WorldWideScience

Sample records for streptavidin-coated polystyrene microbeads

  1. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography

    Science.gov (United States)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Il'in, M. M.; Davankov, V. A.; Parenago, O. O.; Pokrovskii, O. I.; Usovich, O. I.

    2015-11-01

    Monodisperse styrene-divinylbenzene (1 wt %) copolymer microbeads are obtained via the elaborate method of high-productivity precipitation polymerization. The crosslinking of this copolymer with chloromethyl methyl ether in the presence of Friedel-Crafts catalyst yields porous hypercrosslinked polymers with degrees of crosslinking that range from 200 to 500%. Microbead sorbents are shown to be suited for selective stationary phases for high-performance liquid chromatography and supercritical fluid chromatography.

  2. Polystyrene Microbeads by Dispersion Polymerization: Effect of Solvent on Particle Morphology

    Directory of Open Access Journals (Sweden)

    Lei Jinhua

    2014-01-01

    Full Text Available Polystyrene microspheres (PS were synthesized by dispersion polymerization in ethanol/2-Methoxyethanol (EtOH/EGME blend solvent using styrene (St as monomer, azobisisobutyronitrile (AIBN as initiator, and PVP (polyvinylpyrrolidone K-30 as stabilizer. The typical recipe of dispersion polymerization is as follows: St/Solvent/AIBN/PVP = 10 g/88 g/0.1 g/2 g. The morphology of polystyrene microspheres was characterized by the scanning electron microscopy (SEM and the molecular weights of PS particles were measured by the Ubbelohde viscometer method. The effect of ethanol content in the blend solvent on the morphology and molecular weight of polystyrene was studied. We found that the size of polystyrene microspheres increased and the molecular weight of polystyrene microspheres decreased with the decreasing of the ethanol content in the blend solvent from 100 wt% to 0 wt%. What is more, the size monodispersity of polystyrene microspheres was quite good when the pure ethanol or pure 2-Methoxyethanol was used; however when the blend ethanol/2-Methoxyethanol solvent was used, the polystyrene microspheres became polydisperse. We further found that the monodispersity of polystyrene microspheres can be significantly improved by adding a small amount of water into the blend solvent; the particles became monodisperse when the content of water in the blend solvent was up to 2 wt%.

  3. Ligand receptor dynamics at streptavidin-coated particle surfaces: A flow cytometric and spectrofluorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Buranda, T. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States)]|[Univ. of New Mexico, Albuquerque, NM (United States); Jones, G.M. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States); Nolan, J.P.; Keij, J. [Los Alamos National Labs., NM (United States); Lopez, G.P. [Univ. of New Mexico, Albuquerque, NM (United States); Sklar, L.A. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States)]|[Los Alamos National Lab., NM (United States)

    1999-04-29

    The authors have studied the binding of 5-((N-(5-(N-(6-(biotinoyl)amino)hexanoyl)amino)pentyl)thioureidyl)fluorescein (fluorescein biotin) to 6.2 {micro}m diameter, streptavidin-coated polystyrene beads using a combination of fluorimetric and flow cytometric methods. They have determined the average number of binding sites per bead, the extent of fluorescein quenching upon binding to the bead, and the association and dissociation kinetics. The authors estimate the site number to be {approx}1 million per bead. The binding of the fluorescein biotin ligand occurs in steps where the insertion of the biotin moiety into one receptor pocket is followed immediately by the capture of the fluorescein moiety by a neighboring binding pocket; fluorescence quenching is a consequence of this secondary binding. At high surface coverage, the dominant mechanism of quenching appears to be via the formation of nonfluorescent nearest-neighbor aggregates. At early times, the binding process is characterized by biphasic association and dissociation kinetics which are remarkably dependent on the initial concentration of the ligand. The rate constant for binding to the first receptor pocket of a streptavidin molecule is {approx}(1.3 {+-} 0.3) {times} 10{sup 7} 1{sup {minus}1} S{sup {minus}1}. The rate of binding of a second biotin may be reduced due to steric interference. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The dissociation rate constant is as high as 0.05 s{sup {minus}1} shortly after binding, but decreases by 3 orders of magnitude after 3 h of binding. Potential sources for the time dependence of the dissociation rate constant are discussed.

  4. Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia).

    Science.gov (United States)

    Magni, Stefano; Gagné, François; André, Chantale; Della Torre, Camilla; Auclair, Joëlle; Hanana, Houda; Parenti, Camilla Carla; Bonasoro, Francesco; Binelli, Andrea

    2018-08-01

    Microplastics (MPs), plastic debris smaller than 5mm, are widely found in both marine and freshwater ecosystems. However, few studies regarding their hazardous effects on inland water organisms, have been conducted. For this reason, the aim of our research was the evaluation of uptake and chronic toxicity of two mixtures (MIXs) of virgin polystyrene microbeads (PMs) of 10μm and 1μm in size (MIX 1, with 5×10 5 of 1μmsizePMs/L and 5×10 5 of 10μmsizePMs/L, and MIX 2 with 2×10 6 of 1μmsizePMs/L and 2×10 6 of 10μmsizePMs/L) on freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia) during 6 exposure days. The PM uptake in the mussel body and hemolymph was assessed using confocal microscopy, while the chronic toxicity of PMs was evaluated on exposed mussels using a comprehensive battery of biomarkers of cellular stress, oxidative damage and neuro- genotoxicity. Confocal microscopy analyses showed that MPs concentrated in the gut lumen of exposed mussels, absorbed and transferred firstly in the tissues and then in the hemolymph. The results revealed that PMs do not produce oxidative stress and genetic damage, with the exception of a significant modulation of catalase and glutathione peroxidase activities in mussels exposed to MIX 1. Regarding neurotoxicity, we observed only a significant increase of dopamine concentration in mussels exposed to both MIXs, suggesting a possible implication of this neurotransmitter in an elimination process of accumulated PMs. This research represents a first study about the evaluation of virgin MP toxicity in zebra mussel and more research is warranted concerning the long term neurological effects of virgin MPs. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  5. In vivo biotinylation of recombinant beta-glucosidase enables simultaneous purification and immobilization on streptavidin coated magnetic particles

    DEFF Research Database (Denmark)

    Alftrén, Johan; Ottow, Kim Ekelund; Hobley, Timothy John

    2013-01-01

    Beta-glucosidase from Bacillus licheniformis was in vivo biotinylated in Escherichia coli and subsequently immobilized directly from cell lysate on streptavidin coated magnetic particles. In vivo biotinylation was mediated by fusing the Biotin Acceptor Peptide to the C-terminal of beta......-glucosidase and co-expressing the BirA biotin ligase. The approach enabled simultaneous purification and immobilization of the enzyme from crude cell lysate on magnetic particles because of the high affinity and strong interaction between biotin and streptavidin. After immobilization of the biotinylated beta...

  6. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas; Castro, David; Foulds, Ian G.; Parameswaran, Ash M.; Sumanpreet, K. Chhina

    2013-01-01

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling

  7. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    International Nuclear Information System (INIS)

    Lu Yan; Yan Changling; Gao Shuyan

    2009-01-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  8. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yan, E-mail: yanlu2001@sohu.com [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China); Yan Changling; Gao Shuyan [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China)

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  9. Laser direct-write of single microbeads into spatially-ordered patterns

    International Nuclear Information System (INIS)

    Phamduy, Theresa B; Schiele, Nathan R; Corr, David T; Chrisey, Douglas B; Raof, Nurazhani Abdul; Xie Yubing; Yan Zijie; Huang Yong

    2012-01-01

    Fabrication of heterogeneous microbead patterns on a bead-by-bead basis promotes new opportunities for sensors, lab-on-a-chip technology and cell-culturing systems within the context of customizable constructs. Laser direct-write (LDW) was utilized to target and deposit solid polystyrene and stem cell-laden alginate hydrogel beads into computer-programmed patterns. We successfully demonstrated single-bead printing resolution and fabricated spatially-ordered patterns of microbeads. The probability of successful microbead transfer from the ribbon surface increased from 0 to 80% with decreasing diameter of 600 to 45 µm, respectively. Direct-written microbeads retained spatial pattern registry, even after 10 min of ultrasonication treatment. SEM imaging confirmed immobilization of microbeads. Viability of cells encapsulated in transferred hydrogel microbeads achieved 37 ± 11% immediately after the transfer process, whereas randomly-patterned pipetted control beads achieved a viability of 51 ± 25%. Individual placement of >10 µm diameter microbeads onto planar surfaces has previously been unattainable. We have demonstrated LDW as a valuable tool for the patterning of single, micrometer-diameter beads into spatially-ordered patterns. (paper)

  10. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas

    2013-01-21

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling the macroscopic observation. Such tests are most often used to explore antibody-antigen reactions. Agglutination has been used for protein assays using a biotin/streptavidin system as well as a hybridization based assay. The agglutination systems are prone to selftermination of the linking analyte, prone to active site saturation and loss of agglomeration at high analyte concentrations. We investigated the molecular target/ligand interaction, explaining the common agglutination problems related to analyte self-termination, linkage of the analyte to the same bead instead of different microbeads. We classified the agglutination process into three kinds of assays: a two- component assay, a three-component assay and a stepped three- component assay. Although we compared these three kinds of assays for recognizing DNA and protein molecules, the assay can be used for virtually any molecule, including ions and metabolites. In total, the optimized assay permits detecting analytes with high sensitivity in a short time, 5 min, at room temperature. Such a system is appropriate for POC testing.

  11. Protein imprinting and recognition via forming nanofilms on microbeads surfaces in aqueous media

    International Nuclear Information System (INIS)

    Lu Yan; Yan Changling; Wang Xuejing; Wang Gongke

    2009-01-01

    In this paler, we present a technique of forming nanofilms of poly-3-aminophenylboronic acid (pAPBA) on the surfaces of polystyrene (PS) microbeads for proteins (papain and trypsin) in aqueous. Papain was chosen as a model to study the feasibility of the technique and trypsin as an extension. Obtained core-shell microbeads were characterized using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and BET methods. The results show that pAPBA formed nanofilms (60-100 nm in thickness) on the surfaces of PS microbeads. The specific surface area of the papain-imprinted beads was about 180 m 2 g -1 and its pore size was 31 nm. These imprinted microbeads exhibit high recognition specificity and fast mass transfer kinetics. The specificity of these imprinted beads mainly originates from the spatial effect of imprinted sites. Because the protein-imprinted sites were located at, or close to, the surface, the imprinted beads have good site accessibility toward the template molecules. The facility of the imprinting protocol and the high recognition properties of imprinted microbeads make the approach an attractive solution to problems in the field of biotechnology.

  12. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    Science.gov (United States)

    Balvin, Manuel; Zheng, Yun

    2014-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid

  13. Microbeads and Engineering Design in Chemistry: No Small Educational Investigation

    Science.gov (United States)

    Hoffman, Adam; Turner, Ken

    2015-01-01

    A multipart laboratory activity introducing microbeads was created to meet engineering and engineering design practices consistent with new Next Generation Science Standards (NGSS). Microbeads are a current topic of concern as they have been found to cause adverse impacts in both marine and freshwater systems resulting in multiple states proposing…

  14. Binding and leakage of barium in alginate microbeads.

    Science.gov (United States)

    Mørch, Yrr A; Qi, Meirigeng; Gundersen, Per Ole M; Formo, Kjetil; Lacik, Igor; Skjåk-Braek, Gudmund; Oberholzer, Jose; Strand, Berit L

    2012-11-01

    Microbeads of alginate crosslinked with Ca(2+) and/or Ba(2+) are popular matrices in cell-based therapy. The aim of this study was to quantify the binding of barium in alginate microbeads and its leakage under in vitro and accumulation under in vivo conditions. Low concentrations of barium (1 mM) in combination with calcium (50 mM) and high concentrations of barium (20 mM) in gelling solutions were used for preparation of microbeads made of high-G and high-M alginates. High-G microbeads accumulated barium from gelling solution and contained higher concentrations of divalent ions for both low- and high-Ba exposure compared with high-G microbeads exposed to calcium solely and to high-M microbeads for all gelling conditions. Although most of the unbound divalent ions were removed during the wash and culture steps, leakage of barium was still detected during storage. Barium accumulation in blood and femur bone of mice implanted with high-G beads was found to be dose-dependent. Estimated barium leakage relevant to transplantation to diabetic patients with islets in alginate microbeads showed that the leakage was 2.5 times lower than the tolerable intake value given by WHO for high-G microbeads made using low barium concentration. The similar estimate gave 1.5 times higher than is the tolerable intake value for the high-G microbeads made using high barium concentration. To reduce the risk of barium accumulation that may be of safety concern, the microbeads made of high-G alginate gelled with a combination of calcium and low concentration of barium ions is recommended for islet transplantation. Copyright © 2012 Wiley Periodicals, Inc.

  15. Polymeric microbead arrays for microfluidic applications

    International Nuclear Information System (INIS)

    Thompson, Jason A; Du, Xiaoguang; Grogan, Joseph M; Schrlau, Michael G; Bau, Haim H

    2010-01-01

    Microbeads offer a convenient and efficient means of immobilizing biomolecules and capturing target molecules of interest in microfluidic immunoassay devices. In this study, hot embossing is used to form wells enabling the direct incorporation of a microbead array in a plastic substrate. We demonstrate two techniques to populate the well array with beads. In the first case, encoded beads with various functionalizations are distributed randomly among the wells and their position is registered by reading their encoding. Alternatively, beads are controllably placed at predetermined positions and decoding is not required. The random placement technique is demonstrated with two functionalized bead types that are distributed among the wells and then decoded to register their locations. The alternative, deliberate placement technique is demonstrated by controllably placing magnetic beads at selected locations in the array using a magnetic probe. As a proof of concept to illustrate the biosensing capability of the randomly assembled array, an on-chip, bead-based immunoassay is employed to detect the inflammatory protein Interleukin-8. The principle of the assay, however, can be extended to detect multiple targets simultaneously. Our method eliminates the need to interface silicon components with plastic devices to form microarrays containing individually addressable beads. This has the potential to reduce the cost and complexity of lab-on-chip devices for medical diagnosis, food and water quality inspection, and environmental monitoring

  16. Salmonella capture using orbiting magnetic microbeads

    Science.gov (United States)

    Owen, Drew; Ballard, Matthew; Mills, Zachary; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2014-11-01

    Using three-dimensional simulations and experiments, we examine capture of salmonella from a complex fluid sample flowing through a microfluidic channel. Capture is performed using orbiting magnetic microbeads, which can easily be extracted from the system for analysis after salmonella capture. Numerical simulations are used to model the dynamics of the system, which consists of a microchannel filled with a viscous fluid, model salmonella, magnetic microbeads and a series of angled parallel ridges lining the top of the microchannel. Simulations provide a statistical measure of the ability of the system to capture target salmonella. Our modeling findings guide the design of a lab-on-a-chip experimental device to be used for the detection of salmonella from complex food samples, allowing for the detection of the bacteria at the food source and preventing the consumption of contaminated food. Such a device can be used as a generic platform for the detection of a variety of biomaterials from complex fluids. This work is supported by a grant from the United States Department of Agriculture.

  17. Development of Sustained-Release Microbeads of Nifedipine and In ...

    African Journals Online (AJOL)

    Methods: Nifedipine microbeads were prepared using sodium alginate and pectin in different ratios by ionic-gelation method. ... Oral sustained release dosage forms provide ... Stability in .... 37oC) in a USP XXII apparatus (Pharma Test,.

  18. Near-field acoustic microbead trapping as remote anchor for single particle manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae Youn [Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of); Cheon, Dong Young; Shin, Hyunjune; Kim, Hyun Bin; Lee, Jungwoo, E-mail: jwlee@kw.ac.kr [Department of Electronic Engineering, Kwangwoon University, Seoul (Korea, Republic of)

    2015-05-04

    We recently proposed an analytical model of a two-dimensional acoustic trapping of polystyrene beads in the ray acoustics regime, where a bead diameter is larger than the wavelength used. As its experimental validation, this paper demonstrates the transverse (or lateral) trapping of individual polystyrene beads in the near field of focused ultrasound. A 100 μm bead is immobilized on the central beam axis by a focused sound beam from a 30 MHz single element lithium niobate transducer, after being laterally displaced through hundreds of micrometers. Maximum displacement, a longest lateral distance at which a trapped bead can be directed towards the central axis, is thus measured over a discrete frequency range from 24 MHz to 36 MHz. The displacement data are found to be between 323.7 μm and 470.2 μm, depending on the transducer's driving frequency and input voltage amplitude. The experimental results are compared with their corresponding model values, and their relative errors lie between 0.9% and 3.9%. The results suggest that this remote maneuvering technique may be employed to manipulate individual cells through solid microbeads, provoking certain cellular reactions to localized mechanical disturbance without direct contact.

  19. Near-field acoustic microbead trapping as remote anchor for single particle manipulation

    Science.gov (United States)

    Hwang, Jae Youn; Cheon, Dong Young; Shin, Hyunjune; Kim, Hyun Bin; Lee, Jungwoo

    2015-05-01

    We recently proposed an analytical model of a two-dimensional acoustic trapping of polystyrene beads in the ray acoustics regime, where a bead diameter is larger than the wavelength used. As its experimental validation, this paper demonstrates the transverse (or lateral) trapping of individual polystyrene beads in the near field of focused ultrasound. A 100 μm bead is immobilized on the central beam axis by a focused sound beam from a 30 MHz single element lithium niobate transducer, after being laterally displaced through hundreds of micrometers. Maximum displacement, a longest lateral distance at which a trapped bead can be directed towards the central axis, is thus measured over a discrete frequency range from 24 MHz to 36 MHz. The displacement data are found to be between 323.7 μm and 470.2 μm, depending on the transducer's driving frequency and input voltage amplitude. The experimental results are compared with their corresponding model values, and their relative errors lie between 0.9% and 3.9%. The results suggest that this remote maneuvering technique may be employed to manipulate individual cells through solid microbeads, provoking certain cellular reactions to localized mechanical disturbance without direct contact.

  20. Lipase polystyrene giant amphiphiles.

    Science.gov (United States)

    Velonia, Kelly; Rowan, Alan E; Nolte, Roeland J M

    2002-04-24

    A new type of giant amphiphilic molecule has been synthesized by covalently connecting a lipase enzyme headgroup to a maleimide-functionalized polystyrene tail (40 repeat units). The resulting biohybrid forms catalytic micellar rods in water.

  1. EFFECT OF INCORPORATING EXPANDED POLYSTYRENE ...

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... Incorporating expanded polystyrene granules in concrete matrix can produce lightweight polystyrene aggregate concrete of ... structure. [1] reported that the standard workability tests are not suitable for the polystyrene aggregate concrete since they are sensitive to the unit weight of concrete. [2] made ...

  2. Diffusion and reaction in microbead agglomerates.

    Science.gov (United States)

    Nunes Kirchner, Carolina; Träuble, Markus; Wittstock, Gunther

    2010-04-01

    Scanning electrochemical microscopy has been used to analyze the flux of p-aminonophenol (PAP) produced by agglomerates of polymeric microbeads modified with galactosidase as a model system for the bead-based heterogeneous immunoassays. With the use of mixtures of enzyme-modified and bare beads in defined ratio, agglomerates with different saturation levels of the enzyme modification were produced. The PAP flux depends on the intrinsic kinetics of the galactosidase, the local availability of the substrate p-aminophenyl-beta-D-galactopyranoside (PAPG), and the external mass transport conditions in the surrounding of the agglomerate and the internal mass transport within the bead agglomerate. The internal mass transport is influenced by the diffusional shielding of the modified beads by unmodified beads. SECM in combination with optical microscopy was used to determine experimentally the external flux. These data are in quantitative agreement with boundary element simulation considering the SECM microelectrode as an interacting probe and treating the Michaelis-Menten kinetics of the enzyme as nonlinear boundary conditions with two independent concentration variables [PAP] and [PAPG]. The PAPG concentration at the surface of the bead agglomerate was taken as a boundary condition for the analysis of the internal mass transport condition as a function of the enzyme saturation in the bead agglomerate. The results of this analysis are represented as PAP flux per contributing modified bead and the flux from freely suspended galactosidase-modified beads. These numbers are compared to the same number from the SECM experiments. It is shown that depending on the enzyme saturation level a different situation can arise where either beads located at the outer surface of the agglomerate dominate the contribution to the measured external flux or where the contribution of buried beads cannot be neglected for explaining the measured external flux.

  3. DNA & Protein detection based on microbead agglutination

    KAUST Repository

    Kodzius, Rimantas

    2012-06-06

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microparticles in the presence of a specific analyte thus enabling the macroscopic observation. Agglutination-based tests are most often used to explore the antibody-antigen reactions. Agglutination has been used for mode protein assays using a biotin/streptavidin two-component system, as well as a hybridization based two-component assay; however, as our work shows, two-component systems are prone to self-termination of the linking analyte and thus have a lower sensitivity. Three component systems have also been used with DNA hybridization, as in our work; however, their assay requires 48 hours for incubation, while our assay is performed in 5 minutes making it a real candidate for POC testing. We demonstrate three assays: a two-component biotin/streptavidin assay, a three-component hybridization assay using single stranded DNA (ssDNA) molecules and a stepped three-component hybridization assay. The comparison of these three assays shows our simple stepped three-component agglutination assay to be rapid at room temperature and more sensitive than the two-component version by an order of magnitude. An agglutination assay was also performed in a PDMS microfluidic chip where agglutinated beads were trapped by filter columns for easy observation. We developed a rapid (5 minute) room temperature assay, which is based on microbead agglutination. Our three-component assay solves the linker self-termination issue allowing an order of magnitude increase in sensitivity over two–component assays. Our stepped version of the three-component assay solves the issue with probe site saturation thus enabling a wider range of detection. Detection of the agglutinated beads with the naked eye by trapping in microfluidic channels has been shown.

  4. Treating inertia in passive microbead rheology.

    Science.gov (United States)

    Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés; Pilyugina, Ekaterina

    2012-02-01

    The dynamic modulus G(*) of a viscoelastic medium is often measured by following the trajectory of a small bead subject to Brownian motion in a method called "passive microbead rheology." This equivalence between the positional autocorrelation function of the tracer bead and G(*) is assumed via the generalized Stokes-Einstein relation (GSER). However, inertia of both bead and medium are neglected in the GSER so that the analysis based on the GSER is not valid at high frequency where inertia is important. In this paper we show how to treat both contributions to inertia properly in one-bead passive microrheological analysis. A Maxwell fluid is studied as the simplest example of a viscoelastic fluid to resolve some apparent paradoxes of eliminating inertia. In the original GSER, the mean-square displacement (MSD) of the tracer bead does not satisfy the correct initial condition. If bead inertia is considered, the proper initial condition is realized, thereby indicating an importance of including inertia, but the MSD oscillates at a time regime smaller than the relaxation time of the fluid. This behavior is rather different from the original result of the GSER and what is observed. What is more, the discrepancy from the GSER result becomes worse with decreasing bead mass, and there is an anomalous gap between the MSD derived by naïvely taking the zero-mass limit in the equation of motion and the MSD for finite bead mass as indicated by McKinley et al. [J. Rheol. 53, 1487 (2009)]. In this paper we show what is necessary to take the zero-mass limit of the bead safely and correctly without causing either the inertial oscillation or the anomalous gap, while obtaining the proper initial condition. The presence of a very small purely viscous element can be used to eliminate bead inertia safely once included in the GSER. We also show that if the medium contains relaxation times outside the window where the single-mode Maxwell behavior is observed, the oscillation can be

  5. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China.

    Science.gov (United States)

    Cheung, Pui Kwan; Fok, Lincoln

    2017-10-01

    Plastic microbeads are often added to personal care and cosmetic products (PCCPs) as an abrasive agent in exfoliants. These beads have been reported to contaminate the aquatic environment and are sufficiently small to be readily ingested by aquatic organisms. Plastic microbeads can be directly released into the aquatic environment with domestic sewage if no sewage treatment is provided, and they can also escape from wastewater treatment plants (WWTPs) because of incomplete removal. However, the emissions of microbeads from these two sources have never been estimated for China, and no regulation has been imposed on the use of plastic microbeads in PCCPs. Therefore, in this study, we aimed to estimate the annual microbead emissions in Mainland China from both direct emissions and WWTP emissions. Nine facial scrubs were purchased, and the microbeads in the scrubs were extracted and enumerated. The microbead density in those products ranged from 5219 to 50,391 particles/g, with an average of 20,860 particles/g. Direct emissions arising from the use of facial scrubs were estimated using this average density number, population data, facial scrub usage rate, sewage treatment rate, and a few conservative assumptions. WWTP emissions were calculated by multiplying the annual treated sewage volume and estimated microbead density in treated sewage. We estimated that, on average, 209.7 trillion microbeads (306.9 tonnes) are emitted into the aquatic environment in Mainland China every year. More than 80% of the emissions originate from incomplete removal in WWTPs, and the remaining 20% are derived from direct emissions. Although the weight of the emitted microbeads only accounts for approximately 0.03% of the plastic waste input into the ocean from China, the number of microbeads emitted far exceeds the previous estimate of plastic debris (>330 μm) on the world's sea surface. Immediate actions are required to prevent plastic microbeads from entering the aquatic environment

  6. Fractal dimension of microbead assemblies used for protein detection.

    Science.gov (United States)

    Hecht, Ariel; Commiskey, Patrick; Lazaridis, Filippos; Argyrakis, Panos; Kopelman, Raoul

    2014-11-10

    We use fractal analysis to calculate the protein concentration in a rotating magnetic assembly of microbeads of size 1 μm, which has optimized parameters of sedimentation, binding sites and magnetic volume. We utilize the original Forrest-Witten method, but due to the relatively small number of bead particles, which is of the order of 500, we use a large number of origins and also a large number of algorithm iterations. We find a value of the fractal dimension in the range 1.70-1.90, as a function of the thrombin concentration, which plays the role of binding the microbeads together. This is in good agreement with previous results from magnetorotation studies. The calculation of the fractal dimension using multiple points of reference can be used for any assembly with a relatively small number of particles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fluorescence-Based Multiplex Protein Detection Using Optically Encoded Microbeads

    Directory of Open Access Journals (Sweden)

    Dae Hong Jeong

    2012-03-01

    Full Text Available Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based multiplex detection techniques. Among the various techniques for high-throughput protein screening, optically-encoded beads combined with fluorescence-based target monitoring have great advantages over the planar array-based multiplexing assays. This review discusses recent developments of analytical methods of screening protein molecules on microbead-based platforms. These include various strategies such as barcoded microbeads, molecular beacon-based techniques, and surface-enhanced Raman scattering-based techniques. Their applications for label-free protein detection are also addressed. Especially, the optically-encoded beads such as multilayer fluorescence beads and SERS-encoded beads are successful for generating a large number of coding.

  8. Soft chitosan microbeads scaffold for 3D functional neuronal networks.

    Science.gov (United States)

    Tedesco, Maria Teresa; Di Lisa, Donatella; Massobrio, Paolo; Colistra, Nicolò; Pesce, Mattia; Catelani, Tiziano; Dellacasa, Elena; Raiteri, Roberto; Martinoia, Sergio; Pastorino, Laura

    2018-02-01

    The availability of 3D biomimetic in vitro neuronal networks of mammalian neurons represents a pivotal step for the development of brain-on-a-chip experimental models to study neuronal (dys)functions and particularly neuronal connectivity. The use of hydrogel-based scaffolds for 3D cell cultures has been extensively studied in the last years. However, limited work on biomimetic 3D neuronal cultures has been carried out to date. In this respect, here we investigated the use of a widely popular polysaccharide, chitosan (CHI), for the fabrication of a microbead based 3D scaffold to be coupled to primary neuronal cells. CHI microbeads were characterized by optical and atomic force microscopies. The cell/scaffold interaction was deeply characterized by transmission electron microscopy and by immunocytochemistry using confocal microscopy. Finally, a preliminary electrophysiological characterization by micro-electrode arrays was carried out. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads

    International Nuclear Information System (INIS)

    Kingsley, D M; Dias, A D; Corr, D T; Chrisey, D B

    2013-01-01

    Alginate can be used to encapsulate mammalian cells and for the slow release of small molecules. Packaging alginate as microbead structures allows customizable delivery for tissue engineering, drug release, or contrast agents for imaging. However, state-of-the-art microbead fabrication has a limited range in achievable bead sizes, and poor control over bead placement, which may be desired to localize cellular signaling or delivery. Herein, we present a novel, laser-based method for single-step fabrication and precise planar placement of alginate microbeads. Our results show that bead size is controllable within 8%, and fabricated microbeads can remain immobilized within 2% of their target placement. Demonstration of this technique using human breast cancer cells shows that cells encapsulated within these microbeads survive at a rate of 89.6%, decreasing to 84.3% after five days in culture. Infusing rhodamine dye into microbeads prior to fluorescent microscopy shows their 3D spheroidal geometry and the ability to sequester small molecules. Microbead fabrication and patterning is compatible with conventional cellular transfer and patterning by laser direct-write, allowing location-based cellular studies. While this method can also be used to fabricate microbeads en masse for collection, the greatest value to tissue engineering and drug delivery studies and applications lies in the pattern registry of printed microbeads. (paper)

  10. Whey microbeads as a matrix for the encapsulation and immobilisation of riboflavin and peptides.

    Science.gov (United States)

    O'Neill, Graham J; Egan, Thelma; Jacquier, Jean Christophe; O'Sullivan, Michael; Dolores O'Riordan, E

    2014-10-01

    Whey microbeads manufactured using a cold-set gelation process, have been used to encapsulate bioactives. In this study whey microbeads were used to encapsulate riboflavin using 2 methods. Riboflavin was added to the microbead forming solution however diffusional losses of riboflavin occurred during the subsequent bead preparation. To overcome riboflavin loss, a second approach to 'load' whey microbeads by soaking in riboflavin was assessed. Significantly (p⩽0.05) higher concentrations of riboflavin were obtained in 'loaded' microbeads (361 mg/L) compared to riboflavin added to the microbead forming solution (48 mg/L). Riboflavin uptake by the microbeads was shown to be via a partition process. As partitioning is often driven by hydrophobic interactions the uptake of amino acids and peptides of varying hydrophobicities by the microbeads was examined. The % encapsulation increased with increasing molecule hydrophobicity with a maximum of 89% encapsulation. Whey microbeads are well suited to act as sorbents for encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    Science.gov (United States)

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fabrication and Evaluation of Tinidazole Microbeads for Colon Targeting

    Directory of Open Access Journals (Sweden)

    Amit K. Pandey

    2012-05-01

    Full Text Available Objective: The purpose of present investigation was to develop and evaluate multiparticulate system exploiting pH-sensitive property and specific biodegradability of calcium alginate microbeads, for colon- targeted delivery of Tinidazole for the treatment of amoebic colitis. Methods: Calcium alginate beads containing Tinidazole were prepared by ionotropic gelation technique followed by coating with Eudragit S100 using solvent evaporation method to obtain pH sensitive microbeads. Various formulation parameters were optimized which included concentration of sodium alginate (2% w/v, curing time (20 min and concentration of pectin (1% w/ v. All the formulations were evaluated for surface morphology, particle size analysis, entrapment efficiency and in-vitro drug release in conditions simulating colonic fluid in the presence of rat caecal (2% w/v content. Results: The average size of beads of optimized formulation (FT4 was found to be 998.73依5.12 毺 m with entrapment efficiency of 87.28依2.19 %. The invitro release of Eudragit S100 coated beads in presence of rat caecal content was found to be 70.73%依1.91% in 24 hours. Data of in-vitro release was fitted into Higuchi kinetics and Korsmeyer Peppas equation to explain release profile. The optimized formulation (FT4 showed zero order release. Conclusions: It is concluded that calcium alginate microbeads are the potential system for colon delivery of Tinidazole for chemotherapy of amoebic infection.

  13. Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics

    Science.gov (United States)

    Li, Huilin; Men, Dandan; Sun, Yiqiang; Zhang, Tao; Hang, Lifeng; Liu, Dilong; Li, Cuncheng; Cai, Weiping; Li, Yue

    2017-10-01

    Uniform Au nanoparticle (NP)/poly (acrylamide-co-acrylic acid) [P(AAm-co-AA)] hydrogel microbeads were successfully prepared using droplet microfluidics technology. The microbeads exhibited a good stimuli-responsive behavior to pH value. Particularly in the pH value ranging from pH 2-pH 9, the composite microbead sizes gradually increased along with the increase of pH value. The homogeneous Au NPs, which were encapsulated in the P(AAm-co-AA) hydrogel microbeads, could transform the volume changes of hydrogel into optical signals by a tested single microbead with a microspectrometre system. The glucose was translated into gluconic acid by glucose oxidase. Thus, the Au NP/P(AAm-co-AA) hydrogel microbeads were used for detecting glucose based on pH effects on the composite microbeads. For this, the single Au NP/P(AAm-co-AA) hydrogel microbead could act as a good pH- or glucose-visualizing sensor.

  14. Nucleic acid detection based on the use of microbeads: a review

    International Nuclear Information System (INIS)

    Rödiger, Stefan; Liebsch, Claudia; Schmidt, Carsten; Schierack, Peter; Lehmann, Werner; Resch-Genger, Ute; Schedler, Uwe

    2014-01-01

    Microbead-based technologies represent elegant and versatile approaches for highly parallelized quantitative multiparameter assays. They also form the basis of various techniques for detection and quantification of nucleic acids and proteins. Nucleic acid-based methods include hybridization assays, solid-phase PCR, sequencing, and trapping assays. Microbead assays have been improved in the past decades and are now important tools in routine and point-of-care diagnostics as well as in life science. Its advances include low costs, low workload, high speed and high-throughput automation. The potential of microbead-based assays therefore is apparent, and commercial applications can be found in the detection and discrimination of single nucleotide polymorphism, of pathogens, and in trapping assays. This review provides an overview on microbead-based platforms for biosensing with a main focus on nucleic acid detection (including amplification strategies and on selected probe systems using fluorescent labeling). Specific sections cover chemical properties of microbeads, the coupling of targets onto solid surfaces, microbead probe systems (mainly oligonucleotide probes), microbead detection schemes (with subsections on suspension arrays, microfluidic devices, and immobilized microbeads), quantification of nucleic acids, PCR in solution and the detection of amplicons, and methods for solid-phase amplification. We discuss selected trends such as microbead-coupled amplification, heterogeneous and homogenous DNA hybridization assays, real-time assays, melting curve analysis, and digital microbead assays. We finally discuss the relevance and trends of the methods in terms of high-level multiplexed analysis and their potential in diagnosis and personalized medicine. (author)

  15. Alginate-hydroxypropylcellulose hydrogel microbeads for alkaline phosphatase encapsulation.

    Science.gov (United States)

    Karewicz, A; Zasada, K; Bielska, D; Douglas, T E L; Jansen, J A; Leeuwenburgh, S C G; Nowakowska, M

    2014-01-01

    There is a growing interest in using proteins as therapeutics agents. Unfortunately, they suffer from limited stability and bioavailability. We aimed to develop a new delivery system for proteins. ALP, a model protein, was successfully encapsulated in the physically cross-linked sodium alginate/hydroxypropylcellulose (ALG-HPC) hydrogel microparticles. The obtained objects had regular, spherical shape and a diameter of ∼4 µm, as confirmed by optical microscopy and SEM analysis. The properties of the obtained microbeads could be controlled by temperature and additional coating or crosslinking procedures. The slow, sustained release of ALP in its active form with no initial burst effect was observed for chitosan-coated microspheres at pH = 7.4 and 37 °C. Activity of ALP released from ALG/HPC microspheres was confirmed by the occurance of effectively induced mineralization. SEM and AFM images revealed formation of the interpenetrated three-dimensional network of mineral, originating from the microbeads' surfaces. FTIR and XRD analyses confirmed formation of hydroxyapatite.

  16. Flexible mechanism of magnetic microbeads chains in an oscillating field

    Science.gov (United States)

    Li, Yan-Hom; Yen, Chia-Yen

    2018-05-01

    To investigate the use of magnetic microbeads for swimming at low Reynolds number, the flexible structure of microchains comprising superparamagnetic microbeads under the influence of oscillating magnetic fields is examined experimentally and theoretically. For a ductile chain, each particle has its own phase angle trajectory and phase-lag angle to the overall field. This present study thoroughly discusses the synchronicity of the local phase angle trajectory between each dyad of beads and the external field. The prominently asynchronous trajectories between the central and outer beads significantly dominate the flexible structure of the oscillating chain. In addition, the dimensionless local Mason number (Mnl) is derived as the solo controlling parameter to evaluate the structure of each dyad of beads in a flexible chain. The evolution of the local Mason number within an oscillating period implies the most unstable position locates near the center of the chain around 0.6P

  17. Solubilization of meso-carbon microbeads by potassium- or dibutylzinc-promoted butylation and structural analysis of the butylated products; Mesocarbon microbeads no butyl ka ni yoru kayoka to erareta butyl kabutsu no kozo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Murata, S.; Zhang, Y.; Kidena, K.; Nomura, M. [Osaka University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Tetrahydrofuran (THF) solubility and structure of the butylated products of meso-carbon microbeads (MCMB) were studied experimentally. In experiment, MCMB-A and MCMB-B obtained from two kinds of coal-tar pitch were used as specimens. MCMBs were butylated by BZ method using dibutylzinc-butyl iodide and KT method using K-butyl iodide-THF, and the butylated products were successfully obtained. The butylated products were investigated through THF solubility test, {sup 13}C-NMR measurement and gel permeation chromatography (GPC) measurement. As the experimental result, a BZ method produced the butylated products at a yield of nearly 170%, while a KT method produced them at a yield of nearly 130%. The THF solubility was estimated to be 89-97%. As the study result of molecular weight distributions by GPC measurement of solvent solubles, the molecular weight of raw material MCMB was estimated to be 590-770 in terms of polystyrene. 6 refs., 2 figs., 1 tab.

  18. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor.

    Science.gov (United States)

    Kalčíková, Gabriela; Žgajnar Gotvajn, Andreja; Kladnik, Aleš; Jemec, Anita

    2017-11-01

    Microplastics (MP), small plastic particles below 5 mm, have become one of the central concerns of environmental risk assessment. Microplastics are continuously being released into the aquatic environment either directly through consumer products or indirectly through fragmentation of larger plastic materials. The aim of our study was to investigate the effect of polyethylene microbeads from cosmetic products on duckweed (Lemna minor), a freshwater floating plant. The effects of microbeads from two exfoliating products on the specific leaf growth rate, the chlorophyll a and b content in the leaves, root number, root length and root cell viability were assessed. At the same time, water leachates from microbeads were also prepared to exclude the contribution of cosmetic ingredients on the measured impacts. Specific leaf growth rate and content of photosynthetic pigments in duckweed leaves were not affected by polyethylene microbeads, but these microbeads significantly affected the root growth by mechanical blocking. Sharp particles also reduced the viability of root cells, while the impact of microbeads with a smooth surface was neglected. It was concluded that microbeads from cosmetic products can also have negative impacts on floating plants in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection

    Science.gov (United States)

    Shikha, Swati; Zheng, Xiang; Zhang, Yong

    2018-06-01

    Fluorescently encoded microbeads are in demand for multiplexed applications in different fields. Compared to organic dye-based commercially available Luminex's xMAP technology, upconversion nanoparticles (UCNPs) are better alternatives due to their large anti-Stokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate (PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swelling-based encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence, we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface. Methods to functionalize the surface of PEGDA microbeads (acrylic acid incorporation, polydopamine coating) reported thus far quench the fluorescence of UCNPs. Here, PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared. Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin (HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein (hCRP) and HSA protein by immobilizing anti-hCRP antibodies on green UCNPs.

  20. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering

    Science.gov (United States)

    Zhou, Hongzhi; Xu, Hockin H. K.

    2011-01-01

    Stem cell-encapsulating hydrogel microbeads of several hundred microns in size suitable for injection, that could quickly degrade to release the cells, are currently unavailable. The objectives of this study were to: (1) develop oxidized alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs); (2) investigate microbead degradation, cell release, and osteogenic differentiation of the released cells for the first time. Three types of microbeads were fabricated to encapsulate hUCMSCs: (1) Alginate microbeads; (2) oxidized alginate microbeads; (3) oxidized alginate-fibrin microbeads. Microbeads with sizes of about 100–500 µm were fabricated with 1×106 hUCMSCs/mL of alginate. For the alginate group, there was little microbead degradation, with very few cells released at 21 d. For oxidized alginate, the microbeads started to slightly degrade at 14 d. In contrast, the oxidized alginate-fibrin microbeads started to degrade at 4 d and released the cells. At 7 d, the number of released cells greatly increased and showed a healthy polygonal morphology. At 21 d, the oxidized alginate-fibrin group had a live cell density that was 4-fold that of the oxidized alginate group, and 15-fold that of the alginate group. The released cells had osteodifferentiation, exhibiting highly elevated bone marker gene expressions of ALP, OC, collagen I, and Runx2. Alizarin staining confirmed the synthesis of bone minerals by hUCMSCs, with the mineral concentration at 21 d being 10-fold that at 7 d. In conclusion, fast-degradable alginate-fibrin microbeads with hUCMSC encapsulation were developed that could start to degrade and release the cells at 4 d. The released hUCMSCs had excellent proliferation, osteodifferentiation, and bone mineral synthesis. The alginate-fibrin microbeads are promising to deliver stem cells inside injectable scaffolds to promote tissue regeneration. PMID:21757229

  1. Kinetics of immobilisation and release of tryptophan, riboflavin and peptides from whey protein microbeads.

    Science.gov (United States)

    O'Neill, Graham J; Egan, Thelma; Jacquier, Jean Christophe; O'Sullivan, Michael; Dolores O'Riordan, E

    2015-08-01

    This study investigated the kinetics of immobilisation and release of riboflavin, amino acids and peptides from whey microbeads. Blank whey microbeads were placed in solutions of the compounds. As the volume of microbeads added to the solution was increased, the uptake of the compounds increased, to a maximum of 95% for the pentapeptide and 56%, 57% and 45% for the dipeptide, riboflavin and tryptophan respectively, however, the rate of uptake remained constant. The rate of uptake increased with increasing molecule hydrophobicity. The opposite was observed in the release studies, the more hydrophobic compounds had lower release rate constants (kr). When whey microbeads are used as sorbents, they show excellent potential to immobilise small hydrophobic molecules and minimise subsequent diffusion, even in high moisture environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recombinant Helicobacter bilis Protein P167 for Mouse Serodiagnosis in a Multiplex Microbead Assay

    OpenAIRE

    Feng, Sunlian; Kendall, Lon V.; Hodzic, Emir; Wong, Scott; Lorenzana, Edward; Freet, Kimberly; Ku, Karin S.; Luciw, Paul A.; Barthold, Stephen W.; Khan, Imran H.

    2004-01-01

    Infection of mice with Helicobacter bilis is widespread in research and commercial mouse colonies. Therefore, sensitive, specific, and high-throughput assays are needed for rapid and accurate testing of mice in large numbers. This report describes a novel multiplex assay, based on fluorescent microbeads, for serodetection of H. bilis infection. The assay requires only a few microliters of serum to perform and is amenable to a high-throughput format. Individual microbead sets were conjugated t...

  3. Calcium-Alginate-Inulin Microbeads as Carriers for Aqueous Carqueja Extract.

    Science.gov (United States)

    Balanč, Bojana; Kalušević, Ana; Drvenica, Ivana; Coelho, Maria Teresa; Djordjević, Verica; Alves, Vitor D; Sousa, Isabel; Moldão-Martins, Margarida; Rakić, Vesna; Nedović, Viktor; Bugarski, Branko

    2016-01-01

    Carqueja (Pterospartum tridentatum) is an endemic species and various bioactive compounds have been identified in its aqueous extract. The aim of this study was to protect the natural antioxidants from the aqueous extract of carqueja by encapsulation in Ca-alginate microbeads and Ca-alginate microbeads containing 10% and 20% (w/v) of inulin. The microbeads produced by electrostatic extrusion technique had an average diameter from 625 μm to 830 μm depending on the portion of inulin. The sphericity factor of the hydrogel microbeads had values between 0.014 and 0.026, while freeze dried microbeads had irregular shape, especially those with no excipient. The reduction in microbeads size after freeze drying process (expressed as shrinkage factor) ranged from 0.338 (alginate microbeads with 20% (w/v) of inulin) to 0.523 (plain alginate microbeads). The expressed radical scavenging activity against ABTS and DPPH radicals was found to be between 30% and 40% for encapsulated extract, while the fresh extract showed around 47% and 57% of radical scavenging activity for ABTS and DPPH radicals, respectively. The correlation between antioxidant activity and the total phenolic content were found to be positive (in both assay methods, DPPH and ABTS), which indicate that the addition of inulin didn't have influence on antioxidant activity. The presence of inulin reduced stiffness of the hydrogel, and protected bead structure from collapse upon freeze-drying. Alginate-inulin beads are envisaged to be used for delivery of aqueous P. tridentatum extract in functional food products. © 2015 Institute of Food Technologists®

  4. MUCOADHESIVE MICROBEADS OF METFORMIN HCL: A PROMISING SUSTAINED DRUG DELIVERY SYSTEM

    OpenAIRE

    B. Samyuktha Rani; Ambati Brahma Reddy; E. Lakshmi Sai; K. Lakshmi; M.Vasavi chandrika

    2012-01-01

    The present work was investigated to reduce the dosing frequency, improve patient compliance, to improve gastric residence and to decrease GI side effects by designing and evaluating controlled Release Mucoadhesive (CRM) microbeads of Metformin hydrochloride for effective control of diabetes type-II. Microbeads were prepared by employing ionic gelation method by using various natural and synthetic polymers such as sodium alginate as main polymer and sodium carboxy methyl cellulose(SCMC), carb...

  5. Studies on preparing and adsorption property of grafting terpolymer microbeads of PEI-GMA/AM/MBA for bilirubin.

    Science.gov (United States)

    Gao, Baojiao; Lei, Haibo; Jiang, Liding; Zhu, Yong

    2007-06-15

    Crosslinking copolymer microbeads with a diameter range of 100-150 microm were synthesized by suspension copolymerization of glycidyl methacrylate (GMA), acrylamide (AM) and N,N'-methylene bisacrylamide (MBA). Subsequently, polyethyleneimine (PEI) was grafted on the surfaces of the terpolymer microbeads GMA/AM/MBA via the ring-opening reaction of the epoxy groups, and the grafting microbeads PEI-GMA/AM/MBA were prepared. In this paper, the adsorption property of the grafting microbeads for bilirubin was mainly investigated, and the effects of various factors, such as pH value, ionic strength and grafting degree of PEI on the surface of grafting microbeads and the adsorption capacity of the grafting microbeads for bilirubin were examined. The batch adsorption experiment results show that by right of the action of grafted polyamine macromolecules PEI, the grafting microbeads PEI-GMA/AM/MBA have quite strong adsorption ability for bilirubin; the isotherm adsorption conforms to Freundlich equation. The pH value of the medium affects the adsorption capacity greatly, As in the nearly neutral solutions with pH 6, the grafting microbeads have the strongest adsorption ability for bilirubin, whereas in acidic and basic solutions their adsorption ability is weak. The ionic strength hardly affects the adsorption ability of the grafting microbeads. The grafting degree of PEI on the surfaces of the grafting microbeads also has a great effect on the adsorption capacity, and higher the grafting degree of PEI on the surface of the microbead PEI-GMA/AM/MBA, the stronger is the adsorption ability of the microbeads.

  6. Microstructural study by XPS and GISAXS of surface layers formed via phase separation and percolation in polystyren/tetrabutyl titanate/alumina composite films

    International Nuclear Information System (INIS)

    Zeng Yanwei; Tian Changan; Liu Junliang

    2006-01-01

    The XPS and GISAXS have been employed as useful tools to probe the chemical compositional and microstructural evolutions in the surface layers formed via phase separation and percolation in polystyren/Ti(OBut) 4 /alumina composite thick films. The surface enrichment of Ti species due to the migration of Ti(OBut) 4 molecules in the films was found to show an incubation period of ∼15 h while the samples were treated at 100 deg. C before a remarkable progress can be identified. According to the XPS and GISAXS data, Key mechanism to govern this surface process is phenomenologically considered to be the specific phase separation behavior in Ti(OBut) 4 /PS blend and the subsequent percolating process. The extended thermal treatment was found to make the surface layer microstructure evolve from local phase separation featured with an increasing population of individual microbeads of Ti(OBut) 4 (∼1.5 nm in radius) to the formation of large size clusters of microbeads due to their interconnections, accompanied by the growth of every microbead itself to ∼10 nm on the average, which provokes and then enhances the surface enrichment of Ti(OBut) 4 since these clusters act as a fast diffusion network due to percolation effect

  7. Structural analysis of syndiotactic polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Masahiro

    1988-09-01

    Since the stereostructure of a high-molecular compound includes three types of isotactic, atactic and sydiotactic structures, a high-molecular compound with excellent properties can be produced by controlling the stereogularity of the compound with the identical composition. The stereoregularity of a stereogular polystyrene, or syndiotactic polystyrene (SPS), which had been successfully synthesized recently was quantitatively determined and the open chain structure by polymerization was investigated by nuclear magnetic resonance spectroscopy. Two SPSs were synthesized from cis-beta-d/sub/1-styrene and trans-beta-d/sub/1-styrene with alpha, beta, beta-d/sub/3-styrene. The results of spectral analysis of these two SPSs indicate that the former is of trans-conformation and the latter is of gauche conformation and that accordingly the open chain structure by polymerization of SPS is of cis-open chain and SPS has a planar zigzag structure even in the solution. (5 figs, 9 refs)

  8. The surface modification of polystyrene

    International Nuclear Information System (INIS)

    Tremlett, C.

    2000-03-01

    Polymers have ideal bulk properties for many applications. However, adhesion to many polymers is poor without surface pretreatment. This can result, for example, in peeling paint and printing, adhesive joint failure and bio-incompatibility. In applications such as painting, printing, adhesive bonding and biocompatibility, various cleaning or surface chemical modifications may be employed. A commodity polymer where pretreatment is sometimes needed is polystyrene. This project investigated, in detail, the effects of a novel method of modification namely mediated electrochemical oxidation (MEO), as a mode of surface modification on polystyrene and a comparison was made with other polymers. The resulting modification was investigated using a range of surface analysis techniques to obtain complementary information. These included, X-ray photoelectron spectroscopy, contact angles, static secondary ion mass spectrometry, atomic force microscopy, chemical derivatization, scanning electron microscopy, attenuated total reflection Fourier Transform infrared spectroscopy and composite lap shear joint testing. It has been shown that MEO modifies the surface of polystyrene introduced oxygen mainly as hydroxyl groups, and a small number of carbonyl groups, that are positioned only on the backbone hydrocarbon chain. This modification improved adhesion, was stable and samples could be stored in aqueous media. The resulting hydroxylation was further derivatized using an amino acid to provide a specialised surface. This was very different from the multiple oxygen functionalities introduced in the comparison studies by UV/ozone and plasma treatments. (author)

  9. High-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip supports for AFP detection

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaoqun [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Yan, Huan; Yang, Jiumin [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Wu, Yudong; Zhang, Jian; Yao, Yingyi [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Ping [Bioscience (Tianjin) Diagnostic Technology CO., LTD, Tianjin, 300300 (China); Wang, Huiquan [Department of Biomedical Engineering, School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387 (China); Hu, Zhidong, E-mail: huzhidong27@163.com [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Chang, Jin, E-mail: jinchang@tju.edu.cn [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-10-05

    Fluorescence-encoded magnetic microbeads (FEMMs), with the fluorescence encoding ability of quantum dots (QDs) and magnetic enrichment and separation functions of Fe{sub 3}O{sub 4} nanoparticles, have been widely used for multiple biomolecular detection as microfluidic protein chip supports. However, the preparation of FEMMs with long-term fluorescent encoding and immunodetection stability is still a challenge. In this work, we designed a novel high-temperature chemical swelling strategy. The QDs and Fe{sub 3}O{sub 4} nanoparticles were effectively packaged into microbeads via the thermal motion of the polymer chains and the hydrophobic interaction between the nanoparticles and microbeads. The FEMMs obtained a highly uniform fluorescent property and long-term encoding and immunodetection stability and could be quickly magnetically separated and enriched. Then, the QD-encoded magnetic microbeads were applied to alpha fetoprotein (AFP) detection via sandwich immunoreaction. The properties of the encoded microspheres were characterized using a self-designed detecting apparatus, and the target molecular concentration in the sample was also quantified. The results suggested that the high-performance FEMMs have great potential in the field of biomolecular detection. - Graphical abstract: We designed a novel strategy to prepare a kind of high-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip support with long-time fluorescent encoding and immunodetection stability for AFP detection. - Highlights: • A novel strategy combined the high temperature with chemical swelling technology is designed. • Based on hydrophobic interaction and polymer thermal motion, QDs and Fe{sub 3}O{sub 4} were effectively packaged into microbeads. • The fluorescence-encoded magnetic microbeads show long-term fluorescent encoding and immunodetection stability.

  10. Characterization and in vitro release studies of oral microbeads containing thiolated pectin–doxorubicin conjugates for colorectal cancer treatment

    Directory of Open Access Journals (Sweden)

    Kamonrak Cheewatanakornkool

    2017-11-01

    Full Text Available Novel oral microbeads were developed based on a biopolymer–drug conjugate of doxorubicin (DOX conjugated with thiolated pectin via reducible disulfide bonds. The microbeads were fabricated by ionotropic gelation with cations such as Al3+, Ca2+ and Zn2+. The results showed that using zinc acetate can produce the strongest microbeads with spherical shape. However, the microbeads prepared from thiolated pectin–DOX conjugate were very soft and irregular in shape. To produce more spherical microbeads with suitable strength, the native pectin was then added to the formulations. The particle size of the microbeads ranged from 0.87 to 1.14 mm. The morphology of the microbeads was characterized by optical and scanning electron microscopy. DOX was still in crystalline form when used in preparing the microbeads, as confirmed by powder X-ray diffractometry. Drug release profiles showed that the microbeads containing thiolated pectin–DOX conjugate exhibited reduction-responsive character; in reducing environments, the thiolated pectin–DOX conjugate could uncouple resulting from a cleavage of the disulfide linkers and consequently release the DOX. The best-fit release kinetics of the microbeads containing thiolated pectin–DOX conjugate, in the medium without reducing agent, fit the Korsmeyer–Peppas model while those in the medium with reducing agent fit a zero-order release model. These results suggested that the microbeads containing thiolated pectin–DOX conjugate may be a promising platform for cancer-targeted delivery of DOX, exploiting the reducing environment typically found in tumors.

  11. Low molecular weight block copolymers as plasticizers for polystyrene

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Karsten; Nielsen, Charlotte Juel; Hvilsted, Søren

    2005-01-01

    /mol and minimum polystyrene content of 50 w/w%, which by us is predicted as the limits for solubility of polystyrene-b-alkyl in polystyrene. DSC showed polystyrene was plasticized, as seen by a reduction in glass transition temperature, by block copolymers consisting of a polystyrene block with molecular weight...... of approximately 1 kg/mol and an alkyl block with a molecular weight of approximately of 0.3 kg/mol. The efficiency of the block copolymers as plasticizers increases with decreasing molecular weight and polystyrene content. In addition, polystyrene-b-alkyl is found to be an efficient plasticizer also...... for polystyrene-b-polyisoprene-b-polystyrene (SIS) block copolymers. The end use properties of SIS plasticized with polystyrene-b-alkyl, measured as tensile strength, is higher than for SIS plasticized with dioctyl adipate. The polystyrene-b-polybutadiene-b-polystyrene and polystyrene-bpoly(propylene glycol...

  12. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W [Knoxville, TN; Gido, Samuel P [Hadley, MA; Huang, Tianzi [Knoxville, TN; Hong, Kunlun [Knoxville, TN

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  13. Air plasma processing of poly(methyl methacrylate) micro-beads: Surface characterisations

    International Nuclear Information System (INIS)

    Liu Chaozong; Cui Naiyi; Osbeck, Susan; Liang He

    2012-01-01

    Highlights: ► PMMA micro-beads were processed using a rotary air plasma reactor. ► Surface chemistry and surface texture of PMMA micro-beads were characterised. ► Surface wettability was evaluated using “floating” water contact angle method. ► Surface oxidation and texture changes induced by air plasma attributed to the improvement of surface wettability. - Abstract: This paper reports the surface processing of poly(methyl methacrylate) (PMMA) micro-beads by using a rotary air plasma reactor, and its effects on surface properties. The surface properties, including surface wettability, surface chemistry and textures of the PMMA beads, were characterised. It was observed that the air plasma processing can improve the surface wettability of the PMMA microbeads significantly. A 15 min plasma processing can reduce the surface water contact angle of PMMA beads to about 50° from its original value of 80.3°. This was accompanied by about 8% increase in surface oxygen concentration as confirmed by XPS analysis. The optical profilometry examination revealed the air plasma processing resulted in a rougher surface that has a “delicate” surface texture. It is concluded that the surface chemistry and texture, induced by air plasma processing, co-contributed to the surface wettability improvement of PMMA micro-beads.

  14. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    Science.gov (United States)

    Xanthos, Dirk; Walker, Tony R

    2017-05-15

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface.

    Science.gov (United States)

    Hirama, Hirotada; Kambe, Taisuke; Aketagawa, Kyouhei; Ota, Taku; Moriguchi, Hiroyuki; Torii, Toru

    2013-01-15

    We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (slab gel. We verified the mass transfer mechanism between the droplet and the agarose slab gel. This method circumvents the limitations of gel microbead formation, such as the need to prepare microchannels of various sizes, microchannel clogging, and the deformation of the produced gel microbeads.

  16. Polystyrene Based Silver Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Shiva Agarwal

    2002-06-01

    Full Text Available Silver(I selective sensors have been fabricated from polystyrene matrix membranes containing macrocycle, Me6(14 diene.2HClO4 as ionophore. Best performance was exhibited by the membrane having a composition macrocycle : Polystyrene in the ratio 15:1. This membrane worked well over a wide concentration range 5.0×10-6–1.0×10-1M of Ag+ with a near-Nernstian slope of 53.0 ± 1.0 mV per decade of Ag+ activity. The response time of the sensor is <15 s and the membrane can be used over a period of four months with good reproducibility. The proposed electrode works well in a wide pH range 2.5-9.0 and demonstrates good discriminating power over a number of mono-, di-, and trivalent cations. The sensor has also been used as an indicator electrode in the potentiometric titration of silver(II ions against NaCl solution. The sensor can also be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of Ag+ in solution having up to 25% (v/v nonaqueous fraction.

  17. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater.

    Science.gov (United States)

    Kalčíková, G; Alič, B; Skalar, T; Bundschuh, M; Gotvajn, A Žgajnar

    2017-12-01

    Microplastics in the environment are either a product of the fractionation of larger plastic items or a consequence of the release of microbeads, which are ingredients of cosmetics, through wastewater treatment plant (WWTP) effluents. The aim of this study was to estimate the amount of microbeads that may be released by the latter pathways to surface waters using Ljubljana, Slovenia as a case study. For this purpose, microbeads contained in cosmetics were in a first step characterized for their physical properties and particle size distribution. Subsequently, daily emission of microbeads from consumers to the sewerage system, their fate in biological WWTPs and finally their release into surface waters were estimated for Ljubljana. Most of the particles found in cosmetic products were sewerage system at an average rate of 15.2 mg per person per day. Experiments using a lab-scale sequencing batch biological WWTP confirmed that on average 52% of microbeads are captured in activated sludge. Particle size analyses of the influent and effluent confirmed that smaller particles (up to 60-70 μm) are captured within activated sludge while bigger particles were detected in the effluent. Applying these data to the situation in Ljubljana indicates that about 112,500,000 particles may daily be released into the receiving river, resulting in a microbeads concentration of 21 particles/m 3 . Since polyethylene particles cannot be degraded and thus likely accumulate, the data raise concerns about potential effects in aquatic ecosystems in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. First Human Experience with Directly Image-able Iodinated Embolization Microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Elliot B., E-mail: levyeb@cc.nih.gov; Krishnasamy, Venkatesh P. [National Institutes of Health, Center for Interventional Oncology (United States); Lewis, Andrew L.; Willis, Sean; Macfarlane, Chelsea [Biocompatibles, UK Ltd, A BTG International Group Company (United Kingdom); Anderson, Victoria [National Institutes of Health, Center for Interventional Oncology (United States); Bom, Imramsjah MJ van der [Clinical Science IGT Systems North & Latin America, Philips, Philips, Image Guided Interventions (United States); Radaelli, Alessandro [Image-Guided Therapy Systems, Philips, Philips, Image Guided Interventions (Netherlands); Dreher, Matthew R. [Biocompatibles, UK Ltd, A BTG International Group Company (United Kingdom); Sharma, Karun V. [Children’s National Medical Center (United States); Negussie, Ayele; Mikhail, Andrew S. [National Institutes of Health, Center for Interventional Oncology (United States); Geschwind, Jean-Francois H. [Department of Radiology and Biomedical Imaging (United States); Wood, Bradford J. [National Institutes of Health, Center for Interventional Oncology (United States)

    2016-08-15

    PurposeTo describe first clinical experience with a directly image-able, inherently radio-opaque microspherical embolic agent for transarterial embolization of liver tumors.MethodologyLC Bead LUMI™ is a new product based upon sulfonate-modified polyvinyl alcohol hydrogel microbeads with covalently bound iodine (~260 mg I/ml). 70–150 μ LC Bead LUMI™ iodinated microbeads were injected selectively via a 2.8 Fr microcatheter to near complete flow stasis into hepatic arteries in three patients with hepatocellular carcinoma, carcinoid, or neuroendocrine tumor. A custom imaging platform tuned for LC LUMI™ microbead conspicuity using a cone beam CT (CBCT)/angiographic C-arm system (Allura Clarity FD20, Philips) was used along with CBCT embolization treatment planning software (EmboGuide, Philips).ResultsLC Bead LUMI™ image-able microbeads were easily delivered and monitored during the procedure using fluoroscopy, single-shot radiography (SSD), digital subtraction angiography (DSA), dual-phase enhanced and unenhanced CBCT, and unenhanced conventional CT obtained 48 h after the procedure. Intra-procedural imaging demonstrated tumor at risk for potential under-treatment, defined as paucity of image-able microbeads within a portion of the tumor which was confirmed at 48 h CT imaging. Fusion of pre- and post-embolization CBCT identified vessels without beads that corresponded to enhancing tumor tissue in the same location on follow-up imaging (48 h post).ConclusionLC Bead LUMI™ image-able microbeads provide real-time feedback and geographic localization of treatment in real time during treatment. The distribution and density of image-able beads within a tumor need further evaluation as an additional endpoint for embolization.

