Sample records for strength wastewaters cwao

  1. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.


    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  2. The treatment of high strength protein wastewater by UASB system

    Directory of Open Access Journals (Sweden)

    Ploypatarapinyo, P.


    Full Text Available The objective of this investigation was to treat the high strength protein wastewater by UASB system. The wastewater of this experiment had COD 2,938 mg/l, SS 478 mg/l and total of nitrogen 435 mg/l. The granule was developed from bacteria of activated sludge system as suspended sludge by fermenting anaerobically at 40ºC for 1 month and acclimatizing with the high strength protein wastewater for another month. The MLSS and MLVSS of the started bacterial sludge were 7,105 mg/l and 5,360 mg/l respectively.The maximum organic volume loading of this system was 6 kg COD/m3.d at the hydraulic retention time 12 hrs. The efficiency of COD and BOD removal was 88.38 and 93.07% respectively. The biogas production was 0.52 l/g CODr.d. The content of methane gas was 76.20%. The bacterial suspended sludge was developed to granular sludge with the granule's size of 1.0 mm as 86.02%, 2.05%, 11.84% and 0.09% respectively.

  3. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. (United States)

    Kim, Kyoung-Hun; Ihm, Son-Ki


    Catalytic wet air oxidation (CWAO) is one of the most economical and environmental-friendly advanced oxidation process. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. Various heterogeneous catalysts including noble metals and metal oxides have been extensively studied to enhance the efficiency of CWAO. The present review is concerned about the literatures published in this regard. Phenolics, carboxylic acids, and nitrogen-containing compounds were taken as model pollutants in most cases, and noble metals such as Ru, Rh, Pd, Ir, and Pt as well as oxides of Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and Ce were applied as heterogeneous catalysts. Reports on their characterization and catalytic performances for the CWAO of aqueous pollutants are reviewed. Discussions are also made on the reaction mechanisms and kinetics proposed for heterogeneous CWAO and also on the typical catalyst deactivations in heterogeneous CWAO, i.e. carbonaceous deposits and metal leaching. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. The anaerobic treatment of low-strength brewery wastewater in expanded granular sludge bed

    NARCIS (Netherlands)

    Kato, M.T.; Rebac, S.; Lettinga, G.


    Anaerobic treatment of low-strength brewery wastewater, with influent total chemical oxygen demand (COD) (COD(in)) concentrations ranging from 550 to 825 mg/L, was investigated in a pilot-scale 225.5-L expanded granular sludge bed (EGSB) reactor. In an experiment in which the temperature was lowered

  5. Characterization of membrane foulants at ambient temperature anaerobic membrane bioreactor treating low-strength industrial wastewater

    DEFF Research Database (Denmark)

    Zarebska, Agata; Kjerstadius, Hamse; Petrinic, Irena


    The large volume of industrial low-strength wastewaters has a potential for biogas production through conventional anaerobic digestion (AD), limited though by the need of heating and concentrating of the wastewaters. The use of anaerobic membrane bioreactor (AnMBR) combining membrane filtration...... with anaerobic biological treatment at low temperature could not only reduce the operational cost of AD, but also alleviate environmental problems. However, at low temperature the AnMBR may suffer more fouling due to the increased extracellular polymeric substances production excreted by bacteria hampering...... understanding of organic and biofouling in AnMBR. An AnMBR consisting of external PVDF membrane was operated at 25°C and fed with synthetic dairy wastewater. Intensity, morphology and composition of foulants were determined using Scanning Electron Microscopy coupled with X-ray Energy Dispersive Spectrometry...

  6. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: impact of influent strengths. (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Hu, Zhen; Liang, Shuang


    In this study, the removal performances of organic pollutants and nitrogen in vertical flow constructed wetlands (VFCWs) with and without intermittent aeration fed with different strengths of influent were evaluated as a possible treatment for decentralized domestic wastewater in northern China. The intermittent aeration strategy not only significantly increased removal efficiencies of organic pollutants and ammonium nitrogen (NH4(+)-N), but also successfully created alternate aerobic and anaerobic conditions resulting in high total nitrogen (TN) removal. Moreover, increasing influent strength did not affect the removal efficiencies of organic matters and nitrogen in aerated VFCWs. Compared with non-aerated VFCWs, much higher removal of organic pollutants (96%), NH4(+)-N (98%), and TN (85%) was obtained simultaneously in intermittent aeration VFCWs, especially at high influent strengths. The results suggest that the intermittent aeration could be an appropriate strategy for achieving the high removal performance in VFCWs, especially for in-situ treatment of high strength decentralized domestic wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. High strength domestic wastewater treatment with submerged forward osmosis membrane bioreactor. (United States)

    Aftab, Bilal; Khan, Sher Jamal; Maqbool, Tahir; Hankins, Nicholas P


    Forward osmosis membranes are less prone to fouling with high rejection of salts, and the osmotic membrane bioreactor (OMBR) can be considered as an innovative membrane technology for wastewater treatment. In this study, a submerged OMBR having a cellulose triacetate membrane, with the active layer facing the feed solution configuration, was operated at different organic loading rates (OLRs), i.e., 0.4, 1.2 and 2.0 kg-COD/(m(3)·d) with chemical oxygen demand (COD) concentrations of 200 mg/L, 600 mg/L and 1,000 mg/L, respectively, to evaluate the performance on varying wastewater strengths. High organic content with sufficient amount of nutrients enhanced the biomass growth. High OLR caused more extrapolymeric substances production and less dewaterability. However, no significant differences in fouling trends and flux rates were observed among different OLR operational conditions.

  8. High strength distillery wastewater treatment by a PAC-MBR with low PAC dosage. (United States)

    Basu, Subhankar; Kaushik, Ankita; Saranya, P; Batra, Vidya S; Balakrishnan, Malini


    Augmentation of membrane bioreactors (MBRs) with activated carbon is established to offer several operational advantages. This work investigates the influence of low dosing (2 g/L) of powdered activated carbons (PACs) with different characteristics on the performance of MBR treating high strength molasses distillery wastewater containing difficult-to-biodegrade recalcitrant components. Two MBRs, augmented with different PACs, were operated in parallel over a period of 240 days and their performance monitored in terms of biomass growth, reduction in chemical oxygen demand (COD), sludge properties like extracellular polymeric substances content, filterability, and morphology. Removal of organics and coloring matter by adsorption, biodegradation and membrane filtration was estimated. Although adsorptive removal of color and COD is influenced by the properties of the PAC used, the performance of the PAC-MBRs was independent of PAC properties. Both PACs preferentially adsorbed the low molecular weight components in distillery wastewater. Retention by the membrane filter with the secondary cake layer contributed to reduction in color and COD of treated effluent. The findings indicate that low dosing with PAC adsorbing low molecular weight organics has a limited role in PAC-MBR treating distillery wastewater.

  9. wastewaters

    African Journals Online (AJOL)



    Oct 4, 2003 ... system without affecting the biochemical reactions in the reactor, whereas .... Results of inert COD experiment for the Study A. Time. Reactor 1. Reactor 2. Fed with raw. Fed with filtered wastewater wastewater. (COD, mg·l-1). (COD .... rate limiting process component for heterotrophic growth in the. IIDWTP.

  10. Anaerobic treatment of a simulated high-strength industrial wastewater containing chlorophenols

    Energy Technology Data Exchange (ETDEWEB)

    Flora, J.R.V.; Suidan, M.T.; Wuellner, A.M.; Boyer, T.K.


    An anaerobic fluidized-bed granular activated carbon (GAC) reactor employing carbon replacement was evaluated for the treatment of a simulated high strength industrial wastewater containing inhibitory concentrations of chlorophenols. The reactor was fed 2000-5900 mg/l acetic acid, 1000-3000 mg/l phenol, 1200 mg/l ortho-chlorophenol (2-CP), 600 mg/l 2,4-dichlorophenol (2,4-DCP), and 150 mg/l 2,4,6-trichlorophenol (2,4,6-TCP). The effects of varying the carbon replacement rate, the bulk operating pH, and the organic loading on reactor performance were investigated. The system was highly effective for treating the wastewater and an overall chemical oxygen demand (COD) removal greater than 98% was achieved. Carbon replacement resulting in a GAC solids mean retention time (SMRT) of 100 days was necessary to control the build-up of an inhibitory degradation by-product, para-chlorophenol (4-CP).

  11. Effect of organic matter strength on anammox for modified greenhouse turtle breeding wastewater treatment. (United States)

    Chen, Chongjun; Huang, Xiaoxiao; Lei, Chenxiao; Zhang, Tian C; Wu, Weixiang


    Anaerobic ammonium-N removal from modified greenhouse turtle breeding wastewater with different chemical oxygen demand (COD) strengths (194.0-577.8 mg L(-1)) at relatively fixed C/N ratios (≈ 2) was investigated using a lab-scale up-flow anaerobic sludge blanket (UASB) anammox reactor. During the entire experiment, the total nitrogen (TN) removal efficiency was about 85% or higher, while the average COD removal efficiency was around 56.5 ± 7.9%. Based on the nitrogen and carbon balance, the nitrogen removal contribution was 79.6 ± 4.2% for anammox, 12.7 ± 3.0% for denitrification+denitritation and 7.7 ± 4.9% for other mechanisms. Denaturing gradient gel electrophoresis (DGGE) analyses revealed that Planctomycete, Proteobacteria and Chloroflexi bacteria were coexisted in the reactor. Anammox was always dominant when the reactor was fed with different COD concentrations, which indicated the stability of the anammox process with the coexistence of the denitrification process in treating greenhouse turtle breeding wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Biomass production of papyrus (Cyperus papyrus) in constructed wetland treating low-strength domestic wastewater. (United States)

    Perbangkhem, Thaneeya; Polprasert, Chongchin


    In this study, the pilot-scale constructed wetlands were fed with low-strength domestic wastewater to investigate the energy-capturing efficiency and plant productivity. Papyrus was a selected emergent macrophyte planted in the systems. The wastewater was intermittently fed to the systems, corresponding to the organic loading rates of 10, 16, 31, and 63 kg BOD/ha-d. With abundant sunshine in the tropical-climate area, papyrus converted solar radiation to biomass of about 2200-3100 g dry weight/m(2) from the two-month period of the experiments. Furthermore, the energy contents of papyrus are 16.2, 17.2, and 16.8 MJ/kg for culms, umbels, and total above-ground parts, respectively. From the plant productivity and the energy contents of papyrus obtained from this study, the energy capturing efficiencies can be estimated to be in the range of 4.4-6.0%, which are relatively high, compared with those of other plants.

  13. Polishing Step Purification of High-Strength Wastewaters by Nanofiltration and Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    Jinxiang Zhou


    Full Text Available This article reports findings on the use of nanofiltration (NF and reverse osmosis (RO for secondary treatment of high-strength rendering facility wastewaters following an ultrafiltration step. These wastewaters present significant challenges to classical treatment technologies. Constant-pressure, direct-flow membrane filtration experiments were done to screen for flux and effluent water permeate quality of ten commercial NF and RO membranes. All membranes tested were effective in reducing total dissolved salts (TDS and chemical oxygen demand (COD; however, only two membranes (Koch MPF-34 and Toray 70UB gave sufficiently stable flux values to warrant longer term cross-flow filtration studies. Cross-flow flux measurements, scanning electron microscopy (SEM, X-ray dispersive spectroscopy (EDS, and attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR indicated that both membranes were eventually fouled by organic and inorganic foulants; however, the Toray 70UB RO membrane yielded a capacity of 1600 L/m2 prior to cleaning. A preliminary economic analysis compared the estimated costs of energy and consumables for a dual-stage UF/RO membrane process and dissolved air floatation (DAF and found membrane process costs could be less than about 40% of the current DAF process.

  14. Biogas and biohydrogen production potential of high strength automobile industry wastewater during anaerobic degradation. (United States)

    Bajaj, Mini; Winter, Josef


    High strength automobile industry wastewater, collected from decanters (DECA) of the pre-treatment plant after oil, grease and sludge separation, was investigated for production of methane in the absence and presence of glucose or excess aerobic sludge (AS) from a lab scale suspension reactor as co-substrates. The highest methane production from DECA wastewater was 335.4 L CH4/kg CODsoluble removal which decreased in the presence of the co-substrates to 232.5 (with 2 g/L glucose) and to 179 (with 40% AS) L CH4/kg CODsoluble removal, respectively. Around 95% of total methane was produced within 5 days of incubation of DECA at 37 °C when no co-substrate was added. Addition of co-substrates did not improve biodegradation of DECA but overall methane production from DECA + co-substrates was increased due to co-substrate biodegradation. The anaerobic inoculum, capable of producing 2.4 mol of hydrogen/mol of glucose under zinc induced inhibitory conditions, was unable to produce hydrogen from DECA as substrate under the same conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Partitioning of heavy metals in sub-surface flow treatment wetlands receiving high-strength wastewater. (United States)

    Wojciechowska, Ewa; Gajewska, Magdalena


    The retention of heavy metals at two pilot-scale treatment wetlands (TWs), consisting of two vertical flow beds (VSSF) followed by a horizontal flow bed (HSSF) was studied. The TWs received high-strength wastewater: reject waters from sewage sludge centrifugation (RW) and landfill leachate (LL). The concentrations of the metals Fe, Mn, Zn, Al, Pb, Cu, Cd, Co, and Ni were measured in treated wastewater, substrate of the beds and in plant material harvested from the beds (separately in above ground (ABG) parts and below ground (BG) parts). The TWs differed in metals retention. In the RW treating TW the metal removal efficiencies varied from 27% for Pb to over 97% for Fe and Al. In the LL treating system the concentrations of most metals decreased after VSSF-1 and VSSF-2 beds; however, in the outflow from the last (HSSF) bed, the concentrations of metals (apart from Al) increased again, probably due to the anaerobic conditions at the bed. A major removal pathway was sedimentation and adsorption onto soil substrate as well as precipitation and co-precipitation. In the LL treating facility the plants contained substantially higher metal concentrations in BG parts, while the upward movement of metals was restricted. In the RW treating facility the BG/ABG ratios were lower, indicating that metals were transported to shoots.

  16. Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation. (United States)

    Venkatakrishnan, Harish; Tan, Youming; Majid, Maszenan Bin Abdul; Pathak, Santosh; Sendjaja, Antonius Yudi; Li, Dongzhe; Liu, Jerry Jian Lin; Zhou, Yan; Ng, Wun Jern


    A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial community dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total chemical oxygen demand removed at standard temperature and pressure at the end of 30 days experimental period with a highest recorded methane percentage of 80.6% of total biogas volume. Volatile fatty acids (VFAs) analysis revealed that acetic acid was the major intermediate VFAs produced with propionic acid accumulating over the experimental period. Quantitative analysis of microbial communities in the test and control groups with quantitative real time polymerase chain reaction highlighted that in the test group, Eubacteria (96.3%) was dominant in comparison with methanogens (3.7%). The latter were dominated by Methanomicrobiales and Methanobacteriales while Methanosarcinaceae in test groups increased over the experimental period, reaching a maximum on day 30. Denaturing gradient gel electrophoresis profile was performed, targeting the 16S rRNA gene of Eubacteria and Archaea, with the DNA samples extracted at 3 different time points from the test groups. A phylogenetic tree was constructed for the sequences using the neighborhood joining method. The analysis revealed that the presence of organisms resembling Syntrophomonadaceae could have contributed to increased production of acetic and propionic acid intermediates while decrease of organisms resembling Pelotomaculum sp. could have most likely contributed to accumulation of propionic acid. This study suggested that the degradation of organic components within the high strength industrial wastewater is closely linked with the activity of certain niche microbial communities within eubacteria and methanogens. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor

    Energy Technology Data Exchange (ETDEWEB)

    Vallet, Ana, E-mail: [Grupo de Catalisis y Procesos de Separacion (CyPS), Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Besson, Michele, E-mail: [IRCELYON, Institut de recherches sur la catalyse et l' environnement de Lyon, UMR5256 CNRS-Universite Lyon1, 2 Avenue Albert Einstein, F-69626 Villeurbanne Cedex (France); Ovejero, Gabriel; Garcia, Juan [Grupo de Catalisis y Procesos de Separacion (CyPS), Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)


    Highlights: Black-Right-Pointing-Pointer Ni supported over hydrotalcite calcined precursors as catalyst. Black-Right-Pointing-Pointer Catalytic wet air oxidation in trickle bed reactor for Basic Yellow 11 removal. Black-Right-Pointing-Pointer Dye removal depends on temperature, initial dye concentration and flow rate. Black-Right-Pointing-Pointer The catalyst proved to be stable and efficient for the dye degradation. - Abstract: Catalytic wet air oxidation (CWAO) of a Basic Yellow 11 (BY11) aqueous solution, chosen as a model of a hardly biodegradable non-azo dye was carried out in a continuous-flow trickle-bed reactor, using nickel supported over hydrotalcite precursor calcined at 550 Degree-Sign C. An increase in the reaction temperature (120-180 Degree-Sign C), and a decrease in dye concentration (1000-3000 ppm) or liquid flow rate (0.1-0.7 mL min{sup -1}) enhanced the CWAO performance in a 30 and 19% for the variation of the temperature and concentration respectively. After a small leaching observed within the first hours, the catalyst proved to be very stable during the 65-day reaction. The CWAO process was found to be very efficient, achieving BY11 conversion up to 95% and TOC conversion up to 85% at 0.1 mL min{sup -1} and 180 Degree-Sign C under 5 MPa air.

  18. Biogas potential of high strength municipal wastewater treatment in laboratory scale up-flow anaerobic slugde blanket (UASB) reactors


    Safitri, Anissa Sukma


    The main focus of this study is investigating the effectiveness of anaerobic treatment of municipal wastewater for converting organic matter to methane production in anaerobic granular sludge reactors. In-house designed laboratory scale, up-flow anaerobic sludge blanket (UASB) reactor systems were set up for treating of high strength municipal wastewater treatment i.e. below 1200 mg COD/l under mesophilic condition (20 – 25 °C). Three UASB reactors were set up in the study; one reactor (React...

  19. Treatment of low-strength soluble wastewater using an anaerobic baffled reactor (ABR). (United States)

    Gopala Krishna, G V T; Kumar, Pramod; Kumar, Pradeep


    Treatment of low-strength soluble wastewater (COD approximately 500 mg/L) was studied using an eight chambered anaerobic baffled reactor (ABR). At pseudo steady-state (PSS), the average total and soluble COD values (COD(T) and COD(S)) at 8h hydraulic retention time (HRT) were found to be around 50 and 40 mg/L, respectively, while at 10h HRT average COD(T) and COD(S) values were of the order of 47 and 37 mg/L, respectively. COD and BOD (3 day, 27 degrees C) removal averaged more than 90%. Effluent conformed to Indian standards laid down for BOD (less than 30 mg/L). Reactor effluent characteristics exhibited very low values of standard deviation indicating excellent reactor stability at PSS in terms of effluent characteristics. Based on mass balance calculations, more than 60% of raw wastewater COD was estimated to be recovered as CH(4) in the gas phase. Compartment-wise profiles indicated that most of the BOD and COD got reduced in the initial compartments only. Sudden drop in pH (7.8-6.7) and formation of volatile fatty acids (VFA) (53-85 mg/L) were observed in the first compartment due to acidogenesis and acetogenesis. The pH increased and VFA concentration decreased longitudinally down the reactor. Residence time distribution (RTD) studies revealed that the flow pattern in the ABR was neither completely plug-flow nor perfectly mixed. Observations from scanning electron micrographs (SEM) suggest that distinct phase separation takes place in an ABR.

  20. Effect of reactor configuration on performance during anaerobic treatment of low strength wastewater. (United States)

    Das, Suprotim; Chaudhari, Sanjeev


    The efficiency of the up-flow anaerobic sludge blanket (UASB) reactor is quite low for the treatment of low strength wastewaters (LSWs) due to less biogas production leading to poor mixing. LSW may be treated efficiently by providing adequate mixing in the UASB reactor when gas production is low, and sufficient mixing can be achieved by modifying reactor geometry. Hence, modifying UASB reactor geometry for enhanced mixing and evaluating its performance for the treatment of LSWs would be a worthwhile effort. In the present study, UASB reactor configuration was modified by providing a vertical baffle along the height to promote mixing of reactor contents, and is termed as modified UASB (MUASB). The performance of an on-site pilot-scale MUASB reactor was evaluated for 375 days under ambient condition for the treatment of municipal sewage as LSW and compared with that of the conventional UASB and hybrid UASB (HUASB) reactors. The MUASB reactor showed better performance in terms of chemical oxygen demand (COD) removal efficiency as compared with UASB and HUASB reactors during this study. At 4 h hydraulic retention time, the total COD removal efficiency of UASB and HUASB reactors was 53.7% and 61%, respectively, which were much lower than the total COD removal efficiency of the MUASB reactor (72.7%). The better performance observed in the MUASB reactor is possibly due to improved mixing. Depth-wise analysis of reactor liquid showed that better mixing in the MUASB reactor enhances the contact of wastewater with biomass, which contributes to the improved treatment efficiency. It seems that MUASB holds promise for LSW treatment.

  1. wastewater

    African Journals Online (AJOL)

    Mtui-Combined chemical and biological treatment of recalcitrant industrial effluets. Tzitzi M, Vayenas DV and Lyberatos G 1994 Pretreatment of textile industry wastewater with ozone. Water Sci. Tech. 29(9): 151-160. Walter RH and Sherman RM 1974 Ozonation of lactic acid fermentation effluent. J. Water Poll. Control Fed.

  2. Purifying Synthetic High-Strength Wastewater by Microalgae Chlorella Vulgaris Under Various Light Emitting Diode Wavelengths and Intensities

    Directory of Open Access Journals (Sweden)

    Zhigang Ge


    Full Text Available The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity.

  3. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation. (United States)

    Bustamante, Mauricio; Liao, Wei


    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m2) and biogas storage (35m3), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m2 and 105m3, respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Purifying synthetic high-strength wastewater by microalgae chlorella vulgaris under various light emitting diode wavelengths and intensities (United States)


    The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity. PMID:24499586

  5. Treatment of low strength complex wastewater using an anaerobic baffled reactor (ABR). (United States)

    Gopala Krishna, G V T; Kumar, Pramod; Kumar, Pradeep


    Treatment of a low strength complex wastewater of chemical oxygen demand (COD) around 500mg/L was studied in a 10L capacity laboratory scale anaerobic baffled reactor (ABR). It was operated at hydraulic retention times (HRTs) of 20, 15, 10, 8 and 6h. Corresponding organic loading rates (OLRs) were 0.6, 0.8, 1.2, 1.5 and 2kg COD/m3d. At every HRT (or OLR), pseudo steady state (PSS) was achieved. Even at maximum OLR of 2kg COD/m3d, COD and biochemical oxygen demand (BOD) removals exceeded 88%. Removal of particulate fraction of organics was found to be greater than soluble fraction. Compartment-wise studies of various parameters revealed that if the OLR was larger, the number of initial compartments played significant role in the removal of organics. The values of volatile fatty acids (VFA) demonstrated that hydrolysis and acidogenesis were the main biochemical activities in the initial few compartments. Based on the tracer studies, dead space in the ABR was found to range from 23% to 34%. The flow pattern in the ABR was classified as intermediate between plug flow and perfectly mixed flows. Observations from scanning electron micrographs (SEM) also suggested that distinct phase separation takes place in an ABR. Study of organic and hydraulic shock loads revealed that ABR was capable of sustaining the type of shock loads generally experienced at a sewage treatment plant (STP).

  6. Enhanced granulation by natural ionic polymer additives in UASB reactor treating low-strength wastewater. (United States)

    Tiwari, Manoj K; Guha, Saumyen; Harendranath, C S; Tripathi, Shweta


    Effect of natural ionic polymer additives on granulation in lab-scale UASB reactors treating low-strength synthetic wastewater (COD 750-850 mg/L) was examined. The organic loading rate was 1.477+/-0.118 kgCOD/m3/day. Under identical conditions four similar reactors were operated in parallel with the following additives: control with no additive, anionic part of Reetha (Sapindus trifoliata) extract, cationic part of Reetha extract, and Chitosan. By the end of the study period, Chitosan as an additive produced largest granules with mean size of 0.15 mm closely followed by the cationic fraction of the Reetha extract with mean size of 0.144 mm, and anionic fractions of the Reetha extract with 0.139 mm. Control reactor with no additives had the smallest size granules with mean size of 0.128 mm. The fraction of granules in the sludge bed of size >0.1 mm showed similar trend. The largest granule size observed in the reactors with additives was 4-5mm as compared to 2 mm in the control reactor. Cationic polymers were more effective additives for enhancing sludge granulation. Exo-cellular protein, lipid, sugar and total polymer increased with granulation in the reactors. A COD removal efficiency of 95-98% was achieved in all the reactors.

  7. Partial nitrification in sequencing batch reactors treating low ammonia strength synthetic wastewater. (United States)

    Yin, Jun; Xu, Hengjuan; Shen, Dongsheng


    Sequencing batch reactors fed with low ammonium strength synthetic wastewater under C/N ratios of 0.5, 1.5, and 3.0 were used to investigate the transition from full to partial nitrification. Two strategies for establishing partial nitrification, aeration duration control and process parameter control, were compared. The effect of C/N ratio on nitrite accumulation was also evaluated. Results showed that partial nitrification established by controlling aeration duration presented better performance with higher nitrite accumulation. An increase of C/N ratio helped nitrite accumulation; however, non-filamentous bulking of sludge happened at high C/N ratio. Based on mass balances for nitrogen, results for nitrogen during full and partial nitrification were distinct from one another. For low C/N ratio, during full nitrification, almost 100% of NH(4+)-N was oxidized to NO(3-)-N without nitrogen loss; however, nitrogen loss increased obviously during partial nitrification, which indicated that dissolved oxygen concentration and C/N ratio influenced nitrogen loss significantly during nitrification.

  8. Palm tree mulch as substrate for primary treatment wetlands processing high strength urban wastewater. (United States)

    Herrera-Melián, J A; González-Bordón, A; Martín-González, M A; García-Jiménez, P; Carrasco, M; Araña, J


    The life span of subsurface flow treatment wetlands is determined by the clogging of the substrate. Thus, the influent should undergo primary treatment to reduce loadings of suspended solids and dissolved organic matter. An-organic based substrate should be less prone to clogging because of its remarkably higher porosity and plasticity. Mulch obtained from branches of the Canarian palm tree (Phoenix canariensis) has been tested as substrate for mixed flow, intermittently fed treatment wetland mesocosms processing high strength urban wastewater. The effect of the presence of plants (Phragmites and Cyperus), influent pressure and hydraulic loading rate was studied. The best removals (SS: 89%, COD: 77%, turbidity: 82%) have been obtained with planted reactors treating highly concentrated influents at the lower hydraulic loading rates tested. The palm tree mulch units achieved similar removals of SS, COD and turbidity to one having gravel as substrate and planted with common reed. Mulch obtained from stems of giant reed (Arundo donax) provided similar removals of SS and turbidity but that of COD was lower. The combination of organic-based TWs with gravel-based ones provided high removals (SS: 95%, COD: 78%, turbidity: 95%) while the risk of clogging was strongly reduced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Electricity Production and Characterization of High-Strength Industrial Wastewaters in Microbial Fuel Cell. (United States)

    Cetinkaya, Afsin Y; Ozdemir, Oguz Kaan; Demir, Ahmet; Ozkaya, Bestami


    Microbial fuel cells (MFCs) convert electrochemical energy into electrical energy immediately and have a big potential usage for the same time wastewater treatment and energy recovery via electro-active microorganisms. However, MFCs must be efficiently optimized due to its limitations such as high cost and low power production. Finding new materials to increase the cell performance and reduce cost for MFC anodes is mandatory. In the first step of this study, different inoculation sludges such as anaerobic gum industry wastewater, anaerobic brewery wastewater and anaerobic phosphate were tested, and MFC that was set up with anaerobic gum industry wastewater inoculation sludge exhibited the highest performance. In the second step of this study, various wastewaters such as chocolate industry, gum industry and slaughterhouse industry were investigated for anode bacteria sources. Several electrochemical techniques have been employed to elucidate how wastewaters affect the MFCs' performance. Among all the mentioned wastewaters, the best performance was achieved by the MFCs fed with slaughterhouse wastewater; this device produced a maximum power density of 267 mW·m-2.

  10. A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications (United States)

    Wang, Zhiwei; Zheng, Junjian; Tang, Jixu; Wang, Xinhua; Wu, Zhichao


    Recovery of nutrients and energy from municipal wastewater has attracted much attention in recent years; however, its efficiency is significantly limited by the low-strength properties of municipal wastewater. Herein, we report a pilot-scale forward osmosis (FO) system using a spiral-wound membrane module to concentrate real municipal wastewater. Under active layer facing feed solution mode, the critical concentration factor (CCF) of this FO system was determined to be 8 with 0.5 M NaCl as draw solution. During long-term operation at a concentration factor of 5, (99.8 ± 0.6)% of chemical oxygen demand and (99.7 ± 0.5)% of total phosphorus rejection rates could be achieved at a flux of 6 L/(m2 h) on average. In comparison, only (48.1 ± 10.5)% and (67.8 ± 7.3)% rejection of ammonium and total nitrogen were observed. Cake enhanced concentration polarization is a major contributor to the decrease of water fluxes. The fouling also led to the occurrence of a cake reduced concentration polarization effect, improving ammonium rejection rate with the increase of operation time in each cycle. This work demonstrates the applicability of using FO process for wastewater concentrating and also limitations in ammonium recovery that need further improvement in future.

  11. A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications (United States)

    Wang, Zhiwei; Zheng, Junjian; Tang, Jixu; Wang, Xinhua; Wu, Zhichao


    Recovery of nutrients and energy from municipal wastewater has attracted much attention in recent years; however, its efficiency is significantly limited by the low-strength properties of municipal wastewater. Herein, we report a pilot-scale forward osmosis (FO) system using a spiral-wound membrane module to concentrate real municipal wastewater. Under active layer facing feed solution mode, the critical concentration factor (CCF) of this FO system was determined to be 8 with 0.5 M NaCl as draw solution. During long-term operation at a concentration factor of 5, (99.8 ± 0.6)% of chemical oxygen demand and (99.7 ± 0.5)% of total phosphorus rejection rates could be achieved at a flux of 6 L/(m2 h) on average. In comparison, only (48.1 ± 10.5)% and (67.8 ± 7.3)% rejection of ammonium and total nitrogen were observed. Cake enhanced concentration polarization is a major contributor to the decrease of water fluxes. The fouling also led to the occurrence of a cake reduced concentration polarization effect, improving ammonium rejection rate with the increase of operation time in each cycle. This work demonstrates the applicability of using FO process for wastewater concentrating and also limitations in ammonium recovery that need further improvement in future. PMID:26898640

  12. Pre-fermentation of a low-strength meat-processing wastewater in an upflow sludge blanket reactor. (United States)

    Ros, M; Vrtovsek, J


    Pre-fermentation of low-strength wastewater from a meat processing facility (at 20 degrees C) was studied. A laboratory-scale upflow sludge blanket (USB) reactor was used for the experiments; 10 different operating conditions were tested with regard to the hydraulic residence time (HRT). At HRTs from 0.4 to 2.4 hours, the USB reactor produced effluent with acetate chemical oxygen demand from 82 to 100 mg/L. At HRTs shorter than 0.4 hours and upflow velocities greater than 0.5 m/h, biomass washout was observed. At HRTs longer than 2.4 hours, acetate concentration in the effluent and acetate production efficiency decreased. The transformation of organic nitrogen to ammonia-nitrogen occurred simultaneously with acetate production. Minimal accumulation of biomass in the USB reactor was observed. Pre-fermentation of the low-strength industrial wastewater in the USB reactor could be beneficial for biological nitrogen removal. The produced acetate is directly available for denitrification and the transformed ammonia-nitrogen is directly available for nitrification in the subsequent wastewater treatment steps.

  13. Performance and Fouling in Pre-Denitrification Membrane Bioreactors Treating High-Strength Wastewater from Food Waste Disposers

    Directory of Open Access Journals (Sweden)

    Jongkeun Lee


    Full Text Available The study investigated the performance of the pre-denitrification membrane bioreactor (MBR process to treat high-strength wastewater generated from food waste disposals. Extracellular polymeric substances (EPS as membrane foulant and microbial community profiles were analyzed under different hydraulic retention time (HRT operation conditions. The pre-denitrification MBR was effective for treating food wastewater with high chemical oxygen demand (COD/N resulting in high total nitrogen (TN removal efficiency. The operational data showed that effluent qualities in terms of COD, TN, and TP improved with longer HRT. However, membrane fouling potential as shown by specific membrane fouling rate and specific resistance to filtration (SRF increased as HRT increased. The longer HRT conditions or lower influent loading led to higher levels of bound EPS while HRT did not show large effects on the level of soluble microbial products (SMP. The restriction fragment length polymorphism (RFLP analysis showed similar microbial banding patterns from the sludges generated under different HRT conditions, indicating that HRT had minimal effects on the composition of microbial communities in the system. All these results suggest that the MBR with pre-denitrification is a feasible option for treating high-strength food wastewater and that different HRT conditions could affect the operational performance and the fouling rate, which is governed via changes in microbial responses through EPS in the system.

  14. Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: Horizontal subsurface flow versus vertical downflow

    DEFF Research Database (Denmark)

    Dan, Truong Hoang; Quang, Le Nhat; Chiem, Nguyen Huu


    of 80, 160 and 320mmd-1. The S. sesban plants grew very well in the constructed wetland systems and produced 17.2-20.2kgdry matterm-2year-1 with a high nitrogen content. Mass removal rates and removal rate constants increased with loading rate, but at 320mmd-1 the effluent quality was unacceptable...... and hydraulic problems appeared. Mass removal rates and removal rate constants were much higher than reported in other studies probably because of the high-strength wastewater, the high loading rates and the tropical conditions. Planted systems removed pollutants much more efficiently than the unplanted...... subsurface flow system and a saturated vertical downflow system was established with planted and unplanted beds to assess the effects of system design and presence of plants on treatment performance. The systems were loaded with a mixture of domestic and pig farm wastewater at three hydraulic loading rates...

  15. The startup performance and microbial distribution of an anaerobic baffled reactor (ABR) treating medium-strength synthetic industrial wastewater. (United States)

    Jiang, Hao; Nie, Hong; Ding, Jiangtao; Stinner, Walter; Sun, Kaixuan; Zhou, Hongjun


    In this study, an anaerobic baffled reactor (ABR) with seven chambers was applied to treat medium-strength synthetic industrial wastewater (MSIW). The performance of startup and shock test on treating MSIW was investigated. During the acclimation process, the chemical oxygen demand (COD) of MSIW gradually increased from 0 to 2,000 mg L -1 , and the COD removal finally reached 90%. At shock test, the feeding COD concentration increased by one-fifth and the reactor adapted very well with a COD removal of 82%. In a stable state, Comamonas, Smithella, Syntrophomonas and Pseudomonas were the main populations of bacteria, while the predominant methanogen was Methanobacterium. The results of chemical and microbiological analysis indicated the significant advantages of ABR, including buffering shocks, separating stages with matching microorganisms and promoting syntrophism. Meanwhile, the strategies for acclimation and operation were of great importance. Further work can test reactor performance in the treatment of actual industrial wastewater.

  16. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater

    DEFF Research Database (Denmark)

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon


    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic...... organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance...

  17. High-Strength Domestic Wastewater Treatment and Reuse with Onsite Passive Methods

    Directory of Open Access Journals (Sweden)

    José de Anda


    Full Text Available This paper describes the preliminary monitoring results of an onsite pilot wastewater treatment plant consisting of a septic tank, an anaerobic up-flow filter, and a horizontal subsurface flow wetland system planted with Agapanthus africanus. The system was designed to treat heavily polluted domestic wastewater produced in a research and development (R&D center, reaching additional goals of zero energy consumption and eliminating the use of chemical additives. First water quality data shows that organic load in the treated sewage were removed achieving more than 95% efficiency. Nutrients were removed by almost 50%, and fecal and total coliform counts decreased by 99.96%. The results were compared to official Mexican regulations for wastewater discharged into lakes and reservoirs complied with all of them except for nutrients. In this pilot project, the resulting treated wastewater was directly reused for watering the green areas of the R&D center. The result was that the excess of nutrients improved the quality of the grass, avoiding the use of synthetic fertilizers, and created a wetland habitat for small wildlife species living in the area.

  18. Material selection for a constructed wetroof receiving pre-treated high strength domestic wastewater. (United States)

    Zapater-Pereyra, M; van Dien, F; van Bruggen, J J A; Lens, P N L


    A constructed wetroof (CWR) is defined in this study as the combination of a green roof and a constructed wetland: a shallow wastewater treatment system placed on the roof of a building. The foremost challenge of such CWRs, and the main aim of this investigation, is the selection of an appropriate matrix capable of assuring the required hydraulic retention time, the long-term stability and the roof load-bearing capacity. Six substrata were subjected to water dynamics and destructive tests in two testing-tables. Among all the materials tested, the substratum configuration composed of sand, light expanded clay aggregates, biodegradable polylactic acid beads together with stabilization plates and a turf mat is capable of retaining the water for approximately 3.8 days and of providing stability (stabilization plates) and an immediate protection (turf mat) to the system. Based on those results, a full-scale CWR was built, which did not show any physical deterioration after 1 year of operation. Preliminary wastewater treatment results on the full-scale CWR suggest that it can highly remove main wastewater pollutants (e.g. chemical oxygen demand, PO4(3-)-P and NH4(+)-N). The results of these tests and practical design considerations of the CWR are discussed in this paper.

  19. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. (United States)

    Yu, Jaecheul; Seon, Jiyun; Park, Younghyun; Cho, Sunja; Lee, Taeho


    A submerged type microbial fuel cell (MFC) system, which consisted of six readily exchangeable air-cathode MFCs, was evaluated for continuous treatment of low-strength domestic wastewater. When supplied with synthetic wastewater (COD 100 mg/L), the system showed increasing maximum power densities from 191 to 754 mW/m2 as COD loading rates increased (0.20-0.40 kg/m3/day). COD removal efficiencies decreased with increased COD loading rates but the effluent COD concentrations met the relevant effluent quality standard (CODMn 20 mg/L) at all conditions. The system was then operated with domestic wastewater (c.a. 100 mg COD/L) at 0.32 and 0.43 kg/m3/day. The system showed much lower power densities (116-149 mW/m2) at both loading rates, compared to synthetic wastewater. Anodic microbial communities were completely different when the wastewater type was changed. These results suggest that the newly developed MFC system could be applied to treat low-strength domestic wastewater without requiring any additional organic removal stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Pyrosequencing analysis of microbial communities in hollow fiber-membrane biofilm reactors system for treating high-strength nitrogen wastewater. (United States)

    Park, Jung-Hun; Choi, Okkyoung; Lee, Tae-Ho; Kim, Hyunook; Sang, Byoung-In


    Wastewaters from swine farms, nitrogen-dealing industries or side-stream processes of a wastewater treatment plant (e.g., anaerobic digesters, sludge thickening processes, etc.) are characterized by low C/N ratios and not easily treatable. In this study, a hollow fiber-membrane biofilm reactors (HF-MBfR) system consisting of an O2-based HF-MBfR and an H2-based HF-MBfR was applied for treating high-strength wastewater. The reactors were continuously operated with low supply of O2 and H2 and without any supply of organic carbon for 250 d. Gradual increase of ammonium and nitrate concentration in the influent showed stable and high nitrogen removal efficiency, and the maximum ammonium and nitrate removal rates were 0.48 kg NH4(+)-N m(-3) d(-1) and 0.55 kg NO3(-)-N m(-3) d(-1), respectively. The analysis of the microbial communities using pyrosequencing analysis indicated that Nitrosospira multiformis, ammonium-oxidizing bacteria, and Nitrobacter winogradskyi and Nitrobacter vulgaris, nitrite-oxidizing bacteria were highly enriched in the O2-based HF-MBfR. In the H2-based HF-MBfR, hydrogenotrophic denitrifying bacteria belonging to the family of Thiobacillus and Comamonadaceae were initially dominant, but were replaced to heterotrophic denitrifiers belonging to Rhodocyclaceae and Rhodobacteraceae utilizing by-products induced from autotrophic denitrifying bacteria. The pyrosequencing analysis of microbial communities indicates that the autotrophic HF-MBfRs system well developed autotrophic nitrifying and denitrifying bacteria within a relatively short period to accomplish almost complete nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation. (United States)

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi


    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A simplified analysis of granule behavior in ASBR and UASB reactors treating low-strength synthetic wastewater

    Directory of Open Access Journals (Sweden)

    R. G. Veronez


    Full Text Available This work presents an analysis of the changes observed in granule characteristics of sludge in the treatment of synthetic wastewater at a concentration of about 500 mgCOD/L in batch, fed-batch (ASBR and continuous (UASB bench-scale reactors under similar experimental conditions. Physical and microbiological properties of the granules were characterized as average particle size and sedimentation time and by optical and epifluorescence microscopy. Several samples were analyzed in order to identify the morphologies. Granules from sequencing batch and fed-batch reactors, either with or without mechanical mixing, did not undergo any physical or microbiological changes. However, during the experiment granules from the UASB reactor agglomerated due to the formation and accumulation of a viscous material, probably of microbial origin, when operated at low superficial velocities (0.072, 0.10 and 0.19 m/h. When the superficial velocity was increased to 8.0-10.0 m/h by means of liquid-phase recirculation, the granules from the UASB reactor underwent flocculation and the microbiological characteristics changed in such a way that the equilibrium of microbial diversity in the inoculum was not maintained. As a result, the only reactor that maintained efficiency and good solids retention during the assays was the ASBR, showing that there is a correlation between maintenance of microbial diversity and operating mode in the case of anaerobic treatment of low-strength wastewaters.

