the most promising tyrosinase inhibitor with a noncompetitive inhibitory mechanism and an IC 50 =124μmolL -1 . In accordance with the kinetic profile, molecular docking results show that PMI-5 is able to interact favorably with the tyrosinase active site containing the substrate molecule, L-DOPA, interacting with Val-247, Phe-263 and Val-282 residues. The spectroscopic results for the interaction HSA:PMI-5 and HSA:PMI-6 indicated that these mesoionic compounds can associate with HSA in the ground state and energy transfer can occur with high probability. The binding was moderate, spontaneous and can perturb significantly the secondary structure of the albumin. The molecular docking results suggest that PMI-5 and PMI-6 are able to be accommodated inside the Sudlow's site I in HSA, interacting with hydrophobic and hydrophilic amino acid residues. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR FOR DETECTION OF PHENOLS: BINDER AND PRE-OXIDATION EFFECTS

    Science.gov (United States)

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil or paraffin wax oil yielded a greater response to phenol and catechol than those using the hi...

  5. Streptomyces luozhongensis sp. nov., a novel actinomycete with antifungal activity and antibacterial activity.

    Science.gov (United States)

    Zhang, Renwen; Han, Xiaoxue; Xia, Zhanfeng; Luo, Xiaoxia; Wan, Chuanxing; Zhang, Lili

    2017-02-01

    A novel actinomycete strain, designated TRM 49605 T , was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605 T to the genus Streptomyces. Strain TRM 49605 T shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815 T (98.62 %), Streptomyces flavovariabilis NRRL B-16367 T (98.45 %) and Streptomyces variegatus NRRL B-16380 T (98.45 %). Whole cell hydrolysates of strain TRM 49605 T were found to contain LL-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605 T were identified as iso C 16:0 , anteiso C 15:0 , C 16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H 4 ), MK-9(H 6 ), MK-9(H 8 ) and MK-10(H 6 ). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA-DNA relatedness between strain TRM 49605 T and the phylogenetically related strain S. roseolilacinus NBRC 12815 T was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605 T (=CCTCC AA2015026 T  = KCTC 39666 T ) should be designated as the type strain of a novel species of the genus

  6. Ketonization of Proline Residues in the Peptide Chains of Actinomycins by a 4-Oxoproline Synthase.

    Science.gov (United States)

    Semsary, Siamak; Crnovčić, Ivana; Driller, Ronja; Vater, Joachim; Loll, Bernhard; Keller, Ullrich

    2018-04-04

    X-type actinomycins (Acms) contain 4-hydroxyproline (Acm X 0 ) or 4-oxoproline (Acm X 2 ) in their β-pentapeptide lactone rings, whereas their α ring contains proline. We demonstrate that these Acms are formed through asymmetric condensation of Acm half molecules (Acm halves) containing proline with 4-hydroxyproline- or 4-oxoproline-containing Acm halves. In turn, we show-using an artificial Acm half analogue (PPL 1) with proline in its peptide chain-their conversion into the 4-hydroxyproline- and 4-oxoproline-containing Acm halves, PPL 0 and PPL 2, in mycelial suspensions of Streptomyces antibioticus. Two responsible genes of the Acm X biosynthetic gene cluster of S. antibioticus, saacmM and saacmN, encoding a cytochrome P450 monooxygenase (Cyp) and a ferredoxin were identified. After coexpression in Escherichia coli, their gene products converted PPL 1 into PPL 0 and PPL 2 in vivo as well as in situ in permeabilized cell of the transformed E. coli strain in conjunction with the host-encoded ferredoxin reductase in a NADH (NADPH)-dependent manner. saAcmM has high sequence similarity to the Cyp107Z (Ema) family of Cyps, which can convert avermectin B1 into its keto derivative, 4''-oxoavermectin B1. Determination of the structure of saAcmM reveals high similarity to the Ema structure but with significant differences in residues decorating their active sites, which defines saAcmM and its orthologues as a distinct new family of peptidylprolineketonizing Cyp. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Streptomyces xiangtanensis sp. nov., isolated from a manganese-contaminated soil.

    Science.gov (United States)

    Mo, Ping; Yu, Yi-Zun; Zhao, Jia-Rong; Gao, Jian

    2017-03-01

    An actinomycete strain, designated strain LUSFXJ T , was isolated from a soil sample obtained near the Xiangtan Manganese Mine, Central-South China and characterised using a polyphasic taxonomic approach. The 16S rRNA gene sequence-based phylogenetic analysis indicated that this strain belongs to the genus Streptomyces. The DNA-DNA relatedness between this strain and two closely related type strains, Streptomyces echinatus CGMCC 4.1642 T and Streptomyces lanatus CGMCC 4.137 T , were 28.7 ± 0.4 and 19.9 ± 2.0%, respectively, values which are far lower than the 70% threshold for the delineation of a novel prokaryotic species. The DNA G+C content of strain LUSFXJ T is 75.0 mol%. Chemotaxonomic analysis revealed that the menaquinones of strain LUSFXJ T are MK-9(H 6 ), MK-9(H 8 ), MK-9(H 2 ) and MK-8(H 8 ). The polar lipid profile of strain LUSFXJ T was found to contain diphosphatidylglycerol and an unidentified polar lipid. The major cellular fatty acids were identified as iso-C 15:0 , anteiso-C 15:0 , iso-C 16:0 , C 16:0 and Summed feature 3. Strain LUSFXJ T was found to contain meso-diaminopimelic acid as the diagnostic cell wall diamino acid and the whole cell hydrolysates were found to be rich in ribose, mannose and glucose. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, it is concluded that strain LUSFXJ T represents a novel species of the genus Streptomyces, for which the name S. xiangtanensis sp. nov. is proposed. The type strain is LUSFXJ T (=GDMCC 4.133 T  = KCTC 39829 T ).

  8. EFEKTIFITAS DAYA HAMBAT BAKTERI Streptomyces sp TERHADAP Erwinia sp PENYEBAB PENYAKIT BUSUK REBAH PADA TANAMAN LIDAH BUAYA (Aloe barbadensis Mill

    Directory of Open Access Journals (Sweden)

    SARMILA TASNIM

    2013-05-01

    Full Text Available Streptomyces sp was conducted from December 2010 - June 2011 at the Laboratoryof Microbiology, Biology Department, Math and Science Faculty, UdayanaUniversity Bukit Jimbaran-Bali. Implementation stages of the research consisted ofisolation and testing of the antibiotic activity Streptomyces sp to inhibit growthbacterial pathogens Erwinia sp as a cause of disease in plants fallen foul (Soft rot ofAloe barbadensis Mill.The results of this study have eight isolates of Streptomyces spwith macroscopic and microscopic characters are varied. Furthermore, all isolateswere obtained and then tested against antibiotic activity to inhibit growth the bacteriaErwinia sp. Test results obtained by Streptomyces sp that has the most effective ininhibiting the ability of the bacteria Erwinia sp isolates are Streptomyces sp2for (45%.

  9. Streptomyces sp. MC10 SUŞUNUN ALFA AMİLAZ ÜRETİM KABİLİYETİNİN BELİRLENMESİ - DETERMINATION OF ABILITY OF ALPHA AMYLASE PRODUCTION BY Streptomyces sp. MC10 STRAIN

    OpenAIRE

    ÖZDEMİR, Ali; SIDAL, Uğur

    2013-01-01

    Streptomyces sp. MC10 SUŞUNUN ALFA AMİLAZ ÜRETİM KABİLİYETİNİN BELİRLENMESİAmilazlar en önemli endüstriyel enzimlerden biridir. Amilaz üreticisi olan Streptomyces MC10 suşu Manisa Celal Bayar Üniversitesinden alınan toprak örneklerinden izole edilmiştir. Bu çalışmada Streptomyces MC10 suşundan α-amilaz üretimi ve karakterizasyonu gerçekleştirilmiştir. Bu amaçla suşun besiyerinde üremesi ve α-amilaz üretme yeteneği ve aktivite gösterdiği optimum sıcaklık, pH, inkübasyon süresi ve substrat kons...

  10. Enhanced production and application of acidothermophilic Streptomyces cellulase.

    Science.gov (United States)

    Budihal, Saikumar R; Agsar, Dayanand; Patil, Sarvamangala R

    2016-01-01

    An efficient cellulolytic and acidothermophilic actinobacterium was isolated from soil, adhered to decomposing tree bark and was identified as Streptomyces DSK59. Screening of synthetic media and the media components identified that, a medium based on starch casein minerals containing carboxy methyl cellulose (CMC) and beef extract (BE) could support enhanced cellulase production by the organism. CMC, BE, NaCl, temperature and pH were accounted as significant for cellulase production and these were optimized using a response surface central composite design (CCD). Optimization of cellulase production resulted in an enhancement of endoglucanase activity to 27IUml(-1). Acidothermophillic Streptomyces cellulase was found to be efficient for hydrolysis of pretreated sorghum stover and liberated 0.413gg(-1) of total reducing sugars which was higher than previously reported sugar yields obtained using fungal enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Streptomyces Somalinesiscausing Mycetomas in South India

    Directory of Open Access Journals (Sweden)

    V V Taralakshmi

    1982-01-01

    Full Text Available Biopsy specimens from 102 patients with mycetoma were examined histologically; Streptomyces somaliensis was found in 5 cases. The clinical features, radiology and histology of actinomycotic mycetoma due to S. somaliensis ar ′ e described. The geographic distribution of the organism, its incidence and prevalence in India and the importance of histological examination in the diagnosis of the infection are discussed.

  12. Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities

    Science.gov (United States)

    Nutrient use overlap among sympatric Streptomyces populations is correlated with pathogen inhibitory capacity, yet there is little information on either the factors that influence nutrient use overlap among coexisting populations or the diversity of nutrient use among soil Streptomyces. We examined ...

  13. Antioxidant activity and inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from ribose-histidine Maillard reaction products on aldose reductase and tyrosinase.

    Science.gov (United States)

    Hwang, Seung Hwan; Wang, Zhiqiang; Suh, Hong-Won; Lim, Soon Sung

    2018-03-01

    This study aimed to better understand the functional properties of ribose and 20 amino acid Maillard reaction products (MRPs). The ABTS + radical scavenging ability of the ribose-20 amino acid MRPs was evaluated. Among the MRPs, ribose-histidine MRPs (RH-MRPs) showed the highest inhibitory activities on the ABTS + radical scavenging ability, aldose reductase (AR), and tyrosinase compared to other MRPs. Functional compounds with antioxidant and AR inhibitory activities have been recognized as an important strategy in the prevention and treatment of diabetic complications, and the search for tyrosinase inhibitors is important for the treatment of hyperpigmentation, development of skin-whitening agents, and use as preservatives in the food industry. On this basis, we sought to isolate and identify compounds with inhibitory activities against AR and tyrosinase. RH-MRPs were heated at 120 °C for 2 h and fractionated using four solvents: methylene chloride (MC), ethyl acetate, n-butanol, and water. The highest inhibitions were found in the MC fraction. The two compounds from this fraction were purified by silica gel column and preparative thin layer chromatography, and identified as 2-hydroxy-3-methylcyclopent-2-enone and furan-3-carboxylic acid. AR inhibition, tyrosinase inhibition, and ABTS + scavenging (IC 50 ) of 2-hydroxy-3-methylcyclopent-2-enone were 4.47, 721.91 and 9.81 μg mL -1 , respectively. In this study, inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from RH-MRP were demonstrated on AR, tyrosinase, and its antioxidant activity for the first time. RH-MRP and its constituents can be developed as beneficial functional food sources and cosmetic materials and should be investigated further as potential functional food sources.

  14. Mining and polishing of the treasure trove in the bacterial genus streptomyces.

    Science.gov (United States)

    Horinouchi, Sueharu

    2007-02-01

    The complex morphogenesis of the bacterial genus Streptomyces has made this genus a model prokaryote for study of multicellular differentiation, and its ability to produce a wide variety of secondary metabolites has made it an excellent supplier of biologically active substances, including antibiotics. This review summarizes our study of these two characteristics of Streptomyces, focusing on the A-factor regulatory cascade and work derived from the A-factor study. A microbial hormone, A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), triggers morphological differentiation and secondary metabolism in Streptomyces griseus. The key steps in the A-factor regulatory cascade, including afsA, encoding the key enzyme for A-factor biosynthesis, arpA, encoding the A-factor receptor, and adpA, encoding a transcriptional activator, are elucidated. The target genes of the regulatory cascade include genes of various functions required for morphological development and secondary metabolite formation. The biosynthesis gene clusters for grixazone and hexahydroxyperylenequinone are examples. The former contains the enzymes for novel benzene ring formation and phenoxazinone formation, and the latter contains enzymes belonging to a type III polyketide synthase and a cytochrome P-450. Enzymes of various catalytic functions in Streptomyces are useful as members of an artificial gene cluster constructed in Escherichia coli for fermentative production of plant-specific flavonoids, including isoflavones and unnatural compounds.

  15. Streptomyces lasiicapitis sp. nov., an actinomycete that produces kanchanamycin, isolated from the head of an ant (Lasius fuliginosus L.).

    Science.gov (United States)

    Ye, Lan; Zhao, Shanshan; Li, Yao; Jiang, Shanwen; Zhao, Yue; Li, Jinmeng; Yan, Kai; Wang, Xiangjing; Xiang, Wensheng; Liu, Chongxi

    2017-05-01

    During a screening for novel and biotechnologically useful actinobacteria in insects, a kanchanamycin-producing actinomycete with antifungal activity, designated strain 3H-HV17(2)T, was isolated from the head of an ant (Lasius fuliginosus L.) and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain 3H-HV17(2)T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces spectabilis NBRC 13424T (98.90 %, with which it phylogenetically clustered, Streptomyces alboflavus NRRL B-2373T (98.65 %) and Streptomyces flavofungini NBRC 13371T (98.36 %). Phylogenetic analysis based on the gyrB gene also supported the close relationship of these strains. The morphological and chemotaxonomic properties of the strain are also consistent with those members of the genus Streptomyces. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 3H-HV17(2)T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that strain 3H-HV17(2)T could be distinguished from these strains. Therefore, strain 3H-HV17(2)T is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces lasiicapitis sp. nov. is proposed. The type strain is 3H-HV17(2)T (=CGMCC 4.7349T=DSM 103124T).

  16. Substrate-bound tyrosinase electrode using gold nanoparticles anchored to pyrroloquinoline quinone for a pesticide biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.Y.; Kang, M.S.; Shim, J.; Moon, S.H. [Gwangju Inst. of Science and Technology (Korea, Republic of). Dept. of Environmental Science and Engineering

    2008-07-01

    Enzyme electrodes are now being considered for use in the detection of pesticides. However, the electrodes do not have the sensitivity to detect low concentration pesticides, and external substrates are needed to measure changes in enzyme activity. This study discussed a chemical species designed to mimic a substrate in the preparation of a tyrosinase (TYR) electrode for use without substrate standard solutions. Pyrroloquinolone quinone (PQQ) was integrated within the tyrosinase electrode and used as an assimilated substrate for measuring the pesticide. Gold (Au) nanoparticles were also used to detect low concentration pesticides. The TYR was immobilized on the PQQ-anchored Au nanoparticles by a covalent bond. The tethered PQQ was then reduced by obtaining 2-electrons from the electrode. The study showed that the substrate-bound enzyme electrode can be used to detect pesticide without a substrate standard solution through the immobilization of the enzyme and the substrate on the Au nanoparticles.

  17. α-Glucosidase and tyrosinase inhibitory effects of an abietane type diterpenoid taxoquinone from Metasequoia glyptostroboides.

    Science.gov (United States)

    Bajpai, Vivek K; Park, Yong-Ha; Na, MinKyun; Kang, Sun Chul

    2015-03-26

    Nowadays plant derived natural compounds have gained huge amount of research attention especially in food and medicine industries due to their multitude of biological and therapeutic properties as alternative medicines. In this study, a diterpenoid compound taxoquinone, isolated from Metasequoia glyptostroboides was evaluated for its α-glucosidase and tyrosinase inhibitory efficacy in terms of its potent anti-diabetic and depigmentation potential, respectively. As a result, taxoquinone at the concentration range of 100-3,000 μg/mL and 200-1,000 μg/mL showed potent efficacy on inhibiting α-glucosidase and tyrosinase enzymes by 9.24-51.32% and 11.14-52.32%, respectively. The findings of this study clearly evident potent therapeutic efficacy of an abietane diterpenoid taxoquinone isolated from M. glyptostroboides with a possibility for using it as a novel candidate in food and medicine industry as a natural alternative medicine to prevent diabetes mellitus type-2 related disorders and as a depigmentation agent.

  18. Amide-transforming activity of Streptomyces: possible application to the formation of hydroxy amides and aminoalcohols.

    Science.gov (United States)

    Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji

    2013-07-01

    To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.

  19. Production and characterization of biosurfactant from marine Streptomyces species B3.

    Science.gov (United States)

    Khopade, Abhijit; Ren, Biao; Liu, Xiang-Yang; Mahadik, Kakasaheb; Zhang, Lixin; Kokare, Chandrakant

    2012-02-01

    The present study demonstrates the production and properties of a biosurfactant isolated from marine Streptomyces species B3. The production of the biosurfactant was found to be higher in medium containing sucrose and lower in the medium containing glycerol. Yeast extract was the best nitrogen source for the production of the biosurfactant. The isolated biosurfactant reduced the surface tension of water to 29 mN/m. The purified biosurfactant was shown critical micelle concentrations of 110 mg/l. The emulsifying activity and stability of the biosurfactant was investigated at different salinities, pH, and temperature. The biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and salt concentration. The purified biosurfactant was shown strong antimicrobial activity. The biosurfactant was produced from the marine Streptomyces sp. using non-hydrocarbon substrates such as sucrose that was readily available and not required extensive purification procedure. Streptomyces species B3 can be used for microbially enhanced oil recovery process. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.

    Science.gov (United States)

    Kwon, Ho Joon; Lee, Yunki; Phuong, Le Thi; Seon, Gyeung Mi; Kim, Eunsuk; Park, Jong Chul; Yoon, Hyunjin; Park, Ki Dong

    2017-10-01

    Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on

  1. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters

    DEFF Research Database (Denmark)

    Seghezzi, Nicolas; Amar, Patrick; Købmann, Brian

    2011-01-01

    Streptomyces are bacteria of industrial interest whose genome contains more than 73% of bases GC. In order to define, in these GC-rich bacteria, specific sequence features of strong promoters, a library of synthetic promoters of various sequence composition was constructed in Streptomyces. To do so...... cloned into the promoter-probe plasmid pIJ487 just upstream of the promoter-less aphII gene that confers resistance to neomycin. This synthetic promoter library was transformed into Streptomyces lividans, and the resulting transformants were screened for their ability to grow in the presence of different...... projects. Thirty-eight promoters were sequenced, and the sequences of the 14 weakest and 14 strongest promoters were compared using the WebLogo software with small sample correction. This comparison revealed that the −10 box, the −10 extended motif as well as the spacer of the strong Streptomyces promoters...

  2. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, H.; Mishima, Y. [Mishima Institute for Dermatological Research, Kobe, Hyogo (Japan); Hiratsuka, J. [Kawasaki Medical School, Dept. of Radiation Oncology, Kurashiki, Okayama (Japan); Iwakura, M. [Kobe Univ. (Japan). School of Medicine

    2000-10-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with {sup 10}B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of {sup 10}B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  3. Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp.MJM5763.

    Science.gov (United States)

    Palaniyandi, S A; Yang, S H; Cheng, J H; Meng, L; Suh, J-W

    2011-08-01

    To find a suitable biocontrol agent for yam anthracnose caused by Colletotrichum gloeosporioides. An actinobacterial strain, MJM5763, showing strong antifungal activity, multiple biocontrol and plant growth-promoting traits was isolated from a yam cultivation field in Yeoju, South Korea. Based on morphological and physiological characteristics and analysis of the 16S rDNA sequence, strain MJM5763 was identified as a novel strain of Streptomyces and was designated as Streptomyces sp. MJM5763. Treatment with MJM5763 and the crude culture filtrate extract (CCFE) was effective in suppressing anthracnose in detached yam leaves in vitro and reduced incidence and severity of anthracnose in yam plants under greenhouse conditions. The CCFE treatment was the most effective of all the treatments and reduced the anthracnose severity by 85-88% and the incidence by 79-81%, 90 days after inoculation with the pathogen. CCFE treatment was also effective under field conditions and showed a reduction of 86 and 75% of anthracnose severity and incidence, respectively. Streptomyces sp. strain MJM5763 was effective in biocontrolling anthracnose in yam caused by C. gloeosporioides. Streptomyces sp. MJM5763 is a potential alternative to chemical fungicides for reducing yield losses to anthracnose in yam. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  4. A novel gene: sawD related to the differentiation of streptomyces ansochromogenes.

    Science.gov (United States)

    Gang, L; Wei, C; Yuqing, T; Huarong, T; Chater, K F; Buttner, M J

    1999-01-01

    A 1.3 kb DNA fragment was cloned from a total DNA library of Streptomyces ansochromogenes using Southern hybridization. Nucleotide sequencing analysis indicated that the 1320 bp DNA fragment contained a complete open reading frame (ORF). In search of databases, the deduced product of ORF containing 213 amino acids is homologous to the serine protease of Caulobacter cresceatus, and a conserved serine-catalytic active site (GPSAG) exists. The gene was designated as sawD. The function of this gene was studied with the strategy of gene disruption, and the result showed that the sawD may be related to sporulation and especially to the spore septation in Streptomyces ansochromogenes. The preliminary result indicated that sawD mutant could produce abundant pigment in contrast with the wild type, it seems that sawD gene may be involved in pigment biosynthesis, and this gene is also dispensable for biosynthesis of nikkomycin in Streptomyces ansochromogenes.

  5. Streptomyces camponoticapitis sp. nov., an actinomycete isolated from the head of an ant (Camponotus japonicus Mayr).

    Science.gov (United States)

    Li, Yao; Ye, Lan; Wang, Xiangjing; Zhao, Junwei; Ma, Zhaoxu; Yan, Kai; Xiang, Wensheng; Liu, Chongxi

    2016-10-01

    A novel single-spore-producing actinomycete, designated strain 2H-TWYE14T, was isolated from the head of an ant (Camponotus japonicus Mayr) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain 2H-TWYE14T belongs to the genus Streptomyces, with highest sequence similarity to Streptomyces niveus NRRL 2466T (98.84 %). Analysis based on the gyrB gene also indicated that strain 2H-TWYE14T should be assigned to the genus Streptomyces. The chemotaxonomic properties of strain 2H-TWYE14T were consistent with those of members of the genus Streptomyces. The cell wall contained ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were iso-C16 : 0 and iso-C15 : 0. DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 2H-TWYE14T and its phylogenetically closely related strain S. niveus JCM 4251T, which further clarified their relatedness and demonstrated that 2H-TWYE14T could be distinguished from S. niveus. Therefore, it is concluded that strain 2H-TWYE14T can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces camponoticapitis sp. nov. is proposed. The type strain is 2H-TWYE14T (=DSM 100523T=CGMCC 4.7275T).

  6. Streptomyces kronopolitis sp. nov., an actinomycete that produces phoslactomycins isolated from a millipede (Kronopolites svenhedind Verhoeff).

    Science.gov (United States)

    Liu, Chongxi; Ye, Lan; Li, Yao; Jiang, Shanwen; Liu, Hui; Yan, Kai; Xiang, Wensheng; Wang, Xiangjing

    2016-12-01

    A phoslactomycin-producing actinomycete, designated strain NEAU-ML8T, was isolated from a millipede (Kronopolites svenhedind Verhoeff) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain NEAU-ML8T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces lydicus NBRC 13058T (99.39 %) and Streptomyces chattanoogensis DSM 40002T (99.25 %). The maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences showed that the isolate formed a distinct phyletic line with NBRC 13058T and S. chattanoogensis DSM 40002T. This branching pattern was also supported by the tree rconstructed with the neighbour-joining method. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain NEAU-ML8T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that NEAU-ML8T could be distinguished from NBRC 13058T and S. chattanoogensis DSM 40002T. Therefore, it is concluded that strain NEAU-ML8T can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces kronopolitis sp. nov. is proposed. The type strain is NEAU-ML8T (=DSM 101986T=CGMCC 4.7323T).

  7. Photometric Characterization of the Reductive Amination Scope of the Imine Reductases from Streptomyces tsukubaensis and Streptomyces ipomoeae.

    Science.gov (United States)

    Matzel, Philipp; Krautschick, Lukas; Höhne, Matthias

    2017-10-18

    Imine reductases (IREDs) have emerged as promising enzymes for the asymmetric synthesis of secondary and tertiary amines starting from carbonyl substrates. Screening the substrate specificity of the reductive amination reaction is usually performed by time-consuming GC analytics. We found two highly active IREDs in our enzyme collection, IR-20 from Streptomyces tsukubaensis and IR-Sip from Streptomyces ipomoeae, that allowed a comprehensive substrate screening with a photometric NADPH assay. We screened 39 carbonyl substrates combined with 17 amines as nucleophiles. Activity data from 663 combinations provided a clear picture about substrate specificity and capabilities in the reductive amination of these enzymes. Besides aliphatic aldehydes, the IREDs accepted various cyclic (C 4 -C 8 ) and acyclic ketones, preferentially with methylamine. IR-Sip also accepted a range of primary and secondary amines as nucleophiles. In biocatalytic reactions, IR-Sip converted (R)-3-methylcyclohexanone with dimethylamine or pyrrolidine with high diastereoselectivity (>94-96 % de). The nucleophile acceptor spectrum depended on the carbonyl substrate employed. The conversion of well-accepted substrates could also be detected if crude lysates were employed as the enzyme source. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Formation and dispersion of mycelial pellets of Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Kim, Yul-Min; Kim, Jae-heon

    2004-03-01

    The pellets from a culture of Streptomyces coelicolor A3(2) that were submerged shaken were disintegrated into numerous hyphal fragments by DNase treatment. The pellets were increasingly dispersed by hyaluronidase treatment, and mycelial fragments were easily detached from the pellets. The submerged mycelium grew by forming complexes with calcium phosphate precipitates or kaolin, a soil particle. Therefore, the pellet formation of Streptomyces coelicolor A3(2) can be considered a biofilm formation, including the participation of adhesive extracellular polymers and the insoluble substrates.

  9. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    Science.gov (United States)

    Challa, Anil K; Boitet, Evan R; Turner, Ashley N; Johnson, Larry W; Kennedy, Daniel; Downs, Ethan R; Hymel, Katherine M; Gross, Alecia K; Kesterson, Robert A

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene.