  19. Technical Note: Effect of Incorporating Expanded Polystyrene ...

    African Journals Online (AJOL)

    Incorporating expanded polystyrene granules in concrete matrix can produce lightweight polystyrene aggregate concrete of various densities. Workability which is an important property of concrete, aects the rate of placement and the degree of compaction of concrete. Inadequate compaction leads to reduction in both ...

  20. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  1. Design of cissus-alginate microbeads revealing mucoprotection properties in anti-inflammatory therapy.

    Science.gov (United States)

    Okunlola, Adenike; Odeku, Oluwatoyin A; Lamprecht, Alf; Oyagbemi, Ademola A; Oridupa, Olayinka A; Aina, Oluwasanmi O

    2015-08-01

    Cissus gum has been employed as polymer with sodium alginate in the formulation of diclofenac microbeads and the in vivo mucoprotective properties of the polymer in anti-inflammatory therapy assessed in rats with carrageenan-induced paw edema in comparison to diclofenac powder and commercial diclofenac tablet. A full 2(3) factorial experimental design has been used to investigate the influence of concentration of cissus gum (X1); concentration of calcium acetate (X2) and stirring speed (X3) on properties of the microbeads. Optimized small discrete microbeads with size of 1.22±0.10 mm, entrapment efficiency of 84.6% and t80 of 15.2±3.5 h were obtained at ratio of cissus gum:alginate (1:1), low concentration of calcium acetate (5% w/v) and high stirring speed (400 rpm). In vivo studies showed that the ranking of percent inhibition of inflammation after 3h was diclofenac powder>commercial tablet=cissus>alginate. Histological damage score and parietal cell density were lower while crypt depth and mucosal width were significantly higher (pdiclofenac microbeads than those administered with diclofenac powder and commercial tablet, suggesting the mucoprotective property of the gum. Thus, cissus gum could be suitable as polymer in the formulation of non-steroidal anti-inflammatory drugs ensuring sustained release while reducing gastric side effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Evaluation of Influenza-Specific Humoral Response by Microbead Array Analysis

    Directory of Open Access Journals (Sweden)

    Yoav Keynan

    2011-01-01

    Full Text Available RATIONALE: Quantitation and determination of antigen specificity of systemic and mucosal immune responses to influenza vaccination is beneficial for future vaccine development. Previous methods to acquire this information were costly, time consuming and sample exhaustive. The benefits of suspension microbead array (MBA analysis are numerous. The multiplex capabilities of the system conserve time, money and sample, while generating statistically powerful data.

  3. Polystyrene/Hyperbranched Polyester Blends and Reactive Polystyrene/Hyperbranched Polyester Blends

    National Research Council Canada - National Science Library

    Mulkern, Thomas

    1999-01-01

    .... In this work, the incorporation of HBPs in thermoplastic blends was investigated. Several volume fractions of hydroxyl functionalized hyperbranched polyesters were melt blended with nonreactive polystyrene (PS...

  4. Thermal Decomposition of Radiation-Damaged Polystyrene

    International Nuclear Information System (INIS)

    J Abrefah, J.; Klinger, G.S.

    2000-01-01

    The radiation-damaged polystyrene material (''polycube'') used in this study was synthesized by mixing a high-density polystyrene (''Dylene Fines No. 100'') with plutonium and uranium oxides. The polycubes were used on the Hanford Site in the 1960s for criticality studies to determine the hydrogen-to-fissile atom ratios for neutron moderation during processing of spent nuclear fuel. Upon completion of the studies, two methods were developed to reclaim the transuranic (TRU) oxides from the polymer matrix: (1) burning the polycubes in air at 873 K; and (2) heating the polycubes in the absence of oxygen and scrubbing the released monomer and other volatile organics using carbon tetrachloride. Neither of these methods was satisfactory in separating the TRU oxides from the polystyrene. Consequently, the remaining polycubes were sent to the Hanford Plutonium Finishing Plant (PFP) for storage. Over time, the high dose of alpha and gamma radiation has resulted in a polystyrene matrix that is highly cross-linked and hydrogen deficient and a stabilization process is being developed in support of Defense Nuclear Facility Safety Board Recommendation 94-1. Baseline processes involve thermal treatment to pyrolyze the polycubes in a furnace to decompose the polystyrene and separate out the TRU oxides. Thermal decomposition products from this degraded polystyrene matrix were characterized by Pacific Northwest National Laboratory to provide information for determining the environmental impact of the process and for optimizing the process parameters. A gas chromatography/mass spectrometry (GC/MS) system coupled to a horizontal tube furnace was used for the characterization studies. The decomposition studies were performed both in air and helium atmospheres at 773 K, the planned processing temperature. The volatile and semi-volatile organic products identified for the radiation-damaged polystyrene were different from those observed for virgin polystyrene. The differences were in the

  5. Effect of Recycling in Post-Consumer Polystyrene Cups

    OpenAIRE

    Ahmed, Mehnaz

    2016-01-01

    The aim of the thesis was to recycle post-consumer polystyrene cups and to analyze the changes in mechanical and rheological properties of the recycled polystyrene. The me-chanical properties were tensile strength, Young’s modulus and the rheological proper-ties was melt flow index. In order to analyze the changes in properties, material testing results of pristine polystyrene were compared with the recycled polystyrene. The same polystyrene material was recycled and tested twice in order to ...

  6. Simple Coatings to Render Polystyrene Protein Resistant

    Directory of Open Access Journals (Sweden)

    Marcelle Hecker

    2018-02-01

    Full Text Available Non-specific protein adsorption is detrimental to the performance of many biomedical devices. Polystyrene is a commonly used material in devices and thin films. Simple reliable surface modification of polystyrene to render it protein resistant is desired in particular for device fabrication and orthogonal functionalisation schemes. This report details modifications carried out on a polystyrene surface to prevent protein adsorption. The trialed surfaces included Pluronic F127 and PLL-g-PEG, adsorbed on polystyrene, using a polydopamine-assisted approach. Quartz crystal microbalance with dissipation (QCM-D results showed only short-term anti-fouling success of the polystyrene surface modified with F127, and the subsequent failure of the polydopamine intermediary layer in improving its stability. In stark contrast, QCM-D analysis proved the success of the polydopamine assisted PLL-g-PEG coating in preventing bovine serum albumin adsorption. This modified surface is equally as protein-rejecting after 24 h in buffer, and thus a promising simple coating for long term protein rejection of polystyrene.

  7. Controlled swelling and degradation studies of alginate microbeads in dilute natrium-citrate solutions

    Directory of Open Access Journals (Sweden)

    Mitrović Dragana D.

    2010-01-01

    Full Text Available Alginate hydrogels are widely used in biomedicine due to alginate availability, hydrophilic nature, biocompatibility and biodegradability. Alginate microbeads are particularly attractive for applications in pharmacy and regenerative medicine due to high surface to volume ratio, low mass transfer limitations and simple implantation by injection. Aim of this work was to investigate possibilities for controlled degradation of alginate microbeads in cell culture medium (Dulbecco’s modified Eagle’s medium with Na-citrate added in small concentrations (0.05 - 0.5 mM. Alginate microbeads (1.5% w/w, 800 m in diameter were produced by electrostatic droplet extrusion and evaluated over a period of 10 days regarding appearance, kinetics and degree of swelling as well as biomechanical properties determined in a novel bioreactor with mechanical stimulation under in vivo-like conditions in articular cartilage (10% strain, 337.5 m/s compression rate. In the citrate concentration range investigated, microbeads initially swelled reaching an equilibrium value (~150-170% with respect to the initial mass, upon which they appeared stable for a certain period of time (1 to over 7 days followed by bead bursting and degradation. This degradation process indicated that Na+ ions from the solution initially replaced Ca2+ ions bound mainly to COO- groups in polymannuronate sequences inducing electrostatic repulsion of polymer chains and, consequently, swelling of the beads. Citrate ions assisted in this process by forming insoluble calcium citrate. Thus, the specific rate of the bead swelling increased with the increase in citrate concentration approaching a maximal value of ~0.34 d-1. In the last phase, the beads burst into pieces, which slowly continued to degrade by replacement of Ca2+ ions bonded to polyguluronate blocks in the egg-box structure. Compression moduli for packed beds of control, freshly produced microbeads, and microbeads swelled at the equilibrium

  8. A study of the incubation of microbead agglutination assays in a microfluidic system

    KAUST Repository

    Castro, David

    2016-12-19

    This work reports on a quantitative study of the incubation of a microbead-based agglutination assay inside a microfluidic system. In this system, a droplet (1.25µL) consisting of a mixture of functionalized microbeads and analyte is flowed through a 0.51mm internal diameter silicone tube. Hydrodynamic forces alone produce a very efficient mixing of the beads within the droplet. We tested the agglutination at different speeds and show a robust response at the higher range of speeds (150 – 200µL/min), while also reaching a completion in the agglutination process. At these velocities, a length of 180cm is shown to be sufficient to confidently measure the agglutination assay, which takes between 2.5 – 3 minutes. This high throughput quantification method has the potential of accelerating the measurements of various types of biomarkers, which can greatly benefit the fields of biology and medicine.

  9. Feasibility of using microbeads with holographic barcodes to track DNA specimens in the clinical molecular laboratory

    Directory of Open Access Journals (Sweden)

    Jason D. Merker

    2013-07-01

    Full Text Available We demonstrate the feasibility of using glass microbeads with a holographic barcode identifier to track DNA specimens in the molecular pathology laboratory. These beads can be added to peripheral blood specimens and are carried through automated DNA extraction protocols that use magnetic glass particles. We found that an adequate number of microbeads are consistently carried over during genomic DNA extraction to allow specimen identification, that the beads do not interfere with the performance of several different molecular assays, and that the beads and genomic DNA remain stable when stored together under regular storage conditions in the molecular pathology laboratory. The beads function as an internal, easily readable specimen barcode. This approach may be useful for identifying DNA specimens and reducing errors associated with molecular laboratory testing.

  10. Cell-density-dependent lysis and sporulation of Myxococcus xanthus in agarose microbeads.

    OpenAIRE

    Rosenbluh, A; Nir, R; Sahar, E; Rosenberg, E

    1989-01-01

    Vegetative cells of Myxococcus xanthus were immobilized in 25-microns-diameter agarose microbeads and incubated in either growth medium or sporulation buffer. In growth medium, the cells multiplied, glided to the periphery, and then filled the beads. In sporulation buffer, up to 90% of the cells lysed and ca. 50% of the surviving cells formed resistant spores. A strong correlation between sporulation and cell lysis was observed; both phenomena were cell density dependent. Sporulation proficie...

  11. Preparation of Nanofibrous Structure of Mesoporous Bioactive Glass Microbeads for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    2016-06-01

    Full Text Available A highly ordered, mesoporous (pore size 2~50 nm bioactive glass (MBG structure has a greater surface area and pore volume and excellent bone-forming bioactivity compared with traditional bioactive glasses (BGs. Hence, MBGs have been used in drug delivery and bone tissue engineering. MBGs can be developed as either a dense or porous block. Compared with a block, microbeads provide greater flexibility for filling different-shaped cavities and are suitable for culturing cells in vitro. In contrast, the fibrous structure of a scaffold has been shown to increase cell attachment and differentiation due to its ability to mimic the three-dimensional structure of natural extracellular matrices. Hence, the aim of this study is to fabricate MBG microbeads with a fibrous structure. First, a sol-gel/electrospinning technique was utilized to fabricate the MBG nanofiber (MBGNF structure. Subsequently, the MBGNF microbeads (MFBs were produced by an electrospraying technology. The results show that the diameter of the MFBs decreases when the applied voltage increases. The drug loading and release profiles and mechanisms of the MFBs were also evaluated. MFBs had a better drug entrapment efficiency, could reduce the burst release of tetracycline, and sustain the release over 10 days. Hence, the MFBs may be suitable drug carriers. In addition, the cellular attachment of MG63 osteoblast-like cells is significantly higher for MFBs than for glass microbeads after culturing for 4 h. The nanofibrous structure of MFBs could provide an appropriate environment for cellular spreading. Therefore, MFBs have great potential for use as a bone graft material in bone tissue engineering applications.

  12. Cyanide Removal Efficiency of Photocatalytic Nanoparticles Stabilized on Glass Microbeads Under Sun Irradiation

    Directory of Open Access Journals (Sweden)

    Neda Masoudipour

    2017-01-01

    Full Text Available This paper investigates cyanide photodestruction (at pH 9 using the S, N-TiO2 photocatalyst synthesized by the sol-gel method and stabilized on glass microbeads. The main raw materials were thiourea, as a source of N and S, and tetra butyl ortho titanate. The effects of S and N doses, visible light (a 400W light, sunlight, irradiation time, and different initial cyanide concentrations (50, 100, 200, and 300 ppm were studied on cyanide photodestruction. Cyanide concentration was measured by the titration method and the photocatalyst film was characterized by X-ray diffraction (XRD, UV-Vis diffuse reflection spectroscopy (DRS, Scanning Electron Microscopy (SEM, and Energy dispersive X-ray (EDX analysis. XRD patterns and SEM images were used to determine the nanoparticle size of the photocatalyst on glass microbeads. EDX and DRS analyses confirmed the presence of S and N as well as the activity of the photocatalyst in the visible region, respectively. The S, N-TiO2 film with 0.25 g Thiuourea proved to be the best cyanide photodestruction agent in the visible light. Based on the results obtained, S, N-TiO2/ glass microbead was capable of destroying cyanide (50 ppm by up to 94% in the visible light and by approximately 100% in the sunlight. The results also indicated that S, N-Tio2/scoria stone was capable of destroying cyanide by 85% in the visible light and by 94% in the sunlight within 4 h.  The reaction kinetic for all cyanide concentrations and two photocatalyst substrates were described by a first order equation. Finally, it was concluded that the S, N-TiO2 stabilized on glass microbeads could be effectively used as a new method for treating wastewater containing free cyanide under the sunlight.

  13. Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury.

    Science.gov (United States)

    Dakova, Ivanka; Karadjova, Irina; Georgieva, Ventsislava; Georgiev, George

    2009-04-30

    Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2'-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4M HNO(3). The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 micromol g(-1) for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 microg L(-1) (3 sigma), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 microg L(-1) Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.

  14. Successful subretinal delivery and monitoring of MicroBeads in mice.

    Directory of Open Access Journals (Sweden)

    M Dominik Fischer

    Full Text Available To monitor viability of implanted genetically engineered and microencapsulated human stem cells (MicroBeads in the mouse eye, and to study the impact of the beads and/or xenogenic cells on retinal integrity.MicroBeads were implanted into the subretinal space of SV126 wild type mice using an ab externo approach. Viability of microencapsulated cells was monitored by noninvasive retinal imaging (Spectralis™ HRA+OCT. Retinal integrity was also assessed with retinal imaging and upon the end of the study by light and electron microscopy. The implanted GFP-marked cells encapsulated in subretinal MicroBeads remained viable over a period of up to 4 months. Retinal integrity and viability appeared unaltered apart from the focal damage due to the surgical implantation, GFAP upregulation, and opsin mistargeting in the immediate surrounding tissue.The accessibility for routine surgery and its immune privileged state make the eye an ideal target for release system implants for therapeutic substances, including neurotrophic and anti-angiogenic compounds or protein based biosimilars. Microencapsulated human stem cells (MicroBeads promise to overcome limitations inherent with single factor release systems, as they are able to produce physiologic combinations of bioactive compounds.

  15. Encapsulation of Lactobacillus kefiri in alginate microbeads using a double novel aerosol technique.

    Science.gov (United States)

    Demitri, Christian; Lamanna, Leonardo; De Benedetto, Egidio; Damiano, Fabrizio; Cappello, Maria Stella; Siculella, Luisa; Sannino, Alessandro

    2017-08-01

    Alginate micro beads containing Lactobacillus kefiri (the principal bacteria present in the kefir probiotic drink) were produced by a novel technique based on dual aerosols spaying of alginate based solution and CaCl 2 as cross linking agent. Carboxymethylcellulose (CMC) has been also added to the alginate in order to change the physic-chemical properties (viscosity and permeability) of the microbeads. Calcium alginate and CMC are biopolymers that can be used for developing oral drug-delivery systems. These biopolymers have been reported to show a pH-dependent swelling behaviour. Calcium alginate and CMC have also been known to possess an excellent mucoadhesive property. The loaded microbeads have been characterized in terms of morphology, chemical composition and stability in different conditions mimicking the gastric environment. In this study, we demonstrate the feasibility of a continuous fabrication of alginate microbeads in a range of 50-70μm size, encapsulating L. kefiri as active ingredient. The technique involves the use of a double aerosols of alginate based solution and CaCl 2 as crosslinking agent. Moreover, the encapsulation process was proved to be effective and not detrimental to bacteria viability. At the same time, it was verified the protective efficacy of the microcapsules against the gastric environment using both SGF pH1.2 (fasted state) and pH2.2 (feed state). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Separation and purification of hyaluronic acid by glucuronic acid imprinted microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Akdamar, H.Acelya; Sarioezlue, Nalan Yilmaz [Department of Biology, Anadolu University, Eskisehir (Turkey); Ozcan, Ayca Atilir; Ersoez, Arzu [Department of Chemistry, Anadolu University, Eskisehir (Turkey); Denizli, Adil [Department of Chemistry, Hacettepe University, Ankara (Turkey); Say, Ridvan, E-mail: rsay@anadolu.edu.tr [Department of Chemistry, Anadolu University, Eskisehir (Turkey); BIBAM (Plant, Drug and Scientific Researches Center), Anadolu University, Eskisehir (Turkey)

    2009-05-05

    The purification of hyaluronic acid (HA) is relatively significant to use in biomedical applications. The structure of HA is formed by the repetitive units of glucuronic acid and N-acetyl glucosamine. In this study, glucuronic acid-imprinted microbeads have been supplied for the purification of HA from cell culture (Streptococcus equi). Histidine-functional monomer, methacryloylamidohistidine (MAH) was chosen as the metal-complexing monomer. The glucuronic acid-imprinted poly(ethyleneglycoldimethacrylate-MAH-Copper(II)) [p(EDMA-MAH-Cu{sup 2+})] microbeads have been synthesized by typical suspension polymerization procedure. The template glucuronic acid has been removed by employing 5 M methanolic KOH solution. p(EDMA-MAH-Cu{sup 2+}) microbeads have been characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) images and swelling studies. Moreover, HA adsorption experiments have been performed in a batch experimental set-up. Purification of HA from cell culture supernatant has been also investigated by determining the hyaluronidase activity using purified HA as substrate. The glucuronic acid imprinted p(EDMA-MAH-Cu{sup 2+}) particles can be used many times with no significant loss in adsorption capacities. Also, the selectivity of prepared molecular imprinted polymers (MIP) has been examined. Results have showed that MIP particles are 19 times more selective for glucuronic acid than N-acetylglucose amine.

  17. The Study of the Microbes Degraded Polystyrene

    Directory of Open Access Journals (Sweden)

    Zhi-Long Tang

    2017-01-01

    Full Text Available Under the observation that Tenebrio molitor and Zophobas morio could eat polystyrene (PS, we setup the platform to screen the gut microbes of these two worms. To take advantage of that Tenebrio molitor and Zophobas morio can eat and digest polystyrene as its diet, we analyzed these special microbes with PS plate and PS turbidity system with time courses. There were two strains TM1 and ZM1 which isolated from Tenebrio molitor and Zophobas morio, and were identified by 16S rDNA sequencing. The results showed that TM1 and ZM1 were cocci-like and short rod shape Gram-negative bacteria under microscope. The PS plate and turbidity assay showed that TM1 and ZM1 could utilize polystyrene as their carbon sources. The further study of PS degraded enzyme and cloning warrants our attention that this platform will be an excellent tools to explore and solve this problem.

  18. Comparative characteristics of polystyrene scintillation strips

    International Nuclear Information System (INIS)

    Gapienko, V.A.; Denisov, A.G.; Mel'nikov, E.A.

    1992-01-01

    Results are provided for a study of the main characteristics of polystyrene scintillation strips with a cross-section of 200 x 10 mm with two different scintillation-additive compositions: 1.5% p-terphenyl + 0.01% POPOP and 1.5% p-terphenyl + 0.01% DBP. The mean light-attenuation lengths are 180 cm and 260 cm, respectively, for strips with POPOP and DBP. The emittances of the polystyrene scintillators with DBP and POPOP additives have a ratio of 0.8:1.0 as recorded by an FEU-110 photomultiplier. 2 refs., 1 fig., 2 tabs

  19. Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation

    Directory of Open Access Journals (Sweden)

    Roberta D'Agata

    2017-01-01

    Full Text Available Gold nanoparticles (AuNPs exhibit unique properties that can be modulated through a tailored surface functionalization, enabling their targeted use in biochemical sensing and medical diagnostics. In particular, streptavidin-modified AuNPs are increasingly used for biosensing purposes. We report here a study of AuNPs surface-functionalized with streptavidin-biotinylated oligonucleotide, focussing on the role played by the oligonucleotide probes in the stabilization/destabilization of the functionalized nanoparticle dispersion. The behaviour of the modified AuNP dispersion as a consequence of the competitive displacement of the biotinylated oligonucleotide has been investigated and the critical role of displaced oligonucletides in triggering the quasi one-dimensional aggregation of nanoparticles is demonstrated for the first time. The thorough understanding of the fundamental properties of bioconjugated AuNPs is of great importance for the design of highly sensitive and reliable functionalized AuNP-based assays.

  20. Simulative calculation of bromo-polystyrene mechanical properties

    CERN Document Server

    Wang Chao; Tang Yong Jian

    2002-01-01

    The non-crystal model of polystyrene and bromo-polystyrene was established with the help of simulative software in the computer. DREIDING was chosen as force field and its parameters is modified according to the published data. Based on the calculation results and other published data the mechanism properties of polystyrene and bromo-polystyrene, such as bulk module, Yong's module and Poisson's ratios, were discussed

  1. Activity of Antimicrobial Silver Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Palomba

    2012-01-01

    Full Text Available A simple technique based on doping polymers with in situ generated silver nanoparticles (Ag/PS films has been developed. In particular, an antiseptic material has been prepared by dissolving silver 1,5-cyclooctadiene-hexafluoroacetylacetonate in amorphous polystyrene, and the obtained solid solution has been heated for ca. 10 s at a convenient temperature (180°C. Under such conditions the metal precursor decomposes producing silver atoms that diffuse into the polymer and clusterize. The antimicrobial characteristics of the resulting polystyrene-based material have been accurately evaluated toward Escherichia coli (E. coli comparing the cytotoxicity effect of 10 wt.% and 30 wt.% (drastic and mild annealing silver-doped polystyrene to the corresponding pure micrometric silver powder. Two different bacterial viability assays were performed in order to demonstrate the cytotoxic effect of Ag/PS films on cultured E. coli: (1 turbidimetric determination of optical density; (2 BacLight fluorescence-based test. Both methods have shown that silver-doped polystyrene (30 wt.% provides higher antibacterial activity than pure Ag powder, under similar concentration and incubation conditions.

  2. Utilizing microfluidics to synthesize polyethylene glycol microbeads for Förster resonance energy transfer based glucose sensing

    Science.gov (United States)

    Kantak, Chaitanya; Zhu, Qingdi; Beyer, Sebastian; Bansal, Tushar; Trau, Dieter

    2012-01-01

    Here, we utilize microfluidic droplet technology to generate photopolymerizeable polyethylene glycol (PEG) hydrogel microbeads incorporating a fluorescence-based glucose bioassay. A microfluidic T-junction and multiphase flow of fluorescein isothiocyanate dextran, tetramethyl rhodamine isothiocyanate concanavalin A, and PEG in water were used to generate microdroplets in a continuous stream of hexadecane. The microdroplets were photopolymerized mid-stream with ultraviolet light exposure to form PEG microbeads and were collected at the outlet for further analysis. Devices were prototyped in PDMS and generated highly monodisperse 72 ± 2 μm sized microbeads (measured after transfer into aqueous phase) at a continuous flow rate between 0.04 ml/h—0.06 ml/h. Scanning electron microscopy analysis was conducted to analyze and confirm microbead integrity and surface morphology. Glucose sensing was carried out using a Förster resonance energy transfer (FRET) based assay. A proportional fluorescence intensity increase was measured within a 1–10 mM glucose concentration range. Microfluidically synthesized microbeads encapsulating sensing biomolecules offer a quick and low cost method to generate monodisperse biosensors for a variety of applications including cell cultures systems, tissue engineering, etc. PMID:22655010

  3. Effects of Different Types of Clays and Maleic Anhydride Modified Polystyrene on Polystyrene/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrabzadeh

    2013-01-01

    Full Text Available Polymer/clay nanocomposites are considered as a new subject of research in Iran and the world. Addition of a minimum amount of clay (2-5wt% can improve the mechanical properties, enhance barrier properties and reduce flammability dramatically. Polystyrene (PS exhibits high strength, high modulus and excellent dimensional stability, but it has poor ductility, elongation, and flexural modulus. By incorporating clay into polystyrene these properties can be improved. In this study preparation of polystyrene/clay nanocomposite, effects of different types of clays (Cloisite 10A andNanomer I.30TC and maleic anhydride modified polystyrene on mechanical properties of the prepared polystyrene/clay nanocomposites were evaluated. Samples were prepared by a twin screw extruder. Transmission electron microscopy (TEM and X-ray diffraction (XRD techniques were employed to evaluate the extent of intercalation and exfoliation of silicate layers in the nanocomposites. Mechanical tests show that by addition of clay and maleic anhydride modified polystyrene the flexural modulus (~30% and elongation-at-break (~40% of prepared nanocomposites have been improved. XRD and TEM results show that nanocomposite have an intercalated structure with ability to change to further exfoliation structure.

  4. Redox-responsive microbeads containing thiolated pectin-doxorubicin conjugate inhibit tumor growth and metastasis: An in vitro and in vivo study.

    Science.gov (United States)

    Cheewatanakornkool, Kamonrak; Niratisai, Sathit; Dass, Crispin R; Sriamornsak, Pornsak

    2018-07-10

    The objective of this study was to investigate the in vitro cytotoxicity and in vivo anticancer efficacy of redox-responsive microbeads containing thiolated pectin-doxorubicin (DOX) conjugate. Oral microbeads were coated with an enteric polymer to protect the drug from release in the upper gastrointestinal (GI) tract and allow redox-triggered drug release in the colon. Morphology, particle size, drug content, and in vitro drug release behavior of the microbeads were characterized; in vitro cytotoxicity was tested on mouse colon carcinoma, human colorectal adenocarcinoma, and human bone osteosarcoma cell lines. In vivo anticancer efficacy of coated microbeads was examined in BALB/c mice with murine colon carcinoma. These coated microbeads significantly inhibited the growth of all cell lines. The in vivo study confirmed delivery of DOX to the colorectal tumor site, redox-responsiveness, and anticancer efficacy of coated microbeads. Coated microbeads also effectively inhibited primary tumor growth and suppressed tumor metastases without gross toxicity to the non-target tissue. No noticeable damage was found in mouse GI tissues, indicating lack of DOX toxicity. These novel coated microbeads containing thiolated pectin-DOX conjugate may be a promising vehicle for targeted clinical delivery of DOX to the colorectal cancer site by oral administration. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  5. Physical manipulation of single-molecule DNA using microbead and its application to analysis of DNA-protein interaction

    International Nuclear Information System (INIS)

    Kurita, Hirofumi; Yasuda, Hachiro; Takashima, Kazunori; Katsura, Shinji; Mizuno, Akira

    2009-01-01

    We carried out an individual DNA manipulation using an optical trapping for a microbead. This manipulation system is based on a fluorescent microscopy equipped with an IR laser. Both ends of linear DNA molecule were labeled with a biotin and a thiol group, respectively. Then the biotinylated end was attached to a microbead, and the other was immobilized on a thiol-linkable glass surface. We controlled the form of an individual DNA molecule by moving the focal point of IR laser, which trapped the microbead. In addition, we applied single-molecule approach to analyze DNA hydrolysis. We also used microchannel for single-molecule observation of DNA hydrolysis. The shortening of DNA in length caused by enzymatic hydrolysis was observed in real-time. The single-molecule DNA manipulation should contribute to elucidate detailed mechanisms of DNA-protein interactions

  6. Preparation and in vitro evaluation of carboxymethylated κ-carrageenan aluminum hydrogel microbeads for prolonged release of mefenamic acid

    International Nuclear Information System (INIS)

    Beron, Pia Maria G.; Cruzado, Shervin T.; Dela Cruz, Sharmaine F.; Estanislao, Fides Mae L.; Evangelista, Charina Joy; Mandocdoc, Larra Minnellie W.; Salas, Sharlaine B.; Tiu, Mark Brian C.; Carigma, Andrea Q.; Bayquen, Aristea V.

    2012-01-01

    Polymers that swell in an aqueous medium have been widely used to formulate controlled-release dosage forms. This study aims to prepare carboxymethyl κ-carrageenan (CMKC) microbeads and evaluate its potential for controlled release of mefenamic acid in comparison to the positive control, carboxymethylcellulose (CMC) microbeads. The powdered κ-carrageenan was carboxymethylated and Fourier-Transform Infrared Spectroscopy confirmed the carboxy methylation. Aqueous solutions of CMC (3% w/v) and CMKC (3%, 4%, 5% w/v) were prepared as microbeads using ionotropic gelation technique. Microbeads were loaded with mefenamic acid by suspending it in the aqueous solution (0.5% w/v) of the drug for 72 hours. Particle size and surface morphology were characterized using scanning electron microscopy. One-way ANOVA was used to determine a significant difference between the release activity of the drug-loaded CMKC and CMC microbeads. Differential Scanning Calorimetry was performed on the drug, drug- free, and drug-loaded microbeads of CMC and CMKC. Two-way ANOVARM showed significant interaction in % drug release of the three groups being analyzed in respect to time effect (p≤0.001) and group effect (p≤0.001). Post Hoc Duncan Multiple Range Test showed that 3% CMC and 4% CMKC has equal average % drug release values and is significantly higher compared to the commercial mefenamic acid. Also, one way ANOVA showed that 3% CMC was able to release the drug with no significant difference in time (p = 0.159), while 4% CMKC (p < 0.001) and the commercial mefenamic acid (p≤0.001) were able to release the drug with significant difference in time (author)

  7. Ultrasound Characterization of Microbead and Cell Suspensions by Speed of Sound Measurements of Neutrally Buoyant Samples

    DEFF Research Database (Denmark)

    Cushing, Kevin W.; Garofalo, Fabio; Magnusson, Cecilia

    2017-01-01

    . The density of the microparticles is determined by using a neutrally buoyant selection process that involves centrifuging of microparticles suspended in different density solutions, CsCl for microbeads and Percoll for cells. The speed of sound at 3 MHz in the neutrally buoyant suspensions is measured...... and fixed cells, such as red blood cells, white blood cells, DU-145 prostate cancer cells, MCF-7 breast cancer cells, and LU-HNSCC-25 head and-neck squamous carcinoma cells in phosphate buffered saline. The results show agreement with published data obtained by other methods....

  8. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2016-01-01

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field's metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field's metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  9. Characterization of SWNT based Polystyrene Nanocomposites

    Science.gov (United States)

    Mitchell, Cynthia; Bahr, Jeffrey; Tour, James; Arepalli, Sivaram; Krishnamoorti, Ramanan

    2003-03-01

    Polystyrene nanocomposites with functionalized single walled carbon nanotubes (SWNTs), prepared by the in-situ generation and addition of organic diazonium compounds, were characterized using a range of structural and dynamic methods. These were contrasted to the properties of polystyrene composites prepared with unfunctionalized SWNTs at the same loadings. The functionalized nanocomposites demonstrated a percolated SWNT network structure at concentrations of 1 vol SWNT based composites at similar loadings of SWNT exhibited behavior comparable to that of the unfilled polymer. This formation of the SWNT network structure is because of the improved compatibility between the SWNTs and the polymer matrix due to the functionalization. Further structural evidence for the compatibility of the modified SWNTs and the polymer matrix will be discussed in the presentation.

  10. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  11. Wettability control of polystyrene by ion implantation

    International Nuclear Information System (INIS)

    Suzuki, Yoshiaki; Kusakabe, Masahiro; Iwaki, Masaya

    1994-01-01

    The permanent effects of ion implantation on the improvement of wettability of polystyrene is investigated in relation to ion species and fluences. The He + , Ne + , Na + , N 2 + , O 2 + , Ar + , K + and Kr + ion implantations were performed at energies of 50 and 150 keV at room temperature. The fluences ranged from 1x10 15 to 1x10 17 ions/cm 2 . The results showed that the contact angle of water for Na + and K + implanted polystyrene decreased from 87 to 0 , as the fluences increased to 1x10 17 ions/cm 2 at an energy of 50 keV. The contact angle for Na + and K + implanted polystyrene did not change under ambient room conditions, even when time elapsed. However, the contact an gle for He + , C + , O + , Ne + , N 2 + , O 2 + , Ar + , and Kr + ion implanted specimens decreased slightly immediately after ion implantation. Results of X-ray photoelectron spectroscopy showed that the increase in the Na content in the surface of Na + implanted specimens were observed with increasing fluence. It is concluded that permanent improvement in wettability was caused by doping effects rather than by radiation effects from Na + and K + ion implantation. ((orig.))

  12. Immobilization of proteins onto microbeads using a DNA binding tag for enzymatic assays.

    Science.gov (United States)

    Kojima, Takaaki; Mizoguchi, Takuro; Ota, Eri; Hata, Jumpei; Homma, Keisuke; Zhu, Bo; Hitomi, Kiyotaka; Nakano, Hideo

    2016-02-01

    A novel DNA-binding protein tag, scCro-tag, which is a single-chain derivative of the bacteriophage lambda Cro repressor, has been developed to immobilize proteins of interest (POI) on a solid support through binding OR consensus DNA (ORC) that is tightly bound by the scCro protein. The scCro-tag successfully bound a transglutaminase 2 (TGase 2) substrate and manganese peroxidase (MnP) to microbeads via scaffolding DNA. The resulting protein-coated microbeads can be utilized for functional analysis of the enzymatic activity using flow cytometry. The quantity of bead-bound proteins can be enhanced by increasing the number of ORCs. In addition, proteins with the scCro-tag that were synthesized using a cell-free protein synthesis system were also immobilized onto the beads, thus indicating that this bead-based system would be applicable to high-throughput analysis of various enzymatic activities. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Microcapsules and 3D customizable shelled microenvironments from laser direct-written microbeads.

    Science.gov (United States)

    Kingsley, David M; Dias, Andrew D; Corr, David T

    2016-10-01

    Microcapsules are shelled 3D microenvironments, with a liquid core. These core-shelled structures enable cell-cell contact, cellular proliferation and aggregation within the capsule, and can be utilized for controlled release of encapsulated contents. Traditional microcapsule fabrication methods provide limited control of capsule size, and are unable to control capsule placement. To overcome these limitations, we demonstrate size and spatial control of poly-l-lysine and chitosan microcapsules, using laser direct-write (LDW) printing, and subsequent processing, of alginate microbeads. Additionally, microbeads were used as volume pixels (voxels) to form continuous 3D hydrogel structures, which were processed like capsules, to form custom shelled aqueous-core 3D structures of prescribed geometry; such as strands, rings, and bifurcations. Heterogeneous structures were also created with controlled initial locations of different cell types, to demonstrate the ability to prescribe cell signaling (heterotypic and homotypic) in co-culture conditions. Herein, we demonstrate LDW's ability to fabricate intricate 3D structures, essentially with "printed macroporosity," and to precisely control structural composition by bottom-up fabrication in a bead-by-bead manner. The structural and compositional control afforded by this process enables the creation of a wide range of new constructs, with many potential applications in tissue engineering and regenerative medicine. Biotechnol. Bioeng. 2016;113: 2264-2274. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Size-amplified acoustofluidic separation of circulating tumor cells with removable microbeads

    Science.gov (United States)

    Liu, Huiqin; Ao, Zheng; Cai, Bo; Shu, Xi; Chen, Keke; Rao, Lang; Luo, Changliang; Wang, Fu-Bin; Liu, Wei; Bondesson, Maria; Guo, Shishang; Guo, Feng

    2018-06-01

    Isolation and analysis of rare circulating tumor cells (CTCs) is of great interest in cancer diagnosis, prognosis, and treatment efficacy evaluation. Acoustofluidic cell separation becomes an attractive method due to its contactless, noninvasive, simple, and versatile features. However, the indistinctive physical difference between CTCs and normal blood cells limits the purity of CTCs using current acoustic methods. Herein, we demonstrate a size-amplified acoustic separation and release of CTCs with removable microbeads. CTCs selectively bound to size-amplifiers (40 μm-diameter anti-EpCAM/gelatin-coated SiO2 microbeads) have significant physical differences (size and mechanics) compared to normal blood cells, resulting in an amplification of acoustic radiation force approximately a hundredfold over that of bare CTCs or normal blood cells. Therefore, CTCs can be efficiently sorted out with size-amplifiers in a traveling surface acoustic wave microfluidic device and released from size-amplifiers by enzymatic degradation for further purification or downstream analysis. We demonstrate a cell separation from blood samples with a total efficiency (E total) of ∼ 77%, purity (P) of ∼ 96%, and viability (V) of ∼83% after releasing cells from size-amplifiers. Our method substantially improves the emerging application of rare cell purification for translational medicine.

  15. Local Segmental Dynamics and Stresses in Polystyrene - C$_{60}$ Mixtures

    OpenAIRE

    Vogiatzis, Georgios G.; Theodorou, Doros N.

    2014-01-01

    The polymer dynamics of homogeneous C$_{60}$-polystyrene mixtures in the molten state are studied via molecular simulations using two interconnected levels of representation for polystyrene nanocomposites: (a) A coarse-grained representation, in which each polystyrene repeat unit is mapped into a single "superatom" and each fullerene is viewed as a spherical shell. Equilibration of coarse-grained polymer-nanoparticle systems at all length scales is achieved via connectivity-altering Monte Car...

  16. Mortar modified with sulfonated polystyrene produced from waste plastic cups

    OpenAIRE

    MOTTA,L. A. C.; VIEIRA,J. G.; OMENA,T. H.; FARIA,F. A. C.; RODRIGUES FILHO,G.; ASSUNÇÃO,R. M. N.

    2016-01-01

    Abstract In this work, we studied the addition of sulfonated polystyrene produced from waste plastic cups as an admixture for mortars. Mortars were analyzed with polystyrene content of 0.0; 0.2; 0.6; 1.0 and 1.4% in relation to the cement mass. The influence of polystyrene on the mortars' properties was evaluated by the consistency index, water retention, water absorption, porosity, elasticity modulus, compressive strength, flexural strength, bond tensile strength and microscopy. The increase...

  17. Fabrication of polystyrene porous films with gradient pore structures

    International Nuclear Information System (INIS)

    Yan Hongwei; Zhang Lin; Li Bo; Yin Qiang

    2010-01-01

    Silica opals and multilayer heterostructures were fabricated by vertical deposition technique. Polystyrene inverse opals and gradient porous structures were obtained by colloidal templating, in order to control the pore microstructure of polymer porous materials. As shown in the scanning electron microscopy images, the polystyrene porous structures are precise replicas of inverse structures of the original templates. After being infiltrated with the polystyrene, the photonic stop-band position of the opal composite is redshifted compared with the original template, and it is blueshifted after the opal template being removed. The filling ratio of polystyrene was calculated according to the Bragg formula. (authors)

  18. Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration

    Science.gov (United States)

    Chen, Wenchuan; Zhou, Hongzhi; Weir, Michael D.; Bao, Chongyun; Xu, Hockin H.K.

    2012-01-01

    The need for bone repair has increased as the population ages. The objectives of this study were to (1) develop a novel biofunctionalized and macroporous calcium phosphate cement (CPC) containing alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs); and (2) investigate hUCMSC proliferation and osteogenic differentiation inside CPC for the first time. Macroporous CPC was developed using calcium phosphate powders, chitosan, and gas-foaming porogen. Five types of CPCs were fabricated: CPC control, CPC + 0.05% fibronectin (Fn), CPC + 0.1% Fn, CPC + 0.1% Arg-Gly-Asp (RGD), and CPC + 0.1% Fn + 0.1% RGD. Alginate-fibrin microbeads containing 106 hUCMSCs/mL were encapsulated in the CPC paste. After CPC had set, the degradable microbeads released hUCMSCs inside CPC. hUCMScs proliferated inside CPC, with cell density at 21 d being 4-fold that at 1 d. CPC + 0.1% RGD had the highest cell density, which was 4-fold that of CPC control. The released cells differentiated into the osteogenic lineage and synthesized bone minerals. hUCMSCs inside the CPC + 0.1% RGD construct had gene expressions of alkaline phosphatase (ALP), osteocalcin (OC) and collagen I, which were twice those of CPC control. Mineral synthesis by hUCMSCs inside the CPC + 0.1% RGD construct was 2-fold that in CPC control. RGD and Fn incorporation in CPC did not compromise the strength of CPC, which matched the reported strength of cancellous bone. In conclusion, degradable microbeads released the hUCMSCs which proliferated, differentiated and synthesized minerals inside the macroporous CPC for the first time. CPC with RGD greatly enhanced cell functions. The novel biofunctionalized and macroporous CPC-microbead-hUCMSC construct is promising for bone tissue engineering applications. PMID:22391411

  19. Circularly polarized luminescence of syndiotactic polystyrene

    Science.gov (United States)

    Rizzo, Paola; Abbate, Sergio; Longhi, Giovanna; Guerra, Gaetano

    2017-11-01

    Syndiotactic polystyrene (s-PS) films, when crystallized from the amorphous state by temporary sorption of non-racemic guest molecules (like carvone) not only exhibit unusually high optical activity, both in the UV-Visible and Infrared ranges, but also present circularly polarized luminescence (CPL) with high dissymmetry ratios (g = ΔI/I values in the range 0.02-0.03). Experimental evidences provide support, rather than to the usual molecular circular dichroism, to a supramolecular chiral optical response being extrinsic to the site of photon absorption and emission, possibly associated with a helical morphology of s-PS crystallites.

  20. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were fabricated using a free-surface thermo-compression molding method on a polystyrene (PS) sheet which was then bonded on top of microfluidic channels as a cover plate, with the convex microlenses providing a magnified image of the channel for the easier observation of the flow in the microchannels. This approach for fabricating the integrated microlens in microfluidic devices is rapid, low cost and without the requirement of cleanroom facilities. © 2013 IEEE.

  1. Sequential injection chemiluminescence immunoassay for nonionic surfactants by using magnetic microbeads

    International Nuclear Information System (INIS)

    Zhang Ruiq; Nakajima, Hizuru; Soh, Nobuaki; Nakano, Koji; Masadome, Takashi; Nagata, Kazumi; Sakamoto, Kazuhira; Imato, Toshihiko

    2007-01-01

    A rapid and sensitive immunoassay based on a sequential injection analysis (SIA) using magnetic microbeads for the determination of alkylphenol polyethoxylates (APnEOs) is described. An SIA system was constructed from a syringe pump, a switching valve, a flow-through type immunoreaction cell equipped with a photon counting unit and a neodymium magnet. Magnetic beads, to which an anti-APnEOs monoclonal antibody was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of the magnetic beads in and from the immunoreaction cell were controlled by means of a neodymium magnet and adjusting the flow of a carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an anti-APnEOs monoclonal antibody immobilized on the magnetic beads with a sample APnEOs and a horseradish peroxidase (HRP)-labeled APnEOs in the same sample solution, and was based on the subsequent chemiluminscence reaction of HRP on the magnetic microbeads with a luminol solution containing hydrogen peroxide and p-iodophenol. The anti-APnEOs antibody was immobilized on the magnetic microbeads by coupling the antibody with the magnetic beads after activation of a carboxylate moiety on the surface of the magnetic beads that had been coated with a polylactic acid film. The antibody immobilized magnetic beads were introduced in the immunoreaction cell and trapped in it by the neodymium magnet, which was equipped beneath the immunoreaction cell. An APnEOs sample solution containing the HRP-labeled APnEOs at a constant concentration, and a luminol solution containing hydrogen peroxide and p-iodophenol were sequentially introduced into the immunoreaction cell, according to an SIA programmed sequence. Chemiluminescence emission was monitored by means of a photon counting unit located at the upper side of the immunoreaction cell by collecting the emitted light with a lens. A typical sigmoidal calibration curve was obtained, when the logarithm

  2. A “turn-on” fluorescent microbead sensor for detecting nitric oxide

    Directory of Open Access Journals (Sweden)

    Yang LH

    2014-12-01

    Full Text Available Lan-Hee Yang,1,2 Dong June Ahn,3 Eunhae Koo1 1Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul, Republic of Korea; 2Department of Biomicrosystem Technology, Korea University, Seoul, Republic of Korea; 3Departments of Biomicrosystem Technology, Chemical & Biological Engineering, KU-KIST Graduate School, Korea University, Seoul, Republic of Korea Abstract: Nitric oxide (NO is a messenger molecule involved in numerous physical and pathological processes in biological systems. Therefore, the development of a highly sensitive material able to detect NO in vivo is a key step in treating cardiovascular and a number of types of cancer-related diseases, as well as neurological dysfunction. Here we describe the development of a fluorescent probe using microbeads to enhance the fluorescence signal. Microbeads are infused with the fluorophore, dansyl-piperazine (Ds-pip, and quenched when the fluorophore is coordinated with a rhodium (Rh-complex, ie, Rh2(AcO-4(Ds-pip. In contrast, they are able to fluoresce when the transition-metal complex is replaced by NO. To confirm the “on/off” mechanism for detecting NO, we investigated the structural molecular properties using the Fritz Haber Institute ab initio molecular simulations (FHI-AIMS package. According to the binding energy calculation, NO molecules bind more strongly and rapidly with the Rh-core of the Rh-complex than with Ds-pip. This suggests that NO can bond strongly with the Rh-core and replace Ds-pip, even though Ds-pip is already near the Rh-core. However, the recovery process takes longer than the quenching process because the recovery process needs to overcome the energy barrier for formation of the transition state complex, ie, NO-(AcO-4-(Ds-pip. Further, we confirm that the Rh-complex with the Ds-pip structure has too small an energy gap to give off visible light from the highest unoccupied molecular orbital/lowest unoccupied molecular

  3. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    International Nuclear Information System (INIS)

    Simpson, R.; Danly, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C.; Glebov, V. Yu.; Hurlbut, C.

    2016-01-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  4. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glebov, V. Yu. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Hurlbut, C. [Eljen Technology, Sweetwater, Texas 79556 (United States)

    2016-04-15

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  5. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min-Jen [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Jen-Teh Junior College of Medicine, Nursing and Management, Taiwan (China); Tsai, Du-Cheng [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ho, Wen-Hsien [Taiwan Textile Research Institute, Taipei 23674, Taiwan (China); Li, Ching-Fei, E-mail: chingfei.li@gmail.com [Phoenix Silicon International Corporation, Hsinchu 30094, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-11-15

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO{sub 4} solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  6. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia

    2016-06-17

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field\\'s metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field\\'s metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  7. Relationship between microhardness and fatigue strength after glass micro-bead peening and ion implantation

    International Nuclear Information System (INIS)

    Lunarski, J.; Zielecki, M.

    1989-01-01

    Results of tests on fatigue strength and condition of the surface layer, produced by ion implantation or/and glass micro-bead peening for E1961Sz and 12H2N4MAZ steels and WT3-1 titanium alloy are reported. In the tests the following characteristics are measured: Knoop hardness, residual stresses (by etching method), surface roughness, and oscillatory bending fatigue limit at the resonance frequency of the specimen. The test results indicate that for the examined steels there is a strong correlation between surface microhardness and fatigue limit, in spite of various surface treatments. This fact enables to predict changes in the fatigue limit, basing on the results of surface microhardness measurements, which are inexpensive and easy to perform. (author)

  8. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    International Nuclear Information System (INIS)

    Deng, Min-Jen; Tsai, Du-Cheng; Ho, Wen-Hsien; Li, Ching-Fei; Shieu, Fuh-Sheng

    2013-01-01

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO 4 solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  9. Superparamagnetic microbead transport induced by a magnetic field on large-area magnetic antidot arrays

    Science.gov (United States)

    Ouk, Minae; Beach, Geoffrey S. D.

    2017-12-01

    A method is presented for directed transport of superparamagnetic microbeads (SPBs) on magnetic antidot patterned substrates by applying a rotating elliptical magnetic field. We find a critical frequency for transport, beyond which the bead dynamics transitions from stepwise locomotion to local oscillation. We also find that the out-of-plane (HOOP) and in-plane (HIP) field magnitudes play crucial roles in triggering bead motion. Namely, we find threshold values in HOOP and HIP that depend on bead size, which can be used to independently and remotely address specific bead populations in a multi-bead mixture. These behaviors are explained in terms of the dynamic potential energy lansdscapes computed from micromagnetic simulations of the substrate magnetization configuration. Finally, we show that large-area magnetic patterns suitable for particle transport and sorting can be fabricated through a self-assembly lithography technique, which provides a simple, cost-effective means to integrate magnetic actuation into microfluidic systems.

  10. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  11. RESEARCHES OF WORKING LIFE OF FOAM POLYSTYRENE OF BUILDING APPOINTMENT

    Directory of Open Access Journals (Sweden)

    Guyumdzhjan Perch Pogosovich

    2012-09-01

    Full Text Available Results of experimental researches of physicomechanical properties of foam polystyrene thermal insulation materials are presented in article. The operational resource was defined on materials subject to ageing, action of liquid excited environments and atmospheric impacts. The destructive processes leading to destruction of foam polystyrene are revealed.

  12. Influence of recycled polystyrene beads on cement paste properties

    Directory of Open Access Journals (Sweden)

    Maaroufi Maroua

    2018-01-01

    Full Text Available In order to keep up with the requirements of sustainable development, there is a growing interest towards reducing the energy consumption in the construction and rehabilitation of buildings and the promotion of recycling waste in building materials. The use of recycled polystyrene beads in cement-based materials composition constitutes a solution to improve the insulation in buildings. This allows also limiting landfill by reusing the polystyrene waste. The aim of this study is to compare some properties and performances of a cement paste containing polystyrene beads to a reference paste designed with only the same cement. An experimental campaign was conducted and the obtained results showed that adding recycled polystyrene beads to a cement paste improves its hygro-thermal properties. Further studies are however necessary to better understand the real role of the polystyrene beads in the heat and mass transfers.

  13. Correlated dewetting patterns in thin polystyrene films

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes.

  14. Correlated dewetting patterns in thin polystyrene films

    International Nuclear Information System (INIS)

    Neto, Chiara; Jacobs, Karin; Seemann, Ralf; Blossey, Ralf; Becker, Juergen; Gruen, Guenther

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes

  15. Adsorption of amphipathic dendrons on polystyrene nanoparticles.

    Science.gov (United States)

    Sakthivel, T; Florence, A T

    2003-03-18

    Adsorption of dendrons onto nanoparticles may provide new model structures which may be useful in drug and gene delivery. Tritiated amphipathic dendrons having three lipidic (C(14)) chains coupled to branched (dendritic) lysine head groups with 8, 16 or 32 free terminal amino groups have been synthesised by solid phase peptide techniques. The interaction between these tritiated dendrons and 200 nm polystyrene latex nanoparticles was investigated in phosphate buffered saline. The amount of dendron adsorbed increased with increasing concentration of dendrons and then decreased. Maximum adsorption of dendrons per gram of nanoparticles was found to be between 8.2 and 84 x 10(-6)M, the amounts adsorbed being inversely proportional to the number of amino groups present in the molecule. The number of dendron molecules adsorbed per nanoparticle was found to be between 430 and 4421. The degree of adsorption was found to be slightly altered by the temperature. Copyright 2002 Elsevier Science B.V.

  16. ANALYSIS DEGRADATION OF POLYSTYRENE WITH MONTMORILLONITE NANOFILLERS

    Directory of Open Access Journals (Sweden)

    Maria Mihalikova

    2014-01-01

    Full Text Available The paper is focused on the experimental investigation of the montmorillonite nanofillers effect on deformation properties of polystyrene KRASTEN 171. In some cases, combination of a low amount of clay with dispersed polymeric phase may cause synergistic effects leading to very fair balance of mechanical behaviour. This seems to be a consequence of complex influencing the multiphase system by clay such as modification of components (reinforcement and parameters of the interface accompanied by influencing the dynamic phase behaviour, i.e., the compactibilizing effect. The paper analyses the effect of nanocomposites and type of the material on the individual measured parameters, relations between them, strength and deformation behaviour. Deformation was evaluated by non-contact videoextensometry method

  17. Phase Segregation in Polystyrene?Polylactide Blends

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

  18. Synthesis and properties of deuterated polystyrene

    International Nuclear Information System (INIS)

    Liu Chang; Jin Rong; Xu Yewei; Zhang Lin; Yan Hongwei; Du Kai; Wei Chengfu

    2012-01-01

    Deuterated poly(vinylcyclohexane) (D-PVCH, C 8 H 8 D 6 ) was successfully prepared via deuterated catalytic technology of polystyrene (PS). The structure of D-PVCH was characterized by FT-IR and 1 HNMR spectroscopy, and the results show good agreement with the proposed structure and the deuterated ratio is 41.5%. DSC and TG analyses of the D-PVCH show that D-PVCH possesses good thermal stability (glass transition temperature of 125 ℃, 5% weight loss temperature of 403 ℃). Additionally, D-PVCH dissolves in common solvents such as petroleum ether, cyclohexane and toluene at room temperature. Compared with PS, D-PVCH possesses better thermal stability and improved solubility. (authors)

  19. Human embryonic stem cell-encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering

    Science.gov (United States)

    Tang, Minghui; Chen, Wenchuan; Weir, Michael D.; Thein-Han, Wahwah; Xu, Hockin H. K.

    2012-01-01

    Human embryonic stem cells (hESCs) are exciting for regenerative medicine applications because of their strong proliferative ability and multilineage differentiation capability. To date there has been no report on hESC seeding with calcium phosphate cement (CPC). The objective of this study was to investigate hESC-derived mesenchymal stem cell (hESCd-MSC) encapsulation in hydrogel microbeads in macroporous CPC for bone tissue engineering. hESCs were cultured to form embryoid bodies (EBs), and the MSCs were then migrated out of the EBs. hESCd-MSCs had surface markers characteristic of MSCs, with positive alkaline phosphatase (ALP) staining when cultured in osteogenic medium. hESCd-MSCs were encapsulated in alginate at a density of 1 million cells/mL, with an average microbead size of 207 µm. CPC contained mannitol porogen to create a porosity of 64% and macropores with size of 218 µm, with 20% absorbable fibers for additional porosity when the fibers degrade. hESCd-MSCs encapsulated in microbeads in CPC had good viability from 1 to 21 d. ALP gene expression at 21 d was 25-fold that at 1 d. Osteocalcin (OC) at 21 d was two orders of magnitude of that at 1 d. ALP activity in colorimetric p-nitrophenyl phosphate assay at 21 d was 5-fold that at 1 d. Mineral synthesis by the encapsulated hESCd-MSCs at 21 d was 7-fold that at 1 d. Potential benefits of the CPC-stem cell paste include injectability, intimate adaptation to complex-shaped bone defects, ease in contouring to achieve esthetics in maxillofacial repairs, and in situ setting ability. In conclusion, hESCd-MSCs were encapsulated in alginate microbeads in macroporous CPC showing good cell viability, osteogenic differentiation and mineral synthesis for the first time. The hESCd-MSC-encapsulating macroporous CPC construct is promising for bone regeneration in a wide range of orthopedic and maxillofacial applications. PMID:22633970

  20. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part II, modeling.

    Directory of Open Access Journals (Sweden)

    Mathieu Bottier

    2017-07-01

    Full Text Available Mucociliary clearance is one of the major lines of defense of the human respiratory system. The mucus layer coating the airways is constantly moved along and out of the lung by the activity of motile cilia, expelling at the same time particles trapped in it. The efficiency of the cilia motion can experimentally be assessed by measuring the velocity of micro-beads traveling through the fluid surrounding the cilia. Here we present a mathematical model of the fluid flow and of the micro-beads motion. The coordinated movement of the ciliated edge is represented as a continuous envelope imposing a periodic moving velocity boundary condition on the surrounding fluid. Vanishing velocity and vanishing shear stress boundary conditions are applied to the fluid at a finite distance above the ciliated edge. The flow field is expanded in powers of the amplitude of the individual cilium movement. It is found that the continuous component of the horizontal velocity at the ciliated edge generates a 2D fluid velocity field with a parabolic profile in the vertical direction, in agreement with the experimental measurements. Conversely, we show than this model can be used to extract microscopic properties of the cilia motion by extrapolating the micro-bead velocity measurement at the ciliated edge. Finally, we derive from these measurements a scalar index providing a direct assessment of the cilia beating efficiency. This index can easily be measured in patients without any modification of the current clinical procedures.

  1. Design of a Modular DNA Triangular-Prism Sensor Enabling Ratiometric and Multiplexed Biomolecule Detection on a Single Microbead.

    Science.gov (United States)

    Liu, Yu; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Guo, Qiuping; Li, Li; Liu, Wei; Wang, Kemin

    2017-03-21

    DNA nanostructures have emerged as powerful and versatile building blocks for the construction of programmable nanoscale structures and functional sensors for biomarker detection, disease diagnostics, and therapy. Here we integrated multiple sensing modules into a single DNA three-dimensional (3D) nanoarchitecture with a triangular-prism (TP) structure for ratiometric and multiplexed biomolecule detection on a single microbead. In our design, the complementary hybridization of three clip sequences formed TP nanoassemblies in which the six single-strand regions in the top and bottom faces act as binding sites for different sensing modules, including an anchor module, reference sequence module, and capture sequence module. The multifunctional modular TP nanostructures were thus exploited for ratiometric and multiplexed biomolecule detection on microbeads. Microbead imaging demonstrated that, after ratiometric self-calibration analysis, the imaging deviations resulting from uneven fluorescence intensity distribution and differing probe concentrations were greatly reduced. The rigid nanostructure also conferred the TP as a framework for geometric positioning of different capture sequences. The inclusion of multiple targets led to the formation of sandwich hybridization structures that gave a readily detectable optical response at different fluorescence channels and distinct fingerprint-like pattern arrays. This approach allowed us to discriminate multiplexed biomolecule targets in a simple and efficient fashion. In this module-designed strategy, the diversity of the controlled DNA assembly coupled with the geometrically well-defined rigid nanostructures of the TP assembly provides a flexible and reliable biosensing approach that shows great promise for biomedical applications.

  2. Combined effect of gamma radiation and stress cracking in polystyrene

    International Nuclear Information System (INIS)

    Amorim, Fernando A.; Rabello, Marcelo S.; Silva, Leonardo G.A.