  3. Evaluation of upflow hybrid bioreactor system for treating low-strength nitrogenous wastewater under low-shear environment

    Directory of Open Access Journals (Sweden)

    Maliwan Kutako


    Full Text Available Lab-scale upflow bioreactor system without biomass-liquid separation unit was built to treat low-strength nitrogenous wastewater based on intermittent aeration under low-shear environment. Biomass zone formed in the absence of gas bubbles provided simultaneous biomass retention, biodegradation of nitrogenous and carbonaceous compounds, and biomass-liquid separation. Biomass zone was stable as indicated by insignificant biomass washout rates (14–29 mg VSS/day and relatively constant biomass zone height (26–30 cm up to the shear gradient of 1.8 s-1. Nitrogen treatment efficiency of wastewater containing 15 mg NH4 + -N/L was 15.3±1.96% under continuous oxygen influx of 95 mg O2 /L/day and autotrophic environment, whereas it increased significantly, 88.2±7.05%, after intermittent aeration (3 hrs air-on and 3 hrs air-off and organic carbon source were supplied to the bioreactor system. Carbon removal efficiencies for both continuous and intermittent aeration were comparable reported at 85±1.76% and 91±2.1%, respectively.

  4. Start-up of a biofilm airlift system to obtain partial nitrification of a high-strength ammonium wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, A.; Perez, J.; Lafuente, J.; Carrera, J.


    In order to fulfil the new legal requirements with regards to the sewage sludge produced in the WWTPs an on-going EU research project is devoted to the reduction. Modification and valorisation of sludge (REMOVALS, n 018525, Among many other initiatives inside this project, a possible valorisation of sluge is the production of activated carbon (AC) which could be use, among other applications, as carrier for biofilm development. One of the possible applications of biofilm reactors in the current process diagram of a WWTP is the specific treatment of a high-strength ammonium wastewater produced in the anaerobic digestion of the sludge, the so-called reject water. (Author)

  5. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review (United States)

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low rem...

  6. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters. (United States)

    Kato, M T; Field, J A; Versteeg, P; Lettinga, G


    The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc.

  7. Effects of various LED light wavelengths and light intensity supply strategies on synthetic high-strength wastewater purification by Chlorella vulgaris. (United States)

    Yan, Cheng; Zhao, Yongjun; Zheng, Zheng; Luo, Xingzhang


    Chemical fertilizer agricultural wastewater is a typical high-strength wastewater that has dramatically triggered numerous environmental problems in China. The Chlorella vulgaris microalgae biological wastewater treatment system used in this study can effectively decontaminate the high-strength carbon and nitrogen wastewater under an optimum light wavelength and light intensity supply strategy. The descending order of both the dry weight for C. vulgaris reproduction and wastewater nutrient removal efficiency is red > white > yellow > purple > blue > green, which indicates that red light is the optimum light wavelength. Furthermore, rather than constant light, optimal light intensity is used for the incremental light intensity strategy. The phases for the optimal light intensity supply strategy are as follows: Phase 1 from 0 to 48 h at 800 μmol m(-2) s(-1); Phase 2 from 48 to 96 h at 1,200 μmol m(-2) s(-1); and Phase 3 from 96 to 144 h at 1,600 μmol m(-2) s(-1). Additionally, the optimal cultivation time is 144 h.

  8. Modeling the low pH limit of Nitrosomonas eutropha in high-strength nitrogen wastewaters. (United States)

    Fumasoli, Alexandra; Morgenroth, Eberhard; Udert, Kai M


    In wastewater treatment, the rate of ammonia oxidation decreases with pH and stops very often slightly below a pH of 6. Free ammonia (NH3) limitation, inhibition by nitrous acid (HNO2), limitation by inorganic carbon or direct effect of high proton concentrations have been proposed to cause the rate decrease with pH as well as the cessation of ammonia oxidation. In this study, we compare an exponential pH term common for food microbiology with conventionally applied rate laws based on Monod-type kinetics for NH3 limitation and non-competitive HNO2 inhibition as well as sigmoidal pH functions to model the low pH limit of ammonia oxidizing bacteria (AOB). For this purpose we conducted well controlled batch experiments which were then simulated with a computer model. The results showed that kinetics based on NH3 limitation and HNO2 inhibition can explain the rate decrease of ammonia oxidation between pH 7 and 6, but fail in predicting the pH limit of Nitrosomonas eutropha at pH 5.4 and rates close to that limit. This is where the exponential pH term becomes important: this term decreases the rate of ammonia oxidation to zero, as the pH limit approaches. Previously proposed sigmoidal pH functions that affect large pH regions, however, led to an overestimation of the pH effect and could therefore not be applied successfully. We show that the proposed exponential pH term can be explained quantitatively with thermodynamic principles: at low pH values, the energy available from the proton motive force is too small for the NADH production in Nitrosomonas eutropha and related AOB causing an energy limited state of the bacterial cell. Hence, energy limitation and not inhibition or limitation of enzymes is responsible for the cessation of the AOB activity at low pH values. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The use of laboratory sand, soil and crushed-glass filter columns for polishing domestic-strength synthetic wastewater that has undergone secondary treatment. (United States)

    Healy, M G; Burke, P; Rodgers, M


    The aim of this study was to examine the performance of intermittently loaded, 150 mm-diameter stratified filter columns of 2 depths (0.65 and 0.375 m) comprising different media--sand, crushed glass and soil--in polishing the effluent from a laboratory horizontal flow biofilm reactor (HFBR) treating synthetic domestic-strength wastewater. The HFBR has been successfully used to remove organic carbon and ammonium-nitrogen (NH4-N) from domestic wastewater. In this treatment method, wastewater is allowed to flow over and back along a stack of polyvinyl chloride (PVC) sheets. Biofilms on the sheets reduce organic carbon, suspended matter, and nutrients in the wastewater, but to achieve the quality of a septic tank system, additional treatment is required. In all filters, at a hydraulic loading rate of 100 L m(-2) d(-1), 40-65% of chemical oxygen demand (COD) and practically 100% of total suspended solids (TSS) were removed, nitrification was complete, and bacterial numbers were reduced by over 80%, with best removals achieved in the soil filters (93%). Soil polishing filters with the depth of 0.65 m performed best in terms of organic carbon, total nitrogen (Tot-N) and bacterial removal. Data from this preliminary study are useful in the design of treatment systems to polish secondary wastewaters with similar water quality characteristics.

  10. High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations. (United States)

    Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R


    This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes.

  11. Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor. (United States)

    Wei, Dong; Shi, Li; Yan, Tao; Zhang, Ge; Wang, Yifan; Du, Bin


    The objective of this study was to evaluate aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor (SBR). After successful aerobic granulation, mixed liquor suspended solids (MLSS) concentrations of the SBR increased from 3.11 to 14.52 g/L, while sludge volume index (SVI) values decreased from 144.61 to 30.32 mL/g. Protein (PN) and polysaccharide (PS) concentrations increased from 60.2 and 12.5 mg/L to 101.1 and 15.8 mg/L, respectively. Simultaneous nitrogen and phosphorus removal was enhanced by altering the influent chemical oxygen demand/nitrogen (COD/N) ratio. At COD/N ratio of 9, total nitrogen (TN) and total phosphorus (TP) removal efficiencies were up to 89.8% and 77.5%, respectively. Three-dimensional excitation-emission matrix (3D-EEM) spectroscopy showed that the chemical compositions of sludge EPS were changed during granulation process. The results could provide useful information to promote nitrogen and phosphorus removal using aerobic granular sludge technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater. (United States)

    Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon


    To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Performance of staged and non-staged up-flow anaerobic sludge bed (USSB and UASB) reactors treating low strength complex wastewater. (United States)

    Sevilla-Espinosa, Susana; Solórzano-Campo, Maricela; Bello-Mendoza, Ricardo


    The use of anaerobic processes to treat low-strength wastewater has been increasing in recent years due to their favourable performance-costs balance. For optimal results, it is necessary to identify reactor configurations that are best suited for this kind of application. This paper reports on the comparative study carried out with two high-rate anaerobic reactor systems with the objective of evaluating their performances when used for the treatment of low-strength, complex wastewater. One of the systems is the commonly used up-flow anaerobic sludge blanket (UASB) reactor. The other is the up-flow staged sludge bed (USSB) system in which the reactor was divided longitudinally into 3, 5 and 7 compartments by the use of baffles. The reactors (9 l) were fed with a synthetic, soluble and colloidal waste (chemical oxygen demand (COD) flow hydraulics, between plug-flow and completely-mixed, in the UASB and 7 stages USSB reactors allowed efficient degradation of substrates with minimum effluent concentrations. Low number of compartments in the USSB reactors increased the levels of short-circuiting thus reducing substrate removal efficiencies. All reactors showed high COD removal efficiencies (93-98%) and thus can be regarded as suitable for the treatment of low strength, complex wastewater. Staged anaerobic reactors can be a good alternative for this kind of application provided they are fitted with a large enough (> or =7) number of compartments to fully take advantage of their strengths. Scale factors seem to have influenced importantly on the comparison between one and multi staged sludge-bed reactors and, therefore, observations made here could change at larger reactor volumes.

  14. Direct treatment of high-strength soft drink wastewater using a down-flow hanging sponge reactor: performance and microbial community dynamics. (United States)

    Liao, Junhui; Fang, Curtis; Yu, Jimmy; Sathyagal, Arun; Willman, Eric; Liu, Wen-Tso


    A stand-alone down-flow hanging sponge (DHS) system with a two-stage configuration was operated for 700 days to treat synthetic soft drink wastewater at 3000 mg/L chemical oxygen demand (COD). Throughout the operation, >90% COD and total organic carbon (TOC) removal efficiency was obtained by the first stage, and a final effluent of COD reactor performance in the first stage. The microbial community of the retained biomass on the sponges differed significantly based on spatial locations of sponges, sampling time points, and loading shocks. In general, Proteobacteria were found to be more abundant in the reactor at an organic removal efficiency >80% than that at reactor operation. In addition, high abundance of Bacteroidetes in the reactor was speculated to be responsible for the VFA accumulation in the effluent. This study demonstrated that stand-alone DHS reactor could be used in treating high-strength wastewater efficiently.

  15. In-situ biogas sparging enhances the performance of an anaerobic membrane bioreactor (AnMBR) with mesh filter in low-strength wastewater treatment. (United States)

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J; Sheng, Guo-Ping


    In the recent years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for wastewater treatment due to the striking advantages such as upgraded effluent quality. However, fouling control is still a problem for the application of AnMBR. This study investigated the performance of an AnMBR using mesh filter as support material to treat low-strength wastewater via in-situ biogas sparging. It was found that mesh AnMBR exhibited high and stable chemical oxygen demand (COD) removal efficiencies with values of 95 ± 5 % and an average methane yield of 0.24 L CH4/g CODremoved. Variation of transmembrane pressure (TMP) during operation indicated that mesh fouling was mitigated by in-situ biogas sparging and the fouling rate was comparable to that of aerobic membrane bioreactor with mesh filter reported in previous researches. The fouling layer formed on the mesh exhibited non-uniform structure; the porosity became larger from bottom layer to top layer. Biogas sparging could not change the composition but make thinner thickness of cake layer, which might be benefit for reducing membrane fouling rate. It was also found that ultrasonic cleaning of fouled mesh was able to remove most foulants on the surface or pores. This study demonstrated that in-situ biogas sparging enhanced the performance of AnMBRs with mesh filter in low-strength wastewater treatment. Apparently, AnMBRs with mesh filter can be used as a promising and sustainable technology for wastewater treatment.

  16. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater. (United States)

    Liu, Jinmeng; Wang, Xinhua; Wang, Zhiwei; Lu, Yuqin; Li, Xiufen; Ren, Yueping


    Microbial fuel cells (MFCs) and forward osmosis (FO) are two emerging technologies with great potential for energy-efficient wastewater treatment. In this study, anaerobic acidification and FO membrane were simultaneously integrated into an air-cathode MFC (AAFO-MFC) for enhancing bio-electricity and water recovery from low-strength wastewater. During a long-term operation of approximately 40 days, the AAFO-MFC system achieved a continuous and relatively stable power generation, and the maximum power density reached 4.38 W/m 3 . The higher bio-electricity production in the AAFO-MFC system was mainly due to the accumulation of ethanol resulted from anaerobic acidification process and the rejection of FO membrane. In addition, a proper salinity environment in the system controlled by the addition of MF membrane enhanced the electricity production. Furthermore, the AAFO-MFC system produced a high quality effluent, with the removal rates of organic matters and total phosphorus of more than 97%. However, the nitrogen removal was limited for the lower rejection of FO membrane. The combined biofouling and inorganic fouling were responsible for the lower water flux of FO membrane, and the Desulfuromonas sp. utilized the ethanol for bio-electricity production was observed in the anode. These results substantially improve the prospects for simultaneous wastewater treatment and energy recovery, and further studies are needed to optimize the system integration and operating parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Integrated Microbial Electrolysis Cell (MEC) with an anaerobic Membrane Bioreactor (MBR) for low strength wastewater treatment, energy harvesting and water reclamation

    KAUST Repository

    Jimenez Sandoval, Rodrigo J.


    Shortage of potable water is a problem that affects many nations in the world and it will aggravate in a near future if pertinent actions are not carried out. Decrease in consumption, improvements in water distribution systems to avoid losses and more efficient water treatment processes are some actions that can be implemented to attack this problem. Membrane technology and biological processes are used in wastewater treatment to achieve high water quality standards. Some other technologies, besides water treatment, attempt to obtain energy from organic wastes present in water. In this study, a proof-of-concept was accomplished demonstrating that a Microbial Electrolysis Cell can be fully integrated with a Membrane Bioreactor to achieve wastewater treatment and harvest energy. Conductive hollow fiber membranes made of nickel functioned as both filter material for treated water reclamation and as a cathode to catalyze hydrogen production reaction. The produced hydrogen was subsequently converted into methane by hydrogenotrophic methanogens. Organic removal was 98.9% irrespective of operation mode. Maximum volumetric hydrogen production rate was 0.2 m3/m3d, while maximum current density achieved was 6.1 A/m2 (based on cathode surface area). Biofouling, an unavoidable phenomenon in traditional MBRs, can be minimized in this system through self-cleaning approach of hybrid membranes by hydrogen production. The increased rate of hydrogen evolution at high applied voltage (0.9 V) reduces the membrane fouling. Improvements can be done in the system to make it as a promising net energy positive technology for the low strength wastewater treatment.

  18. An innovative wood-chip-framework substrate used as slow-release carbon source to treat high-strength nitrogen wastewater. (United States)

    Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng


    Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems. However, nitrogen removal efficiency is usually limited due to the low carbon/nitrogen (C/N) ratio. A common solution is to add external carbon sources, but amount of liquid is difficult to determine. Therefore, a combined wood-chip-framework substrate (with wood, slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem. Results show that the removal rate of ammonia nitrogen (NH4+-N), total nitrogen (TN) and chemical oxygen demand (COD) could reach 37.5%-85%, 57.4%-86%, 32.4%-78%, respectively, indicating the combined substrate could diffuse sufficient oxygen for the nitrification process (slag and gravel zone) and provide carbon source for denitrification process (wood-chip zone). The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip, respectively. Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process, while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process. This study provides a new idea for wetland treatment of high-strength nitrogen wastewater. Copyright © 2016. Published by Elsevier B.V.

  19. Bioaugmentation of a continuous-flow self-forming dynamic membrane bioreactor for the treatment of wastewater containing high-strength pyridine. (United States)

    Hou, Cheng; Shen, Jinyou; Zhang, Dejin; Han, Yi; Ma, Dehua; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; Wang, Lianjun; Liu, Xiaodong


    For the treatment of high-strength pyridine containing wastewater, a bioaugmented continuous-flow self-forming dynamic membrane bioreactor (CSFDMBR), which was consisted of a continuous flow airlift reactor (CFAR) and a dynamic membrane bioreactor (DMBR), was developed in this study. The results indicated that through the bioaugmentation by Rhizobium sp. NJUST18, CSFDMBR could be successfully started, which was confirmed by complete removal of pyridine, efficient nitrification, and significant increase of biomass. Pyridine could be effectively degraded in the CSFDMBR even at influent pyridine loading rate as high as 9.0 kg m-3 day-1, probably due to the efficient biomass retention in the CSFDMBR, which could be attributed to the formation of aerobic granules and the key role of dynamic membrane. CSFDMBR presented good polishing performance in treating pyridine wastewater, with effluent total organic carbon (TOC) and turbidity as low as 22.5 ± 6.8 mg L-1 and 3.8 ± 0.5 NTU, respectively. Membrane fouling could be effectively controlled, as indicated by backwash period as long as 60 days. The observed efficient performance highlights the potential for the full-scale application of the bioaugmented CSFDMBR, particularly for highly recalcitrant pollutant removal.

  20. Acid Fermentation Process Combined with Post Denitrification for the Treatment of Primary Sludge and Wastewater with High Strength Nitrate

    Directory of Open Access Journals (Sweden)

    Allen Kurniawan


    Full Text Available In this study, an anaerobic baffled reactor (ABR, combined with a post denitrification process, was applied to treat primary sludge from a municipal wastewater treatment plant and wastewater with a high concentration of nitrate. The production of volatile fatty acids (VFAs was maximized with a short hydraulic retention time in the acid fermentation of the ABR process, and then the produced VFAs were supplied as an external carbon source for the post denitrification process. The laboratory scale experiment was operated for 160 days to evaluate the VFAs’ production rate, sludge reduction in the ABR type-acid fermentation process, and the specific denitrification rate of the post denitrification process. As results, the overall removal rate of total chemical oxygen demand (TCOD, total suspended solids (TSS, and total nitrogen (TN were found to be 97%, 92%, 73%, respectively, when considering the influent into ABR type-acid fermentation and effluent from post denitrification. We observed the specific VFAs production rate of 0.074 gVFAs/gVSS/day for the ABR type-acid fermentation, and an average specific denitrification rate of 0.166 gNO3−-N/gVSS/day for the post denitrification. Consequently, we observed that a high production of VFAs from a primary sludge, using application of the ABR type acid fermentation process and the produced VFAs were then successfully utilized as an external carbon source for the post denitrification process, with a high removal rate of nitrogen.

  1. Performance of an AnMBR pilot plant treating high-strength lipid wastewater: biological and filtration processes. (United States)

    Ramos, C; García, A; Diez, V


    The performance of an anaerobic membrane bioreactor (AnMBR) treating wastewater with high levels of oil and grease content from a snacks factory is studied and its effectiveness is demonstrated. The relation between the reversible and the irreversible fouling rate and the fouling propensity of the fatty matter were evaluated under a subcritical flux of 7.9 and 8.3 L/m(2) h. Low Oil and Grease (O&G) concentrations of 500 mg/L produced an irreversible fouling rate of only 0.09 mbar/d, while the fouling rate was between 0.96 and 3.95 mbar/d for an average O&G concentration of 6 g/L. In spite of the significant increase in filtration resistance from 0.31 to 6.08 × 10(12) m(-1) after 40 days of continuous operation, the critical flux level hardly decreased from 11.1 to 9.7 L/(m(2) h). With regard to the biological process, after a start-up period with an organic loading rate (OLR) of below 2 kg COD/(m(3) d), the system was able to treat wastewater between 4.6 and 36 g O&G/L and the system remained stable for OLR at around 17 kg COD/(m(3) d) for 2.8 d, without inhibitory signals. Acclimated sludge quickly reached maximum methane production and digested substrate with high oil and grease content, observing an increase in palmitic acid the first days and constant levels of propionic acid while fatty acids were in the medium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Combined mesophilic anaerobic and thermophilic aerobic digestion process for high-strength food wastewater to increase removal efficiency and reduce sludge discharge. (United States)

    Jang, H M; Park, S K; Ha, J H; Park, J M


    In this study, a process that combines the mesophilic anaerobic digestion (MAD) process with thermophilic aerobic digestion (TAD) for high-strength food wastewater (FWW) treatment was developed to examine the removal of organic matter and methane production. All effluent discharged from the MAD process was separated into solid and liquid portions. The liquid part was discarded and the sludge part was passed to the TAD process for further degradation. Then, the digested sludge from the TAD process was recycled back to the MAD unit to achieve low sludge discharge from the combined process. The reactor combination was operated in two phases: during Phase I, 40 d of total hydraulic retention time (HRT) was applied; during Phase II, 20 d was applied. HRT of the TAD process was fixed at 5 d. For a comparison, a control process (single-stage MAD) was operated with the same HRTs of the combined process. Our results indicated that the combined process showed over 90% total solids, volatile solids and chemical oxygen demand removal efficiencies. In addition, the combined process showed a significantly higher methane production rate than that of the control process. Consequently, the experimental data demonstrated that the combined MAD-TAD process was successfully employed for high-strength FWW treatment with highly efficient organic matter reduction and methane production.

  3. Optimizing chemical oxygen demand removal from synthesized wastewater containing lignin by catalytic wet-air oxidation over CuO/Al2O3 catalysts. (United States)

    Sriprom, Pongsert; Neramittagapong, Sutasinee; Lin, Chitsan; Wantala, Kitirote; Neramittagapong, Arthit; Grisdanurak, Nurak


    In this study, 10% CuO/Al2O3 catalyst was used in a catalytic wet-air oxidation process to remove chemical oxygen demand (COD) and color from experimentally designed wastewater containing lignin. The catalyst was prepared using an impregnation method and was characterized by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller method (BET) for surface area before use. A series of Box-Behnken design (BBD) experiments were used to identify the conditions (temperature, pressure, reaction time, and catalysts) necessary for the COD removal process. The predicted model had R2 and R2adj correlation coefficients of 0.98 and 0.97, respectively. Pressure only and the interaction effect between temperature and pressure were found to have a significant effect on COD removal (both confidence interval [CI] 95%). Finally, response surface methodology (RSM)-optimized results suggested that 92% of COD could be removed in 1 L of experimental wastewater with a lignin concentration 350 g/L in 120 min under the following conditions: a reaction temperature of 185 °C, a pressure of 10 bars, and catalyst loading of 1 mg/L. The experiment, performed in triplicate, yielded a COD removal of 90±2%. The results are believed to be of importance to pulp and paper industrial wastewater treatment and other similar applications. Catalytic wet-air oxidation (CWAO) has been used as an alternative to overcome problems related to the high temperatures and pressures required by the traditional wet-air oxidation. CWAO has been widely applied to treat various industrial wastewaters. To reduce the overall operational cost, it is necessary to identify the optimal condition required when designing wastewater treatment plant processes. In this work, the authors had successfully demonstrated the application of response surface methodology (RSM) with the Box-Behnken design (BBD) as a means of elucidating the complicated interaction effects between parameters.

  4. Kinetic evaluation and performance of a mesophilic anaerobic contact reactor treating medium-strength food-processing wastewater. (United States)

    Sentürk, E; Ince, M; Onkal Engin, G


    High rate mesophilic anaerobic contact reactors (MACR) represent a proven sustainable technology for a wide range of different industrial effluents. These reactors demonstrate quite similar features to their aerobic counterparts, activated sludge systems. A lab-scale high rate mesophilic anaerobic contact reactor was operated with wastewater originated from a potato-processing plant, at six different loading rates of 1.1-5g COD/L per day. The operational performance of MACR was monitored from start-up by assessing COD removal efficiency, total volatile fatty acid production and biogas composition. Furthermore, various kinetic models have been successfully applied to the experimental data to determine substrate balance, maximum utilization rate and volumetric methane production. The COD removal efficiencies were found to be 78-92% and the methane percentage of the biogas produced was 80-89%. Additionally, the methane yield coefficient was found to be 0.394 L CH(4)/gTCOD(rem). Copyright 2010 Elsevier Ltd. All rights reserved.

  5. High-strength fermentable wastewater reclamation through a sequential process of anaerobic fermentation followed by microalgae cultivation. (United States)

    Qi, Wenqiang; Chen, Taojing; Wang, Liang; Wu, Minghong; Zhao, Quanyu; Wei, Wei


    In this study, the sequential process of anaerobic fermentation followed by microalgae cultivation was evaluated from both nutrient and energy recovery standpoints. The effects of different fermentation type on the biogas generation, broth metabolites' composition, algal growth and nutrients' utilization, and energy conversion efficiencies for the whole processes were discussed. When the fermentation was designed to produce hydrogen-dominating biogas, the total energy conversion efficiency (TECE) of the sequential process was higher than that of the methane fermentation one. With the production of hydrogen in anaerobic fermentation, more organic carbon metabolites were left in the broth to support better algal growth with more efficient incorporation of ammonia nitrogen. By applying the sequential process, the heat value conversion efficiency (HVCE) for the wastewater could reach 41.2%, if methane was avoided in the fermentation biogas. The removal efficiencies of organic metabolites and NH4+-N in the better case were 100% and 98.3%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Enhancement of the performance of a combined microalgae-activated sludge system for the treatment of high strength molasses wastewater. (United States)

    Tsioptsias, Costas; Lionta, Gesthimani; Deligiannis, Andreas; Samaras, Petros


    The treatment of molasses wastewater, by a combined microalgae-activated sludge process, for the simultaneous organics and total nitrogen reduction, was examined. Further enhancement of the performance of the combined process was accomplished, by means of biofilm carriers or electrocoagulation. A LED light tube was immersed into the reactor tank aiming to enhance the growth of photosynthetic microalgae, while in a similar unit, biofilm carriers were added to the system, representing a moving bed bioreactor. Exposure of the activated sludge biocommunity to light source, resulted in the growth of microalgae and photoreactors exhibited higher removal rates of total nitrogen and nitrates. However, operation at longer times resulted in low effluent quality due to the presence of microalgae cells as a result of high growth rates, and potential light shading effect. Nevertheless, the moving bed system was more beneficial than the single photoreactor, as biofilm carriers provided a self cleaning capacity of the light source, reducing the effect of microalgae deposition. Advanced treatment of the biological effluents, by electrocoagulation, increased even more the process efficiency: the combined photobioreactor and electrocoagulation process resulted in about 78% COD removal and more than 35% total nitrogen removal in the effluent, where nitrates represented almost the single form of total nitrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis, characterization and catalytic performance of ZnO-CeO2 nanoparticles in wet oxidation of wastewater containing chlorinated compounds (United States)

    Anushree; Kumar, S.; Sharma, C.


    Here we report the catalytic property of ZnO-CeO2 nanoparticles towards oxidative degradation of organic pollutants present in industrial wastewater. The catalysts were prepared by co-precipitation method without using any surfactant. The physicochemical properties of catalysts were studied by XRD, Raman, XPS, N2-sorption, FE-SEM, TEM and EDX techniques. The characterization results confirmed the formation of porous ZnO-CeO2 nanocatalysts with high surface area, pore volume and oxygen vacancies. ZnO-CeO2 nanocatalysts exhibited appreciable efficiency in CWAO of industrial wastewater under mild conditions. The Ce40Zn60 catalyst was found to be most efficient with 72% color, 64% chemical oxygen demand (COD) and 63% total organic carbon (TOC) removal. Efficient removal of chlorophenolics (CHPs, 59%) and adsorbable organic halides (AOX, 54%) indicated the feasibility of using ZnO-CeO2 nanocatalysts in degradation of non-biodegradable and toxic chlorinated compounds.

  8. Enhancement of the performance of an anaerobic sequencing batch reactor treating low-strength wastewater through implementation of a variable stirring rate program

    Directory of Open Access Journals (Sweden)

    Rodrigues J. A. D.


    Full Text Available This work focuses on enhancement of the performance of an anaerobic sequencing batch reactor with a six-vertical-blade-disk-turbine impeller, containing granulated biomass treating low-strength synthetic wastewater, through a study of the feasibility of implementing a variable stirring rate program. The reactor was operated at 30ºC and a six-hour cycle was used to treat approximately 2.0 L of the synthetic substrate with a chemical oxygen demand (COD of nearly 500 mg/L. Two different stirring rate program were implemented: a constant rate of 50 rpm and a variable rate consisting of 75 rpm for one hour, 50 rpm for four hours and 25 rpm for 0.5 hour. The last 0.5 hour of the cycle was used for the settling step. In both cases, a very short start-up period and unfiltered and filtered substrate removal efficiencies of 81% and 88%, respectively, were attained. However, use of the variable stirring rate enhanced efficiency of the reactor dynamics without impairing biomass morphology, thus resulting in a reduction in the total cycle time and a possible decrease in energy consumption. Additionally, a simplified model of the anaerobic metabolic activity, using apparent kinetic parameters, was proposed as a consecutive first-order kinetic model with substrate and total volatile acid residual concentrations in order to analyze how the variable stirring rate affects reactor performance.

  9. Properties of Concrete Mixes with Carwash Wastewater

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron


    Full Text Available The rapid growth of the car wash industry today results in the need for wastewater reclamation. Thus, this paper aims to investigate the effect of using car wash wastewater on concrete properties in terms of mechanical properties. The basic characteristics of wastewater were investigated according to USEPA (Method 150.1 & 3 00.0 while the mechanical properties of concrete with car wash wastewater were compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentages of wastewater replaced in the concrete mix ranged from 0% up to 40%. In addition, the results also suggest that the concrete with 20% car wash wastewater achieved the highest compressive strength and modulus of elasticity compared to other compositions of wastewater. Moreover, the results also recommended that concrete mixed with car wash wastewater has better compressive strength compared to conventional concrete.

  10. Start-up of sequencing batch reactor with Thiosphaera pantotropha for treatment of high-strength nitrogenous wastewater and sludge characterization. (United States)

    Phatak, Pranita S; Trivedi, Saurabh; Garg, Anurag; Gupta, Sudhir K; Mukherji, Suparna


    Biological treatment of high-strength nitrogenous wastewater is challenging due to low growth rate of autotrophic nitrifiers. This study reports bioaugmentation of Thiosphaera pantotropha capable of simultaneously performing heterotrophic nitrification and aerobic denitrification (SND) in sequencing batch reactors (SBRs). SBRs fed with 1:1 organic-nitrogen (N) and NH4(+)-N were started up with activated sludge and T. pantotropha by gradual increase in N concentration. Sludge bulking problems initially observed could be overcome through improved aeration and mixing and change in carbon source. N removal decreased with increase in initial nitrogen concentration, and only 50-60 % removal could be achieved at the highest N concentration of 1000 mg L(-1) at 12-h cycle time. SND accounted for 28 % nitrogen loss. Reducing the settling time to 5-10 min and addition of divalent metal ions gradually improved the settling characteristics of sludge. Sludge aggregates of 0.05-0.2 mm diameter, much smaller than typical aerobic granules, were formed and progressive increase in settling velocity, specific gravity, Ca(2+), Mg(2+), protein, and polysaccharides was observed over time. Granulation facilitated total nitrogen (TN) removal at a constant rate over the entire 12-h cycle and thus increased TN removal up to 70 %. Concentrations of NO2(-)-N and NO3(-)-N were consistently low indicating effective denitrification. Nitrogen removal was possibly limited by urea hydrolysis/nitrification. Presence of T. pantotropha in the SBRs was confirmed through biochemical tests and 16S rDNA analysis.

  11. Wastewater Outfalls (United States)

    Iowa State University GIS Support and Research Facility — Outfalls which discharge wastewater from wastewater treatment facilities with individual NPDES permits. It does not include NPDES general permits.

  12. Examination of Bacterial Characteristics of Anaerobic Membrane Bioreactors in Three Pilot-Scale Plants for Treating Low-Strength Wastewater by Application of the Colony-Forming-Curve Analysis Method (United States)

    Kataoka, Naoaki; Tokiwa, Yutaka; Tanaka, Yasuo; Fujiki, Kiichi; Taroda, Hiroyuki; Takeda, Kiyoshi


    Characteristic sludge ecosystems arising in anaerobic membrane bioreactors of three pilot-scale plants treating low-strength (less than 1 g of biological oxygen demand per liter) sewage or soybean-processing wastewater were examined by analysis of the colony-forming-curves (CFC) obtained by counting colonies at suitable intervals. The wastewaters, containing high amounts of suspended solids (SS) (SS/chemical oxygen demand ratio, 0.51 to 0.80), were treated by using two types of bioreactors: (i) a hydrolyzation reactor for solubilization and acidification of SS in wastewater and (ii) a methane fermentation reactor for producing methane. The colony counts for the two sewage treatment plants continued to increase even after 3 weeks of incubation, whereas those for soybean-processing wastewater reached an approximately constant level within 3 weeks of incubation. The CFCs were analyzed by correlating the rate of colony appearance on roll tubes with the physiological types of bacteria present in the bioreactors. It was found that there were large numbers of slow-colony-forming anaerobic bacteria within the bioreactors and that the viable populations consisted of a few groups with different growth rates. It is considered that the slow-growing colonies appearing after 10 days of incubation were the dominant microflora in the sewage treated by hydrolyzation reactors. In particular, highly concentrated sludge (30.0 g of mixed-liquor volatile SS per liter) retained by the membrane separation module contained a large number of such bacteria. Slow-growing colonies of these bacteria could be counted by using a sludge extract medium prepared from only the supernatant of autoclaved sludge. In addition, the highest colony counts were almost always obtained with the sludge extract medium, meaning that most of the anaerobic bacteria in these sludges have complex nutrient requirements for growth. This report also indicates the usefulness of application of the CFC analysis method to

  13. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane


    Bandara, Wasala M.K.R.T.W.; Satoh, Hisashi; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi


    In this study, we investigated the efficiency of dissolved methane (D-CH4) collection by degasification from the effluent of a bench-scale upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater. A hollow-fiber degassing membrane module was used for degasification. This module was connected to the liquid outlet of the UASB reactor. After chemical oxygen demand (COD) removal efficiency of the UASB reactor became stable, D-CH4 discharged from the UASB reac...

  14. Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: Comparative analysis and kinetic modelling. (United States)

    Comelli, Raúl N; Seluy, Lisandro G; Isla, Miguel A


    This work focuses on the performance of ten commercial Saccharomyces yeast strains in the batch alcoholic fermentation of sugars contained in selected industrial wastewaters from the soft drink industry. Fermentation has been applied successfully to treat these effluents prior to their disposal. Although many strains were investigated, similar behaviour was observed between all of the Saccharomyces strains tested. When media were inoculated with 2gL -1 of yeast, all strains were able to completely consume the available sugars in less than 14h. Thus, any of the strains studied in this work could be used in non-conventional wastewater treatment processes based on alcoholic fermentation. However, ethanol production varied between strains, and these differences could be significant from a production point of view. Saccharomyces bayanus produced the most ethanol, with a mean yield of 0.44g ethanol g sugarconsumed -1 and an ethanol specific production rate of 5.96g ethanol (Lh) -1 . As the assayed soft drinks wastewaters contain about 105g sugar /L of fermentable sugars, the concentration of ethanol achieved after the fermentations process was 46.2g ethanol /L. A rigorous kinetic modelling methodology was used to model the Saccharomyces bayanus fermentation process. The kinetic model included coupled mass balances and a minimal number of parameters. A simple unstructured model based on the Andrews equation (substrate inhibition) was developed. This model satisfactorily described biomass growth, sugar consumption and bioethanol production. In addition to providing insights into the fermentative performance of potentially relevant strains, this work can facilitate the design of large-scale ethanol production processes that use wastewaters from the sugar-sweetened beverage industry as feedstock. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Study of a three-stage fluidized bed process treating acrylic synthetic-fiber manufacturing wastewater containing high-strength nitrogenous compounds. (United States)

    Cheng, S S; Chen, Y N; Wu, K L; Chuang, H P; Chen, S D


    Polyacrylonitrile (PAN) is one of the major synthetic fibers commonly used in the mass production of clothing. The chemical synthesis of PAN is carried out by polymerization of the acrylonitrile (AN) monomers with co-monomers such as vinyl acetate, methyl acrylate and cyclohexyl acrylate. Using water quality analysis of the PAN wastewater, high concentration of organic nitrogen was found and the TKN/COD ratios achieved were 0.15-0.26, indicating the complicated biodegradation characteristics for the PAN wastewater. In order to enhance biodegradation of nitrogenous compounds in PAN wastewater, a combined three-stage process of thermophilic anaerobic/anoxic denitrification/aerobic nitrification fluidized bed reactors was employed. The results indicated that the concentration of effluent in the three-stage process of OD and organic nitrogen was 175 mg/L and 13 mg/L, respectively. Furthermore, molecular biotechnology was applied to study the microbial population in the thermophilic anaerobic fluidized bed reactor. From the results of denaturing gradient gel electrophoresis, the diversity of PAN-degrading bacteria would change in different volumetric loading. Furthermore, the bacteria communities in the thermophilic anaerobic fluidized bed reactor were also studied by fluorescence in situ hybridization and confocal laser scanning microscopy. Alpha and delta-Proteobacteria were dominant in the bacteria population, and some high G+C content bacteria and Clostridium could be characterized in this system.

  16. Anaerobic treatment of a medium strength industrial wastewater at low-temperature and short hydraulic retention time: a pilot-scale experience. (United States)

    Esparza Soto, M; Solís Morelos, C; Hernández Torres, J J


    The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 degrees C) for more than 300 days. The applied organic loading rate (OLR(appl)) was gradually increased from 4 to 6 and 8 kg COD(sol)/m3d by increasing the influent soluble chemical oxygen demand (COD(sol)), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent COD(sol) and the OLR(appl). The highest removed organic loading rate (OLR(rem)) was reached when the UASB reactor was operated at 8 kg COD(sol)/m3d and it was two times higher than that obtained for an OLR(appl) of 4 kg COD(sol)/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLR(appl) increased, which caused an increment of the effluent COD(sol). Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater.

  17. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane. (United States)

    Bandara, Wasala M K R T W; Satoh, Hisashi; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi


    In this study, we investigated the efficiency of dissolved methane (D-CH(4)) collection by degasification from the effluent of a bench-scale upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater. A hollow-fiber degassing membrane module was used for degasification. This module was connected to the liquid outlet of the UASB reactor. After chemical oxygen demand (COD) removal efficiency of the UASB reactor became stable, D-CH(4) discharged from the UASB reactor was collected. Under 35 °C and a hydraulic retention time (HRT) of 10 h, average D-CH(4) concentration could be reduced from 63 mg COD L(-1) to 15 mg COD L(-1); this, in turn, resulted in an increase in total methane (CH(4)) recovery efficiency from 89% to 97%. Furthermore, we investigated the effects of temperature and HRT of the UASB reactor on degasification efficiency. Average D-CH(4) concentration was as high as 104 mg COD L(-1) at 15 °C because of the higher solubility of CH(4) gas in liquid; the average D-CH(4) concentration was reduced to 14 mg COD L(-1) by degasification. Accordingly, total CH(4) recovery efficiency increased from 71% to 97% at 15 °C as a result of degasification. Moreover, degasification tended to cause an increase in particulate COD removal efficiency. The UASB reactor was operated at the same COD loading rate, but different wastewater feed rates and HRTs. Although average D-CH(4) concentration in the UASB reactor was almost unchanged (ca. 70 mg COD L(-1)) regardless of the HRT value, the CH(4) discharge rate from the UASB reactor increased because of an increase in the wastewater feed rate. Because the D-CH(4) concentration could be reduced down to 12 ± 1 mg COD L(-1) by degasification at an HRT of 6.7 h, the CH(4) recovery rate was 1.5 times higher under degasification than under normal operation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Sustainable treatment of different high-strength cheese whey wastewaters: an innovative approach for atmospheric CO2 mitigation and fertilizer production. (United States)

    Prazeres, Ana R; Rivas, Javier; Paulo, Úrsula; Ruas, Filipa; Carvalho, Fátima


    Raw cheese whey wastewater (CWW) has been treated by means of FeCl3 coagulation-flocculation, NaOH precipitation, and Ca(OH)2 precipitation. Three different types of CWW were considered: without cheese whey recovery (CWW0), 60 % cheese whey recovery (CWW60), and 80 % cheese whey recovery (CWW80). Cheese whey recovery significantly influenced the characteristics of the wastewater to be treated: organic matter, solids, turbidity, conductivity, sodium, chloride, calcium, nitrogen, potassium, and phosphorus. Initial organic load was reduced to values in the interval of 60-70 %. Application of FeCl3, NaOH, or Ca(OH)2 involved additional chemical oxygen demand (COD) depletions regardless of the CWW used. Under optimum conditions, the combination of 80 % cheese whey recovery and lime application led to 90 % reduction in COD. Turbidity (99.8%), total suspended solids (TSS) (98-99 %), oils and fats (82-96 %), phosphorus (98-99 %), potassium (96-97 %), and total coliforms (100 %) were also reduced. Sludge generated in the latter process showed excellent settling properties. This solid after filtration and natural evaporation can be used as fertilizer with limitations due to its saline nature. In an innovative, low-cost, and environmentally friendly technology, supernatant coming from the Ca(OH)2 addition was naturally neutralized in 4-6 days by atmospheric CO2 absorption without reagent addition. Consequently, a final aerobic biodegradation step can be applied for effluent polishing. This technology also allows for some atmospheric CO2 mitigation. Time requirement for the natural carbonation depends on the effluent characteristics. A precipitate rich in organic matter and nutrients and depletions of solids, sodium, phosphorus, magnesium, Kjeldahl, and ammoniacal nitrogen were also achieved during the natural carbonation.

  19. Wastewater Treatment (United States)

    ... and arsenic can have acute and chronic toxic effects on species. other substances such as some pharmaceutical and personal care products, primarily entering the environment in wastewater effluents, may also pose threats to human health, aquatic life and wildlife. Wastewater treatment The major ...

  20. Evaluation of a Membrane Biological Reactor for Reclaiming Water, Alkalinity, Salts, Phosphorus, and Protein Contained in a High-Strength Aquacultural Wastewater (United States)

    The capacity of a membrane biological reactor to provide nitrification, denitrification, and enhanced biological phosphorus removal of a high-strength aquaculture backwash flow (control condition), or the same flow amended with 100 mg/L of NO3-N and 3 mg/L of dissolved P (test condition), was assess...

  1. Virtues of acclimated microbial cultures in wastewater ...

    African Journals Online (AJOL)

    The main take-home message from this paper is two-pronged: 1) BOD tests on recalcitrant wastewater must be done using acclimated seed cultures, and 2) the assessment of the strength of recalcitrant or toxic wastewater must be based on both BOD and COD tests. Journal of Building and Land Development Vol.

  2. Treatment of low-strength wastewater using immobilized biomass in a sequencing batch external loop reactor: influence of the medium superficial velocity on the stability and performance

    Directory of Open Access Journals (Sweden)

    Camargo E.F.M.