  10. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    Directory of Open Access Journals (Sweden)

    Anil K Challa

    Full Text Available Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr cause oculocutaneous albinism (OCA1 in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray and chandana (Sanskrit for sandalwood. These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene.

  11. C-terminus glycans with critical functional role in the maturation of secretory glycoproteins.

    Directory of Open Access Journals (Sweden)

    Daniela Cioaca

    Full Text Available The N-glycans of membrane glycoproteins are mainly exposed to the extracellular space. Human tyrosinase is a transmembrane glycoprotein with six or seven bulky N-glycans exposed towards the lumen of subcellular organelles. The central active site region of human tyrosinase is modeled here within less than 2.5 Å accuracy starting from Streptomyces castaneoglobisporus tyrosinase. The model accounts for the last five C-terminus glycosylation sites of which four are occupied and indicates that these cluster in two pairs--one in close vicinity to the active site and the other on the opposite side. We have analyzed and compared the roles of all tyrosinase N-glycans during tyrosinase processing with a special focus on the proximal to the active site N-glycans, s6:N337 and s7:N371, versus s3:N161 and s4:N230 which decorate the opposite side of the domain. To this end, we have constructed mutants of human tyrosinase in which its seven N-glycosylation sites were deleted. Ablation of the s6:N337 and s7:N371 sites arrests the post-translational productive folding process resulting in terminally misfolded mutants subjected to degradation through the mannosidase driven ERAD pathway. In contrast, single mutants of the other five N-glycans located either opposite to the active site or into the N-terminus Cys1 extension of tyrosinase are temperature-sensitive mutants and recover enzymatic activity at the permissive temperature of 31°C. Sites s3 and s4 display selective calreticulin binding properties. The C-terminus sites s7 and s6 are critical for the endoplasmic reticulum retention and intracellular disposal. Results herein suggest that individual N-glycan location is critical for the stability, regional folding control and secretion of human tyrosinase and explains some tyrosinase gene missense mutations associated with oculocutaneous albinism type I.

  12. Determination of optimal conditions of oxytetracyclin production from streptomyces rimosus; Optimisation de la production de l'oxytetracycline par Streptomyces rimosus

    Energy Technology Data Exchange (ETDEWEB)

    Zouaghi, Atef [Institut National des Sciences Appliquees et de Technologie (Tunisia)

    2007-07-01

    Streptomyces rimosus is an oxytetracycline (OTC) antibiotic producing bacteria that exhibited activities against gram positive and negative bacteria. OTC is used widely not only in medicine but also in production industry. The antibiotic production of streptomyces covers a very wide range of condition. However, antibiotic producers are particularly fastidious cultivated by proper selection of media such as carbon source. In present study we have optimised conditions of OTC production (Composition of production media, p H, shaking and temperature). The results have been shown that bran barley is the optimal media for OTC production at 28C pH5.8 at 150rpm for 5 days. For antibiotic determination, OTC was extracted with different organic solvent. Thin-layer chromatography system was used for separation and identification of OTC antibiotic. High performance liquid chromatographic (HPLC) method with ultraviolet detection for the analysis of OTC is applied to the determination of OTC purification. (Author). 24 refs.

  13. Antimicrobial activities of the Streptomyces ceolicolor strain AOB KF977550 isolated from a tropical estuary

    Directory of Open Access Journals (Sweden)

    Bamidele T. Odumosu

    2017-11-01

    Full Text Available The aim of this study was to screen for important antibiotic producing species of the genus Streptomyces from a tropical estuary. Five bacterial strains were isolated from the Lagos lagoon and identified by 16S rDNA gene sequencing as Streptomyces albogriseolus, S. aureus, S. coelicolor, S. albus, and S. pseudogriseolus. Ethyl acetate extracts of Streptomyces spp. fermented broths were evaluated against laboratory strains of MRSA Methicillin-resistant Staphyloccus aureus (MRSA 144 m, Bacillus coagulans UL001, and Escherichia coli as well as the standard strains Klebsiella pneumonia ATCC 8308, Gardnerella vaginalis ATCC 27853 and Salmonella typhi ATCC 13311 using the well diffusion method. The presence of secondary metabolites was determined and analysed using gas chromatography-mass spectrometry (GC-MS. A broad spectrum of activity was only observed for S. coelicolor on all of the tested bacteria except S. typhi, ant GC-MS analysis revealed the presence of 16 secondary metabolites with relevant antibiotic properties. The result of this study suggest that Lagos Lagoon is a potential source and reservoir of novel antibiotics. Keywords: Streptomyces, Antibiotics, Resistance, Secondary Metabolites

  14. Molecular docking studies of (1E,3E,5E)-1,6-Bis(substituted phenyl)hexa-1,3,5-triene and 1,4-Bis(substituted trans-styryl)benzene analogs as novel tyrosinase inhibitors.

    Science.gov (United States)

    Ha, Young Mi; Lee, Hye Jin; Park, Daeui; Jeong, Hyoung Oh; Park, Ji Young; Park, Yun Jung; Lee, Kyung Jin; Lee, Ji Yeon; Moon, Hyung Ryong; Chung, Hae Young

    2013-01-01

    We simulated the docking of the tertiary structure of mushroom tyrosinase with our compounds. From the structure-tyrosinase inhibitory activity relationship, it is notable that compounds 4, 8 and 11 showed similar or better activity rates than kojic acid which was used as a positive control. Compounds 17, 21, and 23 among benzene analogs that possess the same substituent showed significantly lower tyrosinase inhibitory effects. Therefore, we have confirmed that among the compounds showing better tyrosinase inhibitory effects than kojic acid, the compounds with triene analogs have better tyrosinase inhibitory effect than the compounds with benzene analogs. Docking simulation suggested the mechanism of compounds by several key residues which had possible hydrogen bonding interactions. The pharmacophore model underlined the features of active compounds, 4,4'-((1E,3E,5E)-hexa-1,3,5-triene-1,6-diyl)diphenol, 5,5'-((1E,3E,5E)-hexa-1,3,5-triene-1,6-diyl)bis(2-methoxy-phenol), and 5,5'-((1E,3E,5E)-hexa-1,3,5-triene-1,6-diyl)dibenzene-1,3-diol among triene derivatives which had several hydrogen bond groups on both terminal rings. The soundness of the docking results and the agreement with the pharmacophores suggest that it can be conveniently exploited to design inhibitors with an improved affinity for tyrosinase.

  15. Antibiotic Properties of the endophytic Streptomyces Spp. Isolated from the Leaves of Myanmar Medicinal Plants

    International Nuclear Information System (INIS)

    Aye Pe; Mar Mar Nyein; Win Maung

    2002-02-01

    Three medicinal plants of Myanmar are selected in the study of endophytic microorganisms and are taxonomically classified and identified to be Sa-ba-lin (Cymbopogon citratus Stapf.), Shazaungtinga- neah (Euphorbia splendens Bojer. ex Hooker) and Ma-shaw (Sauropus grandifolius Pax. and Hoffm.). The screening of endophytic microorganisms is performed according to the ISP method (International Streptomyces Projects 1993). The morphological and physicochemical properties of isolated strains are studied and identified to be the Genus Streptomyces. The test of apparent antimicrobial activity of isolated Streptomyces is done on 18 strains of pathogenic bacteria. It is found that the isolated endophytic Sireptomyces showed the significant antibacterial activity on most of the test organisms. (author)

  16. Manumycin from a new Streptomyces strain shows antagonistic ...

    African Journals Online (AJOL)

    Manumycin from a new Streptomyces strain shows antagonistic effect against methicillin-resistant Staphylococcus aureus (MRSA)/vancomycin-resistant enterococci (VRE) strains from Korean Hospitals. Yun Hee Choi, Seung Sik Cho, Jaya Ram Simkhada, Chi Nam Seong, Hyo Jeong Lee, Hong Seop Moon, Jin Cheol Yoo ...

  17. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites

    DEFF Research Database (Denmark)

    Hwang, Kyu-Sang; Kim, Hyun Uk; Charusanti, Pep

    2014-01-01

    Streptomyces species continue to attract attention as a source of novel medicinal compounds. Despite a long history of studies on these microorganisms, they still have many biochemical mysteries to be elucidated. Investigations of novel secondary metabolites and their biosynthetic gene clusters...... collected in the form of databases and knowledgebases, providing predictive information and enabling one to explore experimentally unrecognized biological spaces of secondary metabolism. Herein, we review recent trends in the systems biology and biotechnology of Streptomyces species....

  18. Systematics of Plant-Pathogenic and Related Streptomyces Species Based on Phylogenetic Analyses of Multiple Gene Loci

    Science.gov (United States)

    The 10 species of Streptomyces implicated as the etiological agents in scab disease of potatoes or soft rot disease of sweet potatoes are distributed among 7 different phylogenetic clades in analyses based on 16S rRNA gene sequences, but high sequence similarity of this gene among Streptomyces speci...

  19. Streptomyces humi sp. nov., an actinobacterium isolated from soil of a mangrove forest.

    Science.gov (United States)

    Zainal, Nurullhudda; Ser, Hooi-Leng; Yin, Wai-Fong; Tee, Kok-Keng; Lee, Learn-Han; Chan, Kok-Gan

    2016-03-01

    A novel Streptomyces strain, MUSC 119(T), was isolated from a soil collected from a mangrove forest. Cells of MUSC 119(T) stained Gram-positive and formed light brownish grey aerial mycelium and grayish yellowish brown substrate mycelium on ISP 2 medium. A polyphasic approach was used to determine the taxonomic status of strain MUSC 119(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The cell wall peptidoglycan consisted of LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The polar lipid profile consisted of phosphatidylinositol, phosphatidylethanolamine, glycolipids, diphosphatidylglycerol and four phospholipids. The predominant cellular fatty acids were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. The cell wall sugars were glucose, mannose, ribose and rhamnose. The phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain MUSC119(T) to be closely related to Streptomyces rhizophilus JR-41(T) (99.0 % sequence similarity), S. panaciradicis 1MR-8(T) (98.9 %), S. gramineus JR-43(T) (98.8 %) and S. graminisoli JR-19(T) (98.7 %). These results suggest that MUSC 119(T) should be placed within the genus Streptomyces. DNA-DNA relatedness values between MUSC 119(T) to closely related strains ranged from 14.5 ± 1.3 to 27.5 ± 0.7 %. The G+C content was determined to be 72.6 mol %. The polyphasic study of MUSC 119(T) showed that this strain represents a novel species, for which the name Streptomyces humi sp. nov. is proposed. The type strain of S. humi is MUSC 119(T) (=DSM 42174(T) = MCCC 1K00505(T)).

  20. A Single Streptomyces Symbiont Makes Multiple Antifungals to Support the Fungus Farming Ant Acromyrmex octospinosus

    Science.gov (United States)

    Seipke, Ryan F.; Barke, Jörg; Brearley, Charles; Hill, Lionel; Yu, Douglas W.; Goss, Rebecca J. M.; Hutchings, Matthew I.

    2011-01-01

    Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ∼30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds. PMID:21857911

  1. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus.

    Directory of Open Access Journals (Sweden)

    Ryan F Seipke

    Full Text Available Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ∼30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds.

  2. The Potency of White Rice (Oryza sativa), Black Rice (Oryza sativa L. indica), and Red Rice (Oryza nivara) as Antioxidant and Tyrosinase Inhibitor

    Science.gov (United States)

    Batubara, I.; Maharni, M.; Sadiah, S.

    2017-04-01

    Rice is known to have many beneficial biological activities and is often used as “bedak dingin”, a face powder. The content of vitamins, minerals, fiber, and several types of antioxidants, such as ferulic acid, phytic acid, tocopherol, and oryzanols [1-2] are predicted to be potential as a tyrosinase inhibitor. The purpose of this study is to determine the potency of extracts from there types of rice, namely white, red, and black rice as an antioxidant and tyrosinase inhibitor. The rice was extracted with three different solvents, n-hexane, ethyl acetate, and methanol. The results showed that the highest antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl method was found in the methanol extract of black rice (IC50 290 μg/mL). Meanwhile, ethyl acetate extract of white rice has the highest antioxidant activity withphosphomolybdic acid method (41 mmol α-tocopherol equivalents/g sample). Thus, methanol extract of black rice and ethyl acetate extract of white rice are potential as an antioxidant. For tyrosinase inhibitor, n-hexane extract of red rice (IC50 3156 μg/mL) was the most active extract. The active component for radical scavenging is polar compound and for antioxidant by phosphomolybdate method is less polar compounds in black rice methanol extract based on TLC bioautogram. In conclusion, the black rice is the most potent in antioxidant while red rice is for tyrosinase inhibition.

  3. Streptomyces halophytocola sp. nov., an endophytic actinomycete isolated from the surface-sterilized stems of a coastal halophyte Tamarix chinensis Lour.

    Science.gov (United States)

    Qin, Sheng; Bian, Guang-Kai; Tamura, Tomohiko; Zhang, Yue-Ji; Zhang, Wen-Di; Cao, Cheng-Liang; Jiang, Ji-Hong

    2013-08-01

    A novel actinomycete, designated KLBMP 1284(T), was isolated from the surface-sterilized stems of a coastal halophyte Tamarix chinensis Lour. collected from the city of Nantong, Jiangsu Province, east China. The strain was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Analysis of the 16S rRNA gene sequence of strain KLBMP 1284(T) revealed that the strain formed a distinct clade within the phylogenetic tree based on 16S rRNA gene sequences and the highest sequence similarity (99.43 %) was to Streptomyces sulphureus NRRL B-1627(T). 16S rRNA gene sequence similarity to other species of the genus Streptomyces was lower than 97 %. Based on DNA-DNA hybridization values and comparison of morphological and phenotypic data, KLBMP 1284(T) could be distinguished from the closest phylogenetically related species, Streptomyces sulphureus NRRL B-1627(T). Thus, based on these data, it is evident that strain KLBMP 1284(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces halophytocola sp. nov. is proposed. The type strain is KLBMP 1284(T) (= KCTC 19890(T) = NBRC 108770(T)).

  4. Variable antibiotic susceptibility patterns among Streptomyces species causing actinomycetoma in man and animals

    Directory of Open Access Journals (Sweden)

    Hamid Mohamed E

    2011-06-01

    Full Text Available Abstract Background Drug therapy is recommended in conjunction with surgery in treatment of actinomycetoma. The specific prescription depends on the type of bacteria (actinomycetoma or fungi (eumycetoma causing the disease and their in vitro antimicrobial susceptibility. Objectives To investigate the antimicrobial susceptibility among isolates of Streptomyces spp. isolated from cases of actinomycetoma in man and animals in Sudan. Methods Streptomyces strains (n = 18 isolated from cases of actinomycetoma were tested in vitro against 15 commonly prescribed antibacterial agents using MIC agar dilution method as per standard guidelines. Results Streptomyces strains isolated from actinomycetoma fall into various phenotypic groups. All of the strains were inhibited by novobiocin (8 μg/mL, gentamycin (8, 32 μg/mL and doxycycline (32 μg/mL. Fusidic acid (64 μg/mL inhibited 94.4% of the strains; bacitracin, streptomycin, cephaloridine, clindamycin, ampicillin, rifampicin and tetracycline (64 μg/mL inhibited between 61.1 and 77.8% of the strains. All strains were found resistant to amphotericin B (64 μg/mL, penicillin (20 μg/mL and sulphamethoxazole (64 μg/mL. Conclusions Saprophytic Streptomyces spp. cause actinomycetoma in man and animal belong to separate phenotypes and have a wide range of susceptibility patterns to antimicrobial agents, which pose a lot of difficulties in selecting effective in vivo treatment for actinomycetoma.

  5. Antagonistic activity of antibiotic producing Streptomyces sp. against fish and human pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Nazmul Hossain

    2014-04-01

    Full Text Available In this study, attempts were made to isolate Streptomyces sp. from soil samples of two different regions of Bangladesh and evaluate their antagonistic activity against fish and human pathogenic bacteria. A total of 10 isolates were identified as Streptomyces sp. based on several morphological, physiological and biochemical tests. Cross streak method was used to observe the antagonistic activity of the Streptomyces sp. isolates against different fish pathogens belonging to the genus Aeromonas, Pseudomonas and Edwardsiella and human clinical isolates belonging to the genus Klebsiella, Salmonella and Streptococcus. Seven Streptomyces sp. isolates showed antagonism against both fish and human pathogenic bacteria. Four isolates viz., N24, N26, N28 and N47 showed broad spectrum of antagonistic activity (80-100% against all genera of fish and human pathogenic bacteria. The isolate N49 exhibited highest spectrum of antagonism against all fish pathogens (90-100% but comparatively lower degree of antagonism against human pathogens (50-60%. Rest of the two isolates (N21 and N23 showed variability in their antagonism. Results showed that broad spectrum antibiotic(s could be developed from the isolates N24, N26, N28 and N47against several human and fish pathogens. The isolate N49 could be a potential source of antibiotic, especially for fish pathogenic bacteria.

  6. Isolation and characterization of stable mutants of Streptomyces

    Indian Academy of Sciences (India)

    Daunorubicin and its derivative doxorubicin are antitumour anthracycline antibiotics produced by Streptomyces peucetius. In this study we report isolation of stable mutants of S. peucetius blocked in different steps of the daunorubicin biosynthesis pathway. Mutants were screened on the basis of colony colour since producer ...

  7. Colonization of wild potato plants by Streptomyces scabies

    Science.gov (United States)

    The bacterial pathogen Streptomyces scabies produces lesions on potato tubers, reducing their marketability and profitability. M6 and 524-8 are two closely related inbred diploid lines of the wild potato species Solanum chacoense. After testing in both field and greenhouse assays, it was found that ...

  8. Waste to wealth: Production of oxytetracycline using streptomyces ...

    African Journals Online (AJOL)

    The production of oxytetracycline by Streptomyces speibonae OXS1 in solid-state fermentation from cocoyam peels (household kitchen wastes of agricultural produce) was investigated. The proximate analyses of peels of the two cocoyam species showed that Colocasia esculenta had higher protein (1.39%) and fibre ...

  9. VIABILITY AND ANTIMICROBIAL ACTIVITY OF STREPTOMYCES STRAINS FROM NCNM AFTER LYOPHILIZATION

    Directory of Open Access Journals (Sweden)

    Oleg CHISELIŢA

    2016-05-01

    Full Text Available The article deals with the aspects related to lyophilization of streptomycetes strains, preserved in the National Collection of Nonpathogenic Microorganisms (NCNM. Was determined that lyophilization do not significantly modify the antimicrobial activity of streptomycetes. Maximum viability of strains of genus Streptomyces (83,2-90,2% is ensured after lyophilization at initial titer by 9-11 log10UFC ml-1 in protective medium (gelatin 2,5% + glucose 7,5% by rehydra­tion with distillate water.VIABILITATEA ŞI ACTIVITATEA ANTIMICROBIANĂ A TULPINELOR DE STREPTOMYCES DIN CNMN DUPĂ LIOFILIZAREAcest articol prezintă aspecte legate de liofilizarea tulpinilor de streptomicete, depozitate în Colecţia Naţională de Microorganisme Nepatogene (CNMN. A fost stabilit că liofilizarea nu modifică esenţial activitatea antimicrobiană a streptomicetelor. Viabilitatea maximă a tulpinilor genului Streptomyces (83,2-90,2% este asigurată după liofilizarea la titrul iniţial 9-11 log10UFC ml-1 în mediu protectiv (gelatină 2,5% + glucosă 7,5% şi la rehidratarea cu apă distilată. 

  10. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase.

    Science.gov (United States)

    Gheibi, Nematollah; Taherkhani, Negar; Ahmadi, Abolfazl; Haghbeen, Kamahldin; Ilghari, Dariush

    2015-02-01

    Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki) of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50) were comparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities.

  11. Non-Essential Activation of Co"2"+ and Zn"2"+ on Mushroom Tyrosinase: Kinetic and Structural Stability

    International Nuclear Information System (INIS)

    Gheibi, N.; Sarreshtehdari, M.; Saboury, A. A.

    2011-01-01

    Tyrosinase is a widespread enzyme with great promising capabilities. The Lineweaver-Burk plots of the catecholase reactions showed that the kinetics of mushroom tyrosinase (MT), activated by Co"2"+ and Zn"2"+ at different pHs (6, 7, 8 and 9) obeyed the non-essential activation mode. The binding of metal ions to the enzyme increases the maximum velocity of the enzyme due to an increase in the enzyme catalytic constant (k_c_a_t). From the kinetic analysis, dissociation constants of the activator from the enzyme-metal ion complex (K_a) were obtained as 5 x 10"4 M"-"1 and 8.33 x 10"3 M"-"1 for Co"2"+ and Zn"2"+ at pH 9 and 6 respectively. The structural analysis of MT through circular dichroism (CD) and intensive fluorescence spectra revealed that the conformational stability of the enzyme in these pHs reaches its maximum value in the presence of each of the two metal ions

  12. Streptomyces asenjonii sp. nov., isolated from arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958

    Science.gov (United States)

    A polyphasic study was undertaken to establish the taxonomic status of Streptomyces strains isolated from arid Atacama Desert soils. Analysis of the 16S rRNA gene sequences of the isolates showed that they formed a well-defined lineage that was loosely associated with the type strains of several Str...

  13. Protoplasting impact on polyketide activity and characterization of the interspecific fusants from Streptomyces spp

    International Nuclear Information System (INIS)

    Slama, N.; Lazim, H.; Barkallah, Insaf; Abbassi, M.; Ben Hassen, A.; Limam, F.

    2009-01-01

    Streptomycetes are gram-positive, soil-inhabiting bacteria of the order Actinomycetales. These organisms exhibit an unusual, developmentally complex life cycle and produce many economically important secondary metabolites, such as antibiotics, immunosuppressants, insecticides, and antitumor agents. Streptomyces species have been the subject of genetic investigation for over 50 years, with many studies focusing on the production of bioactives compounds. The protoplast formation and regeneration are important processes, and they are a major step following genetic manipulations such as fusion and DNA-mediated transformation, which can improve antibiotic production. The protoplast fusion, transformation and improved fermentation features can be used to regenerate strains with increased antibiotic activity. Local Streptomyces spp. CN207 produce a broad range of secondary metabolites which is active against bacteria and fungi. This strain was used as a donor and S. coelicolor strain M145 was used as a recipient host for protoplast fusion. The protoplast fusion resulted in increased isolation of variants with higher antibiotic activity. Recombinant Streptomyces coelicolor PF04 was increased 10 times more than the wild strain. The antimicrobial activity from PF04 strain was studied using the disc method agar. TLC analysis confirmed that the Rf of cell extract for PF04 strain is identical to antimicrobial compound of Streptomyces CN207. Our results confirm the possibility of transferring antibiotics cluster genes by fusion. In fact, many of the selective markers such as Ticarcillin, Cefalotin, Oxacillin and Cefotaxim were transferred during the protoplast fusion. PFGE analysis and DNA-hybridization confirmed the presence of homologous fragments between a wild-type Streptomyces CN207 and a recombinant S. coelicolor PF04

  14. Isolation, Characterization and Bioactivities of an Extracellular Polysaccharide Produced from Streptomyces sp. MOE6

    Directory of Open Access Journals (Sweden)

    Marwa O. Elnahas

    2017-08-01

    Full Text Available A Streptomyces strain was isolated from soil and the sequence of 1471 nucleotides of its 16S rDNA showed 99% identity to Streptomyces sp. HV10. This newly isolated Streptomyces strain produced an extracellular polysaccharide (EPS composed mainly of glucose and mannose in a ratio of 1:4.1, as was characterized by Fourier transform infrared spectroscopy (FTIR, HPLC and 1H-NMR. The antioxidant activities of the partially purified MOE6-EPS were determined by measuring the hydroxyl free radical scavenging activity and the scavenging of 2,2-diphenyl-2-picryl-hydrazyl (DPPH radicals. In addition, the partially purified MOE6-EPS showed high ferrous ion (Fe2+ chelation activity which is another antioxidant activity. Interestingly, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays that were colorimetric assays for NAD(PH-dependent cellular oxidoreductases and a proxy of the number of viable cells, showed that the partially purified MOE6-EPS inhibited the proliferation of the human breast cancer cells (MDA-MB-231. The scratch wound assay showed that MOE6-EPS reduced the migration of mouse breast cancer cells (4T1. This study reports the production of EPS from Streptomyces species with promising antioxidant, metal chelating and mammalian cell inhibitory activities.

  15. Isolation, Characterization and Bioactivities of an Extracellular Polysaccharide Produced from Streptomyces sp. MOE6.

    Science.gov (United States)

    Elnahas, Marwa O; Amin, Magdy A; Hussein, Mohamed M D; Shanbhag, Vinit C; Ali, Amal E; Wall, Judy D

    2017-08-24

    A Streptomyces strain was isolated from soil and the sequence of 1471 nucleotides of its 16S rDNA showed 99% identity to Streptomyces sp. HV10. This newly isolated Streptomyces strain produced an extracellular polysaccharide (EPS) composed mainly of glucose and mannose in a ratio of 1:4.1, as was characterized by Fourier transform infrared spectroscopy (FTIR), HPLC and ¹H-NMR. The antioxidant activities of the partially purified MOE6-EPS were determined by measuring the hydroxyl free radical scavenging activity and the scavenging of 2,2-diphenyl-2-picryl-hydrazyl (DPPH) radicals. In addition, the partially purified MOE6-EPS showed high ferrous ion (Fe 2+ ) chelation activity which is another antioxidant activity. Interestingly, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays that were colorimetric assays for NAD(P)H-dependent cellular oxidoreductases and a proxy of the number of viable cells, showed that the partially purified MOE6-EPS inhibited the proliferation of the human breast cancer cells (MDA-MB-231). The scratch wound assay showed that MOE6-EPS reduced the migration of mouse breast cancer cells (4T1). This study reports the production of EPS from Streptomyces species with promising antioxidant, metal chelating and mammalian cell inhibitory activities.