    2011-01-01

    This study aimed to evaluate the combined effect of gamma radiation and stress cracking in polystyrene. Three different grades of polystyrene were analysed. The material was submitted to tensile tests and relaxation, analysis of molecular weight and determination of crosslinking. The results showed an increase in tensile strength in the specimens that had been exposed to radiation. The higher the molecular weight polystyrene showed better mechanical properties and after suffering the effects of gamma radiation there was an increase of 5.67% in the resistance to stress cracking effects. (author)

  3. Synthesis of micro-sized polystyrene magnetic particles

    International Nuclear Information System (INIS)

    Neves, Juliete S.; Suarez, Paulo A.Z.; Umpierre, Alexandre P.; Machado, Fabricio; Souza Junior, Fernando G. de

    2011-01-01

    The present work illustrates the synthesis of spherical and micro-sized polystyrene magnetic particles by using a water-based suspension polymerization process to incorporate in situ surface modified superparamagnetic Fe 3 O 4 nanoparticles. The crystallite size of Fe 3 O 4 was determined to be equal to 7.7 nm, based on Scherrer's equation and XRD measurement. According to EDX analyses, Fe 3 O 4 / polystyrene nanocomposites particles show strong characteristic peaks Kα and Kβ of iron at the interval from 6.38 KeV to 7.04 KeV with an amount of iron in the samples equal to 98 %, indicating that the inorganic material dispersed in the polystyrene matrix is essentially Fe in the form of iron oxide (Fe 3 O 4 ). The obtained polymeric materials presented good magnetic behavior, indicating that the modified Fe 3 O 4 nanoparticles were successfully dispersed in the polystyrene particles. (author)

  4. ESR studies of the radiation effects on polystyrene

    International Nuclear Information System (INIS)

    Garrett, R.W.; O'Donnell, J.H.; Pomery, P.J.

    1976-01-01

    The aim of this work was to investigate the polystyrene system (both pure and commercial samples) to elucidate the type and percentage of each paramagnetic species upon exposure to various irradiation doses. The size of dose plays a vital role in the type of spectra obtained. Upon irradiation in vacuo, polystyrene displays ESR spectra which are basically triplet in character but the line spacing and intensities of components are observed to depend on the magnitude of the irradiation dose. G value for the total radicals present and for the individual species present as a function of dose have been obtained. The relative concentration of each paramagnetic species has been determined through computer simulation of the observed ESR spectra. The relative stability of the different species with respect to temperature is discussed. The results for deuterated polystyrene is used to support those obtained for the unsubstituted polystyrene system. (author)

  5. Mortar modified with sulfonated polystyrene produced from waste plastic cups

    Directory of Open Access Journals (Sweden)

    L. A. C. MOTTA

    Full Text Available Abstract In this work, we studied the addition of sulfonated polystyrene produced from waste plastic cups as an admixture for mortars. Mortars were analyzed with polystyrene content of 0.0; 0.2; 0.6; 1.0 and 1.4% in relation to the cement mass. The influence of polystyrene on the mortars' properties was evaluated by the consistency index, water retention, water absorption, porosity, elasticity modulus, compressive strength, flexural strength, bond tensile strength and microscopy. The increase in the sulfonated polystyrene content decreased the elasticity modulus of the mortar and, despite higher porosity, there was a reduction of water absorption by capillarity. In relation to mortar without admixture, the modified mortar showed an increase in water retention and consistency index, and a large increase in flexural strength and bond tensile strength. The significant increase of bond tensile strength (214% with admixture 1% highlights the potential of the produced material as an adhesive mortar.

  6. Constancy in composition of polystyrene and polymethylmethacrylate plastics

    International Nuclear Information System (INIS)

    Schulz, R.J.; Nath, R.

    1979-01-01

    Variations in the atomic compostion, and mass and electron densities of polystyrene and polymethylmethacrylate (PMM) plastics were assessed from experimentally determined mass attenuation coefficients for 125 I and 137 Cs gamma rays. The means and standard deviations in the mass densities of 16 samples of PMM and 10 samples of polystyrene were found to be 1.174 +- 1.4% and 1.042 +- 0.6% g/cm 3 , respectively. Based upon transmission measurements on various solutions of ethyl alcohol in water, the standard deviations in the effective atomic numbers of PMM and polystyrene were determined to be 0.77% and 1.3%, respectively. Based upon experimentally determined mass attenuation coefficients for 137 Cs, the standard deviations in electron density for PMM and polystyrene were 0.5% and 1.2%, respectively. Similar measurements on tap water and two grades of distilled water failed to detect any differences in atomic composition

  7. Behavior of positronium in polystyrene and its derivatives

    International Nuclear Information System (INIS)

    Honda, Y.; Watanabe, M.; Tashiro, M.; Terashima, Y.; Miyamoto, K.; Kimura, N.; Tagawa, S.

    2003-01-01

    The polystyrene, poly(4-bromostyrene) and poly(4-vinylphenol) are investigated using slow positron beam based on electron linac. There was a difference in the intensity of long-lived component of lifetime in o-Ps (τ 3 ). The S-parameter and the intensity of τ 3 were strongly influenced by the presence of the substituents of polystyrene. In thin films, irradiation effect caused by positron beam was observed

  8. On the Importance of Purification of Sodium Polystyrene Sulfonate

    OpenAIRE

    Sen, Akhil K.; Roy, Sandip; Juvekar, Vinay A.

    2012-01-01

    Ion exchange is commonly employed for purification of sodium polystyrene sulfonate (NaPSS), a molecule widely used as a model polyelectrolyte. However, the present work demonstrates that the ion exchange process itself may introduce some extraneous species into NaPSS samples by two possible mechanisms: (i) chemical transformation of polystyrene sulfonic acid (HPSS), a relatively unstable intermediate formed during ion exchange and (ii) release of small amount of “condensed” acid from cationic...

  9. The polymerization of aniline in polystyrene latex particles

    Czech Academy of Sciences Publication Activity Database

    Blinova, Natalia V.; Reynaud, S.; Roby, F.; Trchová, Miroslava; Stejskal, Jaroslav

    2010-01-01

    Roč. 160, 15/16 (2010), s. 1598-1602 ISSN 0379-6779 R&D Projects: GA AV ČR IAA400500905; GA ČR GA203/08/0686; GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * polystyrene latex * polyaniline-polystyrene composite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.871, year: 2010

  10. Formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles using sulfonated polystyrene as template.

    Science.gov (United States)

    Hazarika, Mousumi; Arunbabu, Dhamodaran; Jana, Tushar

    2010-11-15

    We report formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles from a new blend system consisting of an amorphous polymer polybenzimidazole (PBI) and an ionomer sodium salt of sulfonated polystyrene (SPS-Na). The ionomer used for the blending is spherical in shape with sulfonate groups on the surface of the particles. An in depth investigation of the blends at various sulfonation degrees and compositions using Fourier transform infrared (FT-IR) spectroscopy provides direct evidence of specific hydrogen bonding interactions between the N-H groups of PBI and the sulfonate groups of SPS-Na. The disruption of PBI chains self association owing to the interaction between the functional groups of these polymer pairs is the driving force for the blending. Thermodynamical studies carried out by using differential scanning calorimeter (DSC) establish partially miscible phase separated blending of these polymers in a wider composition range. The two distinguishable glass transition temperatures (T(g)) which are different from the neat components and unaltered with the blends composition attribute that the domain size of heterogeneity (d(d)) of the blends is >20 nm since one of the blend component (SPS-Na particle) diameter is ∼70 nm. The diminish of PBI chains self association upon blending with SPS-Na particles and the presence of invariant T(g)'s of the blends suggest the wrapping of PBI chains over the SPS-Na spherical particle surface and hence resulting a core-shell morphology. Transmission electron microscopy (TEM) study provides direct evidence of core-shell nanoparticle formation; where core is the polystyrene and shell is the PBI. The sulfonation degree affects the blends phase separations. The higher degree of sulfonation favors the disruption of PBI self association and thus forms partially miscible two phases blends with core-shell morphology. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Seismic Performance of Precast Polystyrene RC Walls

    Directory of Open Access Journals (Sweden)

    Wibowo Ari

    2017-01-01

    Full Text Available Precast concrete structure such as precast wall is a concept that is growing rapidly these days. However, the earthquake resistance is believed to be one of its drawbacks. Additionally, the large weight of solid elements also increase the building weight significantly which consequently increase the earthquake base shear force as well. Therefore, investigation on the seismic performance of precast concrete wall has been carried out. Three RC wall specimens using wire mesh reinforcement and EPS (Extended Polystyrene System panel have been tested. This wall was designed as a structural wall that was capable in sustaining lateral loads (in-plane yet were lightweight to reduce the total weight of the building. Parameter observed was the ratio of height to width (aspect ratio of wall of 1.0, 1.5 and 2.0 respectively with the aim to study the behaviour of brittle to ductile transition of the wall. Incremental static load tests were conducted until reaching peak load and then followed by displacement control until failure. Several data were measured at every stage of loading comprising lateral load-displacement behaviour, ultimate strength and collapse mechanism. The outcomes showed that precast concrete walls with a steel wire and EPS panel filler provided considerably good resistance against lateral load.

  12. ''Nonisolated-sensor'' solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A ''nonisolated-sensor'' solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  13. Nonisolated-sensor solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A nonisolated-sensor solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  14. Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering.

    Science.gov (United States)

    Wise, Joel K; Alford, Andrea I; Goldstein, Steven A; Stegemann, Jan P

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25 × 10(6) cells/mL, containing an estimated 5 × 10(4) MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2 × 10(5) cells/mL) were added to a 65-35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the

  15. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.

    Science.gov (United States)

    Elsner, Joanna; Lipowczan, Marcin; Kwiatkowska, Dorota

    2018-02-01

    In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth. © 2018 Botanical Society of America.

  16. Magnetic Microbead Affinity Selection Screening (MagMass) of Botanical Extracts for Inhibitors of 15-Lipoxygenase

    Science.gov (United States)

    Rush, Michael D.; Walker, Elisabeth M.; Burton, Tristesse; van Breemen, Richard B.

    2016-01-01

    To expedite the identification of active natural products in complex mixtures such as botanical extracts, a Magnetic Microbead Affinity Selection Screening (MagMASS) procedure was developed. This technique utilizes target proteins immobilized on magnetic beads for rapid bioaffinity isolation of ligands from complex mixtures. A MagMASS method was developed and validated for 15-lipoxygenase. As a proof of concept, several North American prairie plants used medicinally by Native Americans were extracted with MeOH and screened. A hit from an extract of Proserpinaca palustris, also known as mermaid weed, was flagged for further characterization using high-resolution tandem mass spectrometry, dereplication, and identification using XCMS online. Through the application of high-resolution product ion tandem mass spectrometry, comparison with natural product databases and confirmation using standards, the hit was identified as quercitrin, which is a known inhibitor of 15-lipoxygenase. The overall workflow of MagMASS is faster and more amendable to automation than alternative methods designed for screening botanical extracts or complex mixtures of combinatorial libraries. PMID:27802026

  17. Engineering novel synthetic strategy to develop mesocarbon microbeads for multi-functional applications

    Science.gov (United States)

    Chaudhary, Anisha; Teotia, Satish; Kumar, Rajeev; Ramesha, K.; Dhakate, Sanjay R.; Kumari, Saroj

    2018-04-01

    To assess the challenge of affordable technology, present synthetic strategies can be extended to new low-cost synthesis and processing methods that have potential to tailor the properties of the materials. Here we report, a novel method for the synthesis of mesocarbon microbeads (MCMB) through a pre-processing involved pyrolysis technique. The resulting MCMB is compressed into a product and effects of heat treatment temperature on different properties of MCMB is studied. The use of MCMB for the electromagnetic interference (EMI) shielding is new and hence, the effect of heat treatment temperature on EMI shielding effectiveness is studied in X-band. It is observed that EMI shielding effectiveness increases to ‑39.6 dB on increasing the heat treatment temperature. The high conductivity of MCMB plate heat treated upto 2500 °C contributes to highly conducting networks. Additionally, to investigate the electrochemical performance of MCMB as an anode material for lithium ion batteries, 2500 °C heat treated MCMB powder is used to fabricate the electrode. The MCMB electrode exhibits high discharge capacity of 345 mAh g‑1 with a stable capacity for over 50 cycles and good rate capability. Thus, MCMB synthesized by this novel approach can be used for the development of high performance anode materials for Li-ion batteries.

  18. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters

    Science.gov (United States)

    Tanaka, Kosuke; Takada, Hideshige

    2016-01-01

    We investigated microplastics in the digestive tracts of 64 Japanese anchovy (Engraulis japonicus) sampled in Tokyo Bay. Plastic was detected in 49 out of 64 fish (77%), with 2.3 pieces on average and up to 15 pieces per individual. All of the plastics were identified by Fourier transform infrared spectroscopy. Most were polyethylene (52.0%) or polypropylene (43.3%). Most of the plastics were fragments (86.0%), but 7.3% were beads, some of which were microbeads, similar to those found in facial cleansers. Eighty percent of the plastics ranged in size from 150 μm to 1000 μm, smaller than the reported size range of floating microplastics on the sea surface, possibly because the subsurface foraging behavior of the anchovy reflected the different size distribution of plastics between surface waters and subsurface waters. Engraulis spp. are important food for many humans and other organisms around the world. Our observations further confirm that microplastics have infiltrated the marine ecosystem, and that humans may be exposed to them. Because microplastics retain hazardous chemicals, increase in fish chemical exposure by the ingested plastics is of concern. Such exposure should be studied and compared with that in the natural diet. PMID:27686984

  19. Biocompatibility of hyaluronic acid hydrogels prepared by porous hyaluronic acid microbeads

    Science.gov (United States)

    Kim, Jin-Tae; Lee, Deuk Yong; Kim, Tae-Hyung; Song, Yo-Seung; Cho, Nam-Ihn

    2014-05-01

    Hyaluronic acid hydrogels (HAHs) were synthesized by immersing HA microbeads crosslinked with divinyl sulfone in a phosphate buffered saline solution to evaluate the biocompatibility of the gels by means of cytotoxicity, genotoxicity ( in vitro chromosome aberration test, reverse mutation assay, and in vivo micronucleus test), skin sensitization, and intradermal reactivity. The HAHs induced no cytotoxicity or genotoxicity. In guinea pigs treated with grafts and prostheses, no animals died and there were no abnormal clinical signs. The sensitization scores were zero in all guinea pigs after 24 h and 48 h challenge, suggesting that the HAHs had no contact allergic sensitization in the guinea pig maximization test. No abnormal signs were found in New Zealand White rabbits during the 72 h observation period after the injection. There was no difference between the HAHs and negative control mean scores because skin reaction such as erythema or oedema was not observed after injection. Experimental results suggest that the HAHs would be suitable for soft tissue augmentation due to the absence of cytotoxicity, genotoxicity, skin sensitization, and intradermal reactivity.

  20. Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles.

    Science.gov (United States)

    Mohapatra, Ankita; Harris, Michael A; LeVine, David; Ghimire, Madhav; Jennings, Jessica A; Morshed, Bashir I; Haggard, Warren O; Bumgardner, Joel D; Mishra, Sanjay R; Fujiwara, Tomoko

    2017-10-20

    Local antibiotic delivery can overcome some of the shortcomings of systemic therapy, such as low local concentrations and delivery to avascular sites. A localized drug delivery system (DDS), ideally, could also use external stimuli to modulate the normal drug release profile from the DDS to provide efficacious drug administration and flexibility to healthcare providers. To achieve this objective, chitosan microbeads embedded with magnetic nanoparticles were loaded with the antibiotic vancomycin and stimulated by a high frequency alternating magnetic field. Three such stimulation sessions separated by 1.5 h were applied to each test sample. The chromatographic analysis of the supernatant from these stimulated samples showed more than approximately 200% higher release of vancomycin from the DDS after the stimulation periods compared to nonstimulated samples. A 16-day long term elution study was also conducted where the DDS was allowed to elute drug through normal diffusion over a period of 11 days and stimulated on day 12 and day 15, when vancomycin level had dropped below therapeutic levels. Magnetic stimulation boosted elution of test groups above minimum inhibitory concentration (MIC), as compared to control groups (with no stimulation) which remained below MIC. The drug release from test groups in the intervals where no stimulation was given showed similar elution behavior to control groups. These results indicate promising possibilities of controlled drug release using magnetic excitation from a biopolymer-based DDS. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  1. In Vitro and In Vivo Biocompatibility Evaluation of Polyallylamine and Macromolecular Heparin Conjugates Modified Alginate Microbeads.

    Science.gov (United States)

    Vaithilingam, Vijayaganapathy; Steinkjer, Bjørg; Ryan, Liv; Larsson, Rolf; Tuch, Bernard Edward; Oberholzer, Jose; Rokstad, Anne Mari

    2017-09-15

    Host reactivity to biocompatible immunoisolation devices is a major challenge for cellular therapies, and a human screening model would be of great value. We designed new types of surface modified barium alginate microspheres, and evaluated their inflammatory properties using human whole blood, and the intraperitoneal response after three weeks in Wistar rats. Microspheres were modified using proprietary polyallylamine (PAV) and coupled with macromolecular heparin conjugates (Corline Heparin Conjugate, CHC). The PAV-CHC strategy resulted in uniform and stable coatings with increased anti-clot activity and low cytotoxicity. In human whole blood, PAV coating at high dose (100 µg/ml) induced elevated complement, leukocyte CD11b and inflammatory mediators, and in Wistar rats increased fibrotic overgrowth. Coating of high dose PAV with CHC significantly reduced these responses. Low dose PAV (10 µg/ml) ± CHC and unmodified alginate microbeads showed low responses. That the human whole blood inflammatory reactions paralleled the host response shows a link between inflammatory potential and initial fibrotic response. CHC possessed anti-inflammatory activity, but failed to improve overall biocompatibility. We conclude that the human whole blood assay is an efficient first-phase screening model for inflammation, and a guiding tool in development of new generation microspheres for cell encapsulation therapy.

  2. Activation of mesocarbon microbeads with different textures and their application for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Fuhu, Li; Weidong, Chi; Zengmin, Shen; Yunfang, Liu; Hui, Liu [Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Yixian, Wu [The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-01-15

    Three kinds of mesocarbon microbeads (MCMBs) with different textures were activated by potassium hydroxide at 900 C and used as electrode materials for supercapacitor. The effects of textures of precursors on electrochemical performances of activated MCMBs were investigated. Nitrogen sorption measurements (at 77 K) showed that three kinds of activated MCMBs possess high specific surface areas (> 2000 m{sup 2}/g) and different porosity characteristics. MCMB prepared by emulsion method from bulk mesophase pitch (MCMB-e) has an irregular and distorted lamellar structure of oriented aromatic hydrocarbons. The unique texture of MCMB-e leads to the largest specific surface area (2542.8 m{sup 2}/g) and the highest micropore volume (0.8236 cm{sup 3}/g) after activation. Galvanostatic charge-discharge results showed that the activated MCMB-e has the highest specific capacitance of 326 F/g at the current density of 20 mA/g and better rate capability in 6 M KOH electrolyte. The good capacitive behavior of the activated MCMB-e may be attributed to the high-surface area, abundant micropores, closed-packed mesopores and macropores, as well as moderate crystal structures. (author)

  3. Data mining strategies to improve multiplex microbead immunoassay tolerance in a mouse model of infectious diseases.

    Directory of Open Access Journals (Sweden)

    Akshay Mani

    Full Text Available Multiplex methodologies, especially those with high-throughput capabilities generate large volumes of data. Accumulation of such data (e.g., genomics, proteomics, metabolomics etc. is fast becoming more common and thus requires the development and implementation of effective data mining strategies designed for biological and clinical applications. Multiplex microbead immunoassay (MMIA, on xMAP or MagPix platform (Luminex, which is amenable to automation, offers a major advantage over conventional methods such as Western blot or ELISA, for increasing the efficiencies in serodiagnosis of infectious diseases. MMIA allows detection of antibodies and/or antigens efficiently for a wide range of infectious agents simultaneously in host blood samples, in one reaction vessel. In the process, MMIA generates large volumes of data. In this report we demonstrate the application of data mining tools on how the inherent large volume data can improve the assay tolerance (measured in terms of sensitivity and specificity by analysis of experimental data accumulated over a span of two years. The combination of prior knowledge with machine learning tools provides an efficient approach to improve the diagnostic power of the assay in a continuous basis. Furthermore, this study provides an in-depth knowledge base to study pathological trends of infectious agents in mouse colonies on a multivariate scale. Data mining techniques using serodetection of infections in mice, developed in this study, can be used as a general model for more complex applications in epidemiology and clinical translational research.

  4. Oxygen consumption through metabolism and photodynamic reactions in cells cultured on microbeads

    International Nuclear Information System (INIS)

    Schunck, T.; Poulet, P.

    2000-01-01

    Oxygen consumption by cultured cells, through metabolism and photosensitization reactions, has been calculated theoretically. From this result, we have derived the partial oxygen pressure P O 2 in the perfusion medium flowing across sensitized cultured cells during photodynamic experiments. The P O 2 variations in the perfusate during light irradiation are related to the rate of oxygen consumption through photoreactions, and to the number of cells killed per mole of oxygen consumed through metabolic processes. After irradiation, the reduced metabolic oxygen consumption yields information on the cell death rate, and on the photodynamic cell killing efficiency. The aim of this paper is to present an experimental set-up and the corresponding theoretical model that allows us to control the photodynamic efficiency for a given cell-sensitizer pair, under well defined and controlled conditions of irradiation and oxygen supply. To demonstrate the usefulness of the methodology described, CHO cells cultured on microbeads were sensitized with pheophorbide a and irradiated with different light fluence rates. The results obtained, i.e. oxygen consumption of about 0.1 μMs -1 m -3 under a light fluence rate of 1 W m -2 , 10 5 cells killed per mole of oxygen consumed and a decay rate of about 1 h -1 of living cells after irradiation, are in good agreement with the theoretical predictions and with previously published data. (author)

  5. The synthesis of poly(vinylphosphonic acid-co-methacrylic acid) microbeads by suspension polymerization and the characterization of their indium adsorption properties

    International Nuclear Information System (INIS)

    Kwak, Noh-Seok; Baek, Youngmin; Hwang, Taek Sung

    2012-01-01

    Highlights: ► Microbeads were synthesized by suspension polymerization based on VPA, MAA and PEGDA. ► The best preparation condition was determined from the yield, water uptake and IEC. ► The adsorption isotherm of indium was fit to the Langmuir and Freundlich models. - Abstract: Poly(vinylphosphonic acid-co-methacrylic acid) microbeads were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The obtained microbeads were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The microbeads were wrinkled spheres, irrespective of the components, and their sizes ranged from 100 to 200 μm. The microbeads were thermally stable up to 260 °C. As the vinylphosphonic acid (VPA) content was increased, the synthetic yields and ion-exchange capacities decreased and the water uptakes increased. The optimum synthetic yield, ion-exchange capacity and water uptake were obtained at a 0.5 mol ratio of VPA. In addition, the maximum adsorption predicted by the Langmuir adsorption isotherm model was greatest at a 0.5 mol ratio of VPA.

  6. The synthesis of poly(vinylphosphonic acid-co-methacrylic acid) microbeads by suspension polymerization and the characterization of their indium adsorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Noh-Seok; Baek, Youngmin [Department of Applied Chemistry and Biological Engineering, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Hwang, Taek Sung, E-mail: tshwang@cnu.ac.kr [Department of Applied Chemistry and Biological Engineering, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Microbeads were synthesized by suspension polymerization based on VPA, MAA and PEGDA. Black-Right-Pointing-Pointer The best preparation condition was determined from the yield, water uptake and IEC. Black-Right-Pointing-Pointer The adsorption isotherm of indium was fit to the Langmuir and Freundlich models. - Abstract: Poly(vinylphosphonic acid-co-methacrylic acid) microbeads were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The obtained microbeads were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The microbeads were wrinkled spheres, irrespective of the components, and their sizes ranged from 100 to 200 {mu}m. The microbeads were thermally stable up to 260 Degree-Sign C. As the vinylphosphonic acid (VPA) content was increased, the synthetic yields and ion-exchange capacities decreased and the water uptakes increased. The optimum synthetic yield, ion-exchange capacity and water uptake were obtained at a 0.5 mol ratio of VPA. In addition, the maximum adsorption predicted by the Langmuir adsorption isotherm model was greatest at a 0.5 mol ratio of VPA.

  7. Polystyrene Core-Silica Shell Particles with Defined Nanoarchitectures as a Versatile Platform for Suspension Array Technology.

    Science.gov (United States)

    Sarma, Dominik; Gawlitza, Kornelia; Rurack, Knut

    2016-04-19

    The need for rapid and high-throughput screening in analytical laboratories has led to significant growth in interest in suspension array technologies (SATs), especially with regard to cytometric assays targeting a low to medium number of analytes. Such SAT or bead-based assays rely on spherical objects that constitute the analytical platform. Usually, functionalized polymer or silica (SiO2) microbeads are used which each have distinct advantages and drawbacks. In this paper, we present a straightforward synthetic route to highly monodisperse SiO2-coated polystyrene core-shell (CS) beads for SAT with controllable architectures from smooth to raspberry- and multilayer-like shells by varying the molecular weight of poly(vinylpyrrolidone) (PVP), which was used as the stabilizer of the cores. The combination of both organic polymer core and a structurally controlled inorganic SiO2 shell in one hybrid particle holds great promises for flexible next-generation design of the spherical platform. The particles were characterized by electron microscopy (SEM, T-SEM, and TEM), thermogravimetry, flow cytometry, and nitrogen adsorption/desorption, offering comprehensive information on the composition, size, structure, and surface area. All particles show ideal cytometric detection patterns and facile handling due to the hybrid structure. The beads are endowed with straightforward modification possibilities through the defined SiO2 shells. We successfully implemented the particles in fluorometric SAT model assays, illustrating the benefits of tailored surface area which is readily available for small-molecule anchoring. Very promising assay performance was shown for DNA hybridization assays with quantification limits down to 8 fmol.

  8. A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization

    International Nuclear Information System (INIS)

    Vinodh, Rajangam; Ilakkiya, Arjunan; Elamathi, Swaminathan; Sangeetha, Dharmalingam

    2010-01-01

    We look forward for an eco-friendly hydrocarbon polymer with higher molecular weight for the preparation of an anion exchange membrane. Polystyrene ethylene butylene polystyrene (PSEBS) was chosen as the polymer matrix. The anion exchange membrane was prepared from PSEBS tri-block co-polymer and then the properties were characterized for alkaline fuel cell application. The preparation of anion exchange polymer involved two steps namely chloromethylation and quaternization. The anion exchange membrane with high conductivity has been prepared by introducing quaternary ammonium groups in to the polymer. Finally, the membrane was prepared using solution casting method. The solution casting method yields highly hydrophilic membranes with uniform structure that were suitable for electrochemical applications. The efficiency of the entrapment was monitored by swelling ratio, chemical stability and ion exchange measurement. The characteristic structural properties of the membrane were investigated by FT-IR spectroscopy and 1 H NMR spectroscopy. The thermal stability of the membrane was characterized by TGA, DSC and DMA (dynamic mechanical analysis). The prepared uniform electrolyte membrane in this study has high thermal and chemical stability. The surface morphology and elemental composition of the quaternized PSEBS was determined by SEM-EDXA techniques, respectively. The measured hydroxyl ion conductivity of the synthesized alkaline PSEBS polymer electrolyte membrane showed ionic conductivity in the range of 10 -3 S/cm in deionized water at room temperature. It was found that the substitution provided a flexible, chemically and thermally stable membrane. Hence, the membrane will have potential application in the alkaline fuel cell.

  9. Modelling of Radiolytical Proceses in Polystyrenic Structures

    International Nuclear Information System (INIS)

    Postolache, C.

    2006-01-01

    The behavior of polystyrene, poly α-methylstyrene and poly β-methylstyrene structures in ionizing fields was analyzed using computational methods. In this study, the primary radiolytic effect was evaluated using a free radical mechanism. Molecular structures were built and geometrical optimized using quantum-chemical methods. Binding energies for different quantum states and peripheral orbitals distribution were determined. Based on obtained results it was proposed an evaluation model of radiolytical processes in polymers in solid phase. Suggested model suppose to distinguish the dominant processes by binding energies values analysis and LUMO peripheral orbital distribution. Computed binding energies analysis of energetically optimized molecular structures in ionized state (charge +1, multiplicity 2) reveals a high similitude of obtained binding energies for ionized states. The same similitude was observed also in case of total binding energies for neutral state (charge 0, multiplicity 1). Analyzed molecular structures can be associated with ionized molecule state right after one electron capture. This fact suggests that the determined stage of radiolitical fragmentation act is intermediate state of ionized molecule. This molecule captured one electron but it had no necessary time for atoms rearrangement in the molecule for new quantum state. This supposition is in accordance with literature, the time period between excitation act and fragmentation act being lower than 10 - 15 seconds. Based on realized model could be explained the behavior differences of polymeric structures in ionizing radiation field. Preferential fracture of main chains in fragmentation poly α-methylstirene can be explained in accordance with proposed model by C-C from main C bonding energies decreasing in the neighboring of quaternary C

  10. Polystyrene nanoparticles affect Xenopus laevis development

    Energy Technology Data Exchange (ETDEWEB)

    Tussellino, Margherita; Ronca, Raffaele [University of Naples Federico II, Department of Biology (Italy); Formiggini, Fabio [Italian Institute of Technology, Center for Advanced Biomaterials for Health Care IIT@CRIB (Italy); Marco, Nadia De [University of Naples Federico II, Department of Biology (Italy); Fusco, Sabato; Netti, Paolo Antonio [Italian Institute of Technology, Center for Advanced Biomaterials for Health Care IIT@CRIB (Italy); Carotenuto, Rosa, E-mail: rosa.carotenuto@unina.it [University of Naples Federico II, Department of Biology (Italy)

    2015-02-15

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay-Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the “corona” effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos.

  11. Polystyrene nanoparticles affect Xenopus laevis development

    International Nuclear Information System (INIS)

    Tussellino, Margherita; Ronca, Raffaele; Formiggini, Fabio; Marco, Nadia De; Fusco, Sabato; Netti, Paolo Antonio; Carotenuto, Rosa

    2015-01-01

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay-Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the “corona” effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos

  12. Altered electrode degradation with temperature in LiFePO4/mesocarbon microbead graphite cells diagnosed with impedance spectroscopy

    International Nuclear Information System (INIS)

    Klett, Matilda; Zavalis, Tommy Georgios; Kjell, Maria H.; Lindström, Rakel Wreland; Behm, Mårten; Lindbergh, Göran

    2014-01-01

    Highlights: • Aging of LiFePO 4 /mesocarbon microbead graphite cells from hybrid electric vehicle cycling. • Electrode degradation evaluated post-mortem by impedance spectroscopy and physics-based modeling. • Increased temperature promotes different degradation processes on the electrode level. • Conductive carbon degradation at 55 °C in the LiFePO 4 electrode. • Mesocarbon microbead graphite electrode degraded by cycling rather than temperature. - Abstract: Electrode degradation in LiFePO 4 /mesocarbon microbead graphite (MCMB) pouch cells aged at 55 °C by a synthetic hybrid drive cycle or storage is diagnosed and put into context with previous results of aging at 22 °C. The electrode degradation is evaluated by means of electrochemical impedance spectroscopy (EIS), measured separately on electrodes harvested from the cells, and by using a physics-based impedance model for aging evaluation. Additional capacity measurements, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) are used in the evaluation. At 55 °C the LiFePO 4 electrode shows increased particle/electronic conductor resistance, for both stored and cycled electrodes. This differs from results obtained at 22 °C, where the electrode suffered lowered porosity, particle fracture, and loss of active material. For graphite, only cycling gave a sustained effect on electrode performance at 55 °C due to lowered porosity and changes of surface properties, and to greater extent than at low temperature. Furthermore, increased current collector resistance also contributes to a large part of the pouch cell impedance when aged at increased temperatures. The result shows that increased temperature promotes different degradation on the electrode level, and is an important implication for high temperature accelerated aging. In light of the electrode observations, the correlation between full-cell and electrode impedances is discussed

  13. Evaluation of Time-Temperature Integrators (TTIs) with Microorganism-Entrapped Microbeads Produced Using Homogenization and SPG Membrane Emulsification Techniques.

    Science.gov (United States)

    Rahman, A T M Mijanur; Lee, Seung Ju; Jung, Seung Won

    2015-12-28

    A comparative study was conducted to evaluate precision and accuracy in controlling the temperature dependence of encapsulated microbial time-temperature integrators (TTIs) developed using two different emulsification techniques. Weissela cibaria CIFP 009 cells, immobilized within 2% Na-alginate gel microbeads using homogenization (5,000, 7,000, and 10,000 rpm) and Shirasu porous glass (SPG) membrane technologies (10 μm), were applied to microbial TTIs. The prepared micobeads were characterized with respect to their size, size distribution, shape and morphology, entrapment efficiency, and bead production yield. Additionally, fermentation process parameters including growth rate were investigated. The TTI responses (changes in pH and titratable acidity (TA)) were evaluated as a function of temperature (20°C, 25°C, and 30°C). In comparison with conventional methods, SPG membrane technology was able not only to produce highly uniform, small-sized beads with the narrowest size distribution, but also the bead production yield was found to be nearly 3.0 to 4.5 times higher. However, among the TTIs produced using the homogenization technique, poor linearity (R(2)) in terms of TA was observed for the 5,000 and 7,000 rpm treatments. Consequently, microbeads produced by the SPG membrane and by homogenization at 10,000 rpm were selected for adjusting the temperature dependence. The Ea values of TTIs containing 0.5, 1.0, and 1.5 g microbeads, prepared by SPG membrane and conventional methods, were estimated to be 86.0, 83.5, and 76.6 kJ/mol, and 85.5, 73.5, and 62.2 kJ/mol, respectively. Therefore, microbial TTIs developed using SPG membrane technology are much more efficient in controlling temperature dependence.

  14. New insight on the formation of whey protein microbeads by a microfluidic system

    Science.gov (United States)

    Andoyo, Robi; Guyomarc'h, Fanny; Tabuteau, Hervé; Famelart, Marie-Hélène

    2018-02-01

    The current paper describes the formation of whey protein microbeads (WPM) having a spherical shape and a monodispersed size distribution. A microfluidic flow-focusing geometry was used to control the production of whey protein microdroplets in a hydrophobic phase. The microfluidic system consists of two inlet channels where the WPI solution and the lipophilic phase were separately injected towards the flow-focusing (FF) junction where they eventually meet, then co-flow. A whey protein isolate (WPI) solution of 150 g/kg protein and two types of hydrophobic phases, i.e. sunflower oil and n-dodecane, were tested as the continuous phase. The formation of WPM was observed microscopically. The aim of the present study was to describe the production of stable monodisperse WPM in suspension in milk ultrafiltrate using a microfluidic system. Hints to perform the control of the running parameters, i.e. choice of the hydrophobic phase or fluids flowrates, are provided. The results showed that in the sunflower oil, microdroplets had a large polydisperse size distribution, while in n-dodecane, microdroplets with narrow size distribution were obtained. Stabilization of the whey protein microdroplets through heat-gelation at 75 °C for 20 min in n-dodecane produced WPM and no change in shape nor size is observed. Meanwhile replacing the n-dodecane by MUF using centrifugation and washing caused the swelling of the WPM, but dispersity remained low. From this study, microfluidic system seemed to be a suitable method to be used for producing small quantities of monodisperse WPM.

  15. Optical encoding of microbeads based on silica particle encapsulated quantum dots and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Xiaoxia; Cao Yuancheng; Jin Xin; Yang Jie; Hua Xiaofeng; Wang Haiqiao; Liu Bo; Wang Zhan; Wang Jianhao; Yang Liang; Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei, 430074 (China)

    2008-01-16

    A novel method concerning the coding technology of polystyrene beads with Si encapsulated quantum dot (QD) particles (Si - QDs particles) is studied in this paper. In the reverse microemulsion system containing tetraethoxysilane (TEOS), water-soluble QDs (emission peak at 600 nm) were enveloped within the silica shell, forming Si - QDs particles. The Si - QDs particles were characterized by TEM, showing good uniform size, with an average diameter of about 167.0 nm. In comparison with the pure water-soluble QDs, the encapsulation of water-soluble QDs in the silica shell led to an enhancement in anti-photobleaching by providing inert barriers for the QDs. Images presented by SEM and confocal laser scanning microscopy demonstrated that the Si - QDs particles were equably coated on the surface of carboxyl functionalized polystyrene (PS) beads. Then, with the assistance of ethyl-3-(dimethyl aminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS), human IgG could be successfully crosslinked to Si - QDs particle coated PS-COOH beads. Furthermore, the Si - QDs coated PS-COOH beads with human IgG were examined in immunoassay experiments, and the results indicated that these beads could be applied in the specific recognition of goat-anti-human IgG in solution. This investigation is expected to provide a new route to bead coding in the field of suspension microarrays, based on the use of QDs.

  16. Incorporation of Nanohybrid Films of Silica into Recycled Polystyrene Matrix

    Directory of Open Access Journals (Sweden)

    Genoveva Hernández-Padrón

    2015-01-01

    Full Text Available An alternative for the reutilization of polystyrene waste containers consisting in creating a hybrid material made of SiO2 nanoparticles embedded in a matrix of recycled polystyrene (PSR has been developed. Recycled polystyrene functionalized (PSRF was used to influence the morphological and antifog properties by the sol-gel synthesis of nanohybrid silica. To this end, silica nanoparticles were produced from alkoxide precursors in the presence of recycled polystyrene. The functionalization of this polymeric matrix was with the purpose of uniting in situ carboxyl and silanol groups during the sol-gel process. In this way, opaque or transparent solid substrates can be obtained, with each of these endowed with optical conditions that depend on the amount of reactants employed to prepare each nanohybrid specimen. The nanohybrids were labelled as SiO2/PSR (HPSR and SiO2/PSRF (HPSRF and their properties were then compared to those of commercial polystyrene (PS. All the prepared samples were used for coating glass substrates. The hydrophobicity of the resultant coatings was determined through contact angle measurement. The nanohybrid materials were characterized by FT-IR and 1H-NMR techniques. Additionally, TGA and SEM were employed to determine their thermal and textural properties.

  17. Human plasma fibrinogen adsorption and platelet adhesion to polystyrene.

    Science.gov (United States)

    Tsai, W B; Grunkemeier, J M; Horbett, T A

    1999-02-01

    The purpose of this study was to further investigate the role of fibrinogen adsorbed from plasma in mediating platelet adhesion to polymeric biomaterials. Polystyrene was used as a model hydrophobic polymer; i.e., we expected that the role of fibrinogen in platelet adhesion to polystyrene would be representative of other hydrophobic polymers. Platelet adhesion was compared to both the amount and conformation of adsorbed fibrinogen. The strategy was to compare platelet adhesion to surfaces preadsorbed with normal, afibrinogenemic, and fibrinogen-replenished afibrinogenemic plasmas. Platelet adhesion was determined by the lactate dehydrogenase (LDH) method, which was found to be closely correlated with adhesion of 111In-labeled platelets. Fibrinogen adsorption from afibrinogenemic plasma to polystyrene (Immulon I(R)) was low and polystyrene preadsorbed with fibrinogen-replenished afibrinogenemic plasma. Addition of even small, subnormal concentrations of fibrinogen to afibrinogenemic plasma greatly increased platelet adhesion. In addition, surface-bound fibrinogen's ability to mediate platelet adhesion was different, depending on the plasma concentration from which fibrinogen was adsorbed. These differences correlated with changes in the binding of a monoclonal antibody that binds to the Aalpha chain RGDS (572-575), suggesting alteration in the conformation or orientation of the adsorbed fibrinogen. Platelet adhesion to polystyrene preadsorbed with blood plasma thus appears to be a strongly bivariate function of adsorbed fibrinogen, responsive to both low amounts and altered states of the adsorbed molecule. Copyright 1999 John Wiley & Sons, Inc.

  18. A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Vinodh, Rajangam; Ilakkiya, Arjunan; Elamathi, Swaminathan [Department of Chemistry, Anna University Chennai, Sardar Patel Road, Chennai 600025, Tamil Nadu (India); Sangeetha, Dharmalingam, E-mail: sangeetha@annauniv.ed [Department of Chemistry, Anna University Chennai, Sardar Patel Road, Chennai 600025, Tamil Nadu (India)

    2010-02-25

    We look forward for an eco-friendly hydrocarbon polymer with higher molecular weight for the preparation of an anion exchange membrane. Polystyrene ethylene butylene polystyrene (PSEBS) was chosen as the polymer matrix. The anion exchange membrane was prepared from PSEBS tri-block co-polymer and then the properties were characterized for alkaline fuel cell application. The preparation of anion exchange polymer involved two steps namely chloromethylation and quaternization. The anion exchange membrane with high conductivity has been prepared by introducing quaternary ammonium groups in to the polymer. Finally, the membrane was prepared using solution casting method. The solution casting method yields highly hydrophilic membranes with uniform structure that were suitable for electrochemical applications. The efficiency of the entrapment was monitored by swelling ratio, chemical stability and ion exchange measurement. The characteristic structural properties of the membrane were investigated by FT-IR spectroscopy and {sup 1}H NMR spectroscopy. The thermal stability of the membrane was characterized by TGA, DSC and DMA (dynamic mechanical analysis). The prepared uniform electrolyte membrane in this study has high thermal and chemical stability. The surface morphology and elemental composition of the quaternized PSEBS was determined by SEM-EDXA techniques, respectively. The measured hydroxyl ion conductivity of the synthesized alkaline PSEBS polymer electrolyte membrane showed ionic conductivity in the range of 10{sup -3} S/cm in deionized water at room temperature. It was found that the substitution provided a flexible, chemically and thermally stable membrane. Hence, the membrane will have potential application in the alkaline fuel cell.

  19. Variable Lysozyme Transport Dynamics on Oxidatively Functionalized Polystyrene Films.

    Science.gov (United States)

    Moringo, Nicholas A; Shen, Hao; Tauzin, Lawrence J; Wang, Wenxiao; Bishop, Logan D C; Landes, Christy F

    2017-10-17

    Tuning protein adsorption dynamics at polymeric interfaces is of great interest to many biomedical and material applications. Functionalization of polymer surfaces is a common method to introduce application-specific surface chemistries to a polymer interface. In this work, single-molecule fluorescence microscopy is utilized to determine the adsorption dynamics of lysozyme, a well-studied antibacterial protein, at the interface of polystyrene oxidized via UV exposure and oxygen plasma and functionalized by ligand grafting to produce varying degrees of surface hydrophilicity, surface roughness, and induced oxygen content. Single-molecule tracking indicates lysozyme loading capacities, and surface mobility at the polymer interface is hindered as a result of all functionalization techniques. Adsorption dynamics of lysozyme depend on the extent and the specificity of the oxygen functionalities introduced to the polystyrene surface. Hindered adsorption and mobility are dominated by hydrophobic effects attributed to water hydration layer formation at the functionalized polystyrene surfaces.

  20. Photooxidation of polystyrene: irradiation at 254 and 365 nm

    International Nuclear Information System (INIS)

    Otocka, E.P.; Curran, S.; Porter, R.S.

    1983-01-01

    Studies have been made of the near surface photooxidation of atactic polystyrene films prepared in the absence of air. The samples were photooxidized on exposure to air at two frequencies, 254 and 365 nm, using a calibrated mercury irradiation source with filters. Most studies were made at 40 0 C and as a function of irradiation time with the reactions characterized by changes in molecular weight and composition. The former was evaluated by gel permeation chromatography and the latter by transmission Fourier transform infrared ir spectroscopy and by multiple-internal-reflectance ir spectra using different angles and different crystals to evaluate compositions as a function of film depth. Species identified in photooxidation include the generation of hydroperoxides and the appearance of carbonyl bands with the latter identified by the spectral shift associated with the exposure of the photooxidized polystyrene surface to ammonia. These results suggest that principal products of near-surface oxidation of polystyrene are carboxylic acids. 6 figures, 1 table

  1. Partially-Functionalized Isotactic Polystyrene with Blocky Comonomer Segments

    Science.gov (United States)

    Siegel, Ariel; Powers, Wayne; Ryu, Chang Y.

    2012-02-01

    Isotactic polystyrenes (iPSs) have been functionalized in solution, while the accessibility of functionalizing agent is limited by the formation of crystalline domains at various temperatures. The chemical system used is the borylated isotactic polystyrene system, and we investigated the temperature effects on reaction kinetics to ultimately control the blockiness of borylated segments in the resulting copolymer. The chemical composition of partially borylated iPS reaches a steady state that is dependent on temperature. This synthesis has been performed at many different temperatures, with different steady states being reached at different temperatures. Further analysis by differential scanning calorimetry (DSC) has shown that the higher temperature reactions have greater effect on breaking down the crystal lattice structure of the isotactic polystyrene. As a result, the lower temperature reactions affect the crystalline structure less, and the resulting copolymer has more blockiness.

  2. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  3. Radiation-induced chemical processes in polystyrene scintillators

    International Nuclear Information System (INIS)

    Milinchuk, V.K.; Bolbit, N.M.; Klinshpont, E.R.; Tupikov, V.I.; Zhdanov, G.S.; Taraban, S.B.; Shelukhov, I.P.; Smoljanskii, A.S.

    1999-01-01

    The regularities established for macroradical accumulation and intensity of radioluminescence under γ-irradiation of a polystyrene scintillator prove benzyl macroradicals to be efficient quenchers of the excited scintillator molecules. Dissolved oxygen was determined to have a constant of the quenching rate 100 times lower than that of macroradicals. Oxygen is an efficient antirad because of participating in oxidation reactions and subsequent recombination of macroradicals. The method was developed to obtain a polymeric scintillator with a polystyrene matrix containing a dispersed system of pores and channels. Radiation resistance of such a scintillator is 5-10 times higher than that of standard types

  4. Preparation of Track Etch Membrane Filters Using Polystyrene Film

    International Nuclear Information System (INIS)

    Kaewsaenee, Jerawut; Ratanatongchai, Wichian; Supaphol, Pitt; Visal-athaphand, Pinpan

    2007-08-01

    Full text: Polystyrene nuclear track etch membrane filters was prepared by exposed 13 .m thin film polystyrene with fission fragment. Nuclear latent track was enlarged to through hole on the film by etching with 80 o C 40% H 2 SO 4 with K 2 Cr 2 O 7 solution for 6-10 hour. The hole size was depend on concentration of etching solution and etching time with 1.3-3.4 .m hole diameter. The flow rate test of water was 0.79-1.56 mm cm-2 min-1 at 109.8-113.7 kPa pressure

  5. Optical Properies of Polystyrene Films Doped by Methyl Green Dye

    Directory of Open Access Journals (Sweden)

    Asrar A. Saeed

    2017-11-01

    Full Text Available Effects of methyl green (MG dye on the optical properties of polystyrene (PS have been studied. Pure polystyrene and MG doped PS films were prepared by using casting method. These films were characterized using UV/VIS spectrophotometer technique in order to estimate the type of electric transition which was found to be indirect transition. The value of the optical energy gap was decreased with increasing doping ratios of methyl green dye. Absorption coefficient, extinction coefficient, refractive index and energy gap have been also investigated; it was found that all the above parameters affects by doping dye.

  6. HYDRATION AND MICROSTRUCTURE OF BLENDED CEMENT WITH SODIUM POLYSTYRENE SULFONATE

    Directory of Open Access Journals (Sweden)

    Weifeng Li

    2017-03-01

    Full Text Available Polystyrene foamed plastic wastes are a kind of environmental pollutant. It could be recycled in cement industry as a chemical agent. In this paper, the effects of sodium polystyrene sulfonate (SPS on the hydration and microstructure of blended cement were investigated by calorimetry, X-ray diffraction (XRD, scanning electron microscopy (SEM and mercury intrusion porosimetry (MIP. SPS slightly delayed the hydration of alite and decreased its hydration degree. SPS did not change the phase compositions during hydration. SPS changed the morphology of ettringite (AFt and decreased the pore volumes and the sizes of pores.

  7. Heme-binding plasma membrane proteins of K562 erythroleukemia cells: Adsorption to heme-microbeads, isolation with affinity chromatography

    International Nuclear Information System (INIS)

    Majuri, R.

    1989-01-01

    Heme-microbeads attached themselves to the surface of viable K562 cells in a manner inhibitable by free hemin, indicating heme-recptor interaction. The microbeads were at first evenly distributed, but after prolonged incubation at 37 deg. C they formed a cap on one pole of the cells indicating clustering of the membrane heme receptors. Membrane proteins were labeled by culturing the cells in the presence of 35 S-methionine and were then solubilized with Triton X-114. The hydrophobic proteins contained about 20% of the total bound label. The solubilized membrane proteins were subsequently adsorbed to a heme-Sepharose affinity gel. According to SDS-electrophorsis and subsequent autoradiography, the immobilized heme captures two proteins or a protein with two polypeptides of 20 000 and 32 000 daltons. The larger of these was only wekly labeled with 35 S. The same two bands were observed if the cell surface proteins were labeled with 125 I by the lactoperoxidase method and the subsequently solubilized membrane proteins were isolated with heme-Sepharose. (author)

  8. Bioactive Films Containing Alginate-Pectin Composite Microbeads with Lactococcus lactis subsp. lactis: Physicochemical Characterization and Antilisterial Activity

    Directory of Open Access Journals (Sweden)

    Mariam Bekhit

    2018-02-01

    Full Text Available Novel bioactive films were developed from the incorporation of Lactococcus lactis into polysaccharide films. Two different biopolymers were tested: cellulose derivative (hydroxylpropylmethylcellulose (HPMC and corn starch. Lactic acid bacteria (LAB free or previously encapsulated in alginate-pectin composite hydrogel microbeads were added directly to the film forming solution and films were obtained by casting. In order to study the impact of the incorporation of the protective culture into the biopolymer matrix, the water vapour permeability, oxygen permeability, optical and mechanical properties of the dry films were evaluated. Furthermore, the antimicrobial effect of bioactive films against Listeria monocytogenes was studied in synthetic medium. Results showed that the addition of LAB or alginate-pectin microbeads modified slightly films optical properties. In comparison with HPMC films, starch matrix proves to be more sensitive to the addition of bacterial cells or beads. Indeed, mechanical resistance of corn starch films was lower but barrier properties were improved, certainly related to the possible establishment of interactions between alginate-pectin beads and starch. HPMC and starch films containing encapsulated bioactive culture showed a complete inhibition of listerial growth during the first five days of storage at 5 °C and a reduction of 5 logs after 12 days.

  9. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.

    Science.gov (United States)

    Gong, Maojun; Bohn, Paul W; Sweedler, Jonathan V

    2009-03-01

    Incorporation of nanofluidic elements into microfluidic channels is one approach for adding filtration and partition functionality to planar microfluidic devices, as well as providing enhanced biomolecular separations. Here we introduce a strategy to pack microfluidic channels with silica nanoparticles and microbeads, thereby indirectly producing functional nanostructures; the method allows selected channels to be packed, here demonstrated so that a separation channel is packed while keeping an injection channel unpacked. A nanocapillary array membrane is integrated between two patterned microfluidic channels that cross each other in vertically separated layers. The membrane serves both as a frit for bead packing and as a fluid communication conduit between microfluidic channels. Centrifugal force-assisted sedimentation is then used to selectively pack the microfluidic channels using an aqueous silica bead suspension loaded into the appropriate inlet reservoirs. This packing approach may be used to simultaneously pack multiple channels with silica microbeads having different sizes and surface properties. The chip design and packing method introduced here are suitable for packing silica particles in sizes ranging from nanometers to micrometers and allow rapid (approximately 10 min) packing with high quality. The liquid/analyte transport characteristics of these packed micro/nanofluidic devices have potential utility in a wide range of applications, including electroosmotic pumping, liquid chromatographic separations, and electrochromatography.

  10. Efficient capture of magnetic microbeads by sequentially switched electroosmotic flow—an experimental study

    International Nuclear Information System (INIS)

    Das, Debarun; Al-Rjoub, Marwan F; Banerjee, Rupak K; Heineman, William R

    2016-01-01

    Magnetophoretic separation is a commonly used immunoassay technique in microfluidic platforms where magnetic microbeads (mMBs) coated with specific epitopes (antibodies) entrap target pathogens by antigen-antibody kinetics. The mMB-cell complexes are then separated from the continuous flow using an external magnetic field. The goal of this study was to design and test a microfluidic device for efficient separation of fluorescence-tagged mMBs driven by electroosmotic flow (EOF) under steady (time invariant) and switched (time varying) electric field conditions. The EOF was driven at electric fields of 100–180 V cm −1 . The mMBs were captured by a neodymium (NdFeB) permanent earth magnet. The capture efficiency ( η c ) of these mMBs was improved by sequential switching of the applied electric field driven-EOF. The fluorescent images of the captured mMBs, obtained using an inverted epifluorescence microscope, were quantified using image processing tools. In steady EOF, induced by constant electric field, the number of captured mMBs decreased by 72.3% when the electric field was increased from 100 V cm −1 to 180 V cm −1 . However, alternating the direction of flow through sequential switching of EOF increased the η c by bringing the escaped mMBs back to the capture zone and increasing their residence time in the area of higher magnetic fields. The average increase in η c was 54.3% for an mMB concentration of 1  ×  10 6 beads ml −1 ( C 1 ) and 41.6% for a concentration of 2  ×  10 6 beads ml −1 ( C 2 ). These improvements were particularly significant at higher electric fields where the η c with switching was, on average, ∼70% more compared to flow without switching. The technique of sequential switching demonstrates an efficient method for capture of mMBs for application in magnetophoretic immunoassay. (paper)

  11. Color encoded microbeads-based flow cytometric immunoassay for polycyclic aromatic hydrocarbons in food

    International Nuclear Information System (INIS)

    Meimaridou, Anastasia; Haasnoot, Willem; Noteboom, Linda; Mintzas, Dimitrios; Pulkrabova, Jana; Hajslova, Jana; Nielen, Michel W.F.

    2010-01-01

    Food contamination caused by chemical hazards such as persistent organic pollutants (POPs) is a worldwide public health concern and requires continuous monitoring. The chromatography-based analysis methods for POPs are accurate and quite sensitive but they are time-consuming, laborious and expensive. Thus, there is a need for validated simplified screening tools, which are inexpensive, rapid, have automation potential and can detect multiple POPs simultaneously. In this study we developed a flow cytometry-based immunoassay (FCIA) using a color-encoded microbeads technology to detect benzo[a]pyrene (BaP) and other polycyclic aromatic hydrocarbons (PAHs) in buffer and food extracts as a starting point for the future development of rapid multiplex assays including other POPs in food, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). A highly sensitive assay for BaP was obtained with an IC 50 of 0.3 μg L -1 using a monoclonal antibody (Mab22F12) against BaP, similar to the IC 50 of a previously described enzyme-linked immunosorbent assay (ELISA) using the same Mab. Moreover, the FCIA was 8 times more sensitive for BaP compared to a surface plasmon resonance (SPR)-based biosensor immunoassay (BIA) using the same reagents. The selectivity of the FCIAs was tested, with two Mabs against BaP for 25 other PAHs, including two hydroxyl PAH metabolites. Apart from BaP, the FCIAs can detect PAHs such as indenol[1,2,3-cd]pyrene (IP), benz[a]anthracene (BaA), and chrysene (CHR) which are also appointed by the European Food Safety Authority (EFSA) as suitable indicators of PAH contamination in food. The FCIAs results were in agreement with those obtained with gas chromatography-mass spectrometry (GC-MS) for the detection of PAHs in real food samples of smoked carp and wheat flour and has great potential for the future routine application of this assay in a simplex or multiplex format in combination with simplified extraction procedure which are

  12. Multiplex competitive microbead-based flow cytometric immunoassay using quantum dot fluorescent labels

    International Nuclear Information System (INIS)

    Yu, Hye-Weon; Kim, In S.; Niessner, Reinhard; Knopp, Dietmar

    2012-01-01

    Highlights: ► First time, duplex competitive bead-based flow cytometric immunoassay was developed using ODs. ► Antibody-coated QD detection probes and antigen-immobilized microspheres were synthesized. ► The two model target analytes were low molecular weight compounds of microbial and chemical origin. ► The determination of different water types was possible after simple filtration of samples. - Abstract: In answer to the ever-increasing need to perform the simultaneous analysis of environmental hazards, microcarrier-based multiplex technologies show great promise. Further integration with biofunctionalized quantum dots (QDs) creates new opportunities to extend the capabilities of multicolor flow cytometry with their unique fluorescence properties. Here, we have developed a competitive microbead-based flow cytometric immunoassay using QDs fluorescent labels for simultaneous detection of two analytes, bringing the benefits of sensitive, rapid and easy-of-manipulation analytical tool for environmental contaminants. As model target compounds, the cyanobacterial toxin microcystin-LR and the polycyclic aromatic hydrocarbon compound benzo[a]pyrene were selected. The assay was carried out in two steps: the competitive immunological reaction of multiple targets using their exclusive sensing elements of QD/antibody detection probes and antigen-coated microsphere, and the subsequent flow cytometric analysis. The fluorescence of the QD-encoded microsphere was thus found to be inversely proportional to target analyte concentration. Under optimized conditions, the proposed assay performed well within 30 min for the identification and quantitative analysis of the two environmental contaminants. For microcystin-LR and benzo[a]pyrene, dose–response curves with IC 50 values of 5 μg L −1 and 1.1 μg L −1 and dynamic ranges of 0.52–30 μg L −1 and 0.13–10 μg L −1 were obtained, respectively. Recovery was 92.6–106.5% for 5 types of water samples like bottled

  13. Efficient capture of magnetic microbeads by sequentially switched electroosmotic flow—an experimental study

    Science.gov (United States)

    Das, Debarun; Al-Rjoub, Marwan F.; Heineman, William R.; Banerjee, Rupak K.

    2016-05-01

    Magnetophoretic separation is a commonly used immunoassay technique in microfluidic platforms where magnetic microbeads (mMBs) coated with specific epitopes (antibodies) entrap target pathogens by antigen-antibody kinetics. The mMB-cell complexes are then separated from the continuous flow using an external magnetic field. The goal of this study was to design and test a microfluidic device for efficient separation of fluorescence-tagged mMBs driven by electroosmotic flow (EOF) under steady (time invariant) and switched (time varying) electric field conditions. The EOF was driven at electric fields of 100-180 V cm-1. The mMBs were captured by a neodymium (NdFeB) permanent earth magnet. The capture efficiency (η c) of these mMBs was improved by sequential switching of the applied electric field driven-EOF. The fluorescent images of the captured mMBs, obtained using an inverted epifluorescence microscope, were quantified using image processing tools. In steady EOF, induced by constant electric field, the number of captured mMBs decreased by 72.3% when the electric field was increased from 100 V cm-1 to 180 V cm-1. However, alternating the direction of flow through sequential switching of EOF increased the η c by bringing the escaped mMBs back to the capture zone and increasing their residence time in the area of higher magnetic fields. The average increase in η c was 54.3% for an mMB concentration of 1  ×  106 beads ml-1 (C 1) and 41.6% for a concentration of 2  ×  106 beads ml-1 (C 2). These improvements were particularly significant at higher electric fields where the η c with switching was, on average, ~70% more compared to flow without switching. The technique of sequential switching demonstrates an efficient method for capture of mMBs for application in magnetophoretic immunoassay.

  14. Fluctuations of cytoskeleton-bound microbeads-the effect of bead-receptor binding dynamics

    International Nuclear Information System (INIS)

    Metzner, C; Raupach, C; Mierke, C T; Fabry, B

    2010-01-01

    The cytoskeleton (CSK) of living cells is a crosslinked fiber network, subject to ongoing biochemical remodeling processes that can be visualized by tracking the spontaneous motion of CSK-bound microbeads. The bead motion is characterized by anomalous diffusion with a power-law time evolution of the mean square displacement (MSD), and can be described as a stochastic transport process with apparent diffusivity D and power-law exponent β: MSD ∼ D (t/t 0 ) β . Here we studied whether D and β change with the time that has passed after the initial bead-cell contact, and whether they are sensitive to bead coating (fibronectin, integrin antibodies, poly-L-lysine, albumin) and bead size (0.5-4.5 μm). The measurements are interpreted in the framework of a simple model that describes the bead as an overdamped particle coupled to the fluctuating CSK network by an elastic spring. The viscous damping coefficient characterizes the degree of bead internalization into the cell, and the spring constant characterizes the strength of the binding of the bead to the CSK. The model predicts distinctive signatures of the MSD that change with time as the bead couples more tightly to the CSK and becomes internalized. Experimental data show that the transition from the unbound to the tightly bound state occurs in an all-or-nothing manner. The time point of this transition shows considerable variability between individual cells (2-30 min) and depends on the bead size and bead coating. On average, this transition occurs later for smaller beads and beads coated with ligands that trigger the formation of adhesion complexes (fibronectin, integrin antibodies). Once the bead is linked to the CSK, however, the ligand type and bead size have little effect on the MSD. On longer timescales of several hours after bead addition, smaller beads are internalized into the cell more readily, leading to characteristic changes in the MSD that are consistent with increased viscous damping by the

  15. Microfluidic production of bioactive fibrin micro-beads embedded in crosslinked collagen used as an injectable bulking agent for urinary incontinence treatment.