    Full Text Available An anaerobic sequencing batch bioreactor with external circulation of the liquid phase wherein the biomass was immobilized on a polyurethane foam matrix was analyzed, focussing on the influence of the liquid superficial velocity on the reactor's stability and efficiency. Eight-hour cycles were carried out at 30ºC treating glucose-based synthetic wastewater around 500 mgDQO/L. The performance of the reactor was assessed without circulation and with circulating liquid superficial velocity between 0.034 and 0.188 cm/s. The reactor attained operating stability and a high organic matter removal was achieved when liquid was circulated. A first order model was used to evaluate the influence of the liquid superficial velocity (vS, resulting in an increase in the apparent first order parameter when vS increased from 0.034 to 0.094 cm/s. The parameter value remained unchangeable when 0.188 cm/s was applied, indicating that beyond this value no improvement on liquid mass transfer was observed. Moreover, the necessary time to reach the final removal efficiency decreased when liquid circulation was applied, indicating that a 3-hour cycle could be enough.

  3. Determination and Variation of Core Bacterial Community in a Two-Stage Full-Scale Anaerobic Reactor Treating High-Strength Pharmaceutical Wastewater. (United States)

    Ma, Haijun; Ye, Lin; Hu, Haidong; Zhang, Lulu; Ding, Lili; Ren, Hongqiang


    Knowledge on the functional characteristics and temporal variation of anaerobic bacterial populations is important for better understanding of the microbial process of two-stage anaerobic reactors. However, owing to the high diversity of anaerobic bacteria, close attention should be prioritized to the frequently abundant bacteria that were defined as core bacteria and putatively functionally important. In this study, using MiSeq sequencing technology, the core bacterial community of 98 operational taxonomic units (OTUs) was determined in a two-stage upflow blanket filter reactor treating pharmaceutical wastewater. The core bacterial community accounted for 61.66% of the total sequences and accurately predicted the sample location in the principal coordinates analysis scatter plot as the total bacterial OTUs did. The core bacterial community in the first-stage (FS) and second-stage (SS) reactors were generally distinct, in that the FS core bacterial community was indicated to be more related to a higher-level fermentation process, and the SS core bacterial community contained more microbes in syntrophic cooperation with methanogens. Moreover, the different responses of the FS and SS core bacterial communities to the temperature shock and influent disturbance caused by solid contamination were fully investigated. Co-occurring analysis at the Order level implied that Bacteroidales, Selenomonadales, Anaerolineales, Syneristales, and Thermotogales might play key roles in anaerobic digestion due to their high abundance and tight correlation with other microbes. These findings advance our knowledge about the core bacterial community and its temporal variability for future comparative research and improvement of the two-stage anaerobic system operation.

  4. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater. (United States)

    Wang, Xinhua; Hu, Taozhan; Wang, Zhiwei; Li, Xiufen; Ren, Yueping


    Anaerobic osmotic membrane bioreactor (AnOMBR) has gained increasing interests in wastewater treatment owing to its simultaneous recovery of biogas and water. However, the forward osmosis (FO) membrane fouling was severe during a long-term operation of AnOMBRs. Here, we aim to recover the permeability of fouled FO membranes by chemical cleaning. Specifically speaking, an optimal chemical cleaning procedure was searched for fouled thin film composite polyamide FO (TFC-FO) membranes in a novel microfiltration (MF) assisted AnOMBR (AnMF-OMBR). The results indicated that citric acid, disodium ethylenediaminetetraacetate (EDTA-2Na), hydrochloric acid (HCl), sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) had a low cleaning efficiency of less than 15%, while hydrogen peroxide (H 2 O 2 ) could effectively remove foulants from the TFC-FO membrane surface (almost 100%) through oxidizing the functional group of the organic foulants and disintegrating the colloids and microbe flocs into fine particles. Nevertheless, the damage of H 2 O 2 to the TFC-FO membrane was observed when a high cleaning concentration and a long duration were applied. In this case, the optimal cleaning conditions including cleaning concentration and time for fouled TFC-FO membranes were selected through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM) images and the flux recovery rate. The results suggested that the optimal cleaning procedure for fouled TFC-FO membranes was use of 0.5% H 2 O 2 at 25 °C for 6 h, and after that, the cleaned TFC-FO membrane had the same performance as a virgin one including water flux and rejection for organic matters and phosphorus during the operation of AnMF-OMBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Wastewater Districts (United States)

    Vermont Center for Geographic Information — The Wastewater districts layer is part of a larger dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  6. Wastewater Treatment. (United States)

    Zoltek, J., Jr.; Melear, E. L.


    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  7. Wastewater reuse


    Milan R. Radosavljević; Vanja M. Šušteršič


    Water scarcity and water pollution are some of the crucial issues that must be addressed within local and global perspectives. One of the ways to reduce the impact of water scarcity  and to minimizine water pollution is to expand water and wastewater reuse. The local conditions including regulations, institutions, financial mechanisms, availability of local technology and stakeholder participation have a great influence on the decisions for wastewater reuse. The increasing awareness of food s...

  8. Modeling the anaerobic digestion of cane-molasses vinasse: extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater. (United States)

    Barrera, Ernesto L; Spanjers, Henri; Solon, Kimberly; Amerlinck, Youri; Nopens, Ingmar; Dewulf, Jo


    This research presents the modeling of the anaerobic digestion of cane-molasses vinasse, hereby extending the Anaerobic Digestion Model No. 1 with sulfate reduction for a very high strength and sulfate rich wastewater. Based on a sensitivity analysis, four parameters of the original ADM1 and all sulfate reduction parameters were calibrated. Although some deviations were observed between model predictions and experimental values, it was shown that sulfates, total aqueous sulfide, free sulfides, methane, carbon dioxide and sulfide in the gas phase, gas flow, propionic and acetic acids, chemical oxygen demand (COD), and pH were accurately predicted during model validation. The model showed high (±10%) to medium (10%-30%) accuracy predictions with a mean absolute relative error ranging from 1% to 26%, and was able to predict failure of methanogenesis and sulfidogenesis when the sulfate loading rate increased. Therefore, the kinetic parameters and the model structure proposed in this work can be considered as valid for the sulfate reduction process in the anaerobic digestion of cane-molasses vinasse when sulfate and organic loading rates range from 0.36 to 1.57 kg [Formula: see text]  m(-3) d(-1) and from 7.66 to 12 kg COD m(-3) d(-1), respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Wastewater reuse

    Directory of Open Access Journals (Sweden)

    Milan R. Radosavljević


    Full Text Available Water scarcity and water pollution are some of the crucial issues that must be addressed within local and global perspectives. One of the ways to reduce the impact of water scarcity  and to minimizine water pollution is to expand water and wastewater reuse. The local conditions including regulations, institutions, financial mechanisms, availability of local technology and stakeholder participation have a great influence on the decisions for wastewater reuse. The increasing awareness of food safety and the influence of the countries which import food are influencing policy makers and agriculturists to improve the standards of wastewater reuse in agriculture. The environmental awareness of consumers has been putting pressure on the producers (industries to opt for environmentally sound technologies including those which conserve water and reduce the level of pollution. It may be observed that we have to move forwards to implement strategies and plans for wastewater reuse. However, their success and sustainability will depend on political will, public awareness and active support from national and international agencies to create favorable    environment for the promotion of environmentally sustainable technologies. Wastewater treatment has a long history, especially in agriculture, but also in industry and households. Poor quality of wastewater can pose a significant risk to the health of farmers and users of agricultural products. The World Health Organization (WHO is working on a project for the reuse of wastewater in agriculture. To reduce effects of human activities to the minimum, it is necessary to provide such technical and technological solutions that would on the one hand ensure complying with  the existing regulations and legislation, and on the other hand provide economically viable systems as seen through investments and operating costs. The use of wastewater The practice of using wastewater varies from country to country. Its

  10. Characteristic Strength and Treatability of a Recycled Paper Mill ...

    African Journals Online (AJOL)

    The characteristic strength of wastewater from a recycled paper mill in Nairobi, Kenya and its suitability for treatment in a UASB (upflow anaerobic sludge blanket) reactor at ambient temperature were assessed. TheBOD5/COD relationship showedthat the wastewater is of high strength, biodegradable and has a potential to ...

  11. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović


    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  12. Interactions within wastewater systems

    NARCIS (Netherlands)

    Langeveld, J.G.


    Wastewater systems consist of sewer systems and wastewater treatment works. As the performance of a wastewater treatment plant is affected by the characteristics, i.e. operation and design, of the contributing sewer systems, knowledge of the interactions between sewers and wastewater treatment works

  13. The effect of tannic compounds on anaerobic wastewater treatment

    NARCIS (Netherlands)

    Field, J.A.


    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the

  14. Carbon and nitrogen removal from glucose-glycine melanoidins solution as a model of distillery wastewater by catalytic wet air oxidation. (United States)

    Phuong Thu, Le; Michèle, Besson


    Sugarcane molasses distillery wastewater contains melanoidins, which are dark brown recalcitrant nitrogenous polymer compounds. Studies were carried out in batch mode to evaluate Pt and Ru supported catalysts in the Catalytic Wet Air Oxidation (CWAO) process of a synthetic melanoidins solution, prepared by stoichiometric reaction of glucose with glycine. The addition of a catalyst slightly improved TOC removal compared with the non-catalytic reaction, and especially promoted the conversion of ammonium produced from organically-bound nitrogen in melanoidins to molecular nitrogen and nitrate. The selectivity to N2 attained 89% in the presence of the Pt catalysts in the reaction conditions used (TOC=2200mgL(-1), TN=280mgL(-1), 0.5g catalyst loaded with 3% metal, 210°C, 70bar total air pressure). To avoid leaching of the active metal by organically-bound nitrogen, the reaction was very efficiently performed in a two-step reaction consisting in WAO to convert nitrogen into ammonium, before the introduction of a catalyst. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Shuttle Wastewater Solution Characterization (United States)

    Adam, Niklas; Pham, Chau


    During the 31st shuttle mission to the International Space Station, STS-129, there was a clogging event in the shuttle wastewater tank. A routine wastewater dump was performed during the mission and before the dump was completed, degraded flow was observed. In order to complete the wastewater dump, flow had to be rerouted around the dump filter. As a result, a basic chemical and microbial investigation was performed to understand the shuttle wastewater system and perform mitigation tasks to prevent another blockage. Testing continued on the remaining shuttle flights wastewater and wastewater tank cleaning solutions. The results of the analyses and the effect of the mitigation steps are detailed in this paper.

  16. Metal Removal in Wastewater


    Sanchez Roldan, Laura


    The aim of this work was to study Copper removal capacity of different algae species and their mixtures from the municipal wastewater. This project was implemented in the greenhouse in the laboratories of Tampere University of Applied Sciences and the wastewater used was the one from the Tampere municipal wastewater treatment plant. Five algae species and three mixtures of them were tested for their Copper removal potential in wastewater in one batch test run. The most efficient algae mixture...

  17. Characterisation of wastewater for modelling of wastewater ...

    African Journals Online (AJOL)

    Bio-process modelling is increasingly used in design, modification and troubleshooting of wastewater treatment plants. (WWTPs). Characterisation of the influent wastewater to a WWTP is an important part of developing such a model. The characterisation required for modelling is more detailed than that routinely employed ...

  18. Characterisation of wastewater for modelling of wastewater ...

    African Journals Online (AJOL)

    Bio-process modelling is increasingly used in design, modification and troubleshooting of wastewater treatment plants (WWTPs). Characterisation of the influent wastewater to a WWTP is an important part of developing such a model. The characterisation required for modelling is more detailed than that routinely employed ...

  19. Dataset of producing and curing concrete using domestic treated wastewater

    Directory of Open Access Journals (Sweden)

    Gholamreza Asadollahfardi


    Full Text Available We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m3 of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m3 of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96–100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m3 of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water.

  20. Strength Training (United States)

    ... big difference between strength training, powerlifting, and competitive bodybuilding! Strength training uses resistance methods like free weights, ... a person can lift at one time. Competitive bodybuilding involves evaluating muscle definition and symmetry, as well ...

  1. Small Wastewater Systems Research (United States)

    Small communities face barriers to building and maintaining effective wastewater treatment services, challenges include financial/economic limitations, lack of managerial training and geographic isolation/remoteness.

  2. Wastewater Industrial Contributors (United States)

    Iowa State University GIS Support and Research Facility — Industrial contributors to municipal wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES) program.

  3. High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions

    NARCIS (Netherlands)

    Lier, van J.B.; Rebac, S.; Lettinga, G.


    Anaerobic wastewater treatment is an attractive and generally accepted technology for the treatment ofvarious types of medium- and high-strength wastewaters. So far, this treatment technology is mostly applied at the mesophilic temperature range between 25 and 40°C. However, results of recent


    National Research Council Canada - National Science Library

    A M Deshpande; S Satyanarayan


    ... the discharge standards. Therefore, in this study the toxic effects of high strength bulk drug industry wastewater before and after electrochemical treatment on common fish Lebistes reticulatus-(peter...

  5. Characteristics of grey wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Auffarth, Karina Pipaluk Solvejg; Henze, Mogens


    The composition of grey wastewater depends on sources and installations from where the water is drawn, e.g. kitchen, bathroom or laundry. The chemical compounds present originate from household chemicals, cooking, washing and the piping. In general grey wastewater contains lower levels of organic...... matter and nutrients compared to ordinary wastewater, since urine, faeces and toilet paper are not included. The levels of heavy metals are however in the same concentration range. The information regarding the content of xenobiotic organic compounds (XOCs) is limited. From this study, 900 different XOCs...

  6. Treatment of dairy wastewater by water hyacinth. (United States)

    Munavalli, G R; Saler, P S


    The present study addresses potential of water hyacinth for treating small-scale dairy wastewater to satisfy effluent standards for disposal into public sewers. The batch experiments were conducted on dairy wastewater using reactor with water hyacinth and without water hyacinth. The Chemical Oxygen Demand (COD) was varied from 507 mg/L to 4,672 mg/L and the maximum Hydraulic Retention Time (HRT) adopted was 8 days. The loss of water due to evapo-transpiration and evaporation was also measured. The water hyacinth system performed better when initial COD concentration was maintained less than 1,672 mg/L for six days HRT. The performance of water hyacinth system was more effective than reference by 30% to 45% for COD removal. However, water hyacinth had no significant impact in reducing Total Dissolved Solids (TDS). The evapo-transpiration loss was almost double than the evaporation loss. The first order reaction kinetics was applicable and reaction rate parameters were estimated for various organic strengths of wastewater. The reaction rate parameters for water hyacinth system were three times higher than a system without water hyacinth and also found to vary with initial COD values. Water hyacinth can be adopted to treat dairy wastewater from small-scale dairy effectively for disposal into public sewers.

  7. Performance Evaluation of Wastewater Treated Plant for Ninava Drug Factory

    Directory of Open Access Journals (Sweden)

    Amar Hamad


    Full Text Available In this study the characteristics of raw and treated wastewater from Ninava drug factory were evaluated. The results revealed that the strength of raw wastewater can be classified as medium concentrated wastewater with respect to its BOD5 since the average value is 231.7 mg/l. In addition a strong correlations were found between many characteristics of raw waste. The characteristics of produced effluent from waste water treatment plant of the factory were within the Iraqi specification for the disposed wastewater constraints in 1997, where the average is 7.8 for pH, 40mg/l for SS, 2.8 mg/l for PO4-3, 45 mg/l for BOD5 and 104.3 mg/l for COD. The heavy metals concentrations for both raw and treated wastewater is to be less than those of the related literatures for Tigris river, municipal wastewater and water supply in Mosul city, the average heavy metal concentrations of raw and treated wastewater were 0.5 mg/l for Iron, 0.2 mg/l for zinc and 0.005 mg/l for copper, and there is no significant difference between raw and treated heavy metal concentrations.

  8. Biological Treatment of Dairy Wastewater by Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    A Mohseni-Bandpi, H Bazari


    Full Text Available A bench scale aerobic Sequencing Batch Reactor (SBR was investigated to treat the wastewater from an industrial milk factory. The reactor was constructed from plexi glass material and its volume was 22.5 L. The reactor was supplied with oxygen by fine bubble air diffuser. The reactor was fed with milk factory and synthetic wastewater under different operational conditions. The COD removal efficiency was achieved more than 90%, whereas COD concentration varied from 400 to 2500 mg/l. The optimum dissolved oxygen in the reactor was 2 to 3 mg/l and MLVSS was around 3000 mg/l. Easy operation, low cost and minimal sludge bulking condition make the SBR system an interesting option for the biological medium strength industrial wastewater treatment. The study demonstrated the capability of aerobic SBR for COD removal from dairy industrial wastewater.

  9. TENORM: Wastewater Treatment Residuals (United States)

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  10. Wastewater Treatment Facilities (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  11. Wastewater Treatment Plants (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  12. Microalgae and wastewater treatment


    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.


    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged i...

  13. Biohydrogen production from industrial wastewaters. (United States)

    Moreno-Andrade, Iván; Moreno, Gloria; Kumar, Gopalakrishnan; Buitrón, Germán


    The feasibility of producing hydrogen from various industrial wastes, such as vinasses (sugar and tequila industries), and raw and physicochemical-treated wastewater from the plastic industry and toilet aircraft wastewater, was evaluated. The results showed that the tequila vinasses presented the maximum hydrogen generation potential, followed by the raw plastic industry wastewater, aircraft wastewater, and physicochemical-treated wastewater from the plastic industry and sugar vinasses, respectively. The hydrogen production from the aircraft wastewater was increased by the adaptation of the microorganisms in the anaerobic sequencing batch reactor.

  14. Addressing social aspects associated with wastewater treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia, E-mail:


    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  15. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.


    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a

  16. Xenobiotic organic compounds in wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Baun, Anders; Henze, Mogens


    Information regarding the contents of xenobiotic organic compounds (XOCs) in wastewater is limited, but it has been shown that at least 900 different compounds / compound groups could potentially be present in grey wastewater. Analyses of Danish grey wastewater revealed the presence of several hu...... aquatic toxicity were present and that data for environmental fate could only be retrieved for about half of the compounds....

  17. LCA of Wastewater Treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred


    The main purpose of wastewater treatment is to protect humans against waterborne diseases and to safeguard aquatic bio-resources like fish. The dominating environmental concerns within this domain are indeed still potential aquatic eutrophication/oxygen depletion due to nutrient/organic matter...... emissions and potential health impacts due to spreading of pathogens. Anyway, the use of treatment for micro-pollutants is increasing and a paradigm shift is ongoing — wastewater is more and more considered as a resource of, e.g. energy, nutrients and even polymers, in the innovations going on. The focus...... of LCA studies addressing wastewater treatment have from the very first published cases, been on energy and resource consumption. In recent time, the use of characterisation has increased and besides global warming potential, especially eutrophication is in focus. Even the toxicity-related impact...

  18. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    collection systems, and be more economically and environmentally sustainable than traditional wastewater collection and treatment systems. Possible alternative wastewater treatment methods for Greenlandic communities are dry composting or anaerobic digestion of excreta, collected at household level using dry...... treatment, even by utilizing waste heat from the waste incinerators. For the seweraged parts of the towns it might be most beneficial to maintain the flush toilet solutions, while introducing a treatment step prior to discharging to the recipient, such as simple mechanical treatment which might even...... treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...

  19. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan


    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  20. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan


    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  1. Stability studies of commercial ZnO engineered nanoparticles in domestic wastewater (United States)

    Chaúque, E. F. C.; Zvimba, J. N.; Ngila, J. C.; Musee, N.

    Most wastewater treatment plants (WWTPs) employ activated sludge processes to treat wastewater. The bacteria found in these systems degrade organic matter but are very sensitive to toxic compounds such as heavy metals, among others. The impact of emerging contaminants, such as engineered nanoparticles (ENPs) on the treatment efficiency of WWTPs is yet to be fully elucidated. The effects of physicochemical parameters; the pH and ionic strength on ZnO ENPs in domestic wastewater were investigated to establish their fate and behavior in wastewater treatment systems, as well as potential release into the environment if they pass untreated. Our findings showed a decrease in zinc concentration in the filtrate as pH and ionic strength increased which indicated its possible removal through the abiotic, biosorption, and biosolid settling mechanisms. This phenomenon was further confirmed by transmission electron microscopy (TEM) images which showed agglomerates of ZnO ENPs in wastewater compared with de-ionized water. The dynamic light scattering (DLS) analysis of ZnO ENPs suspension in the wastewater showed their stability over a period of 2 h, with energy dispersive X-ray (EDS) analysis showing the presence of zinc on the sludge surface, while X-ray diffraction (XRD) analysis confirmed the presence of ZnO ENPs in the sludge over typical wastewater pH ranges. The results of this study will inform the integrated water management on the impact of nanotechnology based industries and the best approach in handling wastewater treatment products.

  2. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    In the first part of this article, we have learned about the need and importance of wastewater treatment and conven- tional methods of treatment. Currently the need is to develop low power consuming and yet effective techniques to handle complex wastes. As a result, new and advanced techniques are being studied and in ...

  3. Techniques of Wastewater Treatment

    Indian Academy of Sciences (India)

    Techniques of Wastewater Treatment. 1. Introduction to Effluent Treatment and Industrial Methods. Amol A Kulkarni, Mugdha Deshpande and A B Pandit. Amol A Kulkarni is a PhD student from the Chemi- cal Engineering division in UDCT and is working on the characterization of non-linear dynamics in chemical reactors.

  4. Paper 1: Wastewater characterisation

    African Journals Online (AJOL)


    The impact of wastewater prefermentation cannot be evaluated in isolation, based only on the local prefermenter biodegradable organic matter production rate, as represented by the volatile fatty acids concentration increase across the prefermenter. The nutrients ratio changes and solids removal variations from the raw to ...

  5. Vietnam Urban Wastewater Review


    World Bank


    Vietnam is facing the challenge of trying to keep pace with increasing environmental pollution associated with rapid urbanization, especially in the larger cities. Over the past 20 years, the Government of Vietnam has made considerable effort to develop urban sanitation policies, legislations and regulations, and to invest in urban sanitation including wastewater treatment systems. This st...

  6. Microalgae and wastewater treatment (United States)

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.


    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  7. Nitrogen and COD removal from domestic and synthetic wastewater in subsurface-flow constructed wetlands. (United States)

    Collison, R S; Grismer, M E


    Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.

  8. A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment. (United States)

    Wang, Yun-Kun; Sheng, Guo-Ping; Shi, Bing-Jing; Li, Wen-Wei; Yu, Han-Qing


    One possible way to address both water and energy shortage issues, the two of major global challenges, is to recover energy and water resource from wastewater. Herein, a novel electrochemical membrane bioreactor (EMBR) was developed to recover energy from wastewater and meantime harvest clean water for reuse. With the help of the microorganisms in the biocatalysis and biodegradation process, net electricity could be recovered from a low-strength synthetic wastewater after estimating total energy consumption of this system. In addition, high-quality clean water was obtained for reuse. The results clearly demonstrate that, under the optimized operating conditions, it is possible to recover net energy from wastewater, while at the same time to harvest high-quality effluent for reuse with this novel wastewater treatment system.

  9. Electrically or ultrasonically enhanced membrane filtration of wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kylloenen, H. [VTT Processes, Jyvaeskylae (Finland)


    Flux decline due to concentration polarisation and membrane fouling is a serious problem in membrane filtration. In this thesis the effect of an external DC electric or ultrasonic field separately on the flux in crossflow membrane filtration of wastewater samples was studied. Significant enhancement of the flux compared with the flux with no electric field was achieved in the filtration of model wastewater. The most important parameters for the flux enhancement were the electrophoretic mobility and the applied electric field strength. However, the average electrophoretic mobility of the charged particles in the industrial wastewater samples studied was usually only slightly negative. Thus enhancements when using appropriate electric field strengths were not good enough. Another problem with the industrial wastewater samples was the high conductivity, which caused high consumption of energy. Ultrasound irradiation also provided enhancement in membrane filtration of wastewaters. There are several factors, which affect the cavitation and thus influence the effectiveness of ultrasound in membrane fouling prevention. This thesis was focused on the suitable ultrasound propagation direction and the effect of the transmembrane pressure, which previously have got little attention in the research of ultrasound assisted membrane filtration. According to this study a low frequency ultrasound irradiation from the permeate side of the tight membrane at the transmembrane pressure of zero bar is efficient and, at the same time, a gentle method in membrane cleaning. For open membranes the ultrasound propagation direction should be different or the irradiation from the feed side should be combined with other cleaning techniques. Electrofiltration is not a universal method for the filtration of industrial wastewater. It is a competitive method, when the average electrophoretic mobility in the sample is high and the conductivity is low. Ultrasound assisted filtration is less dependent

  10. Syntrophic Communities in Methane Formation from High Strength Wastewaters

    NARCIS (Netherlands)

    Plugge, C.M.; Lier, van J.B.; Stams, A.J.M.


    Among the goals of environmentally sound waste treatment is the recycling of organic wastes. The most practiced options are composting and anaerobic digestion, both processes being carried out by microorganisms. This book provides an overview of the various ways microbes are doing their job and

  11. Recycling phosphorus from wastewater

    DEFF Research Database (Denmark)

    Lemming, Camilla Kjærulff

    from a longterm field experiment were included in combination with 33P isotope techniques. In particular sewage sludges, but also sewage sludge incineration ashes, from different wastewater treatment plants varied substantially in P availability. The variation between different sludges could be partly......, localised applications of sewage sludge and sewage sludge ashes cannot be recommended. Methodological considerations included an evaluation of the WEP (water extractable P) method used in most of the experiments to describe P availability after application to soil, was evaluated. This suggested...... included anaerobically digested and dewatered sewage sludges from six different wastewater treatment plants, thermally dried sewage sludge, four sewage sludge incineration ashes, thermochemically treated sewage sludge ash, struvite, two rejectwater evaporation products, composted household waste, cattle...

  12. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. (United States)

    Wagner, Rachel C; Regan, John M; Oh, Sang-Eun; Zuo, Yi; Logan, Bruce E


    The production of a useful and valuable product during swine wastewater treatment, such as hydrogen gas, could help to lower treatment costs. Hydrogen can theoretically be produced from wastewater by electrohydrogenesis in a microbial electrolysis cell (MEC) or by fermentation. Using a single-chamber MEC with a graphite-fiber brush anode, hydrogen gas was generated at 0.9-1.0 m(3) m(-3) day(-1) H2 using a full-strength or diluted swine wastewater. COD removals ranged from 8 to 29% in 20-h tests, and from 69 to 75% in longer tests (184 h) using full-strength wastewater. The gas produced was up to 77+/-11% hydrogen, with overall recoveries of up to 28+/-6% of the COD in the wastewater as hydrogen gas. Methane was also produced at a maximum of 13+/-4% of total gas volume. The efficiency of hydrogen production, based on the electrical energy needed (but excluding the energy in the wastewater) compared to the energy of the hydrogen gas produced, was as high as 190+/-39% in 42-h batch tests with undiluted wastewater, but was lower in longer batch tests of 184 h (91+/-6%). Hydrogen gas could not be recovered in fermentation tests using wastewater with a heat-treated inoculum. Hydrogen production was shown to be possible by fermentation when the wastewater was sterilized, but this process would not be practical or energy efficient. We therefore conclude from these tests that MECs are an effective method for hydrogen recovery from swine wastewater treatment, although the process needs to be further evaluated for reducing methane production, increasing the efficiency of converting the organic matter into current, and increasing recovery of hydrogen gas produced at the cathode.

  13. Wastewater treatment with algae

    Energy Technology Data Exchange (ETDEWEB)

    Wong Yukshan [Hong Kong Univ. of Science and Technology, Kowloon (China). Research Centre; Tam, N.F.Y. [eds.] [City Univ. of Hong Kong, Kowloon (China). Dept. of Biology and Chemistry


    Immobilized algal technology for wastewater treatment purposes. Removal of copper by free and immobilized microalga, Chlorella vulgaris. Biosorption of heavy metals by microalgae in batch and continuous systems. Microalgal removal of organic and inorganic metal species from aqueous solution. Bioaccumulation and biotransformation of arsenic, antimony and bismuth compounds by freshwater algae. Metal ion binding by biomass derived from nonliving algae, lichens, water hyacinth root and spagnum moss. Metal resistance and accumulation in cyanobacteria. (orig.)

  14. Constructed Wetlands for Wastewater Treatment


    Jan Vymazal


    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  15. Training Centers for Onsite Wastewater Treatment (United States)

    Onsite wastewater training centers offer classes, demonstration projects and research facilities for onsite industry professionals. Classes include wastewater management, new technologies and pre-licensing.

  16. Hydrogen Production in the Anaerobic Treatment of Domestic-Grade Synthetic Wastewater

    Directory of Open Access Journals (Sweden)

    Sachin Paudel


    Full Text Available The aim of this study was to evaluate the potential of domestic wastewater for anaerobic hydrogen production. High-strength and ordinary-strength organic loadings of synthetic wastewater, i.e., real-time domestic wastewater with and without a mixture of food waste, were tested. During operation at a high strength loading, the initial pH was maintained at 7 and then gradually decreased, and a pH of 5–5.5 was observed as the best experimental condition. A pH of 5–5.5 was controlled during the operation at an ordinary-strength loading. Maximum hydrogen yields of 1.125 mol H2/mol glucose and 1.01 mol H2/mol glucose were observed during operation at high (48 g COD/L·day and ordinary (3 g COD/L·day strength loadings in terms of chemical oxygen demand (COD, respectively, with hydrogen contents of 42%–53%. The operating environment of the hydrogen production system was found to be very crucial because the metabolic pathway of the microorganism and production of intermediates were found to be dynamic with the controlled environment. Smaller COD removals of 30% and 26% were observed in high-strength and ordinarystrength loadings, respectively. Organic mass balance in terms of COD described the distribution of organics in the system via reactor byproducts. The findings of this study can be applied during the design of onsite domestic wastewater and energy recovery systems.

  17. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.


    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  18. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.


    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...

  19. Wastewater Treatment I. Instructor's Manual. (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment…

  20. Identification of wastewater processes

    DEFF Research Database (Denmark)

    Carstensen, Niels Jacob

    of ammonia, nitrate, and phosphate concentrations, which are measured in the aeration tanks of the biological nutrient removal system. The alternatign operation modes of the BIO-DENITRO and BIO-DENIPHO processes are of particular interest. Time series models of the hydraulic and biological processes are very...... useful for gaining insight in real time operation of wastewater treatment systems with variable influent flows and pollution loads, and for the design of plant operation control. In the present context non-linear structural time series models are proposed, which are identified by combining the well...

  1. Granular activated algae for wastewater treatment. (United States)

    Tiron, O; Bumbac, C; Patroescu, I V; Badescu, V R; Postolache, C


    The study used activated algae granules for low-strength wastewater treatment in sequential batch mode. Each treatment cycle was conducted within 24 h in a bioreactor exposed to 235 μmol/m²/s light intensity. Wastewater treatment was performed mostly in aerobic conditions, oxygen being provided by microalgae. High removal efficiency of chemical oxygen demand (COD) was achieved (86-98%) in the first hours of the reaction phase, during which the indicator's removal rate was 17.4 ± 3.9 mg O₂/g h; NH(4)(+) was removed during organic matter degradation processes with a rate of 1.8 ± 0.6 mg/g h. After almost complete COD removal, the (O⁺) remaining in the liquor was removed through nitrification processes promoted by the increase of the liquor's oxygen saturation (O₂%), the transformation rate of NH4(+) into NO(3)(-) increasing from 0.14 ± 0.05 to 1.5 ± 0.4 mg NH4(+)/g h, along with an O₂% increase. A wide removal efficiency was achieved in the case of PO(4)(3)(-) (11-85%), with the indicator's removal rate being 1.3 ± 0.7 mg/g h. In the provided optimum conditions, the occurrence of the denitrifying activity was also noticed. A large pH variation was registered (5-8.5) during treatment cycles. The granular activated algae system proved to be a promising alternative for wastewater treatment as it also sustains cost-efficient microalgae harvesting, with microalgae recovery efficiency ranging between 99.85 and 99.99% after granules settling with a velocity of 19 ± 3.6 m/h.

  2. High salinity wastewater treatment. (United States)

    Linarić, M; Markić, M; Sipos, L


    The shock effect, survival and ability of activated sludge to acclimatize to wastewater containing different concentrations of NaCl and Na2SO4 were investigated under laboratory conditions. To accomplish this, the potential penetration of a sewage system by seawater as a consequence of storm surge flooding was simulated. The experiments were conducted using activated sludge taken from the aeration tank of a communal wastewater treatment plant and adding different concentrations up to 40 g/L of NaCl and 4.33 g/L of Na2SO4. The effects of salinity on the activated sludge were monitored for 5 weeks based on the values of pH, dissolved oxygen, total suspended solids, volatile suspended solids, sludge volume, sludge volume index, electrokinetic potential, respirometric measurements and enzymatic activity. The addition of salt sharply reduced or completely inhibited the microbial activity in activated sludge. When salt concentrations were below 10 g/L NaCl, microorganisms were able to acclimatize in several weeks and achieve the same initial activity as in raw sludge samples. When the salt concentration was above 30 g/L NaCl, the acclimatization process was very slow or impossible.

  3. 40 CFR 63.1106 - Wastewater provisions. (United States)


    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Wastewater provisions. 63.1106 Section... Technology Standards § 63.1106 Wastewater provisions. (a) Process wastewater. Except as specified in... source shall comply with the HON process wastewater requirements in §§ 63.132 through 63.148. (1) When...

  4. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal


    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  5. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget


    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  6. Fischer-Tropsch Wastewater Utilization (United States)

    Shah, Lalit S.


    The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

  7. Arthrospira (Spirulina) in tannery wastewaters

    African Journals Online (AJOL)


    May 29, 2012 ... Part 1: The microbial ecology of tannery waste stabilisation ponds and the management of ... of tannery wastewaters in severely water-stressed areas, and .... ured using a Skye Instruments 210 light sensor and SDL 2580.

  8. The Sources and Solutions: Wastewater (United States)

    Wastewater treatment plants process water from homes and businesses, which contains nitrogen and phosphorus from human waste, food and certain soaps and detergents, and they can be a major source of nutrient pollution.

  9. Constructed Wetlands for Wastewater Treatment (United States)

    This presentation is a general introductory overview of constructed wetlands for wastewater treatment. Photographs show a wide range of applications and sizes. Summary data on cost and performance from previously published documents by WERF and EPA is presented. Previously pre...

  10. Partitioning and removal of Cd and Mn using a simulated mangrove wastewater treatment system. (United States)

    Miao, Shenyu; Chen, Guizhu; DeLaune, R D; Jugsujinda, A


    A greenhouse experiment was conducted to study the partitioning and removal of Cd and Mn from wastewater using constructed mangrove (Kandelia candel) wetland treatment system. Three different strengths of artificial wastewater passed through the system in fixed quantities. Artificial seawater was used as a control. Three different compositions were natural wastewater concentration (C1), medium wastewater concentration (C5) and concentrated wastewater concentrations (C10). C1 had the characteristics and strength similar to natural municipal wastewater while C5 and C10 contained five and ten times of the nutrients and heavy metals in C1, respectively. Results showed that the major portion of the Cd and Mn entering the simulated wastewater treatment system entered the sediment pool where approximately 88% to 95% of the Cd, and between 63% and 89% of Mn, was retained. The amount of added Cd and Mn in the wastewater found in plants were between 0.16% to 1.1%, and 1.7% to 13.9%, respectively. Within the total plant pool, roots accounted for between 30% and 39% of Cd, and from 0.65% to 7.3% of Mn; leaves contained between 19.9% to 30.5% of Cd, and from 7.8% to 41.0% of Mn; litterfall contained 12.3% to 20.6% of Cd, and from 15.2% to 70.3% of Mn, respectively. The averaged accumulative coefficients concentration in plant tissues/concentration in sediment in plant for Cd and Mn were 1.22 to 2.40 and 0.02 to 0.08, respectively. Assimilated Cd and Mn were stored in non-activity plant zones such as cell wall, supplimentary cells of the lenticel, stone cells, cell gaps in root and stem, etc. Kandelia candel seedlings had a relative high toxicity resistance to the two heavy metals.

  11. Properties of Concrete Mixes with Carwash Wastewater


    Shahidan Shahiron; Senin Mohamad Syamir; Abdul Kadir Aeslina Binti; Yee Lau Hai; Ali Noorwirdawati


    The rapid growth of the car wash industry today results in the need for wastewater reclamation. Thus, this paper aims to investigate the effect of using car wash wastewater on concrete properties in terms of mechanical properties. The basic characteristics of wastewater were investigated according to USEPA (Method 150.1 & 3 00.0) while the mechanical properties of concrete with car wash wastewater were compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressiv...

  12. 40 CFR 63.647 - Wastewater provisions. (United States)


    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Wastewater provisions. 63.647 Section... Emission Standards for Hazardous Air Pollutants From Petroleum Refineries § 63.647 Wastewater provisions... wastewater stream shall comply with the requirements of §§ 61.340 through 61.355 of 40 CFR part 61, subpart...

  13. 40 CFR 63.1330 - Wastewater provisions. (United States)


    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Wastewater provisions. 63.1330 Section... for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins § 63.1330 Wastewater provisions... subpart. (10) Whenever §§ 63.132 through 63.149 refer to a Group 1 wastewater stream or a Group 2...

  14. 18 CFR 1304.402 - Wastewater outfalls. (United States)


    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Wastewater outfalls. 1304.402 Section 1304.402 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY APPROVAL... Miscellaneous § 1304.402 Wastewater outfalls. Applicants for a wastewater outfall shall provide copies of all...

  15. 40 CFR 63.1433 - Wastewater provisions. (United States)


    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Wastewater provisions. 63.1433 Section... for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63.1433 Wastewater provisions. (a) Process wastewater. Except as specified in paragraph (c) of this section, the owner or operator...

  16. 40 CFR 63.1256 - Standards: Wastewater. (United States)


    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards: Wastewater. 63.1256 Section... for Pharmaceuticals Production § 63.1256 Standards: Wastewater. (a) General. Each owner or operator of any affected source (existing or new) shall comply with the general wastewater requirements in...

  17. 40 CFR 63.501 - Wastewater provisions. (United States)


    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Wastewater provisions. 63.501 Section... for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.501 Wastewater provisions. (a... comply with the requirements of §§ 63.132 through 63.147 for each process wastewater stream originating...

  18. remediation of refinery wastewater using electrocoagulation

    African Journals Online (AJOL)


    ABSTRACT. This study was designed to assess the effi remediation of wastewater from Kaduna liters of wastewater was collected from. Petrochemical Company for the period of 1 sedimentation and filtration was perform wastewater. The results obtained showed turbidity, electrical conductivity, nitrate, grease as well as ...

  19. Orientation to Municipal Wastewater Treatment. Training Manual. (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  20. Reclaimed wastewater use alternatives and quality standards


    Dalahmeh, Sahar; Baresel, Christian


    Reclaimed wastewater use is crucial for increasing water availability, improving water resources management, minimising environmental pollution and permitting sustainable nutrient recycling. However, wastewater also contains microbiological and chemical pollutants posing risks to human health and the environment, and these risks have to be handled. Successful use of reclaimed wastewater requires stringent standards for its treatment, disposal and distribution. This report summarises global an...

  1. Automatic Regulation of Wastewater Discharge

    Directory of Open Access Journals (Sweden)

    Bolea Yolanda


    Full Text Available Wastewater plants, mainly with secondary treatments, discharge polluted water to environment that cannot be used in any human activity. When those dumps are in the sea it is expected that most of the biological pollutants die or almost disappear before water reaches human range. This natural withdrawal of bacteria, viruses and other pathogens is due to some conditions such as the salt water of the sea and the sun effect, and the dumps areas are calculated taking into account these conditions. However, under certain meteorological phenomena water arrives to the coast without the full disappearance of pollutant elements. In Mediterranean Sea there are some periods of adverse climatic conditions that pollute the coast near the wastewater dumping. In this paper, authors present an automatic control that prevents such pollution episodes using two mathematical models, one for the pollutant transportation and the other for the pollutant removal in wastewater spills.

  2. Wastewater Treatment: The Natural Way (United States)


    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  3. Toxicity Evaluation of Through Fish Bioassay Raw Bulk Drug Industry Wastewater After Electrochemical Treatment

    Directory of Open Access Journals (Sweden)

    S Satyanarayan


    Full Text Available Considering the high pollution potential that the synthetic Bulk Drug industry Wastewater (BDW possesses due to the presence of variety of refractory organics, toxicity evaluation is of prime importance in assessing the efficiency of the applied wastewater treatment system and in establishing the discharge standards. Therefore, in this study the toxic effects of high strength bulk drug industry wastewater before and after electrochemical treatment on common fish Lebistes reticulatus-(peter were studied under laboratory conditions. Results indicated that wastewater being very strong in terms of color, COD and BOD is found to be very toxic to the studied fish. The LC50 values for raw wastewater and after electrochemical treatment with carbon and aluminium electrodes for 24, 48, 72 and 96 hours ranged between, 2.5-3.6%, 6.8-8.0%, 5.0-5.8% respectively. Carbon electrode showed marginally better removals for toxicity than aluminium electrode. It was evident from the studies that electrochemical treatment reduces toxicity in proportion to the removal efficiency shown by both the electrodes. The reduction in toxicity after treatment indicates the intermediates generated are not toxic than the parent compounds. Furthermore, as the electrochemical treatment did not result in achieving disposal standards it could be used only as a pre-treatment and the wastewater needs further secondary treatment before final disposal.