  16. Expression of human papilloma virus type 16 E5 protein in amelanotic melanoma cells regulates endo-cellular pH and restores tyrosinase activity

    Directory of Open Access Journals (Sweden)

    Coccia Raffaella

    2009-01-01

    Full Text Available Abstract Background Melanin synthesis, the elective trait of melanocytes, is regulated by tyrosinase activity. In tyrosinase-positive amelanotic melanomas this rate limiting enzyme is inactive because of acidic endo-melanosomal pH. The E5 oncogene of the Human Papillomavirus Type 16 is a small transmembrane protein with a weak transforming activity and a role during the early steps of viral infections. E5 has been shown to interact with 16 kDa subunit C of the trans-membrane Vacuolar ATPase proton pump ultimately resulting in its functional suppressions. However, the cellular effects of such an interaction are still under debate. With this work we intended to explore whether the HPV16 E5 oncoprotein does indeed interact with the vacuolar ATPase proton pump once expressed in intact human cells and whether this interaction has functional consequences on cell metabolism and phenotype. Methods The expression of the HPV16-E5 oncoproteins was induced in two Tyrosinase-positive amelanotic melanomas (the cell lines FRM and M14 by a retroviral expression construct. Modulation of the intracellular pH was measured with Acridine orange and fluorescence microscopy. Expression of tyrosinase and its activity was followed by RT-PCR, Western Blot and enzyme assay. The anchorage-independence growth and the metabolic activity of E5 expressing cells were also monitored. Results We provide evidence that in the E5 expressing cells interaction between E5 and V-ATPase determines an increase of endo-cellular pH. The cellular alkalinisation in turn leads to the post-translational activation of tyrosinase, melanin synthesis and phenotype modulation. These effects are associated with an increased activation of tyrosine analogue anti-blastic drugs. Conclusion Once expressed within intact human cells the HPV16-E5 oncoprotein does actually interact with the vacuolar V-ATPase proton pump and this interaction induces a number of functional effects. In amelanotic melanomas these

  17. A non-polyene antifungal antibiotic from Streptomyces albidoflavus ...

    Indian Academy of Sciences (India)

    Out of these, 22% of the isolates exhibited activity against fungi. One promising strain, Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by ...

  18. Optimization of culture conditions of Streptomyces rochei (MTCC ...

    African Journals Online (AJOL)

    Fermentation and culture conditions were studied in shaken-flask culture to induce the production of greater amounts of antimicrobial metabolites by Streptomyces rochei (10109). Antimicrobial metabolite production started after 48 h incubation and reached its optimum level at 20% inoculum size at 120 h, at which point the ...

  19. A non-polyene antifungal antibiotic from Streptomyces albidoflavus ...

    Indian Academy of Sciences (India)

    Unknown

    One promising strain, Streptomyces albidoflavus PU 23 with strong anti- fungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by other molds and yeasts. The antibiotic was stable at different ...

  20. Localized hydroxylamine mutagenesis, and cotransduction of threonine and lysine genes, in Streptomyces venezuelae.

    Science.gov (United States)

    Stuttard, C

    1983-01-01

    A lysate of the generalized transducing phage SV1, grown on the prototrophic type strain 10712 of Streptomyces venezuelae, was mutagenized with hydroxylamine and used to transduce a lysineless auxotroph to lysine independence on supplemented minimal agar. A complex threonine mutant, strain VS95, was isolated from among the transductants and was shown to be carrying at least two different thr mutations. These were about 50% cotransducible with alleles of four independently isolated lysA mutations, as were two other independently isolated threonine mutations, thr-1 and hom-5. The location of thr genes close to lysA occurs in at least three other streptomycetes, but apparently not in Streptomyces coelicolor A3(2), in which the lysA and thr loci are at diametrically opposite locations on the linkage map. This first observation of cotransduction between loci governing the biosynthesis of different amino acids in the genus Streptomyces demonstrates the feasibility of fine-structure genetic analysis by transduction in these antibiotic-producing bacteria. PMID:6411685

  1. Combining molecular docking and QSAR studies for modeling the anti-tyrosinase activity of aromatic heterocycle thiosemicarbazone analogues

    Science.gov (United States)

    Dong, Huanhuan; Liu, Jing; Liu, Xiaoru; Yu, Yanying; Cao, Shuwen

    2018-01-01

    A collection of thirty-six aromatic heterocycle thiosemicarbazone analogues presented a broad span of anti-tyrosinase activities were designed and obtained. A robust and reliable two-dimensional quantitative structure-activity relationship model, as evidenced by the high q2 and r2 values (0.848 and 0.893, respectively), was gained based on the analogues to predict the quantitative chemical-biological relationship and the new modifier direction. Inhibitory activities of the compounds were found to greatly depend on molecular shape and orbital energy. Substituents brought out large ovality and high highest-occupied molecular orbital energy values helped to improve the activity of these analogues. The molecular docking results provided visual evidence for QSAR analysis and inhibition mechanism. Based on these, two novel tyrosinase inhibitors O04 and O05 with predicted IC50 of 0.5384 and 0.8752 nM were designed and suggested for further research.

  2. Determination of Antioxidant, Anticholinesterase, Tyrosinase Inhibitory Activities and Fatty Acid Profiles of 10 Anatolian Klasea Cass. Species

    Directory of Open Access Journals (Sweden)

    Gülsen Tel

    2016-01-01

    Full Text Available In search of new natural fatty acid sources, extract of 10 different Turkish Klasea species were studies. Fatty acids of Klasea species were studied by GC and GC-MSD. Oleic acid (4.8-45.8%, palmitic acid (15.6-51.8%, linoleic acid (0.3-45.5%, palmitoleic acid (0.8-28.4% and linolenic acid (15.6-34.6% were the main fatty acids elucidated. All extracts were also subjected to acetylcholinesterase, butyrylcholinesterase, tyrosinase, β-carotene-linoleic acid, DPPH • scavenging, CUPRAC and ferrous ion-chelating ability activities. Total flavonoid and phenolic contents were determined as quercetin and pyrocatechol equivalents. All extracts showed significant antioxidant activity in all tests, except hexane extracts of K. serratuloides and K. cerinthifolia that showed weak inhibition against BChE and AChE. The hexane extract of K. coriaceae and methanol extract of K. serratuloides exhibited notable tyrosinase inhibitory activity.

  3. Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties

    OpenAIRE

    Houssam M. Atta

    2015-01-01

    Tunicamycin is a nucleotide antibiotic which was isolated from the fermentation broth of a Streptomyces strain No. T-4. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain T-4 was identified as Streptomyces torulosus. It is active in vitro against some microbial pathogenic viz: Staphylococcus aureus, NCTC 7447; Micrococcus lutea, ATCC 9341; Bacillus subtilis, NCTC 10400; B. pumilus, NCTC; Klebsiella pneumonia, NCIMB 9...

  4. Development and application of a T7 RNA polymerase-dependent expression system for antibiotic production improvement in Streptomyces.

    Science.gov (United States)

    Wei, Junhong; Tian, Jinjin; Pan, Guoqing; Xie, Jie; Bao, Jialing; Zhou, Zeyang

    2017-06-01

    To develop a reliable and easy to use expression system for antibiotic production improvement of Streptomyces. A two-compound T7 RNA polymerase-dependent gene expression system was developed to fulfill this demand. In this system, the T7 RNA polymerase coding sequence was optimized based on the codon usage of Streptomyces coelicolor. To evaluate the functionality of this system, we constructed an activator gene overexpression strain for enhancement of actinorhodin production. By overexpression of the positive regulator actII-ORF4 with this system, the maximum actinorhodin yield of engineered strain was 15-fold higher and the fermentation time was decreased by 48 h. The modified two-compound T7 expression system improves both antibiotic production and accelerates the fermentation process in Streptomyces. This provides a general and useful strategy for strain improvement of important antibiotic producing Streptomyces strains.

  5. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation.

    Science.gov (United States)

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo

    2014-05-01

    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Streptomyces cameroonensis sp. nov., a Geldanamycin Producer That Promotes Theobroma cacao Growth.

    Science.gov (United States)

    Boudjeko, Thaddée; Tchinda, Romaric Armel Mouafo; Zitouni, Mina; Nana, Joëlle Aimée Vera Tchatchou; Lerat, Sylvain; Beaulieu, Carole

    2017-03-31

    The taxonomy of an actinobacterial strain, designated JJY4 T , was established using a polyphasic approach. JJY4 T was isolated from the rhizosphere of Chromolaena odorata in Yaoundé (Cameroon) during a project for the selection of biological control agents. Strain JJY4 T exhibited antimicrobial activities against bacteria, fungi, and oomycetes. Strain JJY4 T also exhibited the traits of plant growth-promoting rhizobacteria such as the solubilization of inorganic phosphate, production of siderophores and indole-3-acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase activity. In planta assays performed on cocoa plantlets confirmed that strain JJY4 T exhibited strong abilities to promote plant growth and protect against Phytophthora megakarya, the main causal agent of cocoa pod rot. The formation of rugose-ornamented spores in spiral spore chains by strain JJY4 T is a typical feature of members found in the Streptomyces violaceusniger clade and, similar to some members of the clade, strain JJY4 T produces geldanamycin. A phylogenetic analysis based on 16S rRNA gene sequences confirmed this classification and suggests that strain JJY4 T be added to the subclade constituted of the type strains Streptomyces malaysiensis DSM 41697 T and Streptomyces samsunensis DSM 42010 T . However, DNA-DNA relatedness and physiological characteristics allowed for the differentiation of strain JJY4 T from its closest phylogenetic relatives. Based on these results, strain JJY4 T (=NRRL B-65369, =NBRC 112705) appears to represent a novel species in the S. violaceusniger clade for which the proposed name is Streptomyces cameroonensis sp. nov.

  7. Dual inhibition of γ-oryzanol on cellular melanogenesis: inhibition of tyrosinase activity and reduction of melanogenic gene expression by a protein kinase A-dependent mechanism.

    Science.gov (United States)

    Jun, Hee-jin; Lee, Ji Hae; Cho, Bo-Ram; Seo, Woo-Duck; Kang, Hang-Won; Kim, Dong-Woo; Cho, Kang-Jin; Lee, Sung-Joon

    2012-10-26

    The in vitro effects on melanogenesis of γ-oryzanol (1), a rice bran-derived phytosterol, were investigated. The melanin content in B16F1 cells was significantly and dose-dependently reduced (-13% and -28% at 3 and 30 μM, respectively). Tyrosinase enzyme activity was inhibited by 1 both in a cell-free assay and when analyzed based on the measurement of cellular tyrosinase activity. Transcriptome analysis was performed to investigate the biological pathways altered by 1, and it was found that gene expression involving protein kinase A (PKA) signaling was markedly altered. Subsequent analyses revealed that 1 stimulation in B16 cells reduced cytosolic cAMP concentrations, PKA activity (-13% for cAMP levels and -40% for PKA activity), and phosphorylation of the cAMP-response element binding protein (-57%), which, in turn, downregulated the expression of microphthalmia-associated transcription factor (MITF; -59% for mRNA and -64% for protein), a key melanogenic gene transcription factor. Accordingly, tyrosinase-related protein 1 (TRP-1; -69% for mRNA and -82% for protein) and dopachrome tautomerase (-51% for mRNA and -92% for protein) in 1-stimulated B16F1 cells were also downregulated. These results suggest that 1 has dual inhibitory activities for cellular melanogenesis by inhibiting tyrosinase enzyme activity and reducing MITF and target genes in the PKA-dependent pathway.

  8. Decoding options and accuracy of translation of developmentally regulated UUA codon in Streptomyces: bioinformatic analysis.

    Science.gov (United States)

    Rokytskyy, Ihor; Koshla, Oksana; Fedorenko, Victor; Ostash, Bohdan

    2016-01-01

    The gene bldA for leucyl [Formula: see text] is known for almost 30 years as a key regulator of morphogenesis and secondary metabolism in genus Streptomyces. Codon UUA is the rarest one in Streptomyces genomes and is present exclusively in genes with auxiliary functions. Delayed accumulation of translation-competent [Formula: see text] is believed to confine the expression of UUA-containing transcripts to stationary phase. Implicit to the regulatory function of UUA codon is the assumption about high accuracy of its translation, e.g. the latter should not occur in the absence of cognate [Formula: see text]. However, a growing body of facts points to the possibility of mistranslation of UUA-containing transcripts in the bldA-deficient mutants. It is not known what type of near-cognate tRNA(s) may decode UUA in the absence of cognate tRNA in Streptomyces, and whether UUA possesses certain inherent properties (such as increased/decreased accuracy of decoding) that would favor its use for regulatory purposes. Here we took bioinformatic approach to address these questions. We catalogued the entire complement of tRNA genes from several relevant Streptomyces and identified genes for posttranscriptional modifications of tRNA that might be involved in UUA decoding by cognate and near-cognate tRNAs. Based on tRNA gene content in Streptomyces genomes, we propose possible scenarios of UUA codon mistranslation. UUA is not associated with an increased rate of missense errors as compared to other leucyl codons, contrasting general belief that low-abundant codons are more error-prone than the high-abundant ones.

  9. The anti-browning agent sulfite inactivates Agaricus bisporus tyrosinase through covalent modification of the copper-B site

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Gruppen, H.; Sforza, S.; Berkel, van W.J.H.; Vincken, J.P.

    2013-01-01

    Sulfite salts are widely used as antibrowning agents in food processing. Nevertheless, the exact mechanism by which sulfite prevents enzymatic browning has remained unknown. Here, we show that sodium hydrogen sulfite (NaHSO3 ) irreversibly blocks the active site of tyrosinase from the edible

  10. Streptomyces zhihengii sp. nov., isolated from rhizospheric soil of Psammosilene tunicoides.

    Science.gov (United States)

    Huang, Mei-Juan; Fei, Jing-Jing; Salam, Nimaichand; Kim, Chang-Jin; Hozzein, Wael N; Xiao, Min; Huang, Hai-Quan; Li, Wen-Jun

    2016-10-01

    An actinomycete strain, designated YIM T102(T), was isolated from the rhizospheric soil of Psammosilene tunicoides W. C. Wu et C. Y. Wu collected from Lijiang, Yunnan Province, China. The taxonomic position of the new isolate was investigated by a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YIM T102(T) belongs to the genus Streptomyces. Strain YIM T102(T) was most closely related to Streptomyces eurocidicus NRRL B-1676(T) with a pairwise 16S rRNA gene sequence similarity of 98.9 %. However, DNA-DNA relatedness value between strain YIM T102(T) and S. eurocidicus NBRC 13491(T) was found to be 37.8 ± 1.8 %. The menaquinone composition detected for strain YIM T102(T) was MK-9 (H6) and MK-9 (H8), while the major fatty acids were summed feature 4 (38.0 %), anteiso-C15:0 (13.1 %), iso-C16:0 (10.1 %), summed feature 3 (9.8 %) and C16:0 (9.0 %) and iso-C15:0 (5.2 %). The whole-cell hydrolysates contained galactose, glucose, ribose and mannose, along with LL-diaminopimelic acid as the diagnostic diamino acid in the peptidoglycan. The DNA G+C content was 70.7 mol%. Strain YIM T102(T) also exhibited antagonistic activity against Alternaria alternata, Alternaria brassicae and Colletotrichum nicotianae Averna, based on the findings from the comparative analyses of phenotypic and genotypic characteristics; it is proposed that strain YIM T102 represents a novel species of the genus Streptomyces, for which the name Streptomyces zhihengii sp. nov. is proposed. The type strain is YIM T102(T) (=KCTC 39115(T) = DSM 42176(T) = CGMCC 4.7248(T)).

  11. Anti–elastase, anti–tyrosinase and matrix metalloproteinase–1 inhibitory activity of earthworm extracts as potential new anti–aging agent

    Directory of Open Access Journals (Sweden)

    Nurhazirah Azmi

    2014-05-01

    Conclusions: Earthworms extract showed effective inhibition of tyrosinase, elastase and MMP-1 activities. Therefore, this experiment further rationalizes the traditional use of this worm extracts which may be useful as an anti-wrinkle agent.

  12. Isolation and molecular identification chitinase-producing Streptomyces strains and examination of their in-vitro antagonistic effects

    Directory of Open Access Journals (Sweden)

    Alireza Dehnad

    2015-12-01

    Full Text Available Introduction: The chemical fungicides are used widely in the world. To reduce the application of synthetic fungicides in treating plant diseases, biological methods are considered as an alternative way to control plant diseases. Many actinomycetes, particularly Streptomyces species are biological agents against a broad spectrum of fungal plant pathogens. The purpose of this study was using the kitinolitik actinomycetes isolated from soil of Eastern Azerbaijan province In order to produce biological pesticides. Materials and methods: Soil samples were taken from different areas of Eastern Azerbaijan province. According to Streptomyces morphological features, single colonies were isolated. To identify the bacteria by molecular characteristic, the genomic DNA was extracted and then the sequences of 16S rDNA were replicated. By using specific primers the bacterial isolates containing chitinase gene were screened. The isolates consisted Chitinase enzyme and were antagonistically cultured with Alternaria genus which is a fungal plant pathogen. Results: Out of 60 soil collected samples, 31 Streptomyces bacterial isolates were separated. Four isolates showed positive results to selectivity action of the chitinase enzyme. Treatment of 3 bacterial isolates with 2 pathogenic fungi showed that AE09 is the most effective anti-fungal isolates. Discussion and conclusion: Soils in Eastern Azerbaijan province are rich of Streptomyces bacteria which generate antifungal compounds. Obtaining the Streptomyces bacteria which have chitinase gene, can lead to identification of very effective strains as anti-fungal.

  13. Enhancement of clavulanic acid production by Streptomyces sp MU ...

    African Journals Online (AJOL)

    1Chemistry of Natural and Microbial Products Dept., Pharmaceutical Industries Div., National Research Centre, 33 EL ... enzymes produced by many pathogenic bacteria, ... produced by the actinomycete Streptomyces ... enzymes, hence avoiding loss of the beta-lactam ...... strain will explore the economic outcome of.

  14. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase

    Directory of Open Access Journals (Sweden)

    Nematollah Gheibi

    2015-02-01

    Full Text Available Objective(s:Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. Materials and Methods: In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Results: Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Conclusion: Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50 werecomparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities.

  15. Enzymology of lignocellulose bioconversion by Streptomyces viridosporus

    International Nuclear Information System (INIS)

    Ramachandra, M.

    1989-01-01

    Significant progress has been made in lignin biodegradation research since 1983, when lignin peroxidases were discovered in fungi. A similar breakthrough in bacterial lignin biodegradation research is anticipated. Several laboratories have successfully demonstrated the ability of bacteria to mineralize [ 14 C]-lignin lignocelluloses as well as 14 C-labelled synthetic lignins. Attempts are being made to identify the key enzymes involved. In this dissertation, two studies are presented which address the enzymology of lignin biodegradation by Streptomyces viridosporus. The first study compares selected extracellular enzyme of wild-type and genetically manipulated strains with enhanced abilities to produced a water soluble lignin degradation intermediate, designated acid-precipitable polymeric lignin (APPL). UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10 had higher and longer persisting peroxidase, esterase, and endoglucanase activity than did the wild type strain T7A. An extracellular lignocellulose-induced peroxidase with some similarities to fungal ligninases was described for the first time in Streptomyces. The second study describes purification and characterization of an extracellular lignin peroxidase produced by S. viridosporus T7A. This is the first report of a lignin peroxidase in any bacterium

  16. Molecular Regulation of Antibiotic Biosynthesis in Streptomyces

    Science.gov (United States)

    Liu, Gang; Chandra, Govind; Niu, Guoqing

    2013-01-01

    SUMMARY Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes. PMID:23471619

  17. Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea.

    Science.gov (United States)

    Salla, Tamiris D; Astarita, Leandro V; Santarém, Eliane R

    2016-04-01

    Elicitation of E. grandis plants with Streptomyces PM9 reduced the gray-mold disease, through increasing the levels of enzymes directly related to the induction of plant defense responses, and accumulation of specific phenolic compounds. Members of Eucalyptus are economically important woody species, especially as a raw material in many industrial sectors. Species of this genus are susceptible to pathogens such as Botrytis cinerea (gray mold). Biological control of plant diseases using rhizobacteria is one alternative to reduce the use of pesticides and pathogen attack. This study evaluated the metabolic and phenotypic responses of Eucalyptus grandis and E. globulus plants treated with Streptomyces sp. PM9 and challenged with the pathogenic fungus B. cinerea. Metabolic responses were evaluated by assessing the activities of the enzymes polyphenol oxidase and peroxidase as well as the levels of phenolic compounds and flavonoids. The incidence and progression of the fungal disease in PM9-treated plants and challenged with B. cinerea were evaluated. Treatment with Streptomyces sp. PM9 and challenge with B. cinerea led to changes in the activities of polyphenol oxidase and peroxidase as well as in the levels of phenolic compounds in the plants at different time points. Alterations in enzymes of PM9-treated plants were related to early defense responses in E. grandis. Gallic and chlorogenic acids were on average more abundant, although caffeic acid, benzoic acid and catechin were induced at specific time points during the culture period. Treatment with Streptomyces sp. PM9 significantly delayed the establishment of gray mold in E. grandis plants. These results demonstrate the action of Streptomyces sp. PM9 in inducing plant responses against B. cinerea, making this organism a potential candidate for biological control in Eucalyptus.

  18. Development of an antibiotic marker-free platform for heterologous protein production in Streptomyces.

    Science.gov (United States)

    Sevillano, Laura; Díaz, Margarita; Santamaría, Ramón I

    2017-09-26

    The industrial use of enzymes produced by microorganisms is continuously growing due to the need for sustainable solutions. Nevertheless, many of the plasmids used for recombinant production of proteins in bacteria are based on the use of antibiotic resistance genes as selection markers. The safety concerns and legal requirements surrounding the increased use of antibiotic resistance genes have made the development of new antibiotic-free approaches essential. In this work, a system completely free of antibiotic resistance genes and useful for the production of high yields of proteins in Streptomyces is described. This system is based on the separation of the two components of the yefM/yoeBsl (antitoxin/toxin) operon; the toxin (yoeBsl) gene, responsible for host death, is integrated into the genome and the antitoxin gene (yefMsl), which inactivates the toxin, is located in the expression plasmid. To develop this system, the toxin gene was integrated into the genome of a strain lacking the complete operon, and the antibiotic resistance gene integrated along with the toxin was eliminated by Cre recombinase to generate a final host strain free of any antibiotic resistance marker. In the same way, the antibiotic resistance gene from the final expression plasmid was removed by Dre recombinase. The usefulness of this system was analysed by checking the production of two hydrolases from different Streptomyces. Production of both proteins, with potential industrial use, was high and stable over time after strain storage and after serial subcultures. These results support the robustness and stability of the positive selection system developed. The total absence of antibiotic resistance genes makes this system a powerful tool for using Streptomyces as a host to produce proteins at the industrial level. This work is the first Streptomyces antibiotic marker-free system to be described. Graphical abstract Antibiotic marker-free platform for protein expression in Streptomyces

  19. Targeted Gene Disruption of the Cyclo (L-Phe, L-Pro Biosynthetic Pathway in Streptomyces sp. US24 Strain

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2007-01-01

    Full Text Available We have previously isolated a new actinomycete strain from Tunisian soil called Streptomyces sp. US24, and have shown that it produces two bioactive molecules including a Cyclo (L-Phe, L-Pro diketopiperazine (DKP. To identify the structural genes responsible for the synthesis of this DKP derivative, a PCR amplification (696 bp was carried out using the Streptomyces sp. US24 genomic DNA as template and two degenerate oligonucleotides designed by analogy with genes encoding peptide synthetases (NRPS. The detection of DKP derivative biosynthetic pathway of the Streptomyces sp. US24 strain was then achieved by gene disruption via homologous recombination using a suicide vector derived from the conjugative plasmid pSET152 and containing the PCR product. Chromatography analysis, biological tests and spectroscopic studies of supernatant cultures of the wild-type Streptomyces sp. US24 strain and three mutants obtained by this gene targeting disruption approach showed that the amplified DNA fragment is required for Cyclo (L-Phe, L-Pro biosynthesis in Streptomyces sp. US24 strain. This DKP derivative seems to be produced either directly via a nonribosomal pathway or as a side product in the course of nonribosomal synthesis of a longer peptide.

  20. Extracellular carbohydrate metabolites from Streptomyces coelicolor A3(2)

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Stanislav; Sedmera, Petr; Halada, Petr; Petříček, Miroslav

    2007-01-01

    Roč. 70, - (2007), s. 768-771 ISSN 0163-3864 R&D Projects: GA ČR GA310/03/0285 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces coelicolor * cultivation * spectroscopic Subject RIV: EE - Microbiology, Virology Impact factor: 2.551, year: 2007

  1. Genome plasticity and systems evolution in Streptomyces

    Science.gov (United States)

    2012-01-01

    Background Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the producers of a great variety of natural products such as antibiotics, antifungals, antiparasitics, and anticancer agents and the decomposers of organic substances for carbon recycling. They are also model organisms for the studies of gene regulatory networks, morphological differentiation, and stress response. The availability of sets of genomes from closely related Streptomyces strains makes it possible to assess the mechanisms underlying genome plasticity and systems adaptation. Results We present the results of a comprehensive analysis of the genomes of five Streptomyces species with distinct phenotypes. These streptomycetes have a pan-genome comprised of 17,362 orthologous families which includes 3,096 components in the core genome, 5,066 components in the dispensable genome, and 9,200 components that are uniquely present in only one species. The core genome makes up about 33%-45% of each genome repertoire. It contains important genes for Streptomyces biology including those involved in gene regulation, secretion, secondary metabolism and morphological differentiation. Abundant duplicate genes have been identified, with 4%-11% of the whole genomes composed of lineage-specific expansions (LSEs), suggesting that frequent gene duplication or lateral gene transfer events play a role in shaping the genome diversification within this genus. Two patterns of expansion, single gene expansion and chromosome block expansion are observed, representing different scales of duplication. Conclusions Our results provide a catalog of genome components and their potential functional roles in gene regulatory networks and metabolic networks. The core genome components reveal the minimum requirement for streptomycetes to sustain a successful lifecycle in the soil environment, reflecting the effects of both genome evolution and environmental stress acting upon the expressed phenotypes. A

  2. Utilization of carbon and nitrogen sources by Streptomyces ...

    African Journals Online (AJOL)

    We tested a number of carbon and nitrogen compounds for their effect on the production of an antibacterial antibiotic by Streptomyces kananmyceticus M27. Dextrose was found to be the most suitable carbon source, though maltose, sucrose, and soluble starch gave moderate yields. (NH4)H2PO4 and yeast extract were ...

  3. StreptomycesInforSys: A web-enabled information repository.

    Science.gov (United States)

    Jain, Chakresh Kumar; Gupta, Vidhi; Gupta, Ashvarya; Gupta, Sanjay; Wadhwa, Gulshan; Sharma, Sanjeev Kumar; Sarethy, Indira P

    2012-01-01

    Members of Streptomyces produce 70% of natural bioactive products. There is considerable amount of information available based on polyphasic approach for classification of Streptomyces. However, this information based on phenotypic, genotypic and bioactive component production profiles is crucial for pharmacological screening programmes. This is scattered across various journals, books and other resources, many of which are not freely accessible. The designed database incorporates polyphasic typing information using combinations of search options to aid in efficient screening of new isolates. This will help in the preliminary categorization of appropriate groups. It is a free relational database compatible with existing operating systems. A cross platform technology with XAMPP Web server has been used to develop, manage, and facilitate the user query effectively with database support. Employment of PHP, a platform-independent scripting language, embedded in HTML and the database management software MySQL will facilitate dynamic information storage and retrieval. The user-friendly, open and flexible freeware (PHP, MySQL and Apache) is foreseen to reduce running and maintenance cost. www.sis.biowaves.org.