    Science.gov (United States)

    Vardar, E; Larsson, H M; Allazetta, S; Engelhardt, E M; Pinnagoda, K; Vythilingam, G; Hubbell, J A; Lutolf, M P; Frey, P

    2018-02-01

    Endoscopic injection of bulking agents has been widely used to treat urinary incontinence, often due to urethral sphincter complex insufficiency. The aim of the study was to develop a novel injectable bioactive collagen-fibrin bulking agent restoring long-term continence by functional muscle tissue regeneration. Fibrin micro-beads were engineered using a droplet microfluidic system. They had an average diameter of 140 μm and recombinant fibrin-binding insulin-like growth factor-1 (α 2 PI 1-8 -MMP-IGF-1) was covalently conjugated to the beads. A plasmin fibrin degradation assay showed that 72.5% of the initial amount of α 2 PI 1-8 -MMP-IGF-1 loaded into the micro-beads was retained within the fibrin micro-beads. In vitro, the growth factor modified fibrin micro-beads enhanced cell attachment and the migration of human urinary tract smooth muscle cells, however, no change of the cellular metabolic activity was seen. These bioactive micro-beads were mixed with genipin-crosslinked homogenized collagen, acting as a carrier. The collagen concentration, the degree of crosslinking, and the mechanical behavior of this bioactive collagen-fibrin injectable were comparable to reference samples. This novel injectable showed no burst release of the growth factor, had a positive effect on cell behavior and may therefore induce smooth muscle regeneration in vivo, necessary for the functional treatment of stress and other urinary incontinences. Urinary incontinence is involuntary urine leakage, resulting from a deficient function of the sphincter muscle complex. Yet there is no functional cure for this devastating condition using current treatment options. Applied physical and surgical therapies have limited success. In this study, a novel bioactive injectable bulking agent, triggering new muscle regeneration at the injection site, has been evaluated. This injectable consists of cross-linked collagen and fibrin micro-beads, functionalized with bound insulin-like growth factor

  16. Syntheses, magnetic and spectral studies on polystyrene supported ...

    Indian Academy of Sciences (India)

    Unknown

    DMF results in the formation of polystyrene-anchored monobasic bidentate Schiff base, ... studied ligands in coordination chemistry. On ac- count of their pronounced coordinating properties, a ... Experimental ... temperature and then was suction-filtered, washed .... vent due to its high dielectric constant and its ability.

  17. Adsorption of lysozyme unto silica and polystyrene surfaces in ...

    African Journals Online (AJOL)

    The adsorption capacity of lysozyme (chicken egg white) from aqueous solutions unto silica and polystyrene interfaces was studied at varying lysozyme concentrations and ionic strength. The studies revealed an increase in adsorption capacity with increase in concentration and with maximum adsorption densities of 1.34 ...

  18. Spectroscopic and antimicrobial studies of polystyrene films under ...

    Indian Academy of Sciences (India)

    Spectroscopic and antimicrobial studies of polystyrene films under air plasma and He-Ne laser treatment ... The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied.

  19. Fabrication of Cationic Exchange Polystyrene Nanofibers for Drug ...

    African Journals Online (AJOL)

    Purpose: To prepare polystyrene nanofiber ion exchangers (PSNIE) with surface cation exchange functionality using a new method based on electrospinning and also to optimize crosslinking and sulfonation reactions to obtain PSNIE with maximum ion exchange capacity (IEC). Method: The nanofibers were prepared from ...

  20. Rheological Behavior of Entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) Copolymer

    National Research Council Canada - National Science Library

    Wu, Jian; Mather, Patrick T; Haddad, Timothy S; Kim, Gyeong-Man

    2006-01-01

    ...: random copolymers of polystyrene (PS) and styryl-based polyhedral oligosilsesquioxane (POSS), R7(Si8O12)(C6H4CH=CH2), with R = isobutyl (iBu). A series of styrene-styryl POSS random copolymers with 0, 6, 15, 30, 50 wt...

  1. Melt dispersion of thermoplastic polystyrene in polymer polyols

    NARCIS (Netherlands)

    2009-01-01

    Polystyrene is dispersed into a polyol via a mechanical dispersion process. A stabilizer is present to stabilize the dispersed polymer particles. The stabilizer includes a copolymer of (1) from 10 to 70% by weight of a branched polyol which has a molecular weight of from 4000 to 20,000, from 0.2 to

  2. Fabrication of polystyrene/agave particle biocomposites using ...

    Indian Academy of Sciences (India)

    Polystyrene (PS) composites reinforced with ungrafted and acrylonitrile (AN) grafted agave particles (AgP) have been prepared with 10–30% particle content by weight using compression molding technique. The composite specimens thus prepared were subjected to the evaluation of mechanical, chemical, flammability and ...

  3. Preparation and thermal properties of polystyrene/silica nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Bera, O.; Pilić, B.; Pavličević, J.; Jovičić, M.; Holló, B.; Meszaros Szecsenyi, K.; Špírková, Milena

    2011-01-01

    Roč. 515, č. 1/2 (2011), s. 1-5 ISSN 0040-6031 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : polystyrene * silica nanoparticles * nanocomposites Subject RIV: JI - Composite Materials Impact factor: 1.805, year: 2011

  4. Microporous polystyrene particles for selective carbon dioxide capture.

    Science.gov (United States)

    Kaliva, Maria; Armatas, Gerasimos S; Vamvakaki, Maria

    2012-02-07

    This study presents the synthesis of microporous polystyrene particles and the potential use of these materials in CO(2) capture for biogas purification. Highly cross-linked polystyrene particles are synthesized by the emulsion copolymerization of styrene (St) and divinylbenzene (DVB) in water. The cross-link density of the polymer is varied by altering the St/DVB molar ratio. The size and the morphology of the particles are characterized by scanning and transmission electron microscopy. Following supercritical point drying with carbon dioxide or lyophilization from benzene, the polystyrene nanoparticles exhibit a significant surface area and permanent microporosity. The dried particles comprising 35 mol % St and 65 mol % DVB possess the largest surface area, ∼205 m(2)/g measured by Brunauer-Emmett-Teller and ∼185 m(2)/g measured by the Dubinin-Radushkevich method, and a total pore volume of 1.10 cm(3)/g. Low pressure measurements suggest that the microporous polystyrene particles exhibit a good separation performance of CO(2) over CH(4), with separation factors in the range of ∼7-13 (268 K, CO(2)/CH(4) = 5/95 gas mixture), which renders them attractive candidates for use in gas separation processes.

  5. Radiation damage studies on polystyrene-based scintillators

    International Nuclear Information System (INIS)

    Britvich, G.I.; Peresypkin, A.I.; Rykalin, V.I.

    1991-01-01

    The radiation resistance of polystyrene-based scintillators containing various scintillation dopes is reported. All samples were irradiated to 137 Cs gamma rays in air at room temperature. The examination of radiation resistance of about thirty fluorescence compounds has been made. The most radiation-hard fluores are X25, X31, 3HF and M3HF. 1 fig.; 6 tabs

  6. Polystyrene cryostat facilitates testing tensile specimens under liquid nitrogen

    Science.gov (United States)

    Shogan, R. P.; Skalka, R. J.

    1967-01-01

    Lightweight cryostat made of expanded polystyrene reduces eccentricity in a tensile system being tested under liquid nitrogen. The cryostat is attached directly to the tensile system by a special seal, reducing misalignment effects due to cryostat weight, and facilitates viewing and loading of the specimens.

  7. Nanocomposite of polystyrene foil grafted with metallaboranes for antimicrobial activity

    Czech Academy of Sciences Publication Activity Database

    Benkocká, M.; Kolářová, K.; Matoušek, J.; Semerádtová, A.; Šícha, Václav; Kolská, Z.

    2018-01-01

    Roč. 441, MAY (2018), s. 120-129 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Antimicrobial activity * Chemical grafting * Metallaboranes * Piranha solution * Polystyrene * Surface properties Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 3.387, year: 2016

  8. Steady shear rheology of dilute polystyrene particle gels

    NARCIS (Netherlands)

    Folkersma, R.; Diemen, van A.J.G.; Laven, J.; Stein, H.N.

    1999-01-01

    This paper describes an experimental study on dispersions of monodisperse polystyrene (PS) spheres with a typical radius of 1 µm, dispersed in an electrolyte at high ionic strength, screening the electrostatic repulsion. These suspensions gelate at rest even at low volume fractions of PS particles.

  9. Synthesis in pilot plant scale and physical properties of sulfonated polystyrene

    Directory of Open Access Journals (Sweden)

    Martins Cristiane R.

    2003-01-01

    Full Text Available The homogenous sulfonation of polystyrene was developed in a pilot plant scale producing polymers with different sulfonation degrees (18 to 22 mole % of sulfonated styrene units. The reaction yield depends chiefly on the concentration ratio of acetyl sulfate and polystyrene. The morphological and thermal properties of the sulfonated polystyrene obtained by homogeneous sulfonation were studied by means of scanning electron microscopy, differential scanning calorimetry and thermogravimetry. The glass transition temperature of sulfonated polystyrene increases in relation to pure polystyrene and DCp was evaluated in order to confirm the strong interactions among the ~SO3H groups.

  10. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Zhenyu, E-mail: liaozy08@163.com [Tianjin Product Quality Inspection Technology Research Institute, The National Center of Supervision and Inspection for Quality of Food (China); Zhang, Ying [Tianjin University, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (China); Su, Lin [Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry and Ophthalmology (China); Chang, Jin; Wang, Hanjie, E-mail: wanghj@tju.edu.cn [Tianjin University, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (China)

    2017-02-15

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  11. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    International Nuclear Information System (INIS)

    Liao, Zhenyu; Zhang, Ying; Su, Lin; Chang, Jin; Wang, Hanjie

    2017-01-01

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe_3O_4 nanoparticles (Fe_3O_4 NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  12. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  13. Ultra-high-throughput screening of an in vitro-synthesized horseradish peroxidase displayed on microbeads using cell sorter.

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    Full Text Available The C1a isoenzyme of horseradish peroxidase (HRP is an industrially important heme-containing enzyme that utilizes hydrogen peroxide to oxidize a wide variety of inorganic and organic compounds for practical applications, including synthesis of fine chemicals, medical diagnostics, and bioremediation. To develop a ultra-high-throughput screening system for HRP, we successfully produced active HRP in an Escherichia coli cell-free protein synthesis system, by adding disulfide bond isomerase DsbC and optimizing the concentrations of hemin and calcium ions and the temperature. The biosynthesized HRP was fused with a single-chain Cro (scCro DNA-binding tag at its N-terminal and C-terminal sites. The addition of the scCro-tag at both ends increased the solubility of the protein. Next, HRP and its fusion proteins were successfully synthesized in a water droplet emulsion by using hexadecane as the oil phase and SunSoft No. 818SK as the surfactant. HRP fusion proteins were displayed on microbeads attached with double-stranded DNA (containing the scCro binding sequence via scCro-DNA interactions. The activities of the immobilized HRP fusion proteins were detected with a tyramide-based fluorogenic assay using flow cytometry. Moreover, a model microbead library containing wild type hrp (WT and inactive mutant (MUT genes was screened using fluorescence-activated cell-sorting, thus efficiently enriching the WT gene from the 1:100 (WT:MUT library. The technique described here could serve as a novel platform for the ultra-high-throughput discovery of more useful HRP mutants and other heme-containing peroxidases.

  14. Sorption behaviour of polystyrene grafted sago starch in various solvents

    International Nuclear Information System (INIS)

    Janarthanan, P.; Yunus, W.M.Z.W.; Ahmed, M.B.; Rahman, M.Z.; Haron, M.J.; Silong, S.

    2001-01-01

    This paper describes swelling properties of polystyrene grafted sago starch in dimethyl sulfoxide (DMSO); chloroform (CHCl/sub 3/), water, acetone carbon tetrachloride (CCl/sub 4/) cyclohexanone and toluene. The copolymer for this study was prepared by grafting styrene onto sago starch using ceric ammonium nitrate as a redox initiator. Solvent uptake of the copolymer with respect to time was obtained by soaking the samples in chosen solvents for various time intervals at 25+-1 degree centigrade. The results obtained from swelling of polystyrene grafted sago starch in polar and non polar solvents showed that the percentage of swelling at equilibrium and the swelling rate coefficient decreased in the following order: DMSO > water > acetone cyclohexanone approx. CHCl/sub 3/ > toluene approx. CCl/sub 4/. Dimethyl sulfoxide showed the highest percentage of swelling at equilibrium that is 765%. Diffusions of the solvents onto the polymers were found to be of a Fickian only for DMSO. (author)

  15. Renewable aromatics from the degradation of polystyrene under mild conditions

    Directory of Open Access Journals (Sweden)

    Nouf M. Aljabri

    2017-12-01

    Full Text Available A bimetallic FeCu/alumina catalyst was prepared and characterized. It showed excellent catalytic activity to quantitatively convert polystyrene (PS into aromatics at low temperatures. A clear goldish yellow liquid was produced at 250 °C in a batch reactor without distillation. A liquid yield of 66% in an inert environment was achieved without the formation of coke and gas by-products. An exposure time of 90 min. and a catalyst loading of 200 mg were considered as an optimum conditions to minimize the styrene re-polymerization. The gas chromatography/mass spectrometry (GC/MS analysis confirms that the primary products are styrene, ethylbenzene, cumene, toluene and α-methylstyrene. Keywords: Polystyrene, Bimetallic, Low-temperature, Catalytic degradation

  16. Hydrophilic nanoporous polystyrenes and 1,2-polybutadienes

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Vigild, Martin Etchells

    2008-01-01

    Nanoporous polymers from ordered block copolymers having hydrophilic cavity surfaces were successfully prepared by two methodologies: ' 1. Nanoporous polystyrenes fromPtBA-b-PS diblock or PDMS-b-PtBA-b-PS triblock copolymer precursors by atom transfer radical polymerization (ATRP), or combination...... of living anionic polymerization~ and ATRP r~spectively. The one, PtBA block, can be modified to the hydrophilic PAA, where the dther, polydimethysiloxane (PDMS) block, can be fully degraded. Deprotection of the tert-butyl groups in PtBA and the selective etching of PDMS· chains were accomplished...... by applying HF or TFA in one step. Thus both the di- and triblock copolymers after such a treatment resulted. in nanoporous polystyrenes with hexagonal cavities of different nanosizes (6-11 nm, Figure 1). 2. Nanoporous I,2-polybutadienes (I,2-PB) by grafting various acrylic monomers onto the pore. surfaces...

  17. Stress relaxation of bi-disperse polystyrene melts

    DEFF Research Database (Denmark)

    Hengeller, Ludovica; Huang, Qian; Dorokhin, Andriy

    2016-01-01

    We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which...... are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily....... Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains....

  18. Polystyrene negative resist for high-resolution electron beam lithography

    Directory of Open Access Journals (Sweden)

    Ma Siqi

    2011-01-01

    Full Text Available Abstract We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern.

  19. Applicability assessment of ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ to the eradication of Legionella in rainwater storage tanks for household use.

    Science.gov (United States)

    Oana, Kozue; Kobayashi, Michiko; Yamaki, Dai; Sakurada, Tsukasa; Nagano, Noriyuki; Kawakami, Yoshiyuki

    2015-01-01

    Water environments appear to be the habitats of Legionella species. Legionellosis is considered as a preventable illness because bacterial reservoirs can be controlled and removed. Roof-harvested rainwater has attracted significant attention not only as a groundwater recharge but also as a potential alternative source of nonpotable water. We successfully developed ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ using the thermal spraying method. The ceramic microbeads were demonstrated to have bactericidal activities against not only Legionella but also coliform and heterotrophic bacteria. Immersing the ceramic microbeads in household rainwater storage tanks was demonstrated to yield the favorable eradication of Legionella organisms. Not only rapid-acting but also long-lasting bactericidal activities of the ceramic microbead were exhibited against Legionella pneumophila. However, time-dependent attenuation of the bactericidal activities against Legionella were also noted in the sustainability appraisal experiment. Therefore, the problems to be overcome surely remain in constantly managing the Legionella-pollution by means of immersing the ceramic microbeads. The results of our investigation apparently indicate that the earthplus™-coated ceramic microbeads would become the favorable tool for Legionella measures in household rainwater storage tanks, which may become the natural reservoir for Legionella species. Our investigation would justify further research and data collection to obtain more reliable procedures to microbiologically regulate the Legionella in rainwater storage tanks.

  20. Applicability assessment of ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ to the eradication of Legionella in rainwater storage tanks for household use

    Science.gov (United States)

    Oana, Kozue; Kobayashi, Michiko; Yamaki, Dai; Sakurada, Tsukasa; Nagano, Noriyuki; Kawakami, Yoshiyuki

    2015-01-01

    Water environments appear to be the habitats of Legionella species. Legionellosis is considered as a preventable illness because bacterial reservoirs can be controlled and removed. Roof-harvested rainwater has attracted significant attention not only as a groundwater recharge but also as a potential alternative source of nonpotable water. We successfully developed ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ using the thermal spraying method. The ceramic microbeads were demonstrated to have bactericidal activities against not only Legionella but also coliform and heterotrophic bacteria. Immersing the ceramic microbeads in household rainwater storage tanks was demonstrated to yield the favorable eradication of Legionella organisms. Not only rapid-acting but also long-lasting bactericidal activities of the ceramic microbead were exhibited against Legionella pneumophila. However, time-dependent attenuation of the bactericidal activities against Legionella were also noted in the sustainability appraisal experiment. Therefore, the problems to be overcome surely remain in constantly managing the Legionella-pollution by means of immersing the ceramic microbeads. The results of our investigation apparently indicate that the earthplus™-coated ceramic microbeads would become the favorable tool for Legionella measures in household rainwater storage tanks, which may become the natural reservoir for Legionella species. Our investigation would justify further research and data collection to obtain more reliable procedures to microbiologically regulate the Legionella in rainwater storage tanks. PMID:26346201

  1. Biodegradation of weathered polystyrene films in seawater microcosms

    OpenAIRE

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Franchini, Martina; Repouskou, Eftychia; Kaliva, Maria; Vamvakaki, Maria; Kolvenbach, Boris; Fava, Fabio; Corvini, Philippe F.-X.; Kalogerakis, Nicolas

    2017-01-01

    A microcosm experiment was conducted at two phases in order to investigate the ability of indigenous consortia alone or bioaugmented to degrade weathered polystyrene (PS) films under simulated marine conditions. Viable populations were developed on PS surfaces in a time dependent way towards convergent biofilm communities, enriched with hydrocarbon and xenobiotics degradation genes. Members of Alphaproteobacteria and Gammaproteobacteria were highly enriched in the acclimated plastic associate...

  2. Elongational viscosity of narrow molar mass distribution polystyrene

    DEFF Research Database (Denmark)

    Bach, Anders; Almdal, Kristoffer; Rasmussen, Henrik Koblitz

    2003-01-01

    Transient and steady elongational viscosity has been measured for two narrow molar mass distribution polystyrene melts of molar masses 200 000 and 390 000 by means of a filament stretching rheometer. Total Hencky strains of about five have been obtained. The transient elongational viscosity rises...... above the linear viscoelastic prediction at intermediate strains, indicating strain hardening. The steady elongational viscosities are monotone decreasing functions of elongation rate. At elongation rates larger than the inverse reptation time, the steady elongational viscosity scales linearly...

  3. Electrorheological Properties of Suspensions Prepared from Polystyrene- Block- Polyisoprene Copolymer

    OpenAIRE

    YAVUZ, Mustafa

    2014-01-01

    Considerable scientific and industrial interest is currently being focused on a class of materials known as electrorheological (ER) fluids, which display remarkable rheological behaviour, being able to convert rapidly and repeatedly from a liquid to solid when an electric field (E) is applied or removed. In this article, the synthesis, characterization, partial hydrolysis and ER properties of polystyrene- block}-polyisoprene copolymer (COP) were investigated. The block copolymer was ...

  4. Radiation effect on polystyrene deposited and grafted on silica gel

    International Nuclear Information System (INIS)

    Kusama, Y.; Udagawa, A.; Takehisa, M.

    1978-01-01

    The effect of radiation on polystyrene was studied in the presence and absence of silica gel by molecular weight measurement with gel permeation chromatography (GPC). Polystyrene crosslinked under vacuum in the absence of silica gel, but it either crosslinked or degraded by radiation, depending on the molecular weight of the polymer in the presence of silica gel. part of the deposited polymer bonded to silica gel by radiation; the G value for graft-chain formation is in the range of 0.01 to 0.1. Irradiation of polystyrene grafted on silica gel resulted in degradation of the graft chain because of the transfer of energy from silica gel. The G value for main chain scission was about 2 when graft polymer was irradiated in the absence of homopolymer. The degradation of graft polymer was suppressed when the polymer was irradiated in the presence of homopolymer, and the amount of unextractable polymer from silica gel increased with increasing irradiation. This adds evidence to the estimation that an increase in grafting percent coupled with a slight decrease in molecular weight at a later stage of radiation-induced polymerization of styrene adsorbed on slica gel is due to a secondary effect of radiation on the polymer

  5. Physical and Chemical Changes of Polystyrene Nanospheres Irradiated with Laser

    International Nuclear Information System (INIS)

    Mustafa, Mohd Ubaidillah; Juremi, Nor Rashidah Md.; Mohamad, Farizan; Wibawa, Pratama Jujur; Agam, Mohd Arif; Ali, Ahmad Hadi

    2011-01-01

    It has been reported that polymer resist such as PMMA (Poly(methyl methacrylate) which is a well known and commonly used polymer resist for fabrication of electronic devices can show zwitter characteristic due to over exposure to electron beam radiation. Overexposed PMMA tend to changes their molecular structure to either become negative or positive resist corresponded to electron beam irradiation doses. These characteristic was due to crosslinking and scissors of the PMMA molecular structures, but till now the understanding of crosslinking and scissors of the polymer resist molecular structure due to electron beam exposure were still unknown to researchers. Previously we have over exposed polystyrene nanospheres to various radiation sources, such as electron beam, solar radiation and laser, which is another compound that can act as polymer resist. We investigated the physical and chemical structures of the irradiated polystyrene nanospheres with FTIR analysis. It is found that the physical and chemical changes of the irradiated polystyrene were found to be corresponded with the radiation dosages. Later, combining Laser irradiation and Reactive Ion Etching manipulation, created a facile technique that we called as LARIEA NSL (Laser and Reactive Ion Etching Assisted Nanosphere Lithography) which can be a facile technique to fabricate controllable carbonaceous nanoparticles for applications such as lithographic mask, catalysts and heavy metal absorbers.

  6. Separation of transfer ribonucleic acids on polystyrene anion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R.P.; Griffin, G.D.; Novelli, G.D.

    1976-11-16

    The transfer RNA separation by chromatography on strong-base-polystyrene exchange materials is examined and compared with the widely used reversed-phase chromatography. Results indicate important differences in some transfer RNA (tRNA) elution patterns by the anion-exchange chromatography, as compared with the reversed-phase chromatography. Transfer RNAs containing hydrophobic groups are adsorbed more strongly. The anion exchanger has twice the number of theoretical plates. Single peaks of tRNA/sub 2//sup Glu/ and tRNA/sub 1//sup Phe/ obtained from the reversed-phase column give multiple peaks on polystyrene anion-exchange chromatography. All six leucine tRNAs (Escherichia coli) and differences in tRNA populations synthesized during early and late stages of the dividing lymphocytes from normal human blood can be characterized by the anion-exchange chromatography. Different separation profiles are obtained by two separation systems for tyrosine tRNAs from mouse liver and mouse-plasma-cell tumor. The results indicate that, in contrast to the reversed-phase chromatography, strong-base-polystyrene anion-exchange chromatography is capable of separating tRNAs with minor structural differences.

  7. Effect of planar extension on the structure and mechanical properties of polystyrene-poly(ethylene-¤co¤-butylene)-polystyrene triblock copolymers

    DEFF Research Database (Denmark)

    Daniel, C.; Hamley, I.W.; Mortensen, K.

    2000-01-01

    Two thermoplastic poly(styrene)-poly(ethylene-co-butylene) -poly(styrene) triblock copolymers containing either spherical or cylindrical poly(styrene) microdomains were pre-oriented through extensional flow. Small angle neutron scattering (SANS) measurements revealed that the pre-oriented triblock...

  8. Effect of molecular weight distribution on e-beam exposure properties of polystyrene

    International Nuclear Information System (INIS)

    Dey, Ripon Kumar; Cui Bo

    2013-01-01

    Polystyrene is a negative electron beam resist whose exposure properties can be tuned simply by using different molecular weights (Mw). Most previous studies have used monodisperse polystyrene with a polydispersity index (PDI) of less than 1.1 in order to avoid any uncertainties. Here we show that despite the fact that polystyrene’s sensitivity is inversely proportional to its Mw, no noticeable effect of very broad molecular weight distribution on sensitivity, contrast and achievable resolution is observed. It is thus unnecessary to use the costly monodisperse polystyrene for electron beam lithography. Since the polydispersity is unknown for general purpose polystyrene, we simulated a high PDI polystyrene by mixing in a 1:1 weight ratio two polystyrene samples with Mw of 170 and 900 kg mol −1 for the high Mw range, and 2.5 and 13 kg mol −1 for the low Mw range. The exposure property of the mixture resembles that of a monodisperse polystyrene with similar number averaged molecular weight (Mn)-bar, which indicates that it is (Mn)-bar rather than (Mw)-bar (weight averaged molecular weight) that dominates the exposure properties of polystyrene resist. This also implies that polystyrene of a certain molecular weight can be simulated by a mixture of two polystyrenes having different molecular weights. (paper)

  9. Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act-A New Standard Can Facilitate Improved Policy.

    Science.gov (United States)

    McDevitt, Jason P; Criddle, Craig S; Morse, Molly; Hale, Robert C; Bott, Charles B; Rochman, Chelsea M

    2017-06-20

    The United States Microbead-Free Waters Act was signed into law in December 2015. It is a bipartisan agreement that will eliminate one preventable source of microplastic pollution in the United States. Still, the bill is criticized for being too limited in scope, and also for discouraging the development of biodegradable alternatives that ultimately are needed to solve the bigger issue of plastics in the environment. Due to a lack of an acknowledged, appropriate standard for environmentally safe microplastics, the bill banned all plastic microbeads in selected cosmetic products. Here, we review the history of the legislation and how it relates to the issue of microplastic pollution in general, and we suggest a framework for a standard (which we call "Ecocyclable") that includes relative requirements related to toxicity, bioaccumulation, and degradation/assimilation into the natural carbon cycle. We suggest that such a standard will facilitate future regulation and legislation to reduce pollution while also encouraging innovation of sustainable technologies.

  10. Effect of dynamic three-dimensional culture on osteogenic potential of human periodontal ligament-derived mesenchymal stem cells entrapped in alginate microbeads.

    Science.gov (United States)

    Vecchiatini, R; Penolazzi, L; Lambertini, E; Angelozzi, M; Morganti, C; Mazzitelli, S; Trombelli, L; Nastruzzi, C; Piva, R

    2015-08-01

    Bioreactors are devices that efficiently create an environment that enables cell cultures to grow in a three-dimensional (3D) context mimicking in vivo conditions. In this study, we investigate the effect of dynamic fluid flow on the osteogenic potential of human mesenchymal stem cells obtained from periodontal ligament and entrapped in alginate microbeads. After proper immunophenotyping, cells were encapsulated in barium alginate, cultured in 3D static or 3D dynamic conditions represented by a bioreactor system. Calcein-AM/propidium iodide staining was used to assess cellular viability. Quantitative real-time polymerase chain reaction was used to analyze the expression of osteogenic markers (Runx2 and COL1). Alizarin Red S staining and the Fourier transform infrared spectroscopy were used to assess mineral matrix deposition. Optimal encapsulation procedure, in terms of polymer pumping rate, distance from droplet generator to the gelling bath and atomizing airflow was assessed. Cell viability was not affected by encapsulation in alginate microbeads. Bioreactor cell exposure was effective in anticipating osteogenic differentiation and improving mineral matrix deposition. For the first time human mesenchymal stem cells obtained from periodontal ligaments encapsulated in alginate microbeads were cultured in a bioreactor system. This combination could represent a promising strategy to create a cell-based smart system with enhanced osteogenic potential useful for many different dental applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The effectiveness of the biodegradation of raw and processed polystyrene by mealworms

    Science.gov (United States)

    Leluk, Karol; Hanus-Lorenz, Beata; Rybak, Justyna; Bożek, Magdalena

    2017-11-01

    In our studies biodegradation of four variants of polystyrene was performed. We tested: raw material (PS), processed polystyrene (PSr), building insulation material (EPS) and food packaging boxes (PSp). Materials were characterized by means melt flow ratio (MFR), shore hardness and gloss. The biochemical assessment of macromolecules (proteins, lipids and sugars) in the mealworms organisms fed with tested forms of polystyrene allowed us to set how efficient and beneficial the biodegradation of types of polystyrene is. We also evaluated the variability of bacterial community in larval guts by the use of denaturing gradient gel electrophoresis (DGGE) on the bacterial DNA of 16S rRNA genes amplified in polymerase chain reaction (PCR). The results suggest that EPS and PSp polystyrene are the most digestible for T. molitor larvae. The metabolic degradation of polystyrene is probably strictly connected with the changes in biodiversity of gut bacteria.

  12. The effectiveness of the biodegradation of raw and processed polystyrene by mealworms

    Directory of Open Access Journals (Sweden)

    Leluk Karol

    2017-01-01

    Full Text Available In our studies biodegradation of four variants of polystyrene was performed. We tested: raw material (PS, processed polystyrene (PSr, building insulation material (EPS and food packaging boxes (PSp. Materials were characterized by means melt flow ratio (MFR, shore hardness and gloss. The biochemical assessment of macromolecules (proteins, lipids and sugars in the mealworms organisms fed with tested forms of polystyrene allowed us to set how efficient and beneficial the biodegradation of types of polystyrene is. We also evaluated the variability of bacterial community in larval guts by the use of denaturing gradient gel electrophoresis (DGGE on the bacterial DNA of 16S rRNA genes amplified in polymerase chain reaction (PCR. The results suggest that EPS and PSp polystyrene are the most digestible for T. molitor larvae. The metabolic degradation of polystyrene is probably strictly connected with the changes in biodiversity of gut bacteria.

  13. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

    KAUST Repository

    Li, Huawei

    2013-10-10

    In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

  14. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Foulds, Ian G.; Kodzius, Rimantas

    2013-01-01

    In this article, we described a simple and rapid method for fabrication of droplet microfluidic devices on polystyrene substrate using a CO2 laser system. The effects of the laser power and the cutting speed on the depth, width and aspect ratio of the microchannels fabricated on polystyrene were investigated. The polystyrene microfluidic channels were encapsulated using a hot press bonding technique. The experimental results showed that both discrete droplets and laminar flows could be obtained in the device.

  15. Modification of Jute Fibers with Polystyrene via Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Plackett, David; Jankova, Katja Atanassova; Egsgaard, Helge

    2005-01-01

    Atom transfer radical polymerization (ATRP) was investigated as a method of covalently bonding polystyrene to jute (Corchorus capsularis) and as a possible approach to fiber composites with enhanced properties. Jute fibers were modified with a brominated initiator and subsequently ATRP modified...... to attach polystyrene and then examined using SEM, DSC, TGA, FTIR, XPS, elemental analysis, and Py-GC-MS. These techniques confirmed that polystyrene had been covalently bound to the fibers and consequently ATRP-modified jute fiber mats were used to prepare hot-pressed polystyrene composites. Composite...

  16. Morphology and Viscoelastic Properties of Polystyrene Blended with Fully Condensed Polyhedral Oligomeric Silsesquioxanes

    National Research Council Canada - National Science Library

    Namani, Madhu; Geng, Hai-Ping; Lee, Andre; Blanski, Rusty L

    2004-01-01

    .... Experiments were performed using a nearly-monodisperse molecular weight polystyrene (PS) blended with varying amounts of two fully condensed POSS molecules surrounded with phenethyl and styrenyl groups...

  17. Micro-bead injection spectroscopy for label-free automated determination of immunoglobulin G in human serum.

    Science.gov (United States)

    Ramos, Inês I; Magalhães, Luís M; Barreiros, Luisa; Reis, Salette; Lima, José L F C; Segundo, Marcela A

    2018-01-01

    Immunoglobulin G (IgG) represents the major fraction of antibodies in healthy adult human serum, and deviations from physiological levels are a generic marker of disease corresponding to different pathologies. Therefore, screening methods for IgG evaluation are a valuable aid to diagnostics. The present work proposes a rapid, automatic, and miniaturized method based on UV-vis micro-bead injection spectroscopy (μ-BIS) for the real-time determination of human serum IgG with label-free detection. Relying on attachment of IgG in rec-protein G immobilized in Sepharose 4B, a bioaffinity column is automatically assembled, where IgG is selectively retained and determined by on-column optical density measurement. A "dilution-and-shoot" approach (50 to 200 times) was implemented without further sample treatment because interferences were flushed out of the column upon sample loading, with minimization of carryover and cross-contamination by automatically discarding the sorbent (0.2 mg) after each determination. No interference from human serum albumin at 60 mg mL -1 in undiluted sample was found. The method allowed IgG determination in the range 100-300 μg mL -1 (corresponding to 5.0-60 mg mL -1 in undiluted samples), with a detection limit of 33 μg mL -1 (1.7 mg mL -1 for samples, dilution factor of 50). RSD values were time-to-result decreased from several hours to times, showing the potential of the proposed approach as a point-of-care method. Graphical abstract Micro-Bead Injection Spectroscopy method for real time, automated and label-free determination of total serum human Immunoglobulin G (IgG). The method was designed for Lab-on-Valve (LOV) platforms using a miniaturised protein G bioaffinity separative approach. IgG are separated from serum matrix components upon quantification with low non-specific binding in less than 5 min.

  18. Renewable Aromatics from the Degradation of Polystyrene under Mild Conditions

    KAUST Repository

    Al Jabri, Nouf M.

    2017-08-01

    Polystyrene (PS) is one of the most important polymers in the plastic sector due to its inexpensive cost as well as many preferred properties. Its international market is expected to achieve $28.2 billion by 2019. Although PS has a high calorific value of 87 GJ tonne-1, there is no a practical method to manage its waste but landfill. As a result, the PS debris in the oceans has reached 70% of the total plastic debris. This issue is considered as the main economical and environmental drivers of converting polystyrene waste into renewable chemical feedstocks. The aim of this work is to develop a catalyst for converting PS into renewable chemicals under mild conditions. We introduce FeCu/Alumina with excellent catalytic activity to fully degrade polystyrene with 66% liquid yield at 250 °C. The GC/MS confirmed that the primary products are in the gasoline range. Next, we present the bimetallic FeCo/Alumina and successfully we have obtained 100% PS conversion and 90% liquid yield with maintaining the products selectivity. Later, the tri-metallic FeCuCo/Alumina was synthesized and showed 100% PS conversion and 91% liquid yield. Surprisingly, ethylbenzene was the major product in which 80 wt. % was achieved with excellent reproducibility. Furthermore, the real waste Styrofoam was thermally and catalytically degraded at 250 °C. Interestingly, a high styrene content of 78 wt. % was recovered after 30 minutes of the reaction under mild conditions. Keeping in mind that a good balance between acidity and basicity is required to convert PS into aromatic under mild reaction conditions catalytically. Finally, the performance of the catalysts was compared to literature reports and showed novel liquid yields. In conclusion, we have synthesized cheap, easy to scale up, and efficient catalysts to fully degrade PS into high liquid yields of aromatics with excellent selectivity.

  19. Proton conducting sulphonated fluorinated poly(styrene) crosslinked electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Soules, A.; Ameduri, B.; Boutevin, B.; David, G. [Institut Charles Gerhardt UMR CNRS 5253 Equipe, Ingenierie et Architectures Macromoleculaires,' ' Ecole Nationale Superieure de Chimie de Montpellier, 8 rue de l' Ecole Normale, 34296 Montpellier, Cedex 05 (France); Perrin, R. [CEA Le Ripault Departement des Materiaux, DMAT/SCMF/LSTP, BP16 - 37260 Monts (France); Gebel, G. [Structure et Proprietes des Architectures Moleculaires UMR 5819 (CEA-CNRS-UJF), INAC, SPrAM, CEA Grenoble, 17 Rue des Martyrs, 38054 Grenoble, Cedex 9 (France)

    2011-10-15

    Potential membranes for polymer electrolyte membrane fuel cell based on crosslinked sulphonated fluorinated polystyrenes (PS) were synthesised in two steps. First, azide-telechelic polystyrene was obtained by iodine transfer polymerisation of styrene in the presence of 1,6-diiodoperfluorohexane followed by azido chain-end functionalisation. Then azide-telechelic polystyrene was efficiently crosslinked with 1,10-diazido-1H,1H,2H,2H,9H,9H,10H,10H-perfluorodecane under UV irradiation. After 45 min only, almost completion of azide crosslinking could be achieved, resulting in crosslinked membranes with insoluble fractions higher than 95%. The sulphonation of the crosslinked membranes afforded ionic exchange capacities (IECs) ranging from 2.2 to 3.2 meq g{sup -1}. The hydration number was shown to be very high (from 30 to 75), depending on both the content of perfluorodecane and of sulphonic acid groups. The morphology of the membranes, assessed by small-angle X-ray scattering, was found to be a lamellar-type structure with two types of ionic domains. For the membrane that exhibited an IEC value of 2.2 meq.g{sup -1}, proton conductivity was in the same range as that of Nafion {sup registered} (120-135 mS.cm{sup -1}), whereas the membrane IEC value of 3.2 meq.g{sup -1} showed a proton conductivity higher than that of Nafion {sup registered} in liquid water from 25 to 80 C, though a high water uptake. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Diameter measurements of polystyrene particles with atomic force microscopy

    International Nuclear Information System (INIS)

    Garnaes, J

    2011-01-01

    The size of (nano) particles is a key parameter used in controlling their function. The particle size is also important in order to understand their physical and chemical properties and regulate their number in health and safety issues. In this work, the geometric diameters of polystyrene spheres of nominal diameter 100 nm are measured using atomic force microscopy. The measurements are based on the apex height and on the average distance between neighbouring spheres when they form a close-packed monolayer on a flat mica substrate. The most important influence parameters for the determination of the geometric diameter are the lateral air gaps and deformation of the spheres. The lateral air gaps are caused by significant size variations of the individual spheres, and a correction is calculated based on the simulation of packing of spheres. The deformation of the spheres is caused mainly by capillary forces acting when they are in contact with each other or with the mica substrate. Based on calculated capillary forces and the literature values of the elastic properties of the polystyrene and mica, the deformation is estimated to be 2 nm with a standard uncertainty of 2 nm. The geometric diameter of the polystyrene spheres was measured with a combined standard uncertainty of ≈3 nm. The measured vertical diameter of 92.3 nm and the certified mobility equivalent diameter measured by differential mobility analysis (DMA) are marginally consistent at a confidence level of 95%. However, the measured lateral geometric diameter was 98.9 nm and is in good agreement with DMA

  1. Modelling of Convective Process of Water Desorption from Polystyrene

    International Nuclear Information System (INIS)

    Stakic, M.; Nikolic, A.

    2008-01-01

    This study presents a mathematical model developed to evaluate the influence of structural and operational factors on convective dehydration process (desorption of liquid phase from capillary-porous material), as well as the possibility to utilize this model for the case of water desorption from polystyrene cation resin CG-8. The model accounts for unsteady one-dimensional simultaneous heat and mass transfer between the gas (air) and the solid phase (resin). The identification of effective transport properties for the considered fixed bed of material (resin CG 8) is discussed. To this purpose available data from the literature are used. (author)

  2. Preparation of polystyrene microsphere with emulsion microencapsulation method

    International Nuclear Information System (INIS)

    Li Bo Zhang Lin; Zhang Zhganwen; You Dan; Wei Yun; Wang Chaoyang; Lin Bo; Shi Tao; Chu Qiaomei

    2003-01-01

    The preparation of hollow polystyrene microspheres that are used as inner shell of multi-shell plastic microspheres in the ICF experiments is focused on. The effects of surfactants, water-soluble polymer and electrolyte on the properties of resultant microspheres are studied. Based on these experiments, a fabricating procedure was established with which hollow microspheres were prepared with diameter about 150-3000 μm, wall thickness 0.8-15 μm and toughness Ra less than 4 nm. (authors)

  3. Simulation and fabrication of integrated polystyrene microlens in microfluidic system

    KAUST Repository

    Fan, Yiqiang

    2013-05-17

    This paper presents a simple and quick method to integrate microlens with the microfluidics systems. The polystyrene (PS) based microlens is fabricated with the free surface thermal compression molding methods, a thin PS sheet with the microlens is bonded to a PMMA substrate which contains the laser ablated microchannels. The convex profiler of the microlens will give a magnified images of the microchannels for easier observation. Optical simulation software is being used for the design and simulation of the microlens to have optimal optical performance with the desired focal length. A microfluidic system with the integrated PS microlens is also fabricated for demonstration.

  4. Melt dispersion of thermoplastic polystyrene in polymer polyols

    OpenAIRE

    2009-01-01

    Polystyrene is dispersed into a polyol via a mechanical dispersion process. A stabilizer is present to stabilize the dispersed polymer particles. The stabilizer includes a copolymer of (1) from 10 to 70% by weight of a branched polyol which has a molecular weight of from 4000 to 20,000, from 0.2 to about 1.2 polymerizable ethylenically unsaturated groups per molecule and from about 3 to about 8 hydroxyl groups per molecule with (2) from 30 to 90% by weight of styrene or a mixture of styrene a...

  5. The Surface Imprinted Polystyrene Beads Prepared via Emulsion Templates

    Institute of Scientific and Technical Information of China (English)

    Guo Xiang CHENG; Guang Ling PEI; Ling Gang ZENG; Li Yong ZHANG; Chao LIU

    2004-01-01

    In this paper, the surface imprinted cross-linked polystyrene beads were prepared via suspension polymerization with styrene (St), divinylbezene (DVB), polyvinyl alcohol (PVA1788), the mixture of Span 85 and xylene or the mixture of Span 85 and paraffin as monomer, cross-linking agent, dispersion stabilizer and templates, respectively. The results indicate that there are dense cavities on the surface of beads, and the diameter and density of cavity are related with the composition and amount of emulsion template. The forming mechanism of cavity from thermodynamics and dynamics was proposed.

  6. Performance ratio hardness characteristics polystyrene-metal composite materials

    International Nuclear Information System (INIS)

    Klepikov, V.F.; Prokhorenko, E.M.; Lytvynenko, V.V.; Zakharchenko, A.A.; Hazhmuradov, M.A.

    2015-01-01

    The methods of measuring the hardness of layered polystyrene-metallic composite materials. It is proposed to use powder-like tungsten and powder-like steel as radiation-protective layer. A measurement of the hardness of composites of different composition, and given its dependence on the particle size and their form. The possibility of increasing the hardness of the composites reinforced with metallic additives. Radiation-protective characteristics were calculated for the studied species of composite materials. Influence of the quantitative composition of the metal components is studied on the change of the absorbed dose of gamma radiation

  7. Processing and characterization of Polystyrene/cornstarch/organophilic clay hybrids

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan R. de; Amorim, Ywrrenan C.; Andrade, Cristina T. de

    2011-01-01

    Polystyrene/cornstarch composite blends with organophilic Cloisite 15A were prepared in an internal mixer in the presence of maleic anhydride (MA). The contents of clay were 1, 3 and 5%, based on the weight of the blend. The results obtained by X-ray diffraction revealed significant intercalation and exfoliation of clay particles within the polymeric moiety, which indicate increased interaction between the components of the nanocomposites. Thermogravimetric analysis results revealed the increase in thermal stability for the compatibilized blends in relation to the noncompatibilized PS/starch blends. The composites showed better thermal stability with increasing clay content. (author)

  8. Simulation and fabrication of integrated polystyrene microlens in microfluidic system

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Conchouso Gonzalez, David; Foulds, Ian G.

    2013-01-01

    This paper presents a simple and quick method to integrate microlens with the microfluidics systems. The polystyrene (PS) based microlens is fabricated with the free surface thermal compression molding methods, a thin PS sheet with the microlens is bonded to a PMMA substrate which contains the laser ablated microchannels. The convex profiler of the microlens will give a magnified images of the microchannels for easier observation. Optical simulation software is being used for the design and simulation of the microlens to have optimal optical performance with the desired focal length. A microfluidic system with the integrated PS microlens is also fabricated for demonstration.

  9. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yajuan, E-mail: yajuan.zhong@gmail.com [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Zhang, Junpeng [CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lin, Jun, E-mail: linjun@sinap.ac.cn [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, Liujun [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Guo, Quangui [CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2017-07-15

    Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10{sup −6} K{sup −1} (α{sub ∥}) and 6.15 × 10{sup −6} K{sup −1} (α{sub ⊥}) at the temperature range of 25–700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.

  10. Enhanced Piezoelectricity in a Robust and Harmonious Multilayer Assembly of Electrospun Nanofiber Mats and Microbead-Based Electrodes.

    Science.gov (United States)

    Kim, Young Won; Lee, Han Bit; Yeon, Si Mo; Park, Jeanho; Lee, Hye Jin; Yoon, Jonghun; Park, Suk Hee

    2018-02-14

    Here, we present a simple yet highly efficient method to enhance the output performance of a piezoelectric device containing electrospun nanofiber mats. Multiple nanofiber mats were assembled together to harness larger piezoelectric sources in the as-spun fibers, thereby providing enhanced voltage and current outputs compared to those of a single-mat device. In addition to the multilayer assembly, microbead-based electrodes were integrated with the nanofiber mats to deliver a complexed compression and tension force excitation to the piezoelectric layers. A vacuum-packing process was performed to attain a tight and well-organized assembly of the device components even though the total thickness was several millimeters. The integrated piezoelectric device exhibited a maximum voltage and current of 10.4 V and 2.3 μA, respectively. Furthermore, the robust integrity of the device components could provide high-precision sensitivity to perceive small pressures down to approximately 100 Pa while retaining a linear input-output relationship.

  11. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor

    International Nuclear Information System (INIS)

    Zhong, Yajuan; Zhang, Junpeng; Lin, Jun; Xu, Liujun; Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong; Guo, Quangui

    2017-01-01

    Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10 −6 K −1 (α ∥ ) and 6.15 × 10 −6 K −1 (α ⊥ ) at the temperature range of 25–700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.

  12. Design of a sensitive aptasensor based on magnetic microbeads-assisted strand displacement amplification and target recycling.

    Science.gov (United States)

    Li, Ying; Ji, Xiaoting; Song, Weiling; Guo, Yingshu

    2013-04-03

    A cross-circular amplification system for sensitive detection of adenosine triphosphate (ATP) in cancer cells was developed based on aptamer-target interaction, magnetic microbeads (MBs)-assisted strand displacement amplification and target recycling. Here we described a new recognition probe possessing two parts, the ATP aptamer and the extension part. The recognition probe was firstly immobilized on the surface of MBs and hybridized with its complementary sequence to form a duplex. When combined with ATP, the probe changed its conformation, revealing the extension part in single-strand form, which further served as a toehold for subsequent target recycling. The released complementary sequence of the probe acted as the catalyst of the MB-assisted strand displacement reaction. Incorporated with target recycling, a large amount of biotin-tagged MB complexes were formed to stimulate the generation of chemiluminescence (CL) signal in the presence of luminol and H2O2 by incorporating with streptavidin-HRP, reaching a detection limit of ATP as low as 6.1×10(-10)M. Moreover, sample assays of ATP in Ramos Burkitt's lymphoma B cells were performed, which confirmed the reliability and practicality of the protocol. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Accurately controlled sequential self-folding structures by polystyrene film

    Science.gov (United States)

    Deng, Dongping; Yang, Yang; Chen, Yong; Lan, Xing; Tice, Jesse

    2017-08-01

    Four-dimensional (4D) printing overcomes the traditional fabrication limitations by designing heterogeneous materials to enable the printed structures evolve over time (the fourth dimension) under external stimuli. Here, we present a simple 4D printing of self-folding structures that can be sequentially and accurately folded. When heated above their glass transition temperature pre-strained polystyrene films shrink along the XY plane. In our process silver ink traces printed on the film are used to provide heat stimuli by conducting current to trigger the self-folding behavior. The parameters affecting the folding process are studied and discussed. Sequential folding and accurately controlled folding angles are achieved by using printed ink traces and angle lock design. Theoretical analyses are done to guide the design of the folding processes. Programmable structures such as a lock and a three-dimensional antenna are achieved to test the feasibility and potential applications of this method. These self-folding structures change their shapes after fabrication under controlled stimuli (electric current) and have potential applications in the fields of electronics, consumer devices, and robotics. Our design and fabrication method provides an easy way by using silver ink printed on polystyrene films to 4D print self-folding structures for electrically induced sequential folding with angular control.

  14. Mass Transport Through Carbon Nanotube-Polystyrene Bundles

    Science.gov (United States)

    Lin, Rongzhou; Tran, Tuan

    2016-05-01

    Carbon nanotubes have been widely used as test channels to study nanofluidic transport, which has been found to have distinctive properties compared to transport of fluids in macroscopic channels. A long-standing challenge in the study of mass transport through carbon nanotubes (CNTs) is the determination of flow enhancement. Various experimental investigations have been conducted to measure the flow rate through CNTs, mainly based on either vertically aligned CNT membranes or individual CNTs. Here, we proposed an alternative approach that can be used to quantify the mass transport through CNTs. This is a simple method relying on the use of carbon nanotube-polystyrene bundles, which are made of CNTs pulled out from a vertically aligned CNT array and glued together by polystyrene. We experimentally showed by using fluorescent tagging that the composite bundles allowed measureable and selective mass transport through CNTs. This type of composite bundle may be useful in various CNT research areas as they are simple to fabricate, less likely to form macroscopic cracks, and offer a high density of CNT pores while maintaining the aligned morphology of CNTs.

  15. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    The startup and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 kg/mole (PS52K) and 103 kg/mole (PS103K), and for three bidisperse polystyrene melts. The bidisperse melts consist of PS103K or PS52K and a monodisperse...... (closed loop proportional regulator) using the laser in such a way that the stretch rate at the neck is kept constant. The rheometer has been described in more detail in (A. Bach, H.K. Rasmussen and O. Hassager, Journal of Rheology, 47 (2003) 429). PS390K show a decrease in the steady viscosity as a power......-law function of the elongational rate (A. Bach, K. Almdal, H.K. Rasmussen and O. Hassager, Macromolecules 36 (2003) 5174). PS52K and PS103K show that the steady viscosity has a maximum that is respectively 100% and 50% above 3 times the zero-shear-rate viscosity. The bidisperse melts show a significant...

  16. Low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    Oktar, O.; Ari, G.; Guenduez, O.; Demirel, H.; Demirbas, A.

    2009-01-01

    Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matri10. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared by an extruder in SANAEM. Molds suitable for extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and pressure were obtained. Plastic blocks prepared were optically and mechanically tested and its response against various radioactive sources was measured.This study has shown that plastic scintillators imported can be produced in SANAEM domestically and be used for detection of radioactive materials within the country or border gates.

  17. Gamma radiation effects on the structure and properties of polystyrene

    International Nuclear Information System (INIS)

    Lima, Ivania Soares de

    1996-01-01

    Polystyrene is a linear thermoplastic with a molecular weight ranging from 130,000 to 300,000 g/mole. This polymer has wide industrial applications. In medicine it is used to manufacture medical supplies which can be sterilized by ionizing radiation. The sterilization of medical instruments by ionizing radiation was introduced in the 60's as an alternative method to the conventional treatment with ethylene oxide gas. Radiosterilization is now worldwide standard procedure, as it is cheaper and cleaner. Some polymers, however, may show some changes in their physical properties following irradiation. These changes are due to the prevailing crosslinking and main chain scission induced by the irradiation of the polymeric system. In the present work, Brazilian-made polystyrene Lustrex was irrigated with γ rays in the presence of air at room temperature. Under these conditions, the analysis of viscosimetric essays showed the prevalence of crosslinking effects at doses up to 25 kGy and of main scission effects at does from 25 to 200 kGy. Observed G values (number of events per 100 eV of absorbed energy) pointed to low degrees of both crosslinking (Gx ∼ 0.15) and main chain scission (Gs ∼ 0.09). Therefore, the minor changes in Lustrex's molecular structure induced by irradiation have not influenced significantly its mechanical, thermal, and optical properties. As a result, Lustrex can be used in applications involving radiation without the need to introduce radioprotective to the polymeric system. (author)

  18. Conversion of waste polystyrene through catalytic degradation into valuable products

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin; Jan, Muhammad Rasul; Adnan [University of Peshawar, Peshawar (Pakistan)

    2014-08-15

    Waste expanded polystyrene (EPS) represents a source of valuable chemical products like styrene and other aromatics. The catalytic degradation was carried out in a batch reactor with a mixture of polystyrene (PS) and catalyst at 450 .deg. C for 30 min in case of Mg and at 400 .deg. C for 2 h both for MgO and MgCO{sub 3} catalysts. At optimum degradation conditions, EPS was degraded into 82.20±3.80 wt%, 91.60±0.20 wt% and 81.80±0.53 wt% liquid with Mg, MgO and MgCO{sub 3} catalysts, respectively. The liquid products obtained were separated into different fractions by fractional distillation. The liquid fractions obtained with three catalysts were compared, and characterized using GC-MS. Maximum conversion of EPS into styrene monomer (66.6 wt%) was achieved with Mg catalyst, and an increase in selectivity of compounds was also observed. The major fraction at 145 .deg. C showed the properties of styrene monomer. The results showed that among the catalysts used, Mg was found to be the most effective catalyst for selective conversion into styrene monomer as value added product.

  19. Synthesis of well-defined polystyrene macrophotoinitiators by ATRP

    International Nuclear Information System (INIS)

    Degirmenci, M.

    2004-01-01

    Macrophotointiators are polymers with a photoinitiator functionality at side chains or in the end or middle of the chain. these materials are of great scientific and technological interest because of their application in UV-curable coatings and as precursors for graft and block copolymers depending on the position of the photoinitiator moiety incorporated. Many macrophotoinitiators have been synthesized and their utilization in both applications have been studied. The major concern for their uses particulary in the latter application was related to the efficiency of functionalization, well-defined and predetermined structures, and low polydispersities. Obviously, if the all chains are not functionalized, upon irradiation non-funtionalized chains will not be activated and consequently remain as homopolymers in the system. In this study, new mono and bifunctional atom transfer radical polymerization (ATRP) initionars were synthesized by the condensation of 2-bromopropanoyl bromide with 2-hydroxy-2-methyl-1-phenyl propan-1-one (HMPP) and 2-hydroxy-1-(4-(2-hydroxyethoxy) phenyl)-2-methyl propan-1-one (HE-HMPP), respectively and characterized. The ATRP of styrene (St) in bulk at 110 degrees by means of these initiators in conjunction with a cuprous complex Cu(I) Br/bipyridine yields polystyrenes with photoactive alkoxy phenylketone groups. GPC, spectroscopic and photodegradation studies revealed that the initiation efficiency was quantitative and low-polydispersity polystyrenes with photoinitiator functionality in the end or middle of chain were obtained

  20. Field efficacy of expanded polystyrene and shredded waste polystyrene beads for mosquito control in artificial pools and field trials, Islamic Republic of Iran.

    Science.gov (United States)

    Soltani, A; Vatandoost, H; Jabbari, H; Mesdaghinia, A R; Mahvi, A H; Younesian, M; Hanafi-Bojd, A A; Bozorgzadeh, S

    2012-10-01

    Concerns about traditional chemical pesticides has led to increasing research into novel mosquito control methods. This study compared the effectiveness of 2 different types of polystyrene beads for control of mosquito larvae in south-east Islamic Republic of Iran. Simulated field trials were done in artificial pools and field trials were carried out in 2 villages in an indigenous malaria area using WHO-recommended methods. Application of expanded polystyrene beads or shredded, waste polystyrene chips to pool surfaces produced a significant difference between pre-treatment and post-treatment density of mosquitoes (86% and 78% reduction respectively 2 weeks after treatment). There was no significant difference between the efficacy of the 2 types of material. The use of polystyrene beads as a component of integrated vector management with other supportive measures could assist in the control of mosquito-borne diseases in the Islamic Republic of Iran and neighbouring countries.

  1. The properties of the wood-polystyrene interphase determined by inverse gas chromatography

    Science.gov (United States)

    John Simonsen; Zhenqiu Hong; Timothy G. Rials

    1997-01-01

    The properties of the interphase in wood-polymer composites are important determinants of the properties of the final composite. This study used inverse gas chromatography (IGC) to measure interphasal properties of composites of polystyrene and two types of wood fiber fillers and an inoranic substrate (CW) with varying amounts of surface coverage of polystyrene. Glass...

  2. Fabrication of microlens and microlens array on polystyrene using CO 2 laser

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Foulds, Ian G.

    2011-01-01

    This study presents a new process for fabricating microlens and microlens arrays directly on a surface of polystyrene using a CO2 laser. The working spot of the polystyrene is heated locally by a focused CO2 laser beam, which tends to have a

  3. Synthesis and characterization of polystyrene-poly(ethylene oxide)-heparin block copolymers

    NARCIS (Netherlands)

    Vulić, I.; Okano, T.; Kim, S.W.; Feijen, Jan

    1988-01-01

    A procedure for the preparation of new block copolymers composed of a hydrophobic block of polystyrene, a hydrophilic spacer-block of poly(ethylene oxide) and a bioactive block of heparin was investigated. Polystyrene with one amino group per chain was synthesized by free radical oligomerization of

  4. Improved synthesis of polystyrene-poly(ethylene oxide)-heparin block copolymers

    NARCIS (Netherlands)

    Vulic, I.; Loman, A.J.B.; Feijen, Jan; Okano, T.; Kim, S.W.

    1990-01-01

    A novel procedure for the synthesis of block copolymers composed of a hydrophobic block of polystyrene, a hydrophilic block of poly(ethylene oxide) and a bioactive block of nitrous acid-degraded heparin was developed. Amino-semitelechelic polystyrene was prepared by anionic polymerization of styrene

  5. Colonic necrosis due to calcium polystyrene sulfonate (Kalimate not suspended in sorbitol

    Directory of Open Access Journals (Sweden)

    María Dolores Castillo-Cejas

    2013-04-01

    Full Text Available Cation-exchange resins are used in the management of hyperkalemia, particularly in patients with end-stage renal disease. These resins were associated with gastrointestinal tract lesions, especially sodium polystyrene sulfonate (Kayexalate mixed with sorbitol. We present a case of colonic necrosis after the administration of calcium polystyrene sulfonate (Kalimate not suspended in sorbitol.

  6. Non-aqueous retention measurement: ultrafiltration behaviour of polystyrene solutions and colloidal silver particles

    NARCIS (Netherlands)

    Beerlage, M.A.M.; Beerlage, M.A.M.; Heijnen, M.L.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.; Strathmann, H.

    1996-01-01

    The retention behaviour of polyimide ultrafiltration membranes was investigated using dilute solutions of polystyrene in ethyl acetate as test solutions. It is shown that flow-induced deformation of the polystyrene chains highly affects the membrane retention. This coil-stretch transition is not

  7. Foam supported sulfonated polystyrene as a new acidic material for catalytic reactions

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    Polystyrene was grafted on carbon foam with a melted polypropylene film predeposited on the surface. Polystyrene was subsequently sulfonated by chlorosulfonic acid. The effect of the temperature, time of grafting and concentration of radical initiator was studied. The materials were characterized by

  8. Integration of polystyrene microlenses with both convex and concave profiles in a polymer-based microfluidic system

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Foulds, Ian G.

    2013-01-01

    This paper reports a new technique of fabricating polystyrene microlenses with both convex and concave profiles that are integrated in polymer-based microfluidic system. The polystyrene microlenses, or microlens array, are fabricated using the free

  9. Elongational viscosity of narrow molar mass distribution polystyrene. A Bach, K. Almdal, H.K. Rasmussen and O. Hassager

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Bach, Anders; Almdal, Kristoffer

    2003-01-01

    Transient and steady elongational viscosity has been measured for two narrow molar mass distributin polystyrene melts ......Transient and steady elongational viscosity has been measured for two narrow molar mass distributin polystyrene melts ...