  4. The effect of chicken blood and its components on wastewater characteristics and sewage surcharges. (United States)

    Garcia, R A; Nieman, C M; Haylock, R A; Rosentrater, K A; Piazza, G J


    Local wastewater treatment authorities levy surcharges from their non-residential customers that are based, in part, on the concentration of various pollutants in the customer's wastewater. Blood has long been recognized as the most potent contributor to pollutant loads in chicken processing plant wastewater. Quantification of the impact of blood on wastewater characteristics and sewage surcharges is hindered by lack of information on specific characteristics of chicken blood, and by the highly variable methods used by local authorities for calculating surcharges. In this study, the most commonly used wastewater characteristics are determined for whole chicken blood as well as its individual components. The characteristics measured include biochemical oxygen demand, chemical oxygen demand, total suspended solids, fats oil and grease, total Kjeldahl nitrogen, ammonia, and total phosphorus. Sewage surcharge calculation methods were collected from 71 local wastewater authorities. The results show all components of the blood to be extremely high-strength pollutants. The impact of blood on sewage surcharges is shown to be highly variable depending on the rates applied by the local authority. Published by Oxford University Press on behalf of Poultry Science Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology]. (United States)

    Cai, Xiao-Bo; Yang, Yi; Sun, Yan-Ping; Zhang, Liang; Xiao, Yao; Zhao, Hai


    Air cathode microbial fuel cell (MFC) were investigated for electricity production from sweet potato fuel ethanol wastewater containing 5000 mg/L of chemical oxygen demand (COD). Maximum power density of 334.1 mW/m2, coulombic efficiency (CE) of 10.1% and COD removal efficiency of 92.2% were approached. The effect of phosphate buffer solution (PBS) and COD concentration on the performance of MFC was further examined. The addition of PBS from 50 mmol/L to 200 mmol/L increased the maximum power density and CE by 33.4% and 26.0%, respectively. However, the COD removal efficiency was not relative to PBS concentration in the wastewater. When the COD increased from 625 mg/L to 10 000 mg/L, the maximum value of COD removal efficiency and the maximum power density were gained at the wastewater strength of 5 000 mg/L. But the CE ranged from 28.9% to 10.3% with a decreasing trend. These results demonstrate that sweet potato fuel ethanol wastewater can be used for electricity generation in MFC while at the same time achieving wastewater treatment. The increasing of PBS concentration can improve the power generation of MFC. The maximum power density of MFC increases with the rise of COD concentration, but the electricity generation will decrease for the acidification of high wastewater concentration.

  6. Bioremediation of wastewater using microalgae (United States)

    Chalivendra, Saikumar

    Population expansion and industrial development has deteriorated the quality of freshwater reservoirs around the world and has caused freshwater shortages in certain areas. Discharge of industrial effluents containing toxic heavy metals such as Cd and Cr into the environment have serious impact on human, animal and aquatic life. In order to solve these problems, the present study was focused on evaluating and demonstrating potential of microalgae for bioremediation of wastewater laden with nitrogen (N) in the form of nitrates, phosphorous (P) in the form of phosphates, chromium (Cr (VI)) and cadmium (Cd (II)). After screening several microalgae, Chlorella vulgaris and algae taken from Pleasant Hill Lake were chosen as candidate species for this study. The viability of the process was demonstrated in laboratory bioreactors and various experimental parameters such as contact time, initial metal concentration, algae concentration, pH and temperature that would affect remediation rates were studied. Based on the experimental results, correlations were developed to enable customizing and designing a commercial Algae based Wastewater Treatment System (AWTS). A commercial AWTS system that can be easily customized and is suitable for integration into existing wastewater treatment facilities was developed, and capital cost estimates for system including installation and annual operating costs were determined. The work concludes that algal bioremediation is a viable alternate technology for treating wastewater in an economical and sustainable way when compared to conventional treatment processes. The annual wastewater treatment cost to remove N,P is ~26x lower and to remove Cr, Cd is 7x lower than conventional treatment processes. The cost benefit analysis performed shows that if this technology is implemented at industrial complexes, Air Force freight and other Department of Defense installations with wastewater treatment plants, it could lead to millions of dollars in

  7. Algae cultivation for wastewater reclamation


    Grobler, Gerbrand


    The possibility of using algae to clean wastewater has recently gotten attention because wastewater is becoming a bigger problem all over the world. Many scientist and engi-neers are researching better ways to utilize the high potential of algae to clean these waters. By experimenting with algae we try to explore the potential of growing algae on a mechanical system called “algae turf scrubber” or “ATS” to absorb the excess nutrients for the production of biomass. By knowing the amount of...

  8. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell. (United States)

    Huang, Xiao; Qu, Yan; Cid, Clément A; Finke, Cody; Hoffmann, Michael R; Lim, Keahying; Jiang, Sunny C


    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Characterization of natural ventilation in wastewater collection systems. (United States)

    Ward, Matthew; Corsi, Richard; Morton, Robert; Knapp, Tom; Apgar, Dirk; Quigley, Chris; Easter, Chris; Witherspoon, Jay; Pramanik, Amit; Parker, Wayne


    The purpose of the study was to characterize natural ventilation in full-scale gravity collection system components while measuring other parameters related to ventilation. Experiments were completed at four different locations in the wastewater collection systems of Los Angeles County Sanitation Districts, Los Angeles, California, and the King County Wastewater Treatment District, Seattle, Washington. The subject components were concrete gravity pipes ranging in diameter from 0.8 to 2.4 m (33 to 96 in.). Air velocity was measured in each pipe using a carbon-monoxide pulse tracer method. Air velocity was measured entering or exiting the components at vents using a standpipe and hotwire anemometer arrangement. Ambient wind speed, temperature, and relative humidity; headspace temperature and relative humidity; and wastewater flow and temperature were measured. The field experiments resulted in a large database of measured ventilation and related parameters characterizing ventilation in full-scale gravity sewers. Measured ventilation rates ranged from 23 to 840 L/s. The experimental data was used to evaluate existing ventilation models. Three models that were based upon empirical extrapolation, computational fluid dynamics, and thermodynamics, respectively, were evaluated based on predictive accuracy compared to the measured data. Strengths and weaknesses in each model were found and these observations were used to propose a concept for an improved ventilation model.

  10. A review on wastewater disinfection

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin


    Full Text Available Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent disinfection. Understanding the differences in inactivation mechanisms is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies. Disinfection byproducts discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Numerous inorganic and organic micropollutants can undergo reactions with disinfectants. Therefore, to mitigate the adverse effects and also to enhance that efficiency, the use of alternative oxidation/disinfection systems should be evaluated as possible alternative to chlorine. This review gives a summary of the traditional, innovative, and combined disinfection alternatives and also disinfection byproducts for effluent of municipal wastewater treatment plants.

  11. Wastewater Use in Irrigated Agriculture

    International Development Research Centre (IDRC) Digital Library (Canada)

    Yael Lampert, Graduate Student, Department of Ecology, Bar Ilan University, Ranut Gan, Israel. Jules B. van Lier, ... Urban population growth, particularly in developing countries, places immense pressure on water and land resources; it also results in the release of growing volumes of wastewater – most of it untreated.

  12. Design in Domestic Wastewater Irrigation

    NARCIS (Netherlands)

    Huibers, F.P.; Raschid-Sally, L.


    When looking at the domestic wastewater streams, from freshwater source to destination in an agricultural field, we are confronted with a complexity of issues that need careful attention. Social and economic realities arise, along with technical, biological and institutional issues. Local realities

  13. Wastewater Treatment I. Student's Guide. (United States)

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  14. Strengths-based Learning

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    Strength-based learning - Children͛s Character Strengths as Means to their Learning Potential͛ is a Ph.D.-project aiming to create a strength-based mindset in school settings and at the same time introducing strength-based interventions as specific tools to improve both learning and well......-being. The Ph.D.-project in Strength-based learning took place in a Danish school with 750 pupils age 6-16 and a similar school was functioning as a control group. The presentation will focus on both the aware-explore-apply processes and the practical implications for the schools involved, and on measurable...

  15. Nitrogen removal in Myriophyllum aquaticum wetland microcosms for swine wastewater treatment: 15 N-labelled nitrogen mass balance analysis. (United States)

    Zhang, Shunan; Liu, Feng; Xiao, Runlin; He, Yang; Wu, Jinshui


    Ecological treatments are effective for treating agricultural wastewater. In this study, wetland microcosms vegetated with Myriophyllum aquaticum were designed for nitrogen (N) removal from two strengths of swine wastewater, and 15 N-labelled ammonium (NH4+ -N) was added to evaluate the dominant NH4+ -N removal pathway. The results showed that 98.8% of NH4+ -N and 88.3% of TN (TN: 248.6 mg L-1 ) were removed from low-strength swine wastewater (SW1) after an incubation of 21 days, with corresponding values for high-strength swine wastewater (SW2) being 99.2% of NH4+ -N and 87.8% of TN (TN: 494.9 mg L-1 ). Plant uptake and soil adsorption respectively accounted for 24.0% and 15.6% of the added 15 N. Meanwhile, above-ground tissues of M. aquaticum had significantly higher biomass and TN content than below-ground (P wetlands for high N-loaded animal wastewater treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Wineries wastewater treatment by constructed wetlands: a review. (United States)

    Masi, F; Rochereau, J; Troesch, S; Ruiz, I; Soto, M


    The application of wetland systems for the treatment of wineries wastewater started in the early 1990s in the USA followed a few years later by France, Italy, Germany and Spain. Various studies demonstrated the efficiency of constructed wetlands (CWs) as a low cost, low maintenance and energy-saving technology for the treatment of wineries wastewater. Several of these experiences have also shown lessons to be learnt, such as some limits in the tolerance of the horizontal subsurface flow and vertical subsurface flow classic CWs to the strength of the wineries wastewater, especially in the first stage for the multistage systems. This paper is presenting an overview of all the reported experiences at worldwide level during the last 15 years, giving particular attention and provision of details to those systems that have proven to get reliable and constant performances in the long-term period and that have been designed and realized as optimized solutions for the application of CW technology to this particular kind of wastewater. The organic loading rates (OLRs) applied to the examined 13 CW systems ranged from about 30 up to about 5,000 gCOD/m² d (COD: chemical oxygen demand), with the 80th percentile of the reported values being below 297 gCOD/m² d and the median at 164 gCOD/m² d; the highest OLR values have in all cases been measured during the peak season (vintage) and often have been linked to lower surface removal rates (SRRs) in comparison to the other periods of the year. With such OLRs the SRRs have ranged from a minimum of 15 up to 4,700 gCOD/m² d, with the 80th percentile of the reported values being below 308 gCOD/m² d and the median at 112 gCOD/m² d.

  17. Strength Modeling Report (United States)

    Badler, N. I.; Lee, P.; Wong, S.


    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  18. Biological treatment of a synthetic space mission wastewater using a membrane-aerated, membrane-coupled bioreactor (M2BR). (United States)

    Chen, Ruoyu D; Semmens, Michael J; LaPara, Timothy M


    This paper describes the membrane-aerated, membrane-coupled bioreactor (M2BR), which was developed for wastewater treatment during long-term space missions because it achieves aeration and biomass separation using components that are compatible with microgravity conditions. In the experiments described herein, the M2BR was used to treat a synthetic wastewater formulated by NASA to simulate the wastewater typically collected during space missions. The M2BR was able to achieve more than 90% removal of both chemical oxygen demand (COD) and total nitrogen when it was fed a modified NASA wastewater that had a 4:1 COD to nitrogen ratio. When the full-strength synthetic wastewater was fed to the M2BR (COD:N=1), however, the nitrogenous pollutant removal efficiency was adversely affected because of either insufficient oxygen transfer to support nitrification (an air-fed M2BR) or insufficient electron donor to support denitrification (an oxygen-fed M2BR). In conclusion, the M2BR provides considerable promise for wastewater treatment during long-term space missions, although additional research is needed to identify the best approach to treat the space mission wastewater, which poses a unique challenge because of its low COD:N ratio.

  19. Electricity production from beer brewery wastewater using single chamber microbial fuel cell. (United States)

    Wang, X; Feng, Y J; Lee, H


    The performance of electricity production from beer brewery wastewater in a single chamber membrane-free microbial fuel cell (MFC) was investigated. Experimental results showed that the MFCs could generate electricity from full-strength wastewater (2,239 mg-COD/L, 50 mM PBS added) with the maximum power density of 483 mW/m2 (12 W/m3) at 30 degrees C and 435 mW/m2 (11 W/m3) at 20 degrees C, respectively. Temperature was found to have bigger impact on cathode potential than anode potential. Results suggested that it is feasible to generate electricity with the treatment of beer brewery wastewater. Copyright IWA Publishing 2008.

  20. Appropriate technology for domestic wastewater management in under-resourced regions of the world (United States)

    Oladoja, Nurudeen Abiola


    Centralized wastewater management system is the modern day waste management practice, but the high cost and stringent requirements for the construction and operation have made it less attractive in the under-resourced regions of the world. Considering these challenges, the use of decentralized wastewater management system, on-site treatment system, as an appropriate technology for domestic wastewater treatment is hereby advocated. Adopting this technology helps save money, protects home owners' investment, promotes better watershed management, offers an appropriate solution for low-density communities, provides suitable alternatives for varying site conditions and furnishes effective solutions for ecologically sensitive areas. In the light of this, an overview of the on-site treatment scheme, at the laboratory scale, pilot study stage, and field trials was conducted to highlight the operational principles' strength and shortcomings of the scheme. The operational requirements for the establishing and operation of the scheme and best management practice to enhance the performance and sustenance were proffered.

  1. Processed wastewater sludge for improvement of mechanical properties of concretes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, Carlos, E-mail: [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Martinez-Barrera, Gonzalo [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Carretera Toluca-Atlacomulco, Km.12, San Cayetano C.P. 50200, Toluca, Edo. de Mexico (Mexico); Gencel, Osman [Civil Engineering Department, Faculty of Engineering, Bartin University, 74100 Bartin (Turkey); Bernal-Martinez, Lina A. [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Brostow, Witold [Laboratory of Advanced Polymers and Optimized Materials (LAPOM), Department of Materials Science and Engineering and Center for Advanced Research and Technology (CART), University of North Texas, 1150 Union Circle 305310, Denton, TX 76203-5017 (United States)


    Highlights: {yields} Electrochemical methods produce less amount of residual sludge as compared with chemical procedures. {yields} Wastewater sludge contains a large amount of water. {yields} The residual sludge is used to prepare cylinder specimen concrete. {yields} There are improvements in the elastic modulus of the concrete when is prepared with residual sludge. - Abstract: Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete.

  2. Biological wastewater treatment in brewhouses

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich


    Full Text Available In the article the working principles of wastewater biological treatment for food companies is reviewed, including dairies and breweries, the waters of which are highly concentrated with dissolved organic contaminants and suspended solids. An example of successful implementation is anaerobic-aerobic treatment plants. Implementation of these treatment plants can achieve the required wastewater treatment at the lowest operational expenses and low volumes of secondary waste generated. Waste water from the food companies have high concentration of various organic contaminants (fats, proteins, starch, sugar, etc.. For such wastewater, high rates of suspended solids, grease and other contaminants are characteristic. Wastewater food industry requires effective purification flowsheets using biological treatment facilities. At the moment methods for the anaerobic-aerobic purification are applied. One of such methods is the treatment of wastewater at ASB-reactor (methane reactor and the further tertiary treatment on the OSB-reactor (aeration. Anaerobic process means water treatment processes in anoxic conditions. The anaerobic treatment of organic contamination is based on the process of methane fermentation - the process of converting substances to biogas. The role of biological effluent treatment is discussed with special attention given to combined anaerobic/aerobic treatment. Combining anaerobic pre-treatment with aerobic post-treatment integrates the advantages of both processes, amongst which there are reduced energy consumption (net energy production, reduced biological sludge production and limited space requirements. This combination allows for significant savings for operational costs as compared to complete aerobic treatment without compromising the required discharge standards. Anaerobic treatment is a proven and energy efficient method to treat industrial wastewater effluents. These days, more and more emphasis is laid on low energy use, a

  3. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.


    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ......The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide......-arsenate precipitates. This work evaluates the feasibility of EC as a treatment process at various stages during conventional copper smelter wastewater treatment - with a focus on arsenic. The reactor used is a batch airlift electrocoagulator. The results showed that raw copper smelter wastewater was difficult to treat...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  4. Water and Wastewater Rate Hikes Outpace CPI

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fuchs, Heidi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Yuting [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Water and wastewater treatment and delivery is the most capital-intensive of all utility services. Historically underpriced, water and wastewater rates have exhibited unprecedented growth in the past fifteen years. Steep annual increases in water and wastewater rates that outpace the Consumer Price Index (CPI) have increasingly become the norm across the United States. In this paper, we analyze water and wastewater rates across U.S. census regions between 2000 and 2014. We also examine some of the driving factors behind these rate increases, including drought, water source, required infrastructure investment, population patterns, and conservation effects. Our results demonstrate that water and wastewater prices have consistently increased and have outstripped CPI throughout the study period nationwide, as well as within each census region. Further, evaluation of the current and upcoming challenges facing water and wastewater utilities suggests that sharp rate increases are likely to continue in the foreseeable future.

  5. Fracking, wastewater disposal, and earthquakes (United States)

    McGarr, Arthur


    In the modern oil and gas industry, fracking of low-permeability reservoirs has resulted in a considerable increase in the production of oil and natural gas, but these fluid-injection activities also can induce earthquakes. Earthquakes induced by fracking are an inevitable consequence of the injection of fluid at high pressure, where the intent is to enhance permeability by creating a system of cracks and fissures that allow hydrocarbons to flow to the borehole. The micro-earthquakes induced during these highly-controlled procedures are generally much too small to be felt at the surface; indeed, the creation or reactivation of a large fault would be contrary to the goal of enhancing permeability evenly throughout the formation. Accordingly, the few case histories for which fracking has resulted in felt earthquakes have been due to unintended fault reactivation. Of greater consequence for inducing earthquakes, modern techniques for producing hydrocarbons, including fracking, have resulted in considerable quantities of coproduced wastewater, primarily formation brines. This wastewater is commonly disposed by injection into deep aquifers having high permeability and porosity. As reported in many case histories, pore pressure increases due to wastewater injection were channeled from the target aquifers into fault zones that were, in effect, lubricated, resulting in earthquake slip. These fault zones are often located in the brittle crystalline rocks in the basement. Magnitudes of earthquakes induced by wastewater disposal often exceed 4, the threshold for structural damage. Even though only a small fraction of disposal wells induce earthquakes large enough to be of concern to the public, there are so many of these wells that this source of seismicity contributes significantly to the seismic hazard in the United States, especially east of the Rocky Mountains where standards of building construction are generally not designed to resist shaking from large earthquakes.

  6. Evaluation of Alternative Methods for Wastewater Disinfection (United States)


    viruses in water and wastewater (Trojan, undated:l). Used properly, ultraviolet light can effectively destroy bacteria, viruses, algae and other...highly effective in disinfecting wastewaters of an industrial nature and viable for medium to large plants, where purified oxygen is readily available or...Alternatives This appendix provides information and cost data obtained from vendors in the wastewater disinfection industry . This data is provided for


    Directory of Open Access Journals (Sweden)

    Nicoleta Luminiţa Jurj


    Full Text Available The question of small water users having no centralized wastewater collecting, cleaning and discharging system is of maximal actuality in Romania. Therefor economically efficient solutions are looked for. For disperse mountain villages, farms, or detached households traditional systems, with high maintenance expences because of long networks for small flows, can be economicaly not advantageos. Very small capacity treatement plants are a solution for such cases. The aim of the experimental part of the present work is to simulate situations, damages which can occur during running of a low capacity wastewater treatement plant. Low capacity hosehold wastewater treatement plants are economic alternatives which remove the disadvantages of emptyable basins namely the high costs, the frequvent empying operations, with unpleasant smelling, continous danger of groundwater infection, need for massive and expensive concrete buildings. The proposed plants are based on a classical treatement technology and need emptying of the exess mud only once or twice a year. In opposition with the case of classical plants, the mixture extracted from the proposed low cost systems does not smell and has a relatively low content of solid matter.

  8. The strength compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    Individual paper presentation: The ‘Strength Compass’. The results of a PhDresearch project among schoolchildren (age 6-16) identifying VIAstrengths concerning age, gender, mother-tongue-langue and possible child psychiatric diagnosis. Strengths-based interventions in schools have a theoretical...... the results for strengths display for children aged 6-16 in different categories: • Different age groups – are the same strengths present in both small children and youths? • Gender – Do the results show differences between the two genders? • Danish as a mother- tongue language. Do the results show any...

  9. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks. (United States)


    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  10. 40 CFR Table 10 to Subpart G of... - Wastewater-Compliance Options for Wastewater Tanks (United States)


    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Wastewater-Compliance Options for Wastewater Tanks 10 Table 10 to Subpart G of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater Pt. 63, Subpt. G, Table 10 Table 10 to Subpart G of Part 63—Wastewater—Compliance Options for...

  11. New Biocatalyst with Multiple Enzymatic Activities for Treatment of Complex Food Wastewaters

    Directory of Open Access Journals (Sweden)

    Olga Senko


    Full Text Available The cells of filamentous fungus R. oryzae entrapped in the polyvinyl alcohol cryogelare capable of producing various extracellular hydrolytic enzymes (proteases, amylases, lipases and are used for the treatment of complex wastewaters of food industry. Five types of media simulating the wastewater of various food enterprises were treated under batch conditions for 600 h. Fats containing mostly residues of unsaturated fatty acids, as well as casein, glucose, sucrose, starch, soybean flour and various salts were the main components of the treated wastewaters. The immobilized cells concurrently possessed lipolytic, amylolytic and proteolytic activities. The level of each enzymatic activity depended on the wastewater content. The physiological state of immobilized cells was monitored by bioluminescent method. The intracellular adenosine triphosphate (ATP concentration determined in the granules with immobilized cells was high enough and almost constant for all the period of biocatalyst application confirming thereby the active metabolic state of the cells. The study of mechanical strength of biocatalyst granules allowed revealing the differences in the values of modulus of biocatalyst elasticity at the beginning and at the end of its use for the wastewater treatment. The decrease in chemical oxygen demand of the tested media after their processing by immobilized biocatalyst was 68–79 % for one working cycle.

  12. Advanced treatment of sodium dithionite wastewater using the combination of coagulation, catalytic ozonation, and SBR. (United States)

    Zou, Xiao-Ling


    A combined process of coagulation-catalytic ozonation-anaerobic sequencing batch reactor (ASBR)-SBR was developed at lab scale for treating a real sodium dithionite wastewater with an initial chemical oxygen demand (COD) of 21,760-22,450 mg/L. Catalytic ozonation with the prepared cerium oxide (CeO2)/granular activated carbon catalyst significantly enhances wastewater biodegradability and reduces wastewater microtoxicity. The results show that, under the optimum conditions, the removal efficiencies of COD and suspended solids are averagely 99.3% and 95.6%, respectively, and the quality of final effluent can meet the national discharge standard of China. The coagulation and ASBR processes remove a considerable proportion of organic matter, while the SBR plays an important role in post-polish of final effluent. The ecotoxicity of the wastewater is greatly reduced after undergoing the hybrid treatment. This work demonstrates that the hybrid system has the potential to be applied for the advanced treatment of high-strength industrial wastewater.

  13. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Directory of Open Access Journals (Sweden)

    Shohreh Azizi

    Full Text Available For the effective application of a modified packed bed biofilm reactor (PBBR in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l concentrations of combined heavy metals at an optimum HRT condition (2 hours, while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l, is capable of removing the industrial contamination in wastewater.

  14. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater. (United States)

    Stager, Jennifer L; Zhang, Xiaoyuan; Logan, Bruce E


    Power generation using microbial fuel cells (MFCs) must provide stable, continuous conversion of organic matter in wastewaters into electricity. However, when relatively small diameter (0.8cm) graphite fiber brush anodes were placed close to the cathodes in MFCs, power generation was unstable during treatment of low strength domestic wastewater. One reactor produced 149mW/m(2) before power generation failed, while the other reactor produced 257mW/m(2), with both reactors exhibiting severe power overshoot in polarization tests. Using separators or activated carbon cathodes did not result in stable operation as the reactors continued to exhibit power overshoot based on polarization tests. However, adding acetate (1g/L) to the wastewater produced stable performance during fed batch and continuous flow operation, and there was no power overshoot in polarization tests. These results highlight the importance of wastewater strength and brush anode size for producing stable and continuous power in compact MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Wastewater treatment: options for Louisiana seafood processors

    National Research Council Canada - National Science Library

    Zachritz, W.H; Malone, R.F


    ...) to define the environmental regulatory requirements that apply to seafood processors; 3) to catalog available historical data for describing the wastewaters of major Louisiana seafood processors, and 4...

  16. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao


    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  17. Cytogenotoxicity Screening of Untreated Hospital Wastewaters ...

    African Journals Online (AJOL)



    Sep 5, 2005 ... 1999). Hospital wastewater samples are very often different in nature eliciting different effects on biological systems. The aim of the paper was to investigate the potential toxicity and genotoxicity of an untreated hospital wastewaters obtained from a University. Teaching Hospital in the Niger Delta Region of.

  18. Physicochemical and Bacteriological Properties of Wastewaters ...

    African Journals Online (AJOL)

    The results showed that the wastewaters contained high levels of calcium, magnesium and iron. The high calcium and magnesium contents correlated positively with the high wastewater hardness observed after analysis. ... Low alkalinity and high content of free carbon dioxide make water chemically aggressive.

  19. Options for wastewater management in Harare, Zimbabwe

    NARCIS (Netherlands)

    Nhapi, I.


    The sustainable management of wastewater should aim at pollution prevention and reduction first, followed by resource recovery and reuse. This thesis shows that substantial water quality improvements could be achieved through a so-called 3-Step Strategic Approach to wastewater management. This

  20. Sustainable wastewater management in developing countries

    DEFF Research Database (Denmark)

    Laugesen, Carsten Hollænder; Fryd, Ole; Koottatep, Thammarat

    of treated wastewater, energy conservation, and proper financial and organizational set up.   Sustainable Wastewater Management in Developing Countries will urge practitioners, decision makers, and researchers to approach these systems in new ways that are practical, innovative, and-best of all-sustainable....

  1. Forward Osmosis in Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini


    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment...

  2. Technical note Biological treatment of industrial wastewater ...

    African Journals Online (AJOL)

    The biological treatment of wastewater from an aminoplastic resin-producing industry was studied in a pre-denitrification system. This study reports results on the removal of organic matter and nitrogen compounds from wastewater which contained high levels of formaldehyde and formic acid. The formaldehyde ...

  3. Secondary wastewater treatment by microalgae isolated from ...

    African Journals Online (AJOL)

    Microalgae play a fundamental role in primary and secondary wastewater treatment. In this work the growth, photosynthetic activity and removal of phosphorus from wastewater effluents by indigenous blue-green algal species, Spirulina and Oscillatoria, isolated from Gaborone oxidation ponds was studied. Oscillatoria and ...


    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  5. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao


    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...... correlation to the curing time. The experiments show no correlation between the anisotropy and the curing time and a small strength difference between the two drilling directions. The literature shows variations on which drilling direction that is strongest. Based on a Monto Carlo simulation of the expected...

  6. Strength of human pulleys. (United States)

    Manske, P R; Lesker, P A


    The length, breaking stength, and tensile strength of each of the annular fibroosseous pulleys of digital flexor sheath in ten fresh human cadaver specimens were measured. The first annular pulley and the fourth annular pulley were found to be the strongest, while the second annular pulley was the weakest. The design of artificial pulleys should reproduce the strength of the first annular and fourth annular pulleys. Suggested minimum requirements for the breaking strength of artificial implant pulleys may be made based on these studies.

  7. Electrocoagulation of synthetic dairy wastewater. (United States)

    Smoczynski, Lech; Munska, Kamilla; Pierozynski, Boguslaw


    This study compares the effectiveness of pollutant removal from synthetic dairy wastewater electrocoagulated by means of aluminum and iron anodic dissolution. A method based on the cubic function (third degree polynomial) was proposed for electrocoagulant dosing. Mathematical methods for calculating the optimal electrocoagulant doses proved to be quite precise and useful for practical applications. The results of gravimetric measurements of electrocoagulant (electrode) consumption demonstrated that theoretical doses of Al determined based on Faraday's law were substantially lower than those produced by electrode weighing. The above phenomenon was also discussed in the light of the results of polarization resistance measurements for Al and Fe electrodes used in the study.

  8. Fate and Toxicity of Zinc Oxide Nanomaterial in Municipal Wastewaters. (United States)

    Smeraldi, Josh; Ganesh, Rajagopalan; Hosseini, Turaj; Khatib, Leila; Olson, Betty H; Rosso, Diego


      The production of zinc nanomaterial has increased significantly over the past several years and, as a result, nanoparticles have navigated their way into wastewater streams. The transportation and toxicity of zinc nanomaterial within the wastewater treatment processes is not well known. In this study, the zinc nanomaterial and its fate were characterized in an activated sludge treatment process. The tests performed included batch studies to evaluate abiotic and biotic removal, toxicity studies to evaluate inhibition to coliform and nitrifying bacteria, and bioreactor studies to evaluate impact on operating parameters. Stock solutions of zinc nanomaterial varied in size from 50 to 500 nm, but when added to an activated sludge solution, the nanoparticles agglomerated to larger sizes such that more than 60% of the zinc nanomaterial settled out of solution. However, when ionic zinc was added to activated sludge, more than 60% of the ionic zinc remained in suspension. It is likely that the ionic strength of the wastewater influenced the aggregation of the nanomaterial. Differences in the extent of removal between ionic and nano zinc species indicate that the mechanisms governing their removal are different. Toxicity analysis showed that zinc nanomaterial did not inhibit growth of coliform and ammonia oxidizing bacteria. However, ionic zinc inhibited the growth of both the coliform and ammonia oxidizing bacteria. Bioreactors were set up using activated sludge that was collected from a local treatment plant operating only in carbon oxidation mode. The treatment plant was operated at an SRT of 1.2 days and an MLSS of 650 mg/L. Several key parameters (COD, MLSS, pH) in the bioreactors were monitored through a 7-day incubation period, but showed no significant changes due to the addition of nano or ionic zinc. It is possible that the toxicity of zinc nanomaterial was not observed in these experiments because the nanomaterial agglomerated and settled out of solution.

  9. Performance evaluation of real time control in urban wastewater systems

    NARCIS (Netherlands)

    van Daal-Rombouts, P.M.M.


    This thesis deals with real time control (RTC) in urban wastewater systems, where
    urban wastewater systems are defined as a combination of combined sewer systems and wastewater treatment plants (WWTPs). Urban wastewater systems discharge, through combined sewer over flows (CSOs) and WWTP

  10. physico-chemical evaluation of wastewater in katsina metropolis ...

    African Journals Online (AJOL)


    creation of wastewater treatment plant so as to avoid adverse conditions. Keywords: Physico-chemical Parameters, Pollution, Wastewater, and Katsina Metropolis ... associated sludge and grey water kitchen and bathroom wastewater or the mixture of domestic wastewater from commercial establishments and institutions ...

  11. Use of hydroponics culture to assess nutrient supply by treated wastewater. (United States)

    Adrover, Maria; Moyà, Gabriel; Vadell, Jaume


    The use of treated wastewater for irrigation is increasing, especially in those areas where water resources are limited. Treated wastewaters contain nutrients that are useful for plant growth and help to reduce fertilizers needs. Nutrient content of these waters depends on the treatment system. Nutrient supply by a treated wastewater from a conventional treatment plant (CWW) and a lagooned wastewater from the campus of the University of Balearic Islands (LWW) was tested in an experiment in hydroponics conditions. Half-strength Hoagland nutrient solution (HNS) was used as a control. Barley (Hordeum vulgare L.) seedlings were grown in 4 L containers filled with the three types of water. Four weeks after planting, barley was harvested and root and shoot biomass was measured. N, P, K, Ca, Mg, Na and Fe contents were determined in both tissues and heavy metal concentrations were analysed in shoots. N, P and K concentrations were lower in LWW than in CWW, while HNS had the highest nutrient concentration. Dry weight barley production was reduced in CWW and LWW treatments to 49% and 17%, respectively, comparing to HNS. However, to a lesser extent, reduction was found in shoot and root N content. Treated wastewater increased Na content in shoots and roots of barley and Ca and Cr content in shoots. However, heavy metals content was lower than toxic levels in all the cases. Although treated wastewater is an interesting water resource, additional fertilization is needed to maintain a high productivity in barley seedlings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Removal of ammonium from municipal wastewater with powdered and granulated metakaolin geopolymer. (United States)

    Luukkonen, Tero; Věžníková, Kateřina; Tolonen, Emma-Tuulia; Runtti, Hanna; Yliniemi, Juho; Hu, Tao; Kemppainen, Kimmo; Lassi, Ulla


    Ammonium [Formula: see text] removal from municipal wastewater poses challenges with the commonly used biological processes. Especially at low wastewater temperatures, the process is frequently ineffective and difficult to control. One alternative is to use ion-exchange. In the present study, a novel [Formula: see text] ion-exchanger, metakaolin geopolymer (MK-GP), was prepared, characterised, and tested. Batch experiments with powdered MK-GP indicated that the maximum exchange capacities were 31.79, 28.77, and 17.75 mg/g in synthetic, screened, and pre-sedimented municipal wastewater, respectively, according to the Sips isotherm (R2 ≥ 0.91). Kinetics followed the pseudo-second-order rate equation in all cases (kp2 = 0.04-0.24 g mg-1 min-1, R2 ≥ 0.97) and the equilibrium was reached within 30-90 min. Granulated MK-GP proved to be suitable for a continuous column mode use. Granules were high-strength, porous at the surface and could be regenerated multiple times with NaCl/NaOH. A bench-scale pilot test further confirmed the feasibility of granulated MK-GP in practical conditions at a municipal wastewater treatment plant: consistently <4 mg/L [Formula: see text] could be reached even though wastewater had low temperature (approx. 10°C). The results indicate that powdered or granulated MK-GP might have practical potential for removal and possible recovery of [Formula: see text] from municipal wastewaters. The simple and low-energy preparation method for MK-GP further increases the significance of the results.

  13. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K


    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L-1-135 mg L-1) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d-1-1780 mg d-1 applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency. © 2011.

  14. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation. (United States)

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Ma, Yiwei; Chen, Paul; Zheng, Hongli; Doan, Yen T T; Liu, Hui; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Ruan, Roger


    This study demonstrated that the limiting factor to algae growth on dairy wastewater was the ammonia nitrogen deficiency. Dairy wastewaters were mixed with a slaughterhouse wastewater that has much higher ammonia nitrogen content. The results showed the mixing wastewaters improved the nutrient profiles and biomass yield at low cost. Algae grown on mixed wastewaters contained high protein (55.98-66.91%) and oil content (19.10-20.81%) and can be exploited to produce animal feed and biofuel. Furthermore, algae grown on mixed wastewater significantly reduced nutrient contents remained in the wastewater after treatment. By mitigating limiting factor to algae growth on dairy wastewaters, the key issue of low biomass yield of algae grown on dairy wastewaters was resolved and the wastewater nutrient removal efficiency was significantly improved by this study. Copyright © 2015 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    LOFRANO Giusy


    Full Text Available The tannery industry is one of the most important economic sectors in many countries, representing an important economic field also in developing countries. Leather tannery industry is water intensive and originates highly polluted wastewater that contain various micropollutants raising environmental and health concerns. Tannery wastewater is difficult to treat biologically because of complex characteristics like high salinity e high content of xenobiotics compounds. After conventional treatment (i.e., chromium precipitation–primary sedimentation–biological oxidation–secondary sedimentation, effluents still do not meet the required limits, at least for some parameters such as BOD, COD, salinity, ammonia and surfactants. The leather industry is being pressured to search cleaner, economically as well as environmentally friendly wastewater treatment technologies alternative or integrative to the conventional treatment in order to face the challenge of sustainability. The most spread approach to manage tannery wastewater is the steam segregation before conveying wastewaters to in treatment plants that typically include pre-treatment, mechanical and physico-chemical treatment, biological treatment, and treatment of the generated sludge. Thus proper treatment technologies are needed to handle tannery wastewater to remove effectively the environmental benign pollutants. However among various processes applied or proposed the sustainable technologies are emerging concern. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater.

  16. Priorities for toxic wastewater management in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, A. [Sustainable Development Policy Institute, Islamabad (Pakistan)


    This study assesses the number of industries in Pakistan, the total discharge of wastewater, the biological oxygen demand (BOD) load, and the toxicity of the wastewater. The industrial sector is a major contributor to water pollution, with high levels of BOD, heavy metals, and toxic compounds. Only 30 industries have installed water pollution control equipment, and most are working at a very low operational level. Priority industrial sectors for pollution control are medium- to large-scale textile industries and small-scale tanneries and electroplating industries. Each day the textile industries discharge about 85,000 m{sup 3} of wastewater with a high BOD, while the electroplating industries discharge about 23,000 m{sup 3} of highly toxic and hazardous wastewater. Various in-plant modifications can reduce wastewater discharges. Economic incentives, like tax rebates, subsidies, and soft loans, could be an option for motivating medium- to large-scale industries to control water pollution. Central treatment plants may be constructed for treating wastewater generated by small-scale industries. The estimated costs for the treatment of textile and electroplating wastewater are given. The legislative structure in Pakistan is insufficient for control of industrial pollution; not only do existing laws need revision, but more laws and regulations are needed to improve the state of affairs, and enforcement agencies need to be strengthened. 15 refs., 1 fig., 9 tabs.

  17. Effects of wastewater on forested wetlands (United States)

    Doyle, Thomas W.


    Cycling nutrient-enriched wastewater from holding ponds through natural, forested wetlands is a practice that municipal waste treatment managers are considering as a viable option for disposing of wastewater. In this wastewater cycling process, sewer effluent that has been circulated through aerated ponds is discharged into neighboring wetland systems. To understand how wastewater cycling affects forest and species productivity, researchers at the USGS National Wetlands Research Center conducted dendroecological investigations in a swamp system and in a bog system that have been exposed to wastewater effluent for many decades. Dendroecology involves the study of forest changes over time as interpreted from tree rings. Tree-ring chronologies describe the pattern and history of growth suppression and release that can be associated with aging and disturbances such as hurricanes, floods, and fires. But because of limited monitoring, little is known about the potential for long-term effects on forested wetlands as a result of wastewater flooding. USGS researchers used tree rings to detect the effect of wastewater cycling on tree growth. Scientists expected to find that tree-ring width would be increased as a result of added nutrients.

  18. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. (United States)

    Wang, Meng; Kuo-Dahab, Wenye Camilla; Dolan, Sona; Park, Chul


    Two species of green algae, Chlorella sp. and Micractinium sp., were cultivated in primary effluent wastewater and high-strength wastewater (a mixture of anaerobic digestion centrate and primary effluent) to study nutrient removal and EPS (extracellular polymeric substances) expression during their growth. The high N concentration and P-limited condition in the mixed wastewater (total N=197 mg/L; N/P mass ratio=56) led to about 3 times greater specific N removal rate than the primary effluent set, indicating that algal cells growing in N-rich wastewater had N over-uptake. Both Chlorella and Micractinium grown in the high-strength wastewater also produced larger amounts of protein EPS, possibly accounting for higher N uptake in those cultivation sets. These results suggest that different types of wastewater could cause different nutrient removal kinetics and EPS expression by algae, which may subsequently influence harvesting and anaerobic digestion of their biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Characterization of Wastewater for Modelling of Activated Sludge Processes

    DEFF Research Database (Denmark)

    Henze, Mogens


    . Fractionation of biomass in wastewater and in activated sludge is difficult at present, as methods are only partly developed. Nitrogen fractions in wastewater are mainly inorganic. The organic nitrogen fractions are coupled to the organic COD fractions. The fractions of COD, biomass and nitrogen found...... in a specific wastewater seem to be constant even when concentrations vary. Wastewater input to sewers and the sewer transport system significantly influences the raw wastewater composition at treatment plants....

  20. Wastewater Characterization Survey, Thule Air Base, Greenland (United States)


    wastewater . A large amount of the phosphorus that is discharged is likely to be removed by the algae and plant life in the ditch before reaching the...continuous). The high concentration of algae can be expected to deplete oxygen in the bay during the dark respiration cycle. If a wastewater treatment...APR 15 1993 AD,-A262 806 S C I WASTEWATER CHARACTERIZATION SURVEY, A THULE AIR BASE, GREENLAND R M S T Richard P. McCoy, Captain, USAF, BSC R

  1. Selection of technologies for municipal wastewater treatment

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rodríguez Miranda


    Full Text Available In water environmental planning in watersheds should contain aspects for the decontamination of receiving water body, therefore the selection of the treatment plants municipal wastewater in developing countries, you should consider aspects of the typical composition raw wastewater pollutant removal efficiency by technology, performance indicators for technology, environmental aspects of localization and spatial localization strategy. This methodology is built on the basis of technical, economic and environmental attributes, such as a tool for decision making future investments in treatment plants municipal wastewater with multidisciplinary elements.

  2. Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge

    Directory of Open Access Journals (Sweden)

    Yun-Young Choi


    Full Text Available Municipal wastewater treatment plants (WWTPs in Korea collect and treat not only domestic wastewater, but also discharge from industrial complexes. However, some industrial discharges contain a large amount of non-biodegradable organic matter, which cannot be treated properly in a conventional biological WWTP. This study aimed to investigate the characteristics and biodegradability of the wastewater organic matter contained in the industrial discharges and to examine the fate of the industrial discharges in a biological WWTP. In contrast to most previous studies targeting a specific group of organic compounds or traditional water quality indices, such as biological oxygen demand (BOD and chemical oxygen demand (COD, this study was purposed to quantify and characterize the biodegradable and nonbiodegradable fractions of the wastewater organic matter. Chemical oxygen demand (COD fractionation tests and fluorescence spectroscopy revealed that the industrial discharge from dyeing or pulp mill factories contained more non-biodegradable soluble organic matter than did the domestic wastewater. Statistical analysis on the WWTPs’ monitoring data indicated that the industrial discharge containing non-biodegradable soluble organic matter was not treated effectively in a biological WWTP, but was escaping from the system. Thus, industrial discharge that contained non-biodegradable soluble organic matter was a major factor in the decrease in biodegradability of the discharge, affecting the ultimate fate of wastewater organic matter in a biological WWTP. Further application of COD fractionation and fluorescence spectroscopy to wastewaters, with various industrial discharges, will help scientists and engineers to better design and operate a biological WWTP, by understanding the fate of wastewater organic matter.

  3. Strength of Fibrous Composites

    CERN Document Server

    Huang, Zheng-Ming


    "Strength of Fibrous Composites" addresses evaluation of the strength of a fibrous composite by using its constituent material properties and its fiber architecture parameters. Having gone through the book, a reader is able to predict the progressive failure behavior and ultimate strength of a fibrous laminate subjected to an arbitrary load condition in terms of the constituent fiber and matrix properties, as well as fiber geometric parameters. The book is useful to researchers and engineers working on design and analysis for composite materials. Dr. Zheng-Ming Huang is a professor at the School of Aerospace Engineering & Applied Mechanics, Tongji University, China. Mr. Ye-Xin Zhou is a PhD candidate at the Department of Mechanical Engineering, the University of Hong Kong, China.