  4. Growth of desferrioxamine-deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations.

    Science.gov (United States)

    Arias, Anthony Argüelles; Lambert, Stéphany; Martinet, Loïc; Adam, Delphine; Tenconi, Elodie; Hayette, Marie-Pierre; Ongena, Marc; Rigali, Sébastien

    2015-07-01

    Due to the necessity of iron for housekeeping functions, nutrition, morphogenesis and secondary metabolite production, siderophore piracy could be a key strategy in soil and substrate colonization by microorganisms. Here we report that mutants of bacterium Streptomyces coelicolor unable to produce desferrioxamine siderophores could recover growth when the plates were contaminated by indoor air spores of a Penicillium species and Engyodontium album. UPLC-ESI-MS analysis revealed that the HPLC fractions with the extracellular 'resuscitation' factors of the Penicillium isolate were only those that contained siderophores, i.e. Fe-dimerum acid, ferrichrome, fusarinine C and coprogen. The restored growth of the Streptomyces mutants devoid of desferrioxamine is most likely mediated through xenosiderophore uptake as the cultivability depends on the gene encoding the ABC-transporter-associated DesE siderophore-binding protein. That a filamentous fungus allows the growth of desferrioxamine non-producing Streptomyces in cocultures confirms that xenosiderophore piracy plays a vital role in nutritional interactions between these taxonomically unrelated filamentous microorganisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Biochemical studies on antibiotic production from Streptomyces sp.: Taxonomy, fermentation, isolation and biological properties

    Directory of Open Access Journals (Sweden)

    Houssam M. Atta

    2015-01-01

    Full Text Available Tunicamycin is a nucleotide antibiotic which was isolated from the fermentation broth of a Streptomyces strain No. T-4. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain T-4 was identified as Streptomyces torulosus. It is active in vitro against some microbial pathogenic viz: Staphylococcus aureus, NCTC 7447; Micrococcus lutea, ATCC 9341; Bacillus subtilis, NCTC 10400; B. pumilus, NCTC; Klebsiella pneumonia, NCIMB 9111; Escherichia coli, NCTC 10416; Pseudomonas aeruginosa, ATCC 10145; Saccharomyces cerevisiae ATCC 9763; Candida albicans, IMRU 3669; Aspergillus flavus, IMI 111023; Aspergillus niger IMI 31276; Aspergillus fumigatus ATCC 16424; Fusarium oxysporum; Rhizoctonia solani; Alternaria alternata; Botrytis fabae and Penicillium chrysogenium. The production media were optimized for maximum yield of secondary metabolites. The metabolites were extracted using n-butanol (1:1, v/v at pH 7.0. The chemical structural analysis with UV, IR, and MS spectral analyses confirmed that the compound produced by Streptomyces torulosus, T-4 is tunicamycin antibiotic.

  6. Genome Sequence of the Bacterium Streptomyces davawensis JCM 4913 and Heterologous Production of the Unique Antibiotic Roseoflavin

    Science.gov (United States)

    Jankowitsch, Frank; Schwarz, Julia; Rückert, Christian; Gust, Bertolt; Szczepanowski, Rafael; Blom, Jochen; Pelzer, Stefan; Kalinowski, Jörn

    2012-01-01

    Streptomyces davawensis JCM 4913 synthesizes the antibiotic roseoflavin, a structural riboflavin (vitamin B2) analog. Here, we report the 9,466,619-bp linear chromosome of S. davawensis JCM 4913 and a 89,331-bp linear plasmid. The sequence has an average G+C content of 70.58% and contains six rRNA operons (16S-23S-5S) and 69 tRNA genes. The 8,616 predicted protein-coding sequences include 32 clusters coding for secondary metabolites, several of which are unique to S. davawensis. The chromosome contains long terminal inverted repeats of 33,255 bp each and atypical telomeres. Sequence analysis with regard to riboflavin biosynthesis revealed three different patterns of gene organization in Streptomyces species. Heterologous expression of a set of genes present on a subgenomic fragment of S. davawensis resulted in the production of roseoflavin by the host Streptomyces coelicolor M1152. Phylogenetic analysis revealed that S. davawensis is a close relative of Streptomyces cinnabarinus, and much to our surprise, we found that the latter bacterium is a roseoflavin producer as well. PMID:23043000

  7. [Antibacterial activity of rare Streptomyces species against clinical resistant bacteria].

    Science.gov (United States)

    Boughachiche, Faiza; Reghioua, Sihem; Zerizer, Habiba; Boulahrouf, Abderrahmane

    2012-01-01

    In the search for new antibiotics from Steptomyces, investigating extremes habitats enhances the probability of isolating novel producers. In this context, the antibacterial activity of four Streptomyces strains isolated from Ezzmoul saltpans was studied. Two of them showed antibacterial activity against antibiotic's resistant bacteria (Bacillus cereus: β-lactamines and sulfamides resistant, Streptococcus faecalis: penicillin, tetracycline and cotrimoxazole resistant, and Staphylococcus aureus Mu 50: vancomycine resistant). The most active Streptomyces strain produces one type of polar bioactive molecules that resists to temperature variation and light exposition. Its activity appears in the first culture day and reaches its maximal value in the fourth day. The second strain presents themoresistant activity that reaches its maximal value in the first culture day. It produces two types of bioactive molecules, one is polar and the second is non polar (according to thin layer chromatography technique results).

  8. Diversity of Two-Domain Laccase-Like Multicopper Oxidase Genes in Streptomyces spp.: Identification of Genes Potentially Involved in Extracellular Activities and Lignocellulose Degradation during Composting of Agricultural Waste

    Science.gov (United States)

    Lu, Lunhui; Zhang, Jiachao; Chen, Anwei; Chen, Ming; Jiang, Min; Yuan, Yujie; Wu, Haipeng; Lai, Mingyong; He, Yibin

    2014-01-01

    Traditional three-domain fungal and bacterial laccases have been extensively studied for their significance in various biotechnological applications. Growing molecular evidence points to a wide occurrence of more recently recognized two-domain laccase-like multicopper oxidase (LMCO) genes in Streptomyces spp. However, the current knowledge about their ecological role and distribution in natural or artificial ecosystems is insufficient. The aim of this study was to investigate the diversity and composition of Streptomyces two-domain LMCO genes in agricultural waste composting, which will contribute to the understanding of the ecological function of Streptomyces two-domain LMCOs with potential extracellular activity and ligninolytic capacity. A new specific PCR primer pair was designed to target the two conserved copper binding regions of Streptomyces two-domain LMCO genes. The obtained sequences mainly clustered with Streptomyces coelicolor, Streptomyces violaceusniger, and Streptomyces griseus. Gene libraries retrieved from six composting samples revealed high diversity and a rapid succession of Streptomyces two-domain LMCO genes during composting. The obtained sequence types cluster in 8 distinct clades, most of which are homologous with Streptomyces two-domain LMCO genes, but the sequences of clades III and VIII do not match with any reference sequence of known streptomycetes. Both lignocellulose degradation rates and phenol oxidase activity at pH 8.0 in the composting process were found to be positively associated with the abundance of Streptomyces two-domain LMCO genes. These observations provide important clues that Streptomyces two-domain LMCOs are potentially involved in bacterial extracellular phenol oxidase activities and lignocellulose breakdown during agricultural waste composting. PMID:24657870

  9. Characterization of Streptomyces strain SLO-105 isolated from Lake ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... produce a vivid yellow pigment on most media except on the ISP5. The morphological and cultural characteristics of the isolate were compared with known Actinomycetes species described in Bergey's manual of systematic bacteriology and they suggested that SLO-105 strain belong to Streptomyces ...

  10. Managing scab diseases of potato and radish caused by Streptomyces spp. using Bacillus amyloliquefaciens BAC03 and other biomaterials

    Science.gov (United States)

    Streptomyces spp. cause scab disease in plants like potato and radish. To seek effective control methods of this disease, biologically based materials were examined on their efficacies for disease control. In greenhouse or growth chamber tests, potting soil was infested with Streptomyces scabies (10...

  11. Streptomyces caldifontis sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan.

    Science.gov (United States)

    Amin, Arshia; Ahmed, Iftikhar; Khalid, Nauman; Osman, Ghenijan; Khan, Inam Ullah; Xiao, Min; Li, Wen-Jun

    2017-01-01

    A Gram-staining positive, non-motile, rod-shaped, catalase positive and oxidase negative bacterium, designated NCCP-1331 T , was isolated from a hot water spring soil collected from Tatta Pani, Kotli, Azad Jammu and Kashmir, Pakistan. The isolate grew at a temperature range of 18-40 °C (optimum 30 °C), pH 6.0-9.0 (optimum 7.0) and with 0-6 % NaCl (optimum 2 % NaCl (w/v)). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain NCCP-1331 T belonged to the genus Streptomyces and is closely related to Streptomyces brevispora BK160 T with 97.9 % nucleotide similarity, followed by Streptomyces drosdowiczii NRRL B-24297 T with 97.8 % nucleotide similarity. The DNA-DNA relatedness values of strain NCCP-1331 T with S. brevispora KACC 21093 T and S. drosdowiczii CBMAI 0498 T were 42.7 and 34.7 %, respectively. LL-DAP was detected as diagnostic amino acid along with alanine, glycine, leucine and glutamic acid. The isolate contained MK-9(H 8 ) as the predominant menaquinone. Major polar lipids detected in NCCP-1331 T were phosphatidylethanolamine, phosphatidylinositol and unidentified phospholipids. Major fatty acids were iso-C 16: 0 , summed feature 8 (18:1 ω7c/18:1 ω6c), anteiso-C 15:0 and C 16:0 . The genomic DNA G + C content was 69.8 mol %. On the basis of phylogenetic, phenotypic and chemotaxonomic analysis, it is concluded that strain NCCP-1331 T represents a novel species of the genus Streptomyces, for which the name Streptomyces caldifontis sp. nov. is proposed. The type strain is NCCP-1331 T (=KCTC 39537 T  = CPCC 204147 T ).

  12. Streptomyces capparidis sp. nov., a novel endophytic actinobacterium isolated from fruits of Capparis spinosa L.

    Science.gov (United States)

    Wang, Hong-Fei; Li, Qiu-Li; Xiao, Min; Zhang, Yong-Guang; Zhou, Xing-Kui; Narsing Rao, Manik Prabhu; Duan, Yan-Qing; Li, Wen-Jun

    2017-01-01

    A novel endophytic actinobacterial strain, designated EGI 6500195T, was isolated from fruits of Capparis spinosa. Growth occurred at 10-45 °C (optimum 30 °C), at pH 6-8 (optimum pH 7) and in the presence of 0-1 % (w/v) NaCl. Strain EGI 6500195T shared highest 16S rRNA gene sequence similarity (97.74 %) with Streptomyces vitaminophilus DSM 41686T and less than 97 % sequence similarity with other members of the genus Streptomyces. The diagnostic amino acid in the peptidoglycan was ll-diaminopimelic acid. Whole-cell hydrolysates contained glucose, ribose, fructose and mannose. The predominant menaquinones were MK-9(H6) and MK-9(H8). The polar lipid profile of strain EGI 6500195T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylinositol, phosphatidylcholine, three unknown phospholipids, an unknown aminophospholipid and an unknown aminolipid. The cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0, iso-C16 : 0, anteiso-C17 : 1ω9c, summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B) and iso-C17 : 1ω9c. The DNA G+C content of strain EGI 6500195T was 74.1 mol%. The level of DNA-DNA relatedness between strain EGI 6500195T and Streptomyces. vitaminophilus DSM 41686T was 14.1±3.5 %. On the basis of the phenotypic, phylogenetic, chemotaxonomic and DNA-DNA hybridization data, strain EGI 6500195T represents a novel species of the genus Streptomyces, for which the name Streptomyces capparidis sp. nov. is proposed. The type strain is EGI 6500195T (=DSM 42145T=JCM 30089T).

  13. Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity.

    Science.gov (United States)

    Hamm, Paris S; Caimi, Nicole A; Northup, Diana E; Valdez, Ernest W; Buecher, Debbie C; Dunlap, Christopher A; Labeda, David P; Lueschow, Shiloh; Porras-Alfaro, Andrea

    2017-03-01

    At least two-thirds of commercial antibiotics today are derived from Actinobacteria , more specifically from the genus Streptomyces Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans , which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans , with 32 (88.9%) actinobacteria belonging to the genus Streptomyces Isolates in the genera Rhodococcus , Streptosporangium , Luteipulveratus , and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans , the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds. Copyright © 2017 American Society for Microbiology.

  14. Expression by Streptomyces lividans of the Rat α Integrin CD11b A-Domain as a Secreted and Soluble Recombinant Protein

    Directory of Open Access Journals (Sweden)

    Dorra Zouari Ayadi

    2007-01-01

    Full Text Available We already reported the use of a long synthetic signal peptide (LSSP to secrete the Streptomyces sp. TO1 amylase by Streptomyces lividans strain. We herein report the expression and secretion of the rat CD11b A-domain using the same LSSP and S. lividans as host strain. We have used the Escherichia coli/Streptomyces shuttle vector pIJ699 for the cloning of the A-domain DNA sequence downstream of LSSP and under the control of the constitutive ermE-up promoter of Streptomyces erythraeus. Using this construct and S. lividans as a host strain, we achieved the expression of 8 mg/L of soluble secreted recombinant form of the A-domain of the rat leukocyte β2 integrin CD11/CD18 alpha M subunit (CD11b. This secreted recombinant CD11b A-domain reacted with a function blocking antibody showing that this protein is properly folded and probably functional. These data support the capability of Streptomyces to produce heterologous recombinant proteins as soluble secreted form using the “LSSP” synthetic signal peptide.

  15. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    Science.gov (United States)

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  16. Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov.

    Directory of Open Access Journals (Sweden)

    Hooi-Leng eSer

    2015-08-01

    Full Text Available A novel Streptomyces, strain MUSC 149T was isolated from mangrove soil. A polyphasic approach was used to study the taxonomy of MUSC 149T, which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was LL-diaminopimelic acid. The predominant menaquinones were identified as MK9(H8 and MK9(H6. Phylogenetic analysis indicated that closely related strains include Streptomyces rhizophilus NBRC 108885T (99.2 % sequence similarity, Streptomyces gramineus NBRC 107863T (98.7 % and Streptomyces graminisoli NBRC 108883T (98.5 %. The DNA–DNA relatedness values between MUSC 149T and closely related type strains ranged from 12.4 ± 3.3 % to 27.3 ± 1.9 %. The DNA G + C content was determined to be 72.7 mol%. The extract of MUSC 149T exhibited strong antioxidant activity and chemical analysis reported identification of an antioxidant agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-. These data showed that metabolites of MUSC 149T shall be useful as preventive agent against free-radical associated diseases. Based on the polyphasic study of MUSC 149T, the strain merits assignment to a novel species, for which the name Streptomyces mangrovisoli sp. nov. is proposed. The type strain is MUSC 149T (= MCCC 1K00699T = DSM 100438T.

  17. OCA1 in different ethnic groups of india is primarily due to founder mutations in the tyrosinase gene.

    NARCIS (Netherlands)

    Chaki, M.; Sengupta, M.S.; Mukhopadhyay, A.; Subba Rao, I.; Majumder, P.P.; Das, M.; Samanta, S.; Ray, K.

    2006-01-01

    Oculocutaneous albinism (OCA) is a heterogeneous group of autosomal recessive disorders characterized by an abnormally low amount of melanin in the eyes, skin and hair, and associated with common developmental abnormalities of the eye. Defects in the tyrosinase gene (TYR) cause a common type of OCA,

  18. Obtaining mutants of Streptomyces griseoflavus strain 1339, producers of glucose isomerase, following gamma irradiation

    International Nuclear Information System (INIS)

    Dzhedzheva, G.; Stoeva, N.; Stojchev, M.

    1990-01-01

    A water suspension of Streptomyces griseoflavus strain 1339 spores of a density of 8.7.10 6 spores/cm 3 is gamma irradiated ( 60 Co, RHM-γ-20, 30.3 Gy/min). The survival of Streptomyces griseoflavus strain 1339 spores was determined depending on radiation doses, exposure times and incubation temperature. Five major morphological types of colonies were isolated, characterized by different levels of glucose isomerase activity. Maximum specific glucose isomerase activity (GIU/g) was attained after the third gamma irradiation step using a dose of 3000 Gy. 2 tabs., 3 figs., 7 refs

  19. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters.

    Science.gov (United States)

    Martínková, Ludmila; Chmátal, Martin

    2016-10-01

    The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    Science.gov (United States)

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Production of high fructose corn syrup Streptomyces sp

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, M; Prabhu, K A

    1978-01-01

    A Streptomyces strain exhibiting considerable glucose isomerase activity was isolated from soil. The cell free extract of the culture was able to convert glucose to fructose in a period of 48 ha and gave 40% conversion. With acid hydrolyzates of corn and bagasse as substrates, the cell-free extract gave glucose to fructose conversions of 39.8 and 29%, respectively.

  2. Streptomyces amphotericinicus sp. nov., an amphotericin-producing actinomycete isolated from the head of an ant (Camponotus japonicus Mayr).

    Science.gov (United States)

    Cao, Tingting; Mu, Shan; Lu, Chang; Zhao, Shanshan; Li, Dongmei; Yan, Kai; Xiang, Wensheng; Liu, Chongxi

    2017-12-01

    A novel actinomycete, designated strain 1H-SSA8 T , was isolated from the head of an ant (Camponotus japonicus Mayr) and was found to produce amphotericin. A polyphasic approach was employed to determine the status of strain 1H-SSA8 T . Morphological and chemotaxonomic characteristics were consistent with those of members of the genus Streptomyces. The menaquinones detected were MK-9(H6), MK-9(H8) and MK-9(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and phosphatidylinositol mannoside. The major fatty acids were identified as iso-C16 : 0, C16 : 0, C15 : 0 and anteiso-C15 : 0. Analysis of the 16S rRNA gene sequence showed that strain 1H-SSA8 T belongs to the genus Streptomyces with high sequence similarity to Streptomyces ramulosus NRRL B-2714 T (99.2 %). Two tree-making algorithms based on 16S rRNA gene sequences showed that the isolate formed a phyletic line with Streptomyces himastatinicus ATCC 53653 T (98.7 %). The MLSA utilizing partial sequences of the housekeeping genes (atpD, gyrB, recA, rpoB and trpB) also supported the position. However, evolutionary distances were higher than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. Moreover, the low level of DNA-DNA relatedness and phenotypic differences allowed the novel isolate to be differentiated from its most closely related strain S. ramulosus NRRL B-2714 T and strain S. himastatinicus ATCC 53653 T . It is concluded that the organism can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces amphotericinicus sp. nov. is proposed. The type strain is 1H-SSA8 T (=CGMCC 4.7350 T =DSM 103128 T ).

  3. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences

    Science.gov (United States)

    Chandra, Govind; Chater, Keith F

    2014-01-01

    To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes. PMID:24164321

  4. Field efficacy of nonpathogenic Streptomyces species against potato common scab

    Science.gov (United States)

    Reports of potato fields suppressive to common scab (CS) and of association of non-pathogenic streptomycetes with CS resistance suggest that non-pathogenic strains have potential to control or modulate CS disease. Biocontrol potential of non-pathogenic Streptomyces was examined in field experiments ...

  5. Genome Mining of the Marine Actinomycete Streptomyces sp. DUT11 and Discovery of Tunicamycins as Anti-complement Agents

    Directory of Open Access Journals (Sweden)

    Xiao-Na Xu

    2018-06-01

    Full Text Available Marine actinobacteria are potential producers of various secondary metabolites with diverse bioactivities. Among various bioactive compounds, anti-complement agents have received great interest for drug discovery to treat numerous diseases caused by inappropriate activation of the human complement system. However, marine streptomycetes producing anti-complement agents are still poorly explored. In this study, a marine-derived strain Streptomyces sp. DUT11 showing superior anti-complement activity was focused, and its genome sequence was analyzed. Gene clusters showing high similarities to that of tunicamycin and nonactin were identified, and their corresponding metabolites were also detected. Subsequently, tunicamycin I, V, and VII were isolated from Streptomyces sp. DUT11. Anti-complement assay showed that tunicamycin I, V, VII inhibited complement activation through the classic pathway, whereas no anti-complement activity of nonactin was detected. This is the first time that tunicamycins are reported to have such activity. In addition, genome analysis indicates that Streptomyces sp. DUT11 has the potential to produce novel lassopeptides and lantibiotics. These results suggest that marine Streptomyces are rich sources of anti-complement agents for drug discovery.

  6. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system.

    Science.gov (United States)

    Pyeon, Hye-Rim; Nah, Hee-Ju; Kang, Seung-Hoon; Choi, Si-Sun; Kim, Eung-Soo

    2017-05-31

    Heterologous expression of biosynthetic gene clusters of natural microbial products has become an essential strategy for titer improvement and pathway engineering of various potentially-valuable natural products. A Streptomyces artificial chromosomal conjugation vector, pSBAC, was previously successfully applied for precise cloning and tandem integration of a large polyketide tautomycetin (TMC) biosynthetic gene cluster (Nah et al. in Microb Cell Fact 14(1):1, 2015), implying that this strategy could be employed to develop a custom overexpression scheme of natural product pathway clusters present in actinomycetes. To validate the pSBAC system as a generally-applicable heterologous overexpression system for a large-sized polyketide biosynthetic gene cluster in Streptomyces, another model polyketide compound, the pikromycin biosynthetic gene cluster, was preciously cloned and heterologously expressed using the pSBAC system. A unique HindIII restriction site was precisely inserted at one of the border regions of the pikromycin biosynthetic gene cluster within the chromosome of Streptomyces venezuelae, followed by site-specific recombination of pSBAC into the flanking region of the pikromycin gene cluster. Unlike the previous cloning process, one HindIII site integration step was skipped through pSBAC modification. pPik001, a pSBAC containing the pikromycin biosynthetic gene cluster, was directly introduced into two heterologous hosts, Streptomyces lividans and Streptomyces coelicolor, resulting in the production of 10-deoxymethynolide, a major pikromycin derivative. When two entire pikromycin biosynthetic gene clusters were tandemly introduced into the S. lividans chromosome, overproduction of 10-deoxymethynolide and the presence of pikromycin, which was previously not detected, were both confirmed. Moreover, comparative qRT-PCR results confirmed that the transcription of pikromycin biosynthetic genes was significantly upregulated in S. lividans containing tandem

  7. Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica

    Directory of Open Access Journals (Sweden)

    Mihaela Cotârleţ

    2011-09-01

    Full Text Available The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100% identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20ºC, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20ºC. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures.

  8. Production of Manooligomannan from Palm Kernel Cake by Mannanase Produced from Streptomyces Cyaenus

    Directory of Open Access Journals (Sweden)

    Awan Purnawan

    2017-04-01

    Full Text Available The increase of public attention to health has prompted researchers to look for new sources of functional food. Palm Cake Kernel (PKC waste was abundant in Indonesia, Oligosaccharide has an important benefit for human health. Recently oligosaccharide is not only important as an artificial sweetener, but also as a functional food component. This study was aimed to produce oligo-mannan enzymatically from PKC waste using mannanase derived from of Streptomyces cyaenus isolates of indigenous Indonesia. The enzyme concentration was determined by enzyme activity assay while oligo-mannan content in the PKC was analyzed using TLC and HPLC. Mannanase enzyme activity of 1706 U/ml on the second day of agitation 200 rpm at a temperature of 30°C Hydrolysis of mannooligomannan by using mannanase produced by streptomyces cyaenus. The optimum mannanase enzyme activity obtained on day 2 with the value of the activity as much of 0.702 U/mL. The protein content of the 2nd day at an agitation speed of 150 rpm, 200 rpm, and 250 rpm, respectively, were 1783, 1950 and 2283 ppm. Streptomyces cyaenus is Indonesian original isolates potentially producing mannanase that can produce mannooligomannan.

  9. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus.

    Science.gov (United States)

    Yin, Shouliang; Wang, Xuefeng; Shi, Mingxin; Yuan, Fang; Wang, Huizhuan; Jia, Xiaole; Yuan, Fang; Sun, Jinliang; Liu, Tiejun; Yang, Keqian; Zhang, Yuxiu; Fan, Keqiang; Li, Zilong

    2017-09-01

    Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics. To increase the oxytetracycline (OTC) production in Streptomyces rimosus, we investigated the cooperative effect of three co-overexpressing OTC resistance genes: one gene encodes a ribosomal protection protein (otrA) and the other two express efflux proteins (otrB and otrC). Results indicated that combinational overexpression of otrA, otrB, and otrC (MKABC) exerted a synergetic effect. OTC production increased by 179% in the recombinant strain compared with that of the wild-type strain M4018. The resistance level to OTC was increased by approximately two-fold relative to the parental strain, thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production. Furthermore, the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC; such strain can produce OTC of approximately 7.49 g L -1 , which represents an increase of 19% in comparison with that of the OtcR-overexpressing strain alone. Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.

  10. Refining the Roots of the Beewolf-Streptomyces Symbiosis: Antennal Symbionts in the Rare Genus Philanthinus (Hymenoptera, Crabronidae)

    Science.gov (United States)

    Yildirim, Erol; Gürbüz, M. Faruk; Herzner, Gudrun; Strohm, Erhard

    2012-01-01

    Insects engage in symbiotic associations with a large diversity of beneficial microorganisms. While the majority of well-studied symbioses have a nutritional basis, several cases are known in which bacteria protect their host from pathogen infestation. Solitary wasps of the genera Philanthus and Trachypus (beewolves; Hymenoptera, Crabronidae) cultivate the actinomycete “Candidatus Streptomyces philanthi” in specialized antennal gland reservoirs. The symbionts are transferred to the larval cocoon, where they provide protection against pathogenic fungi by producing at least nine different antibiotics. Here we investigated the closest relatives of Philanthus and Trachypus, the rare genus Philanthinus, for the presence of antennal gland reservoirs and symbiotic streptomycetes. Molecular analyses identified “Ca. Streptomyces philanthi” in reservoirs of Philanthinus quattuordecimpunctatus. Phylogenies based on the 16S rRNA gene suggest that P. quattuordecimpunctatus may have acquired “Ca. Streptomyces philanthi” by horizontal transfer from other beewolf species. In histological sections and three-dimensional reconstructions, the antennal gland reservoirs were found to occupy six antennal segments (as opposed to only five in Philanthus and Trachypus) and to be structurally less complex than those of the evolutionarily more derived genera of beewolves. The presence of “Ca. Streptomyces philanthi” in antennal glands of Philanthinus indicates that the symbiosis between beewolves and Streptomyces bacteria is much older than previously thought. It probably evolved along the branch leading to the monophyletic tribe Philanthini, as it seems to be confined to the genera Philanthus, Trachypus, and Philanthinus, which together comprise 172 described species of solitary wasps. PMID:22113914

  11. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  12. Tyrosinase Inhibition Type of Isolated Compounds Obtained from Pachyrhizus erosus

    Directory of Open Access Journals (Sweden)

    Endang Lukitaningsih

    2013-12-01

    Full Text Available In Indonesia, Bengkoang (Phacyrhizus erosus have been used as one of cosmetics especially as sun screening and skin whitening materials. Six active compounds in Bengkoang with antioxidant and skin whitening activities have been isolated, namely daidzein, daidzin, genistin, (8,9-furanyl-pterocarpan-3-ol, 4-(2-(furane-2-ylethyl-2-methyl-2,5-dihydro-furane-3-carbaldehyde and 2-butoxy-2,5-bis(hydroxymethyl-tetrahydrofurane-3,4-diol. According to literatures, the type of their tyrosinase inhibitory activity has not yet reported. The determination of whitening activity of each compound was evaluated by the evaluation of Lineweaver-Burk plot. The result showed that five compounds had competitive inhibitory activity and 8,9-furanyl-pterocarpan-3-ol showed a non-competitive inhibition.