  10. Serotyping of Actinobacillus pleuropneumoniae serotype 5 strains using a monoclonal-based polystyrene agglutination test

    DEFF Research Database (Denmark)

    Dubreuil, J.D.; Letellier, A.; Stenbæk, Eva

    1996-01-01

    A polystyrene agglutination test has been developed for serotyping Actinobacillus pleuropneumoniae serotype 5a and 5b strains. Protein A-coated polystyrene microparticles were sensitized with a murine monoclonal antibody recognizing an epitope on serotype 5 LPS-O chain as shown by SDS-PAGE and We......A polystyrene agglutination test has been developed for serotyping Actinobacillus pleuropneumoniae serotype 5a and 5b strains. Protein A-coated polystyrene microparticles were sensitized with a murine monoclonal antibody recognizing an epitope on serotype 5 LPS-O chain as shown by SDS...... suspension of bacterial cells grown for 18 h. All A, pleuropneumoniae strains had been previously serotyped using standard procedures, The polystyrene agglutination test was rapid (less than 3 min) and easy to perform. Overall a very good correlation (97.3%) with the standard techniques was found...

  11. Absence of molecular deuterium dissociation during room-temperature permeation into polystyrene ICF target shells

    International Nuclear Information System (INIS)

    Honig, A.; Alexander, N.; Fan, Q.; Gram, R.; Kim, H.

    1991-01-01

    Polystyrene microshells filled with deuterium and tritium gas are important target shells for inertially confined fusion (ICF) and are particularly promising for target containing spin-polarized hydrogens fuels. A currently active approach to the latter uses polarized D in HD, in a method which requires preservation of the high purity of the initially prepared HD (very low specified H 2 and D 2 concentrations). This would not be possible if dissociation should occur during permeation into the target shells. We have thus tested polystyrene shells using a novel method which employs very pure polystyrene shells using a novel method which employs very pure ortho-D 2 as the test gas. An upper limit of 6 x 10 -4 was deduced for the dissociation of D 2 upon room temperature permeation through an approximately 8 um wall of polystyrene, clearing the way for use of polystyrene target shells for ICF fusion experiments with spin-polarized hydrogens fuels. 19 refs., 1 fig

  12. Enhanced sensitivity of a microfabricated resonator using a graphene-polystyrene bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Minhyuk; Lee, Eunho; Cho, Kilwon; Jeon, Sangmin, E-mail: jeons@postech.ac.kr [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of)

    2014-08-18

    A graphene layer was synthesized using chemical vapor deposition methods and a polystyrene solution was spin-cast onto the graphene film. The graphene-polystyrene bilayer membrane was attached between the two tines of a microfabricated quartz tuning fork (QTF). The modulus of the graphene-polystyrene bilayer was measured to be twice that of a pristine polystyrene membrane. Exposure of the membrane-coated QTF to ethanol vapor decreased the resonance frequency of the microresonator. The bilayer membrane-coated QTF produced a frequency change that was three times the change obtained using a polystyrene membrane-coated QTF, with a lower degree of degradation in the Q factor. The limit of detection of the bilayer membrane-coated QTF to ethanol vapor was determined to be 20 ppm.

  13. Versatile microfluidic total internal reflection (TIR)-based devices: application to microbeads velocity measurement and single molecule detection with upright and inverted microscope.

    Science.gov (United States)

    Le, Nam Cao Hoai; Yokokawa, Ryuji; Dao, Dzung Viet; Nguyen, Thien Duy; Wells, John C; Sugiyama, Susumu

    2009-01-21

    A poly(dimethylsiloxane) (PDMS) chip for Total Internal Reflection (TIR)-based imaging and detection has been developed using Si bulk micromachining and PDMS casting. In this paper, we report the applications of the chip on both inverted and upright fluorescent microscopes and confirm that two types of sample delivery platforms, PDMS microchannel and glass microchannel, can be easily integrated depending on the magnification of an objective lens needed to visualize a sample. Although any device configuration can be achievable, here we performed two experiments to demonstrate the versatility of the microfluidic TIR-based devices. The first experiment was velocity measurement of Nile red microbeads with nominal diameter of 500 nm in a pressure-driven flow. The time-sequenced fluorescent images of microbeads, illuminated by an evanescent field, were cross-correlated by a Particle Image Velocimetry (PIV) program to obtain near-wall velocity field of the microbeads at various flow rates from 500 nl/min to 3000 nl/min. We then evaluated the capabilities of the device for Single Molecule Detection (SMD) of fluorescently labeled DNA molecules from 30 bp to 48.5 kbp and confirm that DNA molecules as short as 1105 bp were detectable. Our versatile, integrated device could provide low-cost and fast accessibility to Total Internal Reflection Fluorescent Microscopy (TIRFM) on both conventional upright and inverted microscopes. It could also be a useful component in a Micro-Total Analysis System (micro-TAS) to analyze nanoparticles or biomolecules near-wall transport or motion.

  14. Polyvinyl alcohol coating of polystyrene inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Annamalai, P.; Lee, M.C.; Crawley, R.L.; Downs, R.L.

    1985-01-01

    An inertial confinement fusion (ICF) target made of polystyrene is first levitated in an acoustic field. The surface of the target is then etched using an appropriate solution (e.g., cyclohexane) to enhance the wetting characteristics. A specially prepared polyvinyl alcohol solution is atomized using an acoustic atomizer and deposited on the surface of the target. The solution is air dried to form a thin coating (2 μm) on the target (outside diameter approx.350--850 μm). Thicker coatings are obtained by repeated applications of the coating solution. Preliminary results indicate that uniform coatings may be achievable on the targets with a background surface smoothness in the order of 1000 A

  15. Room temperature synthesis of water-repellent polystyrene nanocomposite coating

    International Nuclear Information System (INIS)

    Guo Yonggang; Jiang Dong; Zhang Xia; Zhang Zhijun; Wang Qihua

    2010-01-01

    A stable superhydrophobic polystyrene nanocomposite coating was fabricated by means of a very simple and easy method. The coating was characterized by scanning electron microscopy and X-ray photoelectron spectrum. The wettability of the products was also investigated. By adding the surface-modified SiO 2 nanoparticles, the wettability of the coating changed to water-repellent superhydrophobic, not only for pure water, but also for a wide pH range of corrosive liquids. The influence of the drying temperature and SiO 2 content on the wettability of the nanocomposite coating was also investigated. It was found that both factors had little or no significant effect on the wetting behavior of the coating surface.

  16. Renewable Aromatics from the Degradation of Polystyrene under Mild Conditions

    KAUST Repository

    Jabri, Nouf M

    2017-05-25

    A bimetallic FeCu/alumina catalyst was prepared and characterized. It showed excellent catalytic activity to quantitatively convert polystyrene (PS) into aromatics at low temperatures. A clear goldish yellow liquid was produced at 250 °C in a batch reactor without distillation. A liquid yield of 66% in an inert environment was achieved without the formation of coke and gas by-products. An exposure time of 90 min. and a catalyst loading of 200 mg were considered as an optimum condition to minimize the styrene re-polymerization. The gas chromatography/ mass spectrometry (GC/MS) analysis confirms that the primary products are styrene, ethylbenzene, cumene, toluene and α-methylstyrene.

  17. Hydrodynamic chromatography of polystyrene microparticles in micropillar array columns.

    Science.gov (United States)

    Op de Beeck, Jeff; De Malsche, Wim; Vangelooven, Joris; Gardeniers, Han; Desmet, Gert

    2010-09-24

    We report on the possibility to perform HDC in micropillar array columns and the potential advantages of such a system. The HDC performance of a pillar array column with pillar diameter = 5 microm and an interpillar distance of 2.5 microm has been characterized using both a low MW tracer (FITC) and differently sized polystyrene bead samples (100, 200 and 500 nm). The reduced plate height curves that were obtained for the different investigated markers all overlapped very well, and attained a minimum value of about h(min)=0.3 (reduction based on the pillar diameter), corresponding to 1.6 microm in absolute value and giving good prospects for high efficiency separations. The obtained reduced retention time values were in fair agreement with that predicted by the Di Marzio and Guttman model for a flow between flat plates, using the minimal interpillar distance as characteristic interplate distance. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Fabrication of oriented wrinkles on polydopamine/polystyrene bilayer films.

    Science.gov (United States)

    Wang, Rong; Long, Yuhua; Zhu, Tang; Guo, Jing; Cai, Chao; Zhao, Ning; Xu, Jian

    2017-07-15

    Wrinkles exist widely in nature and our life. In this paper, wrinkles on polydopamine (PDA)/polystyrene (PS) bilayer films were formed by thermal annealing due to the different thermal coefficients of expansion of each layer. The factors that influenced the dimensions of wrinkles were studied. We found that oriented wrinkles could be formed if the bilayer films were patterned with micro-grooves, and the degree of the orientation depended on the thickness of the PDA and the dimensions of the grooves. Combined with the strong adhesion, biocompatibility and reactivity of PDA, the oriented wrinkles on PDA/PS patterned bilayers may find potential application in diffraction gratings, optical sensors and microfluidic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeon Ho; Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2015-04-15

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

  20. Adsorption of different amphiphilic molecules onto polystyrene latices.

    Science.gov (United States)

    Jódar-Reyes, A B; Ortega-Vinuesa, J L; Martín-Rodríguez, A

    2005-02-15

    In order to know the influence of the surface characteristics and the chain properties on the adsorption of amphiphilic molecules onto polystyrene latex, a set of experiments to study the adsorption of ionic surfactants, nonionic surfactants and an amphiphilic synthetic peptide on different latex dispersions was performed. The adsorbed amount versus the equilibrium surfactant concentration was determined. The main adsorption mechanism was the hydrophobic attraction between the nonpolar tail of the molecule and the hydrophobic regions of the latex surface. This attraction overcame the electrostatic repulsion between chains and latex surface with identical charge sign. However, the electrostatic interactions chain-surface and chain-chain also played a role. General patterns for the adsorption of ionic chains on charged latex surfaces could be established. Regarding the shape, the isotherms presented different plateaus corresponding to electrostatic effects and conformational changes. The surfactant size also affects the adsorption results: the higher the hydrophilic moiety in the surfactant molecule the lower the adsorbed amount.

  1. Preparation of magnetic nanoparticles embedded in polystyrene microspheres

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Nguyen Hoang Luong; Nguyen Chau; Ngo Quy Tai

    2009-01-01

    Superparamagnetic particles are widely used for biological applications such as cell separation. The size of the particles is normally in the range of 10 - 20 nm which is much smaller than the size of a cell. Therefore small particles create small force which is not strong enough to separate the cells from solution. Superparamagnetic nanoparticles embedded in Polystyrene microspheres (magnetic beads) are very useful for cell separation. Magnetic beads have been prepared by solvent evaporation of an emulsion. The beads with size of 0.2 μm - 1.0 μm have a saturation magnetization of 10 - 25 emu/g. The change of the amount of surfactants, volatile solvent, magnetic particles resulted to the change of size, magnetic properties of the magnetic beads.

  2. PMMA to Polystyrene bonding for polymer based microfluidic systems

    KAUST Repository

    Fan, Yiqiang

    2013-03-29

    A thermal bonding technique for Poly (methylmethacrylate) (PMMA) to Polystyrene (PS) is presented in this paper. The PMMA to PS bonding was achieved using a thermocompression method, and the bonding strength was carefully characterized. The bonding temperature ranged from 110 to 125 C with a varying compression force, from 700 to 1,000 N (0.36-0.51 MPa). After the bonding process, two kinds of adhesion quantification methods were used to measure the bonding strength: the double cantilever beam method and the tensile stress method. The results show that the bonding strength increases with a rising bonding temperature and bonding force. The results also indicate that the bonding strength is independent of bonding time. A deep-UV surface treatment method was also provided in this paper to lower the bonding temperature and compression force. Finally, a PMMA to PS bonded microfluidic device was fabricated successfully. © 2013 Springer-Verlag Berlin Heidelberg.

  3. Biodegradation of weathered polystyrene films in seawater microcosms.

    Science.gov (United States)

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Franchini, Martina; Repouskou, Eftychia; Kaliva, Maria; Vamvakaki, Maria; Kolvenbach, Boris; Fava, Fabio; Corvini, Philippe F-X; Kalogerakis, Nicolas

    2017-12-21

    A microcosm experiment was conducted at two phases in order to investigate the ability of indigenous consortia alone or bioaugmented to degrade weathered polystyrene (PS) films under simulated marine conditions. Viable populations were developed on PS surfaces in a time dependent way towards convergent biofilm communities, enriched with hydrocarbon and xenobiotics degradation genes. Members of Alphaproteobacteria and Gammaproteobacteria were highly enriched in the acclimated plastic associated assemblages while the abundance of plastic associated genera was significantly increased in the acclimated indigenous communities. Both tailored consortia efficiently reduced the weight of PS films. Concerning the molecular weight distribution, a decrease in the number-average molecular weight of films subjected to microbial treatment was observed. Moreover, alteration in the intensity of functional groups was noticed with Fourier transform infrared spectrophotometry (FTIR) along with signs of bio-erosion on the PS surface. The results suggest that acclimated marine populations are capable of degrading weathered PS pieces.

  4. Thermomechanical properties of the silanized-kenaf/polystyrene composites

    Directory of Open Access Journals (Sweden)

    2009-10-01

    Full Text Available In order to improve the poor interfacial adhesion of the kenaf fiber and polystyrene (PS in their composite material, the surface of the kenaf fiber was modified using a synthesized polymeric coupling agent to promote adhesion with PS matrix. The dynamic thermo-mechanical properties of the composite composed of modified kenaf fiber and PS were also investigated. The polymeric coupling agent treatment of the kenaf fiber increased the fiber-matrix interaction through a condensation reaction between alkoxysilane and hydroxyl groups of kenaf cellulose. DMA (Dynamic Mechanical Thermal Analysis results showed that the modified fiber composites have higher E′ and lower tanδ than those with untreated fiber indicating that a greater interfacial interaction between the matrix resin and the fiber. It was also found that the storage modulus increases in proportion with the Si/C ratio on the fiber surface.

  5. Evaluation of Recycling Polystyrene (PS) from a Microbiology Product

    OpenAIRE

    Eklöf, Jonas

    2014-01-01

    Detta är ett beställningsarbete av Plastone Oy och i det undersöks möjligheterna vad man kan göra genom återvinning med avfallsmaterialet som uppstår då man tillverkar en mikrobiologisk produkt i deras plastfabrik. Produkten tillverkas genom formsprutning och materialet som används är polystyren (PS). Ur litteraturstudien fann man varierande möjligheter på hur man kan återvinna PS på bästa sätt, men ingen lösning som har varit effektiv i praktiken. Det framgick också att återvunnet PS inte är...

  6. Morphology Evolution of Polycarbonate-Polystyrene Blends During Compounding

    DEFF Research Database (Denmark)

    Chuai, Chengzhi; Almdal, Kristoffer; Johannsen, Ib

    2001-01-01

    The morphology evolution of polycarbonate-polystyrene (PC/PS) blends during the compounding process in three blending methods of industrial relevance, namely melt blending, re-melt blending in a twin-screw extruder and tri-melt blending in an injection-moulding machine, was investigated using......-empirical model. The results show that the formation of co-continuous morphology strongly depends on blend composition and melt blending method, whereas the model prediction for phase inversion deviates from the experimental values. Further, we found that the initial mechanism of morphology evolution involves...... scanning electron microscopy (SEM) Co examine nine blend compositions. Blends were prepared at compositions where phase inversion was expected to occur according to model predictions. The experimental results were compared to the values of the point of phase inversion calculated with the semi...

  7. Miscibility evolution of polycarbonate/polystyrene blends during compounding

    DEFF Research Database (Denmark)

    Chuai, Chengzhi; Almdal, Kristoffer; Johannsen, Ib

    2002-01-01

    The miscibility evolution of polycarbonate/polystyrene (PC/PS) blends during the compounding process in three blending methods of industrial relevance, namely melt blending, remelt blending in a twin-screw extruder and third melt blending in an injection molding machine, was investigated...... polymer in the other. The observed solubility strongly depends on blend composition and blending method. The T-g measurements showed maximum mutual solubility around 50/50 composition. The miscibility of PC/PS blended after the third stage (melt injection molding) was higher than that after the first...... by measuring their glass transition temperatures (T-g) and their specific heat increment (DeltaC(p)). Differential scanning calorimetry (DSC) was used to examine nine blend compositions. Shifts in glass transition temperature (T-g) of the two phases in melt-mixed PC/PS blends suggest partial miscibility of one...

  8. Photoacoustic monitoring of inhomogeneous curing processes in polystyrene emulsions

    International Nuclear Information System (INIS)

    Vargas-Luna, M.; Gutierrez-Juarez, G.; Rodriguez-Vizcaino, J.M.; Varela-Nsjera, J.B.; Rodriguez-Palencia, J.M.; Bernal-Alvarado, J.; Sosa, M.; Alvarado-Gil, J.J.

    2002-01-01

    The time evolution of the inhomogeneous curing process of polystyrene emulsions is studied using a variant of the conventional photoacoustic (PA) technique. The thermal effusivity, as a function of time, is determined in order to monitor the sintering process of a styrene emulsion in different steps of the manufacturing procedure. PA measurements of thermal effusivity show a sigmoidal growth as a function of time during the curing process. The parameterization of these curves permits the determination of the characteristic curing time and velocity of the process. A decreasing of the curing time and an increasing curing velocity for the final steps of the manufacturing process are observed. The feasibility of our approach and its potentiality for the characterization of other curing process are discussed. (author)

  9. Glass transition and thermal expansivity of polystyrene thin films

    International Nuclear Information System (INIS)

    Inoue, R.; Kanaya, T.; Miyazaki, T.; Nishida, K.; Tsukushi, I.; Shibata, K.

    2006-01-01

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T g and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements

  10. Glass transition and thermal expansivity of polystyrene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, R. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Kanaya, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)]. E-mail: kanaya@scl.kyoto-u.ac.jp; Miyazaki, T. [Nitto Denko Corporation, 1-1-2 Shimohozumi, Ibaraki, Osaka-fu 567-8680 (Japan); Nishida, K. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Tsukushi, I. [Chiba Institute of Technology, Narashino, Chiba-ken 275-0023 (Japan); Shibata, K. [Japan Atomic Energy Research Institute, Tokai, Ibaraki-ken 319-1195 (Japan)

    2006-12-20

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T {sub g} and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements.

  11. Nanostructured magnetic particles with polystyrene and their magnetorheological applications.

    Science.gov (United States)

    Fang, Fei Fei; Choi, Hyoung Jin

    2011-03-01

    Magnetorheological (MR) fluids are known to be colloidal suspensions of magnetic particles in a non-magnetic fluid, and exposure to a magnetic field transforms the fluid into a plastic-like solid in milliseconds. To improve the stability against sedimentation and uniform dispersion, two different MR candidates, soft magnetic carbonyl iron (CI) microspheres and magnetite (Fe3O4) particles were modified with polystyrene to be applied for MR fluids in this study. After modification, their unique morphology, crystalline structure and magnetic properties were examined in addition to MR performance and sedimentation characteristics. It was found that this embedded morphology not only effectively prevents direct contact of the magnetic species thus improving particle dispersion but also leads to obvious change in their density, compared with the traditional polymer coating method with a core-shell structure.

  12. Influence of entanglements on glass transition temperature of polystyrene

    Science.gov (United States)

    Ougizawa, Toshiaki; Kinugasa, Yoshinori

    2013-03-01

    Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.

  13. The contribution of polystyrene nanospheres towards the crystallization of proteins.

    Directory of Open Access Journals (Sweden)

    Johanna M Kallio

    Full Text Available BACKGROUND: Protein crystallization is a slow process of trial and error and limits the amount of solved protein structures. Search of a universal heterogeneous nucleant is an effort to facilitate crystallizability of proteins. METHODOLOGY: The effect of polystyrene nanospheres on protein crystallization were tested with three commercial proteins: lysozyme, xylanase, xylose isomerase, and with five research target proteins: hydrophobins HFBI and HFBII, laccase, sarcosine dimethylglycine N-methyltransferase (SDMT, and anti-testosterone Fab fragment 5F2. The use of nanospheres both in screening and as an additive for known crystallization conditions was studied. In screening, the addition of an aqueous solution of nanosphere to the crystallization drop had a significant positive effect on crystallization success in comparison to the control screen. As an additive in hydrophobin crystallization, the nanospheres altered the crystal packing, most likely due to the amphiphilic nature of hydrophobins. In the case of laccase, nanospheres could be used as an alternative for streak-seeding, which insofar had remained the only technique to produce high-diffracting crystals. With methyltransferase SDMT the nanospheres, used also as an additive, produced fewer, larger crystals in less time. Nanospheres, combined with the streak-seeding method, produced single 5F2 Fab crystals in shorter equilibration times. CONCLUSIONS: All in all, the use of nanospheres in protein crystallization proved to be beneficial, both when screening new crystallization conditions to promote nucleation and when used as an additive to produce better quality crystals, faster. The polystyrene nanospheres are easy to use, commercially available and close to being inert, as even with amphiphilic proteins only the crystal packing is altered and the nanospheres do not interfere with the structure and function of the protein.

  14. Mn{sub 2}O{sub 3}/carbon aerogel microbead composites synthesized by in situ coating method for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xingyan, E-mail: wxianyou@yahoo.com [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan, Xiangtan 411105 (China); Liu Li [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Wang Xianyou, E-mail: wqinyan801@yahoo.com.cn [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan, Xiangtan 411105 (China); Yi Lanhua [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Hu Chuanyue [Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Zhang Xiaoyan [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China)

    2011-09-15

    Highlights: > Mn{sub 2}O{sub 3}/CAMB composite materials for supercapacitor were prepared by in situ coating method. > The optimum amount of Mn{sub 2}O{sub 3} in Mn{sub 2}O{sub 3}/CAMB composite is 10 wt%. > Coating nano-sized Mn{sub 2}O{sub 3} on the CAMB could improve the supercapacitive behaviors of composites. - Abstract: A series of Mn{sub 2}O{sub 3}/carbon aerogel microbead (Mn{sub 2}O{sub 3}/CAMB) composites for supercapacitor electrodes have been synthesized by in situ encapsulation method. The structure and morphology of Mn{sub 2}O{sub 3}/CAMB are characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectrum and scanning electron microscopy (SEM). Electrochemical performances of the synthesized composites are evaluated by cyclic voltammetry and galvanostatic charge/discharge measurement. All the composites with different Mn{sub 2}O{sub 3} contents show higher specific capacitance than pure CAMB due to the pseudo-capacitance of the Mn{sub 2}O{sub 3} particles dispersed on the surface of CAMB. The highest specific capacitance is up to 368.01 F g{sup -1} when 10 wt% Mn{sub 2}O{sub 3} is coated on the surface of CAMB. Besides, 10%-Mn{sub 2}O{sub 3}/CAMB supercapacitor exhibits excellent cyclic stability, the specific capacitance still retains 90% of initial capacitance over 5000 cycles.

  15. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors

    International Nuclear Information System (INIS)

    Zhang, Jin; Shi, Zhiqiang; Wang, Chengyang

    2014-01-01

    Highlights: • MCMB with different pre-lithiation capacity as negative electrode in LIC. • Pre-lithiation improves the electrochemical performance of LIC. • The optimal pre-lithiation capacity has been proposed. - Abstract: Lithium ion capacitors are assembled with pre-lithiated mesocarbon microbeads (LMCMB) anode and activated carbon (AC) cathode. The effect of pre-lithiation degrees on the crystal structure of MCMB electrode and the electrochemical capacitance behavior of LIC are investigated by X-ray diffraction (XRD) and the charge-discharge test of three-electrode cell. The structure of graphite still maintained when the pre-lithiation capacity is less than 200 mAh g −1 , phase transition takes place with the increase of pre-lithiation capacity from 250 mAh g −1 to 350 mAh g −1 . Pre-lithiation degrees of MCMB anode greatly affect the charge-discharge process and behavior, which impact on the electrochemical performance of LIC. The LIC with pre-lithiation capacity of 300 mAh g −1 has the optimal electrochemical performance. The energy density of LIC300 is up to 92.3 Wh kg −1 , the power density as high as 5.5 kW kg −1 and the capacity retention is 97.0% after 1000 cycles. The excellent electrochemical performance benefits from the appropriate pre-lithiation capacity of negative electrode. The appropriate pre-lithiation ensures the working voltage of negative electrode in low and relative stable charge-discharge platform corresponding to the mutual phase transition from the second stage graphite intercalation compound (LiC 12 ) to the first stage graphite intercalation compound (LiC 6 ). The stable charge-discharge platform of negative electrode is conductive to the sufficient utilization of AC positive electrode

  16. X-ray excited luminescence of polystyrene composites loaded with SrF{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Demkiv, T.M.; Halyatkin, O.O.; Vistovskyy, V.V. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Hevyk, V.B. [Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., 76019 Ivano-Frankivsk (Ukraine); Yakibchuk, P.M. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Gektin, A.V. [Institute for Scintillation Materials, NAS of Ukraine, 60 Lenina Ave, 61001 Kharkiv (Ukraine); Voloshinovskii, A.S. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine)

    2017-03-01

    The polystyrene film nanocomposites of 0.3 mm thickness with embedded SrF{sub 2} nanoparticles up to 40 wt% have been synthesized. The luminescent and kinetic properties of the polystyrene composites with embedded SrF{sub 2} nanoparticles upon the pulse X-ray excitation have been investigated. The luminescence intensity of the pure polystyrene scintillator film significantly increases when it is loaded with the inorganic SrF{sub 2} nanoparticles. The film nanocomposites show fast (∼2.8 ns) and slow (∼700 ns) luminescence decay components typical for a luminescence of polystyrene activators (p-Terphenyl and POPOP) and SrF{sub 2} nanoparticles, respectively. It is revealed that the fast decay luminescence component of the polystyrene composites is caused by the excitation of polystyrene by the photoelectrons escaped from the nanoparticles due to photoeffect, and the slow component is caused by reabsorption of the self-trapped exciton luminescence of SrF{sub 2} nanoparticles by polystyrene.

  17. Conversion of Hazardous Motor Vehicle Used Tire and Polystyrene Waste Plastic Mixture into useful Chemical Products

    OpenAIRE

    Moinuddin Sarker; Mohammad Mamunor Rashid

    2014-01-01

    Motor vehicle used tire and polystyrene waste plastic mixture into fuel recovery using thermal degradation process in laboratory batch process. Motor vehicle used tire and polystyrene waste plastic was use 75 gm by weight. Motor vehicle tire was 25 gm and polystyrene waste plastic was 50 gm. In presence of oxygen experiment was performed under laboratory fume hood. Thermal degradation temperature range was 100 - 420 oC and experiment run time was 5 hours. Product fuel density is 0.84 gm/ml an...

  18. Solid-Phase Immunoassay of Polystyrene-Encapsulated Semiconductor Coreshells for Cardiac Marker Detection

    Directory of Open Access Journals (Sweden)

    Sanghee Kim

    2012-01-01

    Full Text Available A solid-phase immunoassay of polystyrene-encapsulated semiconductor nanoparticles was demonstrated for cardiac troponin I (cTnI detection. CdSe/ZnS coreshells were encapsulated with a carboxyl-functionalized polystyrene nanoparticle to capture the target antibody through a covalent bonding and to eliminate the photoblinking and toxicity of semiconductor luminescent immunosensor. The polystyrene-encapsulated CdSe/ZnS fluorophores on surface-modified glass chip identified cTnI antigens at the level of ~ng/mL. It was an initial demonstration of diagnostic chip for monitoring a cardiovascular disease.

  19. AFM-based force spectroscopy on polystyrene brushes: effect of brush thickness on protein adsorption.

    Science.gov (United States)

    Hentschel, Carsten; Wagner, Hendrik; Smiatek, Jens; Heuer, Andreas; Fuchs, Harald; Zhang, Xi; Studer, Armido; Chi, Lifeng

    2013-02-12

    Herein we present a study on nonspecific binding of proteins at highly dense packed hydrophobic polystyrene brushes. In this context, an atomic force microscopy tip was functionalized with concanavalin A to perform single-molecule force spectroscopy measurements on polystyrene brushes with thicknesses of 10 and 60 nm, respectively. Polystyrene brushes with thickness of 10 nm show an almost two times stronger protein adsorption than brushes with a thickness of 60 nm: 72 pN for the thinner and 38 pN for the thicker layer, which is in qualitative agreement with protein adsorption studies conducted macroscopically by fluorescence microscopy.

  20. Fabrication of microlens and microlens array on polystyrene using CO 2 laser

    KAUST Repository

    Fan, Yiqiang

    2011-11-01

    This study presents a new process for fabricating microlens and microlens arrays directly on a surface of polystyrene using a CO2 laser. The working spot of the polystyrene is heated locally by a focused CO2 laser beam, which tends to have a hyperboloid profile due to the surface tension and can be used as a microlens. The microlenses with different dimensions were fabricated by changing the power of the laser beam. Microlens array was also fabricated with multiple scans of the laser beam on the polystyrene surface. © (2012) Trans Tech Publications, Switzerland.

  1. Preparation of tritiated polystyrene and its application in radio luminescent paints

    International Nuclear Information System (INIS)

    Ravi, S.; Mathewy, K.M.; Seshadri, N.K.; Subramanian, T.K.

    2001-01-01

    Beta radiation emanating from tritiated polystyrene in close proximity with copper activated zinc sulphide phosphor will provide self-sustained light sources and are used for nocturnal illumination of watches and clocks, product advertisements, telephone numbers, exit signs etc. Phenylacetylene was partially reduced in diethyl ether medium with tritium using 5% Pd/C poisoned with quinoline to give styrene. Styrene formed was polymerised to polystyrene by subjecting it to irradiation with γ-radiation (20 mega rad dose). Copper activated zinc sulphide phosphor was coated with tritiated polystyrene to give self-sustained light sources. (author)

  2. Unique graphitized mesophase carbon microbead@niobium carbide-derived carbon composites as high performance anode materials of lithium-ion battery

    International Nuclear Information System (INIS)

    Yuan, Xiulan; Cong, Ye; Yu, Yanyan; Li, Xuanke; Zhang, Jiang; Dong, Zhijun; Yuan, Guanming; Cui, Zhengwei; Li, Yanjun

    2017-01-01

    To meet the requirements of the energy storage materials for high energy density and high power density, unique niobium carbide-derived carbon (NbC-CDC) coated graphitized mesophase carbon microbead (GMCMB) composites (GMCMB@NbC-CDC) with core-shell structure were prepared by chlorinating the precursor of graphitization mesophase carbon microbead@niobium carbide. The microstructure of NbC-CDC was characterized as mainly amorphous carbon combined with short and curved sheets of graphene, and the order degree of carbon layers increases with the chlorination temperature. The composites exhibited a tunable specific surface area and micropore volume, with micropore size of 0.6∼0.7 nm. Compared with the pure GMCMB, the GMCMB@NbC-CDC composites manifested higher charge (726.9 mAh g"−"1) and discharge capacities (458.9 mAh g"−"1) at the first cycle, which was probably that Li ions could insert into not only carbon layers of GMCMB but also micropores of NbC-CDC. After 100 cycles, the discharge capacity of GMCMB@NbC-CDC chlorinated at 800 °C still kept 384.6 mAh g"−"1, which was much higher than that of the pure GMCMB (305.2 mAh g"−"1). Furthermore, the GMCMB@NbC-CDC composites presented better rate performance at higher current densities.

  3. Quantifying the mechanical micro-environment during three-dimensional cell expansion on microbeads by means of individual cell-based modelling.

    Science.gov (United States)

    Smeets, Bart; Odenthal, Tim; Tijskens, Engelbert; Ramon, Herman; Van Oosterwyck, Hans

    2013-10-01

    Controlled in vitro three-dimensional cell expansion requires culture conditions that optimise the biophysical micro-environment of the cells during proliferation. In this study, we propose an individual cell-based modelling platform for simulating the mechanics of cell expansion on microcarriers. The lattice-free, particle-based method considers cells as individual interacting particles that deform and move over time. The model quantifies how the mechanical micro-environment of individual cells changes during the time of confluency. A sensitivity analysis is performed, which shows that changes in the cell-specific properties of cell-cell adhesion and cell stiffness cause the strongest change in the mechanical micro-environment of the cells. Furthermore, the influence of the mechanical properties of cells and microbead is characterised. The mechanical micro-environment is strongly influenced by the adhesive properties and the size of the microbead. Simulations show that even in the absence of strong biological heterogeneity, a large heterogeneity in mechanical stresses can be expected purely due to geometric properties of the culture system.

  4. Synthesis of polystyrene, poly(styrene/4-vinylpyridine), poly(p-nitrostyrene) and poly(p-aminostyrene)-coated silica and their extraction capabilities for amphetamine

    International Nuclear Information System (INIS)

    Sun Changmei; Zhang Shuanhong; Qu Rongjun; Sun Tao; Zhang Ying; Zhang Xiang; Song Jingyang

    2010-01-01

    Several novel organic-inorganic hybrid materials, including polystyrene-coated silica (SG-PS), poly(styrene/4-vinylpyridine)-coated silica (SG-PVP), poly(p-nitrostyrene)-coated silica (SG-PS-NO 2 ) and poly(p-aminostyrene)-coated silica (SG-PS-NH 2 ), were synthesized in order to improve the extraction methods of harmful stimulants via solid phase extraction. The materials were characterized using infrared spectra (IR), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area measurement and thermogravimetric analysis (TG). The application of the new materials in solid phase extraction columns to extract methamphetamine revealed that the extraction capability of poly(styrene/4-vinylpyridine)-coated silica is the best among the four materials, which provides novel supporter materials for extracting amphetamine-derived drugs.

  5. Synthesis of polystyrene, poly(styrene/4-vinylpyridine), poly(p-nitrostyrene) and poly(p-aminostyrene)-coated silica and their extraction capabilities for amphetamine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Changmei; Zhang Shuanhong [School of Chemistry and Materials Science, Ludong University, Yantai, Shandong 264025 (China); Qu Rongjun, E-mail: qurongjun@eyou.com [School of Chemistry and Materials Science, Ludong University, Yantai, Shandong 264025 (China); Sun Tao; Zhang Ying; Zhang Xiang; Song Jingyang [School of Chemistry and Materials Science, Ludong University, Yantai, Shandong 264025 (China)

    2010-11-01

    Several novel organic-inorganic hybrid materials, including polystyrene-coated silica (SG-PS), poly(styrene/4-vinylpyridine)-coated silica (SG-PVP), poly(p-nitrostyrene)-coated silica (SG-PS-NO{sub 2}) and poly(p-aminostyrene)-coated silica (SG-PS-NH{sub 2}), were synthesized in order to improve the extraction methods of harmful stimulants via solid phase extraction. The materials were characterized using infrared spectra (IR), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area measurement and thermogravimetric analysis (TG). The application of the new materials in solid phase extraction columns to extract methamphetamine revealed that the extraction capability of poly(styrene/4-vinylpyridine)-coated silica is the best among the four materials, which provides novel supporter materials for extracting amphetamine-derived drugs.

  6. Production low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    2011-01-01

    Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matrix. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). By changing the composition of plastic Scintillators some features such as light yield, radiation hardening, decay time etc. can be controlled. Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Many research projects have concentrated on improving the fundamental properties of plastic scintillators, but little attention has focussed on their cost and easier manufacturing techniques. First plastic Scintillators were produced in 1950's. Activities for production of low cost Scintillators accelerated in second half of 1970's. In 1975 acrylic based Plexipop Scintillator was developed. Despite its low cost, since its structure was not aromatic the light yield of Plexipop was about one quarter of classical Scintillators. Problems arising from slow response time and weak mechanical properties in scintillators developed, has not been solved until 1980. Within the last decade extrusion method became very popular in preparation of low cost and high quality plastic scintillators. In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion plus compression method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared in June 2008 by use of the extruder and pres in SANAEM. Molds suitable for accoupling to extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and moulding pressure were obtained hence, PS Scintillator Blocks

  7. Micellar aggregates of amylose-block-polystyrene rod-coil block copolymers in water and THF

    NARCIS (Netherlands)

    Loos, Katja; Böker, Alexander; Zettl, Heiko; Zhang, Mingfu; Krausch, Georg; Müller, Axel H.E.; Boker, A.; Zhang, A.F.

    2005-01-01

    Amylose-block-polystyrenes with various block copolymer compositions were investigated in water and in THF solution. Fluorescence correlation spectroscopy, dynamic light, scattering (DLS), and asymmetric flow field-flow fractionation with multiangle light scattering detection indicate the presence

  8. Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hui [School of Science, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: zhanghui14305@sohu.com; Duan Renguan [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li Fan [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Tang Qing [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Li Wenchao [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2007-07-01

    This paper reports a scanning electron microscopy (SEM) investigation of polystyrene artificial opal achieved through self-assembly of monodisperse polystyrene nanospheres with a diameter of 250 nm from colloidal suspension after being ambient dried. A detailed analysis of the SEM images verifies that the face-centered cubic (fcc) phase is the most stable one for the polystyrene opal prepared. This finding provides a strong support for, by using polystyrene opal as template, fabricating a photonic crystal with inverse fcc structure of full band gap if the refractive index contrast is higher than 2.8 and the filling fraction of the high index materials is between 0.2 and 0.3.

  9. Microscopy evidence of the face-centered cubic arrangement of monodisperse polystyrene nanospheres

    International Nuclear Information System (INIS)

    Zhang Hui; Duan Renguan; Li Fan; Tang Qing; Li Wenchao

    2007-01-01

    This paper reports a scanning electron microscopy (SEM) investigation of polystyrene artificial opal achieved through self-assembly of monodisperse polystyrene nanospheres with a diameter of 250 nm from colloidal suspension after being ambient dried. A detailed analysis of the SEM images verifies that the face-centered cubic (fcc) phase is the most stable one for the polystyrene opal prepared. This finding provides a strong support for, by using polystyrene opal as template, fabricating a photonic crystal with inverse fcc structure of full band gap if the refractive index contrast is higher than 2.8 and the filling fraction of the high index materials is between 0.2 and 0.3

  10. Coupling of carboxylic groups onto the surface of polystyrene parts during fused filament fabrication

    Science.gov (United States)

    Nagel, Jürgen; Zimmermann, Philipp; Schubert, Oliver; Simon, Frank; Schlenstedt, Kornelia

    2017-11-01

    A method for the fabrication of polystyrene parts, modified with carboxylic groups during Fused Filament Fabrication (FFF), is being introduced. This method is based on the application of a thin layer of a reactive polymer carrying carboxylic groups on a substrate surface. A polystyrene film is printed on top of this layer. During contact between the hot melt and the reactive layer, a Friedel-Crafts type acylation using a green catalyst takes place, which attaches the reactive polymer to the polystyrene surface. The modified surface is homogeneous, hydrophilic and able to bind copper ions. The method could be used to fabricate unique parts of polystyrene with tailored surface functionalisation. It could be applied for laboratory use, e.g. for the manufacture of lab-on-a-chip devices.

  11. Application of polystyrene - water calorimeter in determination of absorbed dose. Vol. 4.

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, F A [Nuclear Materials Authority, Maadi, Cairo (Egypt); Ashry, H A; El-Behay, A Z; Abdou, S [National Center, for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The polystyrene-water calorimeter was investigated as a modification of the water calorimeter, where the polystyrene has a low specific heat and negligible known heat defect. This calorimeter was designed, constructed and calibrated for measurement of radiation absorbed dose. The system utilizes a thermistor to detect the radiation-induced temperature rise in the polystyrene absorber at certain point from the radiation source. A temperature stability of as low as 0.0018 degree C/min in a 42.0 degree C environment, and a gamma-radiation sensitivity of as high as 1.9720 ohm/Gy were obtained. Comparisons of the results obtained by using the polystyrene-water calorimeter with those obtained by applying other types of calorimeters i.e., water and graphite calorimeters were also done to aid in the possible realization of an accurate and efficient instrument for use under widely different irradiation conditions. 4 figs., 1 tab.

  12. Thermo-mechanical properties of polystyrene-based shape memory nanocomposites

    NARCIS (Netherlands)

    Xu, B.; Fu, Y.Q.; Ahmad, M.; Luo, J.K.; Huang, W.M.; Kraft, A.; Reuben, R.; Pei, Y.T.; Chen, Zhenguo; Hosson, J.Th.M. De

    2010-01-01

    Shape memory nanocomposites were fabricated using chemically cross-linked polystyrene (PS) copolymer as a matrix and different nanofillers (including alumina, silica and clay) as the reinforcing agents. Their thermo-mechanical properties and shape memory effects were characterized. Experimental

  13. Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites

    KAUST Repository

    Amr, Issam Thaher; Al-Amer, Adnan M J; Selvin, Thomas P.; Al-Harthi, Mamdouh Ahmed; Girei, Salihu Adamu; Sougrat, Rachid; Atieh, Muataz Ali

    2011-01-01

    In this work, multiwall carbon nanotubes (CNT) were functionalized by acid treatment and characterized using Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). Polystyrene/CNT composites of both the untreated

  14. APPLICATION OF POLYSTYRENE FOAM CORE FUSIBLE PATTERNS IN PRODUCTION OF GAS TURBINES’ CAST PARTS

    Directory of Open Access Journals (Sweden)

    O. I. Shinsky

    2016-01-01

    Full Text Available The task of replacing the LVM dissolves polystyrene molding on models is at the present time, technologically, economically and environmentally promising from the point of view of industrial applications for gas turbine plants in Ukraine. The authors proposed and tested manufacturing process of casting ceramic molds way to remove the polystyrene model of the dissolution of her organic solvents. Kinetic parameters of the process of dissolving and removing patterns of degradation products the polystyrene in the group of solvents depending on the type and amount of polystyrene were identified. The absence of surface defects of castings, reduction of roughness, increased their accuracy class in comparison to accepted technological regulations of the process of production, which reduced the cost of machined parts and increased utilization of expensive heat-resistant alloys were produced.

  15. A reactive polystyrene-block-polyisoprene star copolymer as a toughening agent in an epoxy thermoset

    KAUST Repository

    Francis, Raju; Baby, Deepa K.

    2015-01-01

    © 2015 Springer-Verlag Berlin Heidelberg A polystyrene-block-polyisoprene ((PS-b-PI)3) star polymer was synthesized by photochemical reversible addition fragmentation chain transfer (RAFT) polymerization. The obtained star polymer was epoxidized

  16. The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries

    International Nuclear Information System (INIS)

    Guan, Ting; Sun, Shun; Gao, Yunzhi; Du, Chunyu; Zuo, Pengjian; Cui, Yingzhi; Zhang, Lingling; Yin, Geping

    2016-01-01

    Highlights: • The effect of elevated temperature on aging of lithium-ion battery is investigated. • The active lithium loss, polarization and cathode decay lead to a capacity fade. • The decay rate of the cathode is faster at elevated temperature. • The performance of the cathode is mainly affected by SEI film. • The proper temperature range ensuring no changes in aging mechanism is proposed. - Abstract: This work studies the aging processes of commercial LiCoO 2 /mesocarbon microbeads (MCMB) cells which are cycled at 25 °C, 35 °C, 45 °C respectively at the 0.6 C charge/discharge rate and 30% depth of discharge. The capacity degradation of the cells is fast at elevated temperature, and the cycle life tested at 45 °C is about a quarter of the cycling time at 25 °C. The fresh and the aged cells are disassembled to characterize the morphology and the composition of electrode surface, as well as the bulk structure and the electrochemical performance of single electrode. It is found that the formation of SEI film and the polarization of the full cell lead to state of charge (SOC) shift in the cathode. The cathode SOC shift and the decay in the reversible capacity of LiCoO 2 cathode dominate the aging of the full cell. The former is the prevailing aging factor at 25 °C, while the latter factor becomes the leading cause of cell aging at 45 °C. The unstable and thick SEI film on the cathode under elevated temperature influences the lithium ion diffusion, resulting in the increased polarization and the decreased intrinsic performance of LiCoO 2 cathode. The proper range of test temperature ensuring no changes in aging mechanism and the decay rate of capacity caused by each aging factor are proposed by analyzing the performance of the full cells and the electrodes. After comparing the test results, it is concluded that the aging process at 45 °C is not the same as that at room temperature.

  17. Development and customization of a color-coded microbeads-based assay for drug resistance in HIV-1 reverse transcriptase.

    Science.gov (United States)

    Gu, Lijun; Kawana-Tachikawa, Ai; Shiino, Teiichiro; Nakamura, Hitomi; Koga, Michiko; Kikuchi, Tadashi; Adachi, Eisuke; Koibuchi, Tomohiko; Ishida, Takaomi; Gao, George F; Matsushita, Masaki; Sugiura, Wataru; Iwamoto, Aikichi; Hosoya, Noriaki

    2014-01-01

    Drug resistance (DR) of HIV-1 can be examined genotypically or phenotypically. Although sequencing is the gold standard of the genotypic resistance testing (GRT), high-throughput GRT targeted to the codons responsible for DR may be more appropriate for epidemiological studies and public health research. We used a Japanese database to design and synthesize sequence-specific oligonucleotide probes (SSOP) for the detection of wild-type sequences and 6 DR mutations in the clade B HIV-1 reverse transcriptase region. We coupled SSOP to microbeads of the Luminex 100 xMAP system and developed a GRT based on the polymerase chain reaction (PCR)-SSOP-Luminex method. Sixteen oligoprobes for discriminating DR mutations from wild-type sequences at 6 loci were designed and synthesized, and their sensitivity and specificity were confirmed using isogenic plasmids. The PCR-SSOP-Luminex DR assay was then compared to direct sequencing using 74 plasma specimens from treatment-naïve patients or those on failing treatment. In the majority of specimens, the results of the PCR-SSOP-Luminex DR assay were concordant with sequencing results: 62/74 (83.8%) for M41, 43/74 (58.1%) for K65, 70/74 (94.6%) for K70, 55/73 (75.3%) for K103, 63/73 (86.3%) for M184 and 68/73 (93.2%) for T215. There were a number of specimens without any positive signals, especially for K65. The nucleotide position of A2723G, A2747G and C2750T were frequent polymorphisms for the wild-type amino acids K65, K66 and D67, respectively, and 14 specimens had the D67N mutation encoded by G2748A. We synthesized 14 additional oligoprobes for K65, and the sensitivity for K65 loci improved from 43/74 (58.1%) to 68/74 (91.9%). We developed a rapid high-throughput assay for clade B HIV-1 DR mutations, which could be customized by synthesizing oligoprobes suitable for the circulating viruses. The assay could be a useful tool especially for public health research in both resource-rich and resource-limited settings.

  18. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish.

    Science.gov (United States)

    Jin, Yuanxiang; Xia, Jizhou; Pan, Zihong; Yang, Jiajing; Wang, Wenchao; Fu, Zhengwei

    2018-04-01

    Microplastic (MP) are environmental pollutants and have the potential to cause varying degrees of aquatic toxicity. In this study, the effects on gut microbiota of adult male zebrafish exposed for 14 days to 100 and 1000 μg/L of two sizes of polystyrene MP were evaluated. Both 0.5 and 50 μm-diameter spherical polystyrene MP increased the volume of mucus in the gut at a concentration of 1000 μg/L (about 1.456 × 10 10 particles/L for 0.5 μm and 1.456 × 10 4 particles/L for 50 μm). At the phylum level, the abundance of Bacteroidetes and Proteobacteria decreased significantly and the abundance of Firmicutes increased significantly in the gut after 14-day exposure to 1000 μg/L of both sizes of polystyrene MP. In addition, high throughput sequencing of the 16S rRNA gene V3-V4 region revealed a significant change in the richness and diversity of microbiota in the gut of polystyrene MP-exposed zebrafish. A more in depth analysis, at the genus level, revealed that a total of 29 gut microbes identified by operational taxonomic unit (OTU) analysis were significantly changed in both 0.5 and 50 μm-diameter polystyrene MP-treated groups. Moreover, it was observed that 0.5 μm polystyrene MP not only increased mRNA levels of IL1α, IL1β and IFN but also their protein levels in the gut, indicating that inflammation occurred after polystyrene MP exposure. Our findings suggest that polystyrene MP could induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Solvent effect on polystyrene surface roughness on top of QCM sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sakti, Setyawan P., E-mail: sakti@ub.ac.id; Rahmawati, Eka; Robiandi, Fadli [Advanced System and Material Technology, Laboratory of Instrumentation and Measurement Department of Physics, Brawijaya University (Indonesia)

    2016-03-11

    Quartz Crystal Microbalance (QCM) has been used as a basis for many chemical sensors and biosensor. Its sensitivity to mass change which can detect a mass change on its surface down to sub ng/cm2 is one of its interesting aspects. Another interesting feature is its ability to work in liquid environment. However, there are many aspects which influence QCM sensor properties in contact with liquid. One of the aspects is surface roughness of the matrix layer where on top of it a biological sensitive layer will be immobilized. One of matrix layers in the immobilizing biological sensitive layer was polystyrene. Polystyrene was coated on the QCM sensor by using the spin coating method. During the coating process, polystyrene was solved using non-polar solvent. It is known that the physical and chemical properties of the solvent affect a transition process from soluble polymer becoming rigid polymer layer. In this work, we show that polystyrene solved in chloroform has a higher surface roughness compare to one solved in toluene, xylene, or tetrahydrofuran. Surface roughness of the polystyrene coating were measured using a non-contact profilometer. However, we also found that there is no difference on the electrical impedance of the QCM sensor coated with polystyrene resulted from differing solvent when the sensor was in contact with air and water. Thus, all of the mentioned solvent can be used to solve the polystyrene as a coating material for QCM sensor without affecting the electrical performance of the sensor, but the choice of the solution can be used as a simple method to control the difference roughness of the polystyrene coating.

  20. Metal-Containing Polystyrene Beads as Standards for Mass Cytometry.

    Science.gov (United States)

    Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Kinach, Robert; Dai, Sheng; Thickett, Stuart C; Tanner, Scott; Winnik, Mitchell A

    2010-01-01

    We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells.

  1. Coarse graining of atactic polystyrene and its derivatives

    Science.gov (United States)

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2014-03-01

    Capturing large length scales in polymers and soft matter while retaining atomistic properties is imperative to computational studies of dynamic systems. Here we present a new methodology developing coarse-grain model based on atomistic simulation of atactic polystyrene (PS). Similar to previous work by Fritz et al., each monomer is described by two coarse grained beads. In contrast to this earlier work where intramolecular potentials were based on Monte Carlo simulation of both isotactic and syndiotactic single PS molecule to capture stereochemistry, we obtained intramolecular interactions from a single molecular dynamics simulation of an all-atom atactic PS melts. The non-bonded interactions are obtained using the iterative Boltzmann inversion (IBI) scheme. This methodology has been extended to coarse graining of poly-(t-butyl-styrene) (PtBS). An additional coarse-grained bead is used to describe the t-butyl group. Similar to the process for PS, the intramolecular interactions are obtained from a single all atom atactic melt simulation. Starting from the non-bonded interactions for PS, we show that the IBI method for the non-bonded interactions of PtBS converges relatively fast. A generalized scheme for substituted PS is currently in development. We would like to acknowledge Prof. Kurt Kremer for helpful discussions during this work.

  2. Indentation deformation and fracture of thin polystyrene films

    International Nuclear Information System (INIS)

    Li Min; Palacio, Manuel L.; Barry Carter, C.; Gerberich, William W.

    2002-01-01

    Nanoindentation-induced deformation and fracture of thin polystyrene (PS) films on glass substrates were characterized using visible-light microscopy and atomic force microscopy (AFM). Two film thicknesses, 2 and 3.5 μm were studied. It was difficult to induce delamination in the 2-μm film while the 3.5-μm film delaminated easily under indentation loads of 150 mN and higher. AFM cross-section analysis of the deformation and fracture geometry revealed that the ratio of the delamination radius to contact radius was between 3 and 4. Analysis of the fracture surface on the glass side indicates that substrate cracking acts as a trigger for initiation and propagation of interfacial cracks. Crack-arrest marks and process-zone marks were also observed by AFM imaging. The interfacial fracture toughness, or practical work of adhesion, was evaluated following two methods based on the indentation-induced delamination and a process-zone analysis. The fracture toughness was found to be approximately 0.6 J/m 2 for the 3.5-μm PS film on glass. AFM examination of the glass surface after indentation also showed fine flow lines around the indentation impression, indicating plastic deformation of glass

  3. Indentation deformation and fracture of thin polystyrene films

    Energy Technology Data Exchange (ETDEWEB)

    Li Min; Palacio, Manuel L.; Barry Carter, C.; Gerberich, William W

    2002-09-02

    Nanoindentation-induced deformation and fracture of thin polystyrene (PS) films on glass substrates were characterized using visible-light microscopy and atomic force microscopy (AFM). Two film thicknesses, 2 and 3.5 {mu}m were studied. It was difficult to induce delamination in the 2-{mu}m film while the 3.5-{mu}m film delaminated easily under indentation loads of 150 mN and higher. AFM cross-section analysis of the deformation and fracture geometry revealed that the ratio of the delamination radius to contact radius was between 3 and 4. Analysis of the fracture surface on the glass side indicates that substrate cracking acts as a trigger for initiation and propagation of interfacial cracks. Crack-arrest marks and process-zone marks were also observed by AFM imaging. The interfacial fracture toughness, or practical work of adhesion, was evaluated following two methods based on the indentation-induced delamination and a process-zone analysis. The fracture toughness was found to be approximately 0.6 J/m{sup 2} for the 3.5-{mu}m PS film on glass. AFM examination of the glass surface after indentation also showed fine flow lines around the indentation impression, indicating plastic deformation of glass.

  4. Positron states in polypropylene and polystyrene at low temperature

    International Nuclear Information System (INIS)

    Djourelov, N.; Dauwe, C.; Palacio, C.A.; Laforest, N.; Bas, C.

    2007-01-01

    The increase of the positronium (Ps) yield as a function of the positron (e + ) source exposure time at 20 K was monitored in polypropylene and polystyrene by positron annihilation lifetime (PAL) and Doppler broadening (DB) spectroscopy. The contributions of the different e + and Ps states as extracted from the PAL analysis were used to reproduce the behaviour of the sharpness parameter (S) as a function of the wing parameter (W) of the annihilation line as measured by DB spectroscopy. We find a remarkable non-linearity in the S -W plots, which seems to be related to the existence of a third component (C 3 ) in a four-component exponential analysis. We discuss the origin of C 3 in the frame of a ''blob'' analysis of the PAL spectra. It is shown that the simulated S-W dependence can satisfactorily fit the observed non-linearity only on the assumption that C 3 characterizes a e + -molecule complex. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Radioluminescence of aromatic molecule solutions in atactic and isotactic polystyrene

    International Nuclear Information System (INIS)

    Lisovskaya, I.A.; Alfimov, M.V.; Milinchuk, V.K.; Skvortsov, V.G.

    1975-01-01

    The generation of excited states of naphthalene-d 8 and carbazole molecules in polystyrene (PS) under X-ray illumination was investigated using luminescence method. A comparison of the concentration dependences of radioluminescence of the aromatic additives to solid PS and to toluene as well as the pattern of concentration versus photoluminescence of naphthalene-d 8 in PS demonstrates that unlike toluene there is no singlet-triplet conversion in PS owing to the formation of excimers. It is shown that the excited ststes of the aromatic additives in PS are populated under radiolysis via an energy transfer from singlet to triplet molecules of the matrix. Under the radiolysis the excited states of PS molecules may generate upon charge recombination. A comparison of radio luminescence spectra of the corresponding aromatic additives in two isomeric PS structures (atacting and isotactic) shows different processes with charge participation. The difference detected in the radioluminescence spectra of aromatic additives in the atactic and isotactic PS explained by the greater number of defects in atactic PS competing with the polymer molecule ion for charge capture

  6. The preparation of 125I labelled sodium polystyrene sulphonate

    International Nuclear Information System (INIS)

    Harrison, I.; Higgo, J.J.W.; Williams, G.M.

    1992-01-01

    A radio-labelled polymeric colloid for use in field studies of colloidal migration was prepared. Sodium polystyrene p-sulphonate (PSSNa) with an average molecular weight of 500,000 Daltons was labelled with iodine 125. The report describes the preparation, purification and characterisation of this material. In order to use a standard technique for radio-iodination, by the iodinium ion, a very small number of phenolic groups had to be introduced into the polymer initially. This was done by a carefully controlled reaction with sodium hydroxide optimised so that a qualitative test for p-phenols gave a discernible positive result yet size exclusion chromatography indicated that no noticeable change in bulk properties of the PSSNa had occurred. The modified PSSNa was radio-iodinated and size exclusion chromatography was used to quantify the yield, activity and stability of the product. The radio-iodination of a bulk sample of the modified PSSNa was entrusted to Amersham who prepared a labelled product with an activity of 1.12 MBq per mg PSSNa. The mobility of this material was studied in the laboratory using spike injections onto columns of Drigg sand, sieved and unsieved, eluted with Drigg groundwater. The results indicated that transport of PSSNa in the field should give information on the structure of flow paths in the Drigg aquifer. (Author)

  7. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  8. The Evolution of Polystyrene as a Cell Culture Material.

    Science.gov (United States)

    Lerman, Max J; Lembong, Josephine; Muramoto, Shin; Gillen, Greg; Fisher, John P

    2018-04-10

    Polystyrene (PS) has brought in vitro cell culture from its humble beginnings to the modern era, propelling dozens of research fields along the way. This review discusses the development of the material, fabrication, and treatment approaches to create the culture material. However, native PS surfaces poorly facilitate cell adhesion and growthin vitro. To overcome this, liquid surface deposition, energetic plasma activation, and emerging functionalization methods transform the surface chemistry. This review seeks to highlight the many potential applications of the first widely accepted polymer growth surface. Although the majority of in vitro research occurs on 2D surfaces, the importance of 3D culture models cannot be overlooked. Here the methods to transition PS to specialized 3D culture surfaces are also reviewed. Specifically, casting, electrospinning, 3D printing, and microcarrier approaches to shift PS to a 3D culture surface are highlighted. The breadth of applications of the material makes it impossible to highlight every use, but the aim remains to demonstrate the versatility and potential as both a general and custom cell culture surface. The review concludes with emerging scaffolding approaches and, based on the findings, presents our insights on the future steps for PS as a tissue culture platform.

  9. Nanocomposite of polystyrene foil grafted with metallaboranes for antimicrobial activity

    Science.gov (United States)

    Benkocká, Monika; Kolářová, Kateřina; Matoušek, Jindřich; Semerádtová, Alena; Šícha, Václav; Kolská, Zdeňka

    2018-05-01

    The surface of polystyrene foil (PS) was chemically modified. Firstly, the surface was pre-treated with Piranha solution. The activated surface was grafted by selected amino-compounds (cysteamine, ethylenediamine or chitosan) and/or subsequently grafted with five members of inorganic metallaboranes. Selected surface properties were studied by using various methods in order to indicate significant changes before and after individual modification steps of polymer foil. Elemental composition of surface was conducted by using X-ray photoelectron spectroscopy, chemistry and polarity by infrared spectroscopy and by electrokinetic analysis, wettability by goniometry, surface morphology by atomic force microscopy. Antimicrobial tests were performed on individual samples in order to confirm antimicrobial impact. Our results show slight antibacterial activity of PS modified with SK5 for Escherichia coli in comparison with the rest of the tested borane. On the other hand molecules of all tested metallaboranes could easier pierce through bacterial cell of Staphylococcus epidermidis due to absence of outer membrane (phospholipid bilayer). Some borane grafted on PS surface embodies the strong activity for Staphylococcus epidermidis and also for Desmodesmus quadricauda growth inhibition.

  10. Femtosecond laser-induced surface wettability modification of polystyrene surface

    Science.gov (United States)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  11. Synthesis and characterization of polystyrene-starch polyblend

    International Nuclear Information System (INIS)

    Tetty Kemala; M Syaeful Fahmi; Suminar S Achmadi

    2010-01-01

    Polystyrene foam (PS) is a polymer that is widely used but not biodegradable. Therefore, PS-starch polyblend was developed. In this research the effect of glycerol as plasticizer was evaluated based on mechanical and thermal analyses. PS-starch polyblends were produced by mixing PS and starch solution with composition ratios of 60:40, 65:35, 70:30, 75:25, and 80:20 percent by weight. Polylactic acid (20 %) was added as compatibilizer. The polyblends were analyzed its tensile strength, thermal properties, and density. The PS-starch polyblends were white opaque in color and fragile. The properties of tensile strength and density of the polyblends were in the range of that of pure PS. The tensile strength and density increases as PS constituents increasing with the best composition ratio of 80 PS to 20 of starch. Peak of glass transition and melting point seen a single on composition ration 80 PS to 20 of starch. Additional amount of glycerol did not affect the thermal property, but has caused a slight decrease in tensile strength and density. (author)

  12. Host polymer influence on dilute polystyrene segmental dynamics

    Science.gov (United States)

    Lutz, T. R.