    Directory of Open Access Journals (Sweden)

    Salah F. Sharif


    Full Text Available Because the sanctions imposed on Iraq by the United Nations, programmed maintenance and wearing parts replacement has not been performed according to schedules in DORA Refinery Wastewater Unit, which resulted in higher phenol content and BOD5 in effluents disposed to river. The investigations showed that two main reasons were behind this problem: Firstly, increased emissions of hydrocarbons in the complexity of refinery equipment and Secondly, the decreased efficiency of the aerators in the biological. During the last few months, phenol average concentration in the effluent, after biological treatment was found to be between 0.06-0.13 mg/L, while COD was exceeding 110 mg/L after treatment in the same period. Considerable enhancement, has been indicated recently, after the following performances: First: Recycling wastewater from some heat exchangers, and the segregation of low and high strength of wastewaters, Second: Minimizing emissions of hydrocarbons from fluid catalytic cracking and steam cracking, Third: Replacement of driving motors of the aerators in the biological treatment unit. After replacement of these units, a significant decrease in phenol concentration was obtained in purified water (0.03-0.05 mg/L and COD of 60 mg/L before the tertiary treatment. It is concluded that a better quality of effluents has been obtained after a series of emissions control and wastewater treatment unit equipment maintenance performances.

  5. Wastewater treatment with acoustic separator (United States)

    Kambayashi, Takuya; Saeki, Tomonori; Buchanan, Ian


    Acoustic separation is a filter-free wastewater treatment method based on the forces generated in ultrasonic standing waves. In this report, a batch-system separator based on acoustic separation was demonstrated using a small-scale prototype acoustic separator to remove suspended solids from oil sand process-affected water (OSPW). By applying an acoustic separator to the batch use OSPW treatment, the required settling time, which was the time that the chemical oxygen demand (COD) decreased to the environmental criterion (<200 mg/L), could be shortened from 10 to 1 min. Moreover, for a 10 min settling time, the acoustic separator could reduce the FeCl3 dose as coagulant in OSPW treatment from 500 to 160 mg/L.

  6. Restoration of wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Skabo, R.R. [CH2M Hill, Denver, CO (United States)


    Corrosion in Wastewater Treatment Plants (WWTP) has always been a problem. As systems increase in size, corrosion of materials in certain areas of the plant can become more serious. Concrete is the primary material used in RWPS, and it can be severely corroded by the environment in a WWTP. This paper discusses some of the more common types of HWP corrosion, which occur in both concrete and metallic structures. Corrosion caused by poor design will be discussed also. Examples of corrosion will be described and practical solutions for restoration of corroded surfaces will be presented The advantages and disadvantages of various restoration methods will be compared and alternative construction methods and design changes will be offered. These alternatives will improve the corrosion performance of common construction materials.

  7. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub


    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  8. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX


    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  9. Hand grip strength

    DEFF Research Database (Denmark)

    Frederiksen, Henrik; Gaist, David; Petersen, Hans Christian


    in life is a major problem in terms of prevalence, morbidity, functional limitations, and quality of life. It is therefore of interest to find a phenotype reflecting physical functioning which has a relatively high heritability and which can be measured in large samples. Hand grip strength is known......-55%). A powerful design to detect genes associated with a phenotype is obtained using the extreme discordant and concordant sib pairs, of whom 28 and 77 dizygotic twin pairs, respectively, were found in this study. Hence grip strength is a suitable phenotype for identifying genetic variants of importance to mid...

  10. Genotoxicity of wastewater from health care facilities. (United States)

    Vlková, Alena; Wittlingerová, Zdeňka; Zimová, Magdalena; Jírová, Gabriela; Kejlová, Kristina; Janoušek, Stanislav; Jírová, Dagmar


    Health care facilities use for therapeutic purposes, diagnostics, research, and disinfection a high number of chemical compounds, such as pharmaceuticals (e.g. antibiotics, cytostatics, antidepressants), disinfectants, surfactants, metals, radioactive elements, bleach preparations, etc. Hospitals consume significant amounts of water (in the range of 400 to 1200 liters/day/bed) corresponding to the amount of wastewater discharge. Some of these chemicals are not eliminated in wastewater treatment plants and are the source of pollution for surface and groundwater supplies. Hospital wastewater represents chemical and biological risks for public and environmental health as many of these compounds might be genotoxic and are suspected to contribute to the increased incidence of cancer observed during the last decades. The changes of the genetic information can have a lethal effect, but more often cause tumor processes or mutations in embryonic development causing serious defects. A review of the available literature on the mutagenicity/genotoxicity of medical facilities wastewater is presented in this article.

  11. Water/Wastewater Treatment Plant Operator Qualifications. (United States)

    Water and Sewage Works, 1979


    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  12. Bioenergy from wastewater-based biomass

    Directory of Open Access Journals (Sweden)

    Ronald C. Sims


    Full Text Available The U.S. Department of Energy (DOE has stated that biomass is the only renewable resource that can supplant petroleum-based liquid transportation fuels in the near term. Wastewater is beginning to be viewed as a potential resource that can be exploited for biomass production and conversion to bioenergy. We suggest that using wastewater from municipalities and industries as a resource for cultivating biomass and combining wastewater treatment with the production of biomass for bioenergy would provide benefits to both industries. Two waste-based biomass production systems that currently have large nationwide infrastructures include: (1 wastewater treatment systems that can be used to cultivate algae biomass, and (2 land application/treatment systems for non-food terrestrial biomass. These existing infrastructures could be used in the relatively near future for waste-based biomass production and conversion to bioenergy, thereby reducing capital costs and scalability challenges while making a contribution to energy independence and national security.

  13. Tertiary Treatment Process of Preserved Wastewater

    Directory of Open Access Journals (Sweden)

    Wang Qingyu


    Full Text Available The effects of the composite coagulants on coagulation sedimentation for the preserved wastewater was investigated by changing the composite coagulant dosages, and the coagulant was composed of polymeric ferric sulfate (PFS, polyaluminium chloride (PAC, and polyaluminum ferric silicate (PAFSC, while the effect of the tertiary treatment process on the preserved wastewater was tested, which was exceeded the standard seriously. The results showed that 400 mg/L was the optimum composite coagulant dosage. The removal rates of salt and sugar were as high as 99.1% and 99.5% respectively, and the removal rates of CODCr and SS were 99.3% and 96.0%, respectively after the preserved wastewater was treated by the tertiary treatment technology, which both reached the primary standard of “The Integrated Wastewater Discharge Standard” (GB8978-1996.

  14. Wastewater Out Front in Bay Restoration (United States)

    Clean Water Act programs administered by EPA and the delegated states have played a central role in the success of the wastewater sector in effectively meeting nutrient limits in the Chesapeake Bay “pollution diet” a decade early.

  15. Treated Wastewater Reuse on Potato (Solanum Tuberosum)

    DEFF Research Database (Denmark)

    Battilani, A; Plauborg, Finn; Andersen, Mathias Neumann


    A field experiment was carried out in Northern Italy (Po Valley), within the frame of the EU project SAFIR, to asses the impact of treated wastewater reuse on potato yield, quality and hygiene. The potato crop was drip irrigated and fertigated. Wastewater produced by small communities (≤2000 EI...... increased by 635 and 765 euro ha-1y-1 with FTS and MBR, respectively. Tubers were not contaminated by E. coli found in treated wastewater used for irrigation. The frequency of heavy metal and nitrate detection in tubers were comparable among water sources, as well as for the average contents. Only for boron......) was treated by Membrane Bio Reactor (MBR) technology and gravel filter (FTS) during three cropping seasons. Treated wastewater, soil and tubers were analysed for the faecal indicator bacterium E. coli and heavy metals contents. Potato total yield was similar for tap and reused water, while the marketable...

  16. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email:


    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  17. Domestic Wastewater Reuse in Concrete Using Bench-Scale Testing and Full-Scale Implementation

    Directory of Open Access Journals (Sweden)

    Ayoup M. Ghrair


    Full Text Available Demand for fresh water by the construction sector is expected to increase due to the high increase in the growth of construction activities in Jordan. This study aims to evaluate the potential of scale-up of the application of treated domestic wastewater in concrete from bench-scale to a full-scale. On the lab scale, concrete and mortar mixes using Primary and Secondary Treated Wastewater (PTW, STW and Distilled Water (DW were cast and tested after various curing ages (7, 28, 120, and 200 days. Based on wastewater quality, according to IS 456-2000, the STW is suitable for mortar and concrete production. Mortar made with STW at curing time up to 200 days has no significant negative effect on the mortar’s compressive strength. Conversely, the PTW exceeded the maximum permissible limits of total organic content and E coli. for concrete mixing-water. Using PTW results, a significant increase in the initial setting time of up to 16.7% and a decrease in the concrete workability are observed. In addition, using PTW as mixing water led to a significant reduction in the compressive strength up to 19.6%. The results that came out from scaling up to real production operation of ready-mix concrete were in harmony with the lab-scale results.

  18. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    It was found that for anaerobic treatment of olive mills wastewater COD:N:P ratio of about 900:5:1.7 was able to achieve more than 80% COD removal. The observed biomass yield was about 0.06 kg VSS per kg of COD degraded. For extended aeration aerobic treatment of pulp and paper mill wastewater COD:N:P ratio of ...

  19. Microalgae at wastewater treatment in cold climate


    Grönlund, Erik


    The thesis concludes that microalgae may improve wastewater treatment in ponds in cold climate, from a treatment perspective as well as a sustainability perspective. A literature review revealed that the microalgae biomass produced may find economic use, depending on what species will come to dominate, since there are many possible products from microalgae biomass. Laboratory experiments showed that microalgae collected in the Mid Sweden region can grow readily in wastewater from the same reg...

  20. Review of wastewater problems and wastewater-management planning in the San Francisco Bay region, California (United States)

    Hines, Walter G.


    The San Francisco Bay region has suffered adverse environmental effects related to the discharge of municipal-, industrial-, and agricultural- wastewater and storm-water runoff. Specific pollutional properties of theses discharges are not well understood in all cases although the toxic materials and aquatic-plant nutrients (biostimulants) found in municipal and industrial waterwater are considered to be a major cause of regional water-quality problems. Other water-quality problems in the region are commonly attributed to pesticides found in agricultural wastewater and potentially pathogenic bacteria in municipal-wastewater discharges and in storm-water runoff. The geographical distribution and magnitude of wastewater discharges in the bay region, particularly those from municipalities and industries, is largely a function of population, economic growth, and urban development. As might be expected, the total volume of wastewater has increased in a trend paralleling this growth and development. More significant, perhaps, is the fact that the total volume parameters such as BOD (biochemical oxygen demand), biostimulant concentrations, and toxicity, has increased despite large expenditures on new and improved municipal- and industrial-wastewater-treatment plants. Also, pollutant loadings from other major source, such as agriculture and storm-water runoff, have increased. At the time of writing (1972), many Federal, State, regional, and local agencies are engaged in a comprehensive wastewater-management-planning effort for the entire bay region. Initial objectives of this planning effort are: (1) the consolidation and coordination of loosely integrated wastewater-management facilities and (2) the elimination of wastewater discharges to ecologically sensitive areas, such as fresh-water streams and shallow extremities of San Francisco Bay. There has been some investigation of potential long-range wastewater-management alternatives based upon disposal in deep water in the

  1. Municipal wastewater biological nutrient removal driven by the fermentation liquid of dairy wastewater. (United States)

    Liu, Hui; Chen, Yinguang; Wu, Jiang


    Carbon substrate is required by biological nutrient removal (BNR) microorganism, but it is usually insufficient in the influent of many municipal wastewater treatment plants. In this study the use of ethanol-enriched fermentation liquid, which was derived from dairy wastewater, as the preferred carbon substrate of BNR was reported. First, the application of dairy wastewater and food processing wastewater and their fermentation liquid as the carbon substrate of BNR was compared in the short-term tests. The fermented wastewater showed higher BNR performance than the unfermented one, and the fermentation liquid of dairy wastewater (FL-DW), which was obtained under pH 8 and fermentation time of 6 day, exhibited the highest phosphorus (95.5%) and total nitrogen (97.6%) removal efficiencies due to its high ethanol content (57.9%). Then, the long-term performance of FL-DW acting as the carbon substrate of BNR was compared with that of acetate and ethanol, and the FL-DW showed the greatest phosphorus and total nitrogen removal. Further investigation showed that the use of FL-DW caused the highest polyhydroxyalkanoates (PHAs) synthesis in BNR microbial cells, and more PHAs were used for phosphorus uptake and denitrification rather than glycogen synthesis and microbial growth. The FL-DW can be used as a preferred carbon substrate for BNR microbes. AB: aerobic end sludge active biomass; BNR: biological nutrient removal; DW: dairy wastewater; FL-DW: fermentation liquid of dairy wastewater; FPW: food processing wastewater; FL-FPW: fermentation liquid of food processing wastewater; PHAs: polyhydroxyalkanoates; PHB: poly-3-hydroxybutyrate; PHV: poly-3-hydroxyvalerate; PH2MV: poly-3-hydroxy-2- methylvalerate; PAOs: phosphorus accumulating organisms; SBR: sequencing batch reactor; SOP: soluble ortho-phosphorus; TN: total nitrogen; TSS: total suspended solids; VSS: volatile suspended solids; VFAs: volatile fatty acids; WWTPs: wastewater treatment plants.

  2. The Strength Compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    present in both small children and youths? Gender: Do the results show differences between the two genders? Danish as a mother- tongue language: Do the results show any differences in the strengths display when considering different language and cultural backgrounds? Children with Special Needs: Do...

  3. Influence of wastewater characteristics on methane potential in food-processing industry wastewaters

    DEFF Research Database (Denmark)

    Maya Altamira, Larisa; Baun, Anders; Angelidaki, Irini


    yields; on the other hand, it was found that they were affected positively by concentrations of total inorganic carbon when wastewaters were 25% and 50% diluted and affected negatively by concentrations of total acetate when wastewaters were undiluted. Carbohydrate and protein concentrations affected...

  4. Solidification and stabilization of the incinerated wastewater sludge from textile industry (United States)

    Aziz, Hamidi Abdul; Ghazali, Miskiah Fadzilah; Omran, Abdelnaser; Umar, Muhammad


    This paper describes the investigation of solidification and stabilization (S/S) process for the safe disposal of incinerated wastewater sludge produced from a textile industry in Penang, Malaysia. Physical and chemical properties of the samples were first characterized. Various ratios of ordinary Portland cement (OPC) as a binder were used to immobilize the metals. The leachability of metals in these cement-based waste materials was studied by standard toxicity characteristic leaching procedure (TCLP) and the mechanical strength was tested by a compressive strength test. TCLP results showed the ability of OPC to immobilize various metals such as Zn, Cu, Fe, Al, Ti, and K within the limits set by USEPA and Malaysia Environment Quality Act, 1974. However, the strength of the solidified matrixes was generally lower than the control specimens, ranging from 1-23 Mpa, which was well above the specified limit of 414 kPa for such matrices for their disposal in landfills.

  5. Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste? (United States)

    Collivignarelli, Maria Cristina; Abbà, Alessandro; Bertanza, Giorgio


    This paper describes the advantages of thermophilic aerobic membrane reactor (TAMR) for the treatment of high strength wastewaters. The results were obtained from the monitoring of an industrial and a pilot scale plant. The average chemical oxygen demand (COD) removal yield was equal to 78% with an organic loading rate (OLR) up to 8-10 kgCOD m(-3) d(-1) despite significant scattering of the influent wastewater composition. Total phosphorus (TP) was removed with a rate of 90%, the most important removal mechanism being chemical precipitation (as hydroxyapatite, especially), which is improved by the continuous aeration that promotes phosphorus crystallization. Moreover, surfactants were removed with efficiency between 93% and 97%. Finally, the experimental work showed that thermophilic processes (TPPs) are complementary with respect to mesophilic treatments.

  6. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment (United States)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  7. Nitrogen and COD Removal from Septic Tank Wastewater in Subsurface Flow Constructed Wetlands: Plants Effects. (United States)

    Collison, R S; Grismer, M E


    We evaluated subsurface flow (SSF) constructed wetland treatment performance with respect to organics (COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) wastewater as affected by the presence of plants, substrate "rock" cation exchange capacity (CEC), laboratory versus field conditions and use of synthetic as compared to actual domestic wastewater. This article considers the effects of plants on constructed wetland treatment in the field. Each constructed wetland system was comprised of two beds (2.6 m long by 0.28 m wide and deep filled with ~18 mm crushed lava rock) separated by an aeration tank connected in series. The lava rock had a porosity of ~47% and a CEC of 4 meq/100 gm. One pair of constructed wetland systems was planted with cattails in May 2008, while an adjacent pair of systems remained un-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each constructed wetland system and effluent samples were regularly collected and tested for COD and nitrogen species during four time periods spanning November 2008 through June 2009. These effluent concentrations were tested for statistical differences at the 95% level for individual time periods as well as the overall 6-month period. Organics removal from domestic wastewater was 78.8% and 76.1% in the planted and un-planted constructed wetland systems, respectively, while ammonium removal was 94.5% and 90.2%, respectively. Similarly, organics removal from the synthetic wastewater of equivalent strength was 88.8% and 90.1% for planted and un-planted constructed wetland systems, respectively, while ammonium removal was 96.9% and 97.3%, respectively.

  8. Denitrifying bioreactor clogging potential during wastewater treatment. (United States)

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T


    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m(3) of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Study on acute toxicity of amoxicillin wastewater to Zebrafish (United States)

    Xie, Weifang; Shen, Hongyan


    The main research in this paper is to obtain the effect of pharmaceutical wastewater on the acute toxicity of Zebrafish. The experimental method of exposure is used in this research. Experiments were carried out with different groups of pharmaceutical wastewater. Zebrafish was cultivated in a five liter fish tank. In the experiment, according to mortality, initially a 96h preliminary test was carried out at exposure concentrations to determine if the amoxicillin wastewater was toxic and to define the concentration range (24h LC100, 96h LC0) to be employed in the definitive tests. Based on the half lethal concentration of Zebrafish, the acute toxicity of amoxicillin wastewater to Zebrafish was calculated and the toxicity grade of wastewater was determined. In the experiment, the Zebrafish was exposed with amoxicillin wastewater during 96h. The 24h, 48h, 72h and 96h LC50 of amoxicillin wastewater on the Zebrafish were 63.10%, 53.70%, 41.69% and 40.74%, respectively. At 96h, the test time is the longest, and the value of LC50 is the smallest. In the observation period of 96 hours, the LC50 of amoxicillin wastewater were in the range of 40% ~ 60% and the value of Tua is 1 ~ 2. It indicates amoxicillin wastewater is low toxic wastewater when the experimental time is shorter than 48h, amoxicillin wastewater is moderate toxicity wastewater when the experimental time is higher than 48h. According to the experimental data, with the exposure time and the volume percentage of amoxicillin wastewater increases, the mortality rate of Zebrafish is gradually increased and the toxicity of amoxicillin wastewater increases. It indicates that the toxicity of amoxicillin wastewater is the biggest and the effect of wastewater on Zebrafish is greatest. In some ways, the toxicity of amoxicillin wastewater can be affected by the test time.

  10. Strengths only or strengths and relative weaknesses? A preliminary study. (United States)

    Rust, Teri; Diessner, Rhett; Reade, Lindsay


    Does working on developing character strengths and relative character weaknesses cause lower life satisfaction than working on developing character strengths only? The present study provides a preliminary answer. After 76 college students completed the Values in Action Inventory of Strengths (C. Peterson & M. E. P. Seligman, 2004), the authors randomly assigned them to work on 2 character strengths or on 1 character strength and 1 relative weakness. Combined, these groups showed significant gains on the Satisfaction With Life Scale (E. Diener, R. A. Emmons, R. J. Larsen, & S. Griffin, 1985), compared with a 32-student no-treatment group. However, there was no significant difference in gain scores between the 2-strengths group and the 1-character-strength-and-1-relative-character-weakness group. The authors discuss how focusing on relative character weaknesses (along with strengths) does not diminish-and may assist in increasing-life satisfaction.

  11. General Characteristics and Treatment Possibilities of Dairy Wastewater - A Review

    National Research Council Canada - National Science Library

    Aleksandar Kolev Slavov


    ... attention. The purpose of the paper is to review contemporary research on dairy wastewater. The origin, categories, as well as liquid by-products and general indicators of real dairy wastewater are described...

  12. Heavy metal pollution of vegetable crops irrigated with wastewater ...

    African Journals Online (AJOL)

    144) and edible parts of both exotic and traditional vegetables (samples = 240) irrigated with wastewater from some parts of Accra were studied. The concentrations of heavy metals in mg/l were quantified in wastewater from Accra and ...

  13. Operation and effluent quality of a small rural wastewater treatment ...

    African Journals Online (AJOL)



    2000) Wastewater treatment by pond systems: experi- ences in Catalonia, Spain. Water Sci. Technol. 42 (10-11) 35-42. STANDARD METHODS (1995) Standard Methods for the Examination of Water and Wastewater (19th edn.) ...

  14. Determination of Wastewater Acids from Chromium Plating and Electropolishing Solutions

    National Research Council Canada - National Science Library

    Sopok, Samuel


    ... Laboratories vessel plating program. The chemical literature provides offline laboratory detection of chromic acid from chromium plating wastewater solutions, as well as phosphoric and sulfuric acids from electropolishing wastewater solutions...

  15. Towards a national policy on wastewater reuse in Kenya | Kaluli ...

    African Journals Online (AJOL)

    Towards a national policy on wastewater reuse in Kenya. ... This implied that Nairobi sewage needed to be treated for the removal of BOD, turbidity and ... allowable levels of pesticides, herbicides, and heavy metals in wastewater reuse.

  16. Emerging energy-efficient technologies for the Californian wastewater industry

    NARCIS (Netherlands)

    Slaa, Jan Willem


    SUMMARY Wastewater treatment is of vital importance for protecting human health and minimizing the environmental impact of polluted water. Since the beginning of the 20th century public facilities have been installed globally which treat wastewater at a

  17. Potential of constructed wetlands as an alternative for wastewater ...

    African Journals Online (AJOL)

    surface flow Constructed Wetland (HSSFCW) system in polishing pre-treated wastewater in the UPward Flow Anaerobic sludge Blanket (UASB) reactor plant as a potential wastewater treatment system that can meet the requirement for ...

  18. Balance in Training for Latin American Water and Wastewater Utilities (United States)

    Carefoot, Neil F.


    Using a Peru case study, this article examines the problem of training imbalance for water and wastewater operators. Guidelines towards achieving adequate training for all water and wastewater personnel are suggested. (Author/MA)

  19. Textile wastewater biocoagulation by Caesalpinia spinosa extracts

    Directory of Open Access Journals (Sweden)

    Andrés Revelo


    Full Text Available (Received: 2014/12/06 - Accepted: 2015/03/24The textile industry in Ecuador is still a matter of concern because of the inappropriate disposal of their effluents into the local water supply. The present research was carried out in Pelileo (Tungurahua-Ecuador where textile wastewaters are discharged into waterways. An environmentally friendly solution to treat highly contaminated organic textile wastewaters is herein evaluated: a remediation process of biocoagulation was performed using extracts from the Caesalpinia spinosa plant also known as guarango or tara. It was determined that using C. spinosa extracts to treat wastewater has the same statistical effect as when applying a chemical coagulant (polyaluminum chloride 15%. Activated zeolite adsorbed color residuals from treated water to obtain turbidity removal more than 90%. A mathematical model showed that turbidity removal between 50-90% can be obtained by applying 25-45 g/L of guarango extracts and zeolite per 700 mL of textile wastewater. The natural coagulation using C. spinosa extracts produced 85% less sludge than polyaluminum chloride, and removed high organic matter content in the wastewater (1050 mg/L by 52%.

  20. Wilsonville wastewater sampling program. Final report

    Energy Technology Data Exchange (ETDEWEB)



    As part of its contrast to design, build and operate the SRC-1 Demonstration Plant in cooperation with the US Department of Energy (DOE), International Coal Refining Company (ICRC) was required to collect and evaluate data related to wastewater streams and wastewater treatment procedures at the SRC-1 Pilot Plant facility. The pilot plant is located at Wilsonville, Alabama and is operated by Catalytic, Inc. under the direction of Southern Company Services. The plant is funded in part by the Electric Power Research Institute and the DOE. ICRC contracted with Catalytic, Inc. to conduct wastewater sampling. Tasks 1 through 5 included sampling and analysis of various wastewater sources and points of different steps in the biological treatment facility at the plant. The sampling program ran from May 1 to July 31, 1982. Also included in the sampling program was the generation and analysis of leachate from SRC product using standard laboratory leaching procedures. For Task 6, available plant wastewater data covering the period from February 1978 to December 1981 was analyzed to gain information that might be useful for a demonstration plant design basis. This report contains a tabulation of the analytical data, a summary tabulation of the historical operating data that was evaluated and comments concerning the data. The procedures used during the sampling program are also documented.

  1. Control of wastewater using multivariate control chart (United States)

    Nugraha, Jaka; Fatimah, Is; Prabowo, Rino Galang


    Wastewater treatment is a crucial process in industry cause untreated or improper treatment of wastewater may leads some problems affecting to the other parts of environmental aspects. For many kinds of wastewater treatments, the parameters of Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and the Total Suspend Solid (TSS) are usual parameters to be controlled as a standard. In this paper, the application of multivariate Hotteling T2 Individual was reported to control wastewater treatment. By using wastewater treatment data from PT. ICBP, east Java branch, while the fulfillment of quality standards are based on East Java Governor Regulation No. 72 Year 2013 on Standards of Quality of Waste Water Industry and / or Other Business Activities. The obtained results are COD and TSS has a correlation with BOD values with the correlation coefficient higher than 50%, and it is is also found that influence of the COD and TSS to BOD values are 82% and 1.9% respectively. Based on Multivariate control chart Individual T2 Hotteling, it is found that BOD-COD and BOD-TSS are each one subgroup that are outside the control limits. Thus, it can be said there is a process that is not multivariate controlled, but univariately the variables of BOD, COD and TSS are within specification (standard quality) that has been determined.

  2. Municipal Treated Wastewater Irrigation: Microbiological Risk Evaluation

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro


    Full Text Available Municipal wastewater for irrigation, though treated, can contain substances and pathogens toxic for humans and animals. Pathogens, although not harmful from an agronomical aspect, undoubtedly represent a major concern with regards to sanitary and hygienic profile. In fact, vegetable crops irrigated with treated wastewater exalt the risk of infection since these products can also be eaten raw, as well as transformed or cooked. Practically, the evaluation of the microbiological risk is important to verify if the microbial limits imposed by law for treated municipal wastewater for irrigation, are valid, thus justifying the treatments costs, or if they are too low and, therefore, they don’ t justify them. Different probabilistic models have been studied to assess the microbiological risk; among these, the Beta-Poisson model resulted the most reliable. Thus, the Dipartimento di Scienze delle Produzioni Vegetali of the University of Bari, which has been carrying out researches on irrigation with municipal filtered wastewater for several years, considered interesting to verify if the microbial limits imposed by the italian law n.185/03 are too severe, estimating the biological risk by the probabilistic Beta-Poisson model. Results of field trials on vegetable crops irrigated by municipal filtered wastewater, processed by the Beta-Poisson model, show that the probability to get infection and/or illness is extremely low, and that the actual italian microbial limits are excessively restrictive.

  3. Wastewater use in algae production for generation of renewable resources: a review and preliminary results. (United States)

    Dalrymple, Omatoyo K; Halfhide, Trina; Udom, Innocent; Gilles, Benjamin; Wolan, John; Zhang, Qiong; Ergas, Sarina


    Microalgae feedstock production can be integrated with wastewater and industrial sources of carbon dioxide. This study reviews the literature on algae grown on wastewater and includes a preliminary analysis of algal production based on anaerobic digestion sludge centrate from the Howard F. Curren Advanced Wastewater Treatment Plant (HFC AWTP) in Tampa, Florida and secondary effluent from the City of Lakeland wastewater treatment facilities in Lakeland, Florida. It was demonstrated that a mixed culture of wild algae species could successfully be grown on wastewater nutrients and potentially scaled to commercial production. Algae have demonstrated the ability to naturally colonize low-nutrient effluent water in a wetland treatment system utilized by the City of Lakeland. The results from these experiments show that the algae grown in high strength wastewater from the HFC AWTP are light-limited when cultivated indoor since more than 50% of the outdoor illumination is attenuated in the greenhouse.An analysis was performed to determine the mass of algae that can be supported by the wastewater nutrients (mainly nitrogen and phosphorous) available from the two Florida cities. The study was guided by the growth and productivity data obtained for algal growth in the photobioreactors in operation at the University of South Florida. In the analysis, nutrients and light are assumed to be limited, while CO2 is abundantly available. There is some limitation on land, especially since the HFC AWTP is located at the Port of Tampa. The temperature range in Tampa is assumed to be suitable for algal growth year round. Assuming that the numerous technical challenges to achieving commercial-scale algal production can be met, the results presented suggest that an excess of 71 metric tons per hectare per year of algal biomass can be produced. Two energy production options were considered; liquid biofuels from feedstock with high lipid content, and biogas generation from anaerobic

  4. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use. (United States)

    Fine, Pinchas; Hadas, Efrat


    Treatment of primarily-domestic sewage wastewater involves on-site greenhouse gas (GHG) emissions due to energy inputs, organic matter degradation and biological nutrient removal (BNR). BNR causes both direct emissions and loss of fertilizer value, thus eliminating possible reduction of emissions caused by fertilizer manufacture. In this study, we estimated on-site GHG emissions under different treatment scenarios, and present options for emission reduction by changing treatment methods, avoiding BNR and by recovering energy from biogas. Given a typical Israeli wastewater strength (1050mg CODl(-1)), the direct on-site GHG emissions due to energy use were estimated at 1618 and 2102g CO(2)-eq m(-3), respectively, at intermediate and tertiary treatment levels. A potential reduction of approximately 23-55% in GHG emissions could be achieved by fertilizer preservation and VS conversion to biogas. Wastewater fertilizers constituted a GHG abatement potential of 342g CO(2)-eq m(-3). The residual component that remained in the wastewater effluent following intermediate (oxidation ponds) and enhanced (mechanical-biological) treatments was 304-254g CO(2)-eq m(-3) and 65-34g CO(2)-eq m(-3), respectively. Raw sludge constituted approximately 47% of the overall wastewater fertilizers load with an abatement potential of 150g CO(2)-eq m(-3) (385kg CO(2)-eq dry tonne(-1)). Inasmuch as anaerobic digestion reduced it to 63g CO(2)-eq m(-3) (261kg CO(2)-eq dry tonne(-1)), the GHG abatement gained through renewable biogas energy (approx. 428g CO(2)-eq m(-3)) favored digestion. However, sludge composting reduced the fertilizer value to 17g CO(2)-eq m(-3) (121kg CO(2)-eq dry tonne(-1)) or less (if emissions, off-site inputs and actual phytoavailability were considered). Taking Israel as an example, fully exploiting the wastewater derived GHG abatement potential could reduce the State overall GHG emissions by almost 1%. This demonstrates the possibility of optional carbon credits which

  5. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater. (United States)

    Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong


    Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L-1. The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (ksa) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn2+ to ZnCl3- and ZnCl42-; from CrO42- to CaCrO4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Wastewater treatment alternatives for a vegetable and seafood cannery


    Grassiano, James W.


    Peeled or whole-pack tomatoes, herring roe and oysters are processed at a Virginia Cannery. Wastewater from each food processing effluent was characterized. Treatment alternatives were investigated for tomato and herring roe wastewaters. For herring roe processing wastewater, the discharge requirement for BOD was nearly met through plain settling, while the TSS limitation was easily achieved by settling out the roe particles" Oyster processing wastewater was found to meet effluent guidelines ...

  7. Nitrogen Removal From Dairy Manure Wastewater Using Sequencing Batch Reactors


    Whichard, David P


    The purpose of this research was to characterize a flushed dairy manure wastewater and to develop the kinetic and stoichiometric parameters associated with nitrogen removal from the wastewater, as well as to demonstrate experimental and simulated nitrogen removal from the wastewater. The characterization showed that all the wastewaters had carbon to nitrogen ratios large enough for biological nitrogen removal. Analysis of carbon to phosphorus ratios showed that enough carbon is available fo...

  8. Investigation of Irrigation Influence by Domestic Wastewater on Soil Characteristics


    Fayaz Aghayari; Hossein Hassanpour Darvishi


    To investigate the beneficial impacts of wastewater on soil properties, we conducted an experiment in the lysimeter by measuring certain features essentially related to soil characteristics. Our objectives in this study were (i) the wastewater infiltration by soil and (ii) the effect of wastewater on soil properties. In this experiment, 9 lysimeter were used, 1, 2 and 3 lysimeters irrigated by domestic wastewater. Then, first drainage water accumulated from these lysimeters and 4, 5 and 6 lys...

  9. The effects of physicochemical wastewater treatment operations on forward osmosis

    DEFF Research Database (Denmark)

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg


    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration...... for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment....

  10. Optimizing potassium ferrate for textile wastewater treatment by RSM


    Maryam Moradnia; Masoud Panahifard; Kavoos Dindarlo; Hamzeh Ali Jamali


    Background: Application of potassium ferrate is a chemical oxidation approach used for water and wastewater treatment. The aim of this study is to apply central composite design (CCD) and response surface methodology (RSM) to optimize potassium ferrate consumption in the treatment of wastewater from carpet industries. Methods: Samples in this experimental study were collected from wastewater, originating from a carpet factory. Wastewater sampling was carried out monthly for a p...

  11. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology.

    Directory of Open Access Journals (Sweden)

    Łukasz Jałowiecki

    Full Text Available The aim of the study was to determine the potential of community-level physiological profiles (CLPPs methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A, trickling filter/biofilter system (technology B, and aerated filter system (the fluidized bed reactor, technology C. High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs, as shown by the diversity indices. Principal components analysis (PCA showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters.

  12. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology (United States)

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna


    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  13. Wastewater Use in Irrigated Agriculture: Confronting the Livelihood ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The use of urban wastewater in agriculture is a centuries-old practice that is receiving renewed attention with the increasing scarcity of fresh water resources in many arid and semi-arid regions of the world. Driven by rapid urbanization and growing wastewater volumes, wastewater is widely used as a low-cost alternative to ...

  14. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater

    DEFF Research Database (Denmark)

    Hey, G.; Grabic, R.; Ledin, A.


    Biologically treated wastewater spiked with a mixture of 56 active pharmaceutical ingredients (APIs) was treated with 0–20mg/L chlorine dioxide (ClO2) solution in laboratory-scale experiments. Wastewater effluents were collected from two wastewater treatment plants in Sweden, one with extended ni...

  15. Sustainable Approach to Wastewater Management in the Federal ...

    African Journals Online (AJOL)

    Proper disposal of wastewater still remains a major concern in developing countries. As population grows and urbanization increases, more wastewater is generated and there is great awareness on the health and environmental implication of poorly disposed wastewater. This research work develops a sustainable ...

  16. Fertigation with domestic wastewater: Uses and implications | Silva ...

    African Journals Online (AJOL)

    The use of wastewater in agriculture is an alternative means of reducing wastewater release into water sources. This process, known as fertigation is an opportunity to make use of organic matter and other nutrients in wastewater for agricultural productivity. The presence of organic matter in these effluents serves as ...

  17. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment plants were ...

  18. Extraction of volatile fatty acids from fermented wastewater

    NARCIS (Netherlands)

    Reyhanitash, Ehsan; Zaalberg, Bart; Kersten, Sascha R.A.; Schuur, Boelo


    Valorization of wastewater streams can be done by fermentation to produce volatile fatty acids (VFAs) which are applied as platform chemicals for synthesis of value-added chemicals. Since VFA concentration in fermented wastewater is very low (∼1 wt%) and fermented wastewater contains considerable

  19. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)



    Aug 4, 2008 ... There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment.

  20. Effect of industrial wastewater ontotal protein and the peroxidase ...

    African Journals Online (AJOL)



    Oct 19, 2009 ... Sarıçay River water and Tekel wastewater, respectively. In P. vulgaris which was treated with Dardanel wastewater, the total protein amount increased by 84% compared to control plants. After the wastewater treatment, the peroxidase activity decreased in all plants. The largest peroxidase decrease.

  1. Cultivation of microalgae in industrial wastewaters

    DEFF Research Database (Denmark)

    van Wagenen, Jonathan Myerson

    that has many potential uses. Unfortunately, the current high costs of cultivation have limited the development and exploitation of such systems, resulting in only a few full-scale algae wastewater treatment installations and a small industry based mostly around food and pigments. This thesis contributes...... to autotrophic controls. Industrial wastewater was used as cultivation medium of Chlorella sorokiniana. The culture was able to grow at high rates upto a density of 4 g L-1. The deceleration-stat technique was used to create a series of pseudo-steady states to give information about the expected results...... to a growing body of knowledge with the aim to make algae cultivation viable for the production of sustainable products. Specific contributions include: improvement in the methods of screening the growth potential of different microalgae species; identification of an industrial wastewater that allows good...

  2. Development of chemical flocculant for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jang Jin; Shin, J. M.; Lee, H. H.; Kim, M. J.; Yang, M. S.; Park, H. S


    Reagents 'KAERI-I and KAERI-II' which were developed as coagulants for industrial wastewater treatment in the study showed far superior performance to the existing inorganic coagulants such as Alum and Iron salt(FeSO4) when compared to their wastewater treatment performance in color and COD removal. Besides, it was not frozen at -25 deg C {approx} -30 deg C. When reagents 'KAERI-I and KAERI-II' were used as coagulant for wastewater treatment, the proper dosage was ranged from 0.1% to 0.5%(v/v) and proper pH range was 10.5 {approx} 11.5 in the area of alkaline pH.Reagents 'KAERI-I and KAERI-II' showed good performance with 95% or more removal of color-causing material and 60% or more removal of COD.

  3. Aquatic Plants and Wastewater Treatment (an Overview) (United States)

    Wolverton, B. C.


    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  4. Fibre Optic Sensors for Selected Wastewater Characteristics

    Directory of Open Access Journals (Sweden)

    Sulaiman W. Harun


    Full Text Available Demand for online and real-time measurements techniques to meet environmental regulation and treatment compliance are increasing. However the conventional techniques, which involve scheduled sampling and chemical analysis can be expensive and time consuming. Therefore cheaper and faster alternatives to monitor wastewater characteristics are required as alternatives to conventional methods. This paper reviews existing conventional techniques and optical and fibre optic sensors to determine selected wastewater characteristics which are colour, Chemical Oxygen Demand (COD and Biological Oxygen Demand (BOD. The review confirms that with appropriate configuration, calibration and fibre features the parameters can be determined with accuracy comparable to conventional method. With more research in this area, the potential for using FOS for online and real-time measurement of more wastewater parameters for various types of industrial effluent are promising.

  5. Cosmetic wastewater treatment using dissolved air flotation

    Directory of Open Access Journals (Sweden)

    Bogacki Jan Paweł


    Full Text Available Five cosmetics wastewater samples were treated by Dissolved Air Flotation (DAF assisted by coagulation. Different aluminum based coagulants were used: (Al2(SO43, Al 1019, Al 3010, Al 3030, Al 3035, PAX 16 and PAX 19. The raw wastewater COD values were in the range 285-2124 mg/l. The efficiency of DAF depended on different coagulants and production profi le of factory. COD removal was varied from 11.1 to 77.7%. The efficiency of coagulants was similar during treatment of particular sample. The best results were obtained with Al2(SO43 and for sample 5 - lotions and shampoos production. The wastewater from UV fi lter creams production (sample 4 was resistant to treatment by DAF regardless of used coagulant. HS-SPME-GC-MS analysis can be a confirmation of DAF effectiveness

  6. The potential of dairy wastewater for denitrification

    Directory of Open Access Journals (Sweden)

    Tibela Landeka Dragičević


    Full Text Available In this work the potential of dairy wastewater for denitrification process by means of a microbial culture of nitrificants and denitrificants was investigated. The aim of this work was to remove nitrate by using organic compounds from the dairy wastewater as an electron donors. The minimal ratio of COD/NO3-N of 10 (COD-chemical oxygen demand/NO3-N-nitrate nitrogen was required to achieve complete reduction of NO3-N. The microbial culture of nitrificants and denitrificants, that was previously adapted on the dairy wastewater, carried out nitrate reduction with a different substrate utilization rate. The denitrification rate of 5.75 mg NO3-N/Lh was achieved at the beginning of denitrification when the microbial culture utilizes readily biodegradable COD. Further degradation occurred with the denitrification rate of 1.7 mg NO3-N/Lh.

  7. Frontiers International Conference on Wastewater Treatment

    CERN Document Server


    This book describes the latest research advances, innovations, and applications in the field of water management and environmental engineering as presented by leading researchers, engineers, life scientists and practitioners from around the world at the Frontiers International Conference on Wastewater Treatment (FICWTM), held in Palermo, Italy in May 2017. The topics covered are highly diverse and include the physical processes of mixing and dispersion, biological developments and mathematical modeling, such as computational fluid dynamics in wastewater, MBBR and hybrid systems, membrane bioreactors, anaerobic digestion, reduction of greenhouse gases from wastewater treatment plants, and energy optimization. The contributions amply demonstrate that the application of cost-effective technologies for waste treatment and control is urgently needed so as to implement appropriate regulatory measures that ensure pollution prevention and remediation, safeguard public health, and preserve the environment. The contrib...

  8. Strength Development for Young Adolescents (United States)

    McDaniel, Larry W.; Jackson, Allen; Gaudet, Laura


    Participation in strength training is important for older children or young adolescences who wish to improve fitness or participate in sports. When designing strength training programs for our youth this age group is immature anatomically, physiologically, and psychologically. For the younger or inexperienced group the strength training activities…

  9. The fracture strength and frictional strength of Weber Sandstone (United States)

    Byerlee, J.D.