  13. CobB1 deacetylase activity in Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Mikulík, Karel; Felsberg, Jürgen; Kudrnáčová, E.; Bezoušková, Silvia; Šetinová, Dita; Stodůlková, Eva; Zídková, J.; Zídek, Václav

    2012-01-01

    Roč. 90, č. 2 (2012), s. 179-187 ISSN 0829-8211 R&D Projects: GA AV ČR(CZ) IAA500110805; GA ČR GA303/09/0475 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : sirtuin * NAD(+)dependent deacetylation activity CobB1 * Streptomyces coeliocolor Subject RIV: EE - Microbiology, Virology Impact factor: 2.915, year: 2012

  14. Extracellular synthesis gold nanotriangles using biomass of Streptomyces microflavus.

    Science.gov (United States)

    Soltani Nejad, Meysam; Khatami, Mehrdad; Shahidi Bonjar, Gholam Hosein

    2016-02-01

    Applications of nanotechnology and nano-science have ever-expanding breakthroughs in medicine, agriculture and industries in recent years; therefore, synthesis of metals nanoparticle (NP) has special significance. Synthesis of NPs by chemical methods are long, costly and hazardous for environment so biosynthesis has been developing interest for researchers. In this regard, the extracellular biosynthesis of gold nanotriangles (AuNTs) performed by use of the soil Streptomycetes. Streptomycetes isolated from rice fields of Guilan Province, Iran, showed biosynthetic activity for producing AuNTs via in vitro experiments. Among all 15 Streptomyces spp. isolates, isolate No. 5 showed high biosynthesis activity. To determine the bacterium taxonomical identity at genus level, its colonies characterised morphologically by use of scanning electron microscope. The polymerase chain reaction (PCR) molecular analysis of active isolate represented its identity partially. In this regard, 16S rRNA gene of the isolate was amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then conducted using National Center for Biotechnology Information Basic Local Alignment Search Tool method. The AuNTs obtained were characterised by ultraviolet-visible spectroscopy, atomic force microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction spectroscopy analyses. The authors results indicated that Streptomyces microflavus isolate 5 bio-synthesises extracellular AuNTs in the range of 10-100 nm. Synthesised SNPs size ranged from 10 to 100 nm. In comparison with chemical methods for synthesis of metal NPs, the biosynthesis of AuNTs by Streptomyces source is a fast, simple and eco-friendly method. The isolate is a good candidate for further investigations to optimise its production efficacy for further industrial goals in

  15. Demonstration of tyrosinase in the vitiligo skin of human beings by a sensitive fluorometric method as well as by 14C(U)-L-tyrosine incorporation into melanin

    International Nuclear Information System (INIS)

    Husain, I.; Vijayan, E.; Ramaiah, A.; Pasricha, J.S.; Madan, N.C.

    1982-01-01

    Tyrosinase activity (Monophenol, dihydroxyphenylalanine: oxygen oxidoreductase EC 1.14.18.1) in vitiligo and normal epidermal homogenates of skin from human beings was measured by estimating beta 3,4-dihydroxyphenylalanine (dopa) by a highly sensitive fluorometric method described in this paper. The tyrosine activity in the vitiligo skin was about 4 to 37% of corresponding normal skin. The activity of tyrosinase in normal human skin from different individuals and from different regions of the body was in the range of 4 to 140 picomoles of beta 3,4-dihydroxyphenylalanine formed per min/mg protein of epidermal homogenate. The enzyme from vitiligo and normal skin was severely inhibited by substance(s) of low molecular weight. The enzyme exhibits a lag of about 4 hr in the absence of added beta 3,4-dihydroxyphenylalanine and 1 hr in presence of 5 microM dopa. Tyrosinase from the normal and vitiligo skin was inhibited by excess concentration of tyrosine. The homogenates from vitiligo skin could synthesize melanin from C14(U)-L-Tyrosine. The rate of tyrosine incorporation into melanin by the epidermal homogenates is increased by 3,4-dihydroxyphenylalanine (dopa) disproportionate to its effect on tyrosinase activity. Based on the data presented in this paper it is concluded that melanocytes are present in the vitiligo skin. A tentative hypothesis is put forward to explain the lack of melanin synthesis by the vitiligo skin under in vivo conditions, although melanocytes are present

  16. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor

    Czech Academy of Sciences Publication Activity Database

    Čihák, M.; Kameník, Zdeněk; Šmídová, Klára; Bergman, N.; Benada, Oldřich; Kofroňová, Olga; Petříčková, Kateřina; Bobek, Jan

    2017-01-01

    Roč. 8, DEC 13 (2017), č. článku 2495. ISSN 1664-302X R&D Projects: GA MŠk(CZ) LO1509; GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : spore germination * Streptomyces * cell signaling Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.076, year: 2016

  17. Response surface methodology: A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites.

    Science.gov (United States)

    Latha, Selvanathan; Sivaranjani, Govindhan; Dhanasekaran, Dharumadurai

    2017-09-01

    Among diverse actinobacteria, Streptomyces is a renowned ongoing source for the production of a large number of secondary metabolites, furnishing immeasurable pharmacological and biological activities. Hence, to meet the demand of new lead compounds for human and animal use, research is constantly targeting the bioprospecting of Streptomyces. Optimization of media components and physicochemical parameters is a plausible approach for the exploration of intensified production of novel as well as existing bioactive metabolites from various microbes, which is usually achieved by a range of classical techniques including one factor at a time (OFAT). However, the major drawbacks of conventional optimization methods have directed the use of statistical optimization approaches in fermentation process development. Response surface methodology (RSM) is one of the empirical techniques extensively used for modeling, optimization and analysis of fermentation processes. To date, several researchers have implemented RSM in different bioprocess optimization accountable for the production of assorted natural substances from Streptomyces in which the results are very promising. This review summarizes some of the recent RSM adopted studies for the enhanced production of antibiotics, enzymes and probiotics using Streptomyces with the intention to highlight the significance of Streptomyces as well as RSM to the research community and industries.

  18. Improvement of FK506 Production in the High-Yielding Strain Streptomyces sp. RM7011 by Engineering the Supply of Allylmalonyl-CoA Through a Combination of Genetic and Chemical Approach.

    Science.gov (United States)

    Mo, SangJoon; Lee, Sung-Kwon; Jin, Ying-Yu; Suh, Joo-Won

    2016-02-01

    FK506, a widely used immunosuppressant, is a 23-membered polyketide macrolide that is produced by several Streptomyces species. FK506 high-yielding strain Streptomyces sp. RM7011 was developed from the discovered Streptomyces sp. KCCM 11116P by random mutagenesis in our previous study. The results of transcript expression analysis showed that the transcription levels of tcsA, B, C, and D were increased in Streptomyces sp. RM7011 by 2.1-, 3.1-, 3.3-, and 4.1- fold, respectively, compared with Streptomyces sp. KCCM 11116P. The overexpression of tcsABCD genes in Streptomyces sp. RM7011 gave rise to approximately 2.5-fold (238.1 μg/ml) increase in the level of FK506 production compared with that of Streptomyces sp. RM7011. When vinyl pentanoate was added into the culture broth of Streptomyces sp. RM7011, the level of FK506 production was approximately 2.2-fold (207.7 μg/ml) higher than that of the unsupplemented fermentation. Furthermore, supplementing the culture broth of Streptomyces sp. RM7011 expressing tcsABCD genes with vinyl pentanoate resulted in an additional 1.7-fold improvement in the FK506 titer (498.1 μg/ml) compared with that observed under nonsupplemented condition. Overall, the level of FK506 production was increased approximately 5.2-fold by engineering the supply of allylmalonyl-CoA in the high-yielding strain Streptomyces sp. RM7011, using a combination of overexpressing tcsABCD genes and adding vinyl pentanoate, as compared with Streptomyces sp. RM7011 (95.3 μg/ml). Moreover, among the three precursors analyzed, pentanoate was the most effective precursor, supporting the highest titer of FK506 in the FK506 high-yielding strain Streptomyces sp. RM7011.

  19. Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation

    DEFF Research Database (Denmark)

    Manteca, Angel; Ye, Juanying; Sánchez, Jesús

    2011-01-01

    Streptomycetes are bacterial species that undergo a complex developmental cycle that includes programmed cell death (PCD) events and sporulation. They are widely used in biotechnology because they produce most clinically relevant secondary metabolites. Although Streptomyces coelicolor is one...... events were detected during the presporulation and sporulation stages (80%). Most of these phosphorylations were not reported before in Streptomyces, and included sporulation factors, transcriptional regulators, protein kinases and other regulatory proteins. Several of the identified phosphorylated...... proteins, FtsZ, DivIVA, and FtsH2, were previously demonstrated to be involved in the sporulation process. We thus established for the first time the widespread occurrence and dynamic features of Ser/Thr/Tyr protein phosphorylation in a bacteria species and also revealed a previously unrecognized...

  20. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds

    International Nuclear Information System (INIS)

    Lu Limin; Zhang Li; Zhang Xiaobing; Huan Shuangyan; Shen Guoli; Yu Ruqin

    2010-01-01

    A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at -0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 x 10 3 μA mM -1 cm -2 , and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.

  1. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria

    Directory of Open Access Journals (Sweden)

    Shu-Yuan Chiou

    2015-12-01

    Full Text Available Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM reduced nitric oxide (NO production, and inducible nitric oxide synthase (iNOS expression in lipopolysaccharide (LPS-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E2 (PGE2 and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1 expression and addition of zinc protoporphyrin (ZnPP, a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries.

  2. Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of vinylamycin

    DEFF Research Database (Denmark)

    Carr, Gavin; Poulsen, Michael; Klassen, Jonathan L.

    2012-01-01

    Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re-examination of the struct......Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re...

  3. Determination of optimal conditions of oxytetracyclin production from streptomyces rimosus

    International Nuclear Information System (INIS)

    Zouaghi, Atef

    2007-01-01

    Streptomyces rimosus is an oxytetracycline (OTC) antibiotic producing bacteria that exhibited activities against gram positive and negative bacteria. OTC is used widely not only in medicine but also in production industry. The antibiotic production of streptomyces covers a very wide range of condition. However, antibiotic producers are particularly fastidious cultivated by proper selection of media such as carbon source. In present study we have optimised conditions of OTC production (Composition of production media, p H, shaking and temperature). The results have been shown that bran barley is the optimal media for OTC production at 28C pH5.8 at 150rpm for 5 days. For antibiotic determination, OTC was extracted with different organic solvent. Thin-layer chromatography system was used for separation and identification of OTC antibiotic. High performance liquid chromatographic (HPLC) method with ultraviolet detection for the analysis of OTC is applied to the determination of OTC purification. (Author). 24 refs

  4. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115.

    Directory of Open Access Journals (Sweden)

    Jine Li

    Full Text Available The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11 and the ring A moiety (pau18 in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13 in S. paulus, setting the stage for future investigations.

  5. Modulating effect of new potential antimelanomic agents, spin-labeled triazenes and nitrosoureas on the DOPA-oxidase activity of tyrosinase.

    Science.gov (United States)

    Gadjeva, V; Zheleva, A; Raikova, E

    1999-07-01

    The modulating effect of newly synthesized alkylating spin labeled triazene and spin labeled nitrosourea derivatives on the DOPA-oxidase activity of mushroom tyrosinase has been investigated by Bumett's spectrophotometric method (Burnett et al., 1967). All spin labeled triazenes have exhibited activating effect on DOPA-oxidase activity of tyrosinase, whereas clinically used triazene (DTIC), which does not contain nitroxide moiety, have showed inhibiting effect. At the same experimental conditions the spin labeled aminoacid nitrosoureas have showed dual effect - activating, in the beginning of the enzyme reaction and inhibiting later on. It is deduced that the activating effect of the spin labeled compounds is due to the nitroxide moiety and the inhibiting effect of all compounds depends on their half-life time. This study might contribute to make more clear the mechanism of action of the new compounds and on the other hand would come in quite useful as a preliminary prognosis for their antimelanomic activity.

  6. The unfolded protein response in melanocytes: activation in response to chemical stressors of the endoplasmic reticulum and tyrosinase misfolding.

    Science.gov (United States)

    Manga, Prashiela; Bis, Sabina; Knoll, Kristen; Perez, Beremis; Orlow, Seth J

    2010-10-01

    Accumulation of proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), comprising three signaling pathways initiated by Ire1, Perk and Atf6 respectively. Unfolded protein response activation was compared in chemically stressed murine wildtype melanocytes and mutant melanocytes that retain tyrosinase in the ER. Thapsigargin, an ER stressor, activated all pathways in wildtype melanocytes, triggering Caspase 12-mediated apoptosis at toxic doses. Albino melanocytes expressing mutant tyrosinase showed evidence of ER stress with increased Ire1 expression, but the downstream effector, Xbp1, was not activated even following thapsigargin treatment. Attenuation of Ire1 signaling was recapitulated in wildtype melanocytes treated with thapsigargin for 8 days, with diminished Xbp1 activation observed after 4 days. Atf6 was also activated in albino melanocytes, with no response to thapsigargin, while the Perk pathway was not activated and thapsigargin treatment elicited robust expression of the downstream effector CCAAT-enhancer-binding protein homologous protein. Thus, melanocytes adapt to ER stress by attenuating two UPR pathways.

  7. A novel fluorescent biosensor for adrenaline detection and tyrosinase inhibitor screening.

    Science.gov (United States)

    Liu, Ziping; Liu, Shasha

    2018-04-17

    In this work, a novel simple fluorescent biosensor for the highly sensitive and selective detection of adrenaline was established. Firstly, water-soluble CuInS 2 quantum dots (QDs) capped by L-Cys were synthesized via a hydrothermal synthesis method. Then, the positively charged adrenaline was assembled on the surface of CuInS 2 QDs due to the electrostatic interactions and hydrogen bonding, which led to the formation of adrenaline-CuInS 2 QD (Adr-CuInS 2 QD) electrostatic complexes. Tyrosinase (TYR) can catalyze adrenaline to generate H 2 O 2 , and additionally oxidize the adrenaline to adrenaline quinone. Both the H 2 O 2 and the adrenaline quinone can quench the fluorescence of the CuInS 2 QDs through the electron transfer (ET) process. Thus, the determination of adrenaline could be facilely achieved by taking advantage of the fluorescence "turn off" feature of CuInS 2 QDs. Under the optimum conditions, the fluorescence quenching ratio I f /I f0 (I f and I f0 were the fluorescence intensity of Adr-CuInS 2 QDs in the presence and absence of TYR, respectively) was proportional to the logarithm of adrenaline concentration in the range of 1 × 10 -8 -1 × 10 -4  mol L -1 with the detection limit of 3.6 nmol L -1 . The feasibility of the proposed biosensor in real sample assay was also studied and satisfactory results were obtained. Significantly, the proposed fluorescent biosensor can also be utilized to screen TYR inhibitors. Graphical abstract Schematic illustration of the fluorescent biosensor for adrenaline detection (A) and tyrosinase inhibitor screening (B).

  8. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Chmátal, Martin

    2016-01-01

    Roč. 102, October (2016), s. 90-95 ISSN 0043-1354 R&D Projects: GA TA ČR TA01021368; GA TA ČR(CZ) TA04021212; GA MŠk(CZ) LD12049 Institutional support: RVO:61388971 Keywords : Cyanide hydratase * Tyrosinase * Cyanide Subject RIV: CE - Biochemistry Impact factor: 6.942, year: 2016

  9. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus

    Czech Academy of Sciences Publication Activity Database

    Štosová, T.; Šebela, M.; Řehulka, Pavel; Šedo, O.; Havliš, J.; Zdráhal, Z.

    2008-01-01

    Roč. 376, č. 1 (2008), s. 94-102 ISSN 0003-2697 Institutional research plan: CEZ:AV0Z40310501 Keywords : MALDI-TOF MS * Streptomyces griseus * trypsin Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.088, year: 2008

  10. Streptocollin, a type IV lanthipeptide produced by Streptomyces collinus Tü 365

    DEFF Research Database (Denmark)

    Iftime, Dumitrita; Jasyk, Martin; Kulik, Andreas

    2015-01-01

    Lanthipeptides are ribosomally synthesized and posttranslationally modified microbial secondary metabolites. Here, we report the identification and isolation of streptocollin from Streptomyces collinus Tü 365, a new member of the class IV lanthipeptides. Insertion of the constitutive ermE* promoter...

  11. Synergistic interaction in simultaneous exposure to Streptomyces californicus and Stachybotrys chartarum

    DEFF Research Database (Denmark)

    Huttunen, K.; Pelkonen, J.; Nielsen, Kristian Fog

    2004-01-01

    chartarum, Bacillus cereus, Mycobacterium terrae, and Pseudomonas fluorescens) alone and together with the actinomycete Streptomyces californicus. The production of nitric oxide, levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6), and cytotoxicity were...

  12. Inhibitory Effect of the Ethyl Acetate Fraction of Ethanol Extract from Rhus verniciflua Stokes Wood on the Activity of Mushroom Tyrosinase

    Directory of Open Access Journals (Sweden)

    Hong Xia Chen

    2014-10-01

    Full Text Available Solvent extracts of Rhus verniciflua Stokes wood were made using decompressing inner ebullition, and a Box-Behnken design was used to optimize extraction conditions to produce an extract that inhibited tyrosinase activity. The chemical compositions and inhibition rates were determined in extracts made with petroleum ether, ethyl acetate, n-butanol, and an aqueous fractionation. The ethyl acetate fraction had the highest total phenolic content and inhibition rates. The main flavonoids in this fraction were 0.531% fisetin, 7.582% fustin, 0.848% sulfuretin, and 0.272% butein. The effects of the extract on the monophenolase and diphenolase activity of mushroom tyrosinase were studied using the Lineweaver-Burk equation to determine the effect of the extract on inhibition of tyrosinase activity. The results showed that the extract inhibited both the monophenolase and diphenolase activity of the enzyme. The IC50 of the ethyl acetate extract was 308 μg/mL, with the lag period of the enzyme being obviously lengthened; it was estimated to be 2.45 min in the absence of the inhibitor and extended to 9.63 min in the presence of 500 μg/mL of extract. The ethyl acetate extract acted as a mixed type inhibitor. The KI was less than the KIS, which demonstrates that the [ESI] is less stable than [EI], suggesting that the extract could easily combine with free enzyme in the enzyme catalysis system, thus affecting enzyme catalysis on the substrate.

  13. Production of gold nanoparticles by Streptomyces djakartensis isolate B-5

    Directory of Open Access Journals (Sweden)

    Sara Biglari

    2014-09-01

    Full Text Available  Objective(s: Biosynthesis of gold nanoparticles (NGPs is environmentally safer than chemical and physical procedures. This method requires no use of toxic solvents and synthesis of dangerous products and is environmentally safe. In this study, we report the biosynthesis of NGPs using Streptomyces djakartensis isolate B-5. Materials and Methods: NGPs were biosynthesized by reducing aqueous gold chloride solution via a Streptomyces isolate without the need for any additive for protecting nanoparticles from aggregation. We characterized the responsible Streptomycete; its genome DNA was isolated, purified and 16S rRNA was amplified by PCR. The amplified isolate was sequenced; using the BLAST search tool from NCBI, the microorganism was identified to species level. Results: Treating chloroauric acid solutions with this bacterium resulted in reduction of gold ions and formation of stable NGPs. TEM and SEM electro micrographs of NGPs indicated size range from 2- 25 nm with average of 9.09 nm produced intracellular by the bacterium. SEM electro micrographs revealed morphology of spores and mycelia. The amplified PCR fragment of 16S rRNA gene was cloned and sequenced from both sides; it consisted of 741 nucleotides. According to NCBI GenBank, the bacterium had 97.1% homology with Streptomyces djakartensis strain RT-49. The GenBank accession number for partial 16S rRNA gene was recorded as JX162550. Conclusion: Optimized application of such findings may create applications of Streptomycetes for use as bio-factories in eco-friendly production of NGPs to serve in demanding industries and related biomedical areas. Research in this area should also focus on the unlocking the full mechanism of NGPs biosynthesis by Streptomycetes.

  14. Morphological differentiation of Streptomyces viridochromogenes E-219 on solid culture

    International Nuclear Information System (INIS)

    Liang Xinle; Zhu Jing; Jin Yingyan

    2012-01-01

    The Streptomyces viridochromogenes E-219 was derived from Streptomyces viridochromogenes CGMCC4.1119 treated with 60 Co γ-rays irradiation and protoplast fusion. With the help of fluorescent probes, fluorescence microscope and electron microscopy, the morphology and development of E-219 on solid surface culture were investigated in this study. The effect of agarslant culture time on the production of Avilamycin was also studied to provide theoretical basis for industrial fermentation of selecting the appropriate seed to culture on the agarslant culture medium. The results implied that the development of colonies of Streptomyces viridochromogenes accompanied the intermittent hyhae apoptosis, and the production of spores was from the active mycelium. The colonial morphology of strain E-219 was significantly different from the original strain CGMCC4h1119. There were variegated hyphae formation in the stage of spore germination and initial hyphae development (10 h) with the live and dead segments alternated in a highly regular fashion within the same hypha. After the early single colony formation, the third phase was followed by profuse growth of the live segments derived from the variegated hypha, then the second apoptosis of the mycelia (48 h) was occurred with another quick growth, and sporulation was occurred at 96 h. Strain CGMCC4.1119 had spiral sporotrichial and round conidiophores with spike, whereas strain E-219 had linear sporotrichial, smooth and dylindrical conidiophore. The results of shake flask experiments indicated that the spores of E-219 had that highest activity when cultured on agarslant culture medium and incubated for 106 h with the production of avilamycin up to 1200 mg/L. (authors)

  15. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression

    Science.gov (United States)

    McDonald, Bradon R.; Takasuka, Taichi E.; Wendt-Pienkowski, Evelyn; Doering, Drew T.; Raffa, Kenneth F.; Fox, Brian G.; Currie, Cameron R.

    2016-01-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  16. Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities.

    Science.gov (United States)

    Alshaibani, Muhanna; Zin, Noraziah; Jalil, Juriyati; Sidik, Nik; Ahmad, Siti Junaidah; Kamal, Nurkhalida; Edrada-Ebel, Ruangelie

    2017-07-28

    In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo -( L -Val- L -Pro), cyclo -( L -Leu- L -Pro), cyclo -( L -Phe- L -Pro), cyclo -( L -Val- L -Phe), and N -(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus , with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

  17. ­Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis

    Directory of Open Access Journals (Sweden)

    Agustina Undabarrena

    2017-02-01

    Full Text Available Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes. Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes, oxidative stress (69 genes and antibiotic resistance (97 genes. This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2. Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.

  18. A highly efficient targeted recombination system for engineering linear chromosomes of industrial bacteria Streptomyces.

    Science.gov (United States)

    Pan, Hung-Yin; Chen, Carton W; Huang, Chih-Hung

    2018-04-17

    Soil bacteria Streptomyces are the most important producers of secondary metabolites, including most known antibiotics. These bacteria and their close relatives are unique in possessing linear chromosomes, which typically harbor 20 to 30 biosynthetic gene clusters of tens to hundreds of kb in length. Many Streptomyces chromosomes are accompanied by linear plasmids with sizes ranging from several to several hundred kb. The large linear plasmids also often contain biosynthetic gene clusters. We have developed a targeted recombination procedure for arm exchanges between a linear plasmid and a linear chromosome. A chromosomal segment inserted in an artificially constructed plasmid allows homologous recombination between the two replicons at the homology. Depending on the design, the recombination may result in two recombinant replicons or a single recombinant chromosome with the loss of the recombinant plasmid that lacks a replication origin. The efficiency of such targeted recombination ranges from 9 to 83% depending on the locations of the homology (and thus the size of the chromosomal arm exchanged), essentially eliminating the necessity of selection. The targeted recombination is useful for the efficient engineering of the Streptomyces genome for large-scale deletion, addition, and shuffling.

  19. Streptomyces rimosus GDS(L Lipase: Production, Heterologous Overexpression and Structure-Stability Relationship

    Directory of Open Access Journals (Sweden)

    Marija Abramić

    2003-01-01

    Full Text Available Streptomyces rimosus lipase gene has been overexpressed in a heterologous host, S. lividans TK23. The maximal lipase activity was determined in the culture filtrates of the late stationary phase. Time course of lipase production was monitored by a modified plate assay. S. rimosus lipase gene has been located on the AseI B fragment approximately 2 Mb far from the left end of the S. rimosus linear chromosome. Out of eight examined streptomycetes, the presence of this rare type of bacterial lipase gene was detected in two belonging to the S. rimosus taxonomic cluster, and in one non-related species. Comparison of protein sequences of the Streptomyces lipolytic enzymes was performed. The result indicated the best structural stability of the putative S. coelicolor lipase-2.

  20. Craniocervical mycetoma caused bu Streptomyces somaliensis

    International Nuclear Information System (INIS)

    Ramboer, J.H.; De Graaf, A.S.; Hewlett, R.H.; Kirby, P.A.; Robson, R.A.