    2005-03-01

    We have utilized deuterium NMR to investigate the segmental dynamics of dilute (2%) d3-polystyrene (PS) chains in miscible polymer blends with polybutadiene, poly(vinyl ethylene), polyisoprene, poly(vinyl methylether) and poly(methyl methacrylate). In the dilute limit, we find qualitative differences depending upon whether the host polymer has dynamics that are faster or slower than that of pure PS. In blends where PS is the fast (low Tg) component, segmental dynamics are slowed upon blending and can be fit by the Lodge-McLeish model. When PS is the slow (high Tg) component, PS segmental dynamics speed up upon blending, but cannot be fit by the Lodge-McLeish model unless a temperature dependent self-concentration is employed. These results are qualitatively consistent with a recent suggestion by Kant, Kumar and Colby (Macromolecules, 2003, 10087), based upon data at higher concentrations. Furthermore, as the slow component, we find the segmental dynamics of PS has a temperature dependence similar to that of its host. This suggests viewing the high Tg component dynamics in a miscible blend as similar to a polymer in a low molecular weight solvent.

  13. The use of microbead-based spoligotyping for Mycobacterium tuberculosis complex to evaluate the quality of the conventional method: Providing guidelines for Quality Assurance when working on membranes

    Directory of Open Access Journals (Sweden)

    Garzelli Carlo

    2011-04-01

    Full Text Available Abstract Background The classical spoligotyping technique, relying on membrane reverse line-blot hybridization of the spacers of the Mycobacterium tuberculosis CRISPR locus, is used world-wide (598 references in Pubmed on April 8th, 2011. However, until now no inter-laboratory quality control study had been undertaken to validate this technique. We analyzed the quality of membrane-based spoligotyping by comparing it to the recently introduced and highly robust microbead-based spoligotyping. Nine hundred and twenty-seven isolates were analyzed totaling 39,861 data points. Samples were received from 11 international laboratories with a worldwide distribution. Methods The high-throughput microbead-based Spoligotyping was performed on CTAB and thermolyzate DNA extracted from isolated Mycobacterium tuberculosis complex (MTC strains coming from the genotyping participating centers. Information regarding how the classical Spoligotyping method was performed by center was available. Genotype discriminatory analyses were carried out by comparing the spoligotypes obtained by both methods. The non parametric U-Mann Whitney homogeneity test and the Spearman rank correlation test were performed to validate the observed results. Results Seven out of the 11 laboratories (63 %, perfectly typed more than 90% of isolates, 3 scored between 80-90% and a single center was under 80% reaching 51% concordance only. However, this was mainly due to discordance in a single spacer, likely having a non-functional probe on the membrane used. The centers using thermolyzate DNA performed as well as centers using the more extended CTAB extraction procedure. Few centers shared the same problematic spacers and these problematic spacers were scattered over the whole CRISPR locus (Mostly spacers 15, 14, 18, 37, 39, 40. Conclusions We confirm that classical spoligotyping is a robust method with generally a high reliability in most centers. The applied DNA extraction procedure (CTAB

  14. Radioinduced grafting of acrylic acid on expanded polystyrene matrices

    International Nuclear Information System (INIS)

    Postolache, C.; Simion, Corina; Dragomir, A.; Ponta, C.; Chirvasoiu, G.; Postolache, Carmen

    1998-01-01

    The unfixed surface radioactive contamination for low energy β radionuclides ( 3 H and 14 C) is determined by wiping the checked surfaces with sponge of absorbent materials. The activity built up by this sponge is measured by a liquid scintillator spectrometer. In this work, a method of obtaining sponges of expanded polystyrene with hydrophobic surface by radioinduced grafting of the acrylic acid is presented. These sponges have diameters of 28 mm, thicknesses of 1.5 - 2 mm and density of 22 mg/cm 3 . The samples were immersed in a grafting solution with the following composition: acrylic acid 30%, Cu SO 4 1%; water 69% which were deeply impregnated in repeated operations under vacuum and pressure conditions, respectively. Finally, the samples were exposed to γ radiation emitted by a 60 Co source (IETI 10 000 - IFIN-HH). The dose rates were 0.3, 0.5 and 1 Mrad/h. The range of the absorbed doses was 1 - 25 Mrad. The yields of radiochemical grafting have been determined by gravimetric, spectrophotometric and radiometric methods. The grafting agent used was 3 H labelled acrylic acid. The solvation capacity and the quenching characteristics of the grafted sponges in liquid scintillators, as well as the sampling yields have been analyzed as function of irradiation procedure and the percentage of grafted acrylic fragments. The superficial grafting of the acrylic acid has been carried out by the mentioned technique, leading to the increase of the wiping efficiency of the unfixed surface contaminating activity, without changes of polymer solubility in liquid scintillators and without the perturbation of the radioactivity detection process. (authors)

  15. The entry of free radicals into polystyrene latex particles

    International Nuclear Information System (INIS)

    Adams, M.E.; Trau, M.; Gilbert, R.C.; Napper, D.R.

    1988-01-01

    Mechanistic understanding of the processes governing the kinetics of emulsion polymerization has both scientific and technical interest. One component of this process that is poorly understood at present is that of free radical entry into latex particles. Measurements were made of the entry rate coefficient as a function of temperature for free radicals entering polystyrene latex particles in seeded emulsion polymerizations initiated by γ-rays. The activation energy for entry was found to be less than 24 ± 3 kJ mol -1 , consistent with entry being controlled by a physical (e.g. diffusional) rather than a chemical process. Measurement of the entry rate coefficient as a function of the γ-ray dose rate suggested that the factors that determine the entry rate when the primary free radicals are uncharged are similar to those that determine the entry rate for charged free radicals derived from chemical initiation by peroxydisulfate. This result was consistent with measurements of the entry rate coefficient of charged free radicals derived from peroxydisulfate; these data were found to be virtually independent of both the extent of the latex surface coverage by the anionic surfactant sodium dodecyl sulfate and the ionic strength of the continuous phase. The data refute several proposals given in the literature for the rate-determining step for entry, being inconsistent with control by collision of free radicals with the latex particles, surfactant desorption, and an electrostatic barrier arising from the colloidal nature of the entering free radical. The origin of the activation energy for entry remains obscure

  16. Oyster reproduction is affected by exposure to polystyrene microplastics

    Science.gov (United States)

    Sussarellu, Rossana; Suquet, Marc; Thomas, Yoann; Lambert, Christophe; Fabioux, Caroline; Pernet, Marie Eve Julie; Le Goïc, Nelly; Quillien, Virgile; Mingant, Christian; Epelboin, Yanouk; Corporeau, Charlotte; Guyomarch, Julien; Robbens, Johan; Paul-Pont, Ika; Soudant, Philippe; Huvet, Arnaud

    2016-01-01

    Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 µm in diameter; 0.023 mg·L−1) for 2 mo during a reproductive cycle. Effects were investigated on ecophysiological parameters; cellular, transcriptomic, and proteomic responses; fecundity; and offspring development. Oysters preferentially ingested the 6-µm micro-PS over the 2-µm-diameter particles. Consumption of microalgae and absorption efficiency were significantly higher in exposed oysters, suggesting compensatory and physical effects on both digestive parameters. After 2 mo, exposed oysters had significant decreases in oocyte number (−38%), diameter (−5%), and sperm velocity (−23%). The D-larval yield and larval development of offspring derived from exposed parents decreased by 41% and 18%, respectively, compared with control offspring. Dynamic energy budget modeling, supported by transcriptomic profiles, suggested a significant shift of energy allocation from reproduction to structural growth, and elevated maintenance costs in exposed oysters, which is thought to be caused by interference with energy uptake. Molecular signatures of endocrine disruption were also revealed, but no endocrine disruptors were found in the biological samples. This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring. PMID:26831072

  17. Oyster reproduction is affected by exposure to polystyrene microplastics.

    Science.gov (United States)

    Sussarellu, Rossana; Suquet, Marc; Thomas, Yoann; Lambert, Christophe; Fabioux, Caroline; Pernet, Marie Eve Julie; Le Goïc, Nelly; Quillien, Virgile; Mingant, Christian; Epelboin, Yanouk; Corporeau, Charlotte; Guyomarch, Julien; Robbens, Johan; Paul-Pont, Ika; Soudant, Philippe; Huvet, Arnaud

    2016-03-01

    Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 µm in diameter; 0.023 mg·L(-1)) for 2 mo during a reproductive cycle. Effects were investigated on ecophysiological parameters; cellular, transcriptomic, and proteomic responses; fecundity; and offspring development. Oysters preferentially ingested the 6-µm micro-PS over the 2-µm-diameter particles. Consumption of microalgae and absorption efficiency were significantly higher in exposed oysters, suggesting compensatory and physical effects on both digestive parameters. After 2 mo, exposed oysters had significant decreases in oocyte number (-38%), diameter (-5%), and sperm velocity (-23%). The D-larval yield and larval development of offspring derived from exposed parents decreased by 41% and 18%, respectively, compared with control offspring. Dynamic energy budget modeling, supported by transcriptomic profiles, suggested a significant shift of energy allocation from reproduction to structural growth, and elevated maintenance costs in exposed oysters, which is thought to be caused by interference with energy uptake. Molecular signatures of endocrine disruption were also revealed, but no endocrine disruptors were found in the biological samples. This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring.

  18. Microbead agglutination based assays

    KAUST Repository

    Castro, David; Foulds, Ian G.; Kodzius, Rimantas

    2013-01-01

    A method for detecting the presence of an analyte in a sample can include adding a plurality of microparticles of a first-type to the sample, where each microparticle of the first-type includes a first binding partner configured to interact with at least a first portion of the analyte, adding a plurality of microparticles of a second-type to the sample, where each microparticle of the second-type includes a second binding partner configured to interact with at least a second portion of the analyte, the first portion of the analyte being different from the second portion of the analyte, and identifying an aggregate including at least one microparticle of the first-type, at least one microparticle of the second-type and the analyte, where the aggregate indicates the presence of the analyte.

  19. Microbead agglutination based assays

    KAUST Repository

    Castro, David

    2013-11-28

    A method for detecting the presence of an analyte in a sample can include adding a plurality of microparticles of a first-type to the sample, where each microparticle of the first-type includes a first binding partner configured to interact with at least a first portion of the analyte, adding a plurality of microparticles of a second-type to the sample, where each microparticle of the second-type includes a second binding partner configured to interact with at least a second portion of the analyte, the first portion of the analyte being different from the second portion of the analyte, and identifying an aggregate including at least one microparticle of the first-type, at least one microparticle of the second-type and the analyte, where the aggregate indicates the presence of the analyte.

  20. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    Science.gov (United States)

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (pentacene thin film transistor (μ: ~2 cm(2)/(V s), on/off ratio, >1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  1. Rapid and sensitive suspension array for multiplex detection of organophosphorus pesticides and carbamate pesticides based on silica–hydrogel hybrid microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuan [Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu (China); Mu, Zhongde; Shangguan, Fengqi [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu (China); Liu, Ran; Pu, Yuepu [Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu (China); Yin, Lihong, E-mail: lhyin@seu.edu.cn [Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu (China)

    2014-05-01

    Highlights: • Silica–hydrogel hybrid microbeads were used to develop suspension array. • The results in detecting pesticides agree well with those from LC–MS/MS. • The method showed the good capability for multiplex analysis of pesticides residues. - Abstract: A technique for multiplex detection of organophosphorus pesticides and carbamate pesticides has been developed using a suspension array based on silica–hydrogel hybrid microbeads (SHHMs). The main advantage of SHHMs, which consist of both silica and hydrogel materials, is that they not only could be distinguished by their characteristic reflection peak originating from the stop-band of the photonic crystal but also have low non-specific adsorption of proteins. Using fluorescent immunoassay, the LODs for fenitrothion, chlorpyrifos-methyl, fenthion, carbaryl and metolcarb were measured to be 0.02 ng/mL, 0.012 ng/mL, 0.04 ng/mL, 0.05 ng/mL and 0.1 ng/mL, respectively, all of which are much lower than the maximum residue limits, as reported in the European Union pesticides database. All the determination coefficients for these five pesticides were greater than 0.99, demonstrating excellent correlations. The suspension array was specific and had no significant cross-reactivity with other chemicals. The results for the detection of pesticide residues collected from agricultural samples using this method agree well with those from liquid chromatography–tandem mass spectrometry. Our results showed that this simple method is suitable for simultaneous detection of these five pesticides residues in fruits and vegetables.

  2. Rapid and sensitive suspension array for multiplex detection of organophosphorus pesticides and carbamate pesticides based on silica–hydrogel hybrid microbeads

    International Nuclear Information System (INIS)

    Wang, Xuan; Mu, Zhongde; Shangguan, Fengqi; Liu, Ran; Pu, Yuepu; Yin, Lihong

    2014-01-01

    Highlights: • Silica–hydrogel hybrid microbeads were used to develop suspension array. • The results in detecting pesticides agree well with those from LC–MS/MS. • The method showed the good capability for multiplex analysis of pesticides residues. - Abstract: A technique for multiplex detection of organophosphorus pesticides and carbamate pesticides has been developed using a suspension array based on silica–hydrogel hybrid microbeads (SHHMs). The main advantage of SHHMs, which consist of both silica and hydrogel materials, is that they not only could be distinguished by their characteristic reflection peak originating from the stop-band of the photonic crystal but also have low non-specific adsorption of proteins. Using fluorescent immunoassay, the LODs for fenitrothion, chlorpyrifos-methyl, fenthion, carbaryl and metolcarb were measured to be 0.02 ng/mL, 0.012 ng/mL, 0.04 ng/mL, 0.05 ng/mL and 0.1 ng/mL, respectively, all of which are much lower than the maximum residue limits, as reported in the European Union pesticides database. All the determination coefficients for these five pesticides were greater than 0.99, demonstrating excellent correlations. The suspension array was specific and had no significant cross-reactivity with other chemicals. The results for the detection of pesticide residues collected from agricultural samples using this method agree well with those from liquid chromatography–tandem mass spectrometry. Our results showed that this simple method is suitable for simultaneous detection of these five pesticides residues in fruits and vegetables

  3. Effect of salivary secretory IgA on the adhesion of Candida albicans to polystyrene.

    Science.gov (United States)

    San Millán, R; Elguezabal, N; Regúlez, P; Moragues, M D; Quindós, G; Pontón, J

    2000-09-01

    Attachment of Candida albicans to plastic materials of dental prostheses or to salivary macromolecules adsorbed on their surface is believed to be a critical event in the development of denture stomatitis. In an earlier study, it was shown that adhesion of C. albicans to polystyrene, a model system to study the adhesion of C. albicans to plastic materials, can be partially inhibited with an mAb directed against cell wall polysaccharides of C. albicans. In the present study, the role of whole saliva in the adhesion of C. albicans to polystyrene has been investigated, and three mAbs directed against epitopes of cell wall mannoproteins have been used to mimic the inhibitory effect observed with salivary secretory IgA (sIgA) on the adhesion of C. albicans to polystyrene. In the absence of whole saliva, adherence of C. albicans 3153 increased with germination. However, the presence of whole saliva enhanced the adhesion to polystyrene of C. albicans 3153 yeast cells but decreased the adhesion of germinated cells. The enhancement of adhesion of yeast cells to polystyrene mediated by saliva was confirmed with an agerminative mutant of C. albicans 3153. The inhibition of the adhesion of C. albicans 3153 germ tubes to polystyrene was due to the salivary sIgA since sIgA-depleted saliva enhanced the adhesion of C. albicans 3153 to polystyrene. The inhibitory effect mediated by sIgA was not related to the inhibition of germination but to the blockage of adhesins expressed on the cell wall surface of the germ tubes. The three mAbs studied reduced the adhesion of C. albicans 3153 to polystyrene at levels equivalent to those for purified sIgA. The highest reduction in the adhesion was obtained with the IgA mAb N3B. The best results were obtained when the three mAbs were combined. The results suggest that whole saliva plays a different role in the adhesion of C. albicans to polystyrene depending on the morphological phase of C. albicans. These results may give new insights into the

  4. Estimation of free volumes of polystyrene by positron annihilation life-time technique

    International Nuclear Information System (INIS)

    Li, Hong-Ling; Ujihira, Yusuke; Nanasawa, Atsushi.

    1996-01-01

    Differences of size, content, and size distribution of free volumes in linear and three-armed polystyrenes, synthesized by radical, and anionic processes, were observed by positron annihilation lifetime measurements. For the polystyrene samples of different architectures and molecular weight distributions, the temperature dependence of an average free volume radius was quite similar to each other. The radius increased with increasing temperature (T), from 0.27 nm (60 K) to 0.30 nm (glass transition temperature: T g = 363 K), then to 0.35 nm (423 K), showing αβ transition temperature about 300 K. With increasing T, the free volume content decreased from 35% (60 K) to 25% (260 K) for radically polymerized linear polystyrene and to 22% (320 K) for anionically polymerized three-armed polystyrene, and then turned to increase to 35% at 350 K and 400 K, respectively. In contrast, the content for anionically polymerized linear polystyrene decreased from 45% (60 K) to 33% (300 K) and turned to increase to 35% at 350-400 K. The free volume content decreased reciprocally with an increase in the molecular weight at 333 K, suggesting differences in molecular motion between the edge and middle portions of the chain molecule. (author)

  5. Effect of Surface Modification of Nanosilica on the Viscoelastic Properties of Its Polystyrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Mortezaei

    2008-12-01

    Full Text Available The preparation and characterization of the vinyltriethoxysilane-modified silica nanoparticles were investigated. Also the surface tension of polystyrene, native (hydrophilic silica and silane-modified (hydrophobic silica were determined. Two kinds of polystyrene/silica (treated and non-treated nanocomposites were prepared with different filler loadings by solution method. Their viscoelastic properties were studied by dynamic stress controlled rotary shear rheometer. Solid-like response of polystyrene/native silica nanocomposites were observed in the terminal zone. Solid inclusionsincrease the storage modulus more than the loss modulus, hence decrease the material damping. By increasing filler volume fraction, the particles tend to agglomerate and build clusters. The presence of clusters increases the viscosity, the moduli and the viscoelastic non-linearity of the composites.Treating the filler surface reduces its tendency to agglomerate as well as the adhesion between the particles and the polystyrene, leading to lower viscosity and interfacial slippage. Also the loss modulus peak is affected significantly by the particle surface area and its surface property in silica-filled polystyrene, which corresponds to its glass transition.

  6. Trichomonas vaginalis clinical isolates: cytoadherence and adherence to polystyrene, intrauterine device, and vaginal ring.

    Science.gov (United States)

    Dos Santos, Odelta; Rigo, Graziela Vargas; Macedo, Alexandre José; Tasca, Tiana

    2017-12-01

    The parasitism by Trichomonas vaginalis is complex and in part is mediated by cytoadherence accomplished via five surface proteins named adhesins and a glycoconjugate called lipophosphoglycan (TvLPG). In this study, we evaluated the ability of T. vaginalis isolates to adhere to cells, plastic (polystyrene microplates), intrauterine device (IUD), and vaginal ring. Of 32 T. vaginalis isolates, 4 (12.5%) were strong adherent. The T. vaginalis isolates TV-LACM6 and TV-LACM14 (strong polystyrene-adherent) were also able to adhere to IUD and vaginal ring. Following chemical treatments, results demonstrated that the T. vaginalis components, lipophosphoglycan, cytoskeletal proteins, and surface molecules, were involved in both adherence to polystyrene and cytoadherence. The gene expression level from four adhesion proteins was highest in trophozoites adhered to cells than trophozoites adhered to the abiotic surface (polystyrene microplate). Our data indicate the major involvement of TvLPG in adherence to polystyrene, and that adhesins are important for cytoadherence. Furthermore, to our knowledge, this is the first report showing the T. vaginalis adherence to contraceptive devices, reaffirming its importance as pathogen among women in reproductive age.

  7. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions.

    Science.gov (United States)

    Lu, Songhua; Zhu, Kairuo; Song, Wencheng; Song, Gang; Chen, Diyun; Hayat, Tasawar; Alharbi, Njud S; Chen, Changlun; Sun, Yubing

    2018-07-15

    The discharge of microplastics into aquatic environment poses the potential threat to the hydrocoles and human health. The fate and transport of microplastics in aqueous solutions are significantly influenced by water chemistry. In this study, the effect of water chemistry (i.e., pH, foreign salts and humic acid) on the surface charge and aggregation of polystyrene microsphere in aqueous solutions was conducted by batch, zeta potentials, hydrodynamic diameters, FT-IR and XPS analysis. Compared to Na + and K + , the lower negative zeta potentials and larger hydrodynamic diameters of polystyrene microspheres after introduction of Mg 2+ were observed within a wide range of pH (2.0-11.0) and ionic strength (IS, 0.01-500mmol/L). No effect of Cl - , HCO 3 - and SO 4 2- on the zeta potentials and hydrodynamic diameters of polystyrene microspheres was observed at low IS concentrations (10mmol/L). The zeta potentials of polystyrene microspheres after HA addition were decreased at pH2.0-11.0, whereas the lower hydrodynamic diameters were observed at pH<4.0. According to FT-IR and XPS analysis, the change in surface properties of polystyrene microspheres after addition of hydrated Mg 2+ and HA was attributed to surface electrostatic and/or steric repulsions. These investigations are crucial for understanding the effect of water chemistry on colloidal stability of microplastics in aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Chondrocyte behavior on nanostructured micropillar polypropylene and polystyrene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Prittinen, Juha [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Jiang, Yu [Department of Chemistry, University of Eastern Finland, Joensuu (Finland); Ylärinne, Janne H. [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Pakkanen, Tapani A. [Department of Chemistry, University of Eastern Finland, Joensuu (Finland); Lammi, Mikko J., E-mail: mikko.lammi@uef.fi [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Qu, Chengjuan [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland)

    2014-10-01

    This study was aimed to investigate whether patterned polypropylene (PP) or polystyrene (PS) could enhance the chondrocytes' extracellular matrix (ECM) production and phenotype maintenance. Bovine primary chondrocytes were cultured on smooth PP and PS, as well as on nanostructured micropillar PP (patterned PP) and PS (patterned PS) for 2 weeks. Subsequently, the samples were collected for fluorescein diacetate-based cell viability tests, for immunocytochemical assays of types I and II collagen, actin and vinculin, for scanning electronic microscopic analysis of cell morphology and distribution, and for gene expression assays of Sox9, aggrecan, procollagen α{sub 1}(II), procollagen α{sub 1}(X), and procollagen α{sub 2}(I) using quantitative RT-PCR assays. After two weeks of culture, the bovine primary chondrocytes had attached on both patterned PP and PS, while practically no adhesion was observed on smooth PP. However, the best adhesion of the cells was on smooth PS. The cells, which attached on patterned PP and PS surfaces synthesized types I and II collagen. The chondrocytes' morphology was extended, and an abundant ECM network formed around the attached chondrocytes on both patterned PP and PS. Upon passaging, no significant differences on the chondrocyte-specific gene expression were observed, although the highest expression level of aggrecan was observed on the patterned PS in passage 1 chondrocytes, and the expression level of procollagen α{sub 1}(II) appeared to decrease in passaged chondrocytes. However, the expressions of procollagen α{sub 2}(I) were increased in all passaged cell cultures. In conclusion, the bovine primary chondrocytes could be grown on patterned PS and PP surfaces, and they produced extracellular matrix network around the adhered cells. However, neither the patterned PS nor PP could prevent the dedifferentiation of chondrocytes. - Highlights: • Methods to avoid chondrocyte dedifferentiation would be useful for cartilage

  9. Application of 60Co γ-ray irradiated polystyrene microplate for anti-HCV ELISA

    International Nuclear Information System (INIS)

    Feng Bo; Zeng Hongyan; Tang Yufang; Wang Lu

    2005-01-01

    In order to explore the effect of 60 Co γ-ray irradiation on minor polypeptides absorption of polystyrene microplate, an indirect ELISA detection of anti-HCV was established, 60 Co γ-ray irradiated polystyrene microplates and the controls (without irradiation or UV-irradiated) were applied to absorb recombinant HCV antigens respectively. Cooperated with Bovine antihuman IgG labelled HRP, their related indices of sensitivity, specificity, homogeneity and stability were determinate. The results indicated that, optimum dose of the γ-ray irradiation is 8 kGy, and compared with the controls, detection sensitivity and homogeneity of the polystyrene microplate irradiated to 8 kGy could be improved markedly. (authors)

  10. Synthesis of magnetic hollow silica using polystyrene bead as a template

    International Nuclear Information System (INIS)

    Wu, W.; Caruntu, D.; Martin, A.; Yu, M.H.; O'Connor, C.J.; Zhou, W.L.; Chen, J.-F.

    2007-01-01

    In this paper, we report a new route to synthesize novel magnetic hollow silica nanospheres (MHSNs) using polystyrene particles as sacrificial templates, and TEOS and Fe 3 O 4 as precursors. TEM, EDS, XRD, and SQUID were applied to characterize MHSNs. TEM and EDS results show that the MHSNs consist of about 200 nm of hollow cores and ∼35 nm shells with ∼10 nm of Fe 3 O 4 nanoparticles embedded. The polystyrene beads were successfully removed by immersing the as-prepared silica nanocomposite in a toluene solution. XRD results demonstrate that the Fe 3 O 4 magnetic nanoparticles still keep spinel structure even heated at low temperature. The surface status of the polystyrene beads and Fe 3 O 4 nanoparticles has an important effect on the formation of the MHSNs. The MHSNs present a superparamagnetism at room temperature by SQUID measurement. The MHSNs have potential applications in biosystem and nanomedicine

  11. Surface modification and particles size distribution control in nano-CdS/polystyrene composite film

    International Nuclear Information System (INIS)

    Min Zhirong; Ming Qiuzhang; Hai Chunliang; Han Minzeng

    2003-01-01

    Preparation of nano-CdS particles with surface thiol modification by microemulsion method and their influences on the particle size distribution in highly filled polystyrene-based composites were studied. The modified nano-CdS was characterized by X-ray photoelectron spectroscopy (XPS), light absorption and emission measurements to reveal the morphologies of the surface modifier, which are consistent with the surface molecules packing calculation. The morphologies of the surface modifier exerted a great influence not only on the optical performance of the particles themselves, but also on the size distribution of the particle in polystyrene matrix. A monolayer coverage with tightly packed thiol molecules was believed to be most effective in promoting a uniform particle size distribution and eliminating the surface defects that cause radiationless recombination. Control of the particles size distribution in polystyrene can be attained by adjusting surface coverage status of the thiol molecules based on the strong interaction between the surface modifier and the matrix

  12. Facile approach in fabricating superhydrophobic ZnO/polystyrene nanocomposite coating

    Science.gov (United States)

    Qing, Yongquan; Zheng, Yansheng; Hu, Chuanbo; Wang, Yong; He, Yi; Gong, Yong; Mo, Qian

    2013-11-01

    In this paper, we report a simple and inexpensive method for fabricating modified-ZnO/polystyrene superhydrophobic surface on the cotton textiles. The surface wettability and topology of coating were characterized by contact angle measurement, Scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic CH3 and CF2 group was introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to polystyrene was 7:3, the ZnO/polystyrene composite coating contact angle was 158°, coating surface with hierarchical micro/nano structures. Furthermore, the superhydrophobic cotton texiles have a very extensive application prospect in water-oil separation.

  13. Radiosynthesis and in vitro evaluation of the polystyrene particles as a promising probe in biomedical sciences

    International Nuclear Information System (INIS)

    Chen Jianmin; Tan Mingguang; Wu Yuanfang; Zhang Guilin; Li Yan

    2005-01-01

    Polystyrene particles with precise monodisperse particle size distributions ranging from 20nm to 90μm is now commercially available and it has very useful and versatile applications in many life sciences research fields. A simple direct labeling method was used to synthesis the iodinated ultrafine polystyrene particles. The assay of X-ray photoelectron spectroscopy(XPS) as well as Fourier Transform Infrared Spectroscopy (FTIR) indicated the formation of stable covalent bond to aryl group of the polymer particles. The purified radiosynthesis product was incubated with serum of rat, and then evaluated by in vitro stability test. The result showed that radioiodinated ultrafine polystyrene particles were largely unmetablized at 2 hours post-exposure, indicating the potential useful application of this widely used polymer particles as a promising probe in biomedical and pharmaceutical sciences.

  14. Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method

    Science.gov (United States)

    Ahmadi, Shahrokh; Afzalzadeh, Reza

    2016-07-01

    This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.

  15. Site-specific fragmentation of polystyrene molecule using size-selected Ar gas cluster ion beam

    International Nuclear Information System (INIS)

    Moritani, Kousuke; Mukai, Gen; Hashinokuchi, Michihiro; Mochiji, Kozo

    2009-01-01

    The secondary ion mass spectrum (SIMS) of a polystyrene thin film was investigated using a size-selected Ar gas cluster ion beam (GCIB). The fragmentation in the SIM spectrum varied by kinetic energy per atom (E atom ); the E atom dependence of the secondary ion intensity of the fragment species of polystyrene can be essentially classified into three types based on the relationship between E atom and the dissociation energy of a specific bonding site in the molecule. These results indicate that adjusting E atom of size-selected GCIB may realize site-specific bond breaking within a molecule. (author)

  16. Synthesis and characterization of the polystyrene - asphaltene graft copolymer BY FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Leo, Adan Yovani; Salazar Ramiro

    2008-01-01

    The creation of new polymer compounds to be added to asphalt has drawn considerable attention because these substances have succeeded in modifying the asphalt rheological characteristics and physical properties for the enhancement of its behavior during the time of use. This work explains the synthesis of a new graft copolymer based on an asphalt fraction called asphaltene, modified with maleic anhydride. Polystyrene functionalization is conducted in a parallel fashion in order to obtain polybenzylamine resin with an amine - NH2 free group that reacts with the anhydride graft groups in the asphaltene, thus obtaining the new Polystyrene/Asphaltene graft copolymer

  17. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles

    DEFF Research Database (Denmark)

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders

    2015-01-01

    that enter natural ecosystems, such as oceans and lakes, is increasing, and degradation of the disposed plastics produces smaller particles toward the nano scale. Therefore, it is of utmost importance to gain knowledge about how plastic nanoparticles enter and affect living organisms. Here we have...... administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene...

  18. Measuring thermal conductivity of polystyrene nanowires using the dual-cantilever technique.

    Science.gov (United States)

    Canetta, Carlo; Guo, Samuel; Narayanaswamy, Arvind

    2014-10-01

    Thermal conductance measurements are performed on individual polystyrene nanowires using a novel measurement technique in which the wires are suspended between two bi-material microcantilever sensors. The nanowires are fabricated via electrospinning process. Thermal conductivity of the nanowire samples is found to be between 6.6 and 14.4 W m(-1) K(-1) depending on sample, a significant increase above typical bulk conductivity values for polystyrene. The high strain rates characteristic of electrospinning are believed to lead to alignment of molecular polymer chains, and hence the increase in thermal conductivity, along the axis of the nanowire.

  19. POTENTIAL USE OF GRAFT COPOLYMERS OF MERCERIZED FLAX AS FILLER IN POLYSTYRENE COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    Susheel Kalia

    2008-11-01

    Full Text Available Graft copolymerization of binary vinyl monomers onto mercerized flax fiber was carried out for the enhancement of mechanical properties of polystyrene composites. Binary vinyl monomer mixture of AA+AN has been found to show maximum grafting (33.55% onto mercerized flax. Graft copolymers thus synthesized were characterized with FT-IR spectroscopy, SEM, and TGA techniques. Mercerized flax (MF showed maximum thermal stability in comparison to graft copolymers. It has been found that polystyrene composites reinforced with graft copolymers showed improvement in mechanical properties such as wear resistance, compressive strength, and tensile strength.

  20. Thermo-mechanical characterization of a monochlorophenyl, hepta isobutyl polyhedral oligomeric silsesquioxane/polystyrene composite

    International Nuclear Information System (INIS)

    Blanco, Ignazio; Bottino, Francesco A.; Cicala, Gianluca; Cozzo, Giulia; Latteri, Alberta; Recca, Antonino

    2014-01-01

    The thermal and mechanical properties of a monochlorophenyl, hepta isobutyl Polyhedral Oligomeric Silsesquioxane/Polystyrene (ph,hib-POSS/PS) composite were studied and compared with those of pristine polymer. ph,hib-POSS/PS system was prepared by solubilization and precipitation of Polystyrene (PS) in the presence of POSS. Scanning Electron Microscopy (SEM) was performed to check the distribution of the filler in the polymer matrix. Dynamic Mechanical Analysis (DMA) was carried out to measure viscoelastic properties of solid samples. Degradations were carried out into a thermobalance and the obtained thermogravimetric (TG) and differential thermogravimetric (DTG) curves were discussed and interpreted

  1. Synchrotron X-ray scattering characterization of the molecular structures of star polystyrenes with varying numbers of arms.

    Science.gov (United States)

    Jin, Sangwoo; Higashihara, Tomoya; Jin, Kyeong Sik; Yoon, Jinhwan; Rho, Yecheol; Ahn, Byungcheol; Kim, Jehan; Hirao, Akira; Ree, Moonhor

    2010-05-20

    We have synthesized well-defined multiarmed star polystyrenes, with 6, 9, 17, 33, and 57 arms, and studied their molecular shapes and structural characteristics in a good solvent (tetrahydrofuran at 25 degrees C) and in a theta (Theta) solvent (cyclohexane at 35 degrees C) by small-angle X-ray scattering (SAXS) using a synchrotron radiation source. Analysis of the SAXS data provided a detailed characterization of the molecular shapes, including the contributions of the blob morphology of the arms, the radius of gyration, the paired distance distribution, the radial electron density distribution, and the Zimm-Stockmayer and Roovers g-factor, for the multiarmed star polystyrenes. In particular, the molecular shapes of the star polystyrenes were found to change from a fuzzy ellipsoid, for the 6-armed polystyrene, to a fuzzy sphere, for the 57-armed polystyrene, with an increasing number of arms. The ellipsoidal character of the star polystyrenes with fewer arms may originate from the extended anisotropically branched architecture at the center of the molecule. The arms of the star polystyrenes were found to be more extended than those of the linear polystyrenes. Furthermore, the degree of chain extension in the arms increased with the number of arms.

  2. A study of the effect of polystyrene sulfonation on the performance of terephthaloyl chloride-dihydroxydiphenyl sulfone copolymer/polystyrene system

    Science.gov (United States)

    Kahraman, R.; Kahn, K. A.; Ali, S. A.; Hamid, S. H.; Sahin, A. Z.

    1998-12-01

    Thermal, morphological, and mechanical properties of composites of a liquid crystalline copolymer (LCP) poly(terephthaloyl chloride)-co-(p,p’-dihydroxydiphenyl sulfone) with polystyrene (PS) and sulfonated polystyrene (SPS) are presented and discussed. Sulfonation of polystyrene was expected to improve the interfacial adhesion by introducing hydrogen bonding in the LCP/PS system. The degree of sulfonation was 11 %. The incompatibility (lack of proper interfacial adhesion) of the LCP/PS system resulted in sharp decrease in the composite tensile strength with LCP addition. The performance of the system did not change when processed at a higher temperature (270 °C instead of 225 °C). While a composite plate of 25% LCP/PS could not be fabricated, it was possible for LCP/SPS (processed at 215 °C), indicating some improvement in interfacial bonding by sulfonation. Sulfonation of PS resulted in fracture with some degree of plastic deformation for pure SPS matrix and also the LCP/SPS system with the lowest LCP content (1 wt%), whereas plastic deformation was not observed for PS used as received. The strength of the LCP/SPS system also decreased with increase in LCP content, indicating that 11% sulfonation is not sufficient to introduce significant compatibility, but it was not as dramatic as that for LCP/PS. The performance of the LCP/SPS system was not affected significantly by heat treatment at the process temperature.

  3. Determination of several trace metals in biological materials by PIXE analysis after solvent extraction and polystyrene-film collection

    International Nuclear Information System (INIS)

    Iwata, Yoshihiro; Korenaga, Tatsumi; Suzuki, Nobuo

    1991-01-01

    Traces of vanadium, manganese, iron, cobalt, nickel, copper, and zinc were quantitatively extracted with diethyldithiocarbamate (DDTC) in benzene from a digested solution of biological materials and the metal-DDTC complexes were collected into a small amount of polystyrene foam produced by lyophilization of the benzene extract after addition of polystyrene. The polystyrene foam was dissolved in benzene and spread on Mylar film. After drying, a polystyrene film containing metal-DDTC complexes was produced on Mylar film, and then the polystyrene film was peeled from the Mylar film. This film was subjected to PIXE analysis. This method was applied to NBS SRM 1572 citrus leaves and a marine macroalgal sample, and 6 trace metals were simultaneously and accurately determined. (author)

  4. Tuning the wettability of calcite cubes by varying the sizes of the polystyrene nanoparticles attached to their surfaces

    International Nuclear Information System (INIS)

    He Yongjun; Li Tanliang; Yu Xiangyang; Zhao Shiyong; Lu Jianhua; He Jia

    2007-01-01

    The wettability of calcite cubes was tuned by varying the sizes of the polystyrene nanoparticles attached to their surfaces via a dispersion polymerization. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersion spectrum (EDS) and Fourier transformation infrared spectrum (FTIR). The results showed that the hydrophobicity of the calcite cubes was enhanced with the increase of the size of the polystyrene nanoparticles attached. Using polystyrene nanoparticle-attached calcite cubes (PNACC) as emulsifiers, stable water-in-tricaprylin Pickering emulsions were produced. By gelling the water droplets of the Pickering emulsions, the hierarchical structures of polystyrene nanoparticle-attached calcite cube-armored microspheres were obtained. The polystyrene nanoparticle-attached calcite cubes were expected to have novel surface properties similar neither to traditional Pickering particles, nor to macroscopically asymmetrical Janus particles

  5. Small angle X-ray scattering study on the conformation of polystyrene in the anti-solvent process of supercritical fluids

    International Nuclear Information System (INIS)

    Liu Yi; Wang Hongli; Zhao Xin; Chen Na; Li Dan; Liu Zhimin; Han Buxing; Rong Lixia; Zhao Hui; Wang Jun; Dong Baozhong

    2003-01-01

    The conformation of polystyrene in the anti-solvent process of supercritical fluids (compressed CO 2 + polystyrene + tetrahydrofuran) is studied by synchrotron radiation X-ray small angle scattering (SAXS). Coil-to-globule transform of polystyrene chain is observed with increasing the concentration of CO 2 . It is found that polystyrene coils at the pressure lower than cloud point pressure (p c ) and changes into globule with uniform density at the pressure higher than p c

  6. Direct observation of interfacial C60 cluster formation in polystyrene-C60 nanocomposite films

    International Nuclear Information System (INIS)

    Han, Joong Tark; Lee, Geon-Woong; Kim, Sangcheol; Lee, Hae-Jeong; Douglas, Jack F; Karim, Alamgir

    2009-01-01

    Large interfacial C 60 clusters were directly imaged at the supporting film-substrate interface in physically detached polystyrene-C 60 nanocomposite films by atomic force microscopy, confirming the stabilizing mechanism previously hypothesized for thin polymer films. Additionally, we found that the C 60 additive influences basic thermodynamic film properties such as the interfacial energy and the film thermal expansion coefficient.

  7. Chain conformation change upon heating for Pauci-chain polystyrene microsphere made by microemulsion polymerization

    NARCIS (Netherlands)

    Ming, W.; Zhao, Y.Q.; Zhao, Jun; Fu, Shoukuan; Jones, F.N.

    2000-01-01

    The conformation change of pauci-chain polystyrene microsphere (micro-PS) upon heating was investigated by in-situ FTIR. For the peaks at 1492 and 1452 cm-1 due to phenyl ring semicircle stretch, there are two discontinuities in the plots of peak height versus temperature. The first discontinuity at

  8. Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use

    KAUST Repository

    Peinemann, Klaus-Viktor; Karunakaran, Madhavan

    2015-01-01

    Embodiments of the present disclosure provide for polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer nanoporous membranes, methods of making a PS-b-PEO block copolymer nanoporous membrane, methods of using PS-b-PEO block copolymer nanoporous membranes, and the like.

  9. Improved functional immobilization of llama single-domain antibody fragments to polystyrene surfaces using small peptides

    NARCIS (Netherlands)

    Harmsen, M.M.; Fijten, H.P.D.

    2012-01-01

    We studied the effect of different fusion domains on the functional immobilization of three llama single-domain antibody fragments (VHHs) after passive adsorption to polystyrene in enzyme-linked immunosorbent assays (ELISA). Three VHHs produced without any fusion domain were efficiently adsorbed to

  10. Rapid coagulation of polystyrene latex in a stopped-flow spectrophotometer

    NARCIS (Netherlands)

    Lichtenbelt, J.W.Th.; Pathmamanoharan, C.; Wiersema, P.H.

    1974-01-01

    With a stopped-flow method the rapid coagulation by electrolyte of several polystyrene latices is measured. By extrapolating back to zero time the initial process of two single particles forming a doublet is observed. We find an average rate constant ifk11 = 6.0 × 10−12 p−1 cm3 sec su−1 at 20°C,

  11. Water contentwater of determination of cationic polystyrene sulfonate resins by infrared spectrophotometry

    International Nuclear Information System (INIS)

    Noki, V.

    1987-01-01

    A method of the determination of water content in polystyrene sulfonate ion-exchange resins in the presence of alkaline earth counter-ions by I.R. spectrophotometry is proposed. This method does not hold in the case of transition metal due to the formation of coordinated complexes with water molecules.

  12. Ionomeric membranes based on partially sulfonated poly(styrene) : synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Picchioni, F.; Tricoli, V.; Carretta, N.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  13. Studying the Adhesion Force and Glass Transition of Thin Polystyrene Films by Atomic Force Microscopy

    DEFF Research Database (Denmark)

    Kang, Hua; Qian, Xiaoqin; Guan, Li

    2018-01-01

    microscopy (AFM)-based forcedistance curve to study the relaxation dynamics and the film thickness dependence of glass transition temperature (T-g) for normal thin polystyrene (PS) films supported on silicon substrate. The adhesion force (F-ad) between AFM tip and normal thin PS film surfaces...

  14. Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres.

    Science.gov (United States)

    Wu, Dazhen; Ge, Xuewu; Zhang, Zhicheng; Wang, Mozhen; Zhang, Songlin

    2004-06-22

    CdS/polystyrene nanocomposite hollow spheres with diameters between 240 and 500 nm were synthesized under ambient conditions by a novel microemulsion method in which the polymerization of styrene and the formation of CdS nanoparticles were initiated by gamma-irradiation. The product was characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), which show the walls of the hollow spheres are porous and composed of polystyrene containing homogeneously dispersed CdS nanoparticles. The quantum-confined effect of the CdS/polystyrene nanocomposite hollow spheres is confirmed by the ultraviolet-visible (UV-vis) and photoluminescent (PL) spectra. We propose that the walls of these nanocomposite hollow spheres originate from the simultaneous synthesis of polystyrene and CdS nanoparticles at the interface of microemulsion droplets. This novel method is expected to produce various inorganic/polymer nanocomposite hollow spheres with potential applications in the fields of materials science and biotechnology.

  15. Preparation of polystyrene brush film by radical chain-transfer polymerization and micromechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Chen Miao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: miaochen99@yahoo.com; An Yanqing [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Liu Jianxi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yan Fengyuan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: fyyan@lzb.ac.cn

    2008-12-30

    A radical chain-transfer polymerization technique has been applied to graft-polymerize brushes of polystyrene (PSt) on single-crystal silicon substrates. 3-Mercapto-propyltrimethoxysilane (MPTMS), as a chain-transfer agent for grafting, was immobilized on the silicon surface by a self-assembling process. The structure and morphology of the graft-functionalized silicon surfaces were characterized by the means of contact-angle measurement, ellipsometric thickness measurement, Fourier transformation infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The nanotribological and micromechanical properties of the as-prepared polymer brush films were investigated by frictional force microscopy (FFM), force-volume analysis and scratch test. The results indicate that the friction properties of the grafted polymer films can be improved significantly by the treatment of toluene, and the chemically bonded polystyrene film exhibits superior scratch resistance behavior compared with the spin-coated polystyrene film. The resultant polystyrene brush film is expected to develop as a potential lubrication coating for microelectromechanical systems (MEMS)

  16. Cathodic electrogenerated chemiluminescence of aromatic Tb(III) chelates at polystyrene-graphite composite electrodes

    International Nuclear Information System (INIS)

    Salminen, Kalle; Grönroos, Päivi; Tuomi, Sami; Kulmala, Sakari

    2017-01-01

    Tb(III) chelates exhibit intense hot electron-induced electrogenerated chemiluminescence during cathodic polarization of metal/polystyrene-graphite (M/PG) electrodes in fully aqueous solutions. The M/PG working electrode provides a sensitive means for the determination of aromatic Tb(III) chelates at nanomolar concentration levels with a linear log-log calibration curve spanning more than five orders of magnitude. The charge transport and other properties of these novel electrodes were studied by electrochemiluminescence measurements and cyclic voltammetry. The present composite electrodes can by utilized both under pulse polarization and DC polarization unlike oxide-coated metal electrodes which do not tolerate cathodic DC polarization. The present cost-effective electrodes could be utilized e.g. in immunoassays where polystyrene is extensively used as a solid phase for various bioaffinity assays by using electrochemiluminescent Tb(III) chelates or e.g. Ru(bpy) 3 2+ as labels. - Highlights: • Generation of hydrated electrons at Polystyrene-graphite electrodes. • The insulating polystyrene layer on the outer electrode surface seems necessary. • Hydrated electrons are able to produce chemiluminescence. • Strongest signal and lowest std. dev. achieved at same graphite weight fraction.

  17. Synthesis and Linear Viscoelasticity of Polystyrene Stars with a Polyketone Core

    NARCIS (Netherlands)

    Polgar, L. M.; Lentzakis, H.; Collias, D.; Snijkers, F.; Lee, S.; Chang, T.; Sakellariou, G.; Wever, D. A. Z.; Toncelli, C.; Broekhuis, A. A.; Picchioni, F.; Gotsis, A. D.; Vlassopoulos, D.

    2015-01-01

    We report on a novel synthetic route to synthesize relatively large quantities of polystyrene (PS) star polymers with targeted arm functionality and molar mass and their theological properties in the molten state. The synthetic route involves grafting styrene monomers onto a modified (aliphatic,

  18. Predicting the Solubility of 1,1-Difluoroethane in Polystyrene Using the Perturbed Soft Chain Theory

    DEFF Research Database (Denmark)

    Pretel, Eduardo; Hong, Seong-Uk

    1998-01-01

    In this study, the solubility of 1,1-difluoroethane in polystyrene was correlated and predicted using the Perturbed Soft Chain Theory (PSCT) and compared with experimental data from the literature. For correlation, a binary interaction parameter was determined by using experimental solubility data...

  19. PARTICLEBOARDS PRODUCED WITH Eucalyptus grandis W. Hill ex Maiden POLYSTYRENE AND POLYETHYLENE THEREPHTHALATE PARTICLES

    Directory of Open Access Journals (Sweden)

    Antônio da Silva Maciel

    2004-06-01

    Full Text Available This research investigated the properties of wood particleboards, containing particles of polystyrene (PS and polyethylene therephthalate (PET. Particleboards were produced with 0%, 25% or 50% of polystyrene and 100%, 75% or 50% of Eucalyptus grandis particles. Additional boards were produced with two amounts of PET/PS (5/20% or 10/40% and 75% or 50% wood particles. As binding agents three amounts (0%, 4% or 6% of urea-formaldehyde or phenol-formaldehyde adhesive and three amounts of polystyrene in toluene solution (0%, 4% or 6% were used. One-layer boards, measuring approximately 400,0 x 400,0 x 10,0 mm with density approximately equal to 0,60 g/cm3, were produced. Internal bond, modulus of rupture and elasticity, screw withdrawal, as well water absorption and thickness swelling, after 24 hours of immersion were determined. All mechanical boards’ properties were superior to the established by ANSI/A 208.1-1993 standards. All wood/plastic particleboards absorbed more water then those observed in commercial boards. However the observed thickness swelling was quite similar to the values of commercial wood particleboards. Boards in which the solution of polystyrene was applied were, in general, presented the best values for all properties.

  20. Rheological Behavior of Entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) Copolymer (Postprint)

    National Research Council Canada - National Science Library

    Wu, Jian; Mather, Patrick T; Haddad, Timothy S; Kim, Gyeong-Man

    2006-01-01

    ...: random copolymers of polystyrene (PS) and styryl-based polyhedral oligosilsesquioxane (POSS), R7(Si8O12)(C6H4CH=CH2), with R = isobutyl (iBu). A series of styrene-styryl POSS random copolymers with 0, 6, 15, 30, 50 wt...

  1. (Quasi-) 2D Aggregation of Polystyrene-b-Dextran at the Air-Water Interface

    NARCIS (Netherlands)

    Bosker, Wouter T. E.; Stuart, Martien A. Cohen; Norde, Willem

    2013-01-01

    Polystyrene-b-dextran (PS-b-Dextran) copolymers can be used to prepare dextran brushes at solid surfaces, applying Langmuir Blodgett deposition. When recording the interfacial pressure versus area isotherms of a PS-b-Dextran monolayer, time-dependent hysteresis was observed upon compression and

  2. Surface-enhanced Raman spectroscopy substrate based on Ag-coated self-assembled polystyrene spheres

    Science.gov (United States)

    Mikac, Lara; Ivanda, Mile; Gotić, Marijan; Janicki, Vesna; Zorc, Hrvoje; Janči, Tibor; Vidaček, Sanja

    2017-10-01

    The silver (Ag) films were deposited on the monodispersed polystyrene spheres that were drop-coated on hydrophilic glass substrates in order to form a self-assembled 2D monolayer. Thus prepared Ag films over polystyrene nanospheres (AgFONs) were used to record the surface-enhanced Raman scattering (SERS) spectra of rhodamine 6G (R6G) and pyridine (λex = 514.5 nm). AgFONs were prepared by depositing 120, 180 and 240 nm thick Ag layer on the 1000 nm polystyrene spheres and 80, 120, 160 and 200 nm thick Ag layer on the 350 nm spheres as well as on their mixture (350 + 1000 nm). The silver was deposited by electron beam evaporation technique. The best enhancement of the Raman signal for both test molecules was obtained using 180 nm Ag film deposited on the 1000 nm spheres and using 80 nm Ag film deposited on the 350 nm polystyrene spheres. The lowest detectable concentrations of R6G and pyridine were 10-9 mol L-1 and 1.2 × 10-3 mol L-1, respectively. This study has shown that AgFONs could be regarded as good and reproducible SERS substrate for analytical detection of various organic molecules.

  3. submitter Preparation and luminescence properties of ZnO:Ga – polystyrene composite scintillator

    CERN Document Server

    Burešová, Hana; Turtos, Rosana Martinez; Jarý, Vítězslav; Mihóková, Eva; Beitlerová, Alena; Pjatkan, Radek; Gundacker, Stefan; Auffray, Etiennette; Lecoq, Paul; Nikl, Martin; Čuba, Václav

    2016-01-01

    Highly luminescent ZnO:Ga-polystyrene composite (ZnO:Ga-PS) with ultrafast subnanosecond decay was prepared by homogeneous embedding the ZnO:Ga scintillating powder into the scintillating organic matrix. The powder was prepared by photo-induced precipitation with subsequent calcination in air and Ar/H2 atmospheres. The composite was subsequently prepared by mixing the ZnO:Ga powder into the polystyrene (10 wt% fraction of ZnO:Ga) and press compacted to the 1 mm thick pellet. Luminescent spectral and kinetic characteristics of ZnO:Ga were preserved. Radioluminescence spectra corresponded purely to the ZnO:Ga scintillating phase and emission of polystyrene at 300-350 nm was absent. These features suggest the presence of non-radiative energy transfer from polystyrene host towards the ZnO:Ga scintillating phase which is confirmed by the measurement of X-ray excited scintillation decay with picosecond time resolution. It shows an ultrafast rise time below the time resolution of the experiment (18 ps) and a single-...

  4. Extensional Rheology of Entangled Polystyrene Solutions Suggests Importance of Nematic Interactions

    DEFF Research Database (Denmark)

    Huang, Qian; Javier Alvarez, Nicolas; Matsumiya, Yumi

    2013-01-01

    We compare the linear and nonlinear rheological response of three entangled polystyrene solutions with the same concentration of polymer, but diluted using different solvents. The three solutions have exactly the same physical tube model parameters when normalized to the same time scale. Although...

  5. Influence of electron beam irradiation on the impact properties of polystyrene/EPDM rubber blends

    NARCIS (Netherlands)

    Gisbergen, van J.G.M.; Sanden, van der M.C.M.; Haan, de J.W.; Ven, van de L.J.M.; Lemstra, P.J.

    1991-01-01

    The influence of electron beam (EB) irradiation on the impact properties of compatibilized polystyrene/ethylene-propylene-diene-monomer (PSIEPDM) blends was studied. The change in impact value upon irradiation proved to be strongly dependent on the type of compatibilizer used. Using a

  6. Synthesis, Characterization and Gold Loading of Polystyrene-Poly(pyridyl methacrylate) Core-Shell Latex Systems

    NARCIS (Netherlands)

    Oláh, A.; Hempenius, Mark A.; Vancso, Gyula J.

    2004-01-01

    In this research, novel 3-(2-pyridyl)propyl methacrylate and 3-(3-pyridyloxy)propyl methacrylate monomers were synthesized and emulsion polymerized on colloidal polystyrene seeds, resulting in core–shell latex systems. The cores and the core–shell particles were characterized by static light

  7. Mechanical properties and local mobility of atactic-polystyrene films under constant-shear deformation

    NARCIS (Netherlands)

    Hudzinskyy, D.; Michels, M.A.J.; Lyulin, A.V.

    2012-01-01

    We have performed molecular-dynamics simulations of atactic polystyrene thin films to study the effect of shear rate, pressure, and temperature on the stress-strain behaviour, the relevant energetic contributions and non-affine displacements of polymer chains during constant-shear deformation. Under

  8. Single-Step Nanoporation of Water-Immersed Polystyrene Film by Gaseous Nanobubbles

    Czech Academy of Sciences Publication Activity Database

    Tarábková, Hana; Janda, Pavel

    2016-01-01

    Roč. 32, č. 43 (2016), s. 11221-11229 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GAP208/12/2429 Institutional support: RVO:61388955 Keywords : Atomic force microscopy * Biocompatibility * Polystyrenes Subject RIV: CG - Electrochemistry Impact factor: 3.833, year: 2016

  9. Synthesis and characterization of an additive type super plasticizers obtained from plastics cups of polystyrene

    International Nuclear Information System (INIS)

    Araujo, Carolina G.L.; Freire, Carolina B.; Tello, Cledola C. de O.

    2013-01-01

    This paper aims to describe the synthesis of an additive type superplasticizer from alternative material - plastic cups used of polystyrene - and characterize it physically and chemically in order to verify their efficiency and compare it with a commercial use superplasticizer. Following the search, the synthesized superplasticizer is used in mortars to assess their efficiency

  10. Preparative-scale separation of C60 and C70 on polystyrene gel

    International Nuclear Information System (INIS)

    Guegel, A.; Becker, M.; Hammel, D.; Mindach, L.; Raeder, J.; Simon, T.; Wagner, M.; Muellen, K.

    1992-01-01

    Five grams of a mixture of C 60 /C 70 can be separated in 24 hours by gel permeation chromatography on polystyrene gel. The mobile phase can be completely recovered, and the method can be scaled up by a simple increase in the inner diameter of the column. (orig.) [de

  11. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae

    NARCIS (Netherlands)

    Bergami, Elisa; Bocci, Elena; Vannuccini, Maria Luisa; Monopoli, Marco; Salvati, Anna; Dawson, Kenneth A; Corsi, Ilaria

    Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on

  12. Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions

    Directory of Open Access Journals (Sweden)

    Cornelia Loos

    2014-12-01

    Full Text Available Nanoparticles of various shapes, sizes, and materials carrying different surface modifications have numerous technological and biomedical applications. Yet, the mechanisms by which nanoparticles interact with biological structures as well as their biological impact and hazards remain poorly investigated. Due to their large surface to volume ratio, nanoparticles usually exhibit properties that differ from those of bulk materials. Particularly, the surface chemistry of the nanoparticles is crucial for their durability and solubility in biological media as well as for their biocompatibility and biodistribution. Polystyrene does not degrade in the cellular environment and exhibits no short-term cytotoxicity. Because polystyrene nanoparticles can be easily synthesized in a wide range of sizes with distinct surface functionalizations, they are perfectly suited as model particles to study the effects of the particle surface characteristics on various biological parameters. Therefore, we have exploited polystyrene nanoparticles as a convenient platform to study bio–nano interactions. This review summarizes studies on positively and negatively charged polystyrene nanoparticles and compares them with clinically used superparamagnetic iron oxide nanoparticles.

  13. Worst case prediction of additives migration from polystyrene for food safety purposes: a model update

    DEFF Research Database (Denmark)

    Martinez Lopez, Brais; Gontard, Nathalie; Peyron, Stephane

    2018-01-01

    . These parameters were determined for the polymers most used by packaging industry (LLDPE, HDPE, PP, PET, PS, HIPS) from the diffusivity data available at that time. In the specific case of general purpose polystyrene, the diffusivity data published since then shows that the use of the equation with the original...

  14. (Quasi-) 2D aggregation of polystyrene-b-dextran at the air-water interface

    NARCIS (Netherlands)

    Bosker, W.T.E.; Cohen Stuart, M.A.; Norde, W.

    2013-01-01

    Polystyrene-b-dextran (PS-b-Dextran) copolymers can be used to prepare dextran brushes at solid surfaces, applying Langmuir–Blodgett deposition. When recording the interfacial pressure versus area isotherms of a PS-b-Dextran monolayer, time-dependent hysteresis was observed upon compression and

  15. A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends

    DEFF Research Database (Denmark)

    Wagner, Manfred H.; Rolon-Garrido, Victor H.; Nielsen, Jens Kromann

    2008-01-01

    The transient and steady-state elongational viscosity data of three bidisperse polystyrene blends were investigated recently by Nielsen et al. [J. Rheol. 50, 453-476 (2006)]. The blends contain a monodisperse high molar mass component (M-L= 390 kg/ mol) in a matrix of a monodisperse small molar m...

  16. Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-04-16

    Embodiments of the present disclosure provide for polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer nanoporous membranes, methods of making a PS-b-PEO block copolymer nanoporous membrane, methods of using PS-b-PEO block copolymer nanoporous membranes, and the like.

  17. Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Carretta, N.; Tricoli, V.; Picchioni, F.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  18. A model for the stress-strain behavior of toughened polystyrene. Part 2

    NARCIS (Netherlands)

    Sjoerdsma, S.D.; Heikens, D.

    1982-01-01

    The general stress-strain relationship derived in an earlier paper is applied to analyse experimental stress-strain curves of polystyrene-polyethylene blends. It is concluded from the stress and temperature dependence of the rates of craze initiation and craze growth that these rates can be

  19. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation

    Directory of Open Access Journals (Sweden)

    Biazar E

    2011-03-01

    Full Text Available Esmaeil Biazar1, Majid Heidari2, Azadeh Asefnezhad2, Naser Montazeri11Department of Chemistry, Islamic Azad University, Tonekabon Branch, Mazandaran; 2Department of Biomaterial Engineering, Faculty of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, IranBackground: Surface modification of medical polymers can improve biocompatibility. Pure polystyrene is hydrophobic and cannot provide a suitable environment for cell cultures. The conventional method for surface modification of polystyrene is treatment with plasma. In this study, conventional polystyrene was exposed to microwave plasma treatment with oxygen and argon gases for 30, 60, and 180 seconds.Methods and results: Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated clearly the presence of functional groups. Atomic force microscopic images of samples irradiated with inert and active gases indicated nanometric surface topography. Samples irradiated with oxygen plasma showed more roughness (31 nm compared with those irradiated with inert plasma (16 nm at 180 seconds. Surface roughness increased with increasing duration of exposure, which could be due to reduction of the contact angle of samples irradiated with oxygen plasma. Contact angle analysis showed reduction in samples irradiated with inert plasma. Samples irradiated with oxygen plasma showed a lower contact angle compared with those irradiated by argon plasma.Conclusion: Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation for samples radiated by oxygen plasma with increasing duration of exposure than those of normal samples.Keywords: surface topography, polystyrene, plasma treatment, argon, oxygen

  20. Synthesis of amylose-block-polystyrene rod-coil block copolymers

    NARCIS (Netherlands)

    Loos, Katja; Stadler, Reimund

    1997-01-01

    In the present communication we demonstrate the synthesis of a hybrid block copolymer based on the combination of a biopolymer (amylose) with a synthetic block (polystyrene). To obtain such materials, amino-functionalized polymers were modified with maltoheptaose moieties that serve as initiators

  1. Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells.