    The fracture strength and frictional strength of Weber Sandstone have been measured as a function of confining pressure and pore pressure. Both the fracture strength and the frictional strength obey the law of effective stress, that is, the strength is determined not by the confining pressure alone but by the difference between the confining pressure and the pore pressure. The fracture strength of the rock varies by as much as 20 per cent depending on the cement between the grains, but the frictional strength is independent of lithology. Over the range 0 2 kb, ??=0??5 + 0??6??n. This relationship also holds for other rocks such as gabbro, dunite, serpentinite, granite and limestone. ?? 1975.

  10. Determination of total solutes in synfuel wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.R.; Bonomo, F.S.


    Efforts to investigate both lyophilization and the measurement of colligative properties as an indication of total solute content are described. The objective of the work described is to develop a method for measuring total dissolved material in retort wastewaters which is simple and rugged enough to be performed in a field laboratory in support of pollution control tests. The analysis should also be rapid enough to provide timely and pertinent data to the pollution control plant operator. To be of most value, the technique developed also should be applicable to other synfuel wastewaters, most of which contain similar major components as oil shale retort waters. 4 references, 1 table.

  11. Oxidation pond for municipal wastewater treatment (United States)

    Butler, Erick; Hung, Yung-Tse; Suleiman Al Ahmad, Mohammed; Yeh, Ruth Yu-Li; Liu, Robert Lian-Huey; Fu, Yen-Pei


    This literature review examines process, design, and cost issues related to using oxidation ponds for wastewater treatment. Many of the topics have applications at either full scale or in isolation for laboratory analysis. Oxidation ponds have many advantages. The oxidation pond treatment process is natural, because it uses microorganisms such as bacteria and algae. This makes the method of treatment cost-effective in terms of its construction, maintenance, and energy requirements. Oxidation ponds are also productive, because it generates effluent that can be used for other applications. Finally, oxidation ponds can be considered a sustainable method for treatment of wastewater.

  12. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.


    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...... of a wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model...

  13. Anti-sized reed bed system for animal wastewater treatment : a comparative study


    Zhao, Y.Q.; Sun, Guangzhi; Allen, Stephen


    Two separate sets of reed bed systems were operated in parallel for the purpose to study a comparative behaviour of high strength animal wastewater treatment. Each system consisted of five-stage gravel-based reed beds. The only difference between the two systems lies in the gravel arrangement within the beds. One system employed single sized gravel as bed medium (termed as mono-sized bed) while the other used two layers of gravel with coarse grain as the upper layer (termed as anti-sized bed)...

  14. On strength of porous material

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang


    The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus OF Rupture) of materials have been established in order to control...... to the theoretical research on non-destructive testing of such materials relating strength to stiffness and pore geometry.It is demonstrated that solutions for stiffness, tensile strength, and pore strength (damaging pore pressure, frost, fire) for some ideal porous materials can be determined theoretically only...... from knowing about pore geometry, solid phase stiffness, and zero-porosity strength. Pore geometry is the very important common denominator which controls both both stiffness and strength.The accurate results obtained are finally used to suggest generalizations with respect to strength in general...

  15. Discussion on Wastewater Treatment Process of Coal Chemical Industry (United States)

    Zhao, Dongyan; Lun, Weijie; Wei, Junjie


    Coal chemical wastewater has such characteristics as high concentration of oil, ammonia nitrogen and COD. In this paper, treatment process of coal chemical industry is described mainly, such as pretreatment process, biochemical treatment process and polishing process. Through the recovery of phenol and ammonia and the treatment of wastewater from abroad, the new technology of wastewater treatment in coal chemical industry was expounded. Finally, The development of coal chemical wastewater treatment technology is prospected, and the pretreatment technology is emphasized. According to the diversification and utilization of water, zero discharge of coal chemical wastewater will be fulfilled.

  16. A study on the treatment process of industrial wastewater related to heavy metal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Kim, M. J.; Son, J. S.; Park, H. S


    The supernatant from metal wastewater by using magnesium hydroxide and dolomite was used to treat dyeing wastewater. In the case of magnesium hydroxide. In the case of magnesium hydroxide, the optimum dosage was 10 % (v/v) for supernatant A and 3 % (v/v) for separation B. Color turbidity and COD removal was 99 to 100 % , 85 to 97 % and 43 to 53 %, respectively. In the case of dolomite, the optimum dosage was 30 % (v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96 to 99 %, 62 to 91 % and 52 to 53 %, respectively. In dyeing wastewater treatment by using supernatant from metal wastewater, the cost of chemicals was reduced by about 80 %.

  17. Treatment of heavy-metal wastewater by vacuum membrane distillation: effect of wastewater properties (United States)

    Ji, Zhongguang


    Heavy metal wastewater is a common byproduct in heavy metal industries. Membrane distillation is considered as promising technology to treat such wastewater. The treatment of heavy metal wastewater by vacuum membrane distillation (VMD) was conducted in this work. The effects of pH, calcium and EDTA on VMD performance were investigated. VMD process showed a good acid resistance as the solution pH above 0. When the solution pH was 0, the permeate conductivity was below 40μS·cm-1. Calcium and EDTA were found to have influence on VMD performance to some extent. VMD process was proved to be suitable for heavy metal wastewater as long as the impurity content was in control of a certain degree.

  18. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.


    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  19. Water's Hydrogen Bond Strength

    CERN Document Server

    Chaplin, Martin


    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperature...

  20. Capacity of textile filters for wastewater Treatment at changeable wastewater level – a hydraulic model


    Marcin Spychała; Maciej Pawlak; Tadeusz Nawrot


    The aim of the study was to describe in a mathematical manner the hydraulic capacity of textile filters for wastewater treatment at changeable wastewater levels during a period between consecutive doses, taking into consideration the decisive factors for flow-conditions of filtering media. Highly changeable and slightly changeable flow-conditions tests were performed on reactors equipped with non-woven geo-textile filters. Hydraulic conductivity of filter material coupons was determined. The ...

  1. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan

    Directory of Open Access Journals (Sweden)

    Waleed Manasreh


    Full Text Available Assessment of treated wastewater produced from Al-Lajoun collection tanks of the wastewater treatment plant in Karak province was carried out in term of physical properties, its major ionic composition, heavy metals and general organic content, for both wastewater influent and effluent. Sampling was done in two periods during (2005-2006 summer season and during winter season to detect the impact of climate on treated wastewater quality. Soil samples were collected from Al-Lajoun valley where the treated wastewater drained, to determine the heavy metal and total organic carbon concentrations at same time. The study showed that the treated wastewater was low in its heavy metals contents during both winter and summer seasons, which was attributed to high pH value enhancing their precipitations. Some of the major ions such as Cl-, Na+, HCO33-, Mg2+ in addition to biological oxygen demand and chemical oxygen demand were higher than the recommended Jordanian guidelines for drained water in valleys. The treated wastewater contained some organic compounds of toxic type such as polycyclic aromatic hydrocarbons. Results showed that the soil was low in its heavy metal contents and total organic carbon with distance from the discharging pond, which attributed to the adsorption of heavy metals, total organic carbon and sedimentation of suspended particulates. From this study it was concluded that the treated wastewater must be used in situ for production of animal fodder and prohibit its contact with the surface and groundwater resources of the area specially Al-Mujeb dam where it is collected.

  2. Wastewater reclamation and reuse in China: Opportunities and challenges. (United States)

    Lyu, Sidan; Chen, Weiping; Zhang, Weiling; Fan, Yupeng; Jiao, Wentao


    The growing water stress both in terms of water scarcity and quality deterioration promotes the development of reclaimed water as a new water resource use. This paper reviewed wastewater reuse practices in China, and the opportunities and challenges of expanding reclaimed water use were analyzed. Rapid urbanization with the increasing of water demand and wastewater discharge provides an opportunity for wastewater reuse. The vast amount of wastewater discharge and low reclaimed water production mean that wastewater reuse still has a great potential in China. Many environmental and economic benefits and successful reclamation technologies also provide opportunities for wastewater reuse. In addition, the overall strategy in China is also encouraging for wastewater reuse. In the beginning stage of wastewater reclamation and reuse, there are many significant challenges to expand wastewater reuse in China including slow pace in adopting urban wastewater reuse programs, the establishment of integrated water resources management framework and guidelines for wastewater reuse programs, incoherent water quality requirements, the limited commercial development of reclaimed water and the strengthening of public awareness and cooperation among stakeholders. Copyright © 2015. Published by Elsevier B.V.

  3. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    Directory of Open Access Journals (Sweden)

    Boguniewicz-Zabłocka Joanna


    Full Text Available During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions pollution removal occurs mostly with higher efficiency.

  4. Cultivation of Nannochloropsis salina in municipal wastewater or digester centrate. (United States)

    Dong, Bingfeng; Ho, Nam; Ogden, Kimberly L; Arnold, Robert G


    Meaningful use of biofuels for transportation depends on utilization of water from non-traditional, non-potable resources. Here it is hypothesized that (i) reclaimed wastewater or nutrient-rich side streams derived from municipal wastewater treatment are suitable for that purpose and (ii) use of those waters for algal growth can promote water quality through nutrient management. Experiments showed that metals levels in municipal wastewaters are unlikely to inhibit algal growth and lipid production, at least by metals tolerant microalgae like Nannochloropsis salina. Cells grew without inhibition in treated municipal wastewater or centrate derived from wastewater treatment at additions up to 75 percent v/v in their normal growth medium minus nitrogen and phosphorus. Although wastewater provides a suitable nutrient source for algal growth, not enough municipal wastewater is available to support a meaningful biofuels industry without efficient water recycling and nutrient recovery/reuse from spent algae. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry (United States)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel


    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  6. Experimental Design of Electrocoagulation and Magnetic Technology for Enhancing Suspended Solids Removal from Synthetic Wastewater

    Directory of Open Access Journals (Sweden)

    Moh Faiqun Ni'am


    Full Text Available Design of experiments (DOE is one of the statistical method that is used as a tool to enhance and improve experimental quality. The changes to the variables of a process or system is supposed to give the optimal result (response and quite satisfactory. Experimental design can defined as a test or series of test series by varying the input variables (factors of a process that can known to cause changes in output (response. This paper presents the results of experimental design of wastewater treatment by electrocoagulation (EC technique. A combined magnet and electrocoagulation (EC technology were designed to increase settling velocity and to enhance suspended solid removal efficiencies from wastewater samples. In this experiment, a synthetic wastewater samples were prepared by mixing 700 mg of the milk powder in one litre of water and treated by using an acidic buffer solution. The monopolar iron (Fe plate anodes and cathodes were employed as electrodes. Direct current was varied in a range of between 0.5 and 1.1 A, and flowrate in a range of between 1.00 to 3.50 mL/s. One permanent magnets namely AlNiCo with a magnetic strength of 0.16T was used in this experiment. The results show that the magnetic field and the flowrate have major influences on suspended solids removal. The efficiency removals of suspended solids, turbidity and COD removal efficiencies at optimum conditions were found to be more than 85%, 95%, and 75%, respectively.

  7. Ameliorating soil acidity and physical properties of two contrasting texture Ultisols with wastewater sludge biochar. (United States)

    Zong, Yutong; Wang, Yefeng; Sheng, Ye; Wu, Chengfeng; Lu, Shenggao


    The production of biochar is a safe and beneficial disposal way for wastewater sludge. The biochar produced from wastewater sludge can be used as soil amendments for improving soil properties and for increasing crop yield. This work investigated the influences of wastewater sludge biochar (WSB) on the pH, exchangeable acidity, and physical properties of strongly acidic Ultisols with contrasting texture (clayey soil and sandy loam). Two soils were mixed with WSB at the rate of 0, 10, 20, and 40 g biochar kg-1 soil and incubated for 240 days at 75% field water capacity. Incubation experimental results indicated that WSB significantly increased soil pH and exchangeable Ca2+ and Mg2+ contents, and decreased soil exchangeable H+ and Al3+, compared with the control. The application of WSB enhanced the formation of 5-2-mm macroaggregate, and decreased the content of aggregate stability of soils, determined by mean weight diameter (MWD) of aggregate. WSB increased the field water capacity and available water content (AWC) of sandy loam while WSB was not found to increase significantly water-holding capacity and AWC of clayey soil. WSB significantly reduced plastic index and tensile strength (TS) of clayey soil and did not alter the TS of sandy loam. Overall results suggest that WSB is a suitable amendment for strongly acidic Ultisols with poor physical properties. However, the soil texture affected greatly the improvement effect of WSB on poor physical properties in soils.

  8. Modelling shortcut nitrogen removal from wastewater using an algal-bacterial consortium. (United States)

    Arashiro, Larissa T; Rada-Ariza, Angelica M; Wang, Meng; van der Steen, Peter; Ergas, Sarina J


    A shortcut nitrogen removal process was investigated for treatment of high ammonium strength wastewater using an algal-bacterial consortium in photo-sequencing batch reactors (PSBRs). In this process, algae provide oxygen for nitritation during the light period, while denitritation takes place during the dark (anoxic) period, reducing overall energy and chemical requirements. Two PSBRs were operated at different solids retention times (SRTs) and fed with a high ammonium concentration wastewater (264 mg NH4+-N L-1), with a '12 hour on, 12 hour off' light cycle, and an average surface light intensity of 84 μmol m-2 s-1. High total inorganic nitrogen removal efficiencies (∼95%) and good biomass settleability (sludge volume index 53-58 mL g-1) were observed in both PSBRs. Higher biomass density was observed at higher SRT, resulting in greater light attenuation and less oxygen production. A mathematical model was developed to describe the algal-bacterial interactions, which was based on Activated Sludge Model No. 3, modified to include algal processes. Model predictions fit the experimental data well. This research also proposes an innovative holistic approach to water and energy recovery. Wastewater can be effectively treated in an anaerobic digester, generating energy from biogas, and later post-treated using an algal-bacterial PSBR, which produces biomass for additional biogas production by co-digestion.

  9. Wastewater use in agriculture and potential effects on meso and macrofauna soil

    Directory of Open Access Journals (Sweden)

    Dinéia Tessaro


    Full Text Available ABSTRACT: The use of wastewater in agriculture has been practiced on an increasing scale over the past decades because of its fertilizing potential and the reduction in demand for surface water and groundwater. However, this practice may bring harm when performed without planning, not respecting the capacity of the soil to recycle organic waste. The most common problems are contamination of surface and groundwater via leaching and runoff, as well as accumulation of nutrients and potentially polluting elements that compromise chemical, physical and biological characteristics of the soil. The biological compartment, represented by the micro, meso and macrofauna, plays an important role in nutrient cycling, decomposition of organic matter, particle movement and transport of materials at different depths, helping to maintain soil physical and chemical characteristics. In this sense, this paper aims to discuss the effect of using different kinds of wastewater in agriculture on soil biology, highlighting strengths and weaknesses, as well as emphasizing the need to conduct investigations that enhance the positive aspects of wastewater use associated with edaphic processes.

  10. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    Directory of Open Access Journals (Sweden)

    Benny Marie B. Ensano


    Full Text Available This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production.

  11. Growth and Phytoremediation Potential of Watercress Nasturtium officinale R. Br. in Ammonium-rich Wastewater

    Directory of Open Access Journals (Sweden)

    Saied Ali Musavi


    Full Text Available Phytoremediation is considered to be eco-friendly and efficient technology for the removal of pollutants present in wastewater. Nowadays the focus is to look for a sustainable approach in developing wastewater treatment capability in rapidly increasing. The main objective of this paper is to review the possibility of using watercress (Nasturtium officinale for the removal of ammonium ion present in high-strength industrial wastewater. It was found that there was no significant reduction of shoot height, root length and total biomass of watercress due to an increase in NH4+ concentrations. Statistical analysis indicates that the length of roots were significantly (P <0.05 increased at NH4+ rich waste water supply levels of 20-25% while compared to the control. The plants accumulated large amounts of ammonium ion or nitrogen in tissues under conditions of abundant supply. The removal efficiency of raw waste water was around 66 % for nitrogen, 23% for calcium,25 % for total hardness, 22% for biological oxygen demand and 38% of chemical oxygen demand. Nutrient removal efficiency was positively correlated with the initial nutrient supply. The results show that N.officinale grown in the fixed mat economic plant-based treatment system may be an effective, low-cost phytoremediation technology to treat water containing a higher concentration of ammonium.

  12. Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. (United States)

    Heidrich, E S; Dolfing, J; Scott, K; Edwards, S R; Jones, C; Curtis, T P


    Addressing the need to recover energy from the treatment of domestic wastewater, a 120-L microbial electrolysis cell was operated on site in Northern England, using raw domestic wastewater to produce virtually pure hydrogen gas (100 ± 6.4 %) for a period of over 3 months. The volumetric loading rate was 0.14 kg of chemical oxygen demand (COD) per cubic metre per day, just below the typical loading rates for activated sludge of 0.2-2 kg COD m(-3) day(-1), at an energetic cost of 2.3 kJ/g COD, which is below the values for activated sludge 2.5-7.2 kJ/g COD. The reactor produced an equivalent of 0.015 LH(2)L(-1) day(-1), and recovered around 70 % of the electrical energy input with a coulombic efficiency of 55 %. Although the reactor did not reach the breakeven point of 100 % electrical energy recovery and COD removal was limited, improved hydrogen capture and reactor design could increase the performance levels substantially. Importantly, for the first time, a 'proof of concept' has been made, showing that this technology is capable of energy capture as hydrogen gas from low strength domestic wastewaters at ambient temperatures.

  13. Biological removal of antiandrogenic activity in gray wastewater and coking wastewater by membrane reactor process. (United States)

    Ma, Dehua; Chen, Lujun; Liu, Cong; Bao, Chenjun; Liu, Rui


    A recombinant human androgen receptor yeast assay was applied to investigate the occurrence of antiandrogens as well as the mechanism for their removal during gray wastewater and coking wastewater treatment. The membrane reactor (MBR) system for gray wastewater treatment could remove 88.0% of antiandrogenic activity exerted by weakly polar extracts and 97.3% of that by moderately strong polar extracts, but only 32.5% of that contributed by strong polar extracts. Biodegradation by microorganisms in the MBR contributed to 95.9% of the total removal. After the treatment, the concentration of antiandrogenic activity in the effluent was still 1.05 μg flutamide equivalence (FEQ)/L, 36.2% of which was due to strong polar extracts. In the anaerobic reactor, anoxic reactor, and membrane reactor system for coking wastewater treatment, the antiandrogenic activity of raw coking wastewater was 78.6 mg FEQ/L, and the effluent of the treatment system had only 0.34 mg FEQ/L. The antiandrogenic activity mainly existed in the medium strong polar and strong polar extracts. Biodegradation by microorganisms contributed to at least 89.2% of the total antiandrogenic activity removal in the system. Biodegradation was the main removal mechanism of antiandrogenic activity in both the wastewater treatment systems. Copyright © 2015. Published by Elsevier B.V.

  14. Developing Anammox for mainstream municipal wastewater treatment

    NARCIS (Netherlands)

    Lotti, T.


    Conventional wastewater treatment plants (WWTPs), like activated sludge systems, are energy demanding requiring a large electrical energy supply (e.g. 25 kWh PE-1 year-1) which, especially during peak-load periods, may account for an important quote of the grid installed power of the surrounding

  15. Wastewater shores up food security | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)


    Oct 13, 2010 ... In homes and restaurants, fruits and vegetables can be soaked in an iodine, vinegar or lemon solution to reduce levels of bacteria and other pathogens. This is the last stage of a multi-barrier approach that seeks to protect consumers' health before food grown with wastewater reaches their plates.


    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin


    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  17. Constructed wetlands: A future alternative wastewater treatment ...

    African Journals Online (AJOL)

    Wastewater treatment will always pose problems if there are no new alternative technologies in place to replace the currently available technologies. More recently, it has been estimated that developing countries will run out of water by 2050. This is a course for concern not only to the communities but also a challenge to ...

  18. Understanding farmers' preferences for wastewater reuse ...

    African Journals Online (AJOL)

    Understanding farmers' preferences for wastewater reuse frameworks in agricultural irrigation: lessons from a choice experiment in the Western Cape, South Africa. Cecilia Saldías1*, Stijn Speelman1, Guido van Huylenbroeck1 and Nick Vink2. 1Department of Agricultural Economics, Ghent University, Coupure Links 653, ...


    Directory of Open Access Journals (Sweden)

    Suzana Elena BIRIS-DORHOI


    Full Text Available In the present study was used the alga Kelp sp. in wastewater collected from a household, in order to experiment its treatment capacities. Every measurement in this study was made using Spectoquant NOVA 60. The results show an decrease in the main parameters when low quantities of algae were used, but an increase when larger quantities were used.

  20. Towards practical implementation of bioelectrochemical wastewater treatment

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N.


    Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with

  1. Fertigation with domestic wastewater: Uses and implications

    African Journals Online (AJOL)

    Jose Geraldo


    May 18, 2016 ... soil that in long-term cause decreases in crop productivity. In addition, the quality of wastewater, the hydraulic conductivity of the soil, the organic matter content, soil drainage, the intervals between applications and the depth of the groundwater are also factors that determine soil salinity rate (WHO, 2004).

  2. Biodegradation of synthetic detergents in wastewater

    African Journals Online (AJOL)



    Mar 20, 2009 ... Sulfonated surfactants and related compounds: facets of their desulfonation by aerobic and anaerobic bacteria. Tenside. Surfactants Detergent 35: 52-56. Degremont (1991). Municipal wastewater, In: water treatment handbook. (6th Ed.) Degremont. Publ. Lavoisier Paris. Pp. 77-78. Di Corcia A, Samperi R, ...

  3. Catalytic thermal treatment of desizing wastewaters. (United States)

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri


    In the present study, catalytic thermal treatment (thermolysis) was investigated for the reduction of COD and color of the desizing wastewater under moderate temperature and atmospheric pressure conditions using various catalysts. The experimental runs were performed in a glass reactor equipped with a vertical condenser. The homogeneous copper sulfate catalyst was found to be the most active in comparison to other catalysts under similar operating conditions. A removal of about 71.6% chemical oxygen demand (COD) and 87.2% color of desizing wastewater was obtained with a catalyst concentration of 4 kg/m(3) at pH 4. The initial pH value of the wastewater showed a pronounced effect on the precipitation process. During the thermolysis, copper gets leached to the aqueous phase, the residue obtained after the treatment is rich in copper and it can be blended with organic manure for use in agricultural fields. The thermogravimetric analysis showed that the thermal oxidation of the solid residue obtained after thermolysis gets oxidized at a higher temperature range than that of the residue obtained from the desizing wastewater. The results lead to the conclusion that thermochemical precipitation is a very fast (instantaneous) process and would need a very small reactor vessel in comparison to other processes.

  4. The anaerobic treatment of sulfate containing wastewater

    NARCIS (Netherlands)

    Visser, A.


    In the anaerobic treatment of sulfate containing wastewater sulfate reducing bacteria (SRB) will compete with methanogenic- (MB) and acetogenic bacteria (AB) for the available substrates such as hydrogen, acetate, propionate and butyrate. The outcome of this competition will

  5. Parasitological Contamination of Wastewater Irrigated and Raw ...

    African Journals Online (AJOL)

    Occurrence of infective stages of intestinal parasites on wastewater-irrigated vegetables may pose public health hazards to farming communities in the study areas. Therefore, evaluation and surveillance of parasitological quality of vegetables is crucial in an attempt to control vegetable-transmitted parasitic infections.

  6. Assessing the sustainability of small wastewater systems

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Nielsen, Susanne Balslev; Elle, Morten


    The authors present a planning tool for comparing and assessing the sustainability of different wastewater systems. The core of the planning tool is an assessment method based on both technical and social elements. The point of departure is that no technique is inherently sustainable or ecological...

  7. Cytogenotoxicity screening of untreated hospital wastewaters using ...

    African Journals Online (AJOL)

    Cytological analysis of root tips after 48 hrs exposure to the different concentrations showed reduction in frequency of mitosis in the meristematic zones of the root tips. Various types of structural chromosomal aberrations and micronucleus were induced in the treated cells. The University Teaching Hospital wastewaters ...

  8. Anaerobic prefermentation and primary sedimentation of wastewater ...

    African Journals Online (AJOL)

    This research was carried out with the aim of evaluating the solubilisation and acidification capacity of fermenting organisms in suspension in a sequencing batch reactor (SBR), which had a volume of 1 800 ℓ. Using 8 h cycles with 340 min of anaerobic reaction time, the wastewater fed to the SBR presented an average of ...

  9. Cytogenotoxicity Screening of Untreated Hospital Wastewaters ...

    African Journals Online (AJOL)



    Sep 5, 2005 ... Environmental Biology Unit, Department of Animal and Environmental Biology,. Faculty of Science .... samples of wastewaters exiting the kitchen unit, ..... 731. BABATUNDE, BB; VINCENT-AKPU, IF; AIWERIOGHENE, ABED-NEGO OSAYANDE evaluated using the Allium test. Pollution. Research, 25 (2) 1-5.

  10. Denitrifying bioreactor clogging potential during wastewater treatment (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  11. Wastewater Treatment for Pollution Control | Nzabuheraheza ...

    African Journals Online (AJOL)

    Performance of a Dynamic Roughing Filter (DRF) coupled with a Horizontal Subsurface Flow Constructed Wetland (HSSFCW) in the treatment of a wastewater was studied in tropical conditions. The results show that in HSSFCW planted with Cyperus papyrus and Phragmites mauritianus in series, the removal rates of TDS, ...

  12. Emergency Planning for Municipal Wastewater Treatment Facilities. (United States)

    Lemon, R. A.; And Others

    This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

  13. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.


    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application.

  14. Water brief-WDM & wastewater reuse

    International Development Research Centre (IDRC) Digital Library (Canada)


    Water Demand Management (WDM) is a water management approach that aims to promote water- use efficient, equitable and ... freshwater, wastewater supply is cheap, reliable, and available to farmers on demand allowing them to grow crops they ... Tunisia, there exists 98 water treatment plants, around. 190 million m3 ...

  15. Wastewater characteristics from Greek wineries and distilleries. (United States)

    Vlyssides, A G; Barampouti, E M; Mai, S


    The present paper deals with the characterization of wastewater generated from Greek wineries and wine distilleries. The quantity and the quality of the wastewater of a distillery depends on the type of wine (white or red), on the processes followed for the production of wine as well as on the volume of the tanks that are used. The total production of wastewater from a winery is about 1.2 times greater than the production of wine with BOD5 1740 mg/l and 1970 mg/l for white and red wine respectively, while the corresponding prices for COD are 3112 mg/l and 3997 mg/l and for the total phenolic compounds 280 and 1440 mg/l respectively. From these results, it is expected that the biological treatment of wastewater from white wines will be more efficient than that from red wines. The characteristics from the waste (vinasses) from the distillation of wines and wine lees are also presented.

  16. Reclaiming Water from Wastewater using Forward Osmosis

    NARCIS (Netherlands)

    Lutchmiah, K.


    Water scarcity is a global issue and waste accumulation is a steadily growing one. The innovative Sewer Mining concept, described in this thesis, is an example of an integrated forward osmosis application which incorporates different technologies to attain one goal: water recovery from wastewater,

  17. Biohydrogen production from diary processing wastewater by ...

    African Journals Online (AJOL)

    Fermentative hydrogen production was studied in packed bed batch reactors to assess the influence of environmental factors over yield hydrogen production from dairy wastewater. Dried stems of Opuntia imbricata were used as substratum adding a pretreated mixed culture for biofilm formation. Experimental results ...

  18. Towards energy positive wastewater treatment plants. (United States)

    Gikas, Petros


    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  19. Characterization of Wastewaters obtained from Hatay Tanneries

    Directory of Open Access Journals (Sweden)

    Şana Sungur


    Full Text Available The leather tanning industry is one of the most significant pollutants in terms of both conventional and toxic parameters. On the other hand, leather industry has an important economic role both in Turkey and in the World. In this study, wastewater samples were taken from 15 different tanneries in the Hatay Region. Wastewaters obtained from liming process and chromium tanning process was analyzed. Sulfide, chromium (III, chromium (VI, oil and grease, total suspended solids (TSS, organic matters, biochemical oxygen demand (BOD, chemical oxygen demand (COD, pH and alkalinity were determined according to Turkish Standard Methods. The determined averages values belong to wastewaters obtained from liming process were as following: pH 11.71; COD 16821 mg L-1; BOD 4357 mg L-1; TSS 39023 mg L-1; oil and grease 364 mg L-1; S-2 concentration 802 mg L-1; alkalinity 2115 mg L-1. The determined averages values belong to wastewaters obtained from chromium tanning process were also as following: pH 4.23; COD 6740 mg L-1; BOD 377 mg L-1; Cr+3 concentrations 372 mg L-1; Cr+6 concentrations 127 mg L-1; TSS 14553 mg L-1; oil and grease 343 mg L-1. The results of all analyzes were higher than wastewater discharge standards. As a result, it’s necessary to use more effective treatments in order to reduce the negative impacts of leather tanning industry that affect environment, natural water resources and at last human health and welfare.

  20. Biokinetic study for SRC-I wastewater

    Energy Technology Data Exchange (ETDEWEB)


    Biooxidation is an important part of the overall wastewater treatment system for the proposed SRC-I Demonstration Plant in Newman, Kentucky. After the completion of a Baseline Design for the plant in April 1982, various refinements were evaluated. One of these was the inclusion of a process for phenol recovery from four sour-water streams. As part of this evaluation, an extensive laboratory treatability study was conducted on wastewaters both with and without this phenol recovery step. The purpose of the study was to compare the results of different treatment schemes on different wastewaters and did not include the development of the kinetic coefficients that govern the biooxidation process. Additional treatability testing documented herein, has been performed to establish the kinetic coefficients for biooxidation of the SRC-I wastewaters. This will provide a rational basis for any subsequent changes in design. The wastewater feed used in this study was process recycle water from the Fort Lewis, Washington, pilot plant. Prior to biooxidation, it was pretreated by solvent extraction for removal of phenolics and by steam stripping for removal of ammonia and hydrogen sulfide. Two, 2-stage bench scale bioreactors were operated for approximately eight months, during which time they were stabilized at various steady-state conditions. Kinetic coefficients were evaluated according to the Lawrence and McCarty model, based on BOD, COD, and TOC. Nitrification, oxygen utilization, and solids settling velocities were also studied. The results showed that BOD is a poor basis for the model mainly because almost all BOD/sub 5/ was removed at all steady-state conditions. Also, the model was more accurate for steady-state conditions of lower solids retention times. The bulk of both organic and ammonia reductions occurred in the first stage reactors.

  1. Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans. (United States)

    Nguyen, Thai Anh; Fu, Chun-Chieh; Juang, Ruey-Shin


    The ability of the bacterial strain Acidithiobacillus thiooxidans to remove sulfur blue 15 (SB15) dye from water samples was examined. This bacterium could not only oxidize sulfur compounds to sulfuric acid but also promote the attachment of the cells to the surface of sulfidic particles, therefore serving as an efficient biosorbent. The biosorption isotherms were better described by the Langmuir equation than by the Freundlich or Dubinin-Radushkevich equation. Also, the biosorption process followed the pseudo-second-order kinetics. At pH 8.3 and SB15 concentrations up to 2000 mg L(-1) in the biomass/mineral salt solution, the dye removal and decolorization were 87.5% and 91.4%, respectively, following the biosorption process. Biodegradation was proposed as a subsequent process for the remaining dye (250-350 mg L(-1)). A central composite design was used to analyze independent variables in the response surface methodology study. Under the optimal conditions (i.e., initial dye concentration of 300 mg L(-1), initial biomass concentration of 1.0 g L(-1), initial pH of 11.7, and yeast extract dose of 60 mg L(-1)), up to 50% of SB15 was removed after 4 days of biodegradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater. (United States)

    Liu, Xiaodong; Chen, Yan; Zhang, Xin; Jiang, Xinbai; Wu, Shijing; Shen, Jinyou; Sun, Xiuyun; Li, Jiansheng; Lu, Lude; Wang, Lianjun


    Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5-1 mm, sludge volume index of 25.6 ± 3.6 mL g(-1) and settling velocity of 37.2 ± 2.7 m h(-1), were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (Vmax) varied between 1164.5 mg L(-1) h(-1) and 1867.4 mg L(-1) h(-1). High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaodong; Chen, Yan [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Zhang, Xin [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Suzhou Institute of Architectural Design Co., Ltd, Suzhou 215021, Jiangsu Province (China); Jiang, Xinbai; Wu, Shijing [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Shen, Jinyou, E-mail: [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Sun, Xiuyun; Li, Jiansheng; Lu, Lude [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Wang, Lianjun, E-mail: [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China)


    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g{sup −1} and settling velocity of 37.2 ± 2.7 m h{sup −1}, were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (V{sub max}) varied between 1164.5 mg L{sup −1} h{sup −1} and 1867.4 mg L{sup −1} h{sup −1}. High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule.

  4. A Canonical Password Strength Measure


    Panferov, Eugene


    We notice that the "password security" discourse is missing the most fundamental notion of the "password strength" -- it was never properly defined. We propose a canonical definition of the "password strength", based on the assessment of the efficiency of a set of possible guessing attack. Unlike naive password strength assessments our metric takes into account the attacker's strategy, and we demonstrate the necessity of that feature. This paper does NOT advise you to include "at least three ...

  5. Commitee III.1 Ultimate Strength

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher


    This report addresses the subject of ductile collapse of ships and offshore structures and their components due to buckling and excessive yielding under overload conditions. Consideration is given to load-deflection predictions for components with fabrication imperfections and in-service damage a...... and to the ultimate strength and post-ultimate behaviour of structural systems in order to identify the reserve strength. The effect of uncertainties in the modelling on the strength predictions is highlighted in two design examples....

  6. Biohydrogen production from purified terephthalic acid (PTA) processing wastewater by anaerobic fermentation using mixed microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ge-Fu; Wu, Peng; Wei, Qun-Shan; Lin, Jian-yi; Liu, Hai-Ning [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Gao, Yan-Li [China University of Geosciences, Wuhan 430074 (China)


    Purified terephthalic acid (PTA) processing wastewater was evaluated as a fermentable substrate for hydrogen (H{sub 2}) production with simultaneous wastewater treatment by dark-fermentation process in a continuous stirred-tank reactor (CSTR) with selectively enriched acidogenic mixed consortia under continuous flow condition in this paper. The inoculated sludge used in the reactor was excess sludge taken from a second settling tank in a local wastewater treatment plant. Under the conditions of the inoculants not less than 6.3 gVSS/L, the organic loading rate (OLR) of 16 kgCOD/m{sup 3} d, hydraulic retention time (HRT) of 6 h and temperature of (35 {+-} 1) C, when the pH value, alkalinity and oxidation-reduction potential (ORP) of the effluent ranged from 4.2 to 4.4, 280 to 350 mg CaCO{sub 3}/L, and -220 to -250 mV respectively, soluble metabolites were predominated by acetate and ethanol, with smaller quantities of propionate, butyrate and valerate. Stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 70.31% to the total liquid products after 25 days operation. The H{sub 2} volume content was estimated to be 48-53% of the total biogas and the biogas was free of methane throughout the study. The average biomass concentration was estimated to be 10.82 gVSS/L, which favored H{sub 2} production efficiently. The rate of chemical oxygen demand (COD) removal reached at about 45% and a specific H{sub 2} production rate achieved 0.073 L/gMLVSS d in the study. This CSTR system showed a promising high-efficient bioprocess for H{sub 2} production from high-strength chemical wastewater. (author)

  7. Upflow anaerobic sludge blanket and aerated constructed wetlands for swine wastewater treatment: a pilot study. (United States)

    Masi, F; Rizzo, A; Martinuzzi, N; Wallace, S D; Van Oirschot, D; Salazzari, P; Meers, E; Bresciani, R


    Swine wastewater management is often affected by two main issues: a too high volume for optimal reuse as a fertilizer and a too high strength for an economically sustainable treatment by classical solutions. Hence, an innovative scheme has been tested to treat swine wastewater, combining a low cost anaerobic reactor, upflow anaerobic sludge blanket (UASB), with intensified constructed wetlands (aerated CWs) in a pilot scale experimental study. The swine wastewater described in this paper is produced by a swine production facility situated in North Italy. The scheme of the pilot plant consisted of: (i) canvas-based thickener; (ii) UASB; (iii) two intensified aerated vertical subsurface flow CWs in series; (iv) a horizontal flow subsurface CW. The influent wastewater quality has been defined for total suspended solids (TSS 25,025 ± 9,323 mg/l), organic carbon (chemical oxygen demand (COD) 29,350 ± 16,983 mg/l), total reduced nitrogen and ammonium (total Kjeldahl nitrogen (TKN) 1,783 ± 498 mg/l and N-NH4+ 735 ± 251 mg/l) and total phosphorus (1,285 ± 270 mg/l), with nitrates almost absent. The overall system has shown excellent performances in terms of TSS, COD, N-NH4+ and TKN removal efficiencies (99.9%, 99.6%, 99.5%, and 99.0%, respectively). Denitrification (N-NO3- effluent concentration equal to 614 ± 268 mg/l) did not meet the Italian quality standards for discharging in water bodies, mainly because the organic carbon was almost completely removed in the intensified CW beds.

  8. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. (United States)

    Dong, Yue; Qu, Youpeng; He, Weihua; Du, Yue; Liu, Jia; Han, Xiaoyu; Feng, Yujie


    A 90-liter stackable pilot microbial fuel cell was designed and proved to be capable for brewery wastewater treatment and simultaneous electricity harvested. The system was stacked by 5 easily-stackable modules, and operated in an energy self-sufficient manner for more than 6 months. Tests were conducted under two different influent strengths (diluted wastewater, stage 1; raw wastewater, stage 2). The COD, SS removal efficiencies were 84.7% and 81.7% at stage 1, 87.6% and 86.3% at stage 2. The system produced enough energy (0.056 kWh/m(3) at stage 1, 0.097 kWh/m(3) at stage 2) to power the pumping system (0.027 kWh/m(3) at both stages), net electrical energy of 0.021 kWh/m(3) and 0.034 kWh/m(3) were harvested. These results show that this pilot-scale system could be used to effectively treat real wastewater with zero energy input. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Airborne field strength monitoring (United States)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.


    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  10. Strength of Chemical Bonds (United States)

    Christian, Jerry D.


    Students are not generally made aware of the extraordinary magnitude of the strengths of chemical bonds in terms of the forces required to pull them apart. Molecular bonds are usually considered in terms of the energies required to break them, and we are not astonished at the values encountered. For example, the Cl2 bond energy, 57.00 kcal/mole, amounts to only 9.46 x 10(sup -20) cal/molecule, a very small amount of energy, indeed, and impossible to measure directly. However, the forces involved in realizing the energy when breaking the bond operate over a very small distance, only 2.94 A, and, thus, f(sub ave) approx. equals De/(r - r(sub e)) must be very large. The forces involved in dissociating the molecule are discussed in the following. In consideration of average forces, the molecule shall be assumed arbitrarily to be dissociated when the atoms are far enough separated so that the potential, relative to that of the infinitely separated atoms, is reduced by 99.5% from the potential of the molecule at the equilibrium bond length (r(sub e)) for Cl2 of 1.988 A this occurs at 4.928 A.

  11. Cancer Prevention: Distinguishing Strength of Evidence from Strength of Opinion (United States)

    Barnett S. Kramer, MD, MPH, Associate Director for Disease Prevention and Director of the Office of Medical Applications of Research in the Office of Disease Prevention, Office of the Director, National Institutes of Health, Bethesda, MD, presented "Cancer Prevention: Distinguishing Strength of Evidence from Strength of Opinion".

  12. [Source identification of toxic wastewaters in a petrochemical industrial park]. (United States)

    Yang, Qian; Yu, Yin; Zhou, Yue-Xi; Chen, Xue-Min; Fu, Xiao-Yong; Wang, Miao


    Petrochemical wastewaters have toxic impacts on the microorganisms in biotreatment processes, which are prone to cause deterioration of effluent quality of the wastewater treatment plants. In this study, the inhibition effects of activated sludge's oxygen consumption were tested to evaluate the toxicity of production wastewaters in a petrochemical industrial park. The evaluation covered the wastewaters from not only different production units in the park, but also different production nodes in each unit. No direct correlation was observed between the toxicity effects and the organic contents, suggesting that the toxic properties of the effluents could not be predicted by the organic contents. In view of the variation of activated sludge sensitivity among different tests, the toxicity data were standardized according to the concentration-effect relationships of the standard toxic substance 3, 5-dichlorophenol on each day, in order to improve the comparability among the toxicity data. Furthermore, the Quality Emission Load (QEL) of corresponding standard toxic substance was calculated by multiplying the corresponding 3, 5-dichlorophenol concentration and the wastewater flow quantity, to indicate the toxicity emission contribution of each wastewater to the wastewater treatment plant. According to the rank list of the toxicity contribution of wastewater from different units and nodes, the sources of toxic wastewater in the petrochemical industrial park were clearly identified. This study provides effective guidance for source control of wastewater toxicity in the large industrial park.

  13. Integrated constructed wetland systems: design, operation, and performance of low-cost decentralized wastewater treatment systems. (United States)

    Behrends, L L; Bailey, E; Jansen, P; Houke, L; Smith, S


    Several different types of constructed wetland systems are being used as decentralized treatment systems including surface-flow, subsurface-flow, vertical-flow, and hybrid systems. Archetypical wetland systems have design strengths and weaknesses, and therefore it should be possible to design combined (integrated) systems to optimize a number of important treatment processes. This study provides comparative efficacy data for two integrated wetland treatment systems (IWTS) designed to enhance treatment of medium strength wastewater generated from a pilot-scale intensive fish farm. Results from the twenty eight months study included consistently high removal of COD (84% +) and ammonia nitrogen (93%) in both systems. Initially, phosphorus removal was also high (>90%) in both systems, but removal efficacy declined significantly over time. Nitrate removal was significantly better in the system that provided sequential aerobic and anoxic environments. Short hydraulic retention times coupled with sustained removal of COD and ammonia indicate that the ReCip components could be a least-cost wastewater treatment technology in the decentralized market sector.

  14. A novel, integrated treatment system for coal wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.Y.; Srinivasan, K.R.