    1989-01-01

    Magnetic resonance (MR) imaging, computerized tomography (CT) and clinical-pathological findings are described in a case of craniocervical mycetoma caused by the actinomycete Streptomyces somaliensis. Clinical features includes epilepsy, visual and hearing disturbance, quadriplegia and incontinence. CT revealed a hyperdense, diffusely enhancing intra-extracranial mass, further defined by MR to involve the oropharyngeal region, skull base, cranial-cervical peridural spaces and brain. On treatment with Dapsone, the lesion decreased in size, with recovery of spinal cord function. The combined plain film, CT and MR images are considered to be diagnostic of this form of mycetoma. (author). 10 refs.; 4 figs

  1. Craniocervical mycetoma caused bu Streptomyces somaliensis

    Energy Technology Data Exchange (ETDEWEB)

    Ramboer, J.H.; De Graaf, A.S. (Tygerberg Hospital, Bellville (South Africa). Dept. of Internal Medicine); Hewlett, R.H. (Tygerberg Hospital, Bellville (South Africa). Dept. of Radiology); Kirby, P.A. (Tygerberg Hospital, Cape Town (South Africa). Department of Anatomical Pathology); Robson, R.A. (Tygerberg Hospital, Capetown (South Africa). Department of Microbiology)

    Magnetic resonance (MR) imaging, computerized tomography (CT) and clinical-pathological findings are described in a case of craniocervical mycetoma caused by the actinomycete Streptomyces somaliensis. Clinical features includes epilepsy, visual and hearing disturbance, quadriplegia and incontinence. CT revealed a hyperdense, diffusely enhancing intra-extracranial mass, further defined by MR to involve the oropharyngeal region, skull base, cranial-cervical peridural spaces and brain. On treatment with Dapsone, the lesion decreased in size, with recovery of spinal cord function. The combined plain film, CT and MR images are considered to be diagnostic of this form of mycetoma. (author). 10 refs.; 4 figs.

  2. Mutants of Streptomyces coeruleorubidus impaired in the biosynthesis of daunomycinone glycosides and related metabolites

    International Nuclear Information System (INIS)

    Blumauerova, M.; Stajner, K.; Pokorny, V.; Hostalek, Z.; Vanek, Z.

    1978-01-01

    Mutants of Streptomyces coeruleorubidus, blocked in the biosynthesis of anthracycline antibiotics of the daunomycine complex, were isolated from the production strains after treatment with UV light, γ-radiation, nitrous acid, and after natural selection; according to their different biosynthetic activity the mutants were divided into five phenotypic groups. Mutants of two of these groups produced compounds that had not yet been described in Streptomyces coeruleorubidus (aklavinone, 7-deoxyaklavinone, zeta-rhodomycinone and glycosides of epsilon-rhodomycinone). The mutants differed from the parent strains and also mutually in morphological characteristics but no direct correlation between these changes and the biosynthetic activity could be observed in most cases. (author)

  3. Uptake of nourseothricin by the producing microorganism, Streptomyces noursei

    International Nuclear Information System (INIS)

    Roeder, B.; Graefe, U.

    1985-01-01

    The uptake of 14 C-(U)-nourseothricin by stationary phase mycelium of Streptomyces noursei JA 3890b-NG 13/14 was demonstrated. An energy-dependent transport system appears to be involved in the transport of the antibiotic. Relatively large quantities of the antibiotic were adsorbed to the surface of mycelium. Degradation of nourseothricin by the producing microorganism was not detectable. (author)

  4. Fabrication of biogenic antimicrobial silver nanoparticles by Streptomyces aegyptia NEAE 102 as eco-friendly nanofactory.

    Science.gov (United States)

    El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A M; Darwesh, Osama M M

    2014-04-01

    The current research was focused on the extracellular biosynthesis of bactericidal silver nanoparticles (AgNPs) using cell-free supernatant of a local isolate previously identified as a novel Streptomyces aegyptia NEAE 102. The biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102 was quite fast and required far less time than previously published strains. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy, which confirmed the presence of AgNPs. Response surface methodology was chosen to evaluate the effects of four process variables (AgNO3 concentration, incubation period, pH levels, and inoculum size) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. Statistical analysis of the results showed that the linear and quadratic effects of incubation period, initial pH, and inoculum size had a significant effect (p silver nanoparticles by Streptomyces aegyptia NEAE 102. The maximum silver nanoparticles biosynthesis (2.5 OD, at 400 nm ) was achieved in runs number 5 and 14 under the conditions of 1 mM AgNO3 (1-1.5% (v/v)), incubation period (72-96 h), initial pH (9-10), and inoculum size (2-4% (v/v)). An overall 4-fold increase in AgNPs biosynthesis was obtained as compared with that of unoptimized conditions. The biosynthesized silver nanoparticles were characterized using UV-VIS spectrophotometer and Fourier transform infrared spectroscopy analysis, in addition to antimicrobial properties. The biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic gram-positive (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) and yeast (Candida albicans).

  5. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  6. Assessment of the Potential Role of Streptomyces in Cave Moonmilk Formation

    Directory of Open Access Journals (Sweden)

    Marta Maciejewska

    2017-06-01

    Full Text Available Moonmilk is a karstic speleothem mainly composed of fine calcium carbonate crystals (CaCO3 with different textures ranging from pasty to hard, in which the contribution of biotic rock-building processes is presumed to involve indigenous microorganisms. The real microbial input in the genesis of moonmilk is difficult to assess leading to controversial hypotheses explaining the origins and the mechanisms (biotic vs. abiotic involved. In this work, we undertook a comprehensive approach in order to assess the potential role of filamentous bacteria, particularly a collection of moonmilk-originating Streptomyces, in the genesis of this speleothem. Scanning electron microscopy (SEM confirmed that indigenous filamentous bacteria could indeed participate in moonmilk development by serving as nucleation sites for CaCO3 deposition. The metabolic activities involved in CaCO3 transformation were furthermore assessed in vitro among the collection of moonmilk Streptomyces, which revealed that peptides/amino acids ammonification, and to a lesser extend ureolysis, could be privileged metabolic pathways participating in carbonate precipitation by increasing the pH of the bacterial environment. Additionally, in silico search for the genes involved in biomineralization processes including ureolysis, dissimilatory nitrate reduction to ammonia, active calcium ion transport, and reversible hydration of CO2 allowed to identify genetic predispositions for carbonate precipitation in Streptomyces. Finally, their biomineralization abilities were confirmed by environmental SEM, which allowed to visualize the formation of abundant mineral deposits under laboratory conditions. Overall, our study provides novel evidences that filamentous Actinobacteria could be key protagonists in the genesis of moonmilk through a wide spectrum of biomineralization processes.

  7. Xenogeneic murine tyrosinase DNA vaccine for malignant melanoma of the digit of dogs.

    Science.gov (United States)

    Manley, C A; Leibman, N F; Wolchok, J D; Rivière, I C; Bartido, S; Craft, D M; Bergman, P J

    2011-01-01

    Malignant melanoma of dogs is a highly aggressive neoplasm and is the 2nd most common digit tumor. Metastatic disease is a common sequela for which few effective treatment options exist. Studies show that xenogeneic tyrosinase DNA vaccination yields immune responses and prolongation of survival in dogs with oral malignant melanoma. Describe clinical findings and tumor characteristics of a cohort of dogs with digit malignant melanoma, and evaluate the prognostic utility of a proposed staging system. Determine if a novel xenogeneic DNA vaccine is safe and potentially effective for treatment of dogs with digit melanoma. Fifty-eight dogs with digit malignant melanoma treated at the Animal Medical Center between 2004 and 2007. Retrospective, medical records review of dogs with digit melanoma treated with xenogeneic DNA vaccine. Overall median survival time (MST) for dogs treated with loco-regional control and xenogeneic DNA vaccine was 476 days with a 1-year survival rate of 63%. MST for dogs presenting with metastasis was 105 days versus 533 days for dogs presenting without metastasis (P dogs in the latter group were alive at 2 and 3 years. A proposed staging system proved prognostic with stages I-IV dogs surviving >952, >1,093, 321, and 76 days, respectively. The xenogeneic murine tyrosinase DNA vaccine was safe and appears effective when used in conjunction with local and regional disease control. The proposed staging system was prognostic in this study and future studies might benefit from utilizing this staging system. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  8. Relationship between Volatile Odorous Substances and Production of Avermectins by Streptomyces avermitilis

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Sobotka, Miroslav; Prell, Aleš; Sigler, Karel

    2007-01-01

    Roč. 52, č. 1 (2007), s. 26-30 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces avermitilis * antibiotics * inhibition Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  9. Nanostructured progesterone immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as amperometric transducer

    International Nuclear Information System (INIS)

    Carralero, Veronica; Gonzalez-Cortes, Araceli; Yanez-Sedeno, Paloma; Pingarron, Jose M.

    2007-01-01

    A novel progesterone immunosensor using a colloidal gold-graphite-Teflon-tyrosinase composite biosensor as amperometric transducer is reported. A sequential competitive configuration between the analyte and progesterone labelled with alkaline phosphatase (AP) was used. Phenyl phosphate was employed as the AP-substrate and the enzyme reaction product, phenol, was oxidized by tyrosinase to o-quinone, which is subsequently reduced at -0.1 V at the biocomposite electrode. Variables such as the concentration of phenyl phosphate, the amount of antibody attached to the electrode surface, immersion time in a 2% BSA solution, working pH and incubation times in progesterone and AP conjugate were optimized. A linear calibration graph for progesterone was obtained between 0 and 40 ng mL -1 with a slope value of -82.3 nA ng -1 mL, and a detection limit of 0.43 ng mL -1 . The time needed to reach the steady-state current from the addition of phenyl phosphate was 30-40 s. These analytical characteristics improve substantially those reported for other progesterone immunosensors. A lifetime of 14 days with no need to apply any regeneration procedure was also achieved. The usefulness of the immunosensor was evaluated by determining progesterone in milk samples spiked with the analyte at 5.0 and 1.5 ng mL -1 concentration levels. Following a very simple procedure, involving only sample dilution, mean recoveries (n = 7) of 98 ± 3% and 99 ± 3%, respectively, were obtained

  10. Nanostructured progesterone immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as amperometric transducer

    Energy Technology Data Exchange (ETDEWEB)

    Carralero, Veronica [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Yanez-Sedeno, Paloma [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)]. E-mail: yseo@quim.ucm.es; Pingarron, Jose M. [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2007-07-16

    A novel progesterone immunosensor using a colloidal gold-graphite-Teflon-tyrosinase composite biosensor as amperometric transducer is reported. A sequential competitive configuration between the analyte and progesterone labelled with alkaline phosphatase (AP) was used. Phenyl phosphate was employed as the AP-substrate and the enzyme reaction product, phenol, was oxidized by tyrosinase to o-quinone, which is subsequently reduced at -0.1 V at the biocomposite electrode. Variables such as the concentration of phenyl phosphate, the amount of antibody attached to the electrode surface, immersion time in a 2% BSA solution, working pH and incubation times in progesterone and AP conjugate were optimized. A linear calibration graph for progesterone was obtained between 0 and 40 ng mL{sup -1} with a slope value of -82.3 nA ng{sup -1} mL, and a detection limit of 0.43 ng mL{sup -1}. The time needed to reach the steady-state current from the addition of phenyl phosphate was 30-40 s. These analytical characteristics improve substantially those reported for other progesterone immunosensors. A lifetime of 14 days with no need to apply any regeneration procedure was also achieved. The usefulness of the immunosensor was evaluated by determining progesterone in milk samples spiked with the analyte at 5.0 and 1.5 ng mL{sup -1} concentration levels. Following a very simple procedure, involving only sample dilution, mean recoveries (n = 7) of 98 {+-} 3% and 99 {+-} 3%, respectively, were obtained.

  11. Preliminary X-ray crystallographic analysis of the glycosyltransferase from a marine Streptomyces species

    International Nuclear Information System (INIS)

    Gong, Liping; Xiao, Yi; Liu, Qiang; Li, Sumei; Zhang, Changsheng; Liu, Jinsong

    2010-01-01

    The recombinant glycosyltransferase ElaGT from the elaiophylin-producing marine Streptomyces sp. SCSIO 01934 has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.9 Å resolution. ElaGT is a glycosyltransferase from a marine Streptomyces species that is involved in the biosynthesis of elaiophylin. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of ElaGT are reported. The rod-shaped crystals belonged to space group P2 1 22, with unit-cell parameters a = 66.7, b = 131.7, c = 224.6 Å, α = 90, β = 90, γ = 90°. Data were collected to 2.9 Å resolution. A preliminary molecular-replacement solution implied the presence of two ElaGT molecules in the asymmetric unit

  12. Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as antibrowning agent.

    Science.gov (United States)

    Zheng, Zong-Ping; Cheng, Ka-Wing; To, James Tsz-Kin; Li, Haitao; Wang, Mingfu

    2008-12-01

    A new furanoflavone, 7-(2,4-dihydroxyphenyl)-4-hydroxy-2-(2-hydroxy propan-2-yl)-2, 3-dihydrofuro(3, 2-g)chromen-5-one (artocarpfuranol, 1), together with 14 known compounds, dihydromorin (2), steppogenin (3), norartocarpetin (4), artocarpanone (5), artocarpesin (6), artocarpin (7), cycloartocarpin (8), cycloartocarpesin (9), artocarpetin (10), brosimone I (11), cudraflavone B (12), carpachromene (13), isoartocarpesin (14), and cyanomaclurin (15) were isolated from the wood of Artocarpus heterophyllus. Their structures were identified by interpretation of MS,( 1)H-NMR,( 13)C-NMR, HMQC, and HMBC spectroscopic data. Among them, compounds 1-6 and 14 showed strong mushroom tyrosinase inhibitory activity with IC(50) values lower than 50 microM, more potent than kojic acid (IC(50) = 71.6 microM), a well-known tyrosinase inhibitor. In addition, extract of A. heterophyllus was evaluated for its antibrowning effect on fresh-cut apple slices. It was discovered that fresh-cut apple slices treated by dipping in solution of 0.03 or 0.05% of A. heterophyllus extract with 0.5% ascorbic acid did not undergo any substantial browning reaction after storage at room temperature for 24 h. The antibrowning effect was significantly better than samples treated with the extract (0.03 or 0.05%) or ascorbic acid (0.5%) alone. The results provide preliminary evidence supporting the potential of this natural extract as antibrowning agent in food systems.

  13. Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates

    Directory of Open Access Journals (Sweden)

    Stephen A. Jackson

    2018-02-01

    Full Text Available The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs such as polyketide synthases (PKS and non-ribosomal peptide synthetases (NRPS which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces. The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.

  14. Extracellular proteases from Streptomyces phaeopurpureus ExPro138 inhibit spore adhesion, germination and appressorium formation in Colletotrichum coccodes.

    Science.gov (United States)

    Palaniyandi, S A; Yang, S H; Suh, J-W

    2013-07-01

    To study the antifungal mechanism of proteases from Streptomyces phaeopurpureus strain ExPro138 towards Colletotrichum coccodes and to evaluate its utilization as biofungicide. We screened proteolytic Streptomyces strains from the yam rhizosphere with antifungal activity. Forty proteolytic Streptomyces were isolated, among which eleven isolates showed gelatinolytic activity and antagonistic activity on C. coccodes. Of the 11 isolates, protease preparation from an isolate designated ExPro138 showed antifungal activity. 16S rDNA sequence analysis of the strain showed 99% similarity with Streptomyces phaeopurepureus (EU841588.1). Zymography analysis of the ExPro138 culture filtrate revealed that the strain produced several extracellular proteases. The protease preparation inhibited spore germination, spore adhesion to polystyrene surface and appressorium formation. Microscopic study of the interaction between ExPro138 and C. coccodes revealed that ExPro138 was mycoparasitic on C. coccodes. The protease preparation also reduced anthracnose incidence on tomato fruits compared with untreated control. This study demonstrates possibility of utilizing antifungal proteases derived from antagonistic microbes as biofungicide. Microbial proteases having the ability to inhibit spore adhesion and appressorium formation could be used to suppress infection establishment by foliar fungal pathogens at the initial stages of the infection process. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  15. Streptomyces kalpinensis sp. nov., an actinomycete isolated from a salt water beach.

    Science.gov (United States)

    Ma, Guo-Quan; Xia, Zhan-Feng; Wan, Chuan-Xing; Zhang, Yao; Luo, Xiao-Xia; Zhang, Li-Li

    2017-12-01

    A novel actinobacterium designated TRM 46509 T was isolated from a salt water beach at Kalpin, Xinjiang, north-west China. The strain was aerobic and Gram-stain-positive, with an optimum NaCl concentration for growth of 1 % (w/v). The isolate formed sparse aerial mycelium and produced spiral spores at the end of the aerial mycelium on Gauze's No. 1 medium. The isolate contained ll-diaminopimelic acid as the diagnostic diamino acid and ribose as the major whole-cell sugar. The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannosides and an unidentified phospholipid. The predominant menaquinones were MK-9(H2), MK-9(H6) and MK-9(H8). The major fatty acids were C16:0, iso-C16 : 0, anteiso-C15 : 0, iso-C15 : 0 and iso-C14 : 0. The G+C content of the DNA was 69.3 mol%. Phylogenetic analysis showed that strain TRM 46509 T shared 16S rRNA gene sequence similarity of 97.6 % with the closest described species Streptomyces tacrolimicus ATCC 55098 T . On the basis of evidence from this polyphasic study, strain TRM 46509 T should be designated as representing a novel species of the genus Streptomyces, for which the name Streptomyces kalpinensis sp. nov. is proposed. The type strain is TRM 46509 T (=CCTCC AA 2015028 T =KCTC 39667 T ).

  16. Plant growth and resistance promoted by Streptomyces spp. in tomato.

    Science.gov (United States)

    Dias, Maila P; Bastos, Matheus S; Xavier, Vanessa B; Cassel, Eduardo; Astarita, Leandro V; Santarém, Eliane R

    2017-09-01

    Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Characterization of replication and conjugation of plasmid pWTY27 from a widely distributed Streptomyces species

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2012-11-01

    Full Text Available Abstract Background Streptomyces species are widely distributed in natural habitats, such as soils, lakes, plants and some extreme environments. Replication loci of several Streptomyces theta-type plasmids have been reported, but are not characterized in details. Conjugation loci of some Streptomyces rolling-circle-type plasmids are identified and mechanism of conjugal transferring are described. Results We report the detection of a widely distributed Streptomyces strain Y27 and its indigenous plasmid pWTY27 from fourteen plants and four soil samples cross China by both culturing and nonculturing methods. The complete nucleotide sequence of pWTY27 consisted of 14,288 bp. A basic locus for plasmid replication comprised repAB genes and an adjacent iteron sequence, to a long inverted-repeat (ca. 105 bp of which the RepA protein bound specifically in vitro, suggesting that RepA may recognize a second structure (e.g. a long stem-loop of the iteron DNA. A plasmid containing the locus propagated in linear mode when the telomeres of a linear plasmid were attached, indicating a bi-directional replication mode for pWTY27. As for rolling-circle plasmids, a single traA gene and a clt sequence (covering 16 bp within traA and its adjacent 159 bp on pWTY27 were required for plasmid transfer. TraA recognized and bound specifically to the two regions of the clt sequence, one containing all the four DC1 of 7 bp (TGACACC and one DC2 (CCCGCCC and most of IC1, and another covering two DC2 and part of IC1, suggesting formation of a high-ordered DNA-protein complex. Conclusions This work (i isolates a widespread Streptomyces strain Y27 and sequences its indigenous theta-type plasmid pWTY27; (ii identifies the replication and conjugation loci of pWTY27 and; (iii characterizes the binding sequences of the RepA and TraA proteins.

  18. Characterization of replication and conjugation of plasmid pWTY27 from a widely distributed Streptomyces species

    Science.gov (United States)

    2012-01-01

    Background Streptomyces species are widely distributed in natural habitats, such as soils, lakes, plants and some extreme environments. Replication loci of several Streptomyces theta-type plasmids have been reported, but are not characterized in details. Conjugation loci of some Streptomyces rolling-circle-type plasmids are identified and mechanism of conjugal transferring are described. Results We report the detection of a widely distributed Streptomyces strain Y27 and its indigenous plasmid pWTY27 from fourteen plants and four soil samples cross China by both culturing and nonculturing methods. The complete nucleotide sequence of pWTY27 consisted of 14,288 bp. A basic locus for plasmid replication comprised repAB genes and an adjacent iteron sequence, to a long inverted-repeat (ca. 105 bp) of which the RepA protein bound specifically in vitro, suggesting that RepA may recognize a second structure (e.g. a long stem-loop) of the iteron DNA. A plasmid containing the locus propagated in linear mode when the telomeres of a linear plasmid were attached, indicating a bi-directional replication mode for pWTY27. As for rolling-circle plasmids, a single traA gene and a clt sequence (covering 16 bp within traA and its adjacent 159 bp) on pWTY27 were required for plasmid transfer. TraA recognized and bound specifically to the two regions of the clt sequence, one containing all the four DC1 of 7 bp (TGACACC) and one DC2 (CCCGCCC) and most of IC1, and another covering two DC2 and part of IC1, suggesting formation of a high-ordered DNA-protein complex. Conclusions This work (i) isolates a widespread Streptomyces strain Y27 and sequences its indigenous theta-type plasmid pWTY27; (ii) identifies the replication and conjugation loci of pWTY27 and; (iii) characterizes the binding sequences of the RepA and TraA proteins. PMID:23134842

  19. Production, Partial Purification and Characterization of Protease From Irradiated Streptomyces Spp

    International Nuclear Information System (INIS)

    Botros, H.W.; Ahmed, A.S.

    2011-01-01

    Production and partial purification of protease by the irradiated Streptomyces spp. was the aim of this study. Streptomyces spp. was allowed to grow in culture broth of 4% shrimp shells for purpose of inducing protease enzymes. Optimal conditions for protease production were 30 degree C, 0.3 kGy, ph 7, 5x10 4 /ml inoculum size and 7 days incubation period. Protease was purified by 80% ammonium sulphate saturation which exhibited 8.7 U/ml enzyme activity. Column chromatography using sephadex G-200 exerted 23.3 U/ml enzyme activity from pooled fraction (13-16). The molecular mass of protease was determined to be 39 kDa by SDS-PAGE. The enzyme was more stable over a wide range of ph 6-8 and temperature up to 40 degree C. The produced protease was activated by Ca, Mn and FeCl 2 and completely inhibited by ethylene-diamin tetraacetic acid (EDTA) at concentration of 1000 μg/ml

  20. Limitations of the nested reverse transcriptase polymerase chain reaction on tyrosinase for the detection of malignant melanoma micrometastases in lymph nodes

    NARCIS (Netherlands)

    Calogero, A; Timmer-Bosscha, H; Tiebosch, ATMG; Mulder, NH; Hospers, GAP; Schraffordt Koops, H.

    The specificity and sensitivity of the nested reverse transcriptase polymerase chain reaction (RT-PCR) on tyrosinase was studied, for the detection of micrometastases of malignant melanoma. The specificity was assessed in the blood of six healthy donors, four patients with non-melanoma cancers of

  1. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus.

    Science.gov (United States)

    Wang, Junhua; Wang, Cheng; Song, Kejing; Wen, Jianping

    2017-10-03

    Ascomycin is a 23-membered polyketide macrolide with high immunosuppressant and antifungal activity. As the lower production in bio-fermentation, global metabolic analysis is required to further explore its biosynthetic network and determine the key limiting steps for rationally engineering. To achieve this goal, an engineering approach guided by a metabolic network model was implemented to better understand ascomycin biosynthesis and improve its production. The metabolic conservation of Streptomyces species was first investigated by comparing the metabolic enzymes of Streptomyces coelicolor A3(2) with those of 31 Streptomyces strains, the results showed that more than 72% of the examined proteins had high sequence similarity with counterparts in every surveyed strain. And it was found that metabolic reactions are more highly conserved than the enzymes themselves because of its lower diversity of metabolic functions than that of genes. The main source of the observed metabolic differences was from the diversity of secondary metabolism. According to the high conservation of primary metabolic reactions in Streptomyces species, the metabolic network model of Streptomyces hygroscopicus var. ascomyceticus was constructed based on the latest reported metabolic model of S. coelicolor A3(2) and validated experimentally. By coupling with flux balance analysis and using minimization of metabolic adjustment algorithm, potential targets for ascomycin overproduction were predicted. Since several of the preferred targets were highly associated with ethylmalonyl-CoA biosynthesis, two target genes hcd (encoding 3-hydroxybutyryl-CoA dehydrogenase) and ccr (encoding crotonyl-CoA carboxylase/reductase) were selected for overexpression in S. hygroscopicus var. ascomyceticus FS35. Both the mutants HA-Hcd and HA-Ccr showed higher ascomycin titer, which was consistent with the model predictions. Furthermore, the combined effects of the two genes were evaluated and the strain HA

  2. First report of Streptomyces stelliscabiei causing potato common scab in Michigan

    Science.gov (United States)

    Streptomyces scabies has been reported as the predominant cause of potato scab in Michigan. In a 2007 survey of common scab in Michigan, however, isolates were collected from a field that did not fit the description for S. scabies. Tests using species-specific PCR primers indicated isolates were S. ...

  3. Stawamycin analog, JBIR-11 from Streptomyces viridochromogenes subsp. sulfomycini NBRC 13830.

    Science.gov (United States)

    Izumikawa, Miho; Komaki, Hisayuki; Hashimoto, Junko; Takagi, Motoki; Shin-ya, Kazuo

    2008-05-01

    A stawamycin analog, JBIR-11 (1) was isolated from mycelium of Streptomyces viridochromogenes subsp. sulfomycini NBRC 13830. The structure was determined on the basis of the spectroscopic data. Compound 1 exhibited growth inhibitory effect against human fibrosarcoma HT1080 cells with an IC50 value of 25 microM.

  4. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery.

    Directory of Open Access Journals (Sweden)

    Michael Poulsen

    2011-02-01

    Full Text Available Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.

  5. Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation

    Directory of Open Access Journals (Sweden)

    P. Chellapandi

    2008-03-01

    Full Text Available Cellulase is a complex enzyme system, commercially produced by filamentous fungi under solid-state and submerged cultivation. It has wide applicability in textile, food and beverage industry for effective saccharification process. In this study, cellulolytic enzyme activity, particularly endoglucanase of 26 Streptomyces strains isolated from garden soil was examined, including two isolates selected on the basis of potential cellulolytic activity on Bennett's agar medium. To enhance the endoglucanase formation in broth culture, different conditions including carbon and nitrogen sources, and growth conditions were tested. The maximum endoglucanase activity (11.25-11.90 U/mL was achieved within 72-88 h in fermentation medium containing Tween-80, followed by phosphate sources. Both cellulolytic Streptomyces isolates gave almost equal quantity of enzyme in all trials. However the effect of medium ingredients on endoglucanase induction diverged with strains in some extent.A celulase é um sistema enzimático complexo, produzido comercialmente a partir de fungos filamentosos através de cultivo em estádio sólido e submerso. Tem uma grande aplicação na indústria têxtil e de alimentos e bebidas no processo de sacarificação. Nesse estudo, examinou-se a atividade celulolítica, especialmente de englucanase, de 26 cepas de Streptomyces isoladas de solo, incluindo duas cepas selecionadas por sua atividade celulolítica no ágar Bennett. Para estimular a produção de englucanase em meio de cultura, diferentes condições de cultivo, incluindo fonte de carbono e nitrogênio e condições de crescimento, foram avaliadas. A atividade máxima de glucanase (11,25 a 11,90 U/mL foi obtida em 72-88h em meio de cultura contendo Tween-80, seguido por fontes de fosfato. Ambas as cepas celulolíticas de Streptomyces produziram quase a mesma quantidade de enzima em todos os experimentos. Entretanto, o efeito dos ingredientes do meio na indução da glucanase

  6. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery

    DEFF Research Database (Denmark)

    Poulsen, Michael; Oh, Dong-Chan; Clardy, Jon

    2011-01-01

    and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15...... and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding...... phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest....