    Science.gov (United States)

    Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Huan, Yahuan; Li, Yong; Zhang, Ruxiao; Zhang, Yue

    2018-06-06

    The major restraint for the commercialization of the high-performance hybrid metal halide perovskite solar cells is the long-term stability, especially at the infirm interface between the perovskite film and organic charge-transfer layer. Recently, engineering the interface between the perovskite and spiro-OMeTAD becomes an effective strategy to simultaneously improve the efficiency and stability in the perovskite solar cells. In this work, we demonstrated that introducing an interfacial polystyrene layer between the perovskite film and spiro-OMeTAD layer can effectively improve the perovskite solar cells photovoltaic performance. The inserted polystyrene layer can passivate the interface traps and defects effectively and decrease the nonradiative recombination, leading to enhanced photoluminescence intensity and carrier lifetime, without compromising the carrier extraction and transfer. Under the optimized condition, the perovskite solar cells with the polystyrene layer achieve an enhanced average power efficiency of about 19.61% (20.46% of the best efficiency) from about 17.63% with negligible current density-voltage hysteresis. Moreover, the optimized perovskite solar cells with the hydrophobic polystyrene layer can maintain about 85% initial efficiency after 2 months storage in open air conditions without encapsulation.

  2. Electrokinetic properties and conductance relaxation of polystyrene and silver iodide plugs

    NARCIS (Netherlands)

    Hoven, van den J.J.

    1984-01-01

    This thesis describes an experimental study on the electrokinetic and electrical properties of concentrated polystyrene and silver iodide dispersions. The purpose of the study is to obtain information on the structure of the electrical double layer at the solid-liquid interface. Special

  3. Impact of non-ionic surfactant chemical structure on morphology and stability of polystyrene nanocomposite latex

    CSIR Research Space (South Africa)

    Greesh, N

    2016-01-01

    Full Text Available Polystyrene (PS) colloid particles in presence of non-ionic surfactant-modified clay particles were prepared by the free-radical polymerization of styrene monomers in emulsion. Three different types of non-ionic surfactants, sorbitan monopalmitate...

  4. Magnetization of large polystyrene peptide beads for capturing and expanding cancer cells

    International Nuclear Information System (INIS)

    Marik, Jan; Lau, D.H.; Song Aimin; Wang Xiaobing; Liu Ruiwu; Lam, K.S.

    2003-01-01

    A method is described for preparation of large magnetic polystyrene beads coupled with peptide ligands for surface receptors of lung cancer cells. We have demonstrated the feasibility of using these magnetic peptide beads for capturing and enriching lung cancer cells spiked into blood. These magnetic peptide beads potentially can be used to efficiently isolate cancer cells from body fluids

  5. Syntheses, spectroscopic and magnetic properties of polystyrene-anchored coordination compounds of thiazolidinone

    Directory of Open Access Journals (Sweden)

    D. Kumar

    2014-01-01

    Full Text Available The reaction between polystyrene 3-formylsalicylate and furoic acid hydrazide in DMF in the presence of ethyl acetate results in the formation of polystyrene N-(2-carbamoylfuranyl-3'-carboxy-2'-hydroxybenzylideneimine (I. A benzene suspension of I reacts with mercaptoacetic acid and forms the polystyrene N-(2-carbamoylfuranyl-C-(3'-carboxy-2'-hydroxyphenylthiazolidin-4-one, PSCH2–LH2 (II. A DMF suspension of II reacts with Mn(II, Ni(II, Cd(II, Fe(III and UO2(VI ions and forms the polystyrene-anchored coordination compounds of the types, [PSCH2–LMn(DMF3], [PSCH2–LNi(DMF3], [PSCH2–LCd(DMF], [PSCH2–LH2FeCl3] and [PSCH2–LHUO2(NO3(DMF]. The polystyrene-anchored coordination compounds have been characterized on the basis of elemental analyses, spectral (IR, reflectance studies and magnetic susceptibility measurements. II acts as a neutral tridentate ONO donor ligand in [PSCH2–LH2FeCl3], a monobasic tridentate ONO donor ligand in [PSCH2–LHUO2(NO3(DMF], a dibasic tridentate ONO donor ligand in [PSCH2–LMn(DMF3], [PSCH2–LNi(DMF3] and [PSCH2–LCd(DMF]. A tetrahedral structure for Cd(II and an octahedral structure for Mn(II, Ni(II, Fe(III and a square-antiprism geometry for UO2(VI complex are suggested. DOI: http://dx.doi.org/10.4314/bcse.v28i1.4

  6. Aging in lithium-ion batteries: Model and experimental investigation of harvested LiFePO4 and mesocarbon microbead graphite electrodes

    International Nuclear Information System (INIS)

    Zavalis, Tommy Georgios; Klett, Matilda; Kjell, Maria H.; Behm, Mårten; Lindström, Rakel Wreland; Lindbergh, Göran

    2013-01-01

    This study investigates aging in LiFePO 4 /mesocarbon microbead graphite cells that have been subjected to either a synthetic hybrid drive cycle or calendar aging, at 22 °C. The investigation involves detailed examination and comparison of harvested fresh and aged electrodes. The electrode properties are determined using a physics-based electrochemical impedance spectroscopy (EIS) model that is fitted to three-electrode EIS measurements, with input from measured electrode capacity and scanning electrode microscopy (SEM). Results from the model fitting provide a detailed insight to the electrode degradation and is put into context with the behavior of the full cell aging. It was established that calendar aging has negligible effect on cell impedance, while cycle aging increases the impedance mainly due to structural changes in the LiFePO 4 porous electrode and electrolyte decomposition products on both electrodes. Further, full-cell capacity fade is mainly a consequence of cyclable lithium loss caused by electrolyte decomposition

  7. Urchin-like NiCo2O4 nanoneedles grown on mesocarbon microbeads with synergistic electrochemical properties as electrodes for symmetric supercapacitors.

    Science.gov (United States)

    Zhang, Yu; Zhang, Yihe; Zhang, Deyang; Sun, Li

    2017-07-25

    Here, we report a facile method to fabricate NiCo 2 O 4 nanoneedles on mesocarbon microbeads (MCMB) and form a unique urchin-like core-shell structure. In this composite, the MCMB not only provided high conductivity to benefit effective electron transfer, but also offered abundant adsorption points to load the NiCo 2 O 4 nanoneedles. The aggregation of the NiCo 2 O 4 nanoneedles was therefore alleviated and each NiCo 2 O 4 grain was unfolded to gain easy access to the electrolyte for efficient ion transfer. When the NiCo 2 O 4 @MCMB composite was evaluated as an electrode material for supercapacitors, a synergistic effect was exerted with high specific capacitance (458 F g -1 at 1 A g -1 ) and large reversibility (116% capacitance retention after 3000 cycles), both of which were of great advantage over individual MCMB and NiCo 2 O 4 nanoneedles. The NiCo 2 O 4 @MCMB was also used to construct a symmetric supercapacitor, which showed enlarged voltage profiles and could light the LED device for a few minutes, further confirming its excellent electrochemical performance.

  8. One-step routes from di- and triblock copolymer precursors to hydrophilic nanoporous poly(acrylic acid)-b-polystyrene

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars

    2008-01-01

    Nanoporous polystyrene with hydrophilic pores was prepared from di- and triblock copolymer precursors. The precursor material was either a poly(tert-butyl acryl ate)-b-polystyrene (PtBA-b-PS) diblock copolymer synthesized by atom transfer radical polymerization (ATRP) or a polydimethylsiloxane......-b-poly(tertbutyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer synthesized by a combination of living anionic polymerization and ATRP. In the latter copolymer, PS was the matrix and mechanically stable component, PtBA was converted by acidic deprotection to hydrophilic poly(acrylic acid) (PAA) providing...

  9. The influence of organo-bentonite clay on the processing and mechanical properties of nylon 6 and polystyrene composites

    International Nuclear Information System (INIS)

    Araujo, E.M.; Melo, T.J.A.; Santana, L.N.L.; Neves, G.A.; Ferreira, H.C.; Lira, H.L.; Carvalho, L.H.; A'vila, M.M.; Pontes, M.K.G.; Araujo, I.S.

    2004-01-01

    The influence of organoclay on the processing and mechanical properties of nylon 6 and polystyrene was investigated. A bentonite sample from Boa Vista/PB, Northeast of Brazil, was treated with alkyldimethylbenzylammonium chloride. After the treatment, the powder was characterized by thermal analysis and infrared spectroscopy. Composites were prepared by using a Torque rheometer. The results show the intercalation of quaternary ammonium salt in the structure of bentonite and organo-bentonite produced significant changes on the processing of the nylon 6 and polystyrene with increase in the viscosity and rigidity. However, the mechanical properties of polystyrene/organoclay system did not show significant changes

  10. Leachate From Expanded Polystyrene Cups Is Toxic to Aquatic Invertebrates (Ceriodaphnia dubia

    Directory of Open Access Journals (Sweden)

    Clara Thaysen

    2018-02-01

    Full Text Available Expanded polystyrene (EPS products and their associated chemicals (e.g., styrenes are widespread in the marine environment. As a consequence, bans on their use for single-use packaging materials are being proposed in several municipalities. To better understand how science can inform decision-making, we looked at the available scientific literature about contamination and effects and conducted experiments to measure chemical leachate from polystyrene products and toxicity from the leachate. We conducted leaching experiments with common food matrices (water, soup broth, gravy, black coffee and coffee with cream and sugar at relevant temperatures (70 and 95°C that are consumed in or with several polystyrene products (coffee cup lids, polystyrene stir sticks, polystyrene spoons, EPS cups, EPS bowls, and EPS takeout containers. We analyzed each sample for styrene, ethylbenzene, toluene, benzene, meta- and para- xylene, isopropylbenzene, and isopropyltoluene—chemicals associated with polystyrene products. To determine whether the leachates are toxic, we conducted chronic toxicity tests, measuring survival and reproductive output in Ceriodaphnia dubia. Toxicity tests included nine treatments: seven concentrations of ethylbenzene, EPS cup leachate and a negative control. Overall, we found that temperature has a significant effect on leaching. We only detected leachates in trials conducted at higher temperature −95°C. Ethylbenzene was the only target analyte with final concentrations above the method limit of detection, and was present in the greatest concentrations in EPS and with soup broth. Measurable concentrations of ethylbenzene in the leachate ranged from 1.3 to 3.4 μg/L. In toxicity tests, the calculated LC50 for ethylbenzene was 14 mg/L and the calculated LC20 was 210 μg/L. For the treatment exposed to the EPS cup leachate, mortality was 40%—four times greater than the negative control. Finally, there was no significant difference (p

  11. Synthesis and characterization of new chiral ketopinic acid-derived catalysts immobilized on polystyrene-bound imidazole

    Directory of Open Access Journals (Sweden)

    Hassan Yusuf

    2017-02-01

    Full Text Available Four new chiral ketopinic acid-derived catalysts were anchored on a polystyrene-bound imidazole via non-covalent bond. The resulting heterogeneous catalysts were successfully characterized using IR, SEM, and TGA analyses.

  12. Extended x-ray absorption fine structure: Studies of zinc-neutralized sulfonated polystyrene ionomers

    International Nuclear Information System (INIS)

    Ding, Y.S.; Yarusso, D.J.; Pan, H.K.D.; Cooper, S.L.

    1984-01-01

    Extended x-ray absorption fine structure (EXAFS) measurements were performed on a series of zinc-neutralized sulfonated polystyrene ionomers and the local structure around the zinc atom was determined. An interference effect in the EXAFS signal between sulfur and oxygen atoms was found to be significant in these materials. A model for the local structure in the zinc-neutralized sulfonated polystyrene ionomers is proposed which suggests a highly ordered tetrahedral coordination of oxygen around the zinc atoms at a distance of 1.97 +- 0.02 A. In addition there are four sulfur atoms and four oxygen atoms at a distance of 3.15 +- 0.05 A. No zinc-zinc coordination within 5 A was detected in this study

  13. Molecular modeling and simulation of atactic polystyrene/amorphous silica nanocomposites

    International Nuclear Information System (INIS)

    Mathioudakis, I; Vogiatzis, G G; Tzoumanekas, C; Theodorou, D N

    2016-01-01

    The local structure, segmental dynamics, topological analysis of entanglement networks and mechanical properties of atactic polystyrene - amorphous silica nanocomposites are studied via molecular simulations using two interconnected levels of representation: (a) A coarse - grained level. Equilibration at all length scales at this level is achieved via connectivity - altering Monte Carlo simulations. (b) An atomistic level. Initial configurations for atomistic Molecular Dynamics (MD) simulations are obtained by reverse mapping well- equilibrated coarse-grained configurations. By analyzing atomistic MD trajectories, the polymer density profile is found to exhibit layering in the vicinity of the nanoparticle surface. The dynamics of polystyrene (in neat and filled melt systems) is characterized in terms of bond orientation. Well-equilibrated coarse-grained long-chain configurations are reduced to entanglement networks via topological analysis with the CReTA algorithm. Atomistic simulation results for the mechanical properties are compared to the experimental measurements and other computational works. (paper)

  14. Interfacial Effects on the Spherulitic Morphology of Isotactic Polystyrene Thin Films on Liquid Substrates

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2016-01-01

    Full Text Available The influence of interfaces on the morphology of flat spherulites of isotactic polystyrene (iPS grown in thin films on liquid substrates was investigated. Amorphous iPS thin films spin-cast from a solution were annealed for cold crystallization on glycerol and silicone oil (nonsolvents for iPS. The number density of grown spherulites was revealed to be higher on the glycerol substrate than on the silicone oil substrate. This implies that the primary nucleation rate of crystallization is greater at the iPS/glycerol interface than at the iPS/silicone oil interface. The results may be consistent with the previous findings that concern the molecular interaction between atactic polystyrene and nonsolvents at the interface. In some cases, holes were formed in the thin films during the cold crystallization due to dewetting, which also significantly affect the spherulite morphology via, for example, transcrystallization.

  15. Assessment of phototoxicity, skin irritation, and sensitization potential of polystyrene and TiO2 nanoparticles

    Science.gov (United States)

    Park, Yoon-Hee; Jeong, Sang Hoon; Yi, Sang Min; Hyeok Choi, Byeong; Kim, Yu-Ri; Kim, In-Kyoung; Kim, Meyoung-Kon; Son, Sang Wook

    2011-07-01

    The human skin equivalent model (HSEM) is well known as an attractive alternative model for evaluation of dermal toxicity. However, only limited data are available on the usefulness of an HSEM for nanotoxicity testing. This study was designed to investigate cutaneous toxicity of polystyrene and TiO2 nanoparticles using cultured keratinocytes, an HSEM, and an animal model. In addition, we also evaluated the skin sensitization potential of nanoparticles using a local lymph node assay with incorporation of BrdU. Findings from the present study indicate that polystyrene and TiO2 nanoparticles do not induce phototoxicity, acute cutaneous irritation, or skin sensitization. Results from evaluation of the HSEMs correspond well with those from animal models. Our findings suggest that the HSEM might be a useful alternative model for evaluation of dermal nanotoxicity.

  16. Enhancement of water retention by cross-linked carboxymethylcellulose through polystyrene grafting or γ irradiation

    International Nuclear Information System (INIS)

    Bhattacharjee, S.S.; Perlin, A.S.

    1975-01-01

    The absorbency and retention characteristics of crosslinked carboxymethylcellulose (CLCMC) with respect to water and saline can be substantially improved by two different treatments. One treatment involves γ-radioinduced grafting of polystyrene onto fibers of CLCMC. At a critical level of grafting (approximately 25 percent) the retentive capacity of the fibers is almost doubled. Particularly noteworthy is the sharp increase that follows an initial drop in retentivity. It is concluded the polystyrene becomes associated preferentially with residual ordered regions of the CLCMC macromolecule, through the localization of free radicals in these regions. A second means for enhancing the water and saline retention value of CLCMC, consists of subjecting the material to gamma irradiation from a 60 Co source. Dosages used have ranged from 1.0 to 4.8 megarads (MR), depending on the degree of substitution of the initial carboxymethylcellulose. (JGB)

  17. Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic.

    Science.gov (United States)

    Davidson, Timothy M

    2012-09-01

    Boring isopods damage expanded polystyrene floats under docks and, in the process, expel copious numbers of microplastic particles. This paper describes the impacts of boring isopods in aquaculture facilities and docks, quantifies and discusses the implications of these microplastics, and tests if an alternate foam type prevents boring. Floats from aquaculture facilities and docks were heavily damaged by thousands of isopods and their burrows. Multiple sites in Asia, Australia, Panama, and the USA exhibited evidence of isopod damage. One isopod creates thousands of microplastic particles when excavating a burrow; colonies can expel millions of particles. Microplastics similar in size to these particles may facilitate the spread of non-native species or be ingested by organisms causing physical or toxicological harm. Extruded polystyrene inhibited boring, suggesting this foam may prevent damage in the field. These results reveal boring isopods cause widespread damage to docks and are a novel source of microplastic pollution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Synthesis of Hollow Conductive Polypyrrole Balls by the Functionalized Polystyrene as Template

    Directory of Open Access Journals (Sweden)

    Choo Hwan Chang

    2010-01-01

    Full Text Available We report the preparation of hollow spherical polypyrrole balls (HSPBs by two different approaches. In the first approach, core-shell conductive balls, CSCBs, were prepared with poly(styrene as core and polypyrrole (PPy as shell by in situ polymerization of pyrrole in the presence of polystyrene (PS latex particles. In the other approach, CSCBs were obtained by in situ copolymerization of pyrrole in the presence of PS(F with hydrophilic groups like anhydride, boronic acid, carboxylic acid, or sulfonic acid, and then HSPBs were obtained by the removal of PS or PS(F core from CSCBs. TEM images reveal the spherical morphology for HSPBs prepared from PS(F. The conductivity of CSCBs and HSPBs was in the range of 0.20–0.90 S/cm2.

  19. The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Deng, Cheng; Jiang, Huimin [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Zheng, Zhanlong; Gong, Rui [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Bi, Yutie [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Zhang, Lin, E-mail: zhlmy@sina.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Lin, Runxiong, E-mail: qdlrx@qust.edu.cn [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2016-11-01

    To investigate the influence of both the first luminescent additive and the wavelength-shifter on the performance of plastic scintillator, a series of polystyrene-based scintillator had been prepared by thermal polymerization. Three first luminescent additives (PPO, p-TP and b-PBD) and four wavelength-shifters (POPOP, Bis-MSB, Me-MSB and DPA) were added to the scintillators respectively. The comparison results showed that PPO and POPOP were the most adequate fluorescent dyes for the polystyrene-based plastic scintillator. Moreover, with the increase of the concentration of PPO and POPOP, the fluorescence intensity and light yield were increased firstly and then decreased. The plastic scintillator containing 2% PPO and 0.02% POPOP had the highest fluorescence intensity and light yield.

  20. Uniform formation of Au coated polystyrene core-shell structure using metallization process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoungseob; Koo, Jonghyun; Roh, Yonghan, E-mail: yhroh@skku.edu

    2011-08-01

    There are several methods for the fabrication of core-shell particles, including chemical reduction and self-assembly. In this study, the chemical reduction method was used to fabricate 100 nm, Au-coated polystyrene nanoparticles. The formation of the gold layer was based on the increase of gold coverage by the reaction with aniline and HAuCl{sub 4}. This method allowed for efficient control of the gold coverage and led to relatively stable products. The formation of Au clusters on the surface of the 100 nm polystyrene beads was characterized by scanning electron microscope and high resolution tunneling electron microscope. As a result, the Au-coated nanoparticles can be used in various applications such as surface plasmon resonators, drug delivery systems and electronic optical devices.

  1. Study of the solubility and stability of polystyrene wastes in a dissolution recycling process

    International Nuclear Information System (INIS)

    Garcia, Maria Teresa; Gracia, Ignacio; Duque, Gema; Lucas, Antonio de; Rodriguez, Juan Francisco

    2009-01-01

    Dissolution with suitable solvents is one of the cheapest and more efficient processes for polystyrene waste management. In this work the solubility of polystyrene foams in several solvents benzene, toluene, xylene, tetrahydrofuran, chloroform, 1,3-butanediol, 2-butanol, linalool, geraniol, d-limonene, p-cymene, terpinene, phellandrene, terpineol, menthol, eucalyptol, cinnamaldheyde, nitrobenzene, N,N-dimethylformamide and water has been determined. Experimental results have shown that to develop a 'green process' the constituents of essential oils, d-limonene, p-cymene, terpinene, phellandrene, are the most appropriate solvents. The action of these solvent does not produce any degradation of polymer chains. The solubility of the polymer in the mentioned solvents at different temperatures has been investigated. The solvent can be easily recycled by distillation.

  2. Assessment of phototoxicity, skin irritation, and sensitization potential of polystyrene and TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Park, Yoon-Hee; Jeong, Sang Hoon; Yi, Sang Min; Choi, Byeong Hyeok; Son, Sang Wook; Kim, Yu-Ri; Kim, In-Kyoung; Kim, Meyoung-Kon

    2011-01-01

    The human skin equivalent model (HSEM) is well known as an attractive alternative model for evaluation of dermal toxicity. However, only limited data are available on the usefulness of an HSEM for nanotoxicity testing. This study was designed to investigate cutaneous toxicity of polystyrene and TiO 2 nanoparticles using cultured keratinocytes, an HSEM, and an animal model. In addition, we also evaluated the skin sensitization potential of nanoparticles using a local lymph node assay with incorporation of BrdU. Findings from the present study indicate that polystyrene and TiO 2 nanoparticles do not induce phototoxicity, acute cutaneous irritation, or skin sensitization. Results from evaluation of the HSEMs correspond well with those from animal models. Our findings suggest that the HSEM might be a useful alternative model for evaluation of dermal nanotoxicity.

  3. Effects of gamma irradiation on food contact polyethylene, polypropylene and polystyrene. Volatiles

    International Nuclear Information System (INIS)

    Kawamura, Yoko; Sayama, Kayo; Yamada, Takashi

    2000-01-01

    The effects of gamma irradiation on the generation of volatiles from food contact polyethylene and polypropylene were investigated using head space (HS)/GC/MS. All samples generated volatiles such as acetic acid, propionic acid, butanoic acid, 2,2-dimethylpropionic acid, acetone, 2-butanone, 2-propanol, 2-methyl-2-propanol, hydrocarbons, etc., due to the gamma irradiation. Especially, acetic acid and acetone were formed in greatest amounts. Since these volatiles did not exist before irradiation and their amounts increased with increasing irradiation dose, they should be degradation products from the polymer or additives by irradiation. Polypropylene generated more kinds and larger amounts of volatiles than polyethylene, which showed that polypropylene is more sensitive to irradiation. Polystyrene contained styrene and ethylbenzene as monomers before irradiation and their amounts decreased after irradiation. Polystyrene generated few degradation products during the irradiation. (author)

  4. The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators

    International Nuclear Information System (INIS)

    Zhu, Jun; Deng, Cheng; Jiang, Huimin; Zheng, Zhanlong; Gong, Rui; Bi, Yutie; Zhang, Lin; Lin, Runxiong

    2016-01-01

    To investigate the influence of both the first luminescent additive and the wavelength-shifter on the performance of plastic scintillator, a series of polystyrene-based scintillator had been prepared by thermal polymerization. Three first luminescent additives (PPO, p-TP and b-PBD) and four wavelength-shifters (POPOP, Bis-MSB, Me-MSB and DPA) were added to the scintillators respectively. The comparison results showed that PPO and POPOP were the most adequate fluorescent dyes for the polystyrene-based plastic scintillator. Moreover, with the increase of the concentration of PPO and POPOP, the fluorescence intensity and light yield were increased firstly and then decreased. The plastic scintillator containing 2% PPO and 0.02% POPOP had the highest fluorescence intensity and light yield.

  5. Polystyrene/magnesium hydroxide nanocomposite particles prepared by surface-initiated in-situ polymerization

    International Nuclear Information System (INIS)

    Liu Hui; Yi Jianhong

    2009-01-01

    In order to avoid their agglomeration and incompatibility with hydrophobic polystyrene substrate, magnesium hydroxide nanoparticles were encapsulated by surface-initiated in-situ polymerization of styrene. The process contained two steps: electrostatic adsorption of initiator and polymerization of monomer on the surface of magnesium hydroxide. It was found that high adsorption ratio in the electrostatic adsorption of initiator could be attained only in acidic region, and the adsorption belonged to typical physical process. Compared to traditional in-situ polymerization, higher grafting ratio was obtained in surface-initiated in-situ polymerization, which can be attributed to weaker steric hindrance. Both Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) indicated that polystyrene/magnesium hydroxide nanocomposite particles had been successfully prepared by surface-initiated in-situ polymerization. The resulting samples were also analyzed and characterized by means of contact angle testing, dispersibility evaluation and thermogravimetric analysis

  6. Effects of gamma irradiation on food contact polyethylene, polypropylene and polystyrene: additives and other chemicals

    International Nuclear Information System (INIS)

    Kawamura, Yoko; Sayama, Kayo; Yamada, Takashi

    2000-01-01

    The effects of gamma irradiation on additives, oligomers, and other chemicals in food contact polyethylene, polypropylene and polystyrene were investigated. Polyethylene and polypropylene products contained several antioxidants, lubricants and plasticizers. After gamma irradiation, the contents of all the antioxidants significantly decreased. Irgafos 168 disappeared the fastest. Lubricants and plasticizers decreased to some extent or not at all. 2,4-Di-tert-butylphenol was detected not only after irradiation but also before irradiation, and 1,3-di-tert-butylbenzene and 2,6-di-tert-butyl-1,4-benzoquinone were detected only after irradiation. They were presumed to be degradation products of the irradiation, though the former should be also a degradation product of the manufacturing process. On the other hand, the polystyrene products contained styrene dimers and trimers and their contents did not change after the gamma irradiation. (author)

  7. Effects of the alkylamine functionalization of graphene oxide on the properties of polystyrene nanocomposites

    Science.gov (United States)

    Jang, Jinhee; Pham, Viet Hung; Rajagopalan, Balasubramaniyan; Hur, Seung Hyun; Chung, Jin Suk

    2014-05-01

    Alkylamine-functionalized graphene oxides (FGOs) have superior dispersibility in low-polar solvents and, as a result, they interact with low-polar polymers such as polystyrene. In this work, the functionalization of graphene oxide using three types of alkylamines, octylamine (OA), dodecylamine (DDA), and hexadecylamine (HDA), was performed, and nanocomposites of polystyrene (PS) and FGOs were prepared via solution blending. Different dispersions of FGOs over PS were obtained for the three alkylamines, and the properties of the PS composites were influenced by the length of the alkylamine. A better thermal stability was observed with a longer chain length of the alkylamine. On the other hand, functionalization with the shortest chain length alkylamine resulted in the highest increase in the storage modulus (3,640 MPa, 140%) at a 10 wt.% loading of FGO.

  8. Effects of water on starch-g-polystyrene and starch-g-poly(methyl acrylate) extrudates

    International Nuclear Information System (INIS)

    Henderson, A.M.; Rudin, A.

    1982-01-01

    Polystyrene and poly(methyl acrylate) were grafted onto wheat starch by gamma radiation and chemical initiation, respectively. The respective percent add-on values were 46 and 45; 68% of the polystyrene formed was grafted to starch, and corresponding proportion of poly(methyl acrylate) was 41%. The molecular weight distributions of the homopolymer and graft portions were characterized, and extrusion conditions were established for production of ribbon samples of starch-g-PS and starch-g-PMA. Both copolymer types were considerably weakened by soaking in water, and this effect was more immediate and drastic for starch-g-poly(methyl acrylate). Both graft copolymers regained their original tensile strengths on drying, but the poly(methyl acrylate) specimens did not recover their original unswollen dimensions and retained high breaking elongations characteristic of soaked specimens. Tensile and dynamic mechanical properties of extruded and molded samples of both graft polymers are reported, and plasticizing effects of water are summarized

  9. Increased adsorption of histidine-tagged proteins onto tissue culture polystyrene

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hansen, Thomas Steen; Lind, Johan Ulrik

    2012-01-01

    and ethylenediaminetetraacetic acid (EDTA), as well as adsorption performed at different pH and ionic strength indicates that the high adsorption is caused by electrostatic interaction between negatively charged carboxylate groups on the TCPS surface and positively charged histidine residues in the proteins. Pre......In this study we compare histidine-tagged and native proteins with regards to adsorption properties. We observe significantly increased adsorption of proteins with an incorporated polyhistidine amino acid motif (HIS-tag) onto tissue culture polystyrene (TCPS) compared to similar proteins without...... a HIS-tag. The effect is not observed on polystyrene (PS). Adsorption experiments have been performed at physiological pH (7.4) and the effect was only observed for the investigated proteins that have pI values below or around 7.4. Competitive adsorption experiments with imidazole...

  10. Optimization of the wavelength shifter ratio in a polystyrene based plastic scintillator through energy spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye Won; Kim, Myung Soo; Yoo, Hyun Jun; Lee, Dae Hee; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Moon, Myung Kook [Neutron Instrumentation Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    The scintillation efficiency of the polystyrene based plastic scintillator depends on the ratio of the wavelength shifters, organic fluors (PPO and POPOP). Thus, 24 samples of the plastic scintillator were fabricated in order to find out the optimum ratio of the wavelength shifters in the plastic scintillator. The fabricated plastic scintillators were trimmed through a cutting and polishing process. They were used in gamma energy spectrum measurement with the {sup 137}Cs emitting monoenergy photon with 662 keV for the comparison of the scintillation efficiency. As a result, it was found out that the scintillator sample with 1.00 g of PPO (2,5-Diphenyloxazole) and 0.50 g of POPOP (1,4-Bis(5-phnyl-2oxidazolyl)benzene) dissolved in 100 g of styrene solution has the optimum ratio in terms of the light yield of the polystyrene based plastic scintillator.

  11. A proton-conducting composite membrane: Sn0.95Al0.05P2O7 and polystyrene-b-poly(ethylene/propylene)-b-polystyrene

    International Nuclear Information System (INIS)

    Jin, Yongcheng; Hibino, Takashi

    2010-01-01

    An anhydrous proton conductor, Sn 0.95 Al 0.05 P 2 O 7 (SAPO), composed of polystyrene-b-poly(ethylene/propylene)-b-polystyrene (SEPS), was developed and characterized using morphological, structural, and electrochemical analyses. In the composite membrane with 20 wt% SEPS, a homogeneous distribution of SAPO particles in the matrix was obtained in the thickness range of 65-90 μm, yielding a proton conductivity of 3.4 x 10 -3 S cm -1 at 200 o C, tensile strength of 4.6 MPa and an elongation at break of 711.0% at room temperature. Fuel cell tests verified that the open-circuit voltage was maintained at a constant value of approximately 1 V between 100 and 250 o C. The peak power densities achieved with unhumidified H 2 and air were 77.0 mW cm -2 at 100 o C, 121.0 mW cm -2 at 150 o C, and 163.1 mW cm -2 at 225 o C.

  12. Improved compatibility between polystyrene and poly(vinylidene fluoride) by the addition of urea

    International Nuclear Information System (INIS)

    Melad, O.; Teim, O.A.; Sobeh, E.

    2005-01-01

    The viscosity behavior of dilute urea solution of dimethylformamide (Dmf) of Polystyrene-Poly(vinylidene fluoride) has been studied at 25 degree C. The results show that the polymer mixtures are incompatible in DMF solution in the absence of urea. The influence of urea addition on the degree of compatibility of the polymer mixture has been studied in terms of the compatibility parameters (A6/M, kbm , A [77] ,a and /?) respectively

  13. Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

    Directory of Open Access Journals (Sweden)

    Xacobe C. Cambeiro

    2011-10-01

    Full Text Available The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to the batch process working at residence times of ca. 5 min.

  14. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

    OpenAIRE

    Salert, Beatrice Ch. D.; Wedel, Armin; Grubert, Lutz; Eberle, Thomas; Anémian, Rémi; Krueger, Hartmut

    2012-01-01

    This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obta...

  15. The influence of ultrasonic waves on molecular structure of high impact polystyrene solutions in different solvents

    International Nuclear Information System (INIS)

    Al-Asaly, S.I.

    1991-01-01

    The aim of the this research is to study some physical properties of polymer solutions of high-impact polystyrene (HIPS) solutions in two different solvents (carbon tetrachloride, xylene) by using ultrasonic technique. Absorption coefficient and velocity of ultrasonic waves through different concentrations of these solutions were measured using ultrasonic pulsed generator at constant frequency (800) KHz. The result implies that there is no chemical interaction between (HIPS) molecules and the solvents. 5 tabs.; 18 figs.; 59 refs

  16. Effects of water soaking and/or sodium polystyrene sulfonate addition on potassium content of foods

    OpenAIRE

    Picq, Christian; Asplanato, M.; Bernillon, N.; Fabre, C.; Roubeix, M.; Ricort, J. M.

    2014-01-01

    In this study, we determined, by atomic absorption spectrophotometry, the potassium amount leached by soaking or boiling foods identified by children suffering from chronic renal failure as "pleasure food'' and that they cannot eat because of their low-potassium diet, and evaluated whether addition of sodium polystyrene sulfonate resin (i.e. Kayexalate (R)) during soaking or boiling modulated potassium loss. A significant amount of potassium content was removed by soaking (16% for chocolate a...

  17. Manufacture of Strand Board Bonded with Disposal Expanded Polystyrene as Binder

    OpenAIRE

    Hermawan, Andi; Ohuchi, Takeshi; Fujimoto, Noboru; 大内, 毅; 藤本, 登留

    2010-01-01

    The objective of this study was to evaluate the physical and mechanical properties of strand board bonded with disposal expanded polystyrene (EPS) as binder. The strand board was manufactured using strand made from Douglas-fir beams selected from construction scrap wood. The strands were oriented, and two types of three-layer (face-core-face) strand board were manufactured: one in which the board bounded with only disposal EPS (P board), and the other in which the board bonded with disposal...

  18. Structure and properties of binary polystyrene-epoxy acrylate oligomer mixtures irradiated by electron beams

    International Nuclear Information System (INIS)

    Lomonosova, N.V.

    1995-01-01

    The change in the structure of oriented polymer-oligomer systems based on polystyrene (PS) with M > 10 6 and epoxy acrylate oligomers (aliphatic and aromatic) under irradiation by accelerated electrons was studied using birefringence, isometric heating, IR dichroism, and thermooptical analysis. Mechanical properties of these systems were investigated. It was found that, by adding aliphatic epoxy acrylate to PS and further irradiating this mixture, one can obtain both isotropic and oriented composites with higher strengths, elasticity moduli, and glass transition temperatures

  19. Electrospinning preparation and luminescence properties of Eu(TTA)_3phen/polystyrene composite nanofibers

    Institute of Scientific and Technical Information of China (English)

    张小萍; 温世鹏; 胡水; 张立群; 刘力

    2010-01-01

    Efficient luminescent composite nanofibers,composed of polystyrene(PS,Mw=250000) and europium complex Eu(TTA)3phen(TTA=2-thenoyltrifluoroacetone,phen=1,10-phenanthroline) with diameters ranging from 350 nm to 700 nm,were prepared by electrospinning and characterized by scanning electron microscope(SEM),Fourier transform infrared spectroscopy(FT-IR),fluorescence spectroscopy,and thermogravimetric analysis(TG).The room-temperature fluorescence spectra of the composite nanofibers were composed of the typical E...

  20. Investigation and computer modeling of radiation and thermal decomposition of polystyrene scintillators

    Science.gov (United States)

    Sakhno, Tamara V.; Pustovit, Sergey V.; Borisenko, Artem Y.; Senchishin, Vitaliy G.; Barashkov, Nikolay N.

    2003-12-01

    This paper is devoted to the investigation and computer modeling of radiation and thermal decomposition of luminescent polystyrene compositions. It has been shown, that the stability of the optical properties of luminescent polymer composition depends on its material structure. On the basis of quantum-chemical calculation has been obtained the possible products of PS gamma-radiolysis and the effect of formation of fragments with conjugated double bonds and products with quinone structure has been investigated.

  1. Immobilization of Glucose Oxidase to Nanostructured Films of Polystyrene-block-poly(2-vinylpyridine)

    OpenAIRE

    Bhakta, Samir A; Benavidez, Tomas E; Garcia, Carlos D

    2014-01-01

    A critical step for the development of biosensors is the immobilization of the biorecognition element to the surface of a substrate. Among other materials that can be used as substrates, block copolymers have the untapped potential to provide significant advantages for the immobilization of proteins. To explore such possibility, this manuscript describes the fabrication and characterization of thin-films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP). These films were then used to inv...

  2. Evaluation of the environmental performance of alternatives for polystyrene production in Brazil.

    Science.gov (United States)

    Hansen, Adriana Petrella; da Silva, Gil Anderi; Kulay, Luiz

    2015-11-01

    The global demand for polystyrene is supposed to reach an overall baseline of 23.5 million tons by 2020. The market has experienced the effects of such growth, especially regarding the environmental performance of the production processes. In Brazil, renewable assets have been used to overcome the adverse consequences of this expansion. This study evaluates this issue for the production of Brazilian polystyrene resins, general-purpose polystyrene (GPPS) and high-impact polystyrene (HIPS). The effects of replacing fossil ethylene with a biobased alternative are also investigated. Life Cycle Assessment is applied for ten scenarios, with different technological approaches for renewable ethylene production and an alternative for obtaining bioethanol, which considers the export of electricity. The fossil GPPS and HIPS show a better performance than the partially renewable sources in terms of Climate Change (CC), Terrestrial Acidification (TA), Photochemical Oxidant Formation (POF), and Water Depletion (WD). The exception is Fossil Depletion (FD), a somewhat predictable result. The main environmental loads associated with the renewable options are related to the sugarcane production. Polybutadiene fails to provide greater additional impact to HIPS when compared to GPPS. With regard to obtaining ethylene from ethanol, Adiabatic Dehydration (AD) technology consumes less sugarcane than Adiabatic Dehydration at High Pressure (ADHP), which leads to gains in TA and POF. In contrast, ADHP was more eco-friendly for WD because of its lower water losses and in terms of CC because of the advantageous balance of fossil CO2(eq) at the agricultural stage and the lower consumption of natural gas in ethylene production. The electricity export is an auspicious environmental opportunity because it can counterbalance some of the negative impacts associated with the renewable route. According to a "cradle-to-grave" perspective, the partially renewable resins show a more favorable balance of

  3. Synthesis of side-chain polystyrenes for all organic solution processed OLEDs

    OpenAIRE

    Lorente Sánchez, Alejandro Jose (Dr.)

    2017-01-01

    In the present work side-chain polystyrenes were synthesized and characterized, in order to be applied in multilayer OLEDs fabricated by solution process techniques. Manufacture of optoelectronic devices by solution process techniques is meant to decrease significantly fabrication cost and allow large scale production of such devices. This dissertation focusses in three series, enveloped in two material classes. The two classes differ to each other in the type of charge transport exhibited...

  4. Tritium-doping enhancement of polystyrene by ultraviolet laser and hydrogen plasma irradiation for laser fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Yuki, E-mail: iwasa-y@ile.osaka-u.ac.jp [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yamanoi, Kohei; Iwano, Keisuke; Empizo, Melvin John F.; Arikawa, Yasunobu; Fujioka, Shinsuke; Sarukura, Nobuhiko; Shiraga, Hiroyuki; Takagi, Masaru; Norimatsu, Takayoshi; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Noborio, Kazuyuki; Hara, Masanori; Matsuyama, Masao [Hydrogen Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan)

    2016-11-15

    Highlights: • Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma irradiation. • The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample. • Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption. • Hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time. • UV laser and plasma irradiations can be utilized to fabricate tritium-doped polystyrene shell targets for future laser fusion experiments. - Abstract: We investigate the tritium-doping enhancement of polystyrene by ultraviolet (UV) laser and hydrogen plasma irradiation. Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma. The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample. Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption. In addition, UV laser irradiation is more localized and concentrated at the spot of laser irradiation, while hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time. Both UV laser and plasma irradiations can nevertheless be utilized to fabricate tritium-doped polystyrene targets for future laser fusion experiments. With a high doping rate and efficiency, a 1% tritium-doped polystyrene shell target having 7.6 × 10{sup 11} Bq g{sup −1} specific radioactivity can be obtained at a short period of time thereby decreasing tritium consumption and safety management costs.

  5. Thermodynamic and Kinetic Behavior of the Polystyrene/Poly(vinyl methyl ether) Blend as Studied by Excimer Fluorescence.

    Science.gov (United States)

    1986-01-02

    AD-A±63 895 THERMODYNAMIC AND KINETIC BEHAVIOR OF THE / POLYSTYRENE/POLY(YINYL METHYL E..(U) STANFORD UNIY CALIFDEPT OF CHEMICAL ENGINEERING C N...Polystyrene/Poly(vinyl methyl ether) Blend 7. DEcFRMN 81 toOR 30USptE8 00~ as Studied by Excimer Fluorescence 6 EFRIGOG EOTNME *AUTHOR() a. CONTRACT OR GRANT...werea fondoare ihemoriisof * ~ Ex e sp fluodecositionsdu to deud Gen e and hoog Pinus Florsneis shownhase migrationprocSECURITY CLASIFICTIO OFd

  6. Rapid and low-cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser

    KAUST Repository

    Li, Huawei

    2011-11-01

    In this article, we described a rapid and low-cost method to fabricate polystyrene molds for PDMS microfluidic devices using a CO2 laser system. It takes only several minutes to fabricate the polystyrene mold with bump pattern on top of it using a CO2 laser system. The bump pattern can be easily transferred to PDMS and fabricate microchannles as deep as 3μm on PDMS. © (2012) Trans Tech Publications, Switzerland.

  7. Rapid and low-cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Foulds, Ian G.

    2011-01-01

    In this article, we described a rapid and low-cost method to fabricate polystyrene molds for PDMS microfluidic devices using a CO2 laser system. It takes only several minutes to fabricate the polystyrene mold with bump pattern on top of it using a CO2 laser system. The bump pattern can be easily transferred to PDMS and fabricate microchannles as deep as 3μm on PDMS. © (2012) Trans Tech Publications, Switzerland.

  8. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres

    Science.gov (United States)

    Liu, Huiyu; Chen, Dong; Tang, Fangqiong; Du, Gangjun; Li, Linlin; Meng, Xianwei; Liang, Wei; Zhang, Yangde; Teng, Xu; Li, Yi

    2008-11-01

    A new approach towards the design of gold nanoshells on carboxylated polystyrene spheres (GNCPSs) is reported here. Gold nanoshells were self-assembled on the surface of carboxylated polystyrene spheres by a seed growth method. Chitosan (CHI) was used as a functional agent of carboxylated polystyrene spheres for attaching gold seeds. The surface plasmon resonance (SPR) peak of GNCPSs can be tuned, greatly redshifted, over a broad spectral range including the near-infrared (NIR) wavelength region, which provides maximal penetration of light through tissue. Irradiation of GNCPSs at their peak extinction coefficient results in the conversion of light to heat energy that produces a local rise in temperature. Our study revealed that the Lewis lung carcinoma (LLC) in mice treated with GNCPSs exposed to a low dose of NIR light (808 nm, 4 W cm-2) induced irreversible tissue damage. The tumor volumes of the treatment group by GNCPSs were significantly lower than those of control groups, with an average inhibition rate over 55% (P<0.005). This study proves that GNCPSs are promising in plasmonic photothermal tumor therapy.

  9. The Role of Mucin in the Toxicological Impact of Polystyrene Nanoparticles

    Directory of Open Access Journals (Sweden)

    Iwona Inkielewicz-Stepniak

    2018-05-01

    Full Text Available The development of novel oral drug delivery systems is an expanding area of research and both new approaches for improving their efficacy and the investigation of their potential toxicological effect are crucial and should be performed in parallel. Polystyrene nanoparticles (NPs have been used for the production of diagnostic and therapeutic nanosystems, are widely used in food packaging, and have also served as models for investigating NPs interactions with biological systems. The mucous gel layer that covers the epithelium of the gastrointestinal system is a complex barrier-exchange system that it is mainly constituted by mucin and it constitutes the first physical barrier encountered after ingestion. In this study, we aimed to investigate the effect of polystyrene NPs on mucin and its potential role during NP–cell interactions. For this purpose, we evaluated the interaction of polystyrene NPs with mucin in dispersion by dynamic light scattering and with a deposited layer of mucin using a quartz crystal microbalance with dissipation technology. Next, we measured cell viability and the apoptotic state of three enterocyte-like cell lines that differ in their ability to produce mucin, after their exposure to the NPs. Positive charged NPs showed the ability to strongly interact and aggregate mucin in our model. Positive NPs affected cell viability and induced apoptosis in all cell lines independently of their ability of produce mucin.

  10. Electrospinning fabrication and oxygen sensing properties of Cu(I) complex-polystyrene composite microfibrous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liyan, E-mail: wanglykmmc@163.co [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, XiAn (China); Xu Yun [Department of Orthodontics, School of Stomatology, KunMing Medical College, Kunming (China); Lin Zhu [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, XiAn (China); Zhao Ning [Department of Orthodontics, School of Stomatology, West China College, SiChuan University, ChengDu (China); Xu Yanhua [Department of Orthodontics, School of Stomatology, KunMing Medical College, Kunming (China)

    2011-07-15

    In this paper, a phosphorescent Cu(I) complex of [Cu(POP)(ECI-Phen)]BF{sub 4}, where POP=bis[2-(diphenylphosphino)phenyl]ether, and ECI-Phen=1-ethyl-2-(N-ethyl-carbazole-yl-4-)imidazo[4,5-f]1,10-phenanthroline, is incorporated into a polystyrene matrix of polystyrene (PS) to form microfibers membranes. The possibility of using the resulted composite microfibrous membranes as an optical oxygen sensor is explored. Good linearity and short response time are obtained with a sensitivity of 9.8. These results suggest that phosphorescent [Cu(POP)(ECI-Phen)]BF{sub 4} is a promising candidate for oxygen-sensors and PS is an excellent matrix for oxygen sensing material because it owns a large surface-area-to-volume ratio and can supply a homogeneous matrix for probe molecules. Further analysis suggests that the molecular structure of diamine ligand in Cu(I) complexes is critical for sensitivity due to the characteristic electronic structure of excited state Cu(I) complexes. - Highlights: {yields} Cu(I) complex is incorporated into polystyrene matrix to form nanofibers. {yields} Resulted sample exhibit good linearity and short response time. {yields} PS is an excellent matrix for oxygen sensing material for probe molecules. {yields} Molecular structure of diamine ligand is critical for sensitivity.

  11. Electrospinning fabrication and oxygen sensing properties of Cu(I) complex-polystyrene composite microfibrous membranes

    International Nuclear Information System (INIS)

    Wang Liyan; Xu Yun; Lin Zhu; Zhao Ning; Xu Yanhua

    2011-01-01

    In this paper, a phosphorescent Cu(I) complex of [Cu(POP)(ECI-Phen)]BF 4 , where POP=bis[2-(diphenylphosphino)phenyl]ether, and ECI-Phen=1-ethyl-2-(N-ethyl-carbazole-yl-4-)imidazo[4,5-f] 1,10-phenanthroline, is incorporated into a polystyrene matrix of polystyrene (PS) to form microfibers membranes. The possibility of using the resulted composite microfibrous membranes as an optical oxygen sensor is explored. Good linearity and short response time are obtained with a sensitivity of 9.8. These results suggest that phosphorescent [Cu(POP)(ECI-Phen)]BF 4 is a promising candidate for oxygen-sensors and PS is an excellent matrix for oxygen sensing material because it owns a large surface-area-to-volume ratio and can supply a homogeneous matrix for probe molecules. Further analysis suggests that the molecular structure of diamine ligand in Cu(I) complexes is critical for sensitivity due to the characteristic electronic structure of excited state Cu(I) complexes. - Highlights: → Cu(I) complex is incorporated into polystyrene matrix to form nanofibers. → Resulted sample exhibit good linearity and short response time. → PS is an excellent matrix for oxygen sensing material for probe molecules. → Molecular structure of diamine ligand is critical for sensitivity.

  12. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications.

    Science.gov (United States)

    Lovera, Pierre; Creedon, Niamh; Alatawi, Hanan; Mitchell, Micki; Burke, Micheal; Quinn, Aidan J; O'Riordan, Alan

    2014-05-02

    In this paper, we describe the fabrication, simulation and characterization of dense arrays of freestanding silver capped polystyrene nanotubes, and demonstrate their suitability for surface enhanced Raman scattering (SERS) applications. Substrates are fabricated in a rapid, low-cost and scalable way by melt wetting of polystyrene (PS) in an anodized alumina (AAO) template, followed by silver evaporation. Scanning electron microscopy reveals that substrates are composed of a dense array of freestanding polystyrene nanotubes topped by silver nanocaps. SERS characterization of the substrates, employing a monolayer of 4-aminothiophenol (4-ABT) as a model molecule, exhibits an enhancement factor of ∼1.6 × 10(6), in agreement with 3D finite difference time domain simulations. Contact angle measurements of the substrates revealed super-hydrophobic properties, allowing pre-concentration of target analyte into a small volume. These super-hydrophobic properties of the samples are taken advantage of for sensitive detection of the organic pollutant crystal violet, with detection down to ∼400 ppt in a 2 μl aliquot demonstrated.

  13. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications

    International Nuclear Information System (INIS)

    Lovera, Pierre; Creedon, Niamh; Alatawi, Hanan; Mitchell, Micki; Burke, Micheal; Quinn, Aidan J; O’Riordan, Alan

    2014-01-01

    In this paper, we describe the fabrication, simulation and characterization of dense arrays of freestanding silver capped polystyrene nanotubes, and demonstrate their suitability for surface enhanced Raman scattering (SERS) applications. Substrates are fabricated in a rapid, low-cost and scalable way by melt wetting of polystyrene (PS) in an anodized alumina (AAO) template, followed by silver evaporation. Scanning electron microscopy reveals that substrates are composed of a dense array of freestanding polystyrene nanotubes topped by silver nanocaps. SERS characterization of the substrates, employing a monolayer of 4-aminothiophenol (4-ABT) as a model molecule, exhibits an enhancement factor of ∼1.6 × 10 6 , in agreement with 3D finite difference time domain simulations. Contact angle measurements of the substrates revealed super-hydrophobic properties, allowing pre-concentration of target analyte into a small volume. These super-hydrophobic properties of the samples are taken advantage of for sensitive detection of the organic pollutant crystal violet, with detection down to ∼400 ppt in a 2 μl aliquot demonstrated. (paper)

  14. Long-term clearance of inhaled magnetite and polystyrene latex from the lung: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, R.B.; Halpern, M.; Lippmann, M. (New York Univ., NY (USA). Inst. of Environmental Medicine)

    1982-01-01

    As part of a larger study evaluating the applicability of a magnetic detection technique for monitoring lung retention of inhaled particles, simultaneous radiological measurements of the retention of magnetite and polystyrene latex particles in four donkeys were performed. The radiometric measurements were performed using a scintillation detector series modified for separation of the higher energy ..gamma..-emissions of /sup 59/Fe and /sup 85/Sr. In all animals, after 24 hr post-exposure, both polystyrene and magnetite exhibited a relatively rapid phase for 80 days (Tsub(1/2) = 15-22 days) which, in three donkeys, was clearly followed by a slower phase (Tsub(1/2) = 42-173 days); activity levels after 80 days in the fourth donkey were too low to permit determination of clearance rate. During the second phase, a deviation in pattern was clearly observed between the two aerosols, the polystyrene being cleared consistently faster than the magnetite. It is suggested that this deviation implies that, beginning at this time, there were functional differences between the dominant clearance mechanisms for the two aerosols. Exactly what these mechanisms were, or whether the difference was attributable to specific differences in particle characteristics, could not be determined.

  15. Long-term clearance of inhaled magnetite and polystyrene latex from the lung: a comparison

    International Nuclear Information System (INIS)

    Schlesinger, R.B.; Halpern, M.; Lippmann, M.

    1982-01-01

    As part of a larger study evaluating the applicability of a magnetic detection technique for monitoring lung retention of inhaled particles, simultaneous radiological measurements of the retention of magnetite and polystyrene latex particles in four donkeys were performed. The radiometric measurements were performed using a scintillation detector series modified for separation of the higher energy γ-emissions of 59 Fe and 85 Sr. In all animals, after 24 hr post-exposure, both polystyrene and magnetite exhibited a relatively rapid phase for 80 days (Tsub(1/2) = 15-22 days) which, in three donkeys, was clearly followed by a slower phase (Tsub(1/2) = 42-173 days); activity levels after 80 days in the fourth donkey were too low to permit determination of clearance rate. During the second phase, a deviation in pattern was clearly observed between the two aerosols, the polystyrene being cleared consistently faster than the magnetite. It is suggested that this deviation implies that, beginning at this time, there were functional differences between the dominant clearance mechanisms for the two aerosols. Exactly what these mechanisms were, or whether the difference was attributable to specific differences in particle characteristics, could not be determined. (U.K.)

  16. Genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food

    Directory of Open Access Journals (Sweden)

    Makoto Nakai

    2014-01-01

    Full Text Available Here, we conducted in vitro genotoxicity tests to evaluate the genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food. Styrene oligomers were extracted with acetone and the extract was subjected to the Ames test (OECD test guideline No. 471 and the in vitro chromosomal aberration test (OECD test guideline No. 473 under good laboratory practice conditions. The concentrations of styrene dimers and trimers in the concentrated extract were 540 and 13,431 ppm, respectively. Extraction with acetone provided markedly higher concentrations of styrene oligomers compared with extraction with 50% ethanol aqueous solution, which is the food simulant currently recommended for use in safety assessments of polystyrene by both the United States Food and Drug Administration and the European Food Safety Authority. And these high concentrations of styrene dimers and trimers were utilized for the evaluation of genotoxicity in vitro. Ames tests using five bacterial tester strains were negative both in the presence or absence of metabolic activation. The in vitro chromosomal aberration test using Chinese hamster lung cells (CHL/IU was also negative. Together, these results suggest that the risk of the genotoxicity of styrene oligomers that migrate from polystyrene food packaging into food is very low.

  17. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres

    International Nuclear Information System (INIS)

    Liu Huiyu; Chen Dong; Tang Fangqiong; Li Linlin; Meng Xianwei; Li Yi; Du Gangjun; Liang Wei; Zhang Yangde; Teng Xu

    2008-01-01

    A new approach towards the design of gold nanoshells on carboxylated polystyrene spheres (GNCPSs) is reported here. Gold nanoshells were self-assembled on the surface of carboxylated polystyrene spheres by a seed growth method. Chitosan (CHI) was used as a functional agent of carboxylated polystyrene spheres for attaching gold seeds. The surface plasmon resonance (SPR) peak of GNCPSs can be tuned, greatly redshifted, over a broad spectral range including the near-infrared (NIR) wavelength region, which provides maximal penetration of light through tissue. Irradiation of GNCPSs at their peak extinction coefficient results in the conversion of light to heat energy that produces a local rise in temperature. Our study revealed that the Lewis lung carcinoma (LLC) in mice treated with GNCPSs exposed to a low dose of NIR light (808 nm, 4 W cm -2 ) induced irreversible tissue damage. The tumor volumes of the treatment group by GNCPSs were significantly lower than those of control groups, with an average inhibition rate over 55% (P<0.005). This study proves that GNCPSs are promising in plasmonic photothermal tumor therapy.

  18. Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique

    International Nuclear Information System (INIS)

    Tian Chungui; Wang Enbo; Kang Zhenhui; Mao Baodong; Zhang Chao; Lan Yang; Wang Chunlei; Song Yanli

    2006-01-01

    In this paper, an improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and polystyrene (PS) colloids and the reducing agent in the formation of Ag nanoparticles. Due to the multi-functional characteristic of PEI, Ag seeds formed in-situ and were immobilized on the surface of PEI-modified PS colloids and no free Ag clusters coexist with the Ag 'seeding' PS colloids in the system. Then, the additional agents could be added into the resulting dispersions straightly to produce a thick Ag nanoshell. The Ag nanoshell with controllable thickness was formed on the surface of PS by the 'one-pot' surface seeding and shell growth method. The Ag-coverage increased gradually with the increasing of mass ratio of AgNO 3 /PS. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. - Graphical abstract: An improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. Display Omitted

  19. Polystyrene tube radioimmunoabsorbent assay for IgE anti-penicillin antibody

    International Nuclear Information System (INIS)

    Urena, V.; Delgado, R.G.; Daroca, P.; Lahoz, C.

    1977-01-01

    A radioimmunoassay technique has been developed based on the binding capacity of polystyrene for proteins. The method was tested on sera from thirteen patients with suspected penicillin allergy, five healthy controls, and three patients with seasonal pollen reactions. The results were compared with those obtained by the radio-allergoabsorbent method (RAST) and with basophil degranulation by penicillin. A penicillin/ovalbumin conjugate (pen-OA) was prepared and polystyrene tubes were incubated with pen-OA, 3% human serum albumin to block free sites, 1/10 dilution of test serum, anti-IgE antiserum specific for epsilon chains, and 125 I-IgE. The tubes were washed after the incubation period and the empty tubes counted in a γ scintillation counter. The specificity of the method was tested by an inhibition assay. The technique seemed more sensitive than the RAST method, the results were reproducible and in general showed good correlation with those of the RAST method. This polystyrene tube radioimmunoabsorbent method therefore provides a simple, specific and sensitive diagnostic technique for penicillin allergy. (U.K)

  20. Polystyrene nanoparticles facilitate the internalization of impermeable biomolecules in non-tumour and tumour cells from colon epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Cabeza, Laura [University of Granada, Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER) (Spain); Cano-Cortés, Victoria; Rodríguez, María J. [University of Granada, Department of Pharmaceutical and Organic Chemistry (Spain); Vélez, Celia; Melguizo, Consolación, E-mail: melguizo@ugr.es [University of Granada, Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER) (Spain); Sánchez-Martín, Rosario M., E-mail: rmsanchez@ugr.es [University of Granada, Department of Pharmaceutical and Organic Chemistry (Spain); Prados, Jose [University of Granada, Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER) (Spain)

    2015-01-15

    Advanced colon cancer has a poor prognosis due to the limited effectiveness of current chemotherapies. Treatment failures may be avoided by the utilization of nanoparticles, which can enhance the effects of antitumor drugs, reduce their side effects and increase their directionality. Polystyrene nanoparticles have shown high biocompatibility and appropriate physicochemical properties and may represent a novel and more effective approach against colon cancer. In the present study, polystyrene nanoparticles were synthesized and fluorescently labelled, analyzing their cell internalization, intracellular localization and capacity to release transported molecules in tumour and non-tumour human colon cell lines (T84 and CCD-18). Flow cytometry and fluorescence microscopy studies demonstrated that polystyrene nanoparticles are an effective vehicle for the intracellular delivery of small molecules into colon epithelium cells. The percentage cell uptake was around 100 % in both T84 and CCD-18 cell lines after only 24 h of exposure and was cell confluence-independent. The polystyrene nanoparticles showed no cytotoxicity in either colon cell line. It was found that small molecules can be efficiently delivered into colon cells by using a disulphide bridge as release strategy. Analysis of the influence of the functionalization of the polystyrene nanoparticles surface on the internalization efficiency revealed some morphological changes in these cells. These results demonstrate that polystyrene nanoparticles may improve the transport of biomolecules into colon cells which could have a potential application in chemotherapeutic treatment against colon cancer.

  1. Polystyrene nanoparticles facilitate the internalization of impermeable biomolecules in non-tumour and tumour cells from colon epithelium

    International Nuclear Information System (INIS)

    Cabeza, Laura; Cano-Cortés, Victoria; Rodríguez, María J.; Vélez, Celia; Melguizo, Consolación; Sánchez-Martín, Rosario M.; Prados, Jose

    2015-01-01

    Advanced colon cancer has a poor prognosis due to the limited effectiveness of current chemotherapies. Treatment failures may be avoided by the utilization of nanoparticles, which can enhance the effects of antitumor drugs, reduce their side effects and increase their directionality. Polystyrene nanoparticles have shown high biocompatibility and appropriate physicochemical properties and may represent a novel and more effective approach against colon cancer. In the present study, polystyrene nanoparticles were synthesized and fluorescently labelled, analyzing their cell internalization, intracellular localization and capacity to release transported molecules in tumour and non-tumour human colon cell lines (T84 and CCD-18). Flow cytometry and fluorescence microscopy studies demonstrated that polystyrene nanoparticles are an effective vehicle for the intracellular delivery of small molecules into colon epithelium cells. The percentage cell uptake was around 100 % in both T84 and CCD-18 cell lines after only 24 h of exposure and was cell confluence-independent. The polystyrene nanoparticles showed no cytotoxicity in either colon cell line. It was found that small molecules can be efficiently delivered into colon cells by using a disulphide bridge as release strategy. Analysis of the influence of the functionalization of the polystyrene nanoparticles surface on the internalization efficiency revealed some morphological changes in these cells. These results demonstrate that polystyrene nanoparticles may improve the transport of biomolecules into colon cells which could have a potential application in chemotherapeutic treatment against colon cancer

  2. The surface pressure dynamics and appearance of mixed monolayers of cholesterol and different sized polystyrenes at an air-water interface.