    This is the first quarterly report of the above project. The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the inorganics present in coal conversion wastewaters. The initial phase of the work has been focused on the development of modified clays for use in the selective removal and recovery of heavy metals such as Cd, Cu, chromate and selenate. The results presented here show that a surfactant-modified clay adsorbs Cd strongly at a pH of 8.5 and poorly at pH 4.0. Further, the adsorption of Cd on modified clay is unaffected by the ionic strength of the medium. In the case of Cu, it has been shown that the metal forms a complex with alkyl diamines in aqueous solutions at a pH of 6.0 and does not bind to these surfactants at a lower pH of 3.0. These findings are a preliminary indication that the surface and solution chemistry of amine surfactants can be gainfully modified to adsorb and desorb cationic heavy metals.

  15. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant (United States)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.


    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  16. Efficient centrifugal recovery of Bacillus thuringiensis biopesticides from fermented wastewater and wastewater sludge. (United States)

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y


    Studies were conducted on harvesting of Bacillus thuringiensis (Bt)-based biopesticides from fermented broths of starch industry wastewater (SIW), wastewater sludge (raw and hydrolyzed-NH and TH, respectively) and semi-synthetic soyameal to enhance entomotoxicity (Tx) by centrifugation. Pertinent factors influencing Tx, solids concentration, pH, temperature and centrifugal force were investigated. The centrifugate solids concentration beyond 100 g/l did not enhance Tx, instead caused pellet formation. Centrifugation efficiency (Tx recovery) was higher at pH 4, and temperature 20 degrees C for starch wastewater (98%), wastewater sludge (98% and 97.8% for non-hydrolyzed and hydrolyzed, respectively) and soya broth (83%). For maximum Tx recovery (SIW-95%; NH-90%; TH-98% and soya-78%), the centrifugal force and time required was 48,000 g and 30 min, respectively. Losses in recovery efficiency were lower for SIW and wastewater sludge in comparison to soya on adopting commercially recommended centrifugal force of 9000 g. The settling velocity computations for different fermented broths enabled calculation of Sigma factor for continuous commercial centrifuge of a given capacity and hence simulation of power requirements. It was established that power requirements for a given Tx recovery efficiency were highest for conventional medium (soya) in comparison to other waste-based fermented broths.

  17. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective. (United States)

    Larsen, Tove A


    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Strength Training for Young Athletes. (United States)

    Kraemer, William J.; Fleck, Steven J.

    This guide is designed to serve as a resource for developing strength training programs for children. Chapter 1 uses research findings to explain why strength training is appropriate for children. Chapter 2 explains some of the important physiological concepts involved in children's growth and development as they apply to developing strength…

  19. Loading Conditions and Longitudinal Strength

    DEFF Research Database (Denmark)

    Sørensen, Herman


    Methods for the calculation of the lightweight of the ship.Loading conditions satisfying draught, trim and intact stability requirements and analysis of the corresponding stillwater longitudinal strength.......Methods for the calculation of the lightweight of the ship.Loading conditions satisfying draught, trim and intact stability requirements and analysis of the corresponding stillwater longitudinal strength....

  20. Phase strength and super lattices

    Indian Academy of Sciences (India)


    Abstract. Powder XRD investigations on dotriacontane-decane and dotriacontane-decanol mixtures are made. Phase strength, phase separation and formation of superlattices are discussed. The role of tunnel-like defects is considered. Keywords. Hydrocarbons; mixtures; phase strength; tunnel-like defects; super lattices. 1.

  1. Phycoremediation of Wastewater: Heavy Metal and Nutrient Removal Processes

    Directory of Open Access Journals (Sweden)

    Kwarciak-Kozłowska Anna


    Full Text Available Phycoremediation is the use of algae for the removal or biotrans-formation of pollutants from wastewater. The study is a novel at-tempt to integrate nutrient (N and P removal and some heavy met-als (iron, manganese and zinc bioaccumulation from municipal wastewater using two microalgae species: Chlorella vulgaris and Scenedesmus armatus. The Chlorella vulgaris showed higher re-moval of total nitrogen (TN both in influent and effluent waste water than Scenedesmus armatus. Nevertheless, more than 51% of total phosphorus (TP in effluent and 36% in influent wastewaters were removed by Scenedesmus armatus. More efficient microalga in heavy metal removal in influent wastewater was Scenedesmus armatus. The results showed that Chlorella vulgaris was appropriate for TN removal and bioaccumulation of heavy metals from effluent wastewater. Nevertheless, Scenedesmus armatus was highly pref-erable for heavy metals removal from influent wastewater.


    Directory of Open Access Journals (Sweden)

    G. N. Nikovskaya


    Full Text Available Analysis of information on air-conditioning contaminated with heavy metals sludge municipal wastewater points to the actual ecological and chemical problem and its solution could be implemented within the framework of the biological process involving heterotrophic microorganisms. Information on the spread, toxicity, biochemistry, microbiology, colloidal and chemical properties of sludge sediments of municipal wastewater biological treatment is given in the review. These sediments contain vitamins, amino acids, organic matter, heavy metals (micro- and macroelements. Therefore the most rational approach to sludge wastes utilization is their use as an agricultural fertilizer after partial removal of heavy metals. Hence, the interaction of sludge components with heavy metals, modern methods of their removing from biocolloidal systems and biotechnologies of conversion of sludge wastes into fertilizer based on the enhancing of vital ability of sludge biocenoses are discussed.

  3. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt


    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  4. Forward Osmosis in Wastewater Treatment Processes. (United States)

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini; Hélix-Nielsen, Claus; Petrinic, Irena


    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.

  5. Coupling of Algal Biofuel Production with Wastewater (United States)

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma


    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  6. Biodegradation of Sewage Wastewater Using Autochthonous Bacteria

    Directory of Open Access Journals (Sweden)

    Purnima Dhall


    Full Text Available The performance of isolated designed consortia comprising Bacillus pumilus, Brevibacterium sp, and Pseudomonas aeruginosa for the treatment of sewage wastewater in terms of reduction in COD (chemical oxygen demand, BOD (biochemical oxygen demand MLSS (mixed liquor suspended solids, and TSS (total suspended solids was studied. Different parameters were optimized (inoculum size, agitation, and temperature to achieve effective results in less period of time. The results obtained indicated that consortium in the ratio of 1 : 2 (effluent : biomass at 200 rpm, 35°C is capable of effectively reducing the pollutional load of the sewage wastewaters, in terms of COD, BOD, TSS, and MLSS within the desired discharge limits, that is, 32 mg/L, 8 mg/L, 162 mg/L, and 190 mg/L. The use of such specific consortia can overcome the inefficiencies of the conventional biological treatment facilities currently operational in sewage treatment plants.

  7. Sustainability assessment of advanced wastewater treatment technologies

    DEFF Research Database (Denmark)

    Høibye, Linda; Clauson-Kaas, Jes; Wenzel, Henrik


    As a consequence of the EU Water Framework Directive more focus is now on discharges of hazardous substances from wastewater treatment plants and sewers. Thus, many municipalities in Denmark may have to adopt to future advanced treatment technologies. This paper describes a holistic assessment...... of sustainability, sand filtration is the most advantageous method based on the technical and environmental assessment due to the low energy consumption and high efficiency with regards to removal of heavy metals. Key words | advanced wastewater treatment, life cycle assessment, MBR, ozone treatment, sand......, which includes technical, economical and environmental aspects. The technical and economical assessment is performed on 5 advanced treatment technologies: sand filtration, ozone treatment, UV exclusively for disinfection of pathogenic microorganisms, membrane bioreactor (MBR) and UV in combination...


    Directory of Open Access Journals (Sweden)

    Ionela Ramona SURDU


    Full Text Available Water-resource management key issues include the re-use of wastewater for drinkingwater supply or for industrial or agriculture purposes. In this context, the organic contaminants effects in sewage water entering theenvironment have gained more attention. The studies carried out for these contaminants varied widely, as a function of the substances: pesticides, pharmaceuticalsand diagnostic contrast products, personal care products,antibiotics and so on. Most of the wastewater treatment plants (WWTPs are not really designed totreat these type of compounds and an important part of emerging compounds may enter the aquatic environment via sewage effluents.This study gives an overview of the research concerning the technological steps that must be achieved in WWTP’s, in order to reduce at maximum theoccurrence oforganic substances in effluents.

  9. Coupling of algal biofuel production with wastewater. (United States)

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma


    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  10. Irrigation of treated wastewater in Braunschweig, Germany

    DEFF Research Database (Denmark)

    Ternes, T.A.; Bonerz, M.; Herrmann, N.


    In this study the fate of pharmaceuticals and personal care products which are irrigated on arable land with treated municipal waste-water was investigated. In Braunschweig, Germany, wastewater has been irrigated continuously for more than 45 years. In the winter time only the effluent...... of the sewage treatment plant (STP) of Braunschweig is used for irrigation, while during summer digested sludge is mixed with the effluent. In the present case study six wells and four lysimeters located in one of the irrigated agricultural fields were monitored with regard to the occurrence of 52...... pharmaceuticals and two personal care products (PPCPs; e.g. betablockers, antibiotics, antiphlogistics, carbamazepine, musk fragrances, iodinated contrast media (ICM) and estrogens). No differences in PPCP pollution of the groundwater were found due to irrigation of STP effluents with and without addition...


    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich


    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  12. Strength properties of fly ash based controlled low strength materials. (United States)

    Türkel, S


    Controlled low strength material (CLSM) is a flowable mixture that can be used as a backfill material in place of compacted soils. Flowable fill requires no tamping or compaction to achieve its strength and typically has a load carrying capacity much higher than compacted soils, but it can still be excavated easily. The selection of CLSM type should be based on technical and economical considerations for specific applications. In this study, a mixture of high volume fly ash (FA), crushed limestone powder (filler) and a low percentage of pozzolana cement have been tried in different compositions. The amount of pozzolana cement was kept constant for all mixes as, 5% of fly ash weight. The amount of mixing water was chosen in order to provide optimum pumpability by determining the spreading ratio of CLSM mixtures using flow table method. The shear strength of the material is a measure of the materials ability to support imposed stresses on the material. The shear strength properties of CLSM mixtures have been investigated by a series of laboratory tests. The direct shear test procedure was applied for determining the strength parameters Phi (angle of shearing resistance) and C(h) (cohesion intercept) of the material. The test results indicated that CLSM mixtures have superior shear strength properties compared to compacted soils. Shear strength, cohesion intercept and angle of shearing resistance values of CLSM mixtures exceeded conventional soil materials' similar properties at 7 days. These parameters proved that CLSM mixtures are suitable materials for backfill applications.

  13. Shale gas wastewater management under uncertainty. (United States)

    Zhang, Xiaodong; Sun, Alexander Y; Duncan, Ian J


    This work presents an optimization framework for evaluating different wastewater treatment/disposal options for water management during hydraulic fracturing (HF) operations. This framework takes into account both cost-effectiveness and system uncertainty. HF has enabled rapid development of shale gas resources. However, wastewater management has been one of the most contentious and widely publicized issues in shale gas production. The flowback and produced water (known as FP water) generated by HF may pose a serious risk to the surrounding environment and public health because this wastewater usually contains many toxic chemicals and high levels of total dissolved solids (TDS). Various treatment/disposal options are available for FP water management, such as underground injection, hazardous wastewater treatment plants, and/or reuse. In order to cost-effectively plan FP water management practices, including allocating FP water to different options and planning treatment facility capacity expansion, an optimization model named UO-FPW is developed in this study. The UO-FPW model can handle the uncertain information expressed in the form of fuzzy membership functions and probability density functions in the modeling parameters. The UO-FPW model is applied to a representative hypothetical case study to demonstrate its applicability in practice. The modeling results reflect the tradeoffs between economic objective (i.e., minimizing total-system cost) and system reliability (i.e., risk of violating fuzzy and/or random constraints, and meeting FP water treatment/disposal requirements). Using the developed optimization model, decision makers can make and adjust appropriate FP water management strategies through refining the values of feasibility degrees for fuzzy constraints and the probability levels for random constraints if the solutions are not satisfactory. The optimization model can be easily integrated into decision support systems for shale oil/gas lifecycle

  14. Options for wastewater management in Harare, Zimbabwe


    Nhapi, I.


    The capital city of Zimbabwe, has adopted an urban water cycle that is geared towards high level service provision. Water supply and sewerage/sanitation coverage amounts to over 98%, which makes Harare with the highest coverage. The city's high volume of water abstraction from its main water resource, Chivero, however, can no longer be sustained. The lake has been seriously polluted by large volumes of (partially) treated effluents from wastewater treatment plants in Harare and the neighbouri...

  15. How do we treat our wastewater? (United States)

    Vandas, Stephen; White, Carmelita; Farrar, Frank


    Water used in homes, schools, businesses, and industries must be cleaned or treated before it can be used again or returned to the environment. No matter where you live, in an urban or rural setting, the water you use does not just disappear: it is piped to a treatment system. The treatment of wastewater is important to keeping our water clean. This poster depicts what happens to

  16. Photocatalytic Treatment of a Synthetic Wastewater (United States)

    Yerkinova, Azat; Balbayeva, Gaukhar; Inglezakis, Vassilis J.; Poulopoulos, Stavros G.


    This work aimed at investigating the photocatalytic treatment of a synthetic wastewater using UV light (254 nm, 6 W), TiO2 catalyst and H2O2 in a batch recycle annular photoreactor. The total volume of the solution was 250 mL while the irradiated volume in the annular photoreactor with 55.8 mL. Each experiment lasted 120 min and samples were sent for Total Carbon and HPLC analysis. The stock wastewater had initial total carbon 1118 mg L-1. The effect of the presence of phenol in the wastewater on total carbon (TC) removal was also studied. It was shown that the photocatalytic treatment was effective only when initial TC was decreased to 32 mg L-1, whereas the optimum TiO2 concentration was 0.5 g L-1, leading to a TC removal up to 56%. For the same initial carbon load, the optimum H2O2 concentration was found to be 67 mg L-1 resulting in 55% TC removal. Combining, however, TiO2 and H2O2 did not lead to better performance, as 51% TC removal was observed. In contrast, when initial carbon in the wastewater was partially substituted by phenol, the combination of catalyst and hydrogen peroxide was beneficial. Specifically, when 10 ppm of phenol were added keeping the same initial TC concentration, UV/TiO2 treatment resulted in 46% TC removal and 98% phenol conversion, whereas using additionally H2O2 led to 100% phenol conversion after 45 minutes and 81% TC removal.

  17. Advanced oxidation technologies : photocatalytic treatment of wastewater


    Chen, J.


    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocata...

  18. Treatment of slaughterhouse wastewater in an upflow anaerobic sludge blanket reactor: Sludge characteristics

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin


    Conclusion: Application of slaughterhouse wastewater as feed wastewater demonstrated that the slaughterhouse wastewater to be more effective in promoting the formation of anaerobic granules and granule size in UASB reactor.

  19. Membrane-based treatment for tanning wastewaters 


    Catarino, Justina; MENDONÇA, E.; Picado, Ana; Lança, Ana; Silva, Luís Manuel; Pinho, Maria


    Tanning wastewater was subjected to different unit operations to select the best treatment sequences. Textile membrane filtration (TMF), microfiltration (MF), and ultrafiltration (UF) were complemented by screening, flocculation or flotation operations. The general chemical characterization determined that the wastewater had a high organic load. The ecotoxicological study classified the wastewater as highly ecotoxic. The sequence of screening–TMF – UF was found to be the optimal treatment...

  20. Enhancing anaerobic treatment of wastewaters containing oleic acid


    Hwu, C.S.



    Lipids are one of the major organic pollutants in municipal and industrial wastewaters. Although domestic sewage typically contains about 40-100 mg/I lipids (Forster, 1992; Quéméneur and Marty, 1994), it is industrial wastewaters that are of greater concern when considering the higher lipid concentrations in the discharged effluents. Typical industries that generate lipids-containing wastewaters are dairy, edible oil and fat refinery, slaughte...

  1. Integrated control of the wastewater system – potentials and barriers

    DEFF Research Database (Denmark)

    Mollerup, Ane Loft; Grum, Morten; Muschalla, Dirk


    Applying integrated control to a sewer system and wastewater treatment plant often leads to additional benefits for both systems when compared to controlling them independently. However, barriers such as a lack of incentive for utilities to put this type of control in place mean that in practice...... integrated control of wastewater systems is rarely seen. Ane Loft Mollerup, Morten Grum, Dirk Muschalla, Edwin van Velzen, Peter Vanrolleghem, Peter Steen Mikkelsen and Gurkan Sin outline the benefits of integrated control of wastewater systems....

  2. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    P.-H. Rao


    Full Text Available Carboxymethyl cellulose (CMC is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD and salinity (>10 %, which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover valuable chemical compounds from wastewater (Fig. 1. Initial pH of CMC wastewater was adjusted to different values (6.5, 8.5, 9.5, 10.5, 12.0 before distillation to study the effect of pH on by-products in wastewater. By-products obtained from CMC wastewater were extracted and characterized by NMR, XRD and TGA. Distillate obtained from distillation of wastewater was treated using biological method, i.e., upflow anaerobic sludge blanket (UASB-contact oxidation process. Domestic sewage and flushing water from manufacturing shop was added into distillate to decrease initial COD and increase nutrients such as N, P, K. Experimental results showed that by-products extracted from CMC wastewater mainly include ethoxyacetic acid and NaCl, which were confirmed by NMR and XRD (Fig. 2. TGA results of by-products indicated that the content of NaCl in inorganic by-products reached 96 %. Increasing initial pH value of CMC wastewater might significantly raise the purity of ethoxyacetic acid in organic by-products. UASB-contact oxidation process showed a good resistance to shock loading. Results of 45-day continuous operation revealed that CODCr of final effluent might be controlled below 500 mg l−1 and meet Shanghai Industrial Wastewater Discharge Standard (CODCr −1, which indicated that the treatment process in this study was appropriate to treat distillate of wastewater from CMC production industry.

  3. Chemical Compounds Recovery in Carboxymethyl Cellulose Wastewater Treatment


    P.-H. Rao; W.-Q. Zhang; W. Yao; A.-Y. Zhu; J.-L. Xia; Y.-F. Tan; T.-Z. Liu


    Carboxymethyl cellulose (CMC) is a kind of cellulose ether widely used in industrial production. CMC wastewater usually have high chemical oxygen demand (COD) and salinity (>10 %), which result from organic and inorganic by-products during CMC production. It is significant that the wastewater is pretreated to decrease salinity and recover valuable organics before biochemical methods are employed. In this paper, distillation-extraction method was used to pretreat CMC wastewater and recover val...

  4. Eco-efficiency assessment of dairy wastewater reuse


    Rygaard, Martin; Skrydstrup, Julie; Larsen, Sille Lyster


    The food processing industry is a major water user in many countries and, for example, in Denmark the food sector’s water use amounts to 43% of the total industrial water use. The large water consumption is related to an equally important wastewater production. Besides being costly, both water supply and wastewater management can limit the production capacity of an industrial facility, when local water resources are under stress or wastewater treatment capacity is limited. In such situations,...

  5. Treatment of Wastewater from Backwashing Process Sand Filters

    Directory of Open Access Journals (Sweden)

    Miletić, S.


    Full Text Available In the process of raw water treatment for use in the petrochemical industry, one of the most important treatments is the filtration process with process sand filters. A by-product of the filtration process of raw water is wastewater. The wastewater results from the technological process of backwashing process sand filters. Wastewater from backwashing sand filters is unsuitable for further use, since it is contaminated with residual suspended matter and chemical compounds that are added in the process of raw water clarification. To reduce the environmental impact of such wastewater and improve overall system processing of raw water, this paper presents the technological treatment of wastewater from backwashing process sand filters. The selected technological process with subsequent sedimentation of suspended matter from the wastewater enables it to be returned into the process stream. This paper also presents a wastewater treatment system, which consists of a concrete sedimentation tank, pumps, pipelines, and flocculator for the final acceptance of the wastewater. The treatment system of wastewater from backwashing process sand filters includes the wastewater from backwashing sand filters for the filtration of the clarified water after clarification of the raw water, sand filters for the filtration of the cooling water and sand filters for filtration of clarified water prior to ion decarbonatisation. The overall technological process is efficiently sized and fully automated. The treatment of wastewater from backwashing process sand filters allows the successful and continuous return of the water in a volume flow, Q, from 80 m3h-1 to 85 m3 h-1, with no negative impact on the clarification of raw water. The constructed technological solution resulted in 12-percent less use of raw water from the Pakra accumulation lake, as well as 50-percent less discharge of the wastewater into natural watercourses.

  6. Wastewater Treatment in Kathmandu : Management, Treatment and Alternative


    Regmi, Shakil


    Main aim of this thesis was to understand the wastewater situation in Kathmandu, Nepal and its impact in natural water stream, how it is managed and treated. After understanding the scenario of wastewater treatment in Kathmandu, a suitable alternative wastewater treatment system is recommended for future use. Technical as well as managerial problem exists in Kathmandu, thus from my experience in Mikkeli, Finland I came up with the model that is handled by the municipality itself because skill...





    The objective of this study was to investigate the main quality indicators of wastewater in a dairy factory located in Mureş County, with a water treatment plant built recently. The wastewater samples were tested for extractable matter, total suspended matter, fixed residue, biological oxygen demand, chemical oxygen demand, total suspended solids and pH values. The results indicated that pollution levels of wastewater samples tested were found high. This means that the method of treatment doe...

  8. Solar photocatalytic treatment of synthetic municipal wastewater. (United States)

    Kositzi, M; Poulios, I; Malato, S; Caceres, J; Campos, A


    The photocatalytic organic content reduction of a selected synthetic municipal wastewater by the use of heterogeneous and homogeneous photocatalytic methods under solar irradiation has been studied at a pilot-plant scale at the Plataforma Solar de Almeria. In the case of heterogeneous photocatalysis the effect of catalysts and oxidants concentration on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 kJL(-1) the synergetic effect of 0.2 gL(-1)TiO(2) P-25 with hydrogen peroxide (H(2)O(2)) and Na(2)S(2)O(8) leads to a 55% and 73% reduction of the initial organic carbon content, respectively. The photo-fenton process appears to be more efficient for this type of wastewater in comparison to the TiO(2)/oxidant system. An accumulation energy of 20 kJL(-1) leads to 80% reduction of the organic content. The presence of oxalate in the Fe(3+)/H(2)O(2) system leads to an additional improvement of the photocatalytic efficiency.

  9. Electrochemical treatment of olive oil mill wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Longhi, P.; Fiori, G [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry; Vodopivec, B. [Milan Univ. Bicocca, Milan (Italy). Dept. of Biotechnologies and Biosciences


    The possibility of oxidizing at a PbO{sub 2} anode the phenols and polyphenols, present in the olive oil mill wastewater, has been studied as a pre-treatment for the submission of such wastewater to the traditional biological treatments. The results obtained operating at current densities ranging 500 to 2000 A/m{sup 2} show that it is possible to reduce the concentration of the phenolic components, which interfere with the biological treatments, down to low values without decreasing too much the total organic content of the wastewater. [Italian] E' stata studiata la possibilita' di ossidare anodicamente i componenti fenolici delle acque reflue di frantoio, quale pretrattamento delle stesse prima del loro invio ai processi di trattamento biologico. I risultati ottenuti impiegando PbO{sub 2} quale materiale anodico e operando con densita' di corrente comprese tra 500 e 2000 A/m{sup 2} mostrano come sia possibile eliminare, o almeno diminuire sino a concentrazioni accettabili, dalle acque di frantoio i fenoli e i polifenoli, che interferiscono con i normali trattamenti biologici, senza diminuire eccessivamente il carico organico totale.

  10. Nitrous oxide emissions from wastewater treatment processes (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo


    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  11. Coagulation in Treatment of Swine Slaughterhouse Wastewater

    Directory of Open Access Journals (Sweden)

    Ha Bui Manh


    Full Text Available In this study, wastewater taken from the Nam Phong swine slaughterhouse, Ho Chi Minh City, was used to evaluate the treatment efficiency of common coagulants, including Alum (Aluminum Sulfate - Al2(SO43.18H2O, Poly-Aluminum Chloride (PAC, and Ferrous Sulfate (FeSO4.7H2O, using a jar-test system. The experiments were conducted using the one-factor-at-a-time method to examine three variables which are pH, stirring speed, and coagulant dosage. The results showed that both Alum and PAC perform over 90% removal of colour, turbidity, COD, and total phosphorus (TP from slaughterhouse wastewater at pH 7 with a stirring speed of 75 revolutions per minute (RPM and average coagulant dosages of 450 mg/L for Alum and 550 mg/L for PAC. Meanwhile, under the appropriate conditions of pH equal to 10 and 75 RPM with a chemical dosage of 350 mg/L, COD and TP removal efficiencies by Ferrous Sulfate exceed 87%, but those of turbidity and colour only reach 25%. This finding could be a promising coagulation method as a pre-treatment for the swine slaughterhouse wastewater.

  12. Cheese whey wastewater: characterization and treatment. (United States)

    Carvalho, Fátima; Prazeres, Ana R; Rivas, Javier


    Cheese whey wastewater (CWW) is a strong organic and saline effluent whose characterization and treatment have not been sufficiently addressed. CWW composition is highly variable due to raw milk used, the fraction of non valorized cheese whey and the amount of cleaning water used. Cheese whey wastewater generation is roughly four times the volume of processed milk. This research tries to conduct an exhaustive compilation of CWW characterization and a comparative study between the different features of CWW, cheese whey (CW), second cheese whey (SCW) and dairy industry effluents. Different CWW existing treatments have also been critically analyzed. The advantages and drawbacks in aerobic/anaerobic processes have been evaluated. The benefits of physicochemical pre-stages (i.e. precipitation, coagulation-flocculation) in biological aerobic systems are assessed. Pre-treatments based on coagulation or basic precipitation might allow the application of aerobic biodegradation treatments with no dilution requirements. Chemical precipitation with lime or NaOH produces a clean wastewater and a sludge rich in organic matter, N and P. Their use in agriculture may lead to the implementation of Zero discharge systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Novel Solar Photocatalytic Reactor for Wastewater Treatment (United States)

    Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M.


    A new solar photocatalytic reactor (photoreactor) using TiO2 nanoparticles coated onto plastic granules has been designed. Catalyst granules are placed into the cavity of a reactor panel made of glass. A pump is used to circulate wastewater in the photoreactor. Methylene blue (MB) dissolved in water was chosen as the wastewater model. The performance of the photoreactor was evaluated based on changes in MB concentration with respect to time. The photoreactor showed a good performance by degrading 10 L of MB solution up to 96.54% after 48 h of solar irradiation. The photoreactor was scaled up by enlarging the panel area to twice its original size. The increase in the surface area of the reactor panel and therefore of the mass of catalyst granules and reactor volume led to a three-fold increase of the photodegradation rate. In addition, the MB degradation kinetics were also studied. Data analysis confirmed the applicability of the pseudo-first-order Langmuir-Hinshelwood model. The proposed photoreactor has great potential for use in large-scale wastewater treatment.

  14. Inhibitory effect of cyanide on wastewater nitrification ... (United States)

    The effect of CN- (CN-) on nitrification was examined with samples from nitrifying wastewater enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to cyanide for a period of 12 h. The concentrations of CN- used in the batch assays were 0.03, 0.06, 0.1 and 1.0 mg/L. There was considerable decrease in SOUR with increasing dosages of CN-. A decrease of more than 50% in nitrification activity was observed at 0.1 mg/L CN-. Based on the RT-qPCR data, there was notable reduction in the transcript levels of amoA and hao for increasing CN- dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. The inhibitory effect of cyanide may be attributed to the affinity of cyanide to bind ferric heme proteins, which disrupt protein structure and function. The correspondence between the relative expression of functional genes and SOUR shown in this study demonstrates the efficacy of RNA based function-specific assays for better understanding of the effect of toxic compounds on nitrification activity in wastewater. Nitrification is the first step of nitrogen removal is wastewater, and it is susceptible to inhibition by many industrial chemical. We looked at

  15. Swine wastewater treatment by media filtration. (United States)

    Szögi, A A; Humenik, F J; Rice, J M; Hunt, P G


    A media filter was constructed to treat swine wastewater after anaerobic lagoon treatment. The media filter consisted of a tank (1.5-m-diameter x 0.6-m-height) filled with marl gravel. The marl gravel had a carbonate content of 300 g kg-1. Gravel particle size distributions were 85 and 14% in the 4.7- to 12.7-mm and 12.7- to 19-mm size classes, respectively. Pore space of the filtration unit was 57%. Wastewater flow rate was 606 L m-2 d-1, and total Kjeldahl nitrogen (TKN) load was 198 g m-2 d-1. The media filter removed 54% of chemical oxygen demand (COD) content after one cycle, but increased cycling did not produce additional COD reduction. Total suspended solids (TSS) removal after one cycle was 50% of initial levels, and additional cycling reduced TSS levels at a much lower rate of 7% per cycle. Removal efficiencies for total phosphorus (TP) ranged from 37% to 52% (one to four cycles), but long-term phosphorus removal would be limited by the sorption capacity of the gravel. Up to 24% of TKN was converted to nitrate-plus-nitrite-N (NO3+NO2-N). Effluents with high NO3+NO2-N levels can be treated further for denitrification with constructed wetlands or anaerobic lagoon. This is important in cases where land is limited for wastewater application.

  16. Hybrid constructed wetlands for wastewater treatment: a worldwide review

    National Research Council Canada - National Science Library

    Sayadi, M.H; Kargar, R; Doosti, M.R; Salehi, H


    .... This study aimed to assess the potentiality of hybrid constructed wetlands for treating of landfill leachate, river polluted water, domestic, industrial, hospital, runoff and agricultural wastewater...


    National Research Council Canada - National Science Library



    The removal of heavy metals from our environment especially wastewater is now shifting from the use of conventional removal method such as chemical precipitation, coagulation and membrane filtration...

  18. The flocculants applied in the oil refining plant wastewater treatment (United States)

    Chesnokova, M. G.; Shalay, V. V.; Kriga, A. S.; Shaporenko, A. P.


    Flocculation methods for the oil refinery wastewater treatment are necessary, effective and economic, and are used, as a rule, for the demulsification of petroleum products from wastewater. In addition, flocculants can be used to remove other pollutants, not only oil products. The research purpose was to analyze the separate indicators level, measured on the oil refinery wastewater treatment facilities. Oil refinery wastewater purification rate was studied, indicating a different level of indicators considered. An influence of cationic and anionic flocculants working efficiency showed that the flocculants allows to increase the flotation technological indicators and to increase the solids content in water.

  19. Resilience Mitigation Financing for Water and Wastewater Utilities Webinar (United States)

    The Resilience Mitigation Financing for Water and Wastewater Utilities webinar focuses on tools and financing resources to conduct resilience planning and to mitigate impacts before a disaster strikes.

  20. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment (United States)

    Zhou, Ruipeng; Yang, Yuanming


    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  1. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.......4 g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C...

  2. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence (United States)

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  3. Anaerobic Digestion of Wastewater: Effects of Inoculants and Nutrient Management on Biomethane Production and Treatment


    Peterson, Jason


    Due to population expiation and the increased awareness of the impact on the environment by wastewater treatment, improved wastewater treatment systems are needed to treat municipal and agricultural wastewater. Treating wastewater with oxygen decreases carbon compounds at the expense of energy to move carbon and oxygen to be in contact with each other. Anaerobic digestion of wastewater can reduce the cost by utilizing microbes to treat high amounts of carbon in wastewater without the need for...

  4. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant

    Directory of Open Access Journals (Sweden)

    Dipti Prakash Mohapatra


    Full Text Available The identification and quantification of bisphenol A (BPA in wastewater (WW and wastewater sludge (WWS is of major interest to assess the endocrine activity of treated effluent discharged into the environment. BPA is manufactured in high quantities fro its use in adhesives, powder paints, thermal paper and paper coatings among others. Due to the daily use of these products, high concentration of BPA was observed in WW and WWS. BPA was measured in samples from Urban Community of Quebec wastewater treatment plant located in Quebec (Canada using LC-MS/MS method. The results showed that BPA was present in significant quantities (0.07 μg L–1 to 1.68 μg L–1 in wastewater and 0.104 μg g–1 to 0.312 μg g–1 in wastewater sludge in the wastewater treatment plant (WWTP. The treatment plant is efficient (76 % in removal of pollutant from process stream, however, environmentally significant concentrations of 0.41 μg L–1 were still present in the treated effluent. Rheological study established the partitioning of BPA within the treatment plant. This serves as the base to judge the portion of the process stream requiring more treatment for degradation of BPA and also in selection of different treatment methods. Higher BPA concentration was observed in primary and secondary sludge solids (0.36 and 0.24 μg g–1, respectively as compared to their liquid counterpart (0.27 and 0.15 μg L–1, respectively separated by centrifugation. Thus, BPA was present in significant concentrations in the WWTP and mostly partitioned in the solid fraction of sludge (Partition coefficient (Kd for primary, secondary and mixed sludge was 0.013, 0.015 and 0.012, respectively.

  5. Modelling of Activated Sludge Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kurtanjeka, Ž.


    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  6. Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation. (United States)

    Shin, Young Ho; Lee, Hong-shik; Lee, Young-Ho; Kim, Jaehoon; Kim, Jae-Duck; Lee, Youn-Woo


    A new supercritical water oxidation process for the simultaneous treatment of mixed wastewater containing wastewater from acrylonitrile manufacturing processes and copper-plating processes was investigated using a continuous tubular reactor system. Experiments were carried out at temperatures ranging from 400 to 600 degrees C and a pressure of 25 MPa. The residence time was fixed at 2s by changing the flow rates of feeds, depending on reaction temperature. The initial total organic carbon (TOC) concentration of the wastewaters and the O(2) concentration at the reactor inlet were kept constant at 0.49 and 0.74 mol/L. It was confirmed that the copper-plating wastewater accelerated the TOC conversion of acrylonitrile wastewater from 17.6% to 67.3% at a temperature of 450 degrees C. Moreover, copper and copper oxide nanoparticles were generated in the process of supercritical water oxidation (SCWO) of mixed wastewater. 99.8% of copper in mixed wastewater was recovered as solid copper and copper oxides at a temperature of 600 degrees C, with their average sizes ranging from 150 to 160 nm. Our study showed that SCWO provides a synergetic effect for simultaneous treatment of acrylonitrile and copper-plating wastewater. During the reaction, the oxidation rate of acrylonitrile wastewater was enhanced due to the in situ formation of nano-catalysts of copper and/or copper oxides, while the exothermic decomposition of acrylonitrile wastewater supplied enough heat for the recovery of solid copper and copper oxides from copper-plating wastewater. The synergetic effect of wastewater treatment by the newly proposed SCWO process leads to full TOC conversion, color removal, detoxification, and odor elimination, as well as full recovery of copper.

  7. Prediction of Torsional Strength for Very High Early Strength Geopolymer

    Directory of Open Access Journals (Sweden)

    Woraphot PRACHASAREE


    Full Text Available Very early high strength geopolymers are gaining acceptance as alternative repair materials for highways and other infrastructure. In this study, a very rapid geopolymer binder based on Metakaolin (MK and Parawood ash (PWA, developed by the authors, was experimentally tested and a prediction model for its torsional strength is proposed. The geopolymer samples were subjected to uniaxial compression, flexural beam, and torsion tests. The modulus of rupture and torsional strength in terms of compression strength were found to be well approximated by 0.7(f’c1/2 and 1/7(x2y (f’c1/2, respectively. Also an interaction relation to describe combined bending and torsion was developed in this study. In addition, the effects of aspect ratio (y/x were studied on both torsional strength and combined bending and torsion. It was found that an aspect ratio of y/x = 3 significantly reduced the torsional resistance, to about 50 % of the torsional strength of a square section.DOI:

  8. Electricity generation from swine wastewater using microbial fuel cells. (United States)

    Min, Booki; Kim, Jungrae; Oh, Sangeun; Regan, John M; Logan, Bruce E


    Microbial fuel cells (MFCs) represent a new method for treating animal wastewaters and simultaneously producing electricity. Preliminary tests using a two-chambered MFC with an aqueous cathode indicated that electricity could be generated from swine wastewater containing 8320 +/- 190 mg/L of soluble chemical oxygen demand (SCOD) (maximum power density of 45 mW/m2). More extensive tests with a single-chambered air cathode MFC produced a maximum power density with the animal wastewater of 261 mW/m2 (200 omega resistor), which was 79% larger than that previously obtained with the same system using domestic wastewater (146 +/- 8 mW/m2) due to the higher concentration of organic matter in the swine wastewater. Power generation as a function of substrate concentration was modeled according to saturation kinetics, with a maximum power density of P(max) = 225 mW/m2 (fixed 1000 omega resistor) and half-saturation concentration of K(s) = 1512 mg/L (total COD). Ammonia was removed from 198 +/- 1 to 34 +/- 1 mg/L (83% removal). In order to try to increase power output and overall treatment efficiency, diluted (1:10) wastewater was sonicated and autoclaved. This pretreated wastewater generated 16% more power after treatment (110 +/- 4 mW/m2) than before treatment (96 +/- 4 mW/m2). SCOD removal was increased from 88% to 92% by stirring diluted wastewater, although power output slightly decreased. These results demonstrate that animal wastewaters such as this swine wastewater can be used for power generation in MFCs while at the same time achieving wastewater treatment.

  9. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. (United States)

    Martín, J; Camacho-Muñoz, D; Santos, J L; Aparicio, I; Alonso, E


    The occurrence of sixteen pharmaceutically active compounds in influent and effluent wastewater and in primary, secondary and digested sludge in one-year period has been evaluated. Solid-water partition coefficients (Kd) were calculated to evaluate the efficiency of removal of these compounds from wastewater by sorption onto sludge. The ecotoxicological risk to aquatic and terrestrial ecosystems, due to wastewater discharges to the receiving streams and to the application of digested sludge as fertilizer onto soils, was also evaluated. Twelve of the pharmaceuticals were detected in wastewater at mean concentrations from 0.1 to 32 μg/L. All the compounds found in wastewater were also found in sewage sludge, except diclofenac, at mean concentrations from 8.1 to 2206 μg/kg dm. Ibuprofen, salicylic acid, gemfibrozil and caffeine were the compounds at the highest concentrations. LogKd values were between 1.17 (naproxen) and 3.48 (carbamazepine). The highest ecotoxicological risk in effluent wastewater and digested sludge is due to ibuprofen (risk quotient (RQ): 3.2 and 4.4, respectively), 17α-ethinylestradiol (RQ: 12 and 22, respectively) and 17β-estradiol (RQ: 12 and 359, respectively). Ecotoxicological risk after wastewater discharge and sludge disposal is limited to the presence of 17β-estradiol in digested-sludge amended soil (RQ: 2.7). Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Strength training and shoulder proprioception

    National Research Council Canada - National Science Library

    Salles, José Inácio; Velasques, Bruna; Cossich, Victor; Nicoliche, Eduardo; Ribeiro, Pedro; Amaral, Marcus Vinicius; Motta, Geraldo


    .... To evaluate the result of an 8-week strength-training program on shoulder JPS and to verify whether using training intensities that are the same or divergent for the shoulder's dynamic-stabilizer...

  11. Muscle Strength and Poststroke Hemiplegia

    DEFF Research Database (Denmark)

    Kristensen, Otto H; Stenager, Egon; Dalgas, Ulrik


    OBJECTIVES: To systematically review (1) psychometric properties of criterion isokinetic dynamometry testing of muscle strength in persons with poststroke hemiplegia (PPSH); and (2) literature that compares muscle strength in patients poststroke with that in healthy controls assessed by criterion...... isokinetic dynamometry. DATA SOURCES: A systematic literature search of 7 databases was performed. STUDY SELECTION: Included studies (1) enrolled participants with definite poststroke hemiplegia according to defined criteria; (2) assessed muscle strength or power by criterion isokinetic dynamometry; (3) had...... undergone peer review; and (4) were available in English or Danish. DATA EXTRACTION: The psychometric properties of isokinetic dynamometry were reviewed with respect to reliability, validity, and responsiveness. Furthermore, comparisons of strength between paretic, nonparetic, and comparable healthy muscles...

  12. Strengths, weaknesses, opportunities and threats

    DEFF Research Database (Denmark)

    Bull, Joseph William; Jobstvogt, N.; Böhnke-Henrichs, A.


    The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake. Such an assess......The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake....... Such an assessment could form the basis for improving ES thinking, further embedding it into environmental decisions and management.The Young Ecosystem Services Specialists (YESS) completed a Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis of ES through YESS member surveys. Strengths include the approach...

  13. Particle Strength of Bayer Hydrate (United States)

    Anjier, J. L.; Marten, D. F. G.

    Because of the proposed use of fluid bed calciners at the Kaiser Aluminum Baton Rouge Works, studies into the strength of alumina and alumina trihydrate from eight different alumina plants were initiated. It was found in the course of these studies that the particle strength of Bayer hydrate depended on the precipitation process conditions under which it was produced. A series of laboratory precipitation tests was conducted to determine the effect on particle strength of process variables such as seed charge, temperature, caustic concentration and seed recycle. It is concluded from these studies that relative particle strength of alumina trihydrate, as measured by a modified Forsythe-Hertwig Apparatus, can be predicted from a knowledge of the precipitation process conditions.

  14. Relationship between the edgewise compression strength of ...

    African Journals Online (AJOL)

    The compression strength of a corrugated board box is a direct measure of its stacking strength. The edgewise compression strength of corrugated board is the major contributor to the box stacking strength. This relation can be further extended to the critical strength properties of paper substrates. It was, therefore, the aim of ...

  15. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater. (United States)

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio


    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed.

  16. Bioconversion of industrial wastewater and wastewater sludge into Bacillus thuringiensis based biopesticides in pilot fermentor. (United States)

    Yezza, A; Tyagi, R D; Valéro, J R; Surampalli, R Y


    Starch industry wastewater (SWW), slaughterhouse wastewater (SHWW) and secondary sludges from three different wastewater treatment plants (Jonquière--JQS, Communauté Urbaine de Québec--CUQS and Black lake-BLS) were used as raw materials for the production of Bacillus thuringiensis (Bt) based biopesticides in a pilot scale fermentor (100 L working volume). The slaughterhouse wastewater exhibited the lowest Bt growth and entomotoxcity (Tx) potential (measured against spruce budworm) due to low availability of carbon, nitrogen and other nutrients. Performance variation (growth, sporulation, proteolytic activity and Tx potential) within the three types of sludges was directly related to the availability of nitrogen and carbohydrates, which could change with sludge origin and methods employed for its generation. The Tx potential of Bt obtained in different secondary sludges (JQS: 12 x 10(9) SBU/L; CUQS: 13 x 10(9) SBU/L and BLS: 16 x 10(9) SBU/L) and SWW (18 x 10(9) SBU/L) was higher than the soybean based synthetic medium (10 x 10(9) SBU/L). The maximum protease activity was obtained in CUQ secondary sludge (4.1 IU/mL) due to its high complex protein concentration. Nevertheless, high carbohydrate concentration in SWW repressed enzyme production. The secondary sludges and SWW were found to be suitable raw materials for high potency Bt biopesticide production.