  7. DNA replication is not restricted to specific regions in young vegetative Streptomyces mycelia

    International Nuclear Information System (INIS)

    Kummer, C.; Kretschmer, S.

    1986-01-01

    In order to determine the localization of DNA-synthesis in Streptomyces granaticolor and Streptomyces hygroscopicus, mycelia (growing either on agar or in liquid medium) were pulse-labelled with 3 H-thymidine and prepared for autoradiography. The distribution of silver grains showed no regions of preferential incorporation of 3 H-thymidine in mycelia up 300 μm in length. Since mycelia grow by apical elongation of hyphae, the frequency of silver grains was quantitatively analysed along individual main hyphase. No significant difference of labelling was found within zones of different age up to a distance of 80 μm from the hyphal tip. Also, the very youngest part of the hyphae enclosing only the most apically situated nucleoid did not show any deviation from the average frequency of silver grains. (author)

  8. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract.

    Science.gov (United States)

    Karim, Azila Abdul; Azlan, Azrina; Ismail, Amin; Hashim, Puziah; Abd Gani, Siti Salwa; Zainudin, Badrul Hisyam; Abdullah, Nur Azilah

    2014-10-07

    Cocoa pod is an outer part of cocoa fruits being discarded during cocoa bean processing. Authors found out that data on its usage in literature as cosmetic materials was not recorded in vast. In this study, cocoa pod extract was investigated for its potential as a cosmetic ingredient. Cocoa pod extract (CPE) composition was accomplished using UHPLC. The antioxidant capacity were measured using scavenging assay of 1,2-diphenyl-2-picrylhydrazyl (DPPH), β-carotene bleaching assay (BCB) and ferric reducing antioxidant power (FRAP). Inhibiting effect on skin degradation enzymes was carried out using elastase and collagenase assays. The skin whitening effect of CPE was determined based on mushroom tyrosinase assay and sun screening effect (UV-absorbance at 200-400 nm wavelength). LC-MS/MS data showed the presence of carboxylic acid, phenolic acid, fatty acid, flavonoids (flavonol and flavones), stilbenoids and terpenoids in CPE. Results for antioxidant activity exhibited that CPE possessed good antioxidant activity, based on the mechanism of the assays compared with ascorbic acid (AA) and standardized pine bark extract (PBE); DPPH: AA > CPE > PBE; FRAP: PBE > CPE > AA; and BCB: BHT > CPE > PBE. Cocoa pod extract showed better action against elastase and collagenase enzymes in comparison with PBE and AA. Higher inhibition towards tyrosinase enzyme was exhibited by CPE than kojic acid and AA, although lower than PBE. CPE induced proliferation when tested on human fibroblast cell at low concentration. CPE also exhibited a potential as UVB sunscreen despite its low performance as a UVA sunscreen agent. Therefore, the CPE has high potential as a cosmetic ingredient due to its anti-wrinkle, skin whitening, and sunscreen effects.

  9. Streptomyces roietensis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of jasmine rice, Oryza sativa KDML 105.

    Science.gov (United States)

    Kaewkla, Onuma; Franco, Christopher Milton Mathew

    2017-11-01

    An endophytic actinobacterium, strain WES2 T , was isolated from the stem of a jasmine rice plant collected from a paddy field in Thung Gura Rong Hai, Roi Et province, Thailand. As a result of a polyphasic study, this strain was identified as representing a novel member of the genus Streptomyces. This strain was a Gram-stain-positive, aerobic actinobacterium with well-developed substrate mycelia and forming chains of looped spores. The closest phylogenetic relations, which shared the highest 16S rRNA gene sequence similarity, were Streptomyces nogalater JCM 4799 T and Streptomyces lavenduligriseus NRRL-ISP 5487 T at 99.1 and 99.0 %, respectively. Chemotaxonomic data, including major fatty acids, cell wall components and major menaquinones, confirmed the affiliation of WES2 T to the genus Streptomyces. The data from the phylogenetic analysis, including physiological and biochemical studies and DNA-DNA hybridization, revealed the genotypic and phenotypic differentiation of WES2 T from the most closely related species with validly published names. The name proposed for the novel species is Streptomycesroietensis sp. nov. The type strain is WES2 T (=DSM 101729=NRRL B-65344).

  10. Fibrinolytic protease production by new Streptomyces sp. DPUA 1576 from Amazon lichens

    Directory of Open Access Journals (Sweden)

    Germana M.M. Silva

    2015-01-01

    Conclusions: These results show that the optimization of the culture medium can enhance protease production, thus becoming a good process for further research. In addition, Streptomyces sp. DPUA 1576, isolated from Amazon lichens, might be a potential strain for fibrinolytic protease production.

  11. The mutagenic effect of streptomyces and aspergillus niger with fast neutron irradiation

    International Nuclear Information System (INIS)

    Zhang Shengjun; Zhou Shuxin; Fang Xiaoming

    1992-01-01

    The authors describe the effect of irradiation on some Streptomyces and Aspergillus niger with fast neutron. The death rate(%), production rate(%, W/V), and heredities were determined and analysed. Particularly, five variant types of Strepto. griseous No.1 will be researched in depth

  12. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

    Science.gov (United States)

    Röttig, Annika; Hauschild, Philippa; Madkour, Mohamed H; Al-Ansari, Ahmed M; Almakishah, Naief H; Steinbüchel, Alexander

    2016-05-10

    As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. RNase III-Binding-mRNAs Revealed Novel Complementary Transcripts in Streptomyces

    Czech Academy of Sciences Publication Activity Database

    Šetinová, D.; Šmídová, K.; Pohl, P.; Music, I.; Bobek, Jan

    2018-01-01

    Roč. 8, JAN 15 2018 (2018), č. článku 2693. ISSN 1664-302X R&D Projects: GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : cis-antisense RNA * RNase III * Streptomyces Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.076, year: 2016

  14. Antifungal performance of extracellular chitinases and culture supernatants of Streptomyces galilaeus CFFSUR-B12 against Mycosphaerella fijiensis Morelet.

    Science.gov (United States)

    Castillo, Benjamín Moreno; Dunn, Michael F; Navarro, Karina Guillén; Meléndez, Francisco Holguín; Ortiz, Magdalena Hernández; Guevara, Sergio Encarnación; Palacios, Graciela Huerta

    2016-03-01

    The tropical and mycoparasite strain Streptomyces galilaeus CFFSUR-B12 was evaluated as an antagonist of Mycosphaerella fijiensis Morelet, causal agent of the Black Sigatoka Disease (BSD) of banana. On zymograms of CFFSUR-B12 culture supernatants, we detected four chitinases of approximately 32 kDa (Chi32), 20 kDa (Chi20), and two with masses well over 170 kDa (ChiU) that showed little migration during denaturing electrophoresis at different concentrations of polyacrylamide. The thymol-sulphuric acid assay showed that the ChiU were glycosylated chitinases. Moreover, matrix assisted laser desorption ionization time-of-flight MS analysis revealed that the ChiU are the same protein and identical to a family 18 chitinase from Streptomyces sp. S4 (gi|498328075). Chi32 was similar to an extracellular protein from Streptomyces albus J1074 (gi|478687481) and Chi20 was non-significantly similar to chitinases from five different strains of Streptomyces (P > 0.05). Subsequently, Chi32 and Chi20 were partially purified by anion exchange and hydrophobic interaction chromatography and tested against M. fijiensis. Chitinases failed to inhibit ascospore germination, but inhibited up to 35 and 62% of germ tube elongation and mycelial growth, respectively. We found that crude culture supernatant and living cells of S. galilaeus CFFSUR-B12 were the most effective in inhibiting M. fijiensis and are potential biocontrol agents of BSD.

  15. Influence of Laccase and Tyrosinase on the Antioxidant Capacity of Selected Phenolic Compounds on Human Cell Lines

    Directory of Open Access Journals (Sweden)

    Matthias Riebel

    2015-09-01

    Full Text Available Polyphenolic compounds affect the color, odor and taste of numerous food products of plant origin. In addition to the visual and gustatory properties, they serve as radical scavengers and have antioxidant effects. Polyphenols, especially resveratrol in red wine, have gained increasing scientific and public interest due to their presumptive beneficial impact on human health. Enzymatic oxidation of phenolic compounds takes place under the influence of polyphenol oxidases (PPO, including tyrosinase and laccase. Several studies have demonstrated the radical scavenger effect of plants, food products and individual polyphenols in vitro, but, apart from resveratrol, such impact has not been proved in physiological test systems. Furthermore, only a few data exist on the antioxidant capacities of the enzymatic oxidation products of phenolic compounds generated by PPO. We report here first results about the antioxidant effects of phenolic substances, before and after oxidation by fungal model tyrosinase and laccase. In general, the common chemical 2,2-diphenyl-1-picrylhydrazyl assay and the biological tests using two different types of cell cultures (monocytes and endothelial cells delivered similar results. The phenols tested showed significant differences with respect to their antioxidant activity in all test systems. Their antioxidant capacities after enzymatic conversion decreased or increased depending on the individual PPO used.

  16. Characterization of Streptomyces isolates causing colour changes of mural paintings in ancient Egyptian tombs.

    Science.gov (United States)

    Abdel-Haliem, M E F; Sakr, A A; Ali, M F; Ghaly, M F; Sohlenkamp, C

    2013-08-25

    Paintings in ancient Egyptian tombs often suffer colour changes due to microbial growth and colonization. Streptomyces strains were isolated from mural paintings of Tell Basta and Tanis tombs (East of Nile Delta, Egypt) and were identified using biochemical and molecular methods. The16S rDNA sequences data indicated that isolated strains were closely related to S. coelicolor, S. albidofuscus, S. ambofaciens, S. canarius, S. parvullus, S. corchorusii, S. albidofuscus and S. nigrifaciens. It could be shown that Streptomyces strains are involved on a large scale in the colour changes of paintings and stone support by producing a wide range of metabolites such as acids (oxalic, citric and sulphuric acids), biopigments of melanin, carotenoids, and hydrogen sulphide. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Colonization of lettuce rhizosphere and roots by tagged Streptomyces.

    Science.gov (United States)

    Bonaldi, Maria; Chen, Xiaoyulong; Kunova, Andrea; Pizzatti, Cristina; Saracchi, Marco; Cortesi, Paolo

    2015-01-01

    Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plasmid harboring an enhanced green fluorescent protein marker and resistance to apramycin. The fitness of transformants was compared to the wild-type strains and all of them grew and sporulated at similar rates and retained the production of enzymes and selected secondary metabolites as well as in vitro inhibition of S. sclerotiorum. The tagged ZEA17I strain was selected to study the dynamics of lettuce roots and rhizosphere colonization in non-sterile growth substrate. The transformed strain was able to colonize soil, developing roots, and rhizosphere. When the strain was inoculated directly on the growth substrate, significantly more t-ZEA17I was re-isolated both from the rhizosphere and the roots when compared to the amount obtained after seed coating. The re-isolation from the rhizosphere and the inner tissues of surface-sterilized lettuce roots demonstrated that t-ZEA17I is both rhizospheric and endophytic.

  18. Structured morphological modeling as a framework for rational strain design of Streptomyces species

    NARCIS (Netherlands)

    Celler, K.; Picioreanu, C.; Van Loosdrecht, M.C.M.; Van Wezel, G.P.

    2012-01-01

    Successful application of a computational model for rational design of industrial Streptomyces exploitation requires a better understanding of the relationship between morphology—dictated by microbial growth, branching, fragmentation and adhesion—and product formation. Here we review the

  19. Production of actinorhodin-related ''blue pigments'' by Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    Bystrykh, LV; FernandezMoreno, MA; Herrema, JK; Malpartida, F; Hopwood, DA; Dijkhuizen, L

    The genetically well-known strain Streptomyces coelicolor A3(2) produces the pH indicator (red/blue) antibiotic actinorhodin, but not all the ''blue pigment'' produced by this strain is actinorhodin. When the organism was subjected to various nutrient limitations (ammonium, nitrate, phosphate, or

  20. Streptomyces lonarensis sp. nov., isolated from Lonar Lake, a meteorite salt water lake in India.

    Science.gov (United States)

    Sharma, Trupti K; Mawlankar, Rahul; Sonalkar, Vidya V; Shinde, Vidhya K; Zhan, Jing; Li, Wen-Jun; Rele, Meenakshi V; Dastager, Syed G; Kumar, Lalitha Sunil

    2016-02-01

    A novel alkaliphilic actinomycete, strain NCL716(T), was isolated from a soil sample collected from the vicinity of Lonar Lake, an alkaline salt water meteorite lake in Buldhana district of Maharashtra State in India. The strain was characterised using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth was observed over a pH range of 7-11 at 28 °C. The cell wall was found to contain LL-diaminopimelic acid and traces of meso-diaminopimelic acid. The major fatty acid components were identified as iso-C16:0 (46.8 %), C17:1 (12.4 %), anteiso-C15:0 (5.1 %) and anteiso-C17:1 (4.8 %). The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. The major menaquinones were determined to be MK-9 (H6) (70.3 %), MK-9 (H4) (15.5 %) and MK-9 (H8) (7.2 %). The G+C content of the DNA of the type strain was determined to be 71.4 mol %. The 16S rRNA gene sequence has been deposited in GenBank with accession number FJ919811. Although the 16S rRNA gene sequence analysis revealed that strain NCL716(T) shares >99 % similarity with that of Streptomyces bohaiensis strain 11A07(T), DNA-DNA hybridization revealed only 33.2 ± 3.0 % relatedness between them. Moreover, these two strains can be readily distinguished by some distinct phenotypic characteristics. Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NCL716(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces lonarensis sp. nov., is proposed. The type strain is NCL 716(T) (=DSM 42084(T) = MTCC 11708(T) = KCTC 39684(T)).

  1. Evaluation of the toxicity of Streptomyces aburaviensis (R9) towards various agricultural pests

    Science.gov (United States)

    The culture filtrate fraction extracted with dichloromethane from Streptomyces aburaviensis -R9 strain grown on glucose-peptone-molasses (GPM) broth was bioassayed for its effect on phytopathogenic fungi (Colletotrichum acutatum, C. fragariae, C. gloeosoprioids, Botrytis cinerea, Fusarium oxysporum,...

  2. Native and engineered clifednamide biosynthesis in multiple Streptomyces spp.

    OpenAIRE

    Blodgett, Joshua; Ding, Edward; Qi, Yunci

    2017-01-01

    Polycyclic tetramate macrolactam (PTM) natural products are produced by actinomycetes and other bacteria. PTMs are often bioactive, and the simplicity of their biosynthetic clusters make them attractive for bioengineering. Clifednamide-type PTMs from Streptomyces sp. JV178 contain a distinctive ketone group, suggesting the existence of a novel PTM oxidizing enzyme. Here, we report the new cytochrome P450 enzyme (CftA) is required for clifednamide production. Genome mining was used to identify...

  3. Promoter Engineering Reveals the Importance of Heptameric Direct Repeats for DNA Binding by Streptomyces Antibiotic Regulatory Protein-Large ATP-Binding Regulator of the LuxR Family (SARP-LAL) Regulators in Streptomyces natalensis.

    Science.gov (United States)

    Barreales, Eva G; Vicente, Cláudia M; de Pedro, Antonio; Santos-Aberturas, Javier; Aparicio, Jesús F

    2018-05-15

    The biosynthesis of small-size polyene macrolides is ultimately controlled by a couple of transcriptional regulators that act in a hierarchical way. A Streptomyces antibiotic regulatory protein-large ATP-binding regulator of the LuxR family (SARP-LAL) regulator binds the promoter of a PAS-LuxR regulator-encoding gene and activates its transcription, and in turn, the gene product of the latter activates transcription from various promoters of the polyene gene cluster directly. The primary operator of PimR, the archetype of SARP-LAL regulators, contains three heptameric direct repeats separated by four-nucleotide spacers, but the regulator can also bind a secondary operator with only two direct repeats separated by a 3-nucleotide spacer, both located in the promoter region of its unique target gene, pimM A similar arrangement of operators has been identified for PimR counterparts encoded by gene clusters for different antifungal secondary metabolites, including not only polyene macrolides but peptidyl nucleosides, phoslactomycins, or cycloheximide. Here, we used promoter engineering and quantitative transcriptional analyses to determine the contributions of the different heptameric repeats to transcriptional activation and final polyene production. Optimized promoters have thus been developed. Deletion studies and electrophoretic mobility assays were used for the definition of DNA-binding boxes formed by 22-nucleotide sequences comprising two conserved heptameric direct repeats separated by four-nucleotide less conserved spacers. The cooperative binding of PimR SARP appears to be the mechanism involved in the binding of regulator monomers to operators, and at least two protein monomers are required for efficient binding. IMPORTANCE Here, we have shown that a modulation of the production of the antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM The expression of this gene is

  4. Studies on Optimization of Growth Parameters for L-Asparaginase Production by Streptomyces ginsengisoli

    Directory of Open Access Journals (Sweden)

    Neelima Deshpande

    2014-01-01

    Full Text Available A species of Streptomyces, Streptomyces ginsengisoli, a river isolate, was evaluated for production of an enzyme, L-asparaginase, with multiple functions mainly anticancer activity. The actinomycete was subjected to submerged fermentation by “shake flask” method. The quantity of L-asparaginase produced was estimated as 3.23 μmol/mL/min. The effect of various culture conditions on L-asparaginase production was studied by adopting a method of variation in one factor at a time. Of the various conditions tested, glucose (followed by starch and peptone served as good carbon and nitrogen sources, respectively, for maximal production of enzyme at pH 8. The temperature of 30°C and an incubation period of 5 days with 0.05 g% asparagine concentration were found to be optimum for L-asparaginase production.

  5. Isolation of salt stress gene(s) from some haloterant streptomyces strains using polymerase chain reaction (abstract)

    International Nuclear Information System (INIS)

    Mohammad, S.H.

    2005-01-01

    We studied salt tolerance range in sixteen halotolerant streptomyces strains to isolate salt regulated genes using polymerase chain reaction (PCR) technology. A group of these strains was isolated from Sedi-creer (S. niveus Sc-2 and S. sendenensis Sc-II); El-Malahat (Alexndria) (S. graminofaciens Ma-13): Qaroon's lake (S. albovinaceus QA-44, S. luteofluorescens Qa-51, S. albidoflavous Qa-53 and S. erthaeus QA-84). The other group represents the strains isolated from different soils from Damaaita (S. violans Da-3). Ismailia (S. alboflavus-Is-10). Port said (S. bobili Ps-12) and Sinai sandy soil (streptomyces species Si-1, S. truirus Si-4, S. lateritius Si-6, S. hawaiiensis Si-8, S. muavecolor Si-9 and S. melanogenes Si-11). These strains were varied in their salt tolerance range in particular, with increasing NaCl concentration in the growth medium up to 14%. It was also noted that all the applied Streptomyces strains appeared abundant growth at NaCl concentrations of 0.05, 3.5 and 7.0%. When NaCl was added at concentration of 10.5%, all of them except S. melanogenes Si-II strain gave moderate growth. On the contrary, NaCl at concentration of 14% inhibited the growth of 50% of strains under investigation. But the other 50% of these strains gave moderate growth at the same NaCl concentration. At the molecular level, the PCR was successfully used for isolating the mtlD and P5CS genes from 3 (S. alboinaceus Qa-44, S. albidoflavus Qa-53, S. erthraeus QA-84) and 4 (S. albovunaecaus Qa-44, Streptomyces species Si-I, S. luteofluorescens Qa-51, S. latritius Si-6) strains, respectively. As PCR fragments with a size of about 1095 and 2100 bp were amplified from the DNA genome of these strains using the primer pairs (P1 and P2) and (P3 and P4), respectively. These results confirmed the ability to use PCR for isolation or detection of any gene based on its nucleotide sequencing in any microorganism. Furthermore, one can recommended the use of the applied halotolerant

  6. Streptomyces tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhao, Junwei; Shi, Linlin; Li, Wenchao; Wang, Jiabin; Wang, Han; Tian, Yuanyuan; Xiang, Wensheng; Wang, Xiangjing

    2018-02-01

    Two novel actinomycete isolates, designated strains NEAU-A4 T and NEAU-A3, were isolated from rhizosphere soil of wheat (Triticumaestivum L.) and characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics of the two strains coincided with those of the genus Streptomyces. The 16S rRNA gene sequence analysis showed that the two isolates exhibited 99.6 % 16S rRNA gene sequence similarity with each other and that they were most closely related to Streptomyces violaceorectus DSM 40279 T (98.8, 99.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains clustered together and formed a separate subclade. Furthermore, a combination of DNA-DNA hybridization results and some physiological and biochemical properties demonstrated that the two strains could be distinguished from its closest relative. Therefore, it is proposed that strains NEAU-A4 T and NEAU-A3 should be classified as representatives of a novel species of the genus Streptomyces, for which the name Streptomycestritici sp. nov. is proposed. The type strain is NEAU-A4 T (=CGMCC 4.7393 T =DSM 104540 T ).

  7. Comparison of growth methods and biological activities of brazilian marine Streptomyces

    Directory of Open Access Journals (Sweden)

    A. C. Granato

    2013-03-01

    Full Text Available The present work describes the study of the growth and the cytotoxic and antitumor activities of the extracts of the marine microorganisms Streptomyces acrymicini and Streptomyces cebimarensis, the latter a new strain. Both microorganisms were collected from coastal marine sediments of the north coast of São Paulo state. Growth was performed in a shaker and in a bioreactor using Gym medium and the broths of both microorganisms were extracted with ethyl acetate and n-butanol. Three extracts, two organic and one aqueous, from each microorganism were obtained and tested for cytotoxic and antitumor activity using the SF-295 (Central Nervous System, HCT-8 (Colon cell lines, and the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide method. The growth methods were compared and show that, although the shaker presented reasonable results, the bioreactor represents the best choice for growth of these microorganisms. The biological activity of the different extracts was evaluated and it was demonstrated that the growth methodology may influence the secondary metabolite production and the biological activity.

  8. Evaluation of RPE65, CRALBP, VEGF, CD68, and tyrosinase gene expression in human retinal pigment epithelial cells cultured on amniotic membrane.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Khalooghi, Keynoush; Ahmadieh, Hamid; Kanavi, Mojgan Rezaie; Samiei, Shahram; Pakravesh, Jalil

    2011-06-01

    The retinal pigment epithelium (RPE) plays a key role in the maintenance of the normal functions of the retina. Tissue engineering using amniotic membrane as a substrate to culture RPE cells may provide a promising new strategy to replace damaged RPE. We established a method of culturing RPE cells over the amniotic membrane as a support for their growth and transplantation. The transcription of specific genes involved in cellular function of native RPE, including RPE65, CRALBP, VEGF, CD68, and tyrosinase, were then measured using quantitative real-time PCR. Data showed a considerable increase in transcription of RPE65, CD68, and VEGF in RPE cells cultured on amniotic membrane. The amounts of CRALBP and tyrosinase transcripts were not affected. This may simply indicate that amniotic membrane restricted dedifferentiation of RPE cells in culture. The results suggest that amniotic membrane may be considered as an elective biological substrate for RPE cell culture.

  9. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp

    DEFF Research Database (Denmark)

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R

    2011-01-01

    A previously unreported 26-membered polyene macrocyclic lactam, sceliphrolactam, was isolated from an actinomycete, Streptomyces sp., associated with the mud dauber, Sceliphron caementarium. Sceliphrolactam's structure was determined by 1D- and 2D-NMR, MS, UV, and IR spectral analysis. Sceliphrol...

  10. Identification and functional analysis of cytochrome P450 complement in Streptomyces virginiae IBL14

    Science.gov (United States)

    2013-01-01

    Background As well known, both natural and synthetic steroidal compounds are powerful endocrine disrupting compounds (EDCs) which can cause reproductive toxicity and affect cellular development in mammals and thus are generally regarded as serious contributors to water pollution. Streptomyces virginiae IBL14 is an effective degradative strain for many steroidal compounds and can also catalyze the C25 hydroxylation of diosgenin, the first-ever biotransformation found on the F-ring of diosgenin. Results To completely elucidate the hydroxylation function of cytochrome P450 genes (CYPs) found during biotransformation of steroids by S. virginiae IBL14, the whole genome sequencing of this strain was carried out via 454 Sequencing Systems. The analytical results of BLASTP showed that the strain IBL14 contains 33 CYPs, 7 ferredoxins and 3 ferredoxin reductases in its 8.0 Mb linear chromosome. CYPs from S. virginiae IBL14 are phylogenetically closed to those of Streptomyces sp. Mg1 and Streptomyces sp. C. One new subfamily was found as per the fact that the CYP Svu001 in S. virginiae IBL14 shares 66% identity only to that (ZP_05001937, protein identifer) from Streptomyces sp. Mg1. Further analysis showed that among all of the 33 CYPs in S. virginiae IBL14, three CYPs are clustered with ferredoxins, one with ferredoxin and ferredoxin reductase and three CYPs with ATP/GTP binding proteins, four CYPs arranged with transcriptional regulatory genes and one CYP located on the upstream of an ATP-binding protein and transcriptional regulators as well as four CYPs associated with other functional genes involved in secondary metabolism and degradation. Conclusions These characteristics found in CYPs from S. virginiae IBL14 show that the EXXR motif in the K-helix is not absolutely conserved in CYP157 family and I-helix not absolutely essential for the CYP structure, too. Experimental results showed that both CYP Svh01 and CYP Svu022 are two hydroxylases, capable of bioconverting

  11. Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species.