    Science.gov (United States)

    Mudgil, Poonam; Dennis, Gary R; Millar, Thomas J

    2005-02-15

    Synthetic polymers are increasingly being used in situations where they are designed to interact with biological systems. As a result, it is important to investigate the interactions of the polymers with biochemicals. We have used cholesterol, as an example of an important biological surfactant component, to study its interactions with polystyrene. Mixed monolayers of cholesterol and one of two different molecular weight polystyrenes were formed at an air-water interface to investigate their interactions and to determine whether the size of the polystyrene affected the interaction. The pressure-area (pi-A) isocycles of mixed monolayers of cholesterol and polystyrene MW 2700 or polystyrene MW32700 showed that strongest attractive interactions occur at high surface pressures and in polystyrene rich films. The excess area and excess free energy of mixing were most negative at high surface pressures and at high mole fraction of polystyrene. The most stable mixed monolayers were formed with X(PS2700) = 0.9 and X(PS32700) = 0.09. Microscopic observation of the mixed monolayers of cholesterol and polystyrene showed the formation of stable islands in the cholesterol/polystyrene mixtures. These observations, the nature of the inflection points in the isocycles, and the anomalous changes in free energy lead us to conclude that there is a stable rearrangement of polystyrene into compact islands when it is mixed with cholesterol. Any excess cholesterol is excluded from these islands and remains as a separate film surrounding the islands.

  3. Reversible and long-term immobilization in a hydrogel-microbead matrix for high-resolution imaging of Caenorhabditis elegans and other small organisms

    Science.gov (United States)

    Cornaglia, Matteo; Krishnamani, Gopalan; Zhang, Jingwei; Mouchiroud, Laurent; Lehnert, Thomas; Auwerx, Johan; Gijs, Martin A. M.

    2018-01-01

    The nematode Caenorhabditis elegans is an important model organism for biomedical research and genetic studies relevant to human biology and disease. Such studies are often based on high-resolution imaging of dynamic biological processes in the worm body tissues, requiring well-immobilized and physiologically active animals in order to avoid movement-related artifacts and to obtain meaningful biological information. However, existing immobilization methods employ the application of either anesthetics or servere physical constraints, by using glue or specific microfluidic on-chip mechanical structures, which in some cases may strongly affect physiological processes of the animals. Here, we immobilize C. elegans nematodes by taking advantage of a biocompatible and temperature-responsive hydrogel-microbead matrix. Our gel-based immobilization technique does not require a specific chip design and enables fast and reversible immobilization, thereby allowing successive imaging of the same single worm or of small worm populations at all development stages for several days. We successfully demonstrated the applicability of this method in challenging worm imaging contexts, in particular by applying it for high-resolution confocal imaging of the mitochondrial morphology in worm body wall muscle cells and for the long-term quantification of number and size of specific protein aggregates in different C. elegans neurodegenerative disease models. Our approach was also suitable for immobilizing other small organisms, such as the larvae of the fruit fly Drosophila melanogaster and the unicellular parasite Trypanosoma brucei. We anticipate that this versatile technique will significantly simplify biological assay-based longitudinal studies and long-term observation of small model organisms. PMID:29509812

  4. Self-assembly of poly(vinylidene fluoride–polystyrene block copolymers in solution: Effects of the length of polystyrene block and solvent compositions

    Directory of Open Access Journals (Sweden)

    Yao Wu

    2017-09-01

    Full Text Available We report the first preliminary and extensive study on the solution self-assembly behaviors of poly(vinylidene fluoride–b-polystyrene (PVDF–PS block copolymers. The two PVDF–PS polymers we examined have the same length of PVDF block with number averaged repeating unit of 180, but distinctly different lengths of PS block with number averaged repeating unit of 125 and 1202. The self-assembly experiments were carried out in a series of mixture solutions containing a good solvent N,N-dimethylformamide and a selective solvent with different ratios. Our results showed that the self-assembly process was greatly affected by the two factors we examined, i.e. the length of the PS block and the solvent composition. We hope that our study could stimulate more research on the self-assembly of PVDF-containing polymers in solution.

  5. Influence of polystyrene addition to cellulose on chemical structure and properties of bio-oil obtained during pyrolysis

    International Nuclear Information System (INIS)

    Rutkowski, Piotr; Kubacki, Andrzej

    2006-01-01

    The cellulose (C), polystyrene (PS) and cellulose/polystyrene (C-PS) mixtures (3:1, 1:1, 1:3 w/w) were subjected to a pyrolysis process to produce bio-oil. The pyrolytic oil yield was in the range of 45.5-94.8 wt% depending on the composition of the sample. Pyrolysis of polystyrene gives the highest oil yield, whereas for cellulose, the yield of liquid products was the lowest. The basic physicochemical properties of oils are strongly influenced by the original material and do not change additively. The polystyrene addition to cellulose clearly improves the quality of the bio-oil, resulting in decreases in acid number, pour point and density. The change of color is not so distinct. The FT-IR analysis of the oils showed that the oxygen functionalities and hydrocarbons contents highly depend on the composition of the cellulose/polystyrene mixture. The fractionation of bio-oils by column chromatography using hexane and benzene was followed by GC-MS analyses. Different classes of organic compounds were identified, i.e., carboxylic acids, phenols, aldehydes, ketones, esters, ethers and unsaturated linear and cyclic hydrocarbons. The proportion of hydrocarbons increases with a decrease of the cellulose/polystyrene ratio. The obtained results indicate that during pyrolysis, not only does decomposition of cellulose and polystyrene occur, but also, reactions between products from C and PS take place. That was proved by the presence of compounds identified only in the bio-oils obtained from C-PS compositions

  6. Echicetin coated polystyrene beads: a novel tool to investigate GPIb-specific platelet activation and aggregation.

    Directory of Open Access Journals (Sweden)

    Alexey Navdaev

    Full Text Available von Willebrand factor/ristocetin (vWF/R induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways.

  7. Echicetin Coated Polystyrene Beads: A Novel Tool to Investigate GPIb-Specific Platelet Activation and Aggregation

    Science.gov (United States)

    Petunin, Alexey; Clemetson, Kenneth J.; Gambaryan, Stepan; Walter, Ulrich

    2014-01-01

    von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways. PMID:24705415

  8. Organic nanostructures on silicon, created with semitransparent polystyrene spheres and 248 nm laser pulses

    International Nuclear Information System (INIS)

    Rothe, Erhard W; Manke, Charles W; Piparia, Reema; Baird, Ronald J

    2008-01-01

    Arrays of nanostructures are made starting with a template of close-packed, polystyrene spheres on a silicon surface. The spheres are either 1.091 or 2.99 μm in diameter (d) and are of polystyrene (PS). They are irradiated with a pulse of either 308 or 248 nm light to which they are transparent and semitransparent, respectively. A transparent sphere with d = 1.091 μm diameter concentrates incident light onto a small substrate area. As has been previously reported, that creates silicon nanobumps that rise from circular craters. At 248 nm and d = 2.99 μm, the light energy is mainly absorbed, destroys the sphere, and leaves a shrunken mass (typically about 500 nm wide and 100 nm high) of organic material that is probably polystyrene and its thermal degradation products. At 248 nm and d = 1.091 μm, the residual organic structures are on the order of 300 nm wide and 100 nm high. A distinctive feature is that these organic structures are connected by filaments that are on the order of 50 nm wide and 10 nm high. Filaments form because the close-packed PS spheres expand into each other during the early part of the laser pulse, and then, as the main structures shrink, their viscoelasticity leads to threads between them. Our results with 248 nm and d = 1.091 μm differ from those described by Huang et al with 248 nm and d = 1.0 μm. Future studies might include the further effect of wavelength and fluence upon the process as well the use of other materials and the replacement of nanospheres by other focusing shapes, such as ellipsoids or rods

  9. Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, H., E-mail: helene.takacs@gmail.com [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Viala, B.; Hermán, V. [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); Tortai, J.-H. [LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Duclairoir, F. [Université Grenoble Alpes, INAC, Grenoble 38054 (France); CEA, INAC, Grenoble 38054 (France)

    2016-03-07

    This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P{sub 1}/P{sub 2}, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P{sub 1} = pyrene-terminated polystyrene is the second shell for electrical insulation, and P{sub 2} = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievement of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (∼0.6 T) and ultra-high resistivity (∼10{sup 10 }μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P{sub 1}. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.

  10. Development of simple immunoradiometric assays using avidin coupled to polystyrene beads as a common solid phase

    International Nuclear Information System (INIS)

    Jyotsna, N.; Singh, Y.; Chouthkanthiwar, V.; Paradkar, S.; Sivaprasad, N.

    1998-01-01

    In this paper, we describe the preparation and application of avidin coupled polystyrene beads as a common solid phase for use in immunoradiometric assays (IRMAs). The assay system is based on two matched commercial monoclonal antibodies, of which, the capture antibody is biotinylated using biotinamidocaproate N-hydroxysuccinimide ester and the detection antibody is radiolabeled with 125 I by conventional Chloramine-T method. Avidin was immobilized on the polystyrene beads through a primary coat of bovine serum albumin using glutaraldhyde activation method. Various factors, such as concentration of reagents, incubation time, etc. were optimised to obtain a simple assay protocol consisting of only two pipetting steps, namely, that of a mixture of the two labelled antibodies (radiolabelled and biotinylated) and of the standard or sample. The advantage of the Avidin-Biotin system is the improved sensitivity, economy of antibody and the possibility to use a common solid phase in assays for different analytes. Using the polystyrene beads along with the novel decanting device, it has been possible to achieve the convenience of the 'coated-tube' technology without the expensive automation necessary for large scale preparation of antibody coated tubes. This protocol has been successfully applied to Prolactin, LH and FSH assays. The sensitivity of the Prolactin assay is 8μIU/mL (0.3 ng/mL), that of the FSH assay is 1mIU/mL and that of the LH assay is 0.9 mIU/mL. The intra-assay and inter-assay variations were <10%. Shelf life of the avidin coupled beads was found to be about 8 months and that of the biotin labelled antibodies up to 18 months. (author)

  11. Syntheses, Magnetic and Spectral Studies on the Coordination Compounds of the Polystyrene-anchored Thiazolidin-4-one

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2012-01-01

    Full Text Available The reaction between polystyrene 3-formylsalicylate and thiophene-2-carboxylic acid hydrazide in DMF in the presence of ethyl acetate results in the formation of polystyrene N-(2-carbamoylthienyl-3'-carboxy-2'-hydroxybenzylideneimine (I. A benzene suspension of I reacts with mercaptoacetic acid and forms the polystyrene N-(2-carbamoylthienyl-C-(3'-carboxy-2'-hydroxyphenyl thiazolidin-4-one, PSCH2–LH2 (II. A DMF suspension of II reacts with Zn(II, Co(II, Cu(II, Zr(OH2(IV and MoO2(VI ions and forms the corresponding polystyrene-anchored coordination compounds, [PSCH2–LZn(DMF] (III, [PSCH2–LCo(DMF3] (IV, [PSCH2–LHCu(OAc] (V, [PSCH2–LH2Zr(OH2(OAc2] (VI and [PSCH2–LHMoO2(acac] (VII respectively. The polystyrene-anchored coordination compounds have been characterized on the basis of elemental analyses, spectral (IR, reflectance, ESR studies and magnetic susceptibility measurements. II acts as a neutral tridentate ONS donor ligand in VI, a monobasic bidentate OS donor ligand in VII, a monobasic tridentate ONS donor ligand in V and a dibasic tridentate ONO donor ligand in III and IV. The acetato groups behave as monodentate ligands in V and VI. A square-planar structure for V, a tetrahedral structure for III, an octahedral structure for IV and VII and a pentagonal-bipyramidal structure for VI are suggested.

  12. Studies on radiation damage to polystyrene exchanger in different cationic forms

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Jagtap, N.B.; Waghmare, S.; Kulkarni, S.A.

    1985-01-01

    Polystyrene divinylbenzene copolymer containing nuclear sulfonic acid functional group and H + , Sr 2+ , Cu 2+ , UO 2 2+ or Al 3+ exchangeable cation was subjected to varying gamma doses to study the effects on its physicochemical properties. The exchange capacity and moisture content decreased, the maximum effect was in the case of Cu ++ form of the resin. The data are explained on the basis of metal oxygen bonding. IR spectra indicated the formation of new exchange sites upon irradiation and disapearance of the original functional groups. (author)

  13. Fabrication and characteristics of self-assembly nano-polystyrene films by laser induced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Tingting [Department of Applied Physics, Chongqing University, Chongqing 401331 (China); Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Cai, Congzhong [Department of Applied Physics, Chongqing University, Chongqing 401331 (China); Peng, Liping [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Wu, Weidong, E-mail: wuweidongding@163.com [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2013-10-01

    The self-assembly nano-polystyrene (PS) films have been prepared by laser induced CVD at room temperature. The XPS, Raman and UV–vis absorption spectra all indicated that the films were PS. The optical properties, microstructure and controllable nanostructure of PS films have been investigated. Dewetting-like microstructure in PS films was investigated and uniform island structures with a diameter of about 200 nm were observed at the deposition pressure of 14 Pa. The films possess good toughness and precisely controlled thicknesses. The free-standing PS films with thickness of 10 nm could be obtained by this method though a series of process.

  14. Influence of gamma radiation on antibodies fixation on polystyrene. Application to ELISA enzyme immunoassay

    International Nuclear Information System (INIS)

    Esterlin, S.

    1986-01-01

    This thesis is divided into two parts: the first part includes a description of the ELISA test, a comparative analysis of the main supports (polystyrene microtitration trays) used for this technique and an evaluation of gamma radiation effects on the quality of the supports. The study was carried out with the following antigens: Spiroplasma citri R8A2, a tymovirus and Tristeza virus. The second part dealt with the effects of gamma radiations on antibodies and antibody-support system (interaction immobilized immunoglobulins-plastic support) [fr

  15. Properties of the ukrainian polystyrene-based plastic scintillator UPS 923A

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Chirikov-Zorin, I.; Lyablin, M.; Chokheli, D.; Bellettini, G.; Mensione, A.; Tokar, S; Giokaris, N.; Manousakis-Katsikakis, A.

    2005-01-01

    The polystyrene-based scintillator UPS 923A was chosen for upgrading of the muon system for the CDF detector at the Fermilab Tevatron. Properties of this scintillator such as light output, light attenuation, long-term stability and also timing characteristics of the scintillator and wavelength shifting fibers were investigated. The method for the Bulk Attenuation Length measurements of the scintillator to its own light emitted was proposed. Comparative measurements of the characteristics of the UPS 923A and the polyvinyltoluene-based scintillator NE 114 were performed. It was found that natural aging of the NE 114 was two times faster than that of the UPS 923A

  16. Designing strip footing foundations using expanded polystyrene (EPS) as fill material

    DEFF Research Database (Denmark)

    Psarropoulos, Prodromos; Zania, Varvara; Spyrakos, Konstantinos

    2010-01-01

    One of the modern uses of expanded polystyrene (EPS) is in strip footings as fill material. The current study investigates the effect of the geofoam filling in the static and seismic design of the base slab founded on strip footings. For this purpose the finite element method is employed, and three......-dimensional as well as two-dimensional parametric analyses are conducted taking into account static and seismic loading conditions. The interaction of the soil–geofoam–foundation system is taken into consideration. The use of EPS as fill material in foundation systems is proven to be not only technically but also...

  17. Binding and orientation of fibronectin on polystyrene surfaces using immobilized bacterial adhesin-related peptides.

    Science.gov (United States)

    Klueh, U; Bryers, J D; Kreutzer, D L

    2003-10-01

    Fibronectin (FN) is known to bind to bacteria via high affinity receptors on bacterial surfaces known as adhesins. The binding of bacteria to FN is thought to have a key role in foreign device associated infections. For example, previous studies have indicated that Staphylococcus aureus adhesins bind to the 29 kDa NH(3) terminus end of FN, and thereby promote bacteria adherence to surfaces. Recently, the peptide sequences within the S. aureus adhesin molecule that are responsible for FN binding have been identified. Based on these observations, we hypothesize that functional FN can be bound and specifically oriented on polystyrene surfaces using bacterial adhesin-related (BRP-A) peptide. We further hypothesize that monoclonal antibodies that react with specific epitopes on the FN can be used to quantify both FN binding and orientation on these surfaces. Based on this hypothesis, we initiated a systematic investigation of the binding and orientation of FN on polystyrene surfaces using BRP-A peptide. To test this hypothesis, the binding and orientation of the FN to immobilized BRP-A was quantified using (125)I-FN, and monoclonal antibodies. (125)I-FN was used to quantitate FN binding to peptide-coated polystyrene surfaces. The orientation of bound FN was demonstrated by the use of monoclonal antibodies, which are reactive with the amine (N) or carboxyl (C) termini of the FN. The results of our studies demonstrated that when the BRP-A peptide was used to bind FN to surfaces that: 1. functional FN was bound to the peptide; 2. anti-C terminus antibodies bound to the peptide FN; and 3. only limited binding of anti-N terminus antibodies to peptide-bound FN occurred. We believe that the data that indicate an enhanced binding of anti-C antibodies reactive to anti-N antibodies are a result of the FN binding in an oriented manner with the N termini of FN bound tightly to the BRP-A on the polystyrene surface. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 36

  18. Ileocolic Perforation Secondary to Sodium Polystyrene Sulfonate in Sorbitol Use: A Case Report

    Directory of Open Access Journals (Sweden)

    Vincent Trottier

    2009-01-01

    Full Text Available Hyperkalemia is a common condition encountered in medical and surgical patients. It can lead to various complications including cardiac arrhythmias. Sodium polystyrene sulfonate (SPS in sorbitol is an ion-exchange resin that can be used to treat hyperkalemia. It can be used in enema or in oral form. The present article describes the case of an intensive care unit patient who experienced severe, diffuse, intestinal perforation induced by the use of SPS-sorbitol, requiring multiple laparotomies, followed by a brief review of the relevant literature and recommendations regarding the use of SPS-sorbitol.

  19. Ileocolic perforation secondary to sodium polystyrene sulfonate in sorbitol use: A case report

    Science.gov (United States)

    Trottier, Vincent; Drolet, Sébastien; Morcos, Mohib W

    2009-01-01

    Hyperkalemia is a common condition encountered in medical and surgical patients. It can lead to various complications including cardiac arrhythmias. Sodium polystyrene sulfonate (SPS) in sorbitol is an ion-exchange resin that can be used to treat hyperkalemia. It can be used in enema or in oral form. The present article describes the case of an intensive care unit patient who experienced severe, diffuse, intestinal perforation induced by the use of SPS-sorbitol, requiring multiple laparotomies, followed by a brief review of the relevant literature and recommendations regarding the use of SPS-sorbitol. PMID:19826644

  20. Shock Hugoniot and temperature data for polystyrene obtained with quartz standard

    International Nuclear Information System (INIS)

    Ozaki, N.; Kimura, T.; Miyanishi, K.; Endo, T.; Sano, T.; Shigemori, K.; Azechi, H.; Hironaka, Y.; Kadono, T.; Nagatomo, H.; Nakai, M.; Norimatsu, T.; Otani, K.; Shiroshita, A.; Sunahara, A.; Ikoma, M.; Hori, Y.; Vinci, T.; Ree, F. H.; Iwamoto, A.

    2009-01-01

    Equation-of-state data, not only pressure and density but also temperature, for polystyrene (CH) are obtained up to 510 GPa. The region investigated in this work corresponds to an intermediate region, bridging a large gap between available gas-gun data below 60 GPa and laser shock data above 500 GPa. The Hugoniot parameters and shock temperature were simultaneously determined by using optical velocimeters and pyrometers as the diagnostic tools and the α-quartz as a new standard material. The CH Hugoniot obtained tends to become stiffer than a semiempirical chemical theoretical model predictions at ultrahigh pressures but is consistent with other models and available experimental data.

  1. Polystyrene-poly(vinylphenol) copolymers as compatibilzers for organic-inorganic composites

    International Nuclear Information System (INIS)

    Landry, C.J.T.; Coltrain, B.K.; Teegarden, D.M.

    1996-01-01

    Random, graft, and block copolymers of polystyrene (PS) and poly(4-vinylphenol) (PVPh), and PVPh homopolymer are shown to act as compatibilizers for incompatible organic-inorganic composite materials. The VPh component reacts, or interacts strongly with the polymerizing inorganic (titanium or zirconium) alkoxide. The organic components studied were PS, poly(vinyl methyl ether), and poly(styrene-co-acrylonitrile). The use of such compatibilizers provides a means of combining in situ polymerized inorganic oxides and hydrophobic polymers. This is seen as a reduction in the size of the dispersed inorganic phase and results in improved optical and mechanical properties

  2. Gamma irradiation of yellow and blue colorants in polystyrene packaging materials

    International Nuclear Information System (INIS)

    Komolprasert, V.; Diel, Todd; Sadler, G.

    2006-01-01

    The effect of 10- and 20-kGy gamma irradiation was studied on chromophtal yellow 2RLTS (Yellow 110-2, 3, 4, 5-tetrachloro-6-cyanobenzoic acid) and Irgalite Blue GBP (copper (II) phthalocyanine blue) colorants, which were added to polystyrene (PS) material used to package food prior to irradiation. Analytical results obtained suggest that irradiation did not generate any new chemicals in the PS polymer containing either yellow or blue colorant at a concentration of up to 1% (w/w). Both yellow and blue colorants are relatively stable to gamma irradiation

  3. A reactive polystyrene-block-polyisoprene star copolymer as a toughening agent in an epoxy thermoset

    KAUST Repository

    Francis, Raju

    2015-12-29

    © 2015 Springer-Verlag Berlin Heidelberg A polystyrene-block-polyisoprene ((PS-b-PI)3) star polymer was synthesized by photochemical reversible addition fragmentation chain transfer (RAFT) polymerization. The obtained star polymer was epoxidized and used as a toughening agent in an epoxy thermoset. The incorporation of the epoxidized star polymer resulted in the formation of nanostructures and it was fixed by a crosslinking reaction. The formation of nanostructures in the thermosets follows the mechanism of reaction-induced microphase separation. The mechanical properties such as toughness and tensile strength were considerably increased due to the nanostructures formed by reactive blending.

  4. Hardness enhancement and crosslinking mechanisms in polystyrene irradiated with high energy ion-beams

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Mansur, L.K.

    1996-01-01

    Surface hardness values several times larger than steel were produced using high energy ion beams at several hundred keV to MeV. High LET is important for crosslinking. Crosslinking is studied by analyzing hardness variations in response to irradiation parameter such as ion species, energy, and fluence. Effective crosslinking radii at hardness saturation are derived base on experimental data for 350 keV H + and 1 MeV Ar + irradiation of polystyrene. Saturation value for surface hardness is about 20 GPa

  5. Ionoluminescence properties of polystyrene-hosted fluorophore films induced by helium ions of energy 50-350 keV

    Science.gov (United States)

    Chakraborty, Subha; Huang, Mengbing

    2017-10-01

    We report on measurements and analysis of ionoluminescence properties of pure polystyrene films and polystyrene films doped with four types of fluorophores in low kinetic energies (50-350 keV) of ion irradiation. We have developed a theoretical model to understand the experimentally observed ionoluminescence behaviors in terms of scintillation yield from individual ion tracks, photophysical energy transfer mechanisms, and irradiation-induced defects. A comparison of the model and experimental results suggests that singlet up-conversion resulting from triplet-triplet annihilation processes may be responsible for enhanced singlet emission of the fluorophores at high ion beam flux densities. Energy transfer from the polystyrene matrix to the fluorophore molecules has been identified as an effective pathway to increasing the fluorescence efficiency in the doped scintillator films.

  6. Silica-Polystyrene Nanocomposite Particles Synthesized by Nitroxide-Mediated Polymerization and Their Encapsulation through Miniemulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Bérangère Bailly

    2006-01-01

    Full Text Available Polystyrene (PS chains with molecular weights comprised between 8000 and 64000 g⋅mol-1 and narrow polydispersities were grown from the surface of silica nanoparticles (Aerosil A200 fumed silica and Stöber silica, resp. through nitroxide-mediated polymerization (NMP. Alkoxyamine initiators based on N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide (DEPN and carrying a terminal functional group have been synthesized in situ and grafted to the silica surface. The resulting grafted alkoxyamines have been employed to initiate the growth of polystyrene chains from the inorganic surface. The maximum grafting density of the surface-tethered PS chains was estimated and seemed to be limited by initiator confinement at the interface. Then, the PS-grafted Stöber silica nanoparticles were entrapped inside latex particles via miniemulsion polymerization. Transmission electron microscopy indicated the successful formation of silica-polystyrene core-shell particles.

  7. Application of methods of mathematical modeling for determining of radiation-protective characteristics of polystyrene-metal composite materials

    International Nuclear Information System (INIS)

    Klepikov, V.F.; Prokhorenko, E.M.; Lytvynenko, V.V.; Zakharchenko, A.A.; Nazhmuradov, M.A.

    2016-01-01

    Radiation safety features of polystyrene steel composite materials were found by means of mathematical modeling techniques. We determined the attenuation of the gamma quantum flux passing through a solid protective layer compared with those attenuation for the bulk protective layer. Change of fractional attenuation of the dose absorbed by 10 and 50 mm thick composites is calculated. Dependence between protective properties of composite and its blend composition was studied. Modifications of technical process of composite materials production were performed. Rotation speed of agitator system was found. It was defined that heating time of polystyrene steel mix is longer than heating time of polystyrene tungstic one. Degree of mix heating and integrity of thermic field on its surface was controlled with the help of IR radiometry methods.

  8. Ferroferric oxide/polystyrene (Fe3O4/PS superparamagnetic nanocomposite via facile in situ bulk radical polymerization

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available Organo-modified ferroferric oxide superparamagnetic nanoparticles, synthesized by the coprecipitation of superparamagnetic nanoparticles in presence of oleic acid (OA, were incorporated in polystyrene (PS by the facile in situ bulk radical polymerization by using 2,2-azobisisobutyronitrile (AIBN as initiator. The transmission electron microscopy (TEM analysis of the resultant uniform ferroferric oxide/polystyrene superparamagnetic nanocomposite (Fe3O4/PS showed that the superparamagnetic nanoparticles had been dispersed homogeneously in the polymer matrix due to the surface grafted polystyrene, confirmed by Fourier transform infrared (FT-IR spectroscopy and thermogravimetric analysis (TGA. The superparamagnetic property of the Fe3O4/PS nanocomposite was testified by the vibrating sample magnetometer (VSM analysis. The strategy developed is expected to be applied for the large-scale industrial manufacturing of the superparamagnetic polymer nanocomposite.

  9. Polystyrene/magnetite nanocomposite synthesis and characterization: investigation of magnetic and electrical properties for using as microelectromechanical systems (MEMS

    Directory of Open Access Journals (Sweden)

    Omidi Mohammad Hassan

    2017-02-01

    Full Text Available In this work, a novel polystyrene/Fe3O4 nanocomposite prepared by in-situ method is presented. Magnetic Fe3O4 nanoparticles were encapsulated by polystyrene. The FT-IR spectra confirmed polystyrene/Fe3O4 nanocomposite preparation. The electrical properties of prepared nanocomposite were investigated by cyclic voltammetry (CV. The CV analysis showed good electrical conductivity of the synthesized nanocomposite. Magnetic properties of the nanocomposite were studied by vibrating sample magnetometer (VSM. The VSM analysis confirmed magnetic properties of the nanocomposite. The morphology and the size of the synthesized nanocomposite were investigated by field emission scanning electron microscope (FESEM. According to the VSM and CV results, such nanocomposite can be used in microelectromechanical systems.

  10. Spectroscopic study of the charge-transfer complexes TiCl4/styrene and TiCl4/polystyrene

    Science.gov (United States)

    Gonçalves, Norberto S.; Noda, Lúcia. K.

    2017-10-01

    In this work, solutions of TiCl4/styrene and TiCl4/polystyrene charge-transfer complexes in CHCl3 or CDCl3 were investigated by UV-vis, resonance Raman and 1H NMR spectroscopies in order to study their molecular and electronic structures. Both show a yellow colour due to absorption in the 400 nm region, related to a charge-transfer transition. In Raman spectra, as the excitation approaches the resonance region, the primary enhancement of aromatic ring modes was mainly observed, rather than intensification of the vinylic double-bond stretch. Under the experimental conditions it was observed that formation of polystyrene takes place, as showed by 1H NMR spectra, and the most significant interaction occurs at the aromatic ring, as supported by the results from interaction of TiCl4 with polystyrene, as indicated by the charge-transfer band and resonant intensification of the aromatic ring modes.

  11. Retardation the dewetting dynamics of ultrathin polystyrene films using highly branched aromatic molecules as additives

    International Nuclear Information System (INIS)

    Pangpaiboon, Nampueng; Traiphol, Nisanart; Promarak, Vinich; Traiphol, Rakchart

    2013-01-01

    This study introduces a new class of materials as a dewetting inhibitor for polystyrene (PS) ultrathin films. Two types of highly branched aromatic (HBA) molecules are added into PS films with thicknesses of 7 nm and 23 nm. Their concentrations range from 0.75 to 5 wt.%. The films are annealed in vacuum oven at elevated temperatures to accelerate dewetting process. Evolution of the film morphologies is followed by utilizing atomic force microscopy and optical microscopy. Contact angle measurements are used to evaluate interfacial interactions in each system. Dewetting area as a function of annealing time and HBA concentration are calculated. We have found that the presence of only 0.5 wt.% HBA can suppress the dewetting dynamics of PS films. Increasing the HBA concentration from 0.5 to 5 wt.% causes systematic decrease of the dewetting rate. In this system, the HBA molecules behave as physical cross-linking points for PS chains, which lead to the improvement of film stability. The efficiency of HBA as a dewetting inhibitor varies with molecular weight of PS while the change of HBA structure hardly affects the dewetting behaviors. - Highlights: • New method for improving stability of polystyrene (PS) thin films • Highly branched aromatic molecules (HBA) are used to suppress the dewetting. • Thermal stability of blended PS/HBA films greatly improves. • The effectiveness of HBA varies with molecular weight of PS. • Important results for designing materials in coating application

  12. Retardation the dewetting dynamics of ultrathin polystyrene films using highly branched aromatic molecules as additives

    Energy Technology Data Exchange (ETDEWEB)

    Pangpaiboon, Nampueng [Research Unit of Advanced Ceramics, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Traiphol, Nisanart, E-mail: Nisanart.T@chula.ac.th [Research Unit of Advanced Ceramics, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Promarak, Vinich [School of Chemistry and Center of Excellence for Innovation in Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Traiphol, Rakchart, E-mail: Rakchartt@nu.ac.th [Laboratory of Advanced Polymers and Nanomaterials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); NANOTEC-MU Excellence Center on Intelligent Materials and Systems, Faculty of Science, Rama 6 Road, Ratchathewi, Bangkok 10400 (Thailand)

    2013-12-02

    This study introduces a new class of materials as a dewetting inhibitor for polystyrene (PS) ultrathin films. Two types of highly branched aromatic (HBA) molecules are added into PS films with thicknesses of 7 nm and 23 nm. Their concentrations range from 0.75 to 5 wt.%. The films are annealed in vacuum oven at elevated temperatures to accelerate dewetting process. Evolution of the film morphologies is followed by utilizing atomic force microscopy and optical microscopy. Contact angle measurements are used to evaluate interfacial interactions in each system. Dewetting area as a function of annealing time and HBA concentration are calculated. We have found that the presence of only 0.5 wt.% HBA can suppress the dewetting dynamics of PS films. Increasing the HBA concentration from 0.5 to 5 wt.% causes systematic decrease of the dewetting rate. In this system, the HBA molecules behave as physical cross-linking points for PS chains, which lead to the improvement of film stability. The efficiency of HBA as a dewetting inhibitor varies with molecular weight of PS while the change of HBA structure hardly affects the dewetting behaviors. - Highlights: • New method for improving stability of polystyrene (PS) thin films • Highly branched aromatic molecules (HBA) are used to suppress the dewetting. • Thermal stability of blended PS/HBA films greatly improves. • The effectiveness of HBA varies with molecular weight of PS. • Important results for designing materials in coating application.

  13. CO2 Induced Foaming Behavior of Polystyrene near the Glass Transition

    Directory of Open Access Journals (Sweden)

    Salah Al-Enezi

    2017-01-01

    Full Text Available This paper examines the effect of high-pressure carbon dioxide on the foaming process in polystyrene near the glass transition temperature and the foaming was studied using cylindrical high-pressure view cell with two optical windows. This technique has potential applications in the shape foaming of polymers at lower temperatures, dye impregnation, and the foaming of polystyrene. Three sets of experiments were carried out at operating temperatures of 50, 70, and 100°C, each over a range of pressures from 24 to 120 bar. Foaming was not observed when the polymer was initially at conditions below Tg but was observed above Tg. The nucleation appeared to occur randomly leading to subsequent bubble growth from these sites, with maximum radius of 0.02–0.83 mm. Three models were applied on the foaming experimental data. Variable diffusivity and viscosity model (Model C was applied to assess the experimental data with the WLF equation. The model shows very good agreement by using realistic parameter values. The expansion occurs by diffusion of a dissolved gas from the supersaturated polymer envelope into the bubble.

  14. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15.

    Science.gov (United States)

    Zhang, Lei; Abbenhuis, Hendrikus C L; Gerritsen, Gijsbert; Bhriain, Nollaig Ní; Magusin, Pieter C M M; Mezari, Brahim; Han, Wei; van Santen, Rutger A; Yang, Qihua; Li, Can

    2007-01-01

    A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active center, was immobilized successfully by in-situ copolymerization on a mesoporous SBA-15-supported polystyrene polymer. The resulting hybrid materials exhibit attractive textural properties (highly ordered mesostructure, large specific surface area (>380 m2 g-1) and pore volume (>or==0.46 cm3 g-1)), and high activity in the epoxidation of alkenes. In the epoxidation of cyclooctene with tert-butyl hydrogen peroxide (TBHP), the hybrid catalysts have rate constants comparable with that of their homogeneous counterpart, and can be recycled at least seven times. They can also catalyze the epoxidation of cyclooctene with aqueous H2O2 as the oxidant. In two-phase reaction media, the catalysts show much higher activity than their homogeneous counterpart due to the hydrophobic environment around the active centers. They behave as interfacial catalysts due to their multifunctionality, that is, the hydrophobicity of polystyrene and the polyhedral oligomeric silsesquioxanes (POSS), and the hydrophilicity of the silica and the mesoporous structure. Combination of the immobilization of homogeneous catalysts on two conventional supports, inorganic solid and organic polymer, is demonstrated to achieve novel heterogeneous catalytic ensembles with the merits of attractive textural properties, tunable surface properties, and optimized environments around the active sites.

  15. A bioinspired color-changing polystyrene microarray as a rapid qualitative sensor for methanol and ethanol

    International Nuclear Information System (INIS)

    Kuo, Wen-Kai; Weng, Hsueh-Ping; Hsu, Jyun-Jheng; Yu, Hsin Her

    2016-01-01

    Polystyrene (PS) microspheres were synthesized by emulsifier-free emulsion polymerization and arranged in an array of closely packed, opal-like photonic crystals by slow self-assembly through dip-coating. This periodic array of PS microspheres was then employed as a rapid qualitative sensor for methanol and ethanol. Both solvents could be detected rapidly based on the routes of their reflection coordinates in the chromaticity diagram or directly by the naked eye on the basis of the change in color within 1 min once a solvent sample had been placed on the PS photochromic sensor. This opal-like PS sensor can thus not only be employed as a rapid sensor for methanol and ethanol but can also be used as a powerful tool for the fast screening of illicit drugs and toxic chemicals during forensic investigations. - Highlights: • Opal-like array of polystyrene (PS) microspheres is synthesized by self-assembly. • This periodic PS array is used as a rapid sensor for methanol and ethanol. • Solvents are detected by routes of reflection coordinates in chromaticity diagram. • They are also detected directly by naked eye based on change in color of sensor. • The color change is irreversible for methanol but reversible for ethanol.

  16. Increased adsorption of histidine-tagged proteins onto tissue culture polystyrene.

    Science.gov (United States)

    Holmberg, Maria; Hansen, Thomas Steen; Lind, Johan Ulrik; Hjortø, Gertrud Malene

    2012-04-01

    In this study we compare histidine-tagged and native proteins with regards to adsorption properties. We observe significantly increased adsorption of proteins with an incorporated polyhistidine amino acid motif (HIS-tag) onto tissue culture polystyrene (TCPS) compared to similar proteins without a HIS-tag. The effect is not observed on polystyrene (PS). Adsorption experiments have been performed at physiological pH (7.4) and the effect was only observed for the investigated proteins that have pI values below or around 7.4. Competitive adsorption experiments with imidazole and ethylenediaminetetraacetic acid (EDTA), as well as adsorption performed at different pH and ionic strength indicates that the high adsorption is caused by electrostatic interaction between negatively charged carboxylate groups on the TCPS surface and positively charged histidine residues in the proteins. Pre-adsorption of bovine serum albumin (BSA) does not decrease the adsorption of HIS-tagged proteins onto TCPS. Our findings identify a potential problem in using HIS-tagged signalling molecule in assays with cells cultured on TCPS, since the concentration of the molecule in solution might be affected and this could critically influence the assay outcome. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions.

    Science.gov (United States)

    Li, Isaac T S; Walker, Gilbert C

    2010-05-12

    The hydrophobic interaction is significantly responsible for driving protein folding and self-assembly. To understand it, the thermodynamics, the role of water structure, the dewetting process surrounding hydrophobes, and related aspects have undergone extensive investigations. Here, we examine the hypothesis that polymer-solvent interfacial free energy is adequate to describe the energetics of the collapse of a hydrophobic homopolymer chain at fixed temperature, which serves as a much simplified model for studying the hydrophobic collapse of a protein. This implies that changes in polymer-solvent interfacial free energy should be directly proportional to the force to extend a collapsed polymer into a bad solvent. To test this hypothesis, we undertook single-molecule force spectroscopy on a collapsed, single, polystyrene chain in water-ethanol and water-salt mixtures where we measured the monomer solvation free energy from an ensemble average conformations. Different proportions within the binary mixture were used to create solvents with different interfacial free energies with polystyrene. In these mixed solvents, we observed a linear correlation between the interfacial free energy and the force required to extend the chain into solution, which is a direct measure of the solvation free energy per monomer on a single chain at room temperature. A simple analytical model compares favorably with the experimental results. This knowledge supports a common assumption that explicit water solvent may not be necessary for cases whose primary concerns are hydrophobic interactions and hydrophobic hydration.

  18. (Quasi-) 2D aggregation of polystyrene-b-dextran at the air-water interface.

    Science.gov (United States)

    Bosker, Wouter T E; Cohen Stuart, Martien A; Norde, Willem

    2013-02-26

    Polystyrene-b-dextran (PS-b-Dextran) copolymers can be used to prepare dextran brushes at solid surfaces, applying Langmuir-Blodgett deposition. When recording the interfacial pressure versus area isotherms of a PS-b-Dextran monolayer, time-dependent hysteresis was observed upon compression and expansion. We argue that this is due to (quasi-) 2D aggregation of the copolymer at the air-water surface, with three contributions. First, at large area per molecule, a zero surface pressure is measured; we ascribe this to self-assembly of block copolymers into surface micelles. At intermediate area we identify a second regime ("desorption regime") where aggregation into large patches occurs due to van der Waals attraction between PS blocks. At high surface pressure ("brush regime") we observe hysteretic behavior attributed to H-bonding between dextran chains. When compared to hysteresis of other amphiphilic diblock copolymers (also containing PS, e.g., polystyrene-b-poly(ethylene oxide)) a general criterion can be formulated concerning the extent of hysteresis: when the hydrophobic (PS) block is of equal size as (or bigger than) the hydrophilic block, the hysteresis is maximal. The (quasi-) 2D aggregation of PS-b-Dextran has significant implications for the preparation of dextran brushes at solid surfaces using Langmuir-Blodgett deposition. For each grafting density the monolayer needs to relax, up to several hours, prior to transfer.

  19. Green Synthesis, Characterization, and Antibacterial Activity of Silver/Polystyrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Manal A. Awad

    2015-01-01

    Full Text Available A novel, nontoxic, simple, cost-effective and ecofriendly technique was used to synthesize green silver nanoparticles (AgNPs. The AgNPs were synthesized using orange peel extract as a reducing agent for silver nitrate salt (AgNO3. The particle size distribution of AgNPs was determined by Dynamic Light Scattering (DLS. The average size of silver nanoparticles was 98.43 nm. The stable dispersion of silver nanoparticles was added slowly to polystyrene solution in toluene maintaining the temperature at 70°C. The AgNPs/polystyrene (PS nanocomposite solution was cast in a petri dish. The silver nanoparticles encapsulated within polymer chains were characterized by X-ray diffraction (XRD and Scanning Electron Microscopy (SEM equipped with Energy Dispersive Spectroscopy (EDS in addition to Transmission Electron Microscopy (TEM. The green AgNPs/PS nanocomposite film exhibited antimicrobial activity against Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae and Salmonella, and Gram-positive bacteria Staphylococcus aureus. Thus, the key findings of the work include the use of a safe and simple AgNPs/PS nanocomposite which had a marked antibacterial activity which has a potential application in food packaging.

  20. Investigation of optical properties of aluminium oxide doped polystyrene polymer nanocomposite films

    Science.gov (United States)

    Bhavsar, Shilpa; Patel, Gnansagar B.; Singh, N. L.

    2018-03-01

    In the present work, a simple solution casting method was utilized to synthesize aluminium oxide (Al2O3) doped polystyrene (PS) polymer nanocomposite films. As synthesized films were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultra violet (UV)-visible spectroscopy, photoluminescence (PL) method and scanning electron microscopy (SEM). The crystalline nature of the films was found to decrease after incorporation of filler in the polymer matrix as revealed by XRD results. A new carbonyl group was appeared in the FTIR spectra and confirmed the charge transfer reaction between filler and polymer matrix. The decrease in the band gap was found with the filler concentration in the synthesized polymer nanocomposite films. Photoluminescence emission spectra of nanocomposites were observed at 411 nm, 435 nm and 462 nm, respectively in violet-blue region which indicates interaction between the dopant and the polymer matrix. The PL emission spectra of polymer nanocomposite films with 3 wt% of Al2O3 filler exhibited higher peak intensity. The Al2O3 filler dispersion is found to reduce band gap and promote luminescence property in polystyrene. SEM analysis indicates the agglomeration of Al2O3 nanoparticles into PS matrix at higher concentration.

  1. Jordanian silica sand and cement as a reinforcement material for polystyrene matrix composites

    International Nuclear Information System (INIS)

    Jalham, S. I.

    1999-01-01

    The behaviour of polystyrene matrix composites with different percentages of Jordaanian Silica Sand as a Reinforcement Materials (0, 5, 25, 50, and 75 wt%) and different mean grain sizes of sand particles (60, 75, 85, and 300μ m) and with cement as a boning materials in the amount fo 1/6 wt% of the wt% of silica sand were manufactured and tested under compression loading in the Industrial Engineering Department as the Uninersity of Jordan as a part of large study on local materials. The main conclusions of this investigation are: a long-term, durable structure of the polystyrene composite reinforced by silica sand and cement was achieved by mixing the constituents with water; the higher the volume fraction of the reinforcement, the higher the volume fraction of reinforcement, the higher the strength while for 75% of reinforcement, the strength dropped to an amount less than that of the matrix; the higher the grain size, the higher the strength; longitudinal brittle fracture was observed for the composites, and a homogeneous distribution of the sand particles helped in increasing the strength of the composite by playing an important role in distributing the applied load. (author). 11 refs., 6 tabs, 2 figs

  2. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    Science.gov (United States)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  3. Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.

    Science.gov (United States)

    Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan

    2018-05-15

    A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.

  4. Subterranean Termite Resistance of Polystyrene-Treated Wood from Three Tropical Wood Species

    Directory of Open Access Journals (Sweden)

    Yusuf Sudo Hadi

    2016-07-01

    Full Text Available The objective of this work was to investigate the resistance of three Indonesian wood species to termite attack. Samples from sengon (Falcataria moluccana, mangium (Acacia mangium, and pine (Pinus merkusii were treated with polystyrene at loading levels of 26.0%, 8.6%, and 7.7%, respectively. Treated and untreated samples were exposed to environmental conditions in the field for 3 months. Untreated specimens of sengon, mangium, and pine had resistance ratings of 3.0, 4.6, and 2.4, respectively, based on a 10-point scale from 0 (no resistance to 10 (complete or near-complete resistance. Corresponding resistance values of 7.8, 7.2, and 8.2 were determined for specimens treated with polystyrene. Overall weight loss values of 50.3%, 23.3%, and 66.4% were found for untreated sengon, mangium, and pine samples, respectively; for treated samples, the values were 7.6%, 14.4%, and 5.1%, respectively. Based on the findings in this study, overall resistance to termite attack was higher for treated samples compared to untreated samples.

  5. A bioinspired color-changing polystyrene microarray as a rapid qualitative sensor for methanol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Wen-Kai, E-mail: wkkuo@nfu.edu.tw [Graduate Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Weng, Hsueh-Ping, E-mail: sherry.weng7949@gmail.com [Graduate Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Hsu, Jyun-Jheng, E-mail: k88520x@gmail.com [Graduate Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Yu, Hsin Her, E-mail: hhyu@nfu.edu.tw [Department of Biotechnology, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China)

    2016-04-15

    Polystyrene (PS) microspheres were synthesized by emulsifier-free emulsion polymerization and arranged in an array of closely packed, opal-like photonic crystals by slow self-assembly through dip-coating. This periodic array of PS microspheres was then employed as a rapid qualitative sensor for methanol and ethanol. Both solvents could be detected rapidly based on the routes of their reflection coordinates in the chromaticity diagram or directly by the naked eye on the basis of the change in color within 1 min once a solvent sample had been placed on the PS photochromic sensor. This opal-like PS sensor can thus not only be employed as a rapid sensor for methanol and ethanol but can also be used as a powerful tool for the fast screening of illicit drugs and toxic chemicals during forensic investigations. - Highlights: • Opal-like array of polystyrene (PS) microspheres is synthesized by self-assembly. • This periodic PS array is used as a rapid sensor for methanol and ethanol. • Solvents are detected by routes of reflection coordinates in chromaticity diagram. • They are also detected directly by naked eye based on change in color of sensor. • The color change is irreversible for methanol but reversible for ethanol.

  6. Colitis induced by sodium polystyrene sulfonate in sorbitol: A report of six cases.

    Science.gov (United States)

    Jacob, Sheba S K; Parameswaran, Ashok; Parameswaran, Sarojini Ashok; Dhus, Ubal

    2016-03-01

    Drug-related injury has been noted in virtually all organ systems, and recognition of the patterns of injury associated with medication enables modification of treatment and reduces the morbidity associated with the side effects of drugs. With the large number of new drugs being developed, documentation of the morphology of the changes seen as an adverse effect becomes important to characterize the pattern of injury. The pathologist is often the first to identify these abnormalities and correlate them with a particular drug. Kayexalate or sodium polystyrene sulfonate (SPS), a linear polymer derived from polystyrene containing sulfonic acid and sulfonate functional groups is used to treat hyperkalemia. It is usually administered with an osmotic laxative sorbitol orally or as retention enema. This combination has been implicated in causing damage to different parts of the gastrointestinal (GI) tract especially the colon and causes an established pattern of injury, recognizable by the presence of characteristic crystals, is presented to create a greater awareness of the Kayexalate colitis. This entity should be included in the differential diagnosis of lower GI mucosal injury in a setting of uremia and hyperkalemia.

  7. Production of Polystyrene Open-celled Microcellular Foam in Batch Process by Super Critical CO2

    Directory of Open Access Journals (Sweden)

    M.S. Enayati

    2010-12-01

    Full Text Available Open-celled foams are capable to allow the passage of fluids through their structure, because of interconnections between the open cells or bubbles and therefore these structures can be used as a membrane and filter. In thiswork, we have studied the production of polystyrene open-celled microcellular foam by using CO2 as blowing agent. To achieve such structures, it is necessary to control the stages of growth in such a way that the cells would connect to each other through the pores without any coalescence. The required processing condition to achieve open-celled structures is predictable by a model theory of opened-cell. This model suggests that at least a 130 bar saturation pressure and foaming time between 9 and 58 s are required for this system. The temperature range has been selected for to be both higher than polymer glass transition temperature and facilitating the foaming process. Experimental results in the batch foaming process has verified the model quite well. The SEM and mercury porousimetry tests show the presence of pores between the cells with open-celled structure. Experimental results show that by increasing the saturation pressure and the foaming temperature, there is a drop in the time required for open-celled structure formation. A 130 bar saturation pressure, 150o C foaming temperature and 60 s foaming time, suggest the attainment of open-celled microcellular foam based on polystyrene/CO2 system in the batch process.

  8. Microwave Irradiation Effect on the Dispersion and Thermal Stability of RGO Nanosheets within a Polystyrene Matrix

    Directory of Open Access Journals (Sweden)

    Edreese H. Alsharaeh

    2014-07-01

    Full Text Available Polystyrene-reduced graphene oxide (PSTY/RGO composites were prepared via the in situ bulk polymerization method using two different preparation techniques. The general approach is to use microwave irradiation (MWI to enhance the exfoliation and the dispersion of RGO nanosheets within the PSTY matrix. In the first approach, a mixture of GO and styrene monomers (STY were polymerized using a bulk polymerization method facilitated by microwave irradiation (MWI to obtain R-(GO-PSTY composites. In the second approach, a mixture of RGO and STY monomers were polymerized using a bulk polymerization method to obtain RGO-(PSTY composites. The two composites were characterized by FTIR, 1H-NMR, XRD, SEM, HRTEM, TGA and DSC. The results indicate that the composite obtained using the first approach, which involved MWI, had a better morphology and dispersion with enhanced thermal stability, compared with the composites prepared without MWI. Moreover, DSC results showed that the Tg value of the composites after loading the RGO significantly increased by 24.6 °C compared to the neat polystyrene.

  9. Synthesis of α-Bromine- Terminated Polystyrene Macroinitiator and Its Initiation of MMA Polymerization by ATRP

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. Α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93.8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate(MMA) in the presence of copper(Ⅰ) halogen and 2,2-bipyridine(bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1.2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by 1H NMR spectra.

  10. Improvement in silicon-containing sulfonated polystyrene/acrylate membranes by blending and crosslinking

    International Nuclear Information System (INIS)

    Zhong Shuangling; Cui Xuejun; Dou Sen; Liu Wencong; Gao Yan; Hong Bo

    2010-01-01

    Silicon-containing sulfonated polystyrene/acrylate-poly(vinyl alcohol) (Si-sPS/A-PVA) and Si-sPS/A-PVA-phosphotungstic acid (Si-sPS/A-PVA-PWA) composite membranes were fabricated by solution blending and physical and chemical crosslinking methods to improve the properties of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) membranes. FTIR spectra clearly show the existence of various interactions and a crosslinked silica network in composite membranes. The potential of the composites to act as proton exchange membranes in direct methanol fuel cells (DMFCs) was assessed by studying their thermal and hydrolytic stability, swelling, methanol diffusion coefficient, proton conductivity and selectivity. TGA measurements show that the composite membranes possess good thermal stability up to 190 o C, satisfying the requirement for fuel cell operation. Compared to the unmodified membrane, the composites exhibit less swelling and a superior methanol barrier. Most importantly, all of the composite membranes have significantly lower methanol diffusion coefficients and significantly higher selectivity than those of Nafion 117. The Si-sPS/A-20PVA-20PWA membrane is the best applicant for use in DMFCs because it exhibits an optimized selectivity value (5.93 x 10 5 Ss cm -3 ) that is approximately 7.8 times of that of the unmodified membrane and is 27.8 times higher than that of Nafion 117.

  11. Transmission of terahertz radiation by anisotropic MWCNT/polystyrene composite films

    Energy Technology Data Exchange (ETDEWEB)

    Okotrub, A.V.; Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630092 Novosibirsk (Russian Federation); Kubarev, V.V. [Budker Institute of Nuclear Physics, SB RAS, 11 Acad. Lavrentiev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation); Kanygin, M.A.; Sedelnikova, O.V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk (Russian Federation)

    2011-11-15

    Anisotropic composite materials have been prepared by repeated forge rolling of polystyrene and carbon nanotubes (CNTs) with length of {proportional_to}65 {mu}m. Transmission spectra of the composites were recorded for two different polarizations of the electric field. Obtained data indicated that the forge rolling resulted in a predominant orientation of CNTs in polymer matrix. Anisotropic response of the composites was measured at 130 {mu}m wavelength on the Novosibirsk terahertz free electron laser and angular dependence of the transmitted light was determined. Absorption spectrum showed no strong resonance features and it was interpreted by CNTs breaking and agglomeration of CNT fragments during the composite fabrication procedure. Based on classical theory of scattering, considered the scatters as electromagnetic antennas, the size distribution of CNTs in composites was found. Anisotropy of terahertz radiation transmitted from MWCNT/polystyrene composite film on the Novosibirsk free electron laser at 130 {mu}m wavelength. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Vodnik, Vesna V., E-mail: vodves@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Džunuzović, Jasna V., E-mail: jasnav2002@googlemail.com [Institute of Chemistry, Technology and Metallurgy (ICTM)-Center of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Džunuzović, Enis S., E-mail: edzunuzovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Marinović-Cincović, Milena T., E-mail: milena@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Jeremić, Katarina, E-mail: kjeremic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Nedeljković, Jovan M., E-mail: jovned@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis and characterization of polystyrene nanocomposites based on Ag nanoparticles. • The glass transition temperature decreased in nanocomposites with respect to the pure polymer. • Resistance of the polymer to thermal degradation enhanced with Ag nanoparticles content. - Abstract: Nanocomposites (NCs) with different content of silver nanoparticles (Ag NPs) embeded in polystyrene (PS) matrix were prepared by in situ bulk radical polymerization. The nearly monodisperse Ag NPs protected with oleylamine were synthesized via organic solvo-thermal method and further used as a filler. The as-prepared spherical Ag NPs with diameter of 7.0 ± 1.5 nm were well dispersed in the PS matrix. The structural properties of the resulting Ag/PS NCs were characterized by transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy, while optical properties were characterized using optical absorption measurements. The gel permeation chromatography (GPC) measurements showed that the presence of Ag NPs stabilized with oleylamine has no influence on the molecular weight and polydispersity of the PS matrix. The influence of silver content on the thermal properties of Ag/PS NCs was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that resistance of PS to thermal degradation was improved upon incorporation of Ag NPs. The Ag/PS NCs have lower glass transition temperatures than neat PS because loosely packed oleylamine molecules at the interface caused the increase of free volume and chain segments mobility near the surface of Ag NPs.

  13. Polystyrene foam products equation of state as a function of porosity and fill gas

    Energy Technology Data Exchange (ETDEWEB)

    Mulford, Roberta N [Los Alamos National Laboratory; Swift, Damian C [LLNL

    2009-01-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO{sub 2}-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O{sub 2}-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO{sub 2} decomposes at high temperatures.

  14. Structure and Properties of Multiwall Carbon Nanotubes/Polystyrene Composites Prepared via Coagulation Precipitation Technique

    Directory of Open Access Journals (Sweden)

    I. N. Mazov

    2011-01-01

    Full Text Available Coagulation technique was applied for preparation of multiwall carbon nanotube- (MWNT-containing polystyrene (PSt composite materials with different MWNT loading (0.5–10 wt.%. Scanning and transmission electron microscopies were used for investigation of the morphology and structure of produced composites. It was shown that synthesis of MWNT/PSt composites using coagulation technique allows one to obtain high dispersion degree of MWNT in the polymer matrix. According to microscopy data, composite powder consists of the polystyrene matrix forming spherical particles with diameter ca. 100–200 nm, and the surface of MWNT is strongly wetted by the polymer forming thin layer with 5–10 nm thickness. Electrical conductivity of MWNT/PSt composites was investigated using a four-probe technique. Observed electrical percolation threshold of composite materials is near to 10 wt.%, mainly due to the insulating polymer layer deposited on the surface of nanotubes. Electromagnetic response of prepared materials was investigated in broadband region (0.01–4 and 26–36 GHz. It was found that MWNT/PSt composites are almost radiotransparent for low frequency region and possess high absorbance of EM radiation at higher frequencies.

  15. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    International Nuclear Information System (INIS)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-01-01

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10 14 to 1.8 × 10 15 W/cm 2 . Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data

  16. Polystyrene foam products equation of state as a function of porosity and fill gas

    International Nuclear Information System (INIS)

    Mulford, Roberta N.; Swift, Damian C.

    2009-01-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO 2 -blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O 2 -blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO 2 decomposes at high temperatures.

  17. Patterned Well-Aligned ZnO Nanorods Assisted with Polystyrene Monolayer by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Hyun Ji Choi

    2016-08-01

    Full Text Available Zinc oxide is known as a promising material for sensing devices due to its piezoelectric properties. In particular, the alignment of ZnO nanostructures into ordered nanoarrays is expected to improve the device sensitivity due to the large surface area which can be utilized to capture significant quantities of gas particles. However, ZnO nanorods are difficult to grow on the quartz substrate with well-ordered shape. So, we investigated nanostructures by adjusting the interval distance of the arranged ZnO nanorods using polystyrene (PS spheres of various sizes (800 nm, 1300 nm and 1600 nm. In addition, oxygen plasma treatment was used to specify the nucleation site of round, patterned ZnO nanorod growth. Therefore, ZnO nanorods were grown on a quartz substrate with a patterned polystyrene monolayer by the hydrothermal method after oxygen plasma treatment. The obtained ZnO nanostructures were characterized by X-ray diffraction (XRD and field-emission scanning electron microscope (FE-SEM.

  18. Magnetic properties of Fe-oxide and (Fe, Co) oxide nanoparticles synthesized in polystyrene resin matrix

    Science.gov (United States)

    Rodak, D.; Kroll, E.; Tsoi, G. M.; Vaishnava, P. P.; Naik, R.; Wenger, L. E.; Suryanarayanan, R.; Naik, V. M.; Boolchand, P.

    2003-03-01

    Magnetic nanoparticles have potential applications ranging from drug delivery and imaging in the medical field to sensing and memory storage in technology. The preparation, structure, and physical properties of iron oxide-based nanoparticles synthesized by ion exchange in a polystyrene resin matrix have been investigated. Employing a synthesis method developed originally by Ziolo, et. al^1, nanoparticles were prepared in a sulfonated divinyl benzene polystyrene resin matrix using various aqueous solutions of (1) FeCl_2, (2) FeCl_3, (3) FeCl2 : 2FeCl3 , (4) 9FeCl2 : CoCl_2, and (5) 4FeCl2 : CoCl_2. Powder x-ray diffraction measurements were used to identify the phases present while transmission electron microscopy was used for particle size distribution determinations. SQUID magnetization measurements (field-cooled and zero-field-cooled) and Fe^57 Mössbauer effect measurements indicate the presence of ferromagnetic iron oxide phases and a superparamagnetic behavior with blocking temperatures (T_B) varying from 50 K to room temperature. Nanoparticles synthesized using a stoichiometric mixture of FeCl2 and FeCl3 exhibit the lowest TB and smallest particle size distribution. The Mössbauer effect measurements have also been used to identify the iron oxides phases present and their relative amounts in the nanoparticles ^1R.F. Ziolo, et al., Science 207, 219 (1992). *Permanent address: Kettering University, Flint, MI 48504

  19. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  20. Small-angle neutron scattering investigation of the chain conformation of lamellar polystyrene/isoprene phase in solid state

    International Nuclear Information System (INIS)

    Constantinescu, L.M.

    1994-01-01

    Small-angle neutron scattering has been used in the study of chain conformation of lamellar styrene/isoprene block copolymers oriented in large single crystals. The radius of gyration of deuterated polystyrene chains around the normal to the interface has been measured. By comparing this direct evolution of the lateral dimension of the chains with the average chain separation given by the molecular area (the surface available at the interface for each covalent bond linking the blocks together) we characterized the transverse interpenetration degree of the chains. The polystyrene chains are displayed in simple strata own micro-domains, without an important interpenetration. (Author) 9 Figs., 2 Tabs., 25 Refs