  17. Joint aerobic biodegradation of wastewater from table olive manufacturing industries and urban wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, F.J.; Beltran, F.J.; Alvarez, P.; Frades, J.; Gimeno, O. [Univ. de Extremadura, Badajoz (Spain). Dept. of Ingenieria Quimica y Energetica


    Wastewater generated in the elaboration of table olives has been treated using activated sludge from a municipal wastewater plant after adequate acclimation. To avoid bactericide properties of some chemical structures present in this type of effluents, synthetic urban wastewater has been used to dilute the original wastewater. The main parameters affecting efficiency of biological processes have been studied. Thus, initial biomass concentration, temperature up to 303 K (upper working temperature limit = 313 K) and initial substrate concentration exerted a positive influence on COD degradation rate. The optimum pH was found to be around 7, experiencing a slight inhibition on cell activity at pH 4. Under the experimental conditions investigated other parameters like polyphenol content, absorbance at 254 nm and total organic carbon were also reduced to some extent. Only nitrates amount was increased after the biological process took place.A kinetic model based on Monod equation was proposed and applied to experimental results. The maximum specific growth rate was calculated by means of the aforementioned kinetic model. The value of this parameter as a function of temperature was fitted to an Arrhenius expression, {mu}{sub max} = 9.43 x 10{sup 10} exp(72021/RT) h{sup -1} (R in J mol{sup -1} K{sup -1}283 K < T < 303 K, pH {approx} 7-10). (orig.)

  18. Regulating industrial wastewater discharged to public wastewater treatment plants - A conceptual approach

    DEFF Research Database (Denmark)

    Grüttner, Henrik


    The paper describes some of the basic principles behind the DEPA Guidelines for discharge of industrial wastewater to public sewers set in operation in 1995 and evaluates some of the experiences with the implementation. It is described how such guidelines support the approach of pollution...

  19. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Hema, E-mail: [TERI University, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi (India); Pandey, Suneel [Centre for Regulatory and Policy Research, The Energy and Resources Institute (TERI), India Habitat Centre, New Delhi (India)


    Highlights: Black-Right-Pointing-Pointer Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. Black-Right-Pointing-Pointer Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. Black-Right-Pointing-Pointer Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. Black-Right-Pointing-Pointer There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10-25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62-33.62 MPa) and block density (1222.17-1688.72 kg/m{sup 3}) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  20. Nitrification performance in a membrane bioreactor treating industrial wastewater. (United States)

    Dvořák, Lukáš; Svojitka, Jan; Wanner, Jiří; Wintgens, Thomas


    The influence of industrial (pharmaceutical and chemical) wastewater composition on membrane bioreactor (MBR) performance was investigated in a pilot-scale installation. The study focussed on nitrification performance, which was evaluated based on influent and effluent parameters as well as batch nitrification rate tests. The industrial wastewater was pumped into the MBR in a mixture with municipal wastewater at constant flow rate. The loading of the MBR with industrial wastewater was increased stepwise from 0 to 75% share in the mixed influent to study the adaptation of nitrifying bacteria. Stable nitrification performance was observed until the content of industrial wastewater in the influent reached 40%, with effluent values of around 0.56 mg L(-1) NH4-N and 98.3% ammonia removal. Breakdown of nitratation was observed at a 40% industrial wastewater dose and breakdown of nitritation at a 50% dose, respectively. However, after several months of adaptation, both processes recovered. No nitrification was observed when the industrial wastewater share exceeded 50%. Adaptation of nitrifying bacteria in the MBR was also confirmed by results of kinetic tests. The inhibition effect of the concentrated industrial wastewater to the MBR sludge decreased substantially after several months of exposure, while the inhibition of referential activated sludge remained constant. Copyright © 2013. Published by Elsevier Ltd.

  1. Treatment of Municipal Wastewater by Anaerobic Membrane Bioreactor Technology

    NARCIS (Netherlands)

    Ozgun, H.


    Reclamation and reuse of wastewater for various purposes such as landscape and agricultural irrigation are increasingly recognized as essential strategies in the world, especially for the areas suffering from water scarcity. Wastewater treatment and reuse have two major advantages including the

  2. Preliminary Assessment of the Nutrient Film Technique for Wastewater Treatment (United States)


    umre) Hydroponics Thin films Wastes (Sanitary engineering) \\Waslewater \\I MArWIASSACr a m evemww sb N nem y., d idenif, by block nm,6...) An experiment...1 Wastewater application rates...9 TABLES Table Page I. Wastewater application schedule and daily volumes .................................. 2 2

  3. Global approaches to urban wastewater use in irrigated agriculture ...

    International Development Research Centre (IDRC) Digital Library (Canada)


    Feb 8, 2011 ... Although a common and often ancient practice, the use of urban wastewater — often untreated or inadequately treated — in irrigated agriculture is receiving fresh attention because of the increasing scarcity of clean water resources and the growing volumes of urban wastewater in developing countries.

  4. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    NARCIS (Netherlands)

    Basim, Y.; Farzadkia, M.; Jaafarzadeh, N.; Hendrickx, T.L.G.


    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of

  5. Using natural zeolites to improve anaerobic abattoir wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Jimenez, L.; Herrera-Ramirez, E.; Carlos Hernandez, S


    Slaughterhouse wastewater have high concentrations of soluble and insoluble organics which represents environmental troubles, E. G. de oxygenation of rivers, underground water contamination. Anaerobic digestion is an efficient process for wastewater treatment. Performance are increased using microorganisms supported on porous solids. (Author)

  6. Industrial reuse and recycle of wastewaters: Literature review (United States)

    Matthews, J. E.


    The literature on reuse/recycle of wastewaters by industry is presented. The principal time period reviewed was 1967 to 1978. A total of 912 references are cited. The most prominant references for nine different industrial categories are cited. In addition, sections on industrial use of municipal wastewater, reclamation processes, and economics of water reuse/recycle are included.

  7. Optimization of the Ethanol Fermentation of Cassava Wastewater ...

    African Journals Online (AJOL)

    These gave a yield of 8.69 % v/v of ethanol in the broth within the range of the values of the factors that were investigated. Optimising cassava wastewater as the medium for ethanol production would improve the ethanol yield, and thereby reduce the cost of production. Keywords: Ethanol, cassava wastewater, optimization, ...

  8. Energy-saving wastewater treatment systems : formulation of cost functions


    Nogueira, R.; Ferreira, I.; Janknecht, P; Rodríguez, Juan José; de Oliveira, Pedro; A. G. Brito


    Natural interactions between water, soil, atmosphere, plants and microorganisms include physical, chemical and biological processes with decontaminating capacities. Natural or energy-saving wastewater treatment systems utilize these processes and thereby enable a sustainable management in the field of wastewater treatment, offering low investment and operation costs, little or no energy consumption, little and low-skill labor requirements, good landscape integration and excellent ...

  9. Enhancing anaerobic treatment of wastewaters containing oleic acid

    NARCIS (Netherlands)

    Hwu, C.S.



    Lipids are one of the major organic pollutants in municipal and industrial wastewaters. Although domestic sewage typically contains about 40-100 mg/I lipids (Forster, 1992; Quéméneur and Marty, 1994), it is industrial wastewaters that are of greater

  10. Molecular and biochemical diagnosis of Salmonella in wastewater ...

    African Journals Online (AJOL)

    This study aimed to employ biochemical and molecular assays to detect and diagnose Salmonella in wastewater. For this reason, two water samples were collected from Alexandria wastewater treatment plant (S1) and septic tank of a hospital at Alexandria governorate (S2). Selective culture media specific for Salmonella ...

  11. Effects of high salinity wastewater on methanogenic sludge bed systems

    NARCIS (Netherlands)

    Ismail, S.; Gonzalez-Contreras, P.A.; Jeison, D.A.; Lier, van J.B.


    The attainable loading potentials of anaerobic sludge bed systems are strongly dependent on the growth of granular biomass with a particular wastewater. Experiments were conducted to determine the effects of high salinity wastewater on the biological and physical properties of methanogenic sludge.

  12. assessment of dairy wastewater treatment and its potential for ...

    African Journals Online (AJOL)


    The extent of pollution of dairy wastewater treated in a septic tank and its potential for biogas production was investigated. ... effluent displaying higher values of organic matter than the allowed discharge limits according to the national standards. ..... consuming-bacteria in anaerobic digestion at the wastewater ponds (Wang ...

  13. Stabilisation of Biological Phosphorus Removal from Municipal Wastewater

    DEFF Research Database (Denmark)

    Krühne, Ulrich

    The biological phosphorus removal (BPR) from wastewater has developed considerably during the last decades and is applied in many present wastewater treatment plants (WWTP) all over the world. The process performance and the control of the BPR are under the influences of daily and seasonal...

  14. Bioelectrochemical systems for nitrogen removal and recovery from wastewater

    NARCIS (Netherlands)

    Rodriguez Arredondo, M.; Kuntke, P.; Jeremiasse, A.W.; Sleutels, T.H.J.A.; Buisman, C.J.N.; Heijne, ter A.


    Removal of nitrogen compounds from wastewater is essential to prevent pollution of receiving water bodies (i.e. eutrophication). Conventional nitrogen removal technologies are energy intensive, representing one of the major costs in wastewater treatment plants. For that reason, innovations in

  15. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.


    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  16. a review of the effects of wastewater on reinforced concrete

    African Journals Online (AJOL)


    This paper reviews the degradation mechanism of wastewater on reinforced concrete structures with a view to finding what needs to be done to salvage these structures. Potential disintegrating agents in wastewater generated in Nigeria were identified and common degradation effects were examined. Regeneration ...

  17. Parasitological Profile of Raw Wastewater and the Efficacy of ...

    African Journals Online (AJOL)


    ABSTRACT: The disposal of wastewater in water bodies has a negative impact in the environment and the health of people who use such water bodies for either irrigation or drinking purposes. In this study, we evaluated the parasitological profile of wastewater from the Ahmadu Bello University Teaching Hospital sewage ...

  18. Removal of faecal bacteria and nutrients from domestic wastewater ...

    African Journals Online (AJOL)

    LEKEUFACK Martin

    The aim of this study was to evaluate the removal of faecal bacteria and nutrients from domestic wastewater, in surface flow wetlands vegetated with Echinochloa pyramidalis. Horizontal surface flow. (HSF) wetlands were fed with primarily treated domestic wastewater at organic loading rates varying from 20.74 to 27.15 g ...

  19. Microbial content of abattoir wastewater and its contaminated soil in ...

    African Journals Online (AJOL)

    Microbial content of wastewater in two abattoirs and the impact on microbial population of receiving soil was studied in Agege and Ojo Local Government Areas in Lagos State, Nigeria. Wastewater samples were collected from each of the abattoirs over three months period and examined for microbial content. Soil samples ...

  20. Harmful effects of wastewater disposal into water bodies: a case ...

    African Journals Online (AJOL)

    Improper disposal of waste water and the problems of addressing challenges from wastewater discharge into water bodies have led to an increase in the rate of wastewater generation. Abattoir wastes, industrial wastes from breweries, agricultural runoffs, and waste water from car wash located close to the Ikpoba River ...

  1. Carbapenem-resistant bacteria in a secondary wastewater treatment ...

    African Journals Online (AJOL)

    Bacterial resistance to carbapenems is an emerging problem of this century. A carbapenem-resistant bacterial population (CRBP) grown at 42°C was monitored in the influent and effluent of a secondary municipal wastewater treatment plant over 10 months. The municipal wastewater consisted of domestic, industrial, ...

  2. Biological denitrification of fertiliser wastewater at high chloride ...

    African Journals Online (AJOL)

    Wastewater from the fertiliser industry is characterised by high chloride concentration, normally varying between 60 and 76 g/ℓ. Experiments with biological denitrification were performed in laboratory-scale \\'fill and draw\\' reactors with synthetic fertiliser wastewater, with chloride concentrations up to 96.7 g Cl/ℓ at 37oC; the ...

  3. Effects of ten years treated wastewater drip irrigation on soil ...

    African Journals Online (AJOL)

    Water shortage in most countries of the southern Mediterranean basin has led to the reuse of municipal wastewater for irrigation. Despite numerous advantages for soil fertility and crop productivity, recycling wastewater in the soil also has several ecotoxicological and sanitary problems. To evaluate the chronic soil ...

  4. Environmental and public health implications of wastewater quality

    African Journals Online (AJOL)



    Mar 28, 2011 ... The reuse of treated effluent (for agriculture and as supplement for drinking water needs) is currently receiving attention as a reliable water source. This paper is aimed at reviewing the environmental and health impacts of untreated or inadequately treated wastewater effluents. The quality of wastewater.

  5. Soil Contamination from Cassava Wastewater Discharges in a Rural ...

    African Journals Online (AJOL)

    Michael Horsfall

    transects for six months for the purposes of investigating the effects of cassava wastewater on the physico-chemical characteristics of soils around a cassava processing plant in a rural community in the Niger Delta. It was observed that the addition of cassava wastewater to the soil resulted to changes in the parameters.

  6. Wastewater treatment plants as a source of microbial pathogens in ...

    African Journals Online (AJOL)

    Wastewater treatment facilities have become sin quo non in ensuring the discharges of high quality wastewater effluents into receiving water bodies and consequence, a healthier environment. Due to massive worldwide increases in human population, water has been predicted to become one of the scarcest resources in ...

  7. Effects of ten years treated wastewater drip irrigation on soil ...

    African Journals Online (AJOL)


    Water shortage in most countries of the southern Mediterranean basin has led to the reuse of municipal wastewater for irrigation. Despite numerous advantages for soil fertility and crop productivity, recycling wastewater in the soil also has several ecotoxicological and sanitary problems. To evaluate the chronic.

  8. Environmental and public health implications of wastewater quality ...

    African Journals Online (AJOL)

    The reuse of treated effluent (for agriculture and as supplement for drinking water needs) is currently receiving attention as a reliable water source. This paper is aimed at reviewing the environmental and health impacts of untreated or inadequately treated wastewater effluents. The quality of wastewater effluents is ...

  9. Arthrospira (Spirulina) in tannery wastewaters. Part 2: Evaluation of ...

    African Journals Online (AJOL)

    Arthrospira (Spirulina) in tannery wastewaters. Part 2: Evaluation of tannery wastewater as production media for the mass culture of Arthrospira biomass. ... Heavy metal accumulation may present a toxicity hazard where biomass is targeted for use in animal feed rations. A heavy metals removal step was investigated ...

  10. Electrochemical removal of nitrite in simulated aquaculture wastewater

    African Journals Online (AJOL)



    Nov 21, 2011 ... literature on aquaculture wastewater (AW), studies is more replete as AW is contaminated with toxic sub- stances like nitrite and nitrate (Lin and Wu, 1996;. Virkutyte and Jegatheesan, 2009; Virkutyte et al., 2010). The hazardous and toxic nature of nitrite is a major concern. Nitrite results in the wastewater ...

  11. Toxicity of cassava wastewater effluents to African catfish: Clarias ...

    African Journals Online (AJOL)

    The relative lethal and sublethal toxicity of cassava wastewater effluents from a local food factory were investigated on Clarias gariepinus fingerlings using a renewable static bioassay. The physico-chemical characteristics of the cassava wastewater effluents showed a number of deviations from the standards of the Federal ...

  12. Sorption of Heavy Metal Ions from Mine Wastewater by Activated ...

    African Journals Online (AJOL)



    Dec 2, 2016 ... Buah, W. K. and Dankwah, J. R. (2016), “Sorption of Heavy Metals from Mine Wastewater by Activated. Carbons Prepared ... A study on sorption of heavy metal ions: Lead (Pb2+), Copper (Cu2+) and Cadmium (Cd2+) from mine wastewater by activated ... (Pb), having relatively high densities and are toxic.

  13. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)


    Aug 15, 2013 ... Treatment of dyeing wastewater including reactive dyes. (Reactive Red RB, Reactive Black B, ... Keywords: Rhizopus arrhizus, wastewater treatment, decolourisation, textile dye. INTRODUCTION. Dyeing effluents ... as bacteria, yeasts, algae and fungi, are able to remove differ- ent classes of dyes (Fu and ...


    Directory of Open Access Journals (Sweden)

    M. Majlesi Nasr, A. R. Yazdanbakhsh


    Full Text Available Nowadays, water resources shortage is one of the most important issues for environmental engineers and managers as well as its conservation due to population growth and ever-increasing water demands. Besides, hospital wastewater has the same quality as municipal wastewater, but may also potentially contain various hazardous components. In this paper, physical and chemical specifications of produced wastewater in hospitals of Iran were investigated experiments. Results were compared with the effluent parameters of wastewater standards of Iranian Department of the Environment. 70 governmental hospitals from different provinces of Iran were selected by purposive (non-random sampling method. For data analysis, SPSS and EXCEL softwares were applied. The findings of the study showed that 52% of the surveyed hospitals were not equipped and 48% were equipped with wastewater treatment systems. The mean of Biochemical Oxygen Demand, Chemical Oxygen Demand and Total Suspended Solids of the effluent of wastewater treatment systems were reported as 113, 188 and 99 mg/L respectively. Comparison of the indicators between effluents of wastewater treatment systems and the standards of Departments of the Environment, showed the inefficiency in these systems and it was concluded that despite the recent improvements in hospital wastewater treatment systems, they should be upgraded based on the remarks in this paper.

  15. Saline landfill leachate disposal in facultative lagoons for wastewater treatment. (United States)

    Orta de Velasquez, M T; Monje-Ramirez, I; Yañez Noguez, I


    This study was carried out to determine the effect of disposing of saline landfill leachates in a Facultative Lagoon Wastewater Treatment Plant (FLWTP). The FLWTP is near a landfill and presents two characteristics: a wastewater influent with low organic matter, and high lagoon salinity due to the soil characteristics. These characteristics made the FLWTP a viable candidate to evaluate the feasibility of adding landfill leachates to the wastewater influent. Different mixtures of leachate with raw wastewater using volumetric ratios of 4%, 6%, and 10% (v/v) were evaluated in facultative lagoon reactors (FLRs). A 10% concentration of leachates in raw wastewater increased BOD5 and COD in the influent from 45 to 110 mg L(-1) and from 219 to 711 mg L(-1), respectively. It was found that the increase in salinity given by the raw wastewater and leachate mixture did not inhibit algae diversity. The types of algae present were Microcystis sp., Merismopedia sp., Euglena sp., Scenedesmus sp., Chlorella, Diatomea and Anacystis sp. However, decreased algae densities were observed, as measured by the decrease in chlorophyll concentration. The results showed that a 100% leachate concentration combined with wastewater did not upset biological treatment in the FLRs. Mean removal efficiencies for BOD5 and COD were 75% and 35%, respectively, giving a final BOD5 lower than 25 mg L(-1). There was also a significant decrease in the leachate heavy metal content when diluted with raw wastewater as result of natural precipitation.

  16. Biological denitrification of fertiliser wastewater at high chloride ...

    African Journals Online (AJOL)



    Apr 2, 2004 ... Wastewater from the fertiliser industry is characterised by high chloride concentration, normally varying between 60 and 76 g/ l. Experiments with biological denitrification were performed in laboratory-scale 'fill and draw' reactors with synthetic fertiliser wastewater, with chloride concentrations up to 96.7 g ...

  17. Vulnerability of wastewater infrastructure of coastal cities to sea level ...

    African Journals Online (AJOL)

    This study investigates the vulnerability of the wastewater collection and disposal infrastructure (i.e. pipelines and manholes, pumping stations and wastewater treatment plants) to sea-level rise in eThekwini Municipality, South Africa. By using geographical information systems (GIS) and a multi-criteria analysis considering ...

  18. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.


    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated.

  19. 40 CFR 63.135 - Process wastewater provisions-containers. (United States)


    ...-containers. 63.135 Section 63.135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... wastewater provisions—containers. (a) For each container that receives, manages, or treats a Group 1... operate and maintain a cover on each container used to handle, transfer, or store a Group 1 wastewater...

  20. Wastewater and sludge management and research in Oman: An overview. (United States)

    Jaffar Abdul Khaliq, Suaad; Ahmed, Mushtaque; Al-Wardy, Malik; Al-Busaidi, Ahmed; Choudri, B S


    It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman. Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.

  1. Prediction of wastewater quality using amperometric bioelectronic tongues

    DEFF Research Database (Denmark)

    Czolkos, Ilja; Dock, Eva; Tonning, Erik


    Wastewater samples from a Swedish chemi-thermo-mechanical pulp (CTMP) mill collected at different purification stages in a wastewater treatment plant (WWTP) were analyzed with an amperometric enzyme-based biosensor array in a flow-injection system. In order to resolve the complex composition of t...

  2. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment (United States)

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  3. Membrane bioreactors for metal recovery from wastewater: A review

    African Journals Online (AJOL)



    Oct 4, 2004 ... mines and metal refiners. Classical methods of metal removal from wastewater. The recovery of metals from wastewater has a twofold advantage. Firstly, it minimises the contamination of the aquatic environment and secondly, recovering metals of value such as gold and platinum group metals (PGMs) ...

  4. Wastewater Use in Irrigated Agriculture : Confronting the Livelihood ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Wastewater Use in Irrigated Agriculture : Confronting the Livelihood and Environmental Realities. Couverture du livre Wastewater Use in Irrigated Agriculture: Confronting the Livelihood and Environmental Realities. Directeur(s) : Christopher Scott, Naser I. Faruqui et Liqa Raschid. Maison(s) d'édition : CABI, IWMI, CRDI.

  5. New trends in removing heavy metals from wastewater. (United States)

    Zhao, Meihua; Xu, Ying; Zhang, Chaosheng; Rong, Hongwei; Zeng, Guangming


    With the development of researches, the treatments of wastewater have reached a certain level. Whereas, heavy metals in wastewater cause special concern in recent times due to their recalcitrance and persistence in the environment. Therefore, it is important to get rid of the heavy metals in wastewater. The previous studies have provided many alternative processes in removing heavy metals from wastewater. This paper reviews the recent developments and various methods for the removal of heavy metals from wastewater. It also evaluates the advantages and limitations in application of these techniques. A particular focus is given to innovative removal processes including adsorption on abiological adsorbents, biosorption, and photocatalysis. Because these processes have leaded the new trends and attracted more and more researches in removing heavy metals from wastewater due to their high efficency, pluripotency and availability in a copious amount. In general, the applicability, characteristic of wastewater, cost-effectiveness, and plant simplicity are the key factors in selecting the most suitable method for the contaminated wastewater.

  6. Antibiotic resistance plasmids in wastewater treatment plants and ...

    African Journals Online (AJOL)

    Antibiotic resistance plasmids found in wastewater treatment plants (WWTPs) may represent a threat to public health if they are readily disseminated into the environment and ultimately into pathogenic bacteria. The wastewater environments provide an ideal ecosystem for development and evolution of antibiotic resistance ...

  7. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities. (United States)

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  8. Constructed wetlands for saline wastewater treatment: A review (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  9. Liquid manna? Treating urban wastewater for local gardening ...

    International Development Research Centre (IDRC) Digital Library (Canada)


    Feb 2, 2011 ... Reusing this large quantity of wastewater could help Senegal address its water supply problems, but the capacity of Dakar's water treatment systems has not kept pace with the city's growth. This means urban farmers are often watering crops with untreated wastewater which can carry disease, resulting in ...

  10. Qualitative monitoring of a treated wastewater reuse extensive ...

    African Journals Online (AJOL)

    During a five-month summer period, samples of tertiary treated wastewater flowing in an extensive distribution system composed of storage tanks and pipes, were collected at two-week intervals from 21 different sampling points, including the exit from the wastewater treatment plant (WWTP). The WWTP producing this ...

  11. The developments of anaerobic baffled reactor for wastewater ...

    African Journals Online (AJOL)

    With the increasing deterioration of world water resources, configuring a technical and economic viable wastewater treatment and recycle technology to satisfying the increasing complexity of wastewater and stringent environmental regulation has been a great challenge over the past decades. Developing reliable ...

  12. Genotoxic effects of industrial wastewater on Allium cepa L.

    African Journals Online (AJOL)



    May 4, 2009 ... and outgoing in central biological and chemical wastewater treatment plant in Manisa (Turkey) organized industrial ... It was determined that wastewater reduced the rate of the mitotic division of different concentrations and ..... insecticide cypermethrin on the root meristems of Allium cepa L. Turk. J. Biol.

  13. Heavy Metal Pollution of Vegetable Crops Irrigated with Wastewater ...

    African Journals Online (AJOL)


    exotic and traditional vegetables (samples = 240) irrigated with wastewater from some parts of Accra were studied. ... pesticides (McBride, 2003), as well as ...... Chemical speciation of heavy metals in sewage sludge and related matrices. In. Heavy Metals in Wastewater and Sludge. Treatment Process. (J. N. Lester, ed.), pp ...

  14. Optimal design of wastewater treatment plant using adaptive ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... This paper deals with the application of Adaptive Simulated Annealing (ASA) for the optimal design of the wastewater treatment plant. The plant ... In this work a successful attempt has been made to use the ASA for optimal design of wastewater treatment plant.

  15. Removal of faecal bacteria and nutrients from domestic wastewater ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate the removal of faecal bacteria and nutrients from domestic wastewater, in surface flow wetlands vegetated with Echinochloa pyramidalis. Horizontal surface flow (HSF) wetlands were fed with primarily treated domestic wastewater at organic loading rates varying from 20.74 to 27.15 g ...

  16. Effect of municipal wastewater with manure and fertilizer on yield ...

    African Journals Online (AJOL)

    The experiment was conducted in split plot design with three replications. The treatment were comprised of two ... Treatment of treated wastewater also had a significant influence on crude protein content, ash percentage and macro elements (N, P and K) contents in corn forage (P < 5%). But wastewater had no significant ...

  17. Phosphorus removal from wastewater by fly ash ceramsite in ...

    African Journals Online (AJOL)

    Fly ash ceramsite-assisted phosphorus (P) removal from wastewater was investigated in this paper. First, the basic physical and chemical properties of two types of fly ash ceramsites were outlined. The adsorption capacity of P in wastewater was then examined by static interval experiments, in which the influence of ...

  18. Phosphorus removal from aquaculture wastewater and latex by ...

    African Journals Online (AJOL)

    The treatments included raw municipal wastewater (RMW), treated municipal wastewater (TMW), and diluted fresh latex (DFL). The experiment was performed in the open air of Khorasgan University area for 18 days “without aeration” and 18 days “with aeration” after the period of “without aeration”. The results of the study ...

  19. Removal Of Heavy Metals From Industrial Wastewaters Using Local ...

    African Journals Online (AJOL)

    Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents from the wastewaters. The percentage removal of the metals from the ...

  20. Lifting strength in two-person teamwork. (United States)

    Lee, Tzu-Hsien


    This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.

  1. Crystallization techniques in wastewater treatment: An overview of applications. (United States)

    Lu, Haijiao; Wang, Jingkang; Wang, Ting; Wang, Na; Bao, Ying; Hao, Hongxun


    As a by-product of industrial or domestic activities, wastewater of different compositions has caused serious environmental problems all over the world. Facing the challenge of wastewater treatment, researchers have begun to make use of crystallization techniques in wastewater treatment. Crystallization techniques have many advantages, such as high efficiency, energy saving, low costs, less space occupation and so on. In recent decades, crystallization is considered as one of promising techniques for wastewater treatment, especially for desalination, water and salt recovery. It has been widely used in engineering applications all over the world. In this paper, various crystallization techniques in wastewater treatment are summarized, mainly including evaporation crystallization, cooling crystallization, reaction crystallization, drowning-out crystallization and membrane distillation crystallization. Overall, they are mainly used for desalination, water and salt recovery. Their applications, advantages and disadvantages were compared and discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Wastewater treatment of pulp and paper industry: a review. (United States)

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh


    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques.

  3. Applications of nanotechnology in wastewater treatment--a review. (United States)

    Bora, Tanujjal; Dutta, Joydeep


    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  4. Purging Wastewater – a Priority for Romania


    VOICU Ioana-Iulica; Antonescu, Eugenia


    Considering the global diminishing of water resources, treating and purging the waters represents a desideratum for all of us, as water quality is affected most of all by the spill of wastewater. Water is essential to life and the lack of it or drinking polluted water generates negative consequences for a person and his health. That is why EU lays emphasis on creating performing purging stations according to the latest quality standards. Of the 2,605 cities in Romania, only 505 are equipped w...

  5. Bacteria Provide Cleanup of Oil Spills, Wastewater (United States)


    Through Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center, Micro-Bac International Inc., of Round Rock, Texas, developed a phototrophic cell for water purification in space. Inside the cell: millions of photosynthetic bacteria. Micro-Bac proceeded to commercialize the bacterial formulation it developed for the SBIR project. The formulation is now used for the remediation of wastewater systems and waste from livestock farms and food manufacturers. Strains of the SBIR-derived bacteria also feature in microbial solutions that treat environmentally damaging oil spills, such as that resulting from the catastrophic 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico.

  6. Human tyrosinase inhibitor in rum distillate wastewater. (United States)

    Takara, Kensaku; Iwasaki, Hironori; Ujihara, Kunihiro; Wada, Koji


    An inhibitor of human tyrosinase activity in rum distillate wastewater was isolated and identified as (S)-(+)-imperanene (1). (S)-(+)-Imperanene significantly inhibited tyrosinase isolated from HMV-II cells (IC(50) 1.85 mM). Inhibition kinetics studies revealed that imperanene is a competitive inhibitor of tyrosinase when L-3,4-dihydroxyphenylalanine is used as the substrate. The inhibitory activities of 1, O-beta-D-glucopyranosyl imperanene (2) and O-beta-D-glucopyranosyl-3-methoxyl imperanene (3) were 1>2>3.


    Directory of Open Access Journals (Sweden)

    E.G. Morozov


    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  8. Aerobic degradation of olive mill wastewaters. (United States)

    Benitez, J; Beltran-Heredia, J; Torregrosa, J; Acero, J L; Cercas, V


    The degradation of olive mill wastewater by aerobic microorganisms has been investigated in a batch reactor, by conducting experiments where the initial concentration of organic matter, quantified by the chemical oxygen demand, and the initial biomass were varied. The evolution of the chemical oxygen demand, biomass and the total contents of phenolic and aromatic compounds were followed through each experiment. According to the Contois model, a kinetic expression for the substrate utilization rate is derived, and its biokinetic constants are evaluated. This final predicted equation agrees well with all the experimental data.


    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk


    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  10. Wastewater treatment in relation to marine disposal

    DEFF Research Database (Denmark)

    Harremoës, Poul


    , the water is not lost (non-consumptive uses); but it is heavily polluted. Water treatment can be interpreted as the means by which to purify the water from any degree of impurity to any degree of purity that fits the desired use. Marine discharge may violate quality required for use of the marine waters...... receiving the discharge. The EU has decided on regulation of wastewater treament by enforcing effluent standards. This is interpreted in relation to basic EU-principles and discussed with regard to an ethical framework of thinking. The conclusion is that basically different concepts are difficult...

  11. Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion

    DEFF Research Database (Denmark)

    Solon, Kimberly; Flores Alsina, Xavier; Mbamba, Christian Kazadi


    approach to consider chemical activities instead of molar concentrations. A speciation sub-routine based on a multi-dimensional Newton-Raphson (NR) iteration method is developed to address algebraic interdependencies. The model also includes ion pairs that play an important role in wastewater treatment....... The paper describes: 1) how the anaerobic digester performance is affected by physico-chemical corrections; 2) the effect on pH and the anaerobic digestion products (CO2, CH4 and H2); and, 3) how these variations are propagated from the sludge treatment to the water line. Results at high ionic strength...

  12. Effects of ion strength and ion pairing on (plant-wide) modelling of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Solon, Kimberly


    the effects that an improved physico-chemical description will have on the predicted effluent quality (EQI) and operational cost (OCI) indices. The acid-base equilibria implemented in the Anaerobic Digestion Model No.1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects...... for ionic strength via the Davies approach to consider chemical activities instead of molar concentrations. Also, a speciation sub-routine based on a multi-dimensional Newton-Raphson iteration method accounts for the formation of some of the ion pairs playing an important role in wastewater treatment...

  13. Satellite detection of wastewater diversion plumes in Southern California (United States)

    Gierach, Michelle M.; Holt, Benjamin; Trinh, Rebecca; Jack Pan, B.; Rains, Christine


    Multi-sensor satellite observations proved useful in detecting surfacing wastewater plumes during the 2006 Hyperion Treatment Plant (HTP) and 2012 Orange County Sanitation District (OCSD) wastewater diversion events in Southern California. Satellite sensors were capable of detecting biophysical signatures associated with the wastewater, compared to ambient ocean waters, enabling monitoring of environmental impacts over a greater spatial extent than in situ sampling alone. Thermal satellite sensors measured decreased sea surface temperatures (SSTs) associated with the surfacing plumes. Ocean color satellite sensors did not measure a distinguishable biological response in terms of chlorophyll-a (chl-a) concentrations during the short lived, three-day long, 2006 HTP diversion. A period of decreased chl-a concentration was observed during the three-week long 2012 OCSD diversion, likely in association with enhanced chlorination of the discharged wastewater that suppressed the phytoplankton response and/or significant uptake by heterotrophic bacteria. Synthetic aperture radar (SAR) satellite data were able to identify and track the 2006 HTP wastewater plume through changes in surface roughness related to the oily components of the treated surfacing wastewater. Overall, it was found that chl-a and SST values must have differences of at least 1 mg m-3 and 0.5 °C, respectively, in comparison with adjacent waters for wastewater plumes and their biophysical impact to be detectable from satellite. For a wastewater plume to be identifiable in SAR imagery, wind speeds must range between ∼3 and 8 m s-1. The findings of this study illustrate the benefit of utilizing multiple satellite sensors to monitor the rapidly changing environmental response to surfacing wastewater plumes, and can help inform future wastewater diversions in coastal areas.

  14. Heat recovery from wastewater systems; Waermerueckgewinnung aus Abwassersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, O.


    Wastewater contains large amounts of heat energy which can be recovered by means of a heat pump and a heat exchanger installed in the sewer system. Practical problems, which may arise and have been investigated in this research project, are the reduction of the heat transfer efficiency due to heat exchanger fouling and the reduction of the nitrification capacity of downstream wastewater treatment plants due to lower wastewater temperatures. A mathematical model was developed by which the decrease of the wastewater temperature in the treatment plant influent can be determined as a function of the amount of heat energy gathered from the wastewater in the sewer system. By this model the variation in time and space of the wastewater temperature in a sewer pipe is calculated for given hydraulics, geometry and environmental conditions. By analysis of data from a large wastewater treatment plant and simulations with a calibrated model, the effect of lowered influent temperatures on nitrification safety, total nitrogen removal efficiency and ammonium effluent concentrations could be quantified. A procedure is suggested by which the reserve nitrification capacity of an existing treatment plant and the increase of the ammonium effluent concentration resulting from a permanent decrease of the wastewater influent temperature can be estimated. By experiments with a pilot scale heat exchanger in a small wastewater channel, the significance of parameters known to have an effect on fouling was investigated and measures to reduce fouling were tested. The measures tested included controlled variation of the wastewater flow velocity (flushing), coatings and finish of the heat exchanger surface and obstacles mounted on the surface. The best results were obtained by regular short term increases of the flow velocity. By this measure, the efficiency of the fouled heat exchanger, which on the average was 60% of the efficiency of the clean heat exchanger, could repeatedly be raised to an

  15. Estimated discharge of treated wastewater in Florida, 1990 (United States)

    Marella, R.L.


    According to the Florida Department of Environ- mental Protection, 5,100 wastewater treatment systems were in operation during 1990. Of this total, 72 percent were domestic wastewater facilities and 28 percent were industrial waste- water facilities. The number of wastewater systems inventoried for 1990 was 1,062 (systems that treated and discharged more than 0.01 Mgal/d or had a plant capacity of greater than 0.04 Mgal/d. Based on this inventory, the estimated discharge of treated wastewater in Florida during 1990 totaled 1,638 million gallons per day. Approxi- mately 65 percent of this water was discharged to surface water during 1990 and the remaining 35 percent was discharged to ground water. Discharge to surface water includes effluent outfalls into the Atlantic Ocean (32 percent), while the re- maining (68 percent) is discharged into the Gulf of Mexico, bays, rivers, wetlands, and other surface water bodies throughout Florida. Discharge to ground-water includes treated effluent outfalls to land application systems (reuse systems and spray fields), drain fields, percolation ponds (51 percent), and to injection wells (49 percent). An estimated 322 million gallons per day of the treated domestic and industrial wastewater was reused during 1990. Discharge of treated domestic wastewater from the 994 systems inventoried in Florida during 1990 totaled 1,353 million gallons per day and served an estimated 8.58 million people (66 percent of the population of Florida in 1990). The remaining 34 percent of the popu- lation (4.36 million) are served by the 2,700 smaller domestic wastewater systems or have individual septic tanks. In 1990, there were 1.56 million septic tanks in Florida. Discharge of industrial wastewater was inventoried for 68 systems in 1990 and totaled 285 million gallons per day. Discharge of domestic wastewater in- creased more than 20 percent and industrial wastewater discharge increased 5 percent from 1985 to 1990. (USGS)

  16. Removal of heavy metals from electroplating wastewater by membrane

    Directory of Open Access Journals (Sweden)

    Galaya Srisuwan


    Full Text Available This research was to study the treatment of heavy metals in electroplating wastewater using membranes. Two selected membrane types, cellulose acetate microfiltration membrane with pore size 0.2 μm and polysulfone ultrafiltration membrane with MWCO of 30 kDa were used in this study. Synthetic and factory electroplating wastewater were used as the samples. The experiments were performed by chemical precipitating both synthetic and factory wastewater in the first step and membrane filtrating of supernatant at the pressure of 50, 100 and 200 kPa in the second step. The concentration of chromium, copper, nickel and zinc of treated water were compared with standard values given by the Ministry of Industry (MOI, Thailand. The experimental results showed that flux was highest at the pressure of 200 kPa and decreased as the pressure decreased. The rejection was highest at the pressure of 50 kPa and decreased as pressure increased. The results from synthetic wastewater were better than those from factory wastewater. Thecapability of heavy metal removal of microfiltration and ultrafiltration membrane was the same, but microfiltration gave more flux. The heavy metal removal efficiency of microfiltration of synthetic electroplating wastewater of four processes of chromium, copper, nickel and zinc electroplating , each was higher than that from factory wastewater but slightly lower than the removal efficiency obtained from composite synthetic wastewater. The removal efficiency of chromium, copper, nickel and zinc from composite synthetic wastewater was higher than those from composite factory wastewater for both microfiltration and ultrafiltration processes. The results from the study of membrane surface washing showed little flux increase after washing the membrane by stirring with a propeller at a distance of 2 mm above membrane surface at 400 rpm for 30 minutes.

  17. Textile wastewater reuse after additional treatment by Fenton's reagent. (United States)

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa


    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H2O2. Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H2O2 in treated wastewater. Results indicated Fenton's reagent, COD/[H2O2]/[Fe2+] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H2O2/UV tested in different conditions.

  18. Mechanically enhanced electrospun nanofibers for wastewater treatment (United States)

    Yalcinkaya, Fatma


    A novel high-performance polyamide 6, polyacrylonitrile and polyvinylidene fluoride nanofibers were fabricated using industrial production Nanospider equipment for liquid filtration as microfilters. The application of nanofibers has been hindered by their poor mechanical strength. This work developed a feasible approach to preparing mechanically strong nanofiber webs. The mechanical strength of the nanofibers was enhanced using special lamination technique on a supporting layer. Experimental results show that the mechanical strength of the nanofibers enhanced more than 5 times while high porosity and liquid permeability retain. The separation results indicate that nanofibers have a potential to be used in liquid filters.

  19. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology. (United States)

    Lu, Haifeng; Zhang, Guangming; Lu, Yufeng; Zhang, Yuanhui; Li, Baoming; Cao, Wei


    Starch wastewater is a type of nutrient-rich wastewater that contains numerous macromolecular polysaccharides. Using photosynthetic bacteria (PSB) to treat starch wastewater can reduce pollutants and enhance useful biomass production. However, PSB cannot directly degrade macromolecular polysaccharides, which weakens the starch degradation effect. Therefore, co-metabolism with primary substances was employed in PSB wastewater treatment to promote starch degradation. The results indicated that co-metabolism is a highly effective method in synthetic starch degradation by PSB. When malic acid was used as the optimal primary substrate, the chemical oxygen demand, total sugar, macromolecules removal and biomass yield were considerably higher than when primary substances were not used, respectively. Malic acid was the primary substrate that played a highly important role in starch degradation. It promoted the alpha-amylase activity to 46.8 U and the PSB activity, which induced the degradation of macromolecules. The products in the wastewater were ethanol, acetic acid and propionic acid. Ethanol was the primary product throughout the degradation process. The introduction of co-metabolism with malic acid to treat wastewater can accelerate macromolecules degradation and bioresource production and weaken the acidification effect. This method provides another pathway for bioresource recovery from wastewater. This approach is a sustainable and environmentally friendly wastewater treatment technology.

  20. Occurrence and fate of illicit drugs and pharmaceuticals in wastewater from two wastewater treatment plants in Costa Rica

    NARCIS (Netherlands)

    Causanilles, A.; Ruepert, C.; Ibáñez, M.; Emke, E.; Hernández, F.; de Voogt, P.


    Chemical analysis of raw wastewater in order to assess the presence of biological markers entering a wastewater treatment plant can provide objective information about the health and lifestyle of the population connected to the sewer system. This work was performed in a tropical country of Central