    Science.gov (United States)

    Lee, B; Pometto, A L; Fratzke, A; Bailey, T B

    1991-03-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70 degrees C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37 degrees C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30 degrees C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70 degrees C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in

  12. A novel nonsense mutation in the tyrosinase gene is related to the albinism in a capuchin monkey (Sapajus apella).

    Science.gov (United States)

    Galante Rocha de Vasconcelos, Felipe Tadeu; Hauzman, Einat; Dutra Henriques, Leonardo; Kilpp Goulart, Paulo Roney; de Faria Galvão, Olavo; Sano, Ronaldo Yuiti; da Silva Souza, Givago; Lynch Alfaro, Jessica; de Lima Silveira, Luis Carlos; Fix Ventura, Dora; Oliveira Bonci, Daniela Maria

    2017-05-05

    Oculocutaneous Albinism (OCA) is an autosomal recessive inherited condition that affects the pigmentation of eyes, hair and skin. The OCA phenotype may be caused by mutations in the tyrosinase gene (TYR), which expresses the tyrosinase enzyme and has an important role in the synthesis of melanin pigment. The aim of this study was to identify the genetic mutation responsible for the albinism in a captive capuchin monkey, and to describe the TYR gene of normal phenotype individuals. In addition, we identified the subject's species. A homozygous nonsense mutation was identified in exon 1 of the TYR gene, with the substitution of a cytosine for a thymine nucleotide (C64T) at codon 22, leading to a premature stop codon (R22X) in the albino robust capuchin monkey. The albino and five non-albino robust capuchin monkeys were identified as Sapajus apella, based on phylogenetic analyses, pelage pattern and geographic provenance. One individual was identified as S. macrocephalus. We conclude that the point mutation C64T in the TYR gene is responsible for the OCA1 albino phenotype in the capuchin monkey, classified as Sapajus apella.

  13. Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties.

    Science.gov (United States)

    López de Dicastillo, Carol; Bustos, Fernanda; Valenzuela, Ximena; López-Carballo, Gracia; Vilariño, Jose M; Galotto, Maria Jose

    2017-12-01

    The knowledge of the biological properties of fruits and leaves of murta (Ugni molinae Turcz.) has been owned by native Chilean culture. The present study investigated the phenolic content, the antioxidant, antimicrobial and anti-tyrosinase activities of different murta fruit and leaves extracts to approach their uses on future food, pharmaceutical and cosmetic applications. Extractions of murta fruit and leaves were carried out under water, ethanol and ethanol 50%. Phenolic content of these extracts was measured through Folin Ciocalteu test and the antioxidant power by four different antioxidant systems (ORAC, FRAP, DPPH and TEAC assays) owing to elucidate the main mechanism of antioxidant. Some flavonoids, such as rutin, isoquercitrin and quercitrin hydrate were identified and quantified through HPLC analysis. Antimicrobial activity was determined measuring minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) values against Escherichia coli and Listeria monocytogenes, and the effect of these extracts on L. monocytogenes was confirmed by flow cytometry. Highest contents of polyphenol compounds were obtained in hydroalcoholic extracts (28±1mggallicacid/g dry fruit, and 128±6mggallicacid/g dry leaves). The same trend was found for the values of biological properties: hydroalcoholic extracts showed the strongest activities. Leaves presented higher antioxidant, antimicrobial and anti-tyrosinase properties than murta fruit. Highest antioxidant activity values according to ORAC, FRAP, TEAC and DPPH were 80±8mgTrolox/g, 70±2mgTrolox/g, 87±8mgTrolox/g and 110±12mgTrolox/g, respectively, for murta fruit samples, and 280±10mgTrolox/g, 192±4mgTrolox/g, 286±13mgTrolox/g and 361±13mgTrolox/g, respectively, for murta leaves. These activities were confirmed by HPLC analysis that revealed highest presence of analyzed compounds on leaves hydroalcoholic extract. Regarding to antimicrobial analysis, hydroalcoholic leaves extract presented the

  14. Biocomputational prediction of small non-coding RNAs in Streptomyces

    Czech Academy of Sciences Publication Activity Database

    Pánek, Josef; Bobek, Jan; Mikulík, Karel; Basler, Marek; Vohradský, Jiří

    2008-01-01

    Roč. 9, č. 217 (2008), s. 1-14 ISSN 1471-2164 R&D Projects: GA ČR GP204/07/P361; GA ČR GA203/05/0106; GA ČR GA310/07/1009 Grant - others:XE(XE) EC Integrated Project ActinoGEN, LSHM-CT-2004-005224. Institutional research plan: CEZ:AV0Z50200510 Keywords : non-coding RNA * streptomyces * biocomputational prediction Subject RIV: IN - Informatics, Computer Science Impact factor: 3.926, year: 2008

  15. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365

    DEFF Research Database (Denmark)

    Iftime, Dumitrita; Kulik, Andreas; Härtner, Thomas

    2016-01-01

    Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynth......Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein...

  16. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Takano Eriko

    2011-09-01

    Full Text Available Abstract Background Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown function. However, in gene expression time course data, many of these functionally orphan genes show interesting expression patterns. Results In this paper, we analyzed all functionally orphan genes of Streptomyces coelicolor and identified a list of "high priority" orphans by combining gene expression analysis and additional phylogenetic information (i.e. the level of evolutionary conservation of each protein. Conclusions The prioritized orphan genes are promising candidates to be examined experimentally in the lab for further characterization of their function.

  17. Colonization of lettuce rhizosphere and roots by tagged Streptomyces

    Directory of Open Access Journals (Sweden)

    Maria eBonaldi

    2015-02-01

    Full Text Available Beneficial microorganisms are increasingly used in agriculture, but their efficacy often fails due to limited knowledge of their interactions with plants and other microorganisms present in rhizosphere. We studied spatio-temporal colonization dynamics of lettuce roots and rhizosphere by genetically modified Streptomyces spp. Five Streptomyces strains, strongly inhibiting in vitro the major soil-borne pathogen of horticultural crops, Sclerotinia sclerotiorum, were transformed with pIJ8641 plasmid harboring an enhanced green fluorescent protein marker and resistance to apramycin. The fitness of transformants was compared to the wild-type strains and all of them grew and sporulated at similar rates and retained the production of enzymes and selected secondary metabolites as well as in vitro inhibition of S. sclerotiorum. The tagged ZEA17I strain was selected to study the dynamics of lettuce roots and rhizosphere colonization in non-sterile growth substrate. The transformed strain was able to colonize soil, developing roots and rhizosphere. When the strain was inoculated directly on the growth substrate, significantly more t-ZEA17I was re-isolated both from the rhizosphere and the roots when compared to the amount obtained after seed coating. The re-isolation from the rhizosphere and the inner tissues of surface-sterilized lettuce roots demonstrated that t-ZEA17I is both rhizospheric and endophytic.

  18. Frenolicins C–G, Pyranonaphthoquinones from Streptomyces sp. RM-4-15

    OpenAIRE

    Wang, Xiachang; Shaaban, Khaled A.; Elshahawi, Sherif I.; Ponomareva, Larissa V.; Sunkara, Manjula; Zhang, Yinan; Copley, Gregory C.; Hower, James C.; Morris, Andrew J.; Kharel, Madan K.; Thorson, Jon S.

    2013-01-01

    Appalachian active coal fire sites were selected for the isolation of bacterial strains belonging to the class actinobacteria. A comparison of high resolution electrospray ionization mass spectrometry (HR-ESI-MS) and ultraviolet (UV) absorption profiles from isolate extracts to natural product databases suggested Streptomyces sp. RM-4-15 to produce unique metabolites. Four new pyranonaphthoquinones, frenolicins C–F (1–4), along with three known analogues, frenolicin (6), ...

  19. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

    Science.gov (United States)

    Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2015-12-15

    A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Glucosylglycerate Is an Osmotic Solute and an Extracellular Metabolite Produced by Streptomyces caelestis

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Stanislav; Halada, Petr; Petříček, Miroslav; Sedmera, Petr

    2007-01-01

    Roč. 52, č. 5 (2007), s. 451-456 ISSN 0015-5632 R&D Projects: GA AV ČR IAA600660607 Institutional research plan: CEZ:AV0Z50200510 Keywords : streptomyces caelestis * mass spectrometry Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  1. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25

    Science.gov (United States)

    Röttig, Annika; Strittmatter, Carl Simon; Schauer, Jennifer; Hiessl, Sebastian; Daniel, Rolf

    2016-01-01

    ABSTRACT Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli. The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected

  2. Discovery, characterization, and kinetic analysis of an alditol oxidase from streptomyces coelicolor

    NARCIS (Netherlands)

    Heuts, Dominic P. H. M.; van Hellemond, Erik W.; Janssen, Dick B.; Fraaije, Marco W.

    2007-01-01

    A gene encoding an alditol oxidase was found in the genome of Streptomyces coelicolor A3(2). This newly identified oxidase, AldO, was expressed at extremely high levels in Escherichia coli when fused to maltose-binding protein. AldO is a soluble monomeric flavoprotein with subunits of 45.1 kDa, each

  3. Cloning and characterization of the first actinomycete β-propeller phytase from Streptomyces sp. US42.

    Science.gov (United States)

    Boukhris, Ines; Farhat-Khemakhem, Ameny; Bouchaala, Kameleddine; Virolle, Marie-Joëlle; Chouayekh, Hichem

    2016-10-01

    A gene encoding an extracellular phytase was cloned for the first time from an Actinomycete, Streptomyces sp. US42 and sequenced. The sequence of this gene revealed an encoded polypeptide (PHY US42) exhibiting one and six residues difference with the putative phytases of Streptomyces lividans TK24 and Streptomyces coelicolor A3(2), respectively. The molecular modeling of PHY US42 indicated that this phytase belongs to the group of β-propeller phytases that are usually calcium-dependent. PHY US42 was purified and characterized. Its activity was calcium-dependent and maximal at pH 7 and 65 °C. The enzyme was perfectly stable at pH ranging from 5 to 10 and its thermostability was greatly enhanced in the presence of calcium. Indeed, PHY US42 maintained 80% of activity after 10 min of incubation at 75 °C in the presence of 5 mM CaCl 2 . PHY US42 was also found to exhibit high stability after incubation at 37 °C for 1 h in the presence of bovine bile and digestive proteases like of pepsin, trypsin, and chymotrypsin. Considering its biochemical properties, PHY US42 could be used as feed additive in combination with an acid phytase for monogastric animals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Establishment of a real-time PCR method for quantification of geosmin-producing Streptomyces spp. in recirculating aquaculture systems.

    Science.gov (United States)

    Auffret, Marc; Pilote, Alexandre; Proulx, Emilie; Proulx, Daniel; Vandenberg, Grant; Villemur, Richard

    2011-12-15

    Geosmin and 2-methylisoborneol (MIB) have been associated with off-flavour problems in fish and seafood products, generating a strong negative impact for aquaculture industries. Although most of the producers of geosmin and MIB have been identified as Streptomyces species or cyanobacteria, Streptomyces spp. are thought to be responsible for the synthesis of these compounds in indoor recirculating aquaculture systems (RAS). The detection of genes involved in the synthesis of geosmin and MIB can be a relevant indicator of the beginning of off-flavour events in RAS. Here, we report a real-time polymerase chain reaction (qPCR) protocol targeting geoA sequences that encode a germacradienol synthase involved in geosmin synthesis. New geoA-related sequences were retrieved from eleven geosmin-producing Actinomycete strains, among them two Streptomyces strains isolated from two RAS. Combined with geoA-related sequences available in gene databases, we designed primers and standards suitable for qPCR assays targeting mainly Streptomyces geoA. Using our qPCR protocol, we succeeded in measuring the level of geoA copies in sand filter and biofilters in two RAS. This study is the first to apply qPCR assays to detect and quantify the geosmin synthesis gene (geoA) in RAS. Quantification of geoA in RAS could permit the monitoring of the level of geosmin producers prior to the occurrence of geosmin production. This information will be most valuable for fish producers to manage further development of off-flavour events. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Molecular Identification of Streptomyces producing antibiotics and their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Latifa A. Al_husnan

    2016-12-01

    Full Text Available Five strains of Streptomyces, namely S, N, W, E and C (designations should be mentioned in detail here isolated from the rhizosphere soil cultivated with palm Alajua (date, pressed dates, AlMedina city, Saudi Arabia, were induced to produce antibiotics. Antimicrobial activities were determined on solid medium supplemented with starch. The detection was based on the formation of transparent zones around colonies. The results indicated that isolates had antibacterial activities against Staphylococcus aureus, Bacillus cereus, B. subtilis, Pseudomonas aeruginosa and also showed antifungal activity against Candida albicans and Aspergillus niger. DNA extracted from five isolates was used as template for 16s rDNA gene amplification. The expected PCR size was 1.5 kbp;1.6 kbp; 1.25 kbp; 1.25kbp and 1.0 k bp for S, N, W, E and C isolates respectively using universal 16s rDNA gene primers using direct PCR. The isolates varied morphologically on the basis of spore color, aerial and substrate mycelium formation, and production of diffusible pigment. Isolates were tested under a microscope by using slide culture technique. The results indicate that the soil of this region is source of Streptomyces having antibacterial and antifungal activity and thus better utilization of these microorganisms as biological control agents.

  6. Complete genome sequence and analysis of the Streptomyces aureofaciens phage mu1/6

    Czech Academy of Sciences Publication Activity Database

    Farkasovská, J.; Klucar, L.; Vlček, Čestmír; Kokavec, J.; Godány, A.

    2007-01-01

    Roč. 52, č. 4 (2007), s. 347-358 ISSN 0015-5632 R&D Projects: GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : phage * genome * streptomyces Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.989, year: 2007

  7. Streptomyces colonosanans sp. nov., A Novel Actinobacterium Isolated from Malaysia Mangrove Soil Exhibiting Antioxidative Activity and Cytotoxic Potential against Human Colon Cancer Cell Lines

    Science.gov (United States)

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Duangjai, Acharaporn; Saokaew, Surasak; Bukhari, Sarah I.; Khan, Tahir M.; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Streptomyces colonosanans MUSC 93JT, a novel strain isolated from mangrove forest soil located at Sarawak, Malaysia. The bacterium was noted to be Gram-positive and to form light yellow aerial and vivid yellow substrate mycelium on ISP 2 agar. The polyphasic approach was used to determine the taxonomy of strain MUSC 93JT and the strain showed a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. Phylogenetic and 16S rRNA gene sequence analysis indicated that closely related strains include Streptomyces malachitofuscus NBRC 13059T (99.2% sequence similarity), Streptomyces misionensis NBRC 13063T (99.1%), and Streptomyces phaeoluteichromatogenes NRRL 5799T (99.1%). The DNA–DNA relatedness values between MUSC 93JT and closely related type strains ranged from 14.4 ± 0.1 to 46.2 ± 0.4%. The comparison of BOX-PCR fingerprints indicated MUSC 93JT exhibits a unique DNA profile. The genome of MUSC 93JT consists of 7,015,076 bp. The DNA G + C content was determined to be 69.90 mol%. The extract of strain MUSC 93JT was demonstrated to exhibit potent antioxidant activity via ABTS, metal chelating, and SOD assays. This extract also exhibited anticancer activity against human colon cancer cell lines without significant cytotoxic effect against human normal colon cells. Furthermore, the chemical analysis of the extract further emphasizes the strain is producing chemo-preventive related metabolites. Based on this polyphasic study of MUSC 93JT, it is concluded that this strain represents a novel species, for which the name Streptomyces colonosanans sp. nov. is proposed. The type strain is MUSC 93JT (= DSM 102042T = MCCC 1K02298T). PMID:28559892

  8. Streptomyces colonosanans sp. nov., A Novel Actinobacterium Isolated from Malaysia Mangrove Soil Exhibiting Antioxidative Activity and Cytotoxic Potential against Human Colon Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Jodi Woan-Fei Law

    2017-05-01

    Full Text Available Streptomyces colonosanans MUSC 93JT, a novel strain isolated from mangrove forest soil located at Sarawak, Malaysia. The bacterium was noted to be Gram-positive and to form light yellow aerial and vivid yellow substrate mycelium on ISP 2 agar. The polyphasic approach was used to determine the taxonomy of strain MUSC 93JT and the strain showed a range of phylogenetic and chemotaxonomic properties consistent with those of the members of the genus Streptomyces. Phylogenetic and 16S rRNA gene sequence analysis indicated that closely related strains include Streptomyces malachitofuscus NBRC 13059T (99.2% sequence similarity, Streptomyces misionensis NBRC 13063T (99.1%, and Streptomyces phaeoluteichromatogenes NRRL 5799T (99.1%. The DNA–DNA relatedness values between MUSC 93JT and closely related type strains ranged from 14.4 ± 0.1 to 46.2 ± 0.4%. The comparison of BOX-PCR fingerprints indicated MUSC 93JT exhibits a unique DNA profile. The genome of MUSC 93JT consists of 7,015,076 bp. The DNA G + C content was determined to be 69.90 mol%. The extract of strain MUSC 93JT was demonstrated to exhibit potent antioxidant activity via ABTS, metal chelating, and SOD assays. This extract also exhibited anticancer activity against human colon cancer cell lines without significant cytotoxic effect against human normal colon cells. Furthermore, the chemical analysis of the extract further emphasizes the strain is producing chemo-preventive related metabolites. Based on this polyphasic study of MUSC 93JT, it is concluded that this strain represents a novel species, for which the name Streptomyces colonosanans sp. nov. is proposed. The type strain is MUSC 93JT (= DSM 102042T = MCCC 1K02298T.

  9. Molecular organization in bacterial cell membranes. Specific labelling and topological distribution of glycoproteins and proteins in Streptomyces albus membranes

    Energy Technology Data Exchange (ETDEWEB)

    Larraga, V; Munoz, E [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Instituto de Biologia Celular

    1975-05-01

    The paper reports about an investigation into the question of the specific labelling and topological distribution of glycoproteins and proteins in Streptomyces albus membranes. The method of sample preparation is described: Tritium labelling of glycoproteins in protoplasts and membranes, iodination of proteins, trypsin treatment and polyacrylamide gel electrophoresis. The findings suggest an asymmetrical distribution of the glycoproteins in membranes and a weak accessibility to iodine label. A structural model of the plasma membranes of Streptomyces albus is proposed similar to the general 'fluid mosaic' model of Singer and Nicholson.

  10. Tyrosinase inhibitor screening in traditional Chinese medicines by electrophoretically mediated microanalysis.

    Science.gov (United States)

    Tang, Lilin; Zhang, Wenpeng; Zhao, Haiyan; Chen, Zilin

    2015-08-01

    A capillary-electrophoresis-based method for the screening of tyrosinase inhibitors in traditional Chinese medicines was developed. The method integrated electrophoretically mediated microanalysis with sandwich mode injection, partial filling, and rapid polarity switching techniques, and carried out on-column enzyme reaction and the separation of substrate and product. The conditions were optimized including the background electrolyte, mixing voltage, and the incubation time. Finally, the screening of nine standard natural compounds of traditional Chinese medicines was carried out. The inhibitors can be directly identified from the reduced peak area of the product compared to that obtained without any inhibitor. Chlorogenic acid (100 μM) showed inhibitory activity with the inhibitory percentage of 19.8%, while the other compounds showed no inhibitory activity. This method has great application potential in drug discovery from traditional Chinese medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Streptomyces venezuelae TX-TL - a next generation cell-free synthetic biology tool.

    Science.gov (United States)

    Moore, Simon J; Lai, Hung-En; Needham, Hannah; Polizzi, Karen M; Freemont, Paul S

    2017-04-01

    Streptomyces venezuelae is a promising chassis in synthetic biology for fine chemical and secondary metabolite pathway engineering. The potential of S. venezuelae could be further realized by expanding its capability with the introduction of its own in vitro transcription-translation (TX-TL) system. TX-TL is a fast and expanding technology for bottom-up design of complex gene expression tools, biosensors and protein manufacturing. Herein, we introduce a S. venezuelae TX-TL platform by reporting a streamlined protocol for cell-extract preparation, demonstrating high-yield synthesis of a codon-optimized sfGFP reporter and the prototyping of a synthetic tetracycline-inducible promoter in S. venezuelae TX-TL based on the tetO-TetR repressor system. The aim of this system is to provide a host for the homologous production of exotic enzymes from Actinobacteria secondary metabolism in vitro. As an example, the authors demonstrate the soluble synthesis of a selection of enzymes (12-70 kDa) from the Streptomyces rimosus oxytetracycline pathway. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ultrastructural studies on variants of Streptomyces SP-765 obtained after gamma irradiation

    International Nuclear Information System (INIS)

    Spasova, D.I.; Krystev, Kh.I.; Todorov, I.O.; Dzhedzheva, G.M.; Popov, M.S.

    1988-01-01

    The study has been carried out with two variants of Streptomyces SP-765, gray and olygosporous, obtained after 1000 Gy gamma irradiation of spore suspension from the initial strain. The gray variant has chains of spores which are oval or oblong with rounded-off edges. Sporulation is highly inhibited in the olygosporous variant. Eleven electron-microscopic pictures of ultrathin sections from colonies of the two variants are presented. The gray variant reveals the presence of a large number of lyzed cells, spores, and scarce vegetative cells; typical of the lyzed cells are the spherical and highly osmiophilic formations on the outer and inner surface of their cytoplasmic membrane. The oligosporous variant shows lyzed cells of various sizes, cells void of content with thick walls, relativelly small number of vegetative cells and individual wall-less cells, shperoplast and protoplast formation, lamellar membrane structure of nearly all cells. Both lyzed and vegetable cells have individual anomalous form containing daughter cells. The conclusion is made that gray and oligosporous variants of Streptomyces SP-765, obtained after irradiation of its spores, possess different ultrastructural organization

  13. Gamma-butyrolactone and furan signaling systems in Streptomyces.

    Science.gov (United States)

    Sidda, John D; Corre, Christophe

    2012-01-01

    Streptomyces bacteria produce different classes of diffusible signaling molecules that trigger secondary metabolite production and/or morphological development within the cell population. The biosynthesis of gamma-butyrolactones (GBLs) and 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids (AHFCAs) signaling molecules is related and involves an essential AfsA-like butenolide synthase. This chapter first describes the catalytic role of AfsA-like enzyme then provides details about methods for the discovery and characterization of potentially novel signaling molecules. In section 4, one approach for establishing the biological role of these signaling molecules is presented. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    lactams under ambient conditions. In this study, we demonstrated production of these chemicals using ORF26, an acyl-CoA ligase involved in the biosynthesis of ECO-02301 in Streptomyces aizunensis. This enzyme has a broad substrate spectrum and can cyclize 4-aminobutyric acid into γ-butyrolactam, 5...

  15. Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Species †

    Science.gov (United States)

    Lee, Byungtae; Pometto, Anthony L.; Fratzke, Alfred; Bailey, Theodore B.

    1991-01-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70°C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37°C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30°C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70°C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in pure culture. PMID:16348434

  16. JST Thesaurus Headwords and Synonyms: Streptomyces erythreus [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term Streptomyces erythreus 名詞 一般 * * ...* * Streptomyces erythreus Streptomyces erythreus エスティーアールイーピーティーオーエムワイシーイーエス イーアールワイティーエイチアールイーユーエス Thesaurus2015 200906057379216003 C LS07 UNKNOWN_2 Streptomyces erythreus

  17. Development of Next Generation Synthetic Biology Tools for Use in Streptomyces venezuelae

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Ryan M. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). QB3 Inst.; Sachs, Daniel [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Petkiewicz, Shayne J. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Barajas, Jesus F. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Blake-Hedges, Jacquelyn M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Thompson, Mitchell G. [Univ. of California, Berkeley, CA (United States). Dept. of Plant & Microbial Biology; Reider Apel, Amanda [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Rasor, Blake J. [Miami Univ., Oxford, Ohio (United States). Dept. of Biology; Katz, Leonard [Univ. of California, Berkeley, CA (United States). QB3 Inst.; Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). QB3 Inst.; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering and Department of Bioengineering; Technical Univ. of Denmark, Kogle Alle (Denmark). Novo Nordisk Foundation Center for Biosustainability

    2016-09-07

    Streptomyces have a rich history as producers of important natural products and this genus of bacteria has recently garnered attention for its potential applications in the broader context of synthetic biology. However, the dearth of genetic tools available to control and monitor protein production precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor protein production in this host. These tools were applied to characterize heterologous promoters and various attB chromosomal integration sites. A final study leveraged the characterized toolset to demonstrate its use in producing the biofuel precursor bisabolene using a chromosomally integrated expression system. In conclusion, these tools advance S. venezuelae to be a practical host for future metabolic engineering efforts.

  18. Karakterisasi Parsial Streptomyces spp., Agens Pengendali Hayati Peyakit Lincat Tembakau

    Directory of Open Access Journals (Sweden)

    Triwidodo Arwiyanto

    2007-12-01

    Full Text Available Local isolates of Streptomyces spp. were proven could suppress "lincat disease" of tobacco in the field. Six isolates were chosen for partial characterization of their bacteriological properties as based for the next experiments purposes. The results indicated that the isolates produce miselium with spore chains, gram positive, aerob, catalase and oxidase positive. The isolates also hydrolize starch, gelatine and esculine; produce lecithinase enzyme, reduce nitrate to nitrite, do not produce melanine pigment, did not produce hydrogen sulfide. The isolates were sensitive against streptomycine and rifampicin; able to use several carbon and nitrogen sources tested. Capable to grow on several medium pH, from 4,3 to 8,0. The isolates were able to grow from 5° C to 45° C; able to grow on medium containing 4% to 7% NaCl and ion the medium containing 0,1% of phenol. Plant pathogenicity test result showed negative responses which indicated that the used isolates were non plant pathogenic. The ability in suppressing lincat pathogen (Ralstonia solanacearum and Meloidogyne incognita in vitro was vary between isolates.   Streptomyces spp, isolat lokal terbukti dapat menekan penyakit lunvat tembakau di lapangan. Sebanyak enam isolat dipilih untuk dicirikan sebagai sifat-sifat bakteriologinya sehingga dapat digunakan sebagai dasar dalam penelitian berikutnya. Penelitian dilakukan terhadap sifat morfologi, fisiologi dan sifat biokimia. Hasil penelitian menunjukkan bahwa isolat yang diteliti menghasilkan miselium yang memproduksi rangkaian spora, Gram positif, aerob, katalase dan oksidase positif. Isolat-isolat tersebut menghidrolisis pati, gelatin, eskulin; membentuk ensim lechitinase, mereduksi nitrat menjadi nitrit, tidak menghasilkan pigmen melanin, tidak membentuk hidrogen sulfida. Isolat yang diteliti peka terhadap antibiotik streptomisin dan nifampisin; mampu menggunakan beberapa sumber karbon dan sumber nitrogen yang diujikan, Kisaran pH untuk

  19. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    Energy Technology Data Exchange (ETDEWEB)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok, E-mail: yrlee@yu.ac.kr

    2014-10-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities.

  20. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    International Nuclear Information System (INIS)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok

    2014-01-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities