WorldWideScience

Sample records for streams problems solutions

  1. Reactor cavity streaming: the problem and engineered solutions

    International Nuclear Information System (INIS)

    Iotti, R.C.; Yang, T.L.; Rogers, W.H.

    1979-01-01

    Experience at operating pressurized water reactors has revealed that air gaps between the reactor vessel and the biological shield wall can provide paths for radiation streaming, which may prohibitively limit the accessibility required to areas in the containment during power operation, increase personnel exposure during shutdown, and cause radiation damage to equipment and cables located above the vessel. Several concepts of shield are discussed together with their predicted effectiveness. The analytical methods employed to determine the streaming magnitude and the shield effectiveness are also discussed and their accuracy is measured by comparison with actual measurement at an operating plant

  2. Radiation streaming: the continuing problem of shield design

    International Nuclear Information System (INIS)

    Avery, A.F.

    1977-01-01

    The practical problems of shield design are reviewed and the major difficulties are shown to be those associated with streaming problems. The situations in which streaming occurs in various types of reactor are described including LMFBR's and fusion devices, and examples are given of ways in which the problems have been solved

  3. A non-permutation flowshop scheduling problem with lot streaming: A Mathematical model

    Directory of Open Access Journals (Sweden)

    Daniel Rossit

    2016-06-01

    Full Text Available In this paper we investigate the use of lot streaming in non-permutation flowshop scheduling problems. The objective is to minimize the makespan subject to the standard flowshop constraints, but where it is now permitted to reorder jobs between machines. In addition, the jobs can be divided into manageable sublots, a strategy known as lot streaming. Computational experiments show that lot streaming reduces the makespan up to 43% for a wide range of instances when compared to the case in which no job splitting is applied. The benefits grow as the number of stages in the production process increases but reach a limit. Beyond a certain point, the division of jobs into additional sublots does not improve the solution.

  4. Classics in the Cloud : A discussion of the problems of classical music and streaming

    OpenAIRE

    Olsen, Tone Cecilie

    2017-01-01

    Master's thesis Music Management MU501 - University of Agder 2017 Streaming services have become the main method of music consumption the last couple of years, and the classical audience have moved to the cloud as well. This paper aims to uncover some of the issues that classical consumers encounter while using streaming services, what the reasons may be that there are problems, and discussing possible solution to benefit either the connoisseur or the novice listener. It brings...

  5. Reactive solute transport in acidic streams

    Science.gov (United States)

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  6. The Universal Primer - An open source solution for archiving, organizing and streaming live lectures

    DEFF Research Database (Denmark)

    Christoffersen, Marc Juul; Panton, Hans Christian Hansen; Krajowski-Kukiel, Maciej

    2011-01-01

    . The goal of the Universal Primer is to address these problems, and allow anyone, anywhere, to teach or learn anything that can be reasonably taught or learned through a computer. The Universal Primer is 1: A fully open source solution for streaming live lectures. And 2: A Wikipedia-like website...

  7. Problems Threatening the Tigris Trout (Salmo tigridis Turan, Kottelat & Bektaş, 2011 Stock in Çatak Stream and Some Recommendations

    Directory of Open Access Journals (Sweden)

    Mustafa AKKUŞ

    2017-12-01

    Full Text Available This study was carried out to reveal the problems threatening Salmo tigridis stock inhabited in Çatak Stream and to offer some solutions to overcome these problems. Çatak is the largest stream of the region and located at 81 km southern of the Van city center. Salmo tigridis, which is only distributed in Çatak and Bahçesaray streams, faces the danger of extinction. In this study, it was observed that sand-graveling activities at Çatak Stream muddied the stream and destroyed appropriate reproduction habitats. Another problem is that Çatak Stream's over-destruction of vegetation in the catchment basin increases flood risk and flood-related sudden flow increases. In addition, it was determined that studies carried out for river improvement and flood control disturbed the natural flow regime of the stream, leading to deterioration in the base and coastal structure. Another threat is the rainbow trout (Oncorhynchus mykiss that escape from fish farms. Catching with prohibited methods and fishing gears is also a problem that threatens the future of native trout stock in the stream. With this study, the problems that threaten the tigris trout stock in Çatak Stream were identified and some proposals were presented.

  8. A survey of systems for massive stream analytics

    OpenAIRE

    Singh, Maninder Pal; Hoque, Mohammad A.; Tarkoma, Sasu

    2016-01-01

    The immense growth of data demands switching from traditional data processing solutions to systems, which can process a continuous stream of real time data. Various applications employ stream processing systems to provide solutions to emerging Big Data problems. Open-source solutions such as Storm, Spark Streaming, and S4 are the attempts to answer key stream processing questions. The recent introduction of real time stream processing commercial solutions such as Amazon Kinesis, IBM Infospher...

  9. Exact partial solution to the compressible flow problems of jet formation and penetration in plane, steady flow

    International Nuclear Information System (INIS)

    Karpp, R.R.

    1984-01-01

    The particle solution of the problem of the symmetric impact of two compressible fluid stream is derived. The plane two-dimensional flow is assumed to be steady, and the inviscid compressible fluid is of the Chaplygin (tangent gas) type. The equations governing this flow are transformed to the hodograph plane where an exact, closed-form solution for the stream function is obtained. The distribution of fluid properties along the plane of symmetry and the shape of free surface streamlines are determined by transformation back to the physical plane. The problem of a compressible fluid jet penetrating an infinite target of similar material is also solved by considering a limiting case of this solution. Differences between compressible and incompressible flows of the type considered are illustrated

  10. Predicting Hyporheic Exchange of Water and Solutes in Streams on the Basis of a Priori Estimates of Stream Physical Characteristics

    Science.gov (United States)

    Stone, S. H.; Harvey, J.; Packman, A.; Worman, A.

    2005-12-01

    It is very important to accurately model solute transport in rivers in order to analyze contaminant transport, water quality, and a variety of ecological processes. The purpose of this research is to determine the physical characteristics of a stream or river that are sufficient to predict hyporheic exchange and downstream solute transport. In the fall of 2004, we conducted a bromide tracer injection and made physical measurements in Sugar Creek, a small agricultural stream in northwestern Indiana. As is typical for small mid-western agricultural streams, Sugar Creek has been ditched and straightened, and subsequent downcutting through glacial sediments and slumpage of bank sediments composed of finer grain sizes has created a stream of intermediate complexity. In order to relate the observed solute transport to more basic physical characteristics of the stream, we determined the bathymetry of Sugar Creek over a wide range of scales (centimeters to decameters), and measured velocity profiles, the water elevation surface profile, hydraulic conductivity via in situ measurements, and bed sediment grain size distributions throughout the study reach. Our most detailed topographic measurements revealed fine scale bed variations with wavelengths on the order of ten centimeters, while surveying of the entire study reach characterized large scale meanders with wavelengths on the order of five meters. The distribution of wavelengths influences the driving forces that cause solute to enter the bed and banks. Hydraulic conductivity determines the resistance to flow of stream water through the (meander) stream banks and streambed. We used a scaling approach to relate the geometric and hydrogeologic characteristics of the stream to solute transport and also applied a new analytical solution for the subsurface flows resulting from topographic variations over a wide range of spatial scales. These models captured the main features of the observed solute transport. The greatest

  11. Coupled Spatio-Temporal Patterns of Solute Transport, Metabolism and Nutrient Uptake in Streams

    Science.gov (United States)

    Kurz, M. J.; Schmidt, C.

    2017-12-01

    Slower flow velocities and longer residence times within stream transient storage (TS) zones facilitate interaction between solutes and microbial communities, potentially increasing local rates of metabolic activity. Multiple factors, including channel morphology and substrate, variable hydrology, and seasonal changes in biological and physical parameters, result in changes in the solute transport dynamics and reactivity of TS zones over time and space. These changes would be expected to, in turn, influence rates of whole-stream ecosystem functions such as metabolism and nutrient uptake. However, the linkages between solute transport and ecosystem functioning within TS zones, and the contribution of TS zones to whole-stream functioning, are not always so straight forward. This may be due, in part, to methodological challenges. In this study we investigated the influence of stream channel hydro-morphology and substrate type on reach (103 m) and sub-reach (102 m) scale TS and ecosystem functioning. Patterns in solute transport, metabolism and nitrate uptake were tracked from April through October in two contrasting upland streams using several methods. The two streams, located in the Harz Mountains, Germany, are characterized by differing size (0.02 vs. 0.3 m3/s), dominant stream channel substrate (bedrock vs. alluvium) and sub-reach morphology (predominance of pools, riffles and glides). Solute transport parameters and respiration rates at the reach and sub-reach scale were estimated monthly from coupled pulse injections of the reactive tracer resazurin (Raz) and conservative tracers uranine and salt. Raz, a weakly fluorescent dye, irreversibly transforms to resorufin (Rru) under mildly reducing conditions, providing a proxy for aerobic respiration. Daily rates of primary productivity, respiration and nitrate retention at the reach scale were estimated using the diel cycles in dissolved oxygen and nitrate concentrations measured by in-situ sensors. Preliminary

  12. Solution and scope of utilization of the cross-stream cooling towers

    International Nuclear Information System (INIS)

    Zembaty, W.

    1995-01-01

    Technical solutions and operational properties of the cross-stream cooling towers as well as the scope of their utilization are presented. The differences within thermodynamic calculations of the cross-stream and counter-stream cooling towers due to the direction of the air flow as well as water flow in sprinkling system are discussed. The assessment of the capital and operational costs of the cross-stream cooling towers is given and compared with the cost of counter-stream cooling towers (utilizing as an example a calculation conducted for the cooling towers of the 720, 1100 and 1400 MW units). (author). 6 refs, 9 figs

  13. Scaling and predicting solute transport processes in streams

    Science.gov (United States)

    R. González-Pinzón; R. Haggerty; M. Dentz

    2013-01-01

    We investigated scaling of conservative solute transport using temporal moment analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams located on five continents. The experiments span 7 orders of magnitude in discharge (10-3 to 103 m3/s), span 5 orders of magnitude in...

  14. Mass transfer of a neutral solute in porous microchannel under streaming potential.

    Science.gov (United States)

    Mondal, Sourav; De, Sirshendu

    2014-03-01

    The mass transport of a neutral solute in a porous wall, under the influence of streaming field, has been analyzed in this study. The effect of the induced streaming field on the electroviscous effect of the fluid for different flow geometries has been suitably quantified. The overall electroosmotic velocity profile and expression for streaming field have been obtained analytically using the Debye-Huckel approximation, and subsequently used in the analysis for the mass transport. The analysis shows that as the solution Debye length increases, the strength of the streaming field and, consequently, the electroviscous effect diminishes. The species transport equation has been coupled with Darcy's law for quantification of the permeation rate across the porous wall. The concentration profile inside the mass transfer boundary layer has been solved using the similarity transformation, and the Sherwood number has been calculated from the definition. In this study, the variation of the permeation rate and solute permeate concentration has been with the surface potential, wall retention factor and osmotic pressure coefficient has been demonstrated for both the circular as well as rectangular channel cross-section. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mixing of Process Heels, Process Solutions and Recycle Streams: Small-Scale Simulant

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    2001-01-01

    The overall objective of this small-scale simulant mixing study was to identify the processes within the Hanford Site River Protection Project - Waste Treatment Plant (RPP-WTP) that may generate precipitates and to identify the types of precipitates formed. This information can be used to identify where mixtures of various solutions will cause precipitation of solids, potentially causing operational problems such as fouling equipment or increasing the amount of High Level Waste glass produced. Having this information will help guide protocols for flushing or draining tanks, mixing internal recycle streams, and mixing waste tank supernates. This report contains the discussion and thermodynamic chemical speciation modeling of the raw data

  16. Response of non-added solutes during nutrient addition experiments in streams

    Science.gov (United States)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may

  17. The world solution for world problems : the problem, its cause, its solution

    NARCIS (Netherlands)

    León, L.

    2002-01-01

    The book discusses the main world problem of today, which is the gradual, but lethal change of the soil and atmosphere, the main cause, which is the world-wide overpopulation, and the main solution, which is world government by lottocracy. It is a recipe for the solution of the one and only problem

  18. The Concept Drift Problem in Android Malware Detection and Its Solution

    Directory of Open Access Journals (Sweden)

    Donghui Hu

    2017-01-01

    Full Text Available Currently, the Android platform is the most popular mobile platform in the world and holds a dominant share in the mobile device market. With the popularization of the Android platform, large numbers of Android malware programs have begun to emerge on the Internet, and the sophistication of these programs is developing rapidly. While many studies have already investigated Android malware detection through machine learning and have achieved good results, most of these are based on static data sources and fail to consider the concept drift problem resulting from the rapid growth in the number of Android malware programs and normal Android applications, as well as rapid technological advancement in the Android environment. To address this problem, this work proposes a solution based on an ensemble classifier. This ensemble classifier is based on a streaming data-based Naive Bayes classifier. Android malware has identifiable feature utilization tendencies. On this basis, feature selection algorithm is introduced into the ensemble classifier, and a sliding window is maintained inside the ensemble classifier. Based on the performance of the subclassifiers inside the sliding window, the ensemble classifier makes dynamic adjustments to address the concept drift problem in Android malware detection. The experimental results from the proposed method demonstrate that it can effectively address the concept drift problem in Android malware detection in a streaming data environment.

  19. A 2D forward and inverse code for streaming potential problems

    Science.gov (United States)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.

    2013-12-01

    The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the groundwater. We can therefore apply the self- potential method to recover non-intrusively some information regarding the groundwater flow. We first solve the forward problem starting with the solution of the groundwater flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.

  20. Stream function-vorticity finite elements and the resolution of the Navier-Stokes equations

    International Nuclear Information System (INIS)

    Almeida, R.C.C. de.

    1987-07-01

    A stream function-vorticity finite element formulation for the solution of the Navier-Stokes equations is proposed. The present work shows a procedure to solve the problem posed by the no-slip conditions on solid frontiers which can also be applied to flow problems in a multi-connected domain. Moreover, a methodology to solve the pressure is developed using the stream function-vorticity approximate solution. Numerical experiments were conducted for some steady and unsteady problems and the performance of the proposed methods is discussed. (author) [pt

  1. Streaming-based verification of XML signatures in SOAP messages

    DEFF Research Database (Denmark)

    Somorovsky, Juraj; Jensen, Meiko; Schwenk, Jörg

    2010-01-01

    approach for XML processing, the Web Services servers easily become a target of Denial-of-Service attacks. We present a solution for these problems: an external streaming-based WS-Security Gateway. Our implementation is capable of processing XML Signatures in SOAP messages using a streaming-based approach...

  2. Calculus problems and solutions

    CERN Document Server

    Ginzburg, Abraham

    2011-01-01

    Ideal for self-instruction as well as for classroom use, this text helps students improve their understanding and problem-solving skills in analysis, analytic geometry, and higher algebra. More than 1,200 problems appear in the text, with concise explanations of the basic notions and theorems to be used in their solution. Many are followed by complete answers; solutions for the others appear at the end of the book. Topics include sequences, functions of a single variable, limit of a function, differential calculus for functions of a single variable, fundamental theorems and applications of dif

  3. Variance reduction techniques for 14 MeV neutron streaming problem in rectangular annular bent duct

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Kotaro [Ship Research Inst., Mitaka, Tokyo (Japan)

    1998-03-01

    Monte Carlo method is the powerful technique for solving wide range of radiation transport problems. Its features are that it can solve the Boltzmann`s transport equation almost without approximation, and that the complexity of the systems to be treated rarely becomes a problem. However, the Monte Carlo calculation is always accompanied by statistical errors called variance. In shielding calculation, standard deviation or fractional standard deviation (FSD) is used frequently. The expression of the FSD is shown. Radiation shielding problems are roughly divided into transmission through deep layer and streaming problem. In the streaming problem, the large difference in the weight depending on the history of particles makes the FSD of Monte Carlo calculation worse. The streaming experiment in the 14 MeV neutron rectangular annular bent duct, which is the typical streaming bench mark experiment carried out of the OKTAVIAN of Osaka University, was analyzed by MCNP 4B, and the reduction of variance or FSD was attempted. The experimental system is shown. The analysis model by MCNP 4B, the input data and the results of analysis are reported, and the comparison with the experimental results was examined. (K.I.)

  4. Exact partial solution to the steady-state, compressible fluid flow problems of jet formation and jet penetration

    International Nuclear Information System (INIS)

    Karpp, R.R.

    1980-10-01

    This report treats analytically the problem of the symmetric impact of two compressible fluid streams. The flow is assumed to be steady, plane, inviscid, and subsonic and that the compressible fluid is of the Chaplygin (tangent gas) type. In the analysis, the governing equations are first transformed to the hodograph plane where an exact, closed-form solution is obtained by standard techniques. The distributions of fluid properties along the plane of symmetry as well as the shapes of the boundary streamlines are exactly determined by transforming the solution back to the physical plane. The problem of a compressible fluid jet penetrating into an infinite target of similar material is also exactly solved by considering a limiting case of this solution. This new compressible flow solution reduces to the classical result of incompressible flow theory when the sound speed of the fluid is allowed to approach infinity. Several illustrations of the differences between compressible and incompressible flows of the type considered are presented

  5. Stream function method for computing steady rotational transonic flows with application to solar wind-type problems

    International Nuclear Information System (INIS)

    Kopriva, D.A.

    1982-01-01

    A numerical scheme has been developed to solve the quasilinear form of the transonic stream function equation. The method is applied to compute steady two-dimensional axisymmetric solar wind-type problems. A single, perfect, non-dissipative, homentropic and polytropic gas-dynamics is assumed. The four equations governing mass and momentum conservation are reduced to a single nonlinear second order partial differential equation for the stream function. Bernoulli's equation is used to obtain a nonlinear algebraic relation for the density in terms of stream function derivatives. The vorticity includes the effects of azimuthal rotation and Bernoulli's function and is determined from quantities specified on boundaries. The approach is efficient. The number of equations and independent variables has been reduced and a rapid relaxation technique developed for the transonic full potential equation is used. Second order accurate central differences are used in elliptic regions. In hyperbolic regions a dissipation term motivated by the rotated differencing scheme of Jameson is added for stability. A successive-line-overrelaxation technique also introduced by Jameson is used to solve the equations. The nonlinear equation for the density is a double valued function of the stream function derivatives. The velocities are extrapolated from upwind points to determine the proper branch and Newton's method is used to iteratively compute the density. This allows accurate solutions with few grid points

  6. Analytical solutions for the surface response to small amplitude perturbations in boundary data in the shallow-ice-stream approximation

    Directory of Open Access Journals (Sweden)

    G. H. Gudmundsson

    2008-07-01

    Full Text Available New analytical solutions describing the effects of small-amplitude perturbations in boundary data on flow in the shallow-ice-stream approximation are presented. These solutions are valid for a non-linear Weertman-type sliding law and for Newtonian ice rheology. Comparison is made with corresponding solutions of the shallow-ice-sheet approximation, and with solutions of the full Stokes equations. The shallow-ice-stream approximation is commonly used to describe large-scale ice stream flow over a weak bed, while the shallow-ice-sheet approximation forms the basis of most current large-scale ice sheet models. It is found that the shallow-ice-stream approximation overestimates the effects of bed topography perturbations on surface profile for wavelengths less than about 5 to 10 ice thicknesses, the exact number depending on values of surface slope and slip ratio. For high slip ratios, the shallow-ice-stream approximation gives a very simple description of the relationship between bed and surface topography, with the corresponding transfer amplitudes being close to unity for any given wavelength. The shallow-ice-stream estimates for the timescales that govern the transient response of ice streams to external perturbations are considerably more accurate than those based on the shallow-ice-sheet approximation. In particular, in contrast to the shallow-ice-sheet approximation, the shallow-ice-stream approximation correctly reproduces the short-wavelength limit of the kinematic phase speed given by solving a linearised version of the full Stokes system. In accordance with the full Stokes solutions, the shallow-ice-sheet approximation predicts surface fields to react weakly to spatial variations in basal slipperiness with wavelengths less than about 10 to 20 ice thicknesses.

  7. Comparison of animated jet stream visualizations

    Science.gov (United States)

    Nocke, Thomas; Hoffmann, Peter

    2016-04-01

    The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

  8. Mixing of process heels, process solutions, and recycle streams: Results of the small-scale radioactive tests

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Bramson, J.P.; Farmer III, O.T.; Greenwood, L.R.; Hoopes, F.V.; Mann, M.A.; Steele, M.J.; Steele, R.T.; Swoboda, R.G.; Urie, M.W.

    2000-01-01

    Various recycle streams will be combined with the low-activity waste (LAW) or the high-level waste (HLW) feed solutions during the processing of the Hanford tank wastes by BNFL, Inc. In addition, the LAW and HLW feed solutions will also be mixed with heels present in the processing equipment. This report describes the results of a test conducted by Battelle to assess the effects of mixing specific process streams. Observations were made regarding adverse reactions (mainly precipitation) and effects on the Tc oxidation state (as indicated by K d measurements with SuperLigreg s ign 639). The work was conducted according to test plan BNFL-TP-29953-023, Rev. 0, Small Scale Mixing of Process Heels, Solutions, and Recycle Streams. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section

  9. Gaze-Aware Streaming Solutions for the Next Generation of Mobile VR Experiences.

    Science.gov (United States)

    Lungaro, Pietro; Sjoberg, Rickard; Valero, Alfredo Jose Fanghella; Mittal, Ashutosh; Tollmar, Konrad

    2018-04-01

    This paper presents a novel approach to content delivery for video streaming services. It exploits information from connected eye-trackers embedded in the next generation of VR Head Mounted Displays (HMDs). The proposed solution aims to deliver high visual quality, in real time, around the users' fixations points while lowering the quality everywhere else. The goal of the proposed approach is to substantially reduce the overall bandwidth requirements for supporting VR video experiences while delivering high levels of user perceived quality. The prerequisites to achieve these results are: (1) mechanisms that can cope with different degrees of latency in the system and (2) solutions that support fast adaptation of video quality in different parts of a frame, without requiring a large increase in bitrate. A novel codec configuration, capable of supporting near-instantaneous video quality adaptation in specific portions of a video frame, is presented. The proposed method exploits in-built properties of HEVC encoders and while it introduces a moderate amount of error, these errors are indetectable by users. Fast adaptation is the key to enable gaze-aware streaming and its reduction in bandwidth. A testbed implementing gaze-aware streaming, together with a prototype HMD with in-built eye tracker, is presented and was used for testing with real users. The studies quantified the bandwidth savings achievable by the proposed approach and characterize the relationships between Quality of Experience (QoE) and network latency. The results showed that up to 83% less bandwidth is required to deliver high QoE levels to the users, as compared to conventional solutions.

  10. On the solution of fluid flow and heat transfer problem in a 2D channel with backward-facing step

    Directory of Open Access Journals (Sweden)

    Alexander A. Fomin

    2017-06-01

    Full Text Available The stable stationary solutions of the test problem of hydrodynamics and heat transfer in a plane channel with the backward-facing step have been considered in the work for extremely high Reynolds numbers and expansion ratio of the stream $ER$. The problem has been solved by numerical integration of the 2D Navier–Stokes equations in ‘velocity-pressure’ formulation and the heat equation in the range of Reynolds number $500 \\leqslant \\mathrm{ Re} \\leqslant 3000$ and expansion ratio $1.43 \\leqslant ER \\leqslant 10$ for Prandtl number $\\mathrm{ Pr} = 0.71$. Validity of the results has been confirmed by comparing them with literature data. Detailed flow patterns, fields of stream overheating, and profiles of horizontal component of velocity and relative overheating of flow in the cross section of the channel have been presented. Complex behaviors of the coefficients of friction, hydrodynamic resistance and heat transfer (Nusselt number along the channel depending on the problem parameters have been analyzed.

  11. SP@CE - An SP-based programming model for consumer electronics streaming applications

    NARCIS (Netherlands)

    Varbanescu, Ana Lucia; Nijhuis, Maik; Escribano, Arturo González; Sips, Henk; Bos, Herbert; Bal, Henri

    2007-01-01

    Efficient programming of multimedia streaming applications for Consumer Electronics (CE) devices is not trivial. As a solution for this problem, we present SP@CE, a novel programming model designed to balance the specific requirements of CE streaming applications with the simplicity and efficiency

  12. The Streaming Complexity of Cycle Counting, Sorting by Reversals, and Other Problems

    DEFF Research Database (Denmark)

    Verbin, Elad; Yu, Wei

    2011-01-01

    -way. By designing reductions from BHH, we prove lower bounds for the streaming complexity of approximating the sorting by reversal distance, of approximately counting the number of cycles in a 2-regular graph, and of other problems. For example, here is one lower bound that we prove, for a cycle-counting problem...

  13. Weight window/importance generator for Monte Carlo streaming problems

    International Nuclear Information System (INIS)

    Booth, T.E.

    1983-01-01

    A Monte Carlo method for solving highly angle dependent streaming problems is described. The method uses a DXTRAN-like angle biasing scheme, a space-angle weight window to reduce weight fluctuations introduced by the angle biasing, and a space-angle importance generator to set parameters for the space-angle weight window. Particle leakage through a doubly-bent duct is calculated to demonstrate the method's use

  14. Ultrasound-driven Viscous Streaming, Modelled via Momentum Injection

    Directory of Open Access Journals (Sweden)

    James PACKER

    2008-12-01

    Full Text Available Microfluidic devices can use steady streaming caused by the ultrasonic oscillation of one or many gas bubbles in a liquid to drive small scale flow. Such streaming flows are difficult to evaluate, as analytic solutions are not available for any but the simplest cases, and direct computational fluid dynamics models are unsatisfactory due to the large difference in flow velocity between the steady streaming and the leading order oscillatory motion. We develop a numerical technique which uses a two-stage multiscale computational fluid dynamics approach to find the streaming flow as a steady problem, and validate this model against experimental results.

  15. Silverlight 2 Recipes A Problem-solution Approach

    CERN Document Server

    Ghosh, Cameron

    2010-01-01

    Microsoft .NET Architect Evangelist, Jit Ghosh, presents a practical companion guide to developing rich, interactive web applications with Silverlight 2. Common problems, issues, and every--day scenarios are tackled with a detailed discussion of the solution and ready--made code recipes that will save you hours of coding time. The recipes included in Silverlight 2 Recipes: A Problem-Solution Approach have been carefully selected and tested with the professional developer in mind. You'll find clearly and succinctly stated problems, well--architected solutions, and ample discussion of the code a

  16. Approximative solutions of stochastic optimization problem

    Czech Academy of Sciences Publication Activity Database

    Lachout, Petr

    2010-01-01

    Roč. 46, č. 3 (2010), s. 513-523 ISSN 0023-5954 R&D Projects: GA ČR GA201/08/0539 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic optimization problem * sensitivity * approximative solution Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/lachout-approximative solutions of stochastic optimization problem.pdf

  17. International young physicists' tournament problems & solutions 2014

    CERN Document Server

    Gao, Wenli

    2016-01-01

    International Young Physicists' Tournament (Iypt), is one of the most prestigious international physics contests among high school students. This book is based on the solutions of 2014 Iypt problems. The authors are undergraduate students who participated in the Cupt (Chinese Undergraduate Physics Tournament). It is intended as a college level solution to the challenging open-ended problems. It provides original, quantitative solutions in fulfilling seemingly impossible tasks. This book is not limited to the tasks required by the problems and it is not confined to the models and methods in present literatures. Many of the articles include modification and extension to existing models in references, or derivation and computation based on fundamental physics. This book provides quantitative solutions to practical problems in everyday life. This is a good reference book for undergraduates, advanced high-school students, physics educators and curious public interested in the intriguing phenomena in daily life.

  18. Fluid mechanics problems and solutions

    CERN Document Server

    Spurk, Joseph H

    1997-01-01

    his collection of over 200 detailed worked exercises adds to and complements the textbook Fluid Mechanics by the same author, and illustrates the teaching material through examples. In the exercises the fundamental concepts of Fluid Mechanics are applied to obtaining the solution of diverse concrete problems, and in doing this the student's skill in the mathematical modeling of practical problems is developed. In addition, 30 challenging questions without detailed solutions have been included, and while lecturers will find these questions suitable for examinations and tests, the student himself can use them to check his understanding of the subject.

  19. Viable Solutions for seemingly Intractable Problems

    Directory of Open Access Journals (Sweden)

    Ashok Natarajan

    2015-10-01

    Full Text Available Life is filled with seemingly intractable problems. But life wisdom affirms that if there is a problem, there must be a solution. Or better yet, the solution to the problem lies within the problem itself. Problems have their roots in disharmony. Disharmony arises when a part separates itself from the whole and acts independently of the wider reality of which it is a part, as financial markets have separated themselves from the real economy and economy has detached itself from social and ecological consequences. Insistence on out-moded approaches under new conditions generates intractable problems, as when the framework of a heterogeneous nation-state is employed for the dominance of a single ethnic or religious group. Knowledge and culture are the supreme values of a society and core element of its capacity for accomplishment and development, yet both tend to be exclusively possessed by elites for their own benefit, rather than freely distributed to maximize their impact on society as a whole. Society evolves by the transformation of ignorance into knowledge. Life evolves by organization. The linking and integration of social organizations spur development. Mind itself is an organization and powerful force for development. Energy makes organization more efficient. Any problem can be solved by raising the effectiveness of energy by converting it into skill or capacity and transforming it into power through organization. What one person sees as a problem is an opportunity for another with wider vision. The difference in perception accounts for the difference in levels of accomplishment. So, those with the right perspective see opportunities where others see insolvable problems. Current problems are the result of irrationality, refusal to benefit from past experience and insistence on repeating past errors. Modern science, which was born to fight the superstition of religion, has become a source of superstition. Fully availing of the latest

  20. PROBLEM OF OPTIMIZATION OF ENTERPRISE FINANCIAL STREAMS: URGENCY UNDER ECONOMIC CRISIS CONDITIONS

    Directory of Open Access Journals (Sweden)

    J. E. Gorbach

    2011-01-01

    Full Text Available The paper considers a problem of structural optimization of financial streams in the economic activities of the enterprises. The authors describe a general process of enterprise capital structure optimization while breaking it in stages and consider the most interesting financial stream theories. The paper presents for the first time «Combined optimization model». In order to develop the model the most commonly applied methods have been used, namely: an optimization  method on the basis of an average capital price, an optimization method on the basis of financial leverage effect and an optimization method on the basis of the average managing subject price. Alternative calculations of optimum structure of financial stream sources on the basis of the proposed «combined model» have been presented in corresponding tables. The authors also use for the first time such concepts as «a break-even point» and «a safety zone» in respect of enterprise financial streams while using a graphic method.

  1. Approximate solutions of common fixed-point problems

    CERN Document Server

    Zaslavski, Alexander J

    2016-01-01

    This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant. Beginning with an introduction, this monograph moves on to study: · dynamic string-averaging methods for common fixed point problems in a Hilbert space · dynamic string methods for common fixed point problems in a metric space · dynamic string-averaging version of the proximal...

  2. Definition and coding of surface catchment areas: problems and solutions; Ausgrenzung und Verschluesselung oberirdischer Einzugsgebiete: Probleme und Loesungsansaetze

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, A.; Mehl, D. [biota - Institut fuer Oekologische Forschung und Planung GmbH, Guestrow (Germany); Klitzsch, S. [Landesamt fuer Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern, Guestrow (Germany). Abt. Wasser und Boden

    2000-12-01

    Due to certain hydrographic situations there are some difficulties in application of the LAWA-directive 'Coding of catchment areas and streams'. In this paper, solutions are shown by means of examples from the federal state of Mecklenburg-Pomerania. Priorities of streams influenced by lakes and the Baltic Sea, branched and linked streams, urban streams and catchment areas without surface run-off were discussed. (orig.) [German] Die Anwendung der LAWA-Richtlinie zur Gebietsbezeichnung und Verschluesselung von Fliessgewaessern stoesst bei Vorliegen bestimmter hydrographischer Konstellationen auf Schwierigkeiten. Anhand von Fallbeispielen aus Mecklenburg-Vorpommern werden Loesungswege zur entsprechenden Problembehandlung aufgezeigt. Wesentliche Schwerpunkte sind daher durchflossene Seen, verzweigte und vernetzte Fliessgewaesser, Fliessgewaesser im staedtischen Bereich, die Problematik der Binnenentwaesserungsgebiete sowie Gewaesser im Ostseerueckstau. (orig.)

  3. An Exact Solution of the Binary Singular Problem

    Directory of Open Access Journals (Sweden)

    Baiqing Sun

    2014-01-01

    Full Text Available Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.

  4. On Attainability of Optimal Solutions for Linear Elliptic Equations with Unbounded Coefficients

    Directory of Open Access Journals (Sweden)

    P. I. Kogut

    2011-12-01

    Full Text Available We study an optimal boundary control problem (OCP associated to a linear elliptic equation —div (Vj/ + A(xVy = f describing diffusion in a turbulent flow. The characteristic feature of this equation is the fact that, in applications, the stream matrix A(x = [a,ij(x]i,j=i,...,N is skew-symmetric, ац(х = —a,ji(x, measurable, and belongs to L -space (rather than L°°. An optimal solution to such problem can inherit a singular character of the original stream matrix A. We show that optimal solutions can be attainable by solutions of special optimal boundary control problems.

  5. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    Science.gov (United States)

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  6. Multiobjective heat exchanger network synthesis based on grouping of process streams

    Energy Technology Data Exchange (ETDEWEB)

    Laukkanen, T.P.

    2012-06-15

    Heat exchanger network synthesis (HENS) is an important process synthesis problem and different tools and methods have been presented to solve this synthesis problem. This is mainly due to its importance in achieving energy savings in industrial processes in a cost-efficient way. The problem is also hard to solve and has been proven NP-hard (Nondeterministic Polynomial-time) and hence it is not known if a computationally efficient (polynomial) algorithm to solve the problem exists. Thus methods that provide good approximate solutions with reasonable computational requirements are useful. The objective of this thesis is to present new HENS approaches that are able to generate good solutions for HENS problems in a computationally efficient way so that all the objectives of HENS are optimized simultaneously. The main approach in accomplishing this objective is by grouping process streams. This is done either on the basis of the fact that in reality the process streams belong to a specific group or these groups are artificially developed. In the latter approach the idea is to decompose the set of binary variables i.e., the variables that define the existence of heat exchanger matches, into two separate problems. In this way the number of different options to connect the streams decreases compared to the situation where no decomposition is present. This causes the solution time to decrease and provides options for solving larger HENS problems. In this work the multiobjective HENS problem is solved either with the traditional weighting method or with an interactive multiobjective optimization method. In the weighting method the weights are the annual costs of the different objectives. In the interactive multiobjective optimization method the Decision Maker (DM) controls the decision-making process by classifying the objectives at each iteration. This multiobjective approach provides the benefit of using interactive multiobjective optimization, so that it is possible to

  7. Impact of meander geometry and stream flow events on residence times and solute transport in the intra-meander flow

    Science.gov (United States)

    Nasir Mahmood, Muhammad; Schmidt, Christian; Trauth, Nico

    2017-04-01

    Stream morphological features, in combination with hydrological variability play a key role in water and solute exchange across surface and subsurface waters. Meanders are prominent morphological features within stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange within the intra-meander region. This hyporheic flow is characterized by considerably prolonged flow paths and residence times (RT) compared to smaller scales of hyporheic exchange. In this study we examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady state and transient flow conditions. We developed a number of artificial meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander. Three dimensional steady state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region. The meandering stream was implemented in the model by adjusting the top layers of the modelling domain to the streambed elevation and assigning linearly decreasing head boundary conditions to the streambed cells. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. The transient stream discharge was simulated for a number of discharge events of variable duration and peak height using the surface water model HEC-RAS. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. A solute concentration source was added in the

  8. MaSTiS, microorganism and solute transport in streams, model documentation and user manual

    Science.gov (United States)

    In-stream fate and transport of solutes and microorganisms need to be understood to evaluate suitability of waters for agricultural, recreational, and household uses and eventually minimize surface water contamination. Concerns over safety of this water resulted in development of predictive models f...

  9. Solution of the Stieltjes truncated matrix moment problem

    Directory of Open Access Journals (Sweden)

    Vadim M. Adamyan

    2005-01-01

    Full Text Available The truncated Stieltjes matrix moment problem consisting in the description of all matrix distributions \\(\\boldsymbol{\\sigma}(t\\ on \\([0,\\infty\\ with given first \\(2n+1\\ power moments \\((\\mathbf{C}_j_{n=0}^j\\ is solved using known results on the corresponding Hamburger problem for which \\(\\boldsymbol{\\sigma}(t\\ are defined on \\((-\\infty,\\infty\\. The criterion of solvability of the Stieltjes problem is given and all its solutions in the non-degenerate case are described by selection of the appropriate solutions among those of the Hamburger problem for the same set of moments. The results on extensions of non-negative operators are used and a purely algebraic algorithm for the solution of both Hamburger and Stieltjes problems is proposed.

  10. Network Monitoring as a Streaming Analytics Problem

    KAUST Repository

    Gupta, Arpit

    2016-11-02

    Programmable switches make it easier to perform flexible network monitoring queries at line rate, and scalable stream processors make it possible to fuse data streams to answer more sophisticated queries about the network in real-time. Unfortunately, processing such network monitoring queries at high traffic rates requires both the switches and the stream processors to filter the traffic iteratively and adaptively so as to extract only that traffic that is of interest to the query at hand. Others have network monitoring in the context of streaming; yet, previous work has not closed the loop in a way that allows network operators to perform streaming analytics for network monitoring applications at scale. To achieve this objective, Sonata allows operators to express a network monitoring query by considering each packet as a tuple and efficiently partitioning each query between the switches and the stream processor through iterative refinement. Sonata extracts only the traffic that pertains to each query, ensuring that the stream processor can scale traffic rates of several terabits per second. We show with a simple example query involving DNS reflection attacks and traffic traces from one of the world\\'s largest IXPs that Sonata can capture 95% of all traffic pertaining to the query, while reducing the overall data rate by a factor of about 400 and the number of required counters by four orders of magnitude. Copyright 2016 ACM.

  11. Solution of adsorption problems involving steep moving profiles

    DEFF Research Database (Denmark)

    Kiil, Søren; Bhatia, Suresh K.

    1998-01-01

    The moving finite element collocation method proposed by Kiil et al. (1995) for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structures....... Numerical solutions were found to match the analytical solution when it exists (i.e. when the adsorption isotherm is linear). Results of this application study show that the method is simple yet sufficiently accurate for use in adsorption problems with steep moving gradients, where global collocation...

  12. Uncertainty of solute flux estimation in ungauged small streams: potential implications for input-output nutrient mass balances at stream reach scale

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2005-01-01

    Full Text Available Input-output mass balances within stream reaches provide in situ estimates of stream nutrient retention/release under a wide spectrum of hydrological conditions. Providing good estimates of the mass balances for nutrients depends on precise hydrological monitoring and good chemical characterisation of stream water at the input and output ends of the stream reach. There is a need to optimise the hydrological monitoring and the frequencies of water sampling to yield precise annual mass balances, so as to avoid undue cost - high resolution monitoring and subsequent chemical analysis can be labour intensive and costly. In this paper, simulation exercises were performed using a data set created to represent the instantaneous discharge and solute dynamics at the input and output ends of a model stream reach during a one year period. At the output end, stream discharge and water chemistry were monitored continuously, while the input end was assumed to be ungauged; water sampling frequency was changed arbitrarily. Instantaneous discharge at the ungauged sampling point was estimated with an empirical power model linking the discharge to the catchment area (Hooper, 1986. The model thus substitutes for the additional gauge station. Simulations showed that 10 days was the longest chemical sampling interval which could provide reach annual mass balances of acceptable precision. Presently, the relationship between discharge and catchment area is usually assumed to be linear but simulations indicate that small departures from the linearity of this relationship could cause dramatic changes in the mass balance estimations.

  13. Alternative solution algorithm for coupled thermal-hydraulic problems

    International Nuclear Information System (INIS)

    Farnsworth, D.A.; Rice, J.G.

    1986-01-01

    A thermal-hydraulic system involves flow of a fluid for which a combined solution of the continuity, momentum, and energy equations is required. When the solutions of the energy and momentum fields are dependent on each other, the system is said to be thermally coupled. A common problem encountered in the numerical solution of strongly coupled thermal-hydraulic problems is a very slow rate of convergence or a complete lack of convergence. Many times this degradation in convergence is due to the lack of true coupling between the energy and momentum fields during the iteration process. In the most widely used solution algorithms - such as the SIMPLE algorithm and its many variants - a sequential solution technique is required. That is, the solution process alternates between the flow and energy fields until a converged solution is obtained. This approach allows only implicit energy-momentum coupling. To improve the convergence rate for strongly coupled problems, a practical solution algorithm that can accommodate true energy-momentum coupling terms was developed. A complete simultaneous (versus sequential) solution of the governing conservation equations utilizing a line-by-line solution was developed and direct coupling terms between the momentum and energy fields were added utilizing a modified Newton-Raphson technique

  14. Problems and solutions in quantum physics

    CERN Document Server

    Ficek, Zbigniew

    2016-01-01

    This book contains tutorial problems with solutions for the textbook Quantum Physics for Beginners. The reader studying the abstract field of quantum physics needs to solve plenty of practical, especially quantitative, problems. This book places emphasis on basic problems of quantum physics together with some instructive, simulating, and useful applications. A considerable range of complexity is presented by these problems, and not too many of them can be solved using formulas alone.

  15. Properties and solution methods for large location-allocation problems

    DEFF Research Database (Denmark)

    Juel, Henrik; Love, Robert F.

    1982-01-01

    Location-allocation with l$ _p$ distances is studied. It is shown that this structure can be expressed as a concave minimization programming problem. Since concave minimization algorithms are not yet well developed, five solution methods are developed which utilize the special properties of the l......Location-allocation with l$ _p$ distances is studied. It is shown that this structure can be expressed as a concave minimization programming problem. Since concave minimization algorithms are not yet well developed, five solution methods are developed which utilize the special properties...... of the location-allocation problem. Using the rectilinear distance measure, two of these algorithms achieved optimal solutions in all 102 test problems for which solutions were known. The algorithms can be applied to much larger problems than any existing exact methods....

  16. Urbanization and stream ecology: Diverse mechanisms of change

    Science.gov (United States)

    Roy, Allison; Capps, Krista A.; El-Sabaawi, Rana W.; Jones, Krista L.; Parr, Thomas B.; Ramirez, Alonso; Smith, Robert F.; Walsh, Christopher J.; Wenger, Seth J.

    2016-01-01

    The field of urban stream ecology has evolved rapidly in the last 3 decades, and it now includes natural scientists from numerous disciplines working with social scientists, landscape planners and designers, and land and water managers to address complex, socioecological problems that have manifested in urban landscapes. Over the last decade, stream ecologists have met 3 times at the Symposium on Urbanization and Stream Ecology (SUSE) to discuss current research, identify knowledge gaps, and promote future research collaborations. The papers in this special series on urbanization and stream ecology include both primary research studies and conceptual synthesis papers spurred from discussions at SUSE in May 2014. The themes of the meeting are reflected in the papers in this series emphasizing global differences in mechanisms and responses of stream ecosystems to urbanization and management solutions in diverse urban streams. Our hope is that this series will encourage continued interdisciplinary and collaborative research to increase the global understanding of urban stream ecology toward stream protection and restoration in urban landscapes.

  17. Nonclassical pseudospectral method for the solution of brachistochrone problem

    International Nuclear Information System (INIS)

    Alipanah, A.; Razzaghi, M.; Dehghan, M.

    2007-01-01

    In this paper, nonclassical pseudospectral method is proposed for solving the classic brachistochrone problem. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Properties of nonclassical pseudospectral method are presented, these properties are then utilized to reduce the computation of brachistochrone problem to the solution of algebraic equations. Using this method, the solution to the brachistochrone problem is compared with those in the literature

  18. Gamma streaming experiments for validation of Monte Carlo code

    International Nuclear Information System (INIS)

    Thilagam, L.; Mohapatra, D.K.; Subbaiah, K.V.; Iliyas Lone, M.; Balasubramaniyan, V.

    2012-01-01

    In-homogeneities in shield structures lead to considerable amount of leakage radiation (streaming) increasing the radiation levels in accessible areas. Development works on experimental as well as computational methods for quantifying this streaming radiation are still continuing. Monte Carlo based radiation transport code, MCNP is usually a tool for modeling and analyzing such problems involving complex geometries. In order to validate this computational method for streaming analysis, it is necessary to carry out some experimental measurements simulating these inhomogeneities like ducts and voids present in the bulk shields for typical cases. The data thus generated will be analysed by simulating the experimental set up employing MCNP code and optimized input parameters for the code in finding solutions for similar radiation streaming problems will be formulated. Comparison of experimental data obtained from radiation streaming experiments through ducts will give a set of thumb rules and analytical fits for total radiation dose rates within and outside the duct. The present study highlights the validation of MCNP code through the gamma streaming experiments carried out with the ducts of various shapes and dimensions. Over all, the present study throws light on suitability of MCNP code for the analysis of gamma radiation streaming problems for all duct configurations considered. In the present study, only dose rate comparisons have been made. Studies on spectral comparison of streaming radiation are in process. Also, it is planned to repeat the experiments with various shield materials. Since the penetrations and ducts through bulk shields are unavoidable in an operating nuclear facility the results on this kind of radiation streaming simulations and experiments will be very useful in the shield structure optimization without compromising the radiation safety

  19. PROBLEMS OF UKRAINIAN ENERGY AND THEIR SOLUTIONS

    Directory of Open Access Journals (Sweden)

    G. Fyliuk

    2016-04-01

    Full Text Available The paper studies current situation at the Ukrainian electric power industry. The problems which prevent development of the industry under current conditions are analyzed. The problems of the cross-subsidization are exposed. The ways of the problems solutions are offered.

  20. Exact solution of nonsteady thermal boundary layer equation

    International Nuclear Information System (INIS)

    Dorfman, A.S.

    1995-01-01

    There are only a few exact solutions of the thermal boundary layer equation. Most of them are derived for a specific surface temperature distribution. The first exact solution of the steady-state boundary layer equation was given for a plate with constant surface temperature and free-stream velocity. The same problem for a plate with polynomial surface temperature distribution was solved by Chapmen and Rubesin. Levy gave the exact solution for the case of a power law distribution of both surface temperature and free-stream velocity. The exact solution of the steady-state boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution was given by the author in two forms: of series and of the integral with an influence function of unheated zone. A similar solution of the nonsteady thermal boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution is presented here. In this case, the coefficients of series depend on time, and in the limit t → ∞ they become the constant coefficients of a similar solution published before. This solution, unlike the one presented here, does not satisfy the initial conditions at t = 0, and, hence, can be used only in time after the beginning of the process. The solution in the form of a series becomes a closed-form exact solution for polynomial surface temperature and a power law free-stream velocity distribution. 7 refs., 2 figs

  1. Effects of nitrogen on temporal and spatial patterns of nitrate in streams and soil solution of a central hardwood forest

    Science.gov (United States)

    Frank S. Gilliam; Mary Beth. Adams

    2011-01-01

    This study examined changes in stream and soil water NO3- and their relationship to temporal and spatial patterns of NO3- in soil solution of watersheds at the Fernow Experimental Forest, West Virginia. Following tenfold increases in stream NO3

  2. The Median Solution of the Newsvendor Problem and Some Observations

    Directory of Open Access Journals (Sweden)

    Sinha Pritibhushan

    2015-09-01

    Full Text Available We consider the median solution of the Newsvendor Problem. Some properties of such a solution are shown through a theoretical analysis and a numerical experiment. Sometimes, though not often, median solution may be better than solutions maximizing expected profit, or maximizing minimum possible, over distribution with the same average and standard deviation, expected profit, according to some criteria. We discuss the practical suitability of the objective function set and the solution derived, for the Newsvendor Problem, and other such random optimization problems.

  3. Solution of Riemann problem for ideal polytropic dusty gas

    International Nuclear Information System (INIS)

    Nath, Triloki; Gupta, R.K.; Singh, L.P.

    2017-01-01

    Highlights : • A direct approach is used to solve the Riemann problem for dusty ideal polytropic gas. • An analytical solution to the Riemann problem for dusty gas flow is obtained. • The existence and uniqueness of the solution in dusty gas is discussed. • Properties of elementary wave solutions of Riemann problem are discussed. • Effect of mass fraction of solid particles on the solution is presented. - Abstract: The Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady flow of an ideal polytropic gas with dust particles is solved analytically without any restriction on magnitude of the initial states. The elementary wave solutions of the Riemann problem, that is shock waves, rarefaction waves and contact discontinuities are derived explicitly and their properties are discussed, for a dusty gas. The existence and uniqueness of the solution for Riemann problem in dusty gas is discussed. Also the conditions leading to the existence of shock waves or simple waves for a 1-family and 3-family curves in the solution of the Riemann problem are discussed. It is observed that the presence of dust particles in an ideal polytropic gas leads to more complex expression as compared to the corresponding ideal case; however all the parallel results remain same. Also, the effect of variation of mass fraction of dust particles with fixed volume fraction (Z) and the ratio of specific heat of the solid particles and the specific heat of the gas at constant pressure on the variation of velocity and density across the shock wave, rarefaction wave and contact discontinuities are discussed.

  4. Geometric Series: A New Solution to the Dog Problem

    Science.gov (United States)

    Dion, Peter; Ho, Anthony

    2013-01-01

    This article describes what is often referred to as the dog, beetle, mice, ant, or turtle problem. Solutions to this problem exist, some being variations of each other, which involve mathematics of a wide range of complexity. Herein, the authors describe the intuitive solution and the calculus solution and then offer a completely new solution…

  5. Noniterative Solution of Some Fermat-Weber Location Problems

    Directory of Open Access Journals (Sweden)

    Reuven Chen

    2011-01-01

    Full Text Available The Fermat-Weber problem of optimally locating a service facility in the Euclidean continuous two-dimensional space is usually solved by the iterative process first suggested by Weiszfeld or by later versions thereof. The methods are usually rather efficient, but exceptional problems are described in the literature in which the iterative solution is exceedingly long. These problems are such that the solution either coincides with one of the demand points or nearly coincides with it. We describe a noniterative direct alternative, based on the insight that the gradient components of the individual demand points can be considered as pooling forces with respect to the solution point. It is demonstrated that symmetrical problems can thus be optimally solved with no iterations, in analogy to finding the equilibrium point in statics. These include a well-known ill-conditioned problem and its variants, which can now be easily solved to optimality using geometrical considerations.

  6. Molecular computation: RNA solutions to chess problems.

    Science.gov (United States)

    Faulhammer, D; Cukras, A R; Lipton, R J; Landweber, L F

    2000-02-15

    We have expanded the field of "DNA computers" to RNA and present a general approach for the solution of satisfiability problems. As an example, we consider a variant of the "Knight problem," which asks generally what configurations of knights can one place on an n x n chess board such that no knight is attacking any other knight on the board. Using specific ribonuclease digestion to manipulate strands of a 10-bit binary RNA library, we developed a molecular algorithm and applied it to a 3 x 3 chessboard as a 9-bit instance of this problem. Here, the nine spaces on the board correspond to nine "bits" or placeholders in a combinatorial RNA library. We recovered a set of "winning" molecules that describe solutions to this problem.

  7. The Overview and Appliance of some Streaming Video software solutions

    OpenAIRE

    Qin , Yan

    2010-01-01

    This paper introduces the basic streaming media technology, the streaming media system structure, principles of streaming media technology; streaming media file formats and so on. After that, it discusses the use streaming media in distance education, broadband video on demand, Internet broadcasting, video conferences and a more detailed exposition in streaming media. As the existing technology has been unable to satisfy the increasing needs of the Internet users, the streaming media technol...

  8. Solution of the gauge hierarchy problem

    International Nuclear Information System (INIS)

    Dimopoulos, S.; Georgi, H.

    1982-01-01

    We propose a novel solution to the gauge hierarchy problem in theories with softly broken supersymmetry. Quantum effects can resuscitate classically sick theories, producing the large scale from the small supersymmetry breaking scale. We use this mechanism to construct realistic SU(6) and SU(5) GUTs which do not suffer from gauge hierarchy or fine tuning problems. (orig.)

  9. Interactions of solutes and streambed sediment: 1. An experimental analysis of cation and anion transport in a mountain stream

    Science.gov (United States)

    Bencala, Kenneth E.; Kennedy, Vance C.; Zellweger, Gary W.; Jackman, Alan P.; Avanzino, Ronald J.

    1984-01-01

    An experimental injection was performed to study the transport of stream water solutes under conditions of significant interaction with streambed sediments in a mountain pool-and-riffle stream. Experiments were conducted in Little Lost Man Creek, Humboldt County, California, in a period of low flow duringwhich only a part of the bank-full channel held active surface flow. The injection of chloride and several trace cations lasted 20 days. In this report we discuss the results of the first 24 hours of the injection and survey the results of the first 10 days. Solute-streambed interactions of two types were observed. First, the physical transport of the conservative tracer, chloride, was affected by intergravel flow and stagnant watt, zones created by the bed relief. Second, the transport of the cations (strontium, potassium, and lithium) was appreciably modified by sorption onto streambed sediment. In the stream the readily observable consequence of the solute-streambed interactions was an attenuation of the dissolved concentration of each of the tracers. The attenuation in the stream channel occurred concurrently with the storage of tracers in the streambed via both physical and chemical processes. All tracers were subsequently present in shallow wells dug several meters from the wetted part of the channel. Sediment samples collected approximately 3 weeks after the start of the injection contained increased concentrations of the injected cations.

  10. Constraint satisfaction problems with isolated solutions are hard

    International Nuclear Information System (INIS)

    Zdeborová, Lenka; Mézard, Marc

    2008-01-01

    We study the phase diagram and the algorithmic hardness of the random 'locked' constraint satisfaction problems, and compare them to the commonly studied 'non-locked' problems like satisfiability of Boolean formulae or graph coloring. The special property of the locked problems is that clusters of solutions are isolated points. This simplifies significantly the determination of the phase diagram, which makes the locked problems particularly appealing from the mathematical point of view. On the other hand, we show empirically that the clustered phase of these problems is extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. Our results suggest that the easy/hard transition (for currently known algorithms) in the locked problems coincides with the clustering transition. These should thus be regarded as new benchmarks of really hard constraint satisfaction problems

  11. Finding practical solutions to complex problems: IDRC's fifth annual ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-15

    Apr 15, 2016 ... English · Français ... Finding practical solutions to complex problems: IDRC's fifth annual ... “IDRC staff share a common goal with the researchers they work with – to find low-cost, down-to-earth solutions to complex problems ...

  12. Problems and solutions in quantum chemistry and physics

    CERN Document Server

    Johnson, Charles S

    1988-01-01

    Unusually varied problems, with detailed solutions, cover quantum mechanics, wave mechanics, angular momentum, molecular spectroscopy, scattering theory, more. 280 problems, plus 139 supplementary exercises.

  13. The Pizza Problem: A Solution with Sequences

    Science.gov (United States)

    Shafer, Kathryn G.; Mast, Caleb J.

    2008-01-01

    This article addresses the issues of coaching and assessing. A preservice middle school teacher's unique solution to the Pizza problem was not what the professor expected. The student's solution strategy, based on sequences and a reinvention of Pascal's triangle, is explained in detail. (Contains 8 figures.)

  14. Analytic Solution to Shell Boundary – Value Problems

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available Object of research is to find analytical solution to the shell boundary – value problems, i.e. to consider the solution for a class of problems concerning the mechanics of hoop closed shells strain.The objective of work is to create an analytical method to define a stress – strain state of shells under non-axisymmetric loading. Thus, a main goal is to derive the formulas – solutions of the linear ordinary differential equations with variable continuous coefficients.The partial derivative differential equations of mechanics of shells strain by Fourier's method of variables division are reduced to the system of the differential equations with ordinary derivatives. The paper presents the obtained formulas to define solutions of the uniform differential equations and received on their basis formulas to define a particular solution depending on a type of the right parts of the differential equations.The analytical algorithm of the solution of a boundary task uses an approach to transfer the boundary conditions to the randomly chosen point of an interval of changing independent variable through the solution of the canonical matrix ordinary differential equation with the subsequent solution of system of algebraic equations for compatibility of boundary conditions at this point. Efficiency of algorithm is based on the fact that the solution of the ordinary differential equations is defined as the values of Cauchy – Krylova functions, which meet initial arbitrary conditions.The results of researches presented in work are useful to experts in the field of calculus mathematics, dealing with solution of systems of linear ordinary differential equations and creation of effective analytical computing methods to solve shell boundary – value problems.

  15. Verification of a dust transport model against theoretical solutions in multidimensional advection diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z., E-mail: zhanjie.xu@kit.ed [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, J.R. [Ingenieurbuero DuBois-Pitzer-Travis, 63071 Offenbach (Germany); Breitung, W.; Jordan, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2010-12-15

    Potentially explosive dust aerosol mobilization in the vacuum vessel is an important safety issue of the ITER facility, especially in scenarios of loss of vacuum accidents. Therefore dust mobilization modeling is ongoing in Research Center Karlsuhe. At first the aerosol particle model in the GASFLOW computer code is introduced briefly. To verify the particle model, a series of particle diffusion problems are simulated in one-, two- and three-dimensions. In each problem a particle source is initially exposed to an advective gas flow. Then a dust cloud is formed in the down stream. To obtain the theoretical solution about the particle concentration in the dust cloud, the governing diffusion partial differential equations with an additional advection term are solved by using Green's function method. Different spatial and temporal characters about the particle sources are also considered, e.g., instantaneous or continuous sources, line, or volume sources and so forth. The GASFLOW simulation results about the particle concentrations and the corresponding Green's function solutions are compared case by case. Very good agreements are found between the theoretical solutions and the GASGLOW simulations, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle diameter, with a negligible inertia effect of the particles. This verification work shows that the particle model of the GASFLOW code can reproduce numerically particle transport and diffusion in a good way.

  16. A History of Aerospace Problems, Their Solutions, Their Lessons

    Science.gov (United States)

    Ryan, R. S.

    1996-01-01

    The positive aspect of problem occurrences is the opportunity for learning and a challenge for innovation. The learning aspect is not restricted to the solution period of the problem occurrence, but can become the beacon for problem prevention on future programs. Problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, a concerted effort has been expended to study these problems, their solutions, their derived lessons learned, and projections for future programs. This includes identification of technology thrusts, process changes, codes development, etc. However, they must not become an excuse for adding layers upon layers of standards, criteria, and requirements, but must serve as guidelines that assist instead of stifling engineers. This report is an extension of prior efforts to accomplish this task. Although these efforts only scratch the surface, it is a beginning that others must complete.

  17. Selection of the Best Process Stream to Remove Ca2+ Ion Using Electrodialysis from Sugar Solution

    Directory of Open Access Journals (Sweden)

    Jogi Ganesh Dattatreya Tadimeti

    2014-01-01

    Full Text Available Electrodialytic removal of calcium chloride (CaCl2, 25–50 mol·m−3 from 5% sugar solution was executed in batch recirculation mode. Calcium ion removal rate was monitored with (i applied potential, (ii feed flow rate, (iii solution viscosity and conductivity, and (iv catholyte streams (NaOH or sodium salt of ethylene diamine tetraacetic acid-acetic acid, Na2EDTA-AA. Unsteady state model for ion concentration change was written for the ED cell used. Linearized Nernst-Planck equation instead of Ohm’s law was applied to closely obtain the current density and concentration change theoretically. The model developed could closely predict the experimental observation. Mass transfer coefficients and specific energy densities were estimated for each combination of catholyte stream used. NaOH showed better performance for a short duration over Na2EDTA-acetic acid combination.

  18. Solution of linear ill-posed problems using overcomplete dictionaries

    OpenAIRE

    Pensky, Marianna

    2016-01-01

    In the present paper we consider application of overcomplete dictionaries to solution of general ill-posed linear inverse problems. Construction of an adaptive optimal solution for such problems usually relies either on a singular value decomposition or representation of the solution via an orthonormal basis. The shortcoming of both approaches lies in the fact that, in many situations, neither the eigenbasis of the linear operator nor a standard orthonormal basis constitutes an appropriate co...

  19. Uniqueness of solution to a stationary boundary kinetic problem

    International Nuclear Information System (INIS)

    Zhykharsky, A.V.

    1992-01-01

    The paper treats the question of uniqueness of solution to the boundary kinetic problem. This analysis is based on the accurate solutions to the stationary one-dimensional boundary kinetic problem for the limited plasma system. In the paper a simplified problem statement is used (no account is taken of the external magnetic field, a simplest form of boundary conditions is accepted) which, however, covers all features of the problem considered. Omitting the details of the conclusion we will write a set of Vlasov stationary kinetic equations for the cases of plane, cylindrical and spherical geometry of the problem. (author) 1 ref

  20. Using Text Mining to Uncover Students' Technology-Related Problems in Live Video Streaming

    Science.gov (United States)

    Abdous, M'hammed; He, Wu

    2011-01-01

    Because of their capacity to sift through large amounts of data, text mining and data mining are enabling higher education institutions to reveal valuable patterns in students' learning behaviours without having to resort to traditional survey methods. In an effort to uncover live video streaming (LVS) students' technology related-problems and to…

  1. Solutions to selected exercise problems in quantum chemistry and spectroscopy

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    Suggested solutions to a number of problems from the collection "Exercise Problems in Quantum Chemistry and Spectroscopy", previously published on ResearchGate (DOI: 10.13140/RG.2.1.4024.8162).......Suggested solutions to a number of problems from the collection "Exercise Problems in Quantum Chemistry and Spectroscopy", previously published on ResearchGate (DOI: 10.13140/RG.2.1.4024.8162)....

  2. Efficient solutions to the NDA-NCA low-order eigenvalue problem

    International Nuclear Information System (INIS)

    Willert, J. A.; Kelley, C. T.

    2013-01-01

    Recent algorithmic advances combine moment-based acceleration and Jacobian-Free Newton-Krylov (JFNK) methods to accelerate the computation of the dominant eigenvalue in a k-eigenvalue calculation. In particular, NDA-NCA [1], builds a sequence of low-order (LO) diffusion-based eigenvalue problems in which the solution converges to the true eigenvalue solution. Within NDA-NCA, the solution to the LO k-eigenvalue problem is computed by solving a system of nonlinear equation using some variant of Newton's method. We show that we can speed up the solution to the LO problem dramatically by abandoning the JFNK method and exploiting the structure of the Jacobian matrix. (authors)

  3. Assessing biogeochemical cycling and transient storage of surface water in Eastern Siberian streams using short-term solute additions

    Science.gov (United States)

    Schade, J. D.; Seybold, E.; Drake, T. W.; Bulygina, E. B.; Bunn, A. G.; Chandra, S.; Davydov, S.; Frey, K. E.; Holmes, R. M.; Sobczak, W. V.; Spektor, V. V.; Zimov, S. A.; Zimov, N.

    2009-12-01

    Recent studies highlight the role of stream networks in the processing of nutrient and organic matter inputs from the surrounding watershed. Clear evidence exists that streams actively regulate fluxes of carbon, nitrogen, and phosphorus from upland terrestrial ecosystems to downstream aquatic environments. This is of particular interest in Arctic streams because of the potential impact of permafrost thaw due to global warming on inputs of nutrients and organic matter to small streams high in the landscape. Knowledge of functional characteristics of these stream ecosystems is paramount to our ability to predict changes in stream ecosystems as climate changes. Biogeochemical models developed by stream ecologists, specifically nutrient spiraling models, provide a set of metrics that we used to assess nutrient processing rates in several streams in the Eastern Siberian Arctic. We quantified these metrics using solute addition experiments in which nitrogen and phosphorus were added simultaneously with chloride as a conservative tracer. We focused on 5 streams, three flowing across upland yedoma soils and two floodplain streams. Yedoma streams showed higher uptake of N than P, suggesting N limitation of biological processes, with large variation between these three streams in the severity of N limitation. Floodplain streams both showed substantially higher P uptake than N uptake, indicating strong P limitation. Given these results, it is probable that these two types of streams will respond quite differently to changes in nutrient and organic matter inputs as permafrost thaws. Furthermore, uptake was strongly linked to discharge and transient storage of surface water, measured using temporal patterns of the conservative tracer, with higher nutrient uptake in low discharge, high transient storage streams. Given the possibility that both discharge and nutrient inputs will increase as permafrost thaws, longer-term nutrient enrichment experiments are needed to develop

  4. ISP: an optimal out-of-core image-set processing streaming architecture for parallel heterogeneous systems.

    Science.gov (United States)

    Ha, Linh Khanh; Krüger, Jens; Dihl Comba, João Luiz; Silva, Cláudio T; Joshi, Sarang

    2012-06-01

    Image population analysis is the class of statistical methods that plays a central role in understanding the development, evolution, and disease of a population. However, these techniques often require excessive computational power and memory that are compounded with a large number of volumetric inputs. Restricted access to supercomputing power limits its influence in general research and practical applications. In this paper we introduce ISP, an Image-Set Processing streaming framework that harnesses the processing power of commodity heterogeneous CPU/GPU systems and attempts to solve this computational problem. In ISP, we introduce specially designed streaming algorithms and data structures that provide an optimal solution for out-of-core multiimage processing problems both in terms of memory usage and computational efficiency. ISP makes use of the asynchronous execution mechanism supported by parallel heterogeneous systems to efficiently hide the inherent latency of the processing pipeline of out-of-core approaches. Consequently, with computationally intensive problems, the ISP out-of-core solution can achieve the same performance as the in-core solution. We demonstrate the efficiency of the ISP framework on synthetic and real datasets.

  5. Streaming effect of wall oscillation to boundary layer separation

    Science.gov (United States)

    Wu, X. H.; Wu, J. Z.; Wu, J. M.

    1991-01-01

    This paper presents a preliminary theoretical result on the time averaged streaming effect of local forcing excitation to the boundary layer separation from smooth surface. The problem is formulated as a periodic disturbance to a basic steady breakaway separating flow, for which the data are taken from a numerical triple-deck solution. The ratio of Strouhal number St and Reynolds number Re plays an important role, both being assumed sufficiently high. The analytical and numerical results show that this streaming effect is quite strong at proper values of St/Re exp 1/4, which may delay or even suppress the separation.

  6. Algebraic solution of the synthesis problem for coded sequences

    International Nuclear Information System (INIS)

    Leukhin, Anatolii N

    2005-01-01

    The algebraic solution of a 'complex' problem of synthesis of phase-coded (PC) sequences with the zero level of side lobes of the cyclic autocorrelation function (ACF) is proposed. It is shown that the solution of the synthesis problem is connected with the existence of difference sets for a given code dimension. The problem of estimating the number of possible code combinations for a given code dimension is solved. It is pointed out that the problem of synthesis of PC sequences is related to the fundamental problems of discrete mathematics and, first of all, to a number of combinatorial problems, which can be solved, as the number factorisation problem, by algebraic methods by using the theory of Galois fields and groups. (fourth seminar to the memory of d.n. klyshko)

  7. Positive solutions for a fourth order boundary value problem

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2005-02-01

    Full Text Available We consider a boundary value problem for the beam equation, in which the boundary conditions mean that the beam is embedded at one end and free at the other end. Some new estimates to the positive solutions to the boundary value problem are obtained. Some sufficient conditions for the existence of at least one positive solution for the boundary value problem are established. An example is given at the end of the paper to illustrate the main results.

  8. Solute transport in streams of varying morphology inferred from a high resolution network of potentiometric wireless chloride sensors

    Science.gov (United States)

    Klaus, Julian; Smettem, Keith; Pfister, Laurent; Harris, Nick

    2017-04-01

    There is ongoing interest in understanding and quantifying the travel times and dispersion of solutes moving through stream environments, including the hyporheic zone and/or in-channel dead zones where retention affects biogeochemical cycling processes that are critical to stream ecosystem functioning. Modelling these transport and retention processes requires acquisition of tracer data from injection experiments where the concentrations are recorded downstream. Such experiments are often time consuming and costly, which may be the reason many modelling studies of chemical transport have tended to rely on relatively few well documented field case studies. This leads to the need of fast and cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds at various locations in the stream environment. To tackle this challenge we present data from several tracer experiments carried out in the Attert river catchment in Luxembourg employing low-cost (in the order of a euro per sensor) potentiometric chloride sensors in a distributed array. We injected NaCl under various baseflow conditions in streams of different morphologies and observed solute transport at various distances and locations. This data is used to benchmark the sensors to data obtained from more expensive electrical conductivity meters. Furthermore, the data allowed spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.

  9. Numerical solution of pipe flow problems for generalized Newtonian fluids

    International Nuclear Information System (INIS)

    Samuelsson, K.

    1993-01-01

    In this work we study the stationary laminar flow of incompressible generalized Newtonian fluids in a pipe with constant arbitrary cross-section. The resulting nonlinear boundary value problems can be written in a variational formulation and solved using finite elements and the augmented Lagrangian method. The solution of the boundary value problem is obtained by finding a saddle point of the augmented Lagrangian. In the algorithm the nonlinear part of the equations is treated locally and the solution is obtained by iteration between this nonlinear problem and a global linear problem. For the solution of the linear problem we use the SSOR preconditioned conjugate gradient method. The approximating problem is solved on a sequence of adaptively refined grids. A scheme for adjusting the value of the crucial penalization parameter of the augmented Lagrangian is proposed. Applications to pipe flow and a problem from the theory of capacities are given. (author) (34 refs.)

  10. three solutions for a semilinear elliptic boundary value problem

    Indian Academy of Sciences (India)

    69

    Keywords: The Laplacian operator, elliptic problem, Nehari man- ifold, three critical points, weak solution. 1. Introduction. Let Ω be a smooth bounded domain in RN , N ≥ 3 . In this work, we show the existence of at least three solutions for the semilinear elliptic boundary- value problem: (Pλ).. −∆u = f(x)|u(x)|p−2u(x) + ...

  11. Explicit solution of Riemann-Hilbert problems for the Ernst equation

    Science.gov (United States)

    Klein, C.; Richter, O.

    1998-01-01

    Riemann-Hilbert problems are an important solution technique for completely integrable differential equations. They are used to introduce a free function in the solutions which can be used at least in principle to solve initial or boundary value problems. But even if the initial or boundary data can be translated into a Riemann-Hilbert problem, it is in general impossible to obtain explicit solutions. In the case of the Ernst equation, however, this is possible for a large class because the matrix problem can be shown to be gauge equivalent to a scalar one on a hyperelliptic Riemann surface that can be solved in terms of theta functions. As an example we discuss the rigidly rotating dust disk.

  12. ASP.NET MVC 4 recipes a problem-solution approach

    CERN Document Server

    Ciliberti, John

    2013-01-01

    ASP.NET MVC 4 Recipes is a practical guide for developers creating modern web applications, cutting through the complexities of ASP.NET, jQuery, Knockout.js and HTML 5 to provide straightforward solutions to common web development problems using proven methods based on best practices. The problem-solution approach gets you in, out, and back to work quickly while deepening your understanding of the underlying platform and how to develop with it. Author John Ciliberti guides you through the framework and development tools, presenting typical challenges, along with code solutions and clear, conci

  13. Entropy landscape and non-Gibbs solutions in constraint satisfaction problems

    International Nuclear Information System (INIS)

    Dall'Asta, L.; Ramezanpour, A.; Zecchina, R.

    2008-05-01

    We study the entropy landscape of solutions for the bicoloring problem in random graphs, a representative difficult constraint satisfaction problem. Our goal is to classify which type of clusters of solutions are addressed by different algorithms. In the first part of the study we use the cavity method to obtain the number of clusters with a given internal entropy and determine the phase diagram of the problem, e.g. dynamical, rigidity and SAT-UNSAT transitions. In the second part of the paper we analyze different algorithms and locate their behavior in the entropy landscape of the problem. For instance we show that a smoothed version of a decimation strategy based on Belief Propagation is able to find solutions belonging to sub-dominant clusters even beyond the so called rigidity transition where the thermodynamically relevant clusters become frozen. These non-equilibrium solutions belong to the most probable unfrozen clusters. (author)

  14. Advanced monitoring with complex stream processing

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Making sense of metrics and logs for service monitoring can be a complicated task. Valuable information is normally scattered across several streams of monitoring data, requiring aggregation, correlation and time-based analysis to promptly detect problems and failures. This presentations shows a solution which is used to support the advanced monitoring of the messaging services provided by the IT Department. It uses Esper, an open-source software product for Complex Event Processing (CEP), that analyses series of events for deriving conclusions from them.

  15. Streaming for Functional Data-Parallel Languages

    DEFF Research Database (Denmark)

    Madsen, Frederik Meisner

    In this thesis, we investigate streaming as a general solution to the space inefficiency commonly found in functional data-parallel programming languages. The data-parallel paradigm maps well to parallel SIMD-style hardware. However, the traditional fully materializing execution strategy...... by extending two existing data-parallel languages: NESL and Accelerate. In the extensions we map bulk operations to data-parallel streams that can evaluate fully sequential, fully parallel or anything in between. By a dataflow, piecewise parallel execution strategy, the runtime system can adjust to any target...... flattening necessitates all sub-computations to materialize at the same time. For example, naive n by n matrix multiplication requires n^3 space in NESL because the algorithm contains n^3 independent scalar multiplications. For large values of n, this is completely unacceptable. We address the problem...

  16. Providing solutions to engineering problems

    International Nuclear Information System (INIS)

    Connop, R.P.P.

    1991-01-01

    BNFL has acquired unique experience over a period of 40 years in specifying, designing and constructing spent fuel reprocessing and associated waste management plant. This experience is currently used to support a pound 5.5 billion capital investment programme. This paper reviews a number of engineering problems and their solutions to highlight BNFL experience in providing comprehensive specification, design and engineering and project management services. (author)

  17. Spring Recipes A Problem-solution Approach

    CERN Document Server

    Long, Josh; Mak, Gary

    2010-01-01

    With over 3 Million users/developers, Spring Framework is the leading "out of the box" Java framework. Spring addresses and offers simple solutions for most aspects of your Java/Java EE application development, and guides you to use industry best practices to design and implement your applications. The release of Spring Framework 3 has ushered in many improvements and new features. Spring Recipes: A Problem-Solution Approach, Second Edition continues upon the bestselling success of the previous edition but focuses on the latest Spring 3 features for building enterprise Java applications.

  18. Problems of Turkish Librarianship and Problems for Solution

    Directory of Open Access Journals (Sweden)

    İrfan Çakın

    1993-09-01

    Full Text Available Report presented to the Librarianship, Documentation and Archives Committee of the UNESCO Turkish National Commission, identifies environmental factors, the notion of library and librarianship in the society, and the low profile of librarians as main sources of problems. The society still sees the librarian as the protector of books. The value given to the profession is, thus, limited to such a narrow understanding of the profession, which leads to low payment and insufficient resource allocation to the libraries. Main field of activity, that is, the pro\\ision of information is expected from documentation and information centres. Library and information work cannot be separated from each other. The proposals for solution of the problems include improvement of professional education, legal provisions, and reorganiztion of professional organizations.

  19. Existence and Stability of Solutions for Implicit Multivalued Vector Equilibrium Problems

    Directory of Open Access Journals (Sweden)

    Li Qiuying

    2011-01-01

    Full Text Available A class of implicit multivalued vector equilibrium problems is studied. By using the generalized Fan-Browder fixed point theorem, some existence results of solutions for the implicit multivalued vector equilibrium problems are obtained under some suitable assumptions. Moreover, a stability result of solutions for the implicit multivalued vector equilibrium problems is derived. These results extend and unify some recent results for implicit vector equilibrium problems, multivalued vector variational inequality problems, and vector variational inequality problems.

  20. Enhanced exact solution methods for the Team Orienteering Problem

    NARCIS (Netherlands)

    Keshtkaran, M.; Ziarati, K.; Bettinelli, A.; Vigo, D.

    2016-01-01

    The Team Orienteering Problem (TOP) is one of the most investigated problems in the family of vehicle routing problems with profits. In this paper, we propose a Branch-and-Price approach to find proven optimal solutions to TOP. The pricing sub-problem is solved by a bounded bidirectional dynamic

  1. Hilbert's seventh problem solutions and extensions

    CERN Document Server

    Tubbs, Robert

    2016-01-01

    This exposition is primarily a survey of the elementary yet subtle innovations of several mathematicians between 1929 and 1934 that led to partial and then complete solutions to Hilbert’s Seventh Problem (from the International Congress of Mathematicians in Paris, 1900). This volume is suitable for both mathematics students, wishing to experience how different mathematical ideas can come together to establish results, and for research mathematicians interested in the fascinating progression of mathematical ideas that solved Hilbert’s problem and established a modern theory of transcendental numbers. .

  2. Development of solutions to benchmark piping problems

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M; Chang, T Y; Prachuktam, S; Hartzman, M

    1977-12-01

    Benchmark problems and their solutions are presented. The problems consist in calculating the static and dynamic response of selected piping structures subjected to a variety of loading conditions. The structures range from simple pipe geometries to a representative full scale primary nuclear piping system, which includes the various components and their supports. These structures are assumed to behave in a linear elastic fashion only, i.e., they experience small deformations and small displacements with no existing gaps, and remain elastic through their entire response. The solutions were obtained by using the program EPIPE, which is a modification of the widely available program SAP IV. A brief outline of the theoretical background of this program and its verification is also included.

  3. Problem solution as a guided activity with Mexican schoolchildren

    Directory of Open Access Journals (Sweden)

    Solovieva, Yulia

    2016-09-01

    Full Text Available The goal of the present study was to describe the organization of a guided activity for problem solution in primary school. The method, which was applied to mathematical problems, allowed us to propose a specific orientation for the proper solution of arithmetic problems by pupils. The study was based on the activity-theory approach applied to the process of teaching and learning. It was carried out with pupils in the second grade of a private school in the city of Puebla (Mexico. The method was used in the classroom during 30 school sessions of 1 hour per day. The methodology of formative experiment was used in the study. Qualitative analysis of the pedagogical process of teaching and learning was conducted. The results show that, after participation in the formative process, the schoolchildren became able to identify essential elements, data, and all relationships among them in order to solve mathematical problems. At the end of the program the verbal external level was raised for the process of orientation and the solution of problems together with the ability to use logarithms independently. We conclude that orientation, as a guided form of activity in primary school, is essential for the development of the ability to analyze problems.

  4. Sediment problems in urban areas

    Science.gov (United States)

    Guy, Harold P.

    1970-01-01

    A recognition of and solution to sediment problems in urban areas is necessary if society is to have an acceptable living environment. Soil erosion and sediment deposition in urban areas are as much an environmental blight as badly paved and littered streets, dilapidated buildings, billboard clutter, inept land use, and air, water, and noise pollution. In addition, sediment has many direct and indirect effects on streams that may be either part of or very remote from the urban environment. Sediment, for example, is widely recognized as a pollutant of streams and other water bodies.

  5. Analytical solution for heat conduction problem in composite slab and its implementation in constructal solution for cooling of electronics

    International Nuclear Information System (INIS)

    Kuddusi, Luetfullah; Denton, Jesse C.

    2007-01-01

    The constructal solution for cooling of electronics requires solution of a fundamental heat conduction problem in a composite slab composed of a heat generating slab and a thin strip of high conductivity material that is responsible for discharging the generated heat to a heat sink located at one end of the strip. The fundamental 2D heat conduction problem is solved analytically by applying an integral transform method. The analytical solution is then employed in a constructal solution, following Bejan, for cooling of electronics. The temperature and heat flux distributions of the elemental heat generating slabs are assumed to be the same as those of the analytical solution in all the elemental volumes and the high conductivity strips distributed in the different constructs. Although the analytical solution of the fundamental 2D heat conduction problem improves the accuracy of the distributions in the elemental slabs, the results following Bejan's strategy do not affirm the accuracy of Bejan's constructal solution itself as applied to this problem of cooling of electronics. Several different strategies are possible for developing a constructal solution to this problem as is indicated

  6. Injection, injectivity and injectability in geothermal operations: problems and possible solutions. Phase I. Definition of the problems

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, O.J.; Crichlow, H.B.

    1979-02-14

    The following topics are covered: thermodynamic instability of brine, injectivity loss during regular production and injection operations, injectivity loss caused by measures other than regular operations, heat mining and associated reservoir problems in reinjection, pressure maintenance through imported make-up water, suggested solutions to injection problems, and suggested solutions to injection problems: remedial and stimulation measures. (MHR)

  7. Solution to reinforcement learning problems with artificial potential field

    Institute of Scientific and Technical Information of China (English)

    XIE Li-juan; XIE Guang-rong; CHEN Huan-wen; LI Xiao-li

    2008-01-01

    A novel method was designed to solve reinforcement learning problems with artificial potential field. Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF), which was a very appropriate method to model a reinforcement learning problem. Secondly, a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept. The performance of this new method was tested by a gridworld problem named as key and door maze. The experimental results show that within 45 trials, good and deterministic policies are found in almost all simulations. In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution, the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning. Therefore, the new method is simple and effective to give an optimal solution to the reinforcement learning problem.

  8. Evaluation of the streaming-matrix method for discrete-ordinates duct-streaming calculations

    International Nuclear Information System (INIS)

    Clark, B.A.; Urban, W.T.; Dudziak, D.J.

    1983-01-01

    A new deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) is applied to two realistic duct-shielding problems. The results are compared to standard discrete-ordinates and Monte Carlo calculations. The SMHM shows promise as an alternative deterministic streaming method to standard discrete-ordinates

  9. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    Science.gov (United States)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  10. Solution Methods for the Periodic Petrol Station Replenishment Problem

    Directory of Open Access Journals (Sweden)

    C Triki

    2013-12-01

    Full Text Available In this paper we introduce the Periodic Petrol Station Replenishment Problem (PPSRP over a T-day planning horizon and describe four heuristic methods for its solution. Even though all the proposed heuristics belong to the common partitioning-then-routing paradigm, they differ in assigning the stations to each day of the horizon. The resulting daily routing problems are then solved exactly until achieving optimalization. Moreover, an improvement procedure is also developed with the aim of ensuring a better quality solution. Our heuristics are tested and compared in two real-life cases, and our computational results show encouraging improvements with respect to a human planning solution

  11. Positive solutions for a nonlocal boundary-value problem with vector-valued response

    Directory of Open Access Journals (Sweden)

    Andrzej Nowakowski

    2002-05-01

    Full Text Available Using variational methods, we study the existence of positive solutions for a nonlocal boundary-value problem with vector-valued response. We develop duality and variational principles for this problem and present a numerical version which enables the approximation of solutions and gives a measure of a duality gap between primal and dual functional for approximate solutions for this problem.

  12. Operations research problems statements and solutions

    CERN Document Server

    Poler, Raúl; Díaz-Madroñero, Manuel

    2014-01-01

    The objective of this book is to provide a valuable compendium of problems as a reference for undergraduate and graduate students, faculty, researchers and practitioners of operations research and management science. These problems can serve as a basis for the development or study of assignments and exams. Also, they can be useful as a guide for the first stage of the model formulation, i.e. the definition of a problem. The book is divided into 11 chapters that address the following topics: Linear programming, integer programming, non linear programming, network modeling, inventory theory, queue theory, tree decision, game theory, dynamic programming and markov processes. Readers are going to find a considerable number of statements of operations research applications for management decision-making. The solutions of these problems are provided in a concise way although all topics start with a more developed resolution. The proposed problems are based on the research experience of the authors in real-world com...

  13. On solution to the problem of criticality

    International Nuclear Information System (INIS)

    Kyncl, Jan

    2012-05-01

    The problem of criticality for the neutron transport equation was treated. The problem was examined in Lebesgue space L ∞ and was based on some basic assumptions, which are sufficiently general and are in agreement with the spatial behaviour of both temperature and atomic densities of the materials as well as with the properties of all known models of neutron reactions with the medium. The criticality problem was transformed to one of determining the time-asymptotic behaviour of the solution with an initial condition. The initial-value problem was solved numerically by the Monte Carlo method, for which a specific random process and a random variable were constructed

  14. Critical solution for a Hill's type problem

    International Nuclear Information System (INIS)

    Cabral, Hildeberto; Castilho, Cesar

    2001-08-01

    We studied the problem of two satellites attracted by a center of force. Assuming the motion of the center of mass of the two satellites describes a keplerian circular motion around the center of force we regularized the collision between them using the Levi-Civita procedure. The existence of a constant of motion in the extended phase space allowed us to study the stability of the solution where the two satellites are tied together in their circular motion around the center of force. We call this solution the critical solution. A theorem of M Kummer is applied to prove, in specific conditions, the existence of two one-parametric families of almost periodic orbits for the satellites motion that bifurcates from the critical solution. (author)

  15. Experimental acidification of two biogeochemically-distinct neotropical streams: Buffering mechanisms and macroinvertebrate drift

    International Nuclear Information System (INIS)

    Ardón, Marcelo; Duff, John H.; Ramírez, Alonso; Small, Gaston E.; Jackman, Alan P.; Triska, Frank J.; Pringle, Catherine M.

    2013-01-01

    Research into the buffering mechanisms and ecological consequences of acidification in tropical streams is lacking. We have documented seasonal and episodic acidification events in streams draining La Selva Biological Station, Costa Rica. Across this forested landscape, the severity in seasonal and episodic acidification events varies due to interbasin groundwater flow (IGF). Streams that receive IGF have higher concentrations of solutes and more stable pH (∼ 6) than streams that do not receive IGF (pH ∼ 5). To examine the buffering capacity and vulnerability of macroinvertebrates to short-term acidification events, we added hydrochloric acid to acidify a low-solute, poorly buffered (without IGF) and a high-solute, well buffered stream (with IGF). We hypothesized that: 1) protonation of bicarbonate (HCO 3 − ) would neutralize most of the acid added in the high-solute stream, while base cation release from the sediments would be the most important buffering mechanism in the low-solute stream; 2) pH declines would mobilize inorganic aluminum (Ali) from sediments in both streams; and 3) pH declines would increase macroinvertebrate drift in both streams. We found that the high-solute stream neutralized 745 μeq/L (96% of the acid added), while the solute poor stream only neutralized 27.4 μeq/L (40%). Protonation of HCO 3 − was an important buffering mechanism in both streams. Base cation, Fe 2+ , and Ali release from sediments and protonation of organic acids also provided buffering in the low-solute stream. We measured low concentrations of Ali release in both streams (2-9 μeq/L) in response to acidification, but the low-solute stream released double the amount Ali per 100 μeq of acid added than the high solute stream. Macroinvertebrate drift increased in both streams in response to acidification and was dominated by Ephemeroptera and Chironomidae. Our results elucidate the different buffering mechanisms in tropical streams and suggest that low-solute

  16. Streaming Pool: reuse, combine and create reactive streams with pleasure

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    When connecting together heterogeneous and complex systems, it is not easy to exchange data between components. Streams of data are successfully used in industry in order to overcome this problem, especially in the case of "live" data. Streams are a specialization of the Observer design pattern and they provide asynchronous and non-blocking data flow. The ongoing effort of the ReactiveX initiative is one example that demonstrates how demanding this technology is even for big companies. Bridging the discrepancies of different technologies with common interfaces is already done by the Reactive Streams initiative and, in the JVM world, via reactive-streams-jvm interfaces. Streaming Pool is a framework for providing and discovering reactive streams. Through the mechanism of dependency injection provided by the Spring Framework, Streaming Pool provides a so called Discovery Service. This object can discover and chain streams of data that are technologically agnostic, through the use of Stream IDs. The stream to ...

  17. Numerical solutions of a three-point boundary value problem with an ...

    African Journals Online (AJOL)

    Numerical solutions of a three-point boundary value problem with an integral condition for a third-order partial differential equation by using Laplace transform method Solutions numeriques d'un probleme pour une classe d'equations differentielles d'ordr.

  18. Optimizing Reservoir-Stream-Aquifer Interactions for Conjunctive Use and Hydropower Production

    Directory of Open Access Journals (Sweden)

    Hala Fayad

    2012-01-01

    Full Text Available Conjunctive management of water resources involves coordinating use of surface water and groundwater resources. Very few simulation/optimization (S-O models for stream-aquifer system management have included detailed interactions between groundwater, streams, and reservoir storage. This paper presents an S-O model doing that via artificial neural network simulators and genetic algorithm optimizer for multiobjective conjunctive water use problems. The model simultaneously addresses all significant flows including reservoir-stream-diversion-aquifer interactions in a more detailed manner than previous models. The model simultaneously maximizes total water provided and hydropower production. A penalty function implicitly poses constraints on state variables. The model effectively finds feasible optimal solutions and the Pareto optimum. Illustrated is application for planning water resource and minihydropower system development.

  19. Formal solutions of inverse scattering problems. III

    International Nuclear Information System (INIS)

    Prosser, R.T.

    1980-01-01

    The formal solutions of certain three-dimensional inverse scattering problems presented in papers I and II of this series [J. Math. Phys. 10, 1819 (1969); 17 1175 (1976)] are obtained here as fixed points of a certain nonlinear mapping acting on a suitable Banach space of integral kernels. When the scattering data are sufficiently restricted, this mapping is shown to be a contraction, thereby establishing the existence, uniqueness, and continuous dependence on the data of these formal solutions

  20. The Numerical Solution of the Equilibrium Problem for a Stretchable Elastic Beam

    Science.gov (United States)

    Mehdiyeva, G. Y.; Aliyev, A. Y.

    2017-08-01

    The boundary value problem under consideration describes the equilibrium of an elastic beam that is stretched or contracted by specified forces. The left end of the beam is free of load, and the right end is rigidly lapped. To solve the problem numerically, an appropriate difference problem is constructed. Solving the difference problem, we obtain an approximate solution of the problem. We estimate the approximate solution of the stated problem.

  1. Numerical solution of non-linear diffusion problems

    International Nuclear Information System (INIS)

    Carmen, A. del; Ferreri, J.C.

    1998-01-01

    This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs

  2. InSTREAM: the individual-based stream trout research and environmental assessment model

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  3. Memristor-based memory: The sneak paths problem and solutions

    KAUST Repository

    Zidan, Mohammed A.

    2012-10-29

    In this paper, we investigate the read operation of memristor-based memories. We analyze the sneak paths problem and provide a noise margin metric to compare the various solutions proposed in the literature. We also analyze the power consumption associated with these solutions. Moreover, we study the effect of the aspect ratio of the memory array on the sneak paths. Finally, we introduce a new technique for solving the sneak paths problem by gating the memory cell using a three-terminal memistor device.

  4. Memristor-based memory: The sneak paths problem and solutions

    KAUST Repository

    Zidan, Mohammed A.; Fahmy, Hossam A.H.; Hussain, Muhammad Mustafa; Salama, Khaled N.

    2012-01-01

    In this paper, we investigate the read operation of memristor-based memories. We analyze the sneak paths problem and provide a noise margin metric to compare the various solutions proposed in the literature. We also analyze the power consumption associated with these solutions. Moreover, we study the effect of the aspect ratio of the memory array on the sneak paths. Finally, we introduce a new technique for solving the sneak paths problem by gating the memory cell using a three-terminal memistor device.

  5. Analytical solutions to matrix diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Kekäläinen, Pekka, E-mail: pekka.kekalainen@helsinki.fi [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)

    2014-10-06

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  6. Multiple Revolution Solutions for the Perturbed Lambert Problem using the Method of Particular Solutions and Picard Iteration

    Science.gov (United States)

    Woollands, Robyn M.; Read, Julie L.; Probe, Austin B.; Junkins, John L.

    2017-12-01

    We present a new method for solving the multiple revolution perturbed Lambert problem using the method of particular solutions and modified Chebyshev-Picard iteration. The method of particular solutions differs from the well-known Newton-shooting method in that integration of the state transition matrix (36 additional differential equations) is not required, and instead it makes use of a reference trajectory and a set of n particular solutions. Any numerical integrator can be used for solving two-point boundary problems with the method of particular solutions, however we show that using modified Chebyshev-Picard iteration affords an avenue for increased efficiency that is not available with other step-by-step integrators. We take advantage of the path approximation nature of modified Chebyshev-Picard iteration (nodes iteratively converge to fixed points in space) and utilize a variable fidelity force model for propagating the reference trajectory. Remarkably, we demonstrate that computing the particular solutions with only low fidelity function evaluations greatly increases the efficiency of the algorithm while maintaining machine precision accuracy. Our study reveals that solving the perturbed Lambert's problem using the method of particular solutions with modified Chebyshev-Picard iteration is about an order of magnitude faster compared with the classical shooting method and a tenth-twelfth order Runge-Kutta integrator. It is well known that the solution to Lambert's problem over multiple revolutions is not unique and to ensure that all possible solutions are considered we make use of a reliable preexisting Keplerian Lambert solver to warm start our perturbed algorithm.

  7. Problem and design drawing for solution of precision design drawing and machine design

    International Nuclear Information System (INIS)

    Heo, Gil

    1982-04-01

    The contents of this book are basic of design drawing, problem of machine design, problem of precision design drawing, problem of planar figure of sheet metal, design drawing for solution of machine design, design drawing for solution of precision design drawing and design drawing for planar figure of sheet metal. It tells of the problems and gives the solutions on precision design drawing and machine design.

  8. Experimental acidification of two biogeochemically-distinct neotropical streams: Buffering mechanisms and macroinvertebrate drift

    Energy Technology Data Exchange (ETDEWEB)

    Ardón, Marcelo, E-mail: ardonsayaom@ecu.edu [Department of Biology and North Carolina Center for Biodiversity, East Carolina University, Greenville, NC 27858 (United States); Duff, John H. [U.S. Geological Survey, Menlo Park, CA 94025 (United States); Ramírez, Alonso [Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00931 (Puerto Rico); Small, Gaston E. [Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108 (United States); Jackman, Alan P. [University of California, Davis, CA 95616 (United States); Triska, Frank J. [U.S. Geological Survey, Menlo Park, CA 94025 (United States); Pringle, Catherine M. [Odum School of Ecology, University of Georgia, Athens, GA 30602 (United States)

    2013-01-15

    Research into the buffering mechanisms and ecological consequences of acidification in tropical streams is lacking. We have documented seasonal and episodic acidification events in streams draining La Selva Biological Station, Costa Rica. Across this forested landscape, the severity in seasonal and episodic acidification events varies due to interbasin groundwater flow (IGF). Streams that receive IGF have higher concentrations of solutes and more stable pH (∼ 6) than streams that do not receive IGF (pH ∼ 5). To examine the buffering capacity and vulnerability of macroinvertebrates to short-term acidification events, we added hydrochloric acid to acidify a low-solute, poorly buffered (without IGF) and a high-solute, well buffered stream (with IGF). We hypothesized that: 1) protonation of bicarbonate (HCO{sub 3}{sup −}) would neutralize most of the acid added in the high-solute stream, while base cation release from the sediments would be the most important buffering mechanism in the low-solute stream; 2) pH declines would mobilize inorganic aluminum (Ali) from sediments in both streams; and 3) pH declines would increase macroinvertebrate drift in both streams. We found that the high-solute stream neutralized 745 μeq/L (96% of the acid added), while the solute poor stream only neutralized 27.4 μeq/L (40%). Protonation of HCO{sub 3}{sup −} was an important buffering mechanism in both streams. Base cation, Fe{sup 2+}, and Ali release from sediments and protonation of organic acids also provided buffering in the low-solute stream. We measured low concentrations of Ali release in both streams (2-9 μeq/L) in response to acidification, but the low-solute stream released double the amount Ali per 100 μeq of acid added than the high solute stream. Macroinvertebrate drift increased in both streams in response to acidification and was dominated by Ephemeroptera and Chironomidae. Our results elucidate the different buffering mechanisms in tropical streams and

  9. Solution of large nonlinear time-dependent problems using reduced coordinates

    International Nuclear Information System (INIS)

    Mish, K.D.

    1987-01-01

    This research is concerned with the idea of reducing a large time-dependent problem, such as one obtained from a finite-element discretization, down to a more manageable size while preserving the most-important physical behavior of the solution. This reduction process is motivated by the concept of a projection operator on a Hilbert Space, and leads to the Lanczos Algorithm for generation of approximate eigenvectors of a large symmetric matrix. The Lanczos Algorithm is then used to develop a reduced form of the spatial component of a time-dependent problem. The solution of the remaining temporal part of the problem is considered from the standpoint of numerical-integration schemes in the time domain. All of these theoretical results are combined to motivate the proposed reduced coordinate algorithm. This algorithm is then developed, discussed, and compared to related methods from the mechanics literature. The proposed reduced coordinate method is then applied to the solution of some representative problems in mechanics. The results of these problems are discussed, conclusions are drawn, and suggestions are made for related future research

  10. Solutions for the stable roommates problem with payments

    NARCIS (Netherlands)

    Biró, Péter; Bomhoff, M.J.; Golovach, Petr A.; Kern, Walter

    2014-01-01

    The stable roommates problem with payments has as input a graph G = (V , E ) with an edge weighting w : E → R≥0 and the problem is to find a stable solution. By pinpointing a relationship to the accessibility of the coalition structure core of matching games, we give a constructive proof for showing

  11. Numerical solution of electrostatic problems of the accelerator project VICKSI

    International Nuclear Information System (INIS)

    Janetzki, U.

    1975-03-01

    In this work, the numerical solution to a few of the electrostatic problems is dealt with which have occured within the framework of the heavy ion accelerator project VICKSI. By means of these selected examples, the versatile applicability of the numerical method is to be demonstrated, and simultaneously assistance is given for the solution of similar problems. The numerical process for solving ion-optics problems consists generally of two steps. In the first step, the potential distribution for a given boundary value problem is iteratively calculated for the Laplace equation, and then the image characteristics of the electostatic lense are investigated using the Raytrace method. (orig./LH) [de

  12. Hip-hop solutions of the 2N-body problem

    Science.gov (United States)

    Barrabés, Esther; Cors, Josep Maria; Pinyol, Conxita; Soler, Jaume

    2006-05-01

    Hip-hop solutions of the 2N-body problem with equal masses are shown to exist using an analytic continuation argument. These solutions are close to planar regular 2N-gon relative equilibria with small vertical oscillations. For fixed N, an infinity of these solutions are three-dimensional choreographies, with all the bodies moving along the same closed curve in the inertial frame.

  13. Solute-specific patterns and drivers of urban stream chemistry revealed by long-term monitoring in Baltimore, Maryland

    Science.gov (United States)

    Reisinger, A. J.; Woytowitz, E.; Majcher, E.; Rosi, E. J.; Groffman, P.

    2017-12-01

    Urban streams receive a myriad of chemical inputs from the surrounding landscape due to altered lithology (asphalt, concrete), leaky sewage infrastructure, and other human activities (road salt, fertilizer, industrial wastes, wastewater effluent), potentially leading to multiple chemical stressors occurring simultaneously. To evaluate potential drivers of water chemistry change, we used approximately 20 years of weekly water chemistry monitoring data from streams in the Baltimore Ecosystem Study (BES) to quantify trends of annual loads and flow-weighted concentrations for multiple solutes of interest, including nitrate (NO3-), phosphate (PO43-), total nitrogen (TN), total phosphorus (TP), chloride (Cl-), and sulfate (SO42-) and subsequently examined various gray and green infrastructure characteristics at the watershed scale. For example, we quantified annual volume and duration of reported sanitary sewer overflows (SSO) and cumulative storage volume and area of various best management practices (BMPs). Site- and solute-specific trends differed, but across our monitoring network we found evidence for decreasing annual export for multiple solutes. Additionally, we found that changes in gray- and green-infrastructure characteristics were related to changes in water quality at our most downstream (most urban) monitoring site. For example, annual NO3- loads increased with longer cumulative SSO duration, whereas annual PO43- and TP loads decreased with a cumulative BMP area in the watershed. Further, we used same long-term water chemistry data and multivariate analyses to investigate whether urban streams have unique water chemistry fingerprints representing the multiple chemical stressors at a given site, which could provide insight into sources and impacts of water-quality impairment. These analyses and results illustrate the major role gray and green infrastructure play in influencing water quality in urban environments, and illustrate that focusing on a variety of

  14. Solution of problems in calculus of variations via He's variational iteration method

    International Nuclear Information System (INIS)

    Tatari, Mehdi; Dehghan, Mehdi

    2007-01-01

    In the modeling of a large class of problems in science and engineering, the minimization of a functional is appeared. Finding the solution of these problems needs to solve the corresponding ordinary differential equations which are generally nonlinear. In recent years He's variational iteration method has been attracted a lot of attention of the researchers for solving nonlinear problems. This method finds the solution of the problem without any discretization of the equation. Since this method gives a closed form solution of the problem and avoids the round off errors, it can be considered as an efficient method for solving various kinds of problems. In this research He's variational iteration method will be employed for solving some problems in calculus of variations. Some examples are presented to show the efficiency of the proposed technique

  15. North Dakota's Centennial Quilt and Problem Solvers: Solutions: The Library Problem

    Science.gov (United States)

    Small, Marian

    2010-01-01

    Quilt investigations, such as the Barn quilt problem in the December 2008/January 2009 issue of "Teaching Children Mathematics" and its solutions in last month's issue, can spark interdisciplinary pursuits for teachers and exciting connections for the full range of elementary school students. This month, North Dakota's centennial quilt…

  16. Special function solutions of a spectral problem for a nonlinear quantum oscillator

    International Nuclear Information System (INIS)

    Schulze-Halberg, A; Morris, J R

    2012-01-01

    We construct exact solutions of a spectral problem involving the Schrödinger equation for a nonlinear, one-parameter oscillator potential. In contrast to a previous analysis of the problem (Carinena et al 2007 Ann. Phys. 322 434–59), where solutions were given through a Rodrigues-type formula, our approach leads to closed-form representations of the solutions in terms of special functions, not containing any derivative operators. We show normalizability and orthogonality of our solutions, as well as correct reduction of the problem to the harmonic oscillator model, if the parameter in the potential gets close to zero. (paper)

  17. Path integral solution of the Dirichlet problem

    International Nuclear Information System (INIS)

    LaChapelle, J.

    1997-01-01

    A scheme for functional integration developed by Cartier/DeWitt-Morette is first reviewed and then employed to construct the path integral representation for the solution of the Dirichlet problem in terms of first exit time. The path integral solution is then applied to calculate the fixed-energy point-to-point transition amplitude both in configuration and phase space. The path integral solution can also be derived using physical principles based on Feynman close-quote s original reasoning. We check that the Fourier transform in energy of the fixed-energy point-to-point transition amplitude gives the well known time-dependent transition amplitude, and calculate the WKB approximation. copyright 1997 Academic Press, Inc

  18. A new unconditionally stable and consistent quasi-analytical in-stream water quality solution scheme for CSTR-based water quality simulators

    Science.gov (United States)

    Woldegiorgis, Befekadu Taddesse; van Griensven, Ann; Pereira, Fernando; Bauwens, Willy

    2017-06-01

    Most common numerical solutions used in CSTR-based in-stream water quality simulators are susceptible to instabilities and/or solution inconsistencies. Usually, they cope with instability problems by adopting computationally expensive small time steps. However, some simulators use fixed computation time steps and hence do not have the flexibility to do so. This paper presents a novel quasi-analytical solution for CSTR-based water quality simulators of an unsteady system. The robustness of the new method is compared with the commonly used fourth-order Runge-Kutta methods, the Euler method and three versions of the SWAT model (SWAT2012, SWAT-TCEQ, and ESWAT). The performance of each method is tested for different hypothetical experiments. Besides the hypothetical data, a real case study is used for comparison. The growth factors we derived as stability measures for the different methods and the R-factor—considered as a consistency measure—turned out to be very useful for determining the most robust method. The new method outperformed all the numerical methods used in the hypothetical comparisons. The application for the Zenne River (Belgium) shows that the new method provides stable and consistent BOD simulations whereas the SWAT2012 model is shown to be unstable for the standard daily computation time step. The new method unconditionally simulates robust solutions. Therefore, it is a reliable scheme for CSTR-based water quality simulators that use first-order reaction formulations.

  19. Sterilization of solutions for parenterals products. Problem analysis

    Directory of Open Access Journals (Sweden)

    Yanelys Montes-González

    2017-09-01

    Full Text Available The solutions for the formulation of parenteral products must be sterile before the aseptic formulation process. For this reason, different methods of sterilization referred in the literature are analyzed. Thermodynamic criteria that rule the sterilization are presented. Furthermore, previous experiences in the sterilization of solutions for the formulation of parental products in an autoclave are analyzed, that take large time of processing and only low volumes of solution can be handled. Using jacketed stirred tanks for the sterilization may solve the problem and, therefore, criteria for the design of the later that allow to process high volumes of solution for the formulation of parenteral products are shown.

  20. Treating limbs with electrons: creative solutions to technical problems

    International Nuclear Information System (INIS)

    Hornby, C.

    1993-01-01

    The treatment of superficial lesions on limbs involving large areas of skin has long presented a challenge to radiation therapists. In the 1990's the use of electrons provides a good selection of field sizes and beam penetrations. However, the rapidly varying contours of limbs as well as their mobility, continues to necessitate solutions to the problems of accurate field definition, homogeneous dose in particularly at beam junctions and, simple but effective patient stabilization. This paper offers several examples of creative solutions to these problems. 8 refs., 17 figs

  1. Student Solutions Manual to Boundary Value Problems and Partial Differential Equations

    CERN Document Server

    Powers, David L

    2005-01-01

    This student solutions manual accompanies the text, Boundary Value Problems and Partial Differential Equations, 5e. The SSM is available in print via PDF or electronically, and provides the student with the detailed solutions of the odd-numbered problems contained throughout the book.Provides students with exercises that skillfully illustrate the techniques used in the text to solve science and engineering problemsNearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercisesMany exercises based on current engineering applications

  2. An Association-Oriented Partitioning Approach for Streaming Graph Query

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2017-01-01

    Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.

  3. ANALYSIS AND PERFORMANCE MEASUREMENT OF EXISTING SOLUTION METHODS OF QUADRATIC ASSIGNMENT PROBLEM

    Directory of Open Access Journals (Sweden)

    Morteza KARAMI

    2014-01-01

    Full Text Available Quadratic Assignment Problem (QAP is known as one of the most difficult combinatorial optimization problems that is classified in the category of NP-hard problems. Quadratic Assignment Problem Library (QAPLIB is a full database of QAPs which contains several problems from different authors and different sizes. Many exact and meta-heuristic solution methods have been introduced to solve QAP. In this study we focus on previously introduced solution methods of QAP e.g. Branch and Bound (B&B, Simulated Annealing (SA Algorithm, Greedy Randomized Adaptive Search Procedure (GRASP for dense and sparse QAPs. The codes of FORTRAN for these methods were downloaded from QAPLIB. All problems of QAPLIB were solved by the abovementioned methods. Several results were obtained from the computational experiments part. The Results show that the Branch and Bound method is able to introduce a feasible solution for all problems while Simulated Annealing Algorithm and GRASP methods are not able to find any solution for some problems. On the other hand, Simulated Annealing and GRASP methods have shorter run time comparing to the Branch and Bound method. In addition, the performance of the methods on the objective function value is discussed.

  4. Fast multigrid solution of the advection problem with closed characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yavneh, I. [Israel Inst. of Technology, Haifa (Israel); Venner, C.H. [Univ. of Twente, Enschede (Netherlands); Brandt, A. [Weizmann Inst. of Science, Rehovot (Israel)

    1996-12-31

    The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.

  5. Acoustic streaming of a sharp edge.

    Science.gov (United States)

    Ovchinnikov, Mikhail; Zhou, Jianbo; Yalamanchili, Satish

    2014-07-01

    Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier-Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

  6. Web 2.0 Solutions to Wicked Climate Change Problems

    Directory of Open Access Journals (Sweden)

    Alanah Kazlauskas

    2010-01-01

    Full Text Available One of the most pressing ‘wicked problems’ facing humankind is climate change together with its many interrelated environmental concerns. The complexity of this set of problems can be overwhelming as there is such diversity among both the interpretations of the scientific evidence and the viability of possible solutions. Among the social technologies associated with the second generation of the Internet known as Web 2.0, there are tools that allow people to communicate, coordinate and collaborate in ways that reduce their carbon footprint and a potential to become part of the climate change solution. However the way forward is not obvious or easy as Web 2.0, while readily accepted in the chaotic social world, is often treated with suspicion in the more ordered world of business and government. This paper applies a holistic theoretical sense-making framework to research and practice on potential Web 2.0 solutions to climate change problems. The suite of issues, activities and tools involved are viewed as an ecosystem where all elements are dynamic and inter-related. Through such innovative thinking the Information Systems community can make a valuable contribution to a critical global problem and hence find a new relevance as part of the solution.

  7. Numerical solution of singularity-perturbed two-point boundary-value problems

    International Nuclear Information System (INIS)

    Masenge, R.W.P.

    1993-07-01

    Physical processes which involve transportation of slowly diffusing substances in a fast-flowing medium are mathematically modelled by so-called singularly-perturbed second order convection diffusion differential equations in which the convective first order terms dominate over the diffusive second order terms. In general, analytical solutions of such equations are characterized by having sharp solution fronts in some sections of the interior and/or the boundary of the domain of solution. The presence of these (usually very narrow) layer regions in the solution domain makes the task of globally approximating such solutions by standard numerical techniques very difficult. In this expository paper we use a simple one-dimensional prototype problem as a vehicle for analysing the nature of the numerical approximation difficulties involved. In the sequel we present, without detailed derivation, two practical numerical schemes which succeed in varying degrees in numerically resolving the layer of the solution to the prototype problem. (author). 3 refs, 1 fig., 1 tab

  8. Finding p-Hub Median Locations: An Empirical Study on Problems and Solution Techniques

    Directory of Open Access Journals (Sweden)

    Xiaoqian Sun

    2017-01-01

    Full Text Available Hub location problems have been studied by many researchers for almost 30 years, and, accordingly, various solution methods have been proposed. In this paper, we implement and evaluate several widely used methods for solving five standard hub location problems. To assess the scalability and solution qualities of these methods, three well-known datasets are used as case studies: Turkish Postal System, Australia Post, and Civil Aeronautics Board. Classical problems in small networks can be solved efficiently using CPLEX because of their low complexity. Genetic algorithms perform well for solving three types of single allocation problems, since the problem formulations can be neatly encoded with chromosomes of reasonable size. Lagrangian relaxation is the only technique that solves reliable multiple allocation problems in large networks. We believe that our work helps other researchers to get an overview on the best solution techniques for the problems investigated in our study and also stipulates further interest on cross-comparing solution techniques for more expressive problem formulations.

  9. On the solutions of the dKP equation: the nonlinear Riemann Hilbert problem, longtime behaviour, implicit solutions and wave breaking

    International Nuclear Information System (INIS)

    Manakov, S V; Santini, P M

    2008-01-01

    We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking

  10. On the solutions of the dKP equation: the nonlinear Riemann Hilbert problem, longtime behaviour, implicit solutions and wave breaking

    Energy Technology Data Exchange (ETDEWEB)

    Manakov, S V [Landau Institute for Theoretical Physics, Moscow (Russian Federation); Santini, P M [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , and Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Piazz.le Aldo Moro 2, I-00185 Rome (Italy)

    2008-02-08

    We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking.

  11. Numerical Methods for Solution of the Extended Linear Quadratic Control Problem

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog

    2012-01-01

    In this paper we present the extended linear quadratic control problem, its efficient solution, and a discussion of how it arises in the numerical solution of nonlinear model predictive control problems. The extended linear quadratic control problem is the optimal control problem corresponding...... to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...... and discuss instances in which it arises. The methods discussed in the paper have been implemented in efficient C code for both CPUs and GPUs for a number of test examples....

  12. Game Theoretic Problems in Network Economics and Mechanism Design Solutions

    CERN Document Server

    Narahari, Y; Narayanam, Ramasuri; Prakash, Hastagiri

    2009-01-01

    Explores game theoretic modeling and mechanism design for problem solving in Internet and network economics. This monograph contains an exposition of representative game theoretic problems in three different network economics situations and a systematic exploration of mechanism design solutions to these problems.

  13. Fundamental solution of the problem of linear programming and method of its determination

    Science.gov (United States)

    Petrunin, S. V.

    1978-01-01

    The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.

  14. Public problems: Still waiting on the marketplace for solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gover, J. [Sandia National Labs., Albuquerque, NM (United States); Carayannis, E. [George Washington Univ., Washington, DC (United States); Huray, P.

    1997-10-01

    This report addresses the need for government sponsored R and D to address real public problems. The motivation is that a public benefit of the money spent must be demonstrated. The areas identified as not having appropriate attention resulting in unmet public needs include healthcare cost, cost and benefits of regulations, infrastructure problems, defense spending misaligned with foreign policy objectives, the crime problem, energy impact on the environment, the education problem, low productivity growth industry sectors, the income distribution problem, the aging problem, the propagation of disease and policy changes needed to address the solution of these problems.

  15. Positive solution of a time and energy dependent neutron transport problem

    International Nuclear Information System (INIS)

    Pao, C.V.

    1975-01-01

    A constructive method is given for the determination of a solution and an existence--uniqueness theorem for some nonlinear time and energy dependent neutron transport problems, including the linear transport system. The geometry of the medium under consideration is allowed to be either bounded or unbounded which includes the geometry of a finite or infinite cylinder, a half-space and the whole space R/subm/ (m=1,2,center-dotcenter-dotcenter-dot). Our approach to the problem is by successive approximation which leads to various recursion formulas for the approximations in terms of explicit integrations. It is shown under some Lipschitz conditions on the nonlinear functions, which describe the process of neutrons absorption, fission, and scattering, that the sequence of approximations converges to a unique positive solution. Since these conditions are satisfied by the linear transport equation, all the results for the nonlinear system are valid for the linear transport problem. In the general nonlinear problem, the existence of both local and global solutions are discussed, and an iterative process for the construction of the solution is given

  16. Spline-Interpolation Solution of One Elasticity Theory Problem

    CERN Document Server

    Shirakova, Elena A

    2011-01-01

    The book presents methods of approximate solution of the basic problem of elasticity for special types of solids. Engineers can apply the approximate methods (Finite Element Method, Boundary Element Method) to solve the problems but the application of these methods may not be correct for solids with the certain singularities or asymmetrical boundary conditions. The book is recommended for researchers and professionals working on elasticity modeling. It explains methods of solving elasticity problems for special solids. Approximate methods (Finite Element Method, Boundary Element Method) have b

  17. Solution for Nonlinear Three-Dimensional Intercept Problem with Minimum Energy

    Directory of Open Access Journals (Sweden)

    Henzeh Leeghim

    2013-01-01

    a minimum-energy application, which then generates both the desired initial interceptor velocity and the TOF for the minimum-energy transfer. The optimization problem is formulated by using the classical Lagrangian f and g coefficients, which map initial position and velocity vectors to future times, and a universal time variable x. A Newton-Raphson iteration algorithm is introduced for iteratively solving the problem. A generalized problem formulation is introduced for minimizing the TOF as part of the optimization problem. Several examples are presented, and the results are compared with the Hohmann transfer solution approaches. The resulting minimum-energy intercept solution algorithm is expected to be broadly useful as a starting iterative for applications spanning: targeting, rendezvous, interplanetary trajectory design, and so on.

  18. Battling memory requirements of array programming through streaming

    DEFF Research Database (Denmark)

    Kristensen, Mads Ruben Burgdorff; Avery, James Emil; Blum, Troels

    2016-01-01

    A barrier to efficient array programming, for example in Python/NumPy, is that algorithms written as pure array operations completely without loops, while most efficient on small input, can lead to explosions in memory use. The present paper presents a solution to this problem using array streaming......, implemented in the automatic parallelization high-performance framework Bohrium. This makes it possible to use array programming in Python/NumPy code directly, even when the apparent memory requirement exceeds the machine capacity, since the automatic streaming eliminates the temporary memory overhead...... by performing calculations in per-thread registers. Using Bohrium, we automatically fuse, JIT-compile, and execute NumPy array operations on GPGPUs without modification to the user programs. We present performance evaluations of three benchmarks, all of which show dramatic reductions in memory use from...

  19. Challenging problems and solutions in intelligent systems

    CERN Document Server

    Grzegorzewski, Przemysław; Kacprzyk, Janusz; Owsiński, Jan; Penczek, Wojciech; Zadrożny, Sławomir

    2016-01-01

    This volume presents recent research, challenging problems and solutions in Intelligent Systems– covering the following disciplines: artificial and computational intelligence, fuzzy logic and other non-classic logics, intelligent database systems, information retrieval, information fusion, intelligent search (engines), data mining, cluster analysis, unsupervised learning, machine learning, intelligent data analysis, (group) decision support systems, intelligent agents and multi-agent systems, knowledge-based systems, imprecision and uncertainty handling, electronic commerce, distributed systems, etc. The book defines a common ground for sometimes seemingly disparate problems and addresses them by using the paradigm of broadly perceived intelligent systems. It presents a broad panorama of a multitude of theoretical and practical problems which have been successfully dealt with using the paradigm of intelligent computing.

  20. A new modeling and solution approach for the number partitioning problem

    Directory of Open Access Journals (Sweden)

    Bahram Alidaee

    2005-01-01

    Full Text Available The number partitioning problem has proven to be a challenging problem for both exact and heuristic solution methods. We present a new modeling and solution approach that consists of recasting the problem as an unconstrained quadratic binary program that can be solved by efficient metaheuristic methods. Our approach readily accommodates both the common two-subset partition case as well as the more general case of multiple subsets. Preliminary computational experience is presented illustrating the attractiveness of the method.

  1. Comparison of finite-difference and variational solutions to advection-diffusion problems

    International Nuclear Information System (INIS)

    Lee, C.E.; Washington, K.E.

    1984-01-01

    Two numerical solution methods are developed for 1-D time-dependent advection-diffusion problems on infinite and finite domains. Numerical solutions are compared with analytical results for constant coefficients and various boundary conditions. A finite-difference spectrum method is solved exactly in time for periodic boundary conditions by a matrix operator method and exhibits excellent accuracy compared with other methods, especially at late times, where it is also computationally more efficient. Finite-system solutions are determined from a conservational variational principle with cubic spatial trial functions and solved in time by a matrix operator method. Comparisons of problems with few nodes show excellent agreement with analytical solutions and exhibit the necessity of implementing Lagrangian conservational constraints for physically-correct solutions. (author)

  2. Multiresolution strategies for the numerical solution of optimal control problems

    Science.gov (United States)

    Jain, Sachin

    There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a

  3. Relating Hydrogeomorphic Attributes to Nutrient Uptake in Alluvial Streams of a Mountain Lake District

    Science.gov (United States)

    Arp, C. D.; Baker, M. A.

    2005-05-01

    Stream form and hydrologic processes may indirectly drive nutrient uptake, however developing predictive relationships has been elusive. Problems in establishing such relationships may lie in the sets of streams analyzed, which often span diverse channel-sizes, geology, and regions, or are too geomorphically similar. We collected field data on stream geomorphology and hydrologic and nutrient transport processes using solute injections at 22 alluvial stream reaches in the Sawtooth Mountains, Idaho, USA. Many of these streams occur near lakes, which create contrasting fluvial form and functions that we hoped would produce a broad geomorphic dataset to compare to hyporheic and dead-zone transient storage and NO3 and PO4 spiraling metrics. Preliminary results suggest that storage zone residence time (Tsto) was best predicted by sediment D50, wood abundance (CWD), and discharge (r2=0.84, pnutrient cycling processes should be further considered and investigated.

  4. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    Science.gov (United States)

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  5. Solution of a Complex Least Squares Problem with Constrained Phase.

    Science.gov (United States)

    Bydder, Mark

    2010-12-30

    The least squares solution of a complex linear equation is in general a complex vector with independent real and imaginary parts. In certain applications in magnetic resonance imaging, a solution is desired such that each element has the same phase. A direct method for obtaining the least squares solution to the phase constrained problem is described.

  6. Complicated problem solution techniques in optimal parameter searching

    International Nuclear Information System (INIS)

    Gergel', V.P.; Grishagin, V.A.; Rogatneva, E.A.; Strongin, R.G.; Vysotskaya, I.N.; Kukhtin, V.V.

    1992-01-01

    An algorithm is presented of a global search for numerical solution of multidimentional multiextremal multicriteria optimization problems with complicated constraints. A boundedness of object characteristic changes is assumed at restricted changes of its parameters (Lipschitz condition). The algorithm was realized as a computer code. The algorithm was realized as a computer code. The programme was used to solve in practice the different applied optimization problems. 10 refs.; 3 figs

  7. Acoustic streaming in simplified liquid rocket engines with transverse mode oscillations

    Science.gov (United States)

    Fischbach, Sean R.; Flandro, Gary A.; Majdalani, Joseph

    2010-06-01

    This study considers a simplified model of a liquid rocket engine in which uniform injection is imposed at the faceplate. The corresponding cylindrical chamber has a small length-to-diameter ratio with respect to solid and hybrid rockets. Given their low chamber aspect ratios, liquid thrust engines are known to experience severe tangential and radial oscillation modes more often than longitudinal ones. In order to model this behavior, tangential and radial waves are superimposed onto a basic mean-flow model that consists of a steady, uniform axial velocity throughout the chamber. Using perturbation tools, both potential and viscous flow equations are then linearized in the pressure wave amplitude and solved to the second order. The effects of the headwall Mach number are leveraged as well. While the potential flow analysis does not predict any acoustic streaming effects, the viscous solution carried out to the second order gives rise to steady secondary flow patterns near the headwall. These axisymmetric, steady contributions to the tangential and radial traveling waves are induced by the convective flow motion through interactions with inertial and viscous forces. We find that suppressing either the convective terms or viscosity at the headwall leads to spurious solutions that are free from streaming. In our problem, streaming is initiated at the headwall, within the boundary layer, and then extends throughout the chamber. We find that nonlinear streaming effects of tangential and radial waves act to alter the outer solution inside a cylinder with headwall injection. As a result of streaming, the radial wave velocities are intensified in one-half of the domain and reduced in the opposite half at any instant of time. Similarly, the tangential waves are either enhanced or weakened in two opposing sectors that are at 90° angle to the radial velocity counterparts. The second-order viscous solution that we obtain clearly displays both an oscillating and a steady flow

  8. NUMERICAL SOLUTION OF SINGULAR INVERSE NODAL PROBLEM BY USING CHEBYSHEV POLYNOMIALS

    OpenAIRE

    NEAMATY, ABDOLALI; YILMAZ, EMRAH; AKBARPOOR, SHAHRBANOO; DABBAGHIAN, ABDOLHADI

    2017-01-01

    In this study, we consider Sturm-Liouville problem in two cases: the first case having no singularity and the second case having a singularity at zero. Then, we calculate the eigenvalues and the nodal points and present the uniqueness theorem for the solution of the inverse problem by using a dense subset of the nodal points in two given cases. Also, we use Chebyshev polynomials of the first kind for calculating the approximate solution of the inverse nodal problem in these cases. Finally, we...

  9. The best solution to our Nation's waste management problem: Education

    International Nuclear Information System (INIS)

    Mikel, C.J.

    1992-01-01

    In addition to the Waste Isolation Pilot Plant (WIPP) being the best solution today to the Nation's problem of permanent storage of transuranic radioactive waste produced by the defense industry, WIPP is also involved in finding the solution for another national problem: the education of our youth. The youth of America have grown up thinking that science and math are too hard, or not interesting. We, the parents of our Nation's leaders of tomorrow, must find a solution to this dilemma. It is the mission of the Waste Isolation Division Educational Programs to create programs to promote quality education in the classroom and to enhance each student's interest in mathematics and the sciences

  10. Using Rising Limb Analysis to Estimate Uptake of Reactive Solutes in Advective and Transient Storage Sub-compartments of Stream Ecosystems

    Science.gov (United States)

    Thomas, S. A.; Valett, H.; Webster, J. R.; Mulholland, P. J.; Dahm, C. N.

    2001-12-01

    Identifying the locations and controls governing solute uptake is a recent area of focus in studies of stream biogeochemistry. We introduce a technique, rising limb analysis (RLA), to estimate areal nitrate uptake in the advective and transient storage (TS) zones of streams. RLA is an inverse approach that combines nutrient spiraling and transient storage modeling to calculate total uptake of reactive solutes and the fraction of uptake occurring within the advective sub-compartment of streams. The contribution of the transient storage zones to solute loss is determined by difference. Twelve-hour coinjections of conservative (Cl-) and reactive (15NO3) tracers were conducted seasonally in several headwater streams among which AS/A ranged from 0.01 - 2.0. TS characteristics were determined using an advection-dispersion model modified to include hydrologic exchange with a transient storage compartment. Whole-system uptake was determined by fitting the longitudinal pattern of NO3 to first-order, exponential decay model. Uptake in the advective sub-compartment was determined by collecting a temporal sequence of samples from a single location beginning with the arrival of the solute front and concluding with the onset of plateau conditions (i.e. the rising limb). Across the rising limb, 15NO3:Cl was regressed against the percentage of water that had resided in the transient storage zone (calculated from the TS modeling). The y-intercept thus provides an estimate of the plateau 15NO3:Cl ratio in the absence of NO3 uptake within the transient storage zone. Algebraic expressions were used to calculate the percentage of NO3 uptake occurring in the advective and transient storage sub-compartments. Application of RLA successfully estimated uptake coefficients for NO3 in the subsurface when the physical dimensions of that habitat were substantial (AS/A > 0.2) and when plateau conditions at the sampling location consisted of waters in which at least 25% had resided in the

  11. On one approach to an earthquakes forecasting problems solution

    International Nuclear Information System (INIS)

    Khugaev, A.V.; Koblik, Yu.N.; Rakhmanov, T.T.

    2007-01-01

    The problem of earthquake forecasting is practically important one but it is extremely complex and so it does not solved yet. In the report the problem of data analysis obtained in measurements of radioactive gases emission (for example, radon, thoron, action) from the earth surface, data in magnetic fields anomalies measurement and their correlation in accordance of seismic activity is considered. In a general case the problem has an unlikely total solution in an analytic meaning due to it nonlinearity, multi-parametration and influence of random factors. It is suggested that useful solution could be found only at reasonable combination of empiric knowledge got at a long observations, its generalization and numerical simulation. In the base of the offered calculation method the correlation analysis between seismic activity and , for example, radioactive gases emission variations of earthquake signs one can present in form of two components, one of which is regular component, and the second one is irregular one. The key interest presents the analysis of irregular component reasoned by random factors. At problem solution of irregular component of the Earth magnetic fields determination which with high precise could measured with help of magnetic sensors is determined. At that time in the base of mathematical apparatus for analysis the approach for irregular component determination applied at determination of irregular component of galactic magnet field. Hear values of irregular component and field size in which they play considerable role are obtained. Besides, the work the approach allowing solving problem about complex surface oscillation with necessary precision for practical requirements is discussed

  12. Positive solutions and eigenvalues of nonlocal boundary-value problems

    Directory of Open Access Journals (Sweden)

    Jifeng Chu

    2005-07-01

    Full Text Available We study the ordinary differential equation $x''+lambda a(tf(x=0$ with the boundary conditions $x(0=0$ and $x'(1=int_{eta}^{1}x'(sdg(s$. We characterize values of $lambda$ for which boundary-value problem has a positive solution. Also we find appropriate intervals for $lambda$ so that there are two positive solutions.

  13. Nature, Human Nature, and Solutions to Problems.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, B. C.

    This paper promotes an undergraduate course that would discuss the great ideas of Plato, St. Paul, Karl Marx, Sigmund Freud, Jean Paul Sartre, B. F. Skinner, and Konrad Lorenz. This course would help students understand human values and behaviors while focusing on historical, world, and national problems. Tentative solutions would then be…

  14. Decoupling of stream and vegetation solutes during the late stages of weathering: insights from elemental and Mg isotope trends at the Luquillo Critical Zone Observatory, Puerto Rico

    Science.gov (United States)

    Chapela Lara, M.; Schuessler, J. A.; Buss, H. L.; McDowell, W. H.

    2017-12-01

    During the evolution of the critical zone, the predominant source of nutrients to the vegetation changes from bedrock weathering to atmospheric inputs and biological recycling. In parallel, the architecture of the critical zone changes with time, promoting a change in water flow regime from near-surface porous flow during early weathering stages to more complex flow regimes modulated by clay-rich regolith during the late stages of weathering. As a consequence of these two concurrent processes, we can expect the predominant sources and pathways of solutes to the streams to also change during critical zone evolution. If this is true, we would observe a decoupling between the solutes used by the vegetation and those that determine the composition of the streams during the late stages of weathering, represented by geomorphically stable tropical settings. To test these hypotheses, we are analyzing the elemental and Mg isotopic composition of regolith and streams at the humid tropical Luquillo Critical Zone Observatory. We aim to trace the relative contributions of the surficial, biologically mediated pathways and the deeper, weathering controlled nutrient pathways. We also investigate the role of lithology on the solute decoupling between the vegetation and the stream, by examining two similar headwater catchments draining two different bedrocks (andesitic volcaniclastic and granitic). Our preliminary elemental and Mg isotope results are consistent with atmospheric inputs in the upper 2 m of regolith in both lithologies and with bedrock weathering at depth. During a short storm event ( 6 h), a headwater stream draining volcaniclastic bedrock showed a large variation in Mg and δ26Mg, correlated with total suspended solids, while another similar headwater granitic stream showed a much narrower variation. A larger stream draining volcaniclastic bedrock showed changes in Mg concentration in response to rain during the same storm event, but did not change in δ26Mg

  15. Producing Satisfactory Solutions to Scheduling Problems: An Iterative Constraint Relaxation Approach

    Science.gov (United States)

    Chien, S.; Gratch, J.

    1994-01-01

    One drawback to using constraint-propagation in planning and scheduling systems is that when a problem has an unsatisfiable set of constraints such algorithms typically only show that no solution exists. While, technically correct, in practical situations, it is desirable in these cases to produce a satisficing solution that satisfies the most important constraints (typically defined in terms of maximizing a utility function). This paper describes an iterative constraint relaxation approach in which the scheduler uses heuristics to progressively relax problem constraints until the problem becomes satisfiable. We present empirical results of applying these techniques to the problem of scheduling spacecraft communications for JPL/NASA antenna resources.

  16. Status of the Gribov-Pontecorvo Solution to the Solar Neutrino Problem

    CERN Document Server

    Berezinsky, Veniamin Sergeevich; Peña-Garay, C

    2001-01-01

    We discuss the status of the Gribov--Pontecorvo (GP) solution to the solar neutrino problem. This solution naturally appears in bimaximal neutrino mixing and reduces the solar and atmospheric neutrino problems to vacuum oscillations of three active neutrinos. The GP solution predicts an energy-independent suppression of the solar neutrino flux. It is disfavoured by the rate of the Homestake detector, but its statistical significance greatly improves, when the chlorine rate and the boron neutrino flux are slightly rescaled, and when the Super-Kamiokande neutrino spectrum is included in the analysis. Our results show that rescaling of the chlorine signal by only 10% is sufficient for the GP solution to exist, if the boron--neutrino flux is taken 10 -- 20% lower than the SSM prediction. The regions allowed for the GP solution in the parameter space are found and observational signatures of this solution are discussed.

  17. Silverlight 4 Problem - Design - Solution

    CERN Document Server

    Lecrenski, Nick

    2010-01-01

    A hands-on guide to Microsoft's latest rich application development technology: Silverlight 4. Silverlight 4 is the newest version of the rich Internet application toolkit that provides support for .NET capabilities over the Internet. With this latest release of Silverlight, Microsoft has revolutionized the way that Web applications can be created. This book uses the popular Problem – Design – Solution strategy to demonstrate how to harness the power and abilities of Silverlight 4 to add value to the overall user experience of a Web site. Using a Web site created by the author as a reference p

  18. Relationships between undergraduates' argumentation skills, conceptual quality of problem solutions, and problem solving strategies in introductory physics

    Science.gov (United States)

    Rebello, Carina M.

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well as approaches and strategies for solving argumentative physics problems across multiple physics topics. Participants were assigned via stratified sampling to one of three conditions (control, guided construct, or guided evaluate) based on gender and pre-test scores on a conceptual instrument. The guided construct and guided evaluate groups received tasks and prompts drawn from literature to facilitate argument construction or evaluation. Using a multiple case study design, with each condition serving as a case, interviews were conducted consisting of a think-aloud problem solving session paired with a semi-structured interview. The analysis of problem solving strategies was guided by the theoretical framework on epistemic games adapted by Tuminaro and Redish (2007). This study provides empirical evidence that integration of written argumentation into physics problems can potentially improve the conceptual quality of solutions, expand their repertoire of problem solving strategies and show promise for addressing the gender gap in physics. The study suggests further avenues for research in this area and implications for designing and implementing argumentation tasks in introductory college physics.

  19. Exact Asymptotic Expansion of Singular Solutions for the (2+1-D Protter Problem

    Directory of Open Access Journals (Sweden)

    Lubomir Dechevski

    2012-01-01

    Full Text Available We study three-dimensional boundary value problems for the nonhomogeneous wave equation, which are analogues of the Darboux problems in ℝ2. In contrast to the planar Darboux problem the three-dimensional version is not well posed, since its homogeneous adjoint problem has an infinite number of classical solutions. On the other hand, it is known that for smooth right-hand side functions there is a uniquely determined generalized solution that may have a strong power-type singularity at one boundary point. This singularity is isolated at the vertex of the characteristic light cone and does not propagate along the cone. The present paper describes asymptotic expansion of the generalized solutions in negative powers of the distance to this singular point. We derive necessary and sufficient conditions for existence of solutions with a fixed order of singularity and give a priori estimates for the singular solutions.

  20. Solution of Milne problem by Laplace transformation with numerical inversion

    International Nuclear Information System (INIS)

    Campos Velho, H.F. de.

    1987-12-01

    The Milne problem for monoenergetic neutrons, by Laplace Transform of the neutron transport integral equation with numerical inversion of the transformed solution by gaussian quadrature, using the fatorization of the dispersion function. The resulted is solved compared its analitical solution. (author) [pt

  1. WYD method for an eigen solution of coupled problems

    Directory of Open Access Journals (Sweden)

    A Harapin

    2016-04-01

    Full Text Available Designing efficient and stable algorithm for finding the eigenvalues andeigenvectors is very important from the static as well as the dynamic aspectin coupled problems. Modal analysis requires first few significant eigenvectorsand eigenvalues while direct integration requires the highest value toascertain the length of the time step that satisfies the stability condition.The paper first presents the modification of the well known WYDmethod for a solution of single field problems: an efficient and numericallystable algorithm for computing eigenvalues and the correspondingeigenvectors. The modification is based on the special choice of thestarting vector. The starting vector is the static solution of displacements forthe applied load, defined as the product of the mass matrix and the unitdisplacement vector. The starting vector is very close to the theoreticalsolution, which is important in cases of small subspaces.Additionally, the paper briefly presents the adopted formulation for solvingthe fluid-structure coupled systems problems which is based on a separatesolution for each field. Individual fields (fluid and structure are solvedindependently, taking in consideration the interaction information transferbetween them at every stage of the iterative solution process. The assessmentof eigenvalues and eigenvectors for multiple fields is also presented. This eigenproblem is more complicated than the one for the ordinary structural analysis,as the formulation produces non-symmetrical matrices.Finally, a numerical example for the eigen solution coupled fluidstructureproblem is presented to show the efficiency and the accuracy ofthe developed algorithm.

  2. Solution of Contact Problems for Nonlinear Gao Beam and Obstacle

    Directory of Open Access Journals (Sweden)

    J. Machalová

    2015-01-01

    Full Text Available Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.

  3. Composite media for fluid stream processing, a method of forming the composite media, and a related method of processing a fluid stream

    Science.gov (United States)

    Garn, Troy G; Law, Jack D; Greenhalgh, Mitchell R; Tranter, Rhonda

    2014-04-01

    A composite media including at least one crystalline aluminosilicate material in polyacrylonitrile. A method of forming a composite media is also disclosed. The method comprises dissolving polyacrylonitrile in an organic solvent to form a matrix solution. At least one crystalline aluminosilicate material is combined with the matrix solution to form a composite media solution. The organic solvent present in the composite media solution is diluted. The composite media solution is solidified. In addition, a method of processing a fluid stream is disclosed. The method comprises providing a beads of a composite media comprising at least one crystalline aluminosilicate material dispersed in a polyacrylonitrile matrix. The beads of the composite media are contacted with a fluid stream comprising at least one constituent. The at least one constituent is substantially removed from the fluid stream.

  4. Some exact solutions to the translation-invariant N-body problem

    International Nuclear Information System (INIS)

    Hall, R.L.

    1978-01-01

    It is shown that Schroedinger's equation for a translation-invariant system consisting of N particles with arbitrary masses interacting via Hooke's law pair potentials with the same coupling constant can be solved exactly; explicit solutions are found for the case N = 3. Exact solutions are also found explicitly for the translation-invariant problem in which a particle with mass m 0 interacts with N identical particles of mass m 1 via Hooke's law pair potential with coupling constant k 0 2 , and the identical particles interact with each other via Hooke's law pair potentials with coupling constant k 1 2 . The latter solution provides a basis problem for an energy lower-bound method for translation-invariant atom-like systems. (author)

  5. Continuous sampling from distributed streams

    DEFF Research Database (Denmark)

    Graham, Cormode; Muthukrishnan, S.; Yi, Ke

    2012-01-01

    A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple distribu......A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple...... distributed sites. The main challenge is to ensure that a sample is drawn uniformly across the union of the data while minimizing the communication needed to run the protocol on the evolving data. At the same time, it is also necessary to make the protocol lightweight, by keeping the space and time costs low...... for each participant. In this article, we present communication-efficient protocols for continuously maintaining a sample (both with and without replacement) from k distributed streams. These apply to the case when we want a sample from the full streams, and to the sliding window cases of only the W most...

  6. Dilution and volatilization of groundwater contaminant discharges in streams

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Sonne, Anne Thobo

    2015-01-01

    measurement. The solution was successfully applied to published field data obtained in a large and a small Danish stream and provided valuable information on the risk posed by the groundwater contaminant plumes. The results provided by the dilution and volatilization model are very different to those obtained......An analytical solution to describe dilution and volatilization of a continuous groundwater contaminant plume into streams is developed for risk assessment. The location of groundwater plume discharge into the stream (discharge through the side versus bottom of the stream) and different...

  7. Quantum solution to a class of two-party private summation problems

    Science.gov (United States)

    Shi, Run-Hua; Zhang, Shun

    2017-09-01

    In this paper, we define a class of special two-party private summation (S2PPS) problems and present a common quantum solution to S2PPS problems. Compared to related classical solutions, our solution has advantages of higher security and lower communication complexity, and especially it can ensure the fairness of two parties without the help of a third party. Furthermore, we investigate the practical applications of our proposed S2PPS protocol in many privacy-preserving settings with big data sets, including private similarity decision, anonymous authentication, social networks, secure trade negotiation, secure data mining.

  8. Network Monitoring as a Streaming Analytics Problem

    KAUST Repository

    Gupta, Arpit; Birkner, Rü diger; Canini, Marco; Feamster, Nick; Mac-Stoker, Chris; Willinger, Walter

    2016-01-01

    , processing such network monitoring queries at high traffic rates requires both the switches and the stream processors to filter the traffic iteratively and adaptively so as to extract only that traffic that is of interest to the query at hand. Others have

  9. Finding Multiple Optimal Solutions to Optimal Load Distribution Problem in Hydropower Plant

    Directory of Open Access Journals (Sweden)

    Xinhao Jiang

    2012-05-01

    Full Text Available Optimal load distribution (OLD among generator units of a hydropower plant is a vital task for hydropower generation scheduling and management. Traditional optimization methods for solving this problem focus on finding a single optimal solution. However, many practical constraints on hydropower plant operation are very difficult, if not impossible, to be modeled, and the optimal solution found by those models might be of limited practical uses. This motivates us to find multiple optimal solutions to the OLD problem, which can provide more flexible choices for decision-making. Based on a special dynamic programming model, we use a modified shortest path algorithm to produce multiple solutions to the problem. It is shown that multiple optimal solutions exist for the case study of China’s Geheyan hydropower plant, and they are valuable for assessing the stability of generator units, showing the potential of reducing occurrence times of units across vibration areas.

  10. Collaborative Problem-solution Co-evolution in Creative Design

    DEFF Research Database (Denmark)

    Wiltschnig, Stefan; Christensen, Bo; J. Ball, Linden

    2013-01-01

    . The analysis revealed that co-evolution episodes occurred regularly and embodied various directional transitions between problem and solution spaces. Moreover, the team leader often initiated this co-evolution. Co-evolution episodes linked with other creative activities such as analogising and mental...

  11. Logarithmic solution to the line-polygon intersection problem. 127

    International Nuclear Information System (INIS)

    Siddon, R.L.; Barth, N.H.

    1987-01-01

    Algorithmic solution for a special case of the line - polygon intersection problem has been developed. The special case involves repeated solution to the problem where one point on the line is held fixed and the other allowed to vary. In addition, the fixed point on the line must lie outside the rectangle defined by the extrema of the polygon and varying point. In radiotherapy applications, the fixed point corresponds to the source of radiation, whereas the varying points refer to the grid of multiple calculation points. For smooth contours of 100-200 vertices, it is found that the new algorithm results in a CPU savings of approximately a factor of 3-5. 3 refs.; 4 figs

  12. Power generation from lignite coal in Bulgaria - problems and solutions

    International Nuclear Information System (INIS)

    Batov, S.; Gadjanov, P.; Panchev, T.

    1997-01-01

    The bulk of lignite coal produced in Bulgaria is used as fuel for the thermal power plants (TPP) built in Maritsa East coal field. A small part of it goes to production of briquettes and to fuel the auxiliary power plants of industrial enterprises. The total installed capacity of the power plants in the region of Maritsa East is 2490 MW, and the electric power generated by them is about 30% of the total power generated in the country. It should be noted that these power plants were subjected to a number of rehabilitations aiming to improve their technical and economic parameters. Irrespective of that, however, solution has still to be sought to a number of problems related to utilisation of the low-grade lignite coal for power generation. On the whole, they can be divided in the following groups: Those related to lignite coal mining can be referred to the first group. Lignite coal is mined in comparatively complicated mining and geological conditions characterized mainly by earth creep and deformation. The second group of problems is related to coal quality control. It is a fact of major significance that the quality indices of coal keep changing all the time in uneven steps without any definite laws to govern it. That creates hard problems in the process of coal transportation, crushing and combustion. The next group of problems concerns operation and upgrading of the power generation equipment. That applies especially to the existing boilers which bum low-grade fuel in order to improve their operation in terms of higher thermal efficiency, controllability, reliability, improved environmental indices, etc. An increasingly high importance is attached to environmental impact problems incident to lignite coal utilisation. Abatement of sulphur oxide emissions and dust pollution is a problem solution of which cannot wait. The possibilities for partial solution of the environmental problems through increasing the thermal efficiency of facilities at the thermal Power

  13. Existence of solutions to boundary value problem of fractional differential equations with impulsive

    Directory of Open Access Journals (Sweden)

    Weihua JIANG

    2016-12-01

    Full Text Available In order to solve the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line, the existence of solutions to the boundary problem is specifically studied. By defining suitable Banach spaces, norms and operators, using the properties of fractional calculus and applying the contraction mapping principle and Krasnoselskii's fixed point theorem, the existence of solutions for the boundary value problem of fractional impulsive differential equations with countable impulses and integral boundary conditions on the half line is proved, and examples are given to illustrate the existence of solutions to this kind of equation boundary value problems.

  14. Efficient solution of a multi objective fuzzy transportation problem

    Science.gov (United States)

    Vidhya, V.; Ganesan, K.

    2018-04-01

    In this paper we present a methodology for the solution of multi-objective fuzzy transportation problem when all the cost and time coefficients are trapezoidal fuzzy numbers and the supply and demand are crisp numbers. Using a new fuzzy arithmetic on parametric form of trapezoidal fuzzy numbers and a new ranking method all efficient solutions are obtained. The proposed method is illustrated with an example.

  15. On the Solution of the Eigenvalue Assignment Problem for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    El-Sayed M. E. Mostafa

    2017-01-01

    Full Text Available The output feedback eigenvalue assignment problem for discrete-time systems is considered. The problem is formulated first as an unconstrained minimization problem, where a three-term nonlinear conjugate gradient method is proposed to find a local solution. In addition, a cut to the objective function is included, yielding an inequality constrained minimization problem, where a logarithmic barrier method is proposed for finding the local solution. The conjugate gradient method is further extended to tackle the eigenvalue assignment problem for the two cases of decentralized control systems and control systems with time delay. The performance of the methods is illustrated through various test examples.

  16. Computing group cardinality constraint solutions for logistic regression problems.

    Science.gov (United States)

    Zhang, Yong; Kwon, Dongjin; Pohl, Kilian M

    2017-01-01

    We derive an algorithm to directly solve logistic regression based on cardinality constraint, group sparsity and use it to classify intra-subject MRI sequences (e.g. cine MRIs) of healthy from diseased subjects. Group cardinality constraint models are often applied to medical images in order to avoid overfitting of the classifier to the training data. Solutions within these models are generally determined by relaxing the cardinality constraint to a weighted feature selection scheme. However, these solutions relate to the original sparse problem only under specific assumptions, which generally do not hold for medical image applications. In addition, inferring clinical meaning from features weighted by a classifier is an ongoing topic of discussion. Avoiding weighing features, we propose to directly solve the group cardinality constraint logistic regression problem by generalizing the Penalty Decomposition method. To do so, we assume that an intra-subject series of images represents repeated samples of the same disease patterns. We model this assumption by combining series of measurements created by a feature across time into a single group. Our algorithm then derives a solution within that model by decoupling the minimization of the logistic regression function from enforcing the group sparsity constraint. The minimum to the smooth and convex logistic regression problem is determined via gradient descent while we derive a closed form solution for finding a sparse approximation of that minimum. We apply our method to cine MRI of 38 healthy controls and 44 adult patients that received reconstructive surgery of Tetralogy of Fallot (TOF) during infancy. Our method correctly identifies regions impacted by TOF and generally obtains statistically significant higher classification accuracy than alternative solutions to this model, i.e., ones relaxing group cardinality constraints. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Iterative solution to the optimal poison management problem in pressurized water reactors

    International Nuclear Information System (INIS)

    Colletti, J.P.; Levine, S.H.; Lewis, J.B.

    1983-01-01

    A new method for solving the optimal poison management problem for a multiregion pressurized water reactor has been developed. The optimization objective is to maximize the end-of-cycle core excess reactivity for any given beginning-of-cycle fuel loading. The problem is treated as an optimal control problem with the region burnup and control absorber concentrations acting as the state and control variables, respectively. Constraints are placed on the power peaking, soluble boron concentration, and control absorber concentrations. The solution method consists of successive relinearizations of the system equations resulting in a sequence of nonlinear programming problems whose solutions converge to the desired optimal control solution. Application of the method to several test problems based on a simplified three-region reactor suggests a bang-bang optimal control strategy with the peak power location switching between the inner and outer regions of the core and the critical soluble boron concentration as low as possible throughout the cycle

  18. Evaluate the accuracy of the numerical solution of hydrogeological problems of mass transfer

    Directory of Open Access Journals (Sweden)

    Yevhrashkina G.P.

    2014-12-01

    Full Text Available In the hydrogeological task on quantifying pollution of aquifers the error are starting add up with moment organization of regime observation network as a source of information on the pollution of groundwater in order to evaluate migration options for future prognosis calculations. Optimum element regime observation network should consist of three drill holes on the groundwater flow at equal distances from one another and transversely to the flow of the three drill holes, and at equal distances. If the target of observation drill holes coincides with the stream line on which will then be decided by direct migration task, the error will be minimal. The theoretical basis and results of numerical experiments to assess the accuracy of direct predictive tasks planned migration of groundwater in the area of full water saturation. For the vadose zone, we consider problems of vertical salt transport moisture. All studies were performed by comparing the results of fundamental and approximate solutions in a wide range of characteristics of the processes, which are discussed in relation to ecological and hydrogeological conditions of mining regions on the example of the Western Donbass.

  19. LAGRANGE SOLUTIONS TO THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    There is no known integrator that yields exact orbits for the general three-body problem (G3BP). It is difficult to verify whether a numerical procedure yields the correct solutions to the G3BP because doing so requires knowledge of all 11 conserved quantities, whereas only six are known. Without tracking all of the conserved quantities, it is possible to show that the discrete general three-body problem (d-G3BP) yields the correct orbits corresponding to Lagrange solutions of the G3BP. We show that the d-G3BP yields the correct solutions to the G3BP for two special cases: the equilateral triangle and collinear configurations. For the triangular solution, we use the fact that the solution to the three-body case is a superposition of the solutions to the three two-body cases, and we show that the three bodies maintain the same relative distances at all times. To obtain the collinear solution, we assume a specific permutation of the three bodies arranged along a straight rotating line, and we show that the d-G3BP maintains the same distance ratio between two bodies as in the G3BP. Proving that the d-G3BP solutions for these cases are equivalent to those of the G3BP makes it likely that the d-G3BP and G3BP solutions are equivalent in other cases. To our knowledge, this is the first work that proves the equivalence of the discrete solutions and the Lagrange orbits.

  20. Cerebellum-inspired neural network solution of the inverse kinematics problem.

    Science.gov (United States)

    Asadi-Eydivand, Mitra; Ebadzadeh, Mohammad Mehdi; Solati-Hashjin, Mehran; Darlot, Christian; Abu Osman, Noor Azuan

    2015-12-01

    The demand today for more complex robots that have manipulators with higher degrees of freedom is increasing because of technological advances. Obtaining the precise movement for a desired trajectory or a sequence of arm and positions requires the computation of the inverse kinematic (IK) function, which is a major problem in robotics. The solution of the IK problem leads robots to the precise position and orientation of their end-effector. We developed a bioinspired solution comparable with the cerebellar anatomy and function to solve the said problem. The proposed model is stable under all conditions merely by parameter determination, in contrast to recursive model-based solutions, which remain stable only under certain conditions. We modified the proposed model for the simple two-segmented arm to prove the feasibility of the model under a basic condition. A fuzzy neural network through its learning method was used to compute the parameters of the system. Simulation results show the practical feasibility and efficiency of the proposed model in robotics. The main advantage of the proposed model is its generalizability and potential use in any robot.

  1. Everyday problem solving across the adult life span: solution diversity and efficacy

    Science.gov (United States)

    Mienaltowski, Andrew

    2013-01-01

    Everyday problem solving involves examining the solutions that individuals generate when faced with problems that take place in their everyday experiences. Problems can range from medication adherence and meal preparation to disagreeing with a physician over a recommended medical procedure or compromising with extended family members over where to host Thanksgiving dinner. Across the life span, research has demonstrated divergent patterns of change in performance based on the type of everyday problems used as well as based on the way that problem-solving efficacy is operationally defined. Advancing age is associated with worsening performance when tasks involve single-solution or fluency-based definitions of effectiveness. However, when efficacy is defined in terms of the diversity of strategies used, as well as by the social and emotional impact of solution choice on the individual, performance is remarkably stable and sometimes even improves in the latter half of life. This article discusses how both of these approaches to everyday problem solving inform research on the influence that aging has on everyday functioning. PMID:22023569

  2. Numerical solution of large nonlinear boundary value problems by quadratic minimization techniques

    International Nuclear Information System (INIS)

    Glowinski, R.; Le Tallec, P.

    1984-01-01

    The objective of this paper is to describe the numerical treatment of large highly nonlinear two or three dimensional boundary value problems by quadratic minimization techniques. In all the different situations where these techniques were applied, the methodology remains the same and is organized as follows: 1) derive a variational formulation of the original boundary value problem, and approximate it by Galerkin methods; 2) transform this variational formulation into a quadratic minimization problem (least squares methods) or into a sequence of quadratic minimization problems (augmented lagrangian decomposition); 3) solve each quadratic minimization problem by a conjugate gradient method with preconditioning, the preconditioning matrix being sparse, positive definite, and fixed once for all in the iterative process. This paper will illustrate the methodology above on two different examples: the description of least squares solution methods and their application to the solution of the unsteady Navier-Stokes equations for incompressible viscous fluids; the description of augmented lagrangian decomposition techniques and their application to the solution of equilibrium problems in finite elasticity

  3. Implementation of a Multichannel Serial Data Streaming Algorithm using the Xilinx Serial RapidIO Solution

    Science.gov (United States)

    Doxley, Charles A.

    2016-01-01

    In the current world of applications that use reconfigurable technology implemented on field programmable gate arrays (FPGAs), there is a need for flexible architectures that can grow as the systems evolve. A project has limited resources and a fixed set of requirements that development efforts are tasked to meet. Designers must develop robust solutions that practically meet the current customer demands and also have the ability to grow for future performance. This paper describes the development of a high speed serial data streaming algorithm that allows for transmission of multiple data channels over a single serial link. The technique has the ability to change to meet new applications developed for future design considerations. This approach uses the Xilinx Serial RapidIO LOGICORE Solution to implement a flexible infrastructure to meet the current project requirements with the ability to adapt future system designs.

  4. Street floods in Metro Manila and possible solutions.

    Science.gov (United States)

    Lagmay, Alfredo Mahar; Mendoza, Jerico; Cipriano, Fatima; Delmendo, Patricia Anne; Lacsamana, Micah Nieves; Moises, Marc Anthony; Pellejera, Nicanor; Punay, Kenneth Niño; Sabio, Glenn; Santos, Laurize; Serrano, Jonathan; Taniza, Herbert James; Tingin, Neil Eneri

    2017-09-01

    Urban floods from thunderstorms cause severe problems in Metro Manila due to road traffic. Using Light Detection and Ranging (LiDAR)-derived topography, flood simulations and anecdotal reports, the root of surface flood problems in Metro Manila is identified. Majority of flood-prone areas are along the intersection of creeks and streets located in topographic lows. When creeks overflow or when rapidly accumulated street flood does not drain fast enough to the nearest stream channel, the intersecting road also gets flooded. Possible solutions include the elevation of roads or construction of well-designed drainage structures leading to the creeks. Proposed solutions to the flood problem of Metro Manila may avoid paralyzing traffic problems due to short-lived rain events, which according to Japan International Cooperation Agency (JICA) cost the Philippine economy 2.4billionpesos/day. Copyright © 2017. Published by Elsevier B.V.

  5. Adaptive SVM for Data Stream Classification

    Directory of Open Access Journals (Sweden)

    Isah A. Lawal

    2017-07-01

    Full Text Available In this paper, we address the problem of learning an adaptive classifier for the classification of continuous streams of data. We present a solution based on incremental extensions of the Support Vector Machine (SVM learning paradigm that updates an existing SVM whenever new training data are acquired. To ensure that the SVM effectiveness is guaranteed while exploiting the newly gathered data, we introduce an on-line model selection approach in the incremental learning process. We evaluated the proposed method on real world applications including on-line spam email filtering and human action classification from videos. Experimental results show the effectiveness and the potential of the proposed approach.

  6. Periodic Solutions for Circular Restricted -Body Problems

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Zhao

    2013-01-01

    Full Text Available For circular restricted -body problems, we study the motion of a sufficiently small mass point (called the zero mass point in the plane of equal masses located at the vertices of a regular polygon. By using variational minimizing methods, for some , we prove the existence of the noncollision periodic solution for the zero mass point with some fixed wingding number.

  7. Practical solutions for multi-objective optimization: An application to system reliability design problems

    International Nuclear Information System (INIS)

    Taboada, Heidi A.; Baheranwala, Fatema; Coit, David W.; Wattanapongsakorn, Naruemon

    2007-01-01

    For multiple-objective optimization problems, a common solution methodology is to determine a Pareto optimal set. Unfortunately, these sets are often large and can become difficult to comprehend and consider. Two methods are presented as practical approaches to reduce the size of the Pareto optimal set for multiple-objective system reliability design problems. The first method is a pseudo-ranking scheme that helps the decision maker select solutions that reflect his/her objective function priorities. In the second approach, we used data mining clustering techniques to group the data by using the k-means algorithm to find clusters of similar solutions. This provides the decision maker with just k general solutions to choose from. With this second method, from the clustered Pareto optimal set, we attempted to find solutions which are likely to be more relevant to the decision maker. These are solutions where a small improvement in one objective would lead to a large deterioration in at least one other objective. To demonstrate how these methods work, the well-known redundancy allocation problem was solved as a multiple objective problem by using the NSGA genetic algorithm to initially find the Pareto optimal solutions, and then, the two proposed methods are applied to prune the Pareto set

  8. Compendium to radiation physics for medical physicists. 300 problems and solutions

    International Nuclear Information System (INIS)

    Podgorsak, Ervin B.

    2014-01-01

    Can be used in combination with other textbooks. Exercise book for graduate and undergraduate students of medical physics and engineering. Well chosen and didactically presented problems. Perfect set for learning in connection with the textbook by Podgorsak and others. Detailed derivation of results with many detailed illustrations. Fully worked-out solutions to exercises/questions. Combines exercises in radiation physics and medical physics. This exercise book contains 300 typical problems and exercises in modern physics and radiation physics with complete solutions, detailed equations and graphs. This textbook is linked directly with the textbook ''Radiation Physics for Medical Physicists'', Springer (2010) but can also be used in combination with other related textbooks. For ease of use, this textbook has exactly the same organizational layout (14 chapters, 128 sections) as the ''Radiation Physics for Medical Physicists'' textbook and each section is covered by at least one problem with solution given. Equations, figures and tables are cross-referenced between the two books. It is the only large compilation of textbook material and associated solved problems in medical physics, radiation physics, and biophysics.

  9. Subcutaneous drug infusions: a review of problems and solutions.

    Science.gov (United States)

    Mitten, T

    2001-02-01

    Subcutaneous drug infusion using a portable syringe driver has had a significant impact on patient comfort in palliative care. It permits the continuous delivery of a range of drug therapies, so bypassing problems of dysphagia, weakness and the inability of many patients in the terminal phase to take oral medication. The devices are not problem-free, however. Mechanical problems, reactions at the infusion site and difficulties with the mixing of drugs in the syringe are all widely recognized. This article reviews some general issues with the operation of portable syringe drivers, and discusses a range of potential problems and their solutions.

  10. On the complexity of determining tolerances for ->e--optimal solutions to min-max combinatorial optimization problems

    NARCIS (Netherlands)

    Ghosh, D.; Sierksma, G.

    2000-01-01

    Sensitivity analysis of e-optimal solutions is the problem of calculating the range within which a problem parameter may lie so that the given solution re-mains e-optimal. In this paper we study the sensitivity analysis problem for e-optimal solutions tocombinatorial optimization problems with

  11. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min, E-mail: kevin.heng@csh.unibe.ch, E-mail: joao.mendonca@csh.unibe.ch, E-mail: lee@physik.uzh.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  12. Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems

    Science.gov (United States)

    Van Benthem, Mark H.; Keenan, Michael R.

    2008-11-11

    A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.

  13. Efficient Output Solution for Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences

    Directory of Open Access Journals (Sweden)

    Sie Long Kek

    2015-01-01

    Full Text Available A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation problem to establish a matching scheme. During the calculation procedure, the iterative solution is updated in order to approximate the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater treatment problem is studied and the results show the efficiency of the approach proposed.

  14. Positive Solutions of Two-Point Boundary Value Problems for Monge-Ampère Equations

    Directory of Open Access Journals (Sweden)

    Baoqiang Yan

    2015-01-01

    Full Text Available This paper considers the following boundary value problem: ((-u'(tn'=ntn-1f(u(t,  01 is odd. We establish the method of lower and upper solutions for some boundary value problems which generalizes the above equations and using this method we present a necessary and sufficient condition for the existence of positive solutions to the above boundary value problem and some sufficient conditions for the existence of positive solutions.

  15. Radiation shielding techniques and applications. 3. Analysis of Photon Streaming Through and Around Shield Doors

    International Nuclear Information System (INIS)

    Barnett, Marvin; Hack, Joe; Nathan, Steve; White, Travis

    2001-01-01

    Westinghouse Safety Management Solutions (Westinghouse SMS) has been tasked with providing radiological engineering design support for the new Commercial Light Water Reactor Tritium Extraction Facility (CLWR-TEF) being constructed at the Savannah River Site (SRS). The Remote Handling Building (RHB) of the CLWR-TEF will act as the receiving facility for irradiated targets used in the production of tritium for the U.S. Department of Energy (DOE). Because of the high dose rates, approaching 50 000 rads/h (500 Gy/h) from the irradiated target bundles, significant attention has been made to shielding structures within the facility. One aspect of the design that has undergone intense review is the shield doors. The RHB has six shield doors that needed to be studied with respect to photon streaming. Several aspects had to be examined to ensure that the design meets the radiation dose levels. Both the thickness and streaming issues around the door edges were designed and examined. Photon streaming through and around a shield door is a complicated problem, creating a reliance on computer modeling to perform the analyses. The computer code typically used by the Westinghouse SMS in the evaluation of photon transport through complex geometries is the MCNP Monte Carlo computer code. The complexity of the geometry within the problem can cause problems even with the Monte Carlo codes. Striking a balance between how the code handles transport through the shield door with transport through the streaming paths, particularly with the use of typical variance reduction methods, is difficult when trying to ensure that all important regions of the model are sampled appropriately. The thickness determination used a simple variance reduction technique. In construction, the shield door will not be flush against the wall, so a solid rectangular slab leaves streaming paths around the edges. Administrative controls could be used to control dose to workers; however, 10 CFR 835.1001 states

  16. Radioactive Waste...The Problem and Some Possible Solutions

    Science.gov (United States)

    Olivier, Jean-Pierre

    1977-01-01

    Nuclear safety is a highly technical and controversial subject that has caused much heated debate and political concern. This article examines the problems involved in managing radioactive wastes and the techniques now used. Potential solutions are suggested and the need for international cooperation is stressed. (Author/MA)

  17. Hierarchical Solution of the Traveling Salesman Problem with Random Dyadic Tilings

    Science.gov (United States)

    Kalmár-Nagy, Tamás; Bak, Bendegúz Dezső

    We propose a hierarchical heuristic approach for solving the Traveling Salesman Problem (TSP) in the unit square. The points are partitioned with a random dyadic tiling and clusters are formed by the points located in the same tile. Each cluster is represented by its geometrical barycenter and a “coarse” TSP solution is calculated for these barycenters. Midpoints are placed at the middle of each edge in the coarse solution. Near-optimal (or optimal) minimum tours are computed for each cluster. The tours are concatenated using the midpoints yielding a solution for the original TSP. The method is tested on random TSPs (independent, identically distributed points in the unit square) up to 10,000 points as well as on a popular benchmark problem (att532 — coordinates of 532 American cities). Our solutions are 8-13% longer than the optimal ones. We also present an optimization algorithm for the partitioning to improve our solutions. This algorithm further reduces the solution errors (by several percent using 1000 iteration steps). The numerical experiments demonstrate the viability of the approach.

  18. Exact Closed-form Solutions for Lamb's Problem

    Science.gov (United States)

    Feng, X.

    2017-12-01

    In this work, we report on an exact closedform solution for the displacement at the surfaceof an elastic halfspace elicited by a buried point source that acts at some point underneath thatsurface. This is commonly referred to as the 3D Lamb's problem, for which previous solutionswere restricted to sources and receivers placed at the free surface. By means of the reciprocitytheorem, our solution should also be valid as a means to obtain the displacements at interior pointswhen the source is placed at the free surface. We manage to obtain explicit results by expressingthe solution in terms of elementary algebraic expression as well as elliptic integrals. We anchorour developments on Poissons ratio 0.25 starting from Johnson's numerical, integral transformsolutions. Furthermore, the spatial derivatives of our solutions can be easily acquired in termsof our methods. In the end, our closed-form results agree perfectly with the numerical results ofJohnson, which strongly conrms the correctness of our explicit formulas. It is hoped that in duetime, these formulas may constitute a valuable canonical solution that will serve as a yardstickagainst which other numerical solutions can be compared and measured.In addition, we abstract some terms from our solutions as the generator of the Rayleigh waves.Some basic properties of the Rayleigh waves in the time domain will be indicated in terms of thegenerator. The fareld radiation patterns of P-wave and S-wave elicited by the double-couple forcein the uniform half-space medium could also be acquired from our results.

  19. An investigation on the solutions for the linear inverse problem in gamma ray tomography

    International Nuclear Information System (INIS)

    Araujo, Bruna G.M.; Dantas, Carlos C.; Santos, Valdemir A. dos; Finkler, Christine L.L.; Oliveira, Eric F. de; Melo, Silvio B.; Santos, M. Graca dos

    2009-01-01

    This paper the results obtained in single beam gamma ray tomography are investigated according to direct problem formulation and the applied solution for the linear system of equations. By image reconstruction based algebraic computational algorithms are used. The sparse under and over-determined linear system of equations was analyzed. Build in functions of Matlab software were applied and optimal solutions were investigate. Experimentally a section of the tube is scanned from various positions and at different angles. The solution, to find the vector of coefficients μ, from the vector of measured p values through the W matrix inversion, constitutes an inverse problem. A industrial tomography process requires a numerical solution of the system of equations. The definition of inverse problem according to Hadmard's is considered and as well the requirement of a well posed problem to find stable solutions. The formulation of the basis function and the computational algorithm to structure the weight matrix W were analyzed. For W full rank matrix the obtained solution is unique as expected. Total Least Squares was implemented which theory and computation algorithm gives adequate treatment for the problems due to non-unique solutions of the system of equations. Stability of the solution was investigating by means of a regularization technique and the comparison shows that it improves the results. An optimal solution as a function of the image quality, computation time and minimum residuals were quantified. The corresponding reconstructed images are shown in 3D graphics in order to compare with the solution. (author)

  20. Problem Solution Project: Transforming Curriculum and Empowering Urban Students and Teachers

    Science.gov (United States)

    Jarrett, Olga S.; Stenhouse, Vera

    2011-01-01

    This article presents findings of 6 years of implementing a Problem Solution Project, an assignment influenced by service learning, problem-based learning, critical theory, and critical pedagogy whereby teachers help children tackle real problems. Projects of 135 teachers in an urban certification/master's program were summarized by cohort year…

  1. Solution for state constrained optimal control problems applied to power split control for hybrid vehicles

    NARCIS (Netherlands)

    Keulen, van T.A.C.; Gillot, J.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    This paper presents a numerical solution for scalar state constrained optimal control problems. The algorithm rewrites the constrained optimal control problem as a sequence of unconstrained optimal control problems which can be solved recursively as a two point boundary value problem. The solution

  2. Contraceptive Promotion And Utilization: Solution To Problem Of ...

    African Journals Online (AJOL)

    This study examined the contraceptive utilisation among patients treated in a University Teaching Hospital for complications of illegal abortion aimed at utilizing such information to proffer solution to the problems of unwanted pregnancy and induced abortion. In this study, 93.3% of patients had never used contraceptive and ...

  3. A solution to nonlinearity problems

    International Nuclear Information System (INIS)

    Neuffer, D.V.

    1989-01-01

    New methods of correcting dynamic nonlinearities resulting from the multipole content of a synchrotron or transport line are presented. In a simplest form, correction elements are places at the center (C) of the accelerator half-cells as well as near the focusing (F) and defocusing (D) quadrupoles. In a first approximation, the corrector strengths follow Simpson's Rule, forming an accurate quasi-local canceling approximation to the nonlinearity. The F, C, and D correctors may also be used to obtain precise control of the horizontal, coupled, and vertical motion. Correction by three or more orders of magnitude can be obtained, and simple solutions to a fundamental problem in beam transport have been obtained. 13 refs., 1 fig., 1 tab

  4. Efficient Solutions to Two-Party and Multiparty Millionaires’ Problem

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-01-01

    Full Text Available The millionaires’ problem is the basis of secure multiparty computation and has many applications. Using a vectorization method and the Paillier encryption scheme, we first propose a secure two-party solution to the millionaires’ problem, which can determine x=y,  xy in one execution. Subsequently, using the vectorization and secret splitting methods, we propose an information-theoretically secure protocol to solve the multiparty millionaires’ problem (a.k.a. secure sorting problem, and this protocol can resist collusion attacks. We analyze the accuracy and security of our protocols in the semihonest model and compare the computational and communication complexities between the proposed protocols and the existing ones.

  5. FAST LABEL: Easy and efficient solution of joint multi-label and estimation problems

    KAUST Repository

    Sundaramoorthi, Ganesh

    2014-06-01

    We derive an easy-to-implement and efficient algorithm for solving multi-label image partitioning problems in the form of the problem addressed by Region Competition. These problems jointly determine a parameter for each of the regions in the partition. Given an estimate of the parameters, a fast approximate solution to the multi-label sub-problem is derived by a global update that uses smoothing and thresholding. The method is empirically validated to be robust to fine details of the image that plague local solutions. Further, in comparison to global methods for the multi-label problem, the method is more efficient and it is easy for a non-specialist to implement. We give sample Matlab code for the multi-label Chan-Vese problem in this paper! Experimental comparison to the state-of-the-art in multi-label solutions to Region Competition shows that our method achieves equal or better accuracy, with the main advantage being speed and ease of implementation.

  6. Local entropy as a measure for sampling solutions in constraint satisfaction problems

    International Nuclear Information System (INIS)

    Baldassi, Carlo; Ingrosso, Alessandro; Lucibello, Carlo; Saglietti, Luca; Zecchina, Riccardo

    2016-01-01

    We introduce a novel entropy-driven Monte Carlo (EdMC) strategy to efficiently sample solutions of random constraint satisfaction problems (CSPs). First, we extend a recent result that, using a large-deviation analysis, shows that the geometry of the space of solutions of the binary perceptron learning problem (a prototypical CSP), contains regions of very high-density of solutions. Despite being sub-dominant, these regions can be found by optimizing a local entropy measure. Building on these results, we construct a fast solver that relies exclusively on a local entropy estimate, and can be applied to general CSPs. We describe its performance not only for the perceptron learning problem but also for the random K-satisfiabilty problem (another prototypical CSP with a radically different structure), and show numerically that a simple zero-temperature Metropolis search in the smooth local entropy landscape can reach sub-dominant clusters of optimal solutions in a small number of steps, while standard Simulated Annealing either requires extremely long cooling procedures or just fails. We also discuss how the EdMC can heuristically be made even more efficient for the cases we studied. (paper: disordered systems, classical and quantum)

  7. A Solution to the Square-Rectangle Problem Within the Framework of Object Morphology

    Directory of Open Access Journals (Sweden)

    Zbyněk Šlajchrt

    2016-06-01

    Full Text Available The square-rectangle problem is often cited as an illustration of pitfalls arising when using object-oriented programming (OOP. A number of solutions have been proposed, however, according to the author, none of them solve the problem satisfactorily, mainly because they tackle the problem from within the current OOP paradigm. This paper presents another solution stemming from object morphology (OM, a new object-oriented paradigm developed to model mutable phenomena. In the framework of OM the problem can be solved directly under the basic OM principle that an object may mutate not only with regard to its state, but also with regard to its type. The main contrast between the presented and the other solutions is that constraint violations caused by changes in an object’s state are no longer necessarily considered errors; instead, they may be interpreted as triggers initiating a mutation of the object’s type. The solution is demonstrated using Morpheus, a proof-of-concept implementation of OM in Scala.

  8. Analysing student written solutions to investigate if problem-solving processes are evident throughout

    Science.gov (United States)

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-07-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.

  9. Boundary Value Problems for a Super-Sublinear Asymmetric Oscillator: The Exact Number of Solutions

    Directory of Open Access Journals (Sweden)

    Armands Gritsans

    2013-01-01

    Full Text Available Properties of asymmetric oscillator described by the equation (i, where and , are studied. A set of such that the problem (i, (ii, and (iii have a nontrivial solution, is called α-spectrum. We give full description of α-spectra in terms of solution sets and solution surfaces. The exact number of nontrivial solutions of the two-parameter Dirichlet boundary value problem (i, and (ii is given.

  10. Multicriterion problem of allocation of resources in the heterogeneous distributed information processing systems

    Science.gov (United States)

    Antamoshkin, O. A.; Kilochitskaya, T. R.; Ontuzheva, G. A.; Stupina, A. A.; Tynchenko, V. S.

    2018-05-01

    This study reviews the problem of allocation of resources in the heterogeneous distributed information processing systems, which may be formalized in the form of a multicriterion multi-index problem with the linear constraints of the transport type. The algorithms for solution of this problem suggest a search for the entire set of Pareto-optimal solutions. For some classes of hierarchical systems, it is possible to significantly speed up the procedure of verification of a system of linear algebraic inequalities for consistency due to the reducibility of them to the stream models or the application of other solution schemes (for strongly connected structures) that take into account the specifics of the hierarchies under consideration.

  11. Hidden solution to the μ/Bμ problem in gauge mediation

    International Nuclear Information System (INIS)

    Roy, Tuhin S.; Schmaltz, Martin

    2008-01-01

    We propose a solution to the μ/B μ problem in gauge mediation. The novel feature of our solution is that it uses dynamics of the hidden sector, which is often present in models with dynamical supersymmetry breaking. We give an explicit example model of gauge mediation where a very simple messenger sector generates both μ and B μ at one loop. The usual problem, that B μ is then too large, is solved by strong renormalization effects from the hidden sector which suppress B μ relative to μ. Our mechanism relies on an assumption about the signs of certain incalculable anomalous dimensions in the hidden sector. Making these assumptions not only allows us to solve the μ/B μ problem but also leads to a characteristic superpartner spectrum which would be a smoking gun signal for our mechanism.

  12. Use of sulfur concrete for radioecological problems solution in Kazakhstan

    International Nuclear Information System (INIS)

    Takibaev, Zh.; Belyashov, D.; Vagin, S.

    2001-01-01

    At present during intensive development of oil and gas fields in Kazakhstan a lot amount of sulfur is extracting. The problem of sulfur utilization demands its immediate solution. One of the perspective trends of sulfur utilization is use it in production of sulfur polymer concrete. It is well known, that encapsulation of low level radioactive and toxic wastes in sulfur polymer concrete and design from it radiation protection facilities have good perspectives for solution of radioecological problems. Sulfur concrete has high corrosion and radiation stability, improved mechanical and chemical properties. Unique properties of sulfur concrete allow to use it in materials ensuring protection from external irradiation

  13. Validation of the stream function method used for reconstruction of experimental ionospheric convection patterns

    Directory of Open Access Journals (Sweden)

    P.L. Israelevich

    Full Text Available In this study we test a stream function method suggested by Israelevich and Ershkovich for instantaneous reconstruction of global, high-latitude ionospheric convection patterns from a limited set of experimental observations, namely, from the electric field or ion drift velocity vector measurements taken along two polar satellite orbits only. These two satellite passes subdivide the polar cap into several adjacent areas. Measured electric fields or ion drifts can be considered as boundary conditions (together with the zero electric potential condition at the low-latitude boundary for those areas, and the entire ionospheric convection pattern can be reconstructed as a solution of the boundary value problem for the stream function without any preliminary information on ionospheric conductivities. In order to validate the stream function method, we utilized the IZMIRAN electrodynamic model (IZMEM recently calibrated by the DMSP ionospheric electrostatic potential observations. For the sake of simplicity, we took the modeled electric fields along the noon-midnight and dawn-dusk meridians as the boundary conditions. Then, the solution(s of the boundary value problem (i.e., a reconstructed potential distribution over the entire polar region is compared with the original IZMEM/DMSP electric potential distribution(s, as well as with the various cross cuts of the polar cap. It is found that reconstructed convection patterns are in good agreement with the original modelled patterns in both the northern and southern polar caps. The analysis is carried out for the winter and summer conditions, as well as for a number of configurations of the interplanetary magnetic field.

    Key words: Ionosphere (electric fields and currents; plasma convection; modelling and forecasting

  14. Numerical solution of fuzzy boundary value problems using Galerkin ...

    Indian Academy of Sciences (India)

    1 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China. 2 Department of ... exact solution of fuzzy first-order boundary value problems. (BVPs). ...... edge partial financial support by the Ministerio de Economıa.

  15. Nitrate in watersheds: straight from soils to streams?

    Science.gov (United States)

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.

    2013-01-01

    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  16. Compendium to radiation physics for medical physicists 300 problems and solutions

    CERN Document Server

    Podgorsak, Ervin B

    2014-01-01

    This exercise book contains 300 typical problems and exercises in modern physics and radiation physics with complete solutions, detailed equations and graphs. This textbook is linked directly with the textbook "Radiation Physics for Medical Physicists", Springer (2010) but can also be used in combination with other related textbooks. For ease of use, this textbook has exactly the same organizational layout (14 chapters, 128 sections) as the "Radiation Physics for Medical Physicists" textbook and each section is covered by at least one problem with solution given. Equations, figures and tables are cross-referenced between the two books. It is the only large compilation of textbook material and associated solved problems in medical physics, radiation physics, and biophysics.

  17. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  18. Economical solution for the industrial waste problem of Karachi industrial area

    International Nuclear Information System (INIS)

    Mubin, S.

    2005-01-01

    The increased rate of industrialization coupled with rapid urbanization in Pakistan has given rise to serious water pollution and environmental problems. A vast range of industries has been established in the country during the last twenty five years, including tanneries, fertilizers, textiles, refineries, chemicals, vegetable oils, paper am pulp, sugar and food. Little attention was paid towards a large scale release of wastewater from these industries. Presently wastewater produced from these industries has been considered a serious problem and research in being conducted to solve its associated problems. Recently, it has been realized that there is a significant threat of water borne diseases, degradation of fresh water quality, environmental depletion and soil deterioration from the effluent and toxic emission of industries. Being a developing country and having limited resources, it is hard to install treatment plants on the industrial effluent with every industry before discharging them into streams which are also creating disturbance in natural ecosystem. An effort has been made to solve wastewater problem by implementing statistical tools on data of Karachi industrial state, obtained from EPA JICA and PCRWR, Islamabad. (author)

  19. Bin packing problem solution through a deterministic weighted finite automaton

    Science.gov (United States)

    Zavala-Díaz, J. C.; Pérez-Ortega, J.; Martínez-Rebollar, A.; Almanza-Ortega, N. N.; Hidalgo-Reyes, M.

    2016-06-01

    In this article the solution of Bin Packing problem of one dimension through a weighted finite automaton is presented. Construction of the automaton and its application to solve three different instances, one synthetic data and two benchmarks are presented: N1C1W1_A.BPP belonging to data set Set_1; and BPP13.BPP belonging to hard28. The optimal solution of synthetic data is obtained. In the first benchmark the solution obtained is one more container than the ideal number of containers and in the second benchmark the solution is two more containers than the ideal solution (approximately 2.5%). The runtime in all three cases was less than one second.

  20. Methods of using the quadratic assignment problem solution

    Directory of Open Access Journals (Sweden)

    Izabela Kudelska

    2012-09-01

    Full Text Available Background: Quadratic assignment problem (QAP is one of the most interesting of combinatorial optimization. Was presented by Koopman and Beckamanna in 1957, as a mathematical model of the location of indivisible tasks. This problem belongs to the class NP-hard issues. This forces the application to the solution already approximate methods for tasks with a small size (over 30. Even though it is much harder than other combinatorial optimization problems, it enjoys wide interest because it models the important class of decision problems. Material and methods: The discussion was an artificial intelligence tool that allowed to solve the problem QAP, among others are: genetic algorithms, Tabu Search, Branch and Bound. Results and conclusions: QAP did not arise directly as a model for certain actions, but he found its application in many areas. Examples of applications of the problem is: arrangement of buildings on the campus of the university, layout design of electronic components in systems with large scale integration (VLSI, design a hospital, arrangement of keys on the keyboard.

  1. Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations

    Science.gov (United States)

    Park, Chan-Hee; Aral, Mustafa M.

    2007-06-01

    In this paper the Elder problem is studied with the purpose of evaluating the inherent instabilities associated with the numerical solution of this problem. Our focus is first on the question of the existence of a unique numerical solution for this problem, and second on the grid density and fluid density requirements necessary for a unique numerical solution. In particular we have investigated the instability issues associated with the numerical solution of the Elder problem from the following perspectives: (i) physical instability issues associated with density differences; (ii) sensitivity of the numerical solution to idealization irregularities; and, (iii) the importance of a precise velocity field calculation and the association of this process with the grid density levels that is necessary to solve the Elder problem accurately. In the study discussed here we have used a finite element Galerkin model we have developed for solving density-dependent flow and transport problems, which will be identified as TechFlow. In our study, the numerical results of Frolkovič and de Schepper [Frolkovič, P. and H. de Schepper, 2001. Numerical modeling of convection dominated transport coupled with density-driven flow in porous media, Adv. Water Resour., 24, 63-72.] were replicated using the grid density employed in their work. We were also successful in duplicating the same result with a less dense grid but with more computational effort based on a global velocity estimation process we have adopted. Our results indicate that the global velocity estimation approach recommended by Yeh [Yeh, G.-T., 1981. On the computation of Darcian velocity and mass balance in finite element modelling of groundwater flow, Water Resour. Res., 17(5), 1529-1534.] allows the use of less dense grids while obtaining the same accuracy that can be achieved with denser grids. We have also observed that the regularity of the elements in the discretization of the solution domain does make a difference

  2. Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.

    Science.gov (United States)

    Gubaidullin, Amir A; Yakovenko, Anna V

    2015-06-01

    Acoustic streaming in a gas filled cylindrical cavity subjected to the vibration effect is investigated numerically. Both thermally insulated walls and constant temperature walls are considered. The range of vibration frequencies from low frequencies, at which the process can be described by an approximate analytical solution, to high frequencies giving rise to strong nonlinear effects is studied. Frequencies lower than the resonant one are chosen, and nonlinearity is achieved due to the large amplitude. The problem is solved in an axisymmetric statement. The dependence of acoustic streaming in narrow channels at vibration frequencies lower than the resonant one on the type of thermal boundary conditions is shown. The streaming vortices' directions of rotation in the case of constant temperature walls are found to be opposite to those in the case of thermally insulated walls. Different nonlinear effects, which increase with the frequency of vibration, are obtained. Nonlinear effects manifesting as the nonuniformity of average temperature, pressure, and density are in turn found to be influencing the streaming velocity and streaming structure.

  3. A Weak Solution of a Stochastic Nonlinear Problem

    Directory of Open Access Journals (Sweden)

    M. L. Hadji

    2015-01-01

    Full Text Available We consider a problem modeling a porous medium with a random perturbation. This model occurs in many applications such as biology, medical sciences, oil exploitation, and chemical engineering. Many authors focused their study mostly on the deterministic case. The more classical one was due to Biot in the 50s, where he suggested to ignore everything that happens at the microscopic level, to apply the principles of the continuum mechanics at the macroscopic level. Here we consider a stochastic problem, that is, a problem with a random perturbation. First we prove a result on the existence and uniqueness of the solution, by making use of the weak formulation. Furthermore, we use a numerical scheme based on finite differences to present numerical results.

  4. Lower and Upper Solutions Method for Positive Solutions of Fractional Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    R. Darzi

    2013-01-01

    Full Text Available We apply the lower and upper solutions method and fixed-point theorems to prove the existence of positive solution to fractional boundary value problem D0+αut+ft,ut=0, 0

  5. Exact Solutions to the Double Travelling Salesman Problem with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne L.; Archetti, Claudia; Speranza, M. Grazia

    2010-01-01

    In this paper we present mathematical programming formulations and solution approaches for the optimal solution of the Double Travelling Salesman Problem with Multiple Stacks (DTSPMS). A set of orders is given, each one requiring transportation of one item from a customer in a pickup region...

  6. Closed solutions to a differential-difference equation and an associated plate solidification problem.

    Science.gov (United States)

    Layeni, Olawanle P; Akinola, Adegbola P; Johnson, Jesse V

    2016-01-01

    Two distinct and novel formalisms for deriving exact closed solutions of a class of variable-coefficient differential-difference equations arising from a plate solidification problem are introduced. Thereupon, exact closed traveling wave and similarity solutions to the plate solidification problem are obtained for some special cases of time-varying plate surface temperature.

  7. Existence of bounded solutions of Neumann problem for a nonlinear degenerate elliptic equation

    Directory of Open Access Journals (Sweden)

    Salvatore Bonafede

    2017-10-01

    Full Text Available We prove the existence of bounded solutions of Neumann problem for nonlinear degenerate elliptic equations of second order in divergence form. We also study some properties as the Phragmen-Lindelof property and the asymptotic behavior of the solutions of Dirichlet problem associated to our equation in an unbounded domain.

  8. An Efficient Algorithm for Partitioning and Authenticating Problem-Solutions of eLeaming Contents

    Science.gov (United States)

    Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn

    2013-01-01

    Content authenticity and correctness is one of the important challenges in eLearning as there can be many solutions to one specific problem in cyber space. Therefore, the authors feel it is necessary to map problems to solutions using graph partition and weighted bipartite matching. This article proposes an efficient algorithm to partition…

  9. Evaluation of the successive approximations method for acoustic streaming numerical simulations.

    Science.gov (United States)

    Catarino, S O; Minas, G; Miranda, J M

    2016-05-01

    This work evaluates the successive approximations method commonly used to predict acoustic streaming by comparing it with a direct method. The successive approximations method solves both the acoustic wave propagation and acoustic streaming by solving the first and second order Navier-Stokes equations, ignoring the first order convective effects. This method was applied to acoustic streaming in a 2D domain and the results were compared with results from the direct simulation of the Navier-Stokes equations. The velocity results showed qualitative agreement between both methods, which indicates that the successive approximations method can describe the formation of flows with recirculation. However, a large quantitative deviation was observed between the two methods. Further analysis showed that the successive approximation method solution is sensitive to the initial flow field. The direct method showed that the instantaneous flow field changes significantly due to reflections and wave interference. It was also found that convective effects contribute significantly to the wave propagation pattern. These effects must be taken into account when solving the acoustic streaming problems, since it affects the global flow. By adequately calculating the initial condition for first order step, the acoustic streaming prediction by the successive approximations method can be improved significantly.

  10. Surveying problem solution with theory and objective type questions

    CERN Document Server

    Chandra, AM

    2005-01-01

    The book provides a lucid and step-by-step treatment of the various principles and methods for solving problems in land surveying. Each chapter starts with basic concepts and definitions, then solution of typical field problems and ends with objective type questions. The book explains errors in survey measurements and their propagation. Survey measurements are detailed next. These include horizontal and vertical distance, slope, elevation, angle, and direction. Measurement using stadia tacheometry and EDM are then highlighted, followed by various types of levelling problems. Traversing is then explained, followed by a detailed discussion on adjustment of survey observations and then triangulation and trilateration.

  11. Bifurcation of solutions to Hamiltonian boundary value problems

    Science.gov (United States)

    McLachlan, R. I.; Offen, C.

    2018-06-01

    A bifurcation is a qualitative change in a family of solutions to an equation produced by varying parameters. In contrast to the local bifurcations of dynamical systems that are often related to a change in the number or stability of equilibria, bifurcations of boundary value problems are global in nature and may not be related to any obvious change in dynamical behaviour. Catastrophe theory is a well-developed framework which studies the bifurcations of critical points of functions. In this paper we study the bifurcations of solutions of boundary-value problems for symplectic maps, using the language of (finite-dimensional) singularity theory. We associate certain such problems with a geometric picture involving the intersection of Lagrangian submanifolds, and hence with the critical points of a suitable generating function. Within this framework, we then study the effect of three special cases: (i) some common boundary conditions, such as Dirichlet boundary conditions for second-order systems, restrict the possible types of bifurcations (for example, in generic planar systems only the A-series beginning with folds and cusps can occur); (ii) integrable systems, such as planar Hamiltonian systems, can exhibit a novel periodic pitchfork bifurcation; and (iii) systems with Hamiltonian symmetries or reversing symmetries can exhibit restricted bifurcations associated with the symmetry. This approach offers an alternative to the analysis of critical points in function spaces, typically used in the study of bifurcation of variational problems, and opens the way to the detection of more exotic bifurcations than the simple folds and cusps that are often found in examples.

  12. Is comprehension of problem solutions resistant to misleading heuristic cues?

    Science.gov (United States)

    Ackerman, Rakefet; Leiser, David; Shpigelman, Maya

    2013-05-01

    Previous studies in the domain of metacomprehension judgments have primarily used expository texts. When these texts include illustrations, even uninformative ones, people were found to judge that they understand their content better. The present study aimed to delineate the metacognitive processes involved in understanding problem solutions - a text type often perceived as allowing reliable judgments regarding understanding, and was not previously considered from a metacognitive perspective. Undergraduate students faced difficult problems. They then studied solution explanations with or without uninformative illustrations and provided judgments of comprehension (JCOMPs). Learning was assessed by application to near-transfer problems in an open-book test format. As expected, JCOMPs were polarized - they tended to reflect good or poor understanding. Yet, JCOMPs were higher for the illustrated solutions and even high certainty did not ensure resistance to this effect. Moreover, success in the transfer problems was lower in the presence of illustrations, demonstrating a bias stronger than that found with expository texts. Previous studies have suggested that weak learners are especially prone to being misled by superficial cues. In the present study, matching the difficulty of the task to the ability of the target population revealed that even highly able participants were not immune to misleading cues. The study extends previous findings regarding potential detrimental effects of illustrations and highlights aspects of the metacomprehension process that have not been considered before. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Optimization of the solution of the problem of scheduling theory ...

    African Journals Online (AJOL)

    This article describes the genetic algorithm used to solve the problem related to the scheduling theory. A large number of different methods is described in the scientific literature. The main issue that faced the problem in question is that it is necessary to search the optimal solution in a large search space for the set of ...

  14. Problems and solutions in thermoelasticity and magneto-thermoelasticity

    CERN Document Server

    Das, B

    2017-01-01

    This book presents problems and solutions of the mathematical theories of thermoelasticity and magnetothermoelasticity. The classical, coupled and generalized theories are solved using the eigenvalue methodology. Different methods of numerical inversion of the Laplace transform are presented and their direct applications are illustrated. The book is very useful to those interested in continuum mechanics.

  15. Enriched Meshfree Method for an Accurate Numerical Solution of the Motz Problem

    Directory of Open Access Journals (Sweden)

    Won-Tak Hong

    2016-01-01

    Full Text Available We present an enriched meshfree solution of the Motz problem. The Motz problem has been known as a benchmark problem to verify the efficiency of numerical methods in the presence of a jump boundary data singularity at a point, where an abrupt change occurs for the boundary condition. We propose a singular basis function enrichment technique in the context of partition of unity based meshfree method. We take the leading terms of the local series expansion at the point singularity and use them as enrichment functions for the local approximation space. As a result, we obtain highly accurate leading coefficients of the Motz problem that are comparable to the most accurate numerical solution. The proposed singular enrichment technique is highly effective in the case of the local series expansion of the solution being known. The enrichment technique that is used in this study can be applied to monotone singularities (of type rα with α<1 as well as oscillating singularities (of type rαsin⁡(ϵlog⁡r. It is the first attempt to apply singular meshfree enrichment technique to the Motz problem.

  16. A systematic literature review on the joint replenishment problem solutions: 2006-2015

    Directory of Open Access Journals (Sweden)

    Leonardo dos Santos Lourenço Bastos

    Full Text Available Abstract Among all existing inventory replenishment models, this research was dedicated to the Joint Replenishment Problem (JRP, which consists in the replenishment of multiple items simultaneously, aiming total cost reduction. Literature has presented several optimal and approximated solutions to this problem, with different applications and techniques, which results in a large quantity of solution proposals. Therefore, this research aimed to map existing solutions to the problem in 2006-2015 in order to provide a guide for interested parts in JRP and to update previous reviews. Hence, systematic review was used to assess papers from that period interval. From a total of 128 papers, a general trend for seeking JRP extensions and practical applications was verified. Furthermore, the heuristic and metaheuristic methods were the most used and considered the most suitable due to their simplicity in understanding and application.

  17. The Train Driver Recovery Problem - Solution Method and Decision Support System Framework

    DEFF Research Database (Denmark)

    Rezanova, Natalia Jurjevna

    2009-01-01

    the proposed model and solution method is suitable for solving in real-time. Recovery duties are generated as resource constrained paths in duty networks, and the set partitioning problem is solved with a linear programming based branch-and-price algorithm. Dynamic column generation and problem space expansion...... driver decision support system in their operational environment. Besides solving a particular optimization problem, this thesis contributes with a description of the railway planning process, tactical crew scheduling and the real-time dispatching solutions, taking a starting point in DSB S....... Rezanova NJ, Ryan DM. The train driver recovery problem–A set partitioning based model and solution method. Computers and Operations Research, in press, 2009. doi: 10.1016/j.cor.2009.03.023. 2. Clausen J, Larsen A, Larsen J, Rezanova NJ. Disruption management in the airline industry–Concepts, models...

  18. Solution of the finite Milne problem in stochastic media with RVT Technique

    Science.gov (United States)

    Slama, Howida; El-Bedwhey, Nabila A.; El-Depsy, Alia; Selim, Mustafa M.

    2017-12-01

    This paper presents the solution to the Milne problem in the steady state with isotropic scattering phase function. The properties of the medium are considered as stochastic ones with Gaussian or exponential distributions and hence the problem treated as a stochastic integro-differential equation. To get an explicit form for the radiant energy density, the linear extrapolation distance, reflectivity and transmissivity in the deterministic case the problem is solved using the Pomraning-Eddington method. The obtained solution is found to be dependent on the optical space variable and thickness of the medium which are considered as random variables. The random variable transformation (RVT) technique is used to find the first probability density function (1-PDF) of the solution process. Then the stochastic linear extrapolation distance, reflectivity and transmissivity are calculated. For illustration, numerical results with conclusions are provided.

  19. Chain segmentation for the Monte Carlo solution of particle transport problems

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.

    1984-01-01

    A Monte Carlo approach is proposed where the random walk chains generated in particle transport simulations are segmented. Forward and adjoint-mode estimators are then used in conjunction with the firstevent source density on the segmented chains to obtain multiple estimates of the individual terms of the Neumann series solution at each collision point. The solution is then constructed by summation of the series. The approach is compared to the exact analytical and to the Monte Carlo nonabsorption weighting method results for two representative slowing down and deep penetration problems. Application of the proposed approach leads to unbiased estimates for limited numbers of particle simulations and is useful in suppressing an effective bias problem observed in some cases of deep penetration particle transport problems

  20. Existence of solutions to fractional boundary-value problems with a parameter

    Directory of Open Access Journals (Sweden)

    Ya-Ning Li

    2013-06-01

    Full Text Available This article concerns the existence of solutions to the fractional boundary-value problem $$displaylines{ -frac{d}{dt} ig(frac{1}{2} {}_0D_t^{-eta}+ frac{1}{2}{}_tD_{T}^{-eta}igu'(t=lambda u(t+abla F(t,u(t,quad hbox{a.e. } tin[0,T], cr u(0=0,quad u(T=0. }$$ First for the eigenvalue problem associated with it, we prove that there is a sequence of positive and increasing real eigenvalues; a characterization of the first eigenvalue is also given. Then under different assumptions on the nonlinearity F(t,u, we show the existence of weak solutions of the problem when $lambda$ lies in various intervals. Our main tools are variational methods and critical point theorems.

  1. Retrofitting of heat exchanger networks involving streams with variable heat capacity: Application of single and multi-objective optimization

    International Nuclear Information System (INIS)

    Sreepathi, Bhargava Krishna; Rangaiah, G.P.

    2015-01-01

    Heat exchanger network (HEN) retrofitting improves the energy efficiency of the current process by reducing external utilities. In this work, HEN retrofitting involving streams having variable heat capacity is studied. For this, enthalpy values of a stream are fitted to a continuous cubic polynomial instead of a stepwise approach employed in the previous studies [1,2]. The former methodology is closer to reality as enthalpy or heat capacity changes gradually instead of step changes. Using the polynomial fitting formulation, single objective optimization (SOO) and multi-objective optimization (MOO) of a HEN retrofit problem are investigated. The results obtained show an improvement in the utility savings, and MOO provides many Pareto-optimal solutions to choose from. Also, Pareto-optimal solutions involving area addition in existing heat exchangers only (but no new exchangers and no structural modifications) are found and provided for comparison with those involving new exchangers and structural modifications as well. - Highlights: • HEN retrofitting involving streams with variable heat capacities is studied. • A continuous approach to handle variable heat capacity is proposed and tested. • Better and practical solutions are obtained for HEN retrofitting in process plants. • Pareto-optimal solutions provide many alternate choices for HEN retrofitting

  2. Exact solution of planar and nonplanar weak shock wave problem in gasdynamics

    International Nuclear Information System (INIS)

    Singh, L.P.; Ram, S.D.; Singh, D.B.

    2011-01-01

    Highlights: → An exact solution is derived for a problem of weak shock wave in adiabatic gas dynamics. → The density ahead of the shock is taken as a power of the position from the origin of the shock wave. → For a planar and non-planar motion, the total energy carried by the wave varies with respect to time. → The solution obtained for the planer, and cylindrically symmetric flow is new one. → The results obtained are also presented graphically for different Mach numbers. - Abstract: In the present paper, an analytical approach is used to determine a new exact solution of the problem of one dimensional unsteady adiabatic flow of planer and non-planer weak shock waves in an inviscid ideal fluid. Here it is assumed that the density ahead of the shock front varies according to the power law of the distance from the source of disturbance. The solution of the problem is presented in the form of a power in the distance and the time.

  3. Electrical Discharge Platinum Machining Optimization Using Stefan Problem Solutions

    Directory of Open Access Journals (Sweden)

    I. B. Stavitskiy

    2015-01-01

    Full Text Available The article presents the theoretical study results of platinum workability by electrical discharge machining (EDM, based on the solution of the thermal problem of moving the boundary of material change phase, i.e. Stefan problem. The problem solution enables defining the surface melt penetration of the material under the heat flow proceeding from the time of its action and the physical properties of the processed material. To determine the rational EDM operating conditions of platinum the article suggests relating its workability with machinability of materials, for which the rational EDM operating conditions are, currently, defined. It is shown that at low densities of the heat flow corresponding to the finishing EDM operating conditions, the processing conditions used for steel 45 are appropriate for platinum machining; with EDM at higher heat flow densities (e.g. 50 GW / m2 for this purpose copper processing conditions are used; at the high heat flow densities corresponding to heavy roughing EDM it is reasonable to use tungsten processing conditions. The article also represents how the minimum width of the current pulses, at which platinum starts melting and, accordingly, the EDM process becomes possible, depends on the heat flow density. It is shown that the processing of platinum is expedient at a pulse width corresponding to the values, called the effective pulse width. Exceeding these values does not lead to a substantial increase in removal of material per pulse, but considerably reduces the maximum repetition rate and therefore, the EDM capacity. The paper shows the effective pulse width versus the heat flow density. It also presents the dependences of the maximum platinum surface melt penetration and the corresponding pulse width on the heat flow density. Results obtained using solutions of the Stephen heat problem can be used to optimize EDM operating conditions of platinum machining.

  4. Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems

    KAUST Repository

    Frohne, Jö rg; Heister, Timo; Bangerth, Wolfgang

    2015-01-01

    © 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.

  5. Efficient numerical methods for the large-scale, parallel solution of elastoplastic contact problems

    KAUST Repository

    Frohne, Jörg

    2015-08-06

    © 2016 John Wiley & Sons, Ltd. Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts, and their numerical simulation is consequently of great interest in accurately describing and optimizing production processes. The key component in these simulations is the solution of a single load step of a time iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computationally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems. In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton linearization of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers. Through a sequence of numerical experiments, we show the performance of these methods. This includes highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to 1024 cores and more than a billion unknowns.

  6. Solution Methods for the Periodic Petrol Station Replenishment Problem

    OpenAIRE

    C Triki

    2013-01-01

    In this paper we introduce the Periodic Petrol Station Replenishment Problem (PPSRP) over a T-day planning horizon and describe four heuristic methods for its solution. Even though all the proposed heuristics belong to the common partitioning-then-routing paradigm, they differ in assigning the stations to each day of the horizon. The resulting daily routing problems are then solved exactly until achieving optimalization. Moreover, an improvement procedure is also developed with the aim of ens...

  7. Topological inversion for solution of geodesy-constrained geophysical problems

    Science.gov (United States)

    Saltogianni, Vasso; Stiros, Stathis

    2015-04-01

    Geodetic data, mostly GPS observations, permit to measure displacements of selected points around activated faults and volcanoes, and on the basis of geophysical models, to model the underlying physical processes. This requires inversion of redundant systems of highly non-linear equations with >3 unknowns; a situation analogous to the adjustment of geodetic networks. However, in geophysical problems inversion cannot be based on conventional least-squares techniques, and is based on numerical inversion techniques (a priori fixing of some variables, optimization in steps with values of two variables each time to be regarded fixed, random search in the vicinity of approximate solutions). Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solutions with poor error control (usually sampling-based approaches). To overcome these problems, a numerical-topological, grid-search based technique in the RN space is proposed (N the number of unknown variables). This technique is in fact a generalization and refinement of techniques used in lighthouse positioning and in some cases of low-accuracy 2-D positioning using Wi-Fi etc. The basic concept is to assume discrete possible ranges of each variable, and from these ranges to define a grid G in the RN space, with some of the gridpoints to approximate the true solutions of the system. Each point of hyper-grid G is then tested whether it satisfies the observations, given their uncertainty level, and successful grid points define a sub-space of G containing the true solutions. The optimal (minimal) space containing one or more solutions is obtained using a trial-and-error approach, and a single optimization factor. From this essentially deterministic identification of the set of gridpoints satisfying the system of equations, at a following step, a stochastic optimal solution is computed corresponding to the center of gravity of this set of gridpoints. This solution corresponds to a

  8. Combining Empirical Relationships with Data Based Mechanistic Modeling to Inform Solute Tracer Investigations across Stream Orders

    Science.gov (United States)

    Herrington, C.; Gonzalez-Pinzon, R.; Covino, T. P.; Mortensen, J.

    2015-12-01

    Solute transport studies in streams and rivers often begin with the introduction of conservative and reactive tracers into the water column. Information on the transport of these substances is then captured within tracer breakthrough curves (BTCs) and used to estimate, for instance, travel times and dissolved nutrient and carbon dynamics. Traditionally, these investigations have been limited to systems with small discharges (turbidity (e.g., nitrate signals with SUNA instruments or fluorescence measures) and/or high total dissolved solids (e.g., making prohibitively expensive the use of salt tracers such as NaCl) in larger systems. Additionally, a successful time-of-travel study is valuable for only a single discharge and river stage. We have developed a method to predict tracer BTCs to inform sampling frequencies at small and large stream orders using empirical relationships developed from multiple tracer injections spanning several orders of magnitude in discharge and reach length. This method was successfully tested in 1st to 8th order systems along the Middle Rio Grande River Basin in New Mexico, USA.

  9. Android Recipes A Problem-Solution Approach

    CERN Document Server

    Friesen, Jeff

    2011-01-01

    Android continues to be one of the leading mobile OS and development platforms driving today's mobile innovations and the apps ecosystem. Android appears complex, but offers a variety of organized development kits to those coming into Android with differing programming language skill sets. Android Recipes: A Problem-Solution Approach guides you step-by-step through a wide range of useful topics using complete and real-world working code examples. In this book, you'll start off with a recap of Android architecture and app fundamentals, and then get down to business and build an app with Google'

  10. On the solution of the inverse scattering problem on a ray

    International Nuclear Information System (INIS)

    Egikyan, R.S.; Zhidkov, E.P.

    1988-01-01

    Quantum inverse scattering problem (ISP) is considered within the framework of two-particle scattering for local interaction case depending only on the scattering between particles. Constructing the solution of secondary integral equation solution of ISP is described in the clear image. Numerical calculations are conducted using a direct method

  11. The structure of the solution obtained with Reynolds-stress-transport models at the free-stream edges of turbulent flows

    Science.gov (United States)

    Cazalbou, J.-B.; Chassaing, P.

    2002-02-01

    The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is investigated. Current turbulent-diffusion models are found to produce propagative (possibly weak) solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bradshaw [Phys. Fluids 6, 1797 (1994)] for two-equation models. As in the latter study, an analysis is presented that provides qualitative information on the flow structure predicted near the edge if a condition on the values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive to the residual free-stream turbulence levels needed with conventional numerical methods. The main specific result is that, depending on the diffusion model, the propagative solution can force turbulence toward definite and rather extreme anisotropy states at the edge (one- or two-component limit). This is not the case with the model of Daly and Harlow [Phys. Fluids 13, 2634 (1970)]; it may be one of the reasons why this "old" scheme is still the most widely used, even in recent Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties encountered in computing even very simple flows with Lumley's pressure-diffusion model [Adv. Appl. Mech. 18, 123 (1978)]. A new realizability condition, according to which the diffusion model should not globally become "anti-diffusive," is introduced, and a recalibration of Lumley's model satisfying this condition is performed using information drawn from the analysis.

  12. On the road to the solution of the Solar Neutrino Problem

    International Nuclear Information System (INIS)

    Norman, E.B.

    1995-01-01

    The present status of solar neutrino experiments is reviewed. The discrepancy between the experimental results and the theoretical expectations has come to be known as the Solar Neutrino Problem. Possible solutions to this problem are discussed. The next generation of solar neutrino experiments are described

  13. Solution of stochastic media transport problems using a numerical quadrature-based method

    International Nuclear Information System (INIS)

    Pautz, S. D.; Franke, B. C.; Prinja, A. K.; Olson, A. J.

    2013-01-01

    We present a new conceptual framework for analyzing transport problems in random media. We decompose such problems into stratified subproblems according to the number of material pseudo-interfaces within realizations. For a given subproblem we assign pseudo-interface locations in each realization according to product quadrature rules, which allows us to deterministically generate a fixed number of realizations. Quadrature integration of the solutions of these realizations thus approximately solves each subproblem; the weighted superposition of solutions of the subproblems approximately solves the general stochastic media transport problem. We revisit some benchmark problems to determine the accuracy and efficiency of this approach in comparison to randomly generated realizations. We find that this method is very accurate and fast when the number of pseudo-interfaces in a problem is generally low, but that these advantages quickly degrade as the number of pseudo-interfaces increases. (authors)

  14. The linear ordering problem: an algorithm for the optimal solution ...

    African Journals Online (AJOL)

    In this paper we describe and implement an algorithm for the exact solution of the Linear Ordering problem. Linear Ordering is the problem of finding a linear order of the nodes of a graph such that the sum of the weights which are consistent with this order is as large as possible. It is an NP - Hard combinatorial optimisation ...

  15. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2016-05-01

    Full Text Available Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach, applying those principles to the specific conditions in the problem (Specific Application of Physics, using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression.

  16. Amodified probabilistic genetic algorithm for the solution of complex constrained optimization problems

    OpenAIRE

    Vorozheikin, A.; Gonchar, T.; Panfilov, I.; Sopov, E.; Sopov, S.

    2009-01-01

    A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard genetic algorithm are presented.

  17. Efficient solution of 3D Ginzburg-Landau problem for mesoscopic superconductors

    International Nuclear Information System (INIS)

    Pereira, Paulo J; Moshchalkov, Victor V; Chibotaru, Liviu F

    2014-01-01

    The recently proposed approach for the solution of Ginzburg-Landau (GL) problem for 2D samples of arbitrary shape is, in this article, extended over 3D samples having the shape of (i) a prism with arbitrary base and (ii) a solid of revolution with arbitrary profile. Starting from the set of Laplace operator eigenfunctions of a 2D object, we construct an approximation to or the exact eigenfunctions of the Laplace operator of a 3D structure by applying an extrusion or revolution to these solutions. This set of functions is used as the basis to construct the solutions of the linearized GL equation. These solutions are then used as basis for the non-linear GL equation much like the famous LCAO method. To solve the non-linear equation, we used the Newton-Raphson method starting from the solution of the linear equation, i.e., the nucleation distribution of superconducting condensate. The vector potential approximations typically used in 2D cases, i.e., considering it as corresponding to applied constant field, are in the 3D case harder to justify. For that reason, we use a locally corrected Nystrom method to solve the second Ginzburg-Landau equation. The complete solution of GL problem is then achieved by solving self-consistently both equations

  18. Review of international solutions to NEACRP benchmark BWR lattice cell problems

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1977-12-01

    This paper summarises international solutions to a set of BWR benchmark problems. The problems, posed as an activity sponsored by the Nuclear Energy Agency Committee on Reactor Physics, were as follows: 9-pin supercell with central burnable poison pin, mini-BWR with 4 pin-cells and water gaps and control rod cruciform, full 7 x 7 pin BWR lattice cell with differential U 235 enrichment, and full 8 x 8 pin BWR lattice cell with water-hole, Pu-loading, burnable poison, and homogenised cruciform control rod. Solutions have been contributed by Denmark, Japan, Sweden, Switzerland and the UK. (author)

  19. Analytic solution of boundary-value problems for nonstationary model kinetic equations

    International Nuclear Information System (INIS)

    Latyshev, A.V.; Yushkanov, A.A.

    1993-01-01

    A theory for constructing the solutions of boundary-value problems for non-stationary model kinetic equations is constructed. This theory was incorrectly presented equation, separation of the variables is used, this leading to a characteristic equation. Eigenfunctions are found in the space of generalized functions, and the eigenvalue spectrum is investigated. An existence and uniqueness theorem for the expansion of the Laplace transform of the solution with respect to the eigenfunctions is proved. The proof is constructive and gives explicit expressions for the expansion coefficients. An application to the Rayleigh problem is obtained, and the corresponding result of Cercignani is corrected

  20. Relationships between Undergraduates' Argumentation Skills, Conceptual Quality of Problem Solutions, and Problem Solving Strategies in Introductory Physics

    Science.gov (United States)

    Rebello, Carina M.

    2012-01-01

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well…

  1. Wicked problems and a 'wicked' solution.

    Science.gov (United States)

    Walls, Helen L

    2018-04-13

    'Wicked' is the term used to describe some of the most challenging and complex issues of our time, many of which threaten human health. Climate change, biodiversity loss, persisting poverty, the advancing obesity epidemic, and food insecurity are all examples of such wicked problems. However there is a strong body of evidence describing the solutions for addressing many of these problems. Given that much is known about how many of these problems could be addressed - and given the risks of not acting - what will it take to create the 'tipping point' needed for effective action? A recent (2015) court ruling in The Hague held that the Dutch government's stance on climate change was illegal, ordering them to cut greenhouse gas emissions by at least 25% within 5 years (by 2020), relative to 1990 levels. The case was filed on behalf of 886 Dutch citizens, suing the government for violating human rights and climate changes treaties by failing to take adequate action to prevent the harmful impacts of climate change. This judicial ruling has the potential to provide a way forward, inspiring other civil movements and creating a template from which to address other wicked problems. This judicial strategy to address the need to lower greenhouse gas emissions in the Netherlands is not a magic bullet, and requires a particular legal and institutional setting. However it has the potential to be a game-changer - providing an example of a strategy for achieving domestic regulatory change that is likely to be replicable in some countries elsewhere, and providing an example of a particularly 'wicked' (in the positive, street-slang sense of the word) strategy to address seemingly intractable and wicked problems.

  2. Minimization of Linear Functionals Defined on| Solutions of Large-Scale Discrete Ill-Posed Problems

    DEFF Research Database (Denmark)

    Elden, Lars; Hansen, Per Christian; Rojas, Marielba

    2003-01-01

    The minimization of linear functionals de ned on the solutions of discrete ill-posed problems arises, e.g., in the computation of con dence intervals for these solutions. In 1990, Elden proposed an algorithm for this minimization problem based on a parametric-programming reformulation involving...... the solution of a sequence of trust-region problems, and using matrix factorizations. In this paper, we describe MLFIP, a large-scale version of this algorithm where a limited-memory trust-region solver is used on the subproblems. We illustrate the use of our algorithm in connection with an inverse heat...

  3. Fuel mix electricity 2020, inventory, problems and solutions

    International Nuclear Information System (INIS)

    Seebregts, A.J.; Snoep, H.J.M.; Van Deurzen, J.; Lensink, S.M.; Van der Welle, A.J.; Wetzels, W.

    2010-04-01

    ECN made an inventory of the fuel mix of the electricity generation in the Netherlands for the year 2020. The inventory is derived from the updated Reference Projections that are based on the Global Economy scenario. This scenario has a relatively high growth of the domestic electricity demand (156 TWh in 2020 compared to about 118 TWh in 2008). Besides the factual inventory, ECN made a quickscan of potential problems associated with high penetration of electricity from wind energy, up to 12,000 MW in 2020. The conclusion is that the so-called 'offpeak hours issue' (in Dutch: 'het daluren issue') is a real potential problem under such scenario assumptions. In case of full wind availability, the total generating capacity consisting of must-run capacity and typical base load power plants with low variable cost of production (nuclear and coal) may exceed the electricity demand (domestic plus net export) in part of these off-peak situations, e.g. during nighttime. The must-run capacity consists, among others, of part of the decentralised CHP installations and waste incinerators. Potential solutions to this 'off-peak hours issue' are: (1) Flexibility in electricity demand ('demand response'); (2) Additional interconnection with neighbouring countries and appropriate market design rules; (3) Storage of electricity; (4) Flexibility of conventional (fossil) supply; (5) Flexibility of the intermittent renewable generation itself; (6) Intelligent grids ('Smart Grids'). Additional detailed analyses and research are needed to address the magnitude of the problem and to analyse the contribution of the various solutions. Such an analysis can provide an indication of an optimal and feasible combination of the solutions identified. Relevant issues are: (a) How often, with which magnitude and under which circumstances will the problem occur?; (b) What will be the effect on the curtailing of wind energy, and is curtailing plausible given current market rules and renewable energy

  4. SGML-Based Markup for Literary Texts: Two Problems and Some Solutions.

    Science.gov (United States)

    Barnard, David; And Others

    1988-01-01

    Identifies the Standard Generalized Markup Language (SGML) as the best basis for a markup standard for encoding literary texts. Outlines solutions to problems using SGML and discusses the problem of maintaining multiple views of a document. Examines several ways of reducing the burden of markups. (GEA)

  5. Solutions of the Noh Problem for Various Equations of State Using Lie Groups

    International Nuclear Information System (INIS)

    Axford, R.A.

    1998-01-01

    A method for developing invariant equations of state for which solutions of the Noh problem will exist is developed. The ideal gas equation of state is shown to be a special case of the general method. Explicit solutions of the Noh problem in planar, cylindrical and spherical geometry are determined for a Mie-Gruneisen and the stiff gas equation of state

  6. Definition and use of Solution-focused Sustainability Assessment: A novel approach to generate, explore and decide on sustainable solutions for wicked problems.

    Science.gov (United States)

    Zijp, Michiel C; Posthuma, Leo; Wintersen, Arjen; Devilee, Jeroen; Swartjes, Frank A

    2016-05-01

    This paper introduces Solution-focused Sustainability Assessment (SfSA), provides practical guidance formatted as a versatile process framework, and illustrates its utility for solving a wicked environmental management problem. Society faces complex and increasingly wicked environmental problems for which sustainable solutions are sought. Wicked problems are multi-faceted, and deriving of a management solution requires an approach that is participative, iterative, innovative, and transparent in its definition of sustainability and translation to sustainability metrics. We suggest to add the use of a solution-focused approach. The SfSA framework is collated from elements from risk assessment, risk governance, adaptive management and sustainability assessment frameworks, expanded with the 'solution-focused' paradigm as recently proposed in the context of risk assessment. The main innovation of this approach is the broad exploration of solutions upfront in assessment projects. The case study concerns the sustainable management of slightly contaminated sediments continuously formed in ditches in rural, agricultural areas. This problem is wicked, as disposal of contaminated sediment on adjacent land is potentially hazardous to humans, ecosystems and agricultural products. Non-removal would however reduce drainage capacity followed by increased risks of flooding, while contaminated sediment removal followed by offsite treatment implies high budget costs and soil subsidence. Application of the steps in the SfSA-framework served in solving this problem. Important elements were early exploration of a wide 'solution-space', stakeholder involvement from the onset of the assessment, clear agreements on the risk and sustainability metrics of the problem and on the interpretation and decision procedures, and adaptive management. Application of the key elements of the SfSA approach eventually resulted in adoption of a novel sediment management policy. The stakeholder

  7. A heuristics-based solution to the continuous berth allocation and crane assignment problem

    Directory of Open Access Journals (Sweden)

    Mohammad Hamdy Elwany

    2013-12-01

    Full Text Available Effective utilization plans for various resources at a container terminal are essential to reducing the turnaround time of cargo vessels. Among the scarcest resources are the berth and its associated cranes. Thus, two important optimization problems arise, which are the berth allocation and quay crane assignment problems. The berth allocation problem deals with the generation of a berth plan, which determines where and when a ship has to berth alongside the quay. The quay crane assignment problem addresses the problem of determining how many and which quay crane(s will serve each vessel. In this paper, an integrated heuristics-based solution methodology is proposed that tackles both problems simultaneously. The preliminary experimental results show that the proposed approach yields high quality solutions to such an NP-hard problem in a reasonable computational time suggesting its suitability for practical use.

  8. Review of analytical models to stream depletion induced by pumping: Guide to model selection

    Science.gov (United States)

    Huang, Ching-Sheng; Yang, Tao; Yeh, Hund-Der

    2018-06-01

    Stream depletion due to groundwater extraction by wells may cause impact on aquatic ecosystem in streams, conflict over water rights, and contamination of water from irrigation wells near polluted streams. A variety of studies have been devoted to addressing the issue of stream depletion, but a fundamental framework for analytical modeling developed from aquifer viewpoint has not yet been found. This review shows key differences in existing models regarding the stream depletion problem and provides some guidelines for choosing a proper analytical model in solving the problem of concern. We introduce commonly used models composed of flow equations, boundary conditions, well representations and stream treatments for confined, unconfined, and leaky aquifers. They are briefly evaluated and classified according to six categories of aquifer type, flow dimension, aquifer domain, stream representation, stream channel geometry, and well type. Finally, we recommend promising analytical approaches that can solve stream depletion problem in reality with aquifer heterogeneity and irregular geometry of stream channel. Several unsolved stream depletion problems are also recommended.

  9. Removal of sulfamic acid from plutonium sulfamate--sulfamic acid solution

    International Nuclear Information System (INIS)

    Gray, L.W.

    1978-10-01

    Plutonium metal can be readily dissolved in aqueous solutions of sulfamic acid. When the plutonium sulfamate--sulfamic acid solutions are added to normal purex process streams, the sulfamate ion is oxidized by addition of sodium nitrite. This generates sodium sulfate which must be stored as radioactive waste. When recovery of ingrown 241 Am or storage of the dissolved plutonium must be considered, the sulfamate ion poses major and undesirable precipitation problems in the process streams. The present studies show that 40 to 80% of the sulfamate present in the dissolver solutions can be removed by precipitation as sulfamic acid by the addition of concentrated nitric acid. Addition of 64% nitric acid allows precipitation of 40 to 50% of the sulfamate; addition of 72% nitric acid allows precipitation of 50 to 60% of the sulfamate. If the solutions are chilled, additional sulfamic acid will precipitate. If the solutions are chilled to -10 0 C, about 70 to 80% of the orginal sulfamic acid in the dissolver will precipitate. A single, low-volume wash of the sulfamic acid crystals with concentrated nitric acid will decontaminate the crystals to a plutonium content of 5 dis/(min-gram)

  10. Solution of the Dirichlet Problem for the Poisson's Equation in a Multidimensional Infinite Layer

    Directory of Open Access Journals (Sweden)

    O. D. Algazin

    2015-01-01

    Full Text Available The paper considers the multidimensional Poisson equation in the domain bounded by two parallel hyperplanes (in the multidimensional infinite layer. For an n-dimensional half-space method of solving boundary value problems for linear partial differential equations with constant coefficients is a Fourier transform to the variables in the boundary hyperplane. The same method can be used for an infinite layer, as is done in this paper in the case of the Dirichlet problem for the Poisson equation. For strip and infinite layer in three-dimensional space the solutions of this problem are known. And in the three-dimensional case Green's function is written as an infinite series. In this paper, the solution is obtained in the integral form and kernels of integrals are expressed in a finite form in terms of elementary functions and Bessel functions. A recurrence relation between the kernels of integrals for n-dimensional and (n + 2 -dimensional layers was obtained. In particular, is built the Green's function of the Laplace operator for the Dirichlet problem, through which the solution of the problem is recorded. Even in three-dimensional case we obtained new formula compared to the known. It is shown that the kernel of the integral representation of the solution of the Dirichlet problem for a homogeneous Poisson equation (Laplace equation is an approximate identity (δ-shaped system of functions. Therefore, if the boundary values are generalized functions of slow growth, the solution of the Dirichlet problem for the homogeneous equation (Laplace is written as a convolution of kernels with these functions.

  11. A Bi-Modal Routing Problem with Cyclical and One-Way Trips: Formulation and Heuristic Solution

    Directory of Open Access Journals (Sweden)

    Grinde Roger B.

    2017-12-01

    Full Text Available A bi-modal routing problem is solved using a heuristic approach. Motivated by a recreational hiking application, the problem is similar to routing problems in business with two transport modes. The problem decomposes into a set covering problem (SCP and an asymmetric traveling salesperson problem (ATSP, corresponding to a hiking time objective and a driving distance objective. The solution algorithm considers hiking time first, but finds all alternate optimal solutions, as inputs to the driving distance problem. Results show the trade-offs between the two objectives.

  12. Spectral methods and their implementation to solution of aerodynamic and fluid mechanic problems

    Science.gov (United States)

    Streett, C. L.

    1987-01-01

    Fundamental concepts underlying spectral collocation methods, especially pertaining to their use in the solution of partial differential equations, are outlined. Theoretical accuracy results are reviewed and compared with results from test problems. A number of practical aspects of the construction and use of spectral methods are detailed, along with several solution schemes which have found utility in applications of spectral methods to practical problems. Results from a few of the successful applications of spectral methods to problems of aerodynamic and fluid mechanic interest are then outlined, followed by a discussion of the problem areas in spectral methods and the current research under way to overcome these difficulties.

  13. Oscillatory solutions of the Cauchy problem for linear differential equations

    Directory of Open Access Journals (Sweden)

    Gro Hovhannisyan

    2015-06-01

    Full Text Available We consider the Cauchy problem for second and third order linear differential equations with constant complex coefficients. We describe necessary and sufficient conditions on the data for the existence of oscillatory solutions. It is known that in the case of real coefficients the oscillatory behavior of solutions does not depend on initial values, but we show that this is no longer true in the complex case: hence in practice it is possible to control oscillatory behavior by varying the initial conditions. Our Proofs are based on asymptotic analysis of the zeros of solutions, represented as linear combinations of exponential functions.

  14. Novel Problem Solving - The NASA Solution Mechanism Guide

    Science.gov (United States)

    Keeton, Kathryn E.; Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-01-01

    Over the past five years, the Human Health and Performance (HH&P) Directorate at the NASA Johnson Space Center (JSC) has conducted a number of pilot and ongoing projects in collaboration and open innovation. These projects involved the use of novel open innovation competitions that sought solutions from "the crowd", non-traditional problem solvers. The projects expanded to include virtual collaboration centers such as the NASA Human Health and Performance Center (NHHPC) and more recently a collaborative research project between NASA and the National Science Foundation (NSF). These novel problem-solving tools produced effective results and the HH&P wanted to capture the knowledge from these new tools, to teach the results to the directorate, and to implement new project management tools and coursework. The need to capture and teach the results of these novel problem solving tools, the HH&P decided to create a web-based tool to capture best practices and case studies, to teach novice users how to use new problem solving tools and to change project management training/. This web-based tool was developed with a small, multi-disciplinary group and named the Solution Mechanism Guide (SMG). An alpha version was developed that was tested against several sessions of user groups to get feedback on the SMG and determine a future course for development. The feedback was very positive and the HH&P decided to move to the beta-phase of development. To develop the web-based tool, the HH&P utilized the NASA Tournament Lab (NTL) to develop the software with TopCoder under an existing contract. In this way, the HH&P is using one new tool (the NTL and TopCoder) to develop the next generation tool, the SMG. The beta-phase of the SMG is planed for release in the spring of 2014 and results of the beta-phase testing will be available for the IAC meeting in September. The SMG is intended to disrupt the way problem solvers and project managers approach problem solving and to increase the

  15. Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams

    International Nuclear Information System (INIS)

    Pizzo, V.J.

    1982-01-01

    The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream

  16. Transmission investment problems in Europe: Going beyond standard solutions

    International Nuclear Information System (INIS)

    Buijs, Patrik; Bekaert, David; Cole, Stijn; Van Hertem, Dirk; Belmans, Ronnie

    2011-01-01

    The European transmission grid is facing an investment challenge. There is a strong call for more transmission capacity. At the same time, the investment climate is fierce and troubled by public opposition, a complex regulatory framework, etc. Many transmission capacity expansion projects are delayed or canceled. In this paper different technology options suitable for increasing transmission capacity are discussed. The aim is to provide policy-makers with information on technologies without going too much into technical details. The focus is on opportunities and limitations to implement various technological alternatives in practice, including technical solutions that go beyond constructing new connection lines. The criteria used in this technology assessment are based on the obstacles reported in the European Priority Interconnection Plan. This ensures a realistic approach based on problems encountered in real projects. Although AC overhead lines (OHL) will remain the standard solution for grid expansion, it is argued that different technology options can overcome many obstacles that OHL face. Additionally, it is illustrated that the higher investment costs for some solutions can be offset with an increased benefit, e.g. by accomplishing investments with smaller delays due to fewer obstacles encountered. - Research highlights: → Assessment of real problems encountered in transmission investments. → Comparison of transmission technologies. → Techno-economic evaluation of transmission technologies.

  17. Numerical solution of a model for a superconductor field problem

    International Nuclear Information System (INIS)

    Alsop, L.E.; Goodman, A.S.; Gustavson, F.G.; Miranker, W.L.

    1979-01-01

    A model of a magnetic field problem occurring in connection with Josephson junction devices is derived, and numerical solutions are obtained. The model is of mathematical interest, because the magnetic vector potential satisfies inhomogeneous Helmholtz equations in part of the region, i.e., the superconductors, and the Laplace equation elsewhere. Moreover, the inhomogeneities are the guage constants for the potential, which are different for each superconductor, and their magnitudes are proportional to the currents flowing in the superconductors. These constants are directly related to the self and mutual inductances of the superconducting elements in the device. The numerical solution is obtained by the iterative use of a fast Poisson solver. Chebyshev acceleration is used to reduce the number of iterations required to obtain a solution. A typical problem involves solving 100,000 simultaneous equations, which the algorithm used with this model does in 20 iterations, requiring three minutes of CPU time on an IBM VM/370/168. Excellent agreement is obtained between calculated and observed values for the inductances

  18. Modelling and solution of contact problem for infinite plate and cross-shaped embedment

    Directory of Open Access Journals (Sweden)

    O.B. Kozin

    2016-09-01

    Full Text Available Development of efficient methods of determination of an intense-strained state of thin-walled constructional designs with inclusions, reinforcements and other stress raisers is an important problem both with theoretical, and from the practical point of view, considering their wide practical application. Aim: The aim of this research is to develop the analytical mathematical method of studying of an intense-strained state of infinite plate with cross-shaped embedment at a bend. Materials and Methods: The method of boundary elements is an efficient way of the boundary value problems solution for systems of differential equations. The methods based on boundary integral equations get wide application in many branches of science and technique, calculation of plates and shells. One of methods of solution of a numerous class of the integral equations and systems arising on the basis of a method of boundary integral equations is the analytical method of construction of these equations and systems to Riemann problems with their forthcoming decision. Results: The integral equation for the analysis of deflections and the analysis of an intense-strained state of a thin rigid plate with rigid cross-shaped embedment is received. The precise solution of this boundary value problem is received by reduction to a Riemann problem and its forthcoming solution. An asymptotical behavior of contact efforts at the ends of embedment is investigated.

  19. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

    Science.gov (United States)

    Polyanin, A. D.; Sorokin, V. G.

    2017-12-01

    The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

  20. A recursive Monte Carlo method for estimating importance functions in deep penetration problems

    International Nuclear Information System (INIS)

    Goldstein, M.

    1980-04-01

    A pratical recursive Monte Carlo method for estimating the importance function distribution, aimed at importance sampling for the solution of deep penetration problems in three-dimensional systems, was developed. The efficiency of the recursive method was investigated for sample problems including one- and two-dimensional, monoenergetic and and multigroup problems, as well as for a practical deep-penetration problem with streaming. The results of the recursive Monte Carlo calculations agree fairly well with Ssub(n) results. It is concluded that the recursive Monte Carlo method promises to become a universal method for estimating the importance function distribution for the solution of deep-penetration problems, in all kinds of systems: for many systems the recursive method is likely to be more efficient than previously existing methods; for three-dimensional systems it is the first method that can estimate the importance function with the accuracy required for an efficient solution based on importance sampling of neutron deep-penetration problems in those systems

  1. Stream Deniable-Encryption Algorithms

    Directory of Open Access Journals (Sweden)

    N.A. Moldovyan

    2016-04-01

    Full Text Available A method for stream deniable encryption of secret message is proposed, which is computationally indistinguishable from the probabilistic encryption of some fake message. The method uses generation of two key streams with some secure block cipher. One of the key streams is generated depending on the secret key and the other one is generated depending on the fake key. The key streams are mixed with the secret and fake data streams so that the output ciphertext looks like the ciphertext produced by some probabilistic encryption algorithm applied to the fake message, while using the fake key. When the receiver or/and sender of the ciphertext are coerced to open the encryption key and the source message, they open the fake key and the fake message. To disclose their lie the coercer should demonstrate possibility of the alternative decryption of the ciphertext, however this is a computationally hard problem.

  2. Combination of graph heuristics in producing initial solution of curriculum based course timetabling problem

    Science.gov (United States)

    Wahid, Juliana; Hussin, Naimah Mohd

    2016-08-01

    The construction of population of initial solution is a crucial task in population-based metaheuristic approach for solving curriculum-based university course timetabling problem because it can affect the convergence speed and also the quality of the final solution. This paper presents an exploration on combination of graph heuristics in construction approach in curriculum based course timetabling problem to produce a population of initial solutions. The graph heuristics were set as single and combination of two heuristics. In addition, several ways of assigning courses into room and timeslot are implemented. All settings of heuristics are then tested on the same curriculum based course timetabling problem instances and are compared with each other in terms of number of population produced. The result shows that combination of saturation degree followed by largest degree heuristic produce the highest number of population of initial solutions. The results from this study can be used in the improvement phase of algorithm that uses population of initial solutions.

  3. Exact series solution to the two flavor neutrino oscillation problem in matter

    International Nuclear Information System (INIS)

    Blennow, Mattias; Ohlsson, Tommy

    2004-01-01

    In this paper, we present a real nonlinear differential equation for the two flavor neutrino oscillation problem in matter with an arbitrary density profile. We also present an exact series solution to this nonlinear differential equation. In addition, we investigate numerically the convergence of this solution for different matter density profiles such as constant and linear profiles as well as the Preliminary Reference Earth Model describing the Earth's matter density profile. Finally, we discuss other methods used for solving the neutrino flavor evolution problem

  4. Streaming support for data intensive cloud-based sequence analysis.

    Science.gov (United States)

    Issa, Shadi A; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of "resources-on-demand" and "pay-as-you-go", scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

  5. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Shadi A. Issa

    2013-01-01

    Full Text Available Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.

  6. Streaming Support for Data Intensive Cloud-Based Sequence Analysis

    Science.gov (United States)

    Issa, Shadi A.; Kienzler, Romeo; El-Kalioby, Mohamed; Tonellato, Peter J.; Wall, Dennis; Bruggmann, Rémy; Abouelhoda, Mohamed

    2013-01-01

    Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client's site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation. PMID:23710461

  7. A general solution of the plane problem thermoelasticity in polar coordinates

    International Nuclear Information System (INIS)

    Tabakman, H.D.; Lin, Y.J.

    1977-01-01

    A general solution, in polar coordinates, of the plane problem in thermoelasticity is obtained in terms of a stress and displacement function. The solution is valid for arbitrary temperature distribution T(r, theta). The characteristic feature of the paper is the forthright determination of the displacement components brought about by the introduction of a displacement function

  8. Solution of the strong CP problem in models with scalars

    International Nuclear Information System (INIS)

    Dimopoulos, S.

    1978-01-01

    A possible solution to the strong CP problem is pointed out within the context of a Weinberg--Salam model with two Higgs fields coupled in a Peccei--Quinn symmetric fashion. This is done by extending the colour group to a bigger simple group which is broken at some very high energy. The model contains a heavy axion. No old or new U(1) problem re-emerges. 31 references

  9. Jet Streams as Power Generating Electrical Energy in Libya

    International Nuclear Information System (INIS)

    Shibani, Abdelfatah H.

    2014-01-01

    streams will be in the future one of the important clean energy strategic sources, and can provide a capacity, whose expected intensity is up to 19 kilowatts per square meter. It recommends giving attention to jet streams at the research, experimental and technological levels because research, experimental and technological proficiencies can provide more exciting solutions for energy problems in Libya.(author)

  10. Direct methods of solution for problems in mechanics from invariance principles

    International Nuclear Information System (INIS)

    Rajan, M.

    1986-01-01

    Direct solutions to problems in mechanics are developed from variational statements derived from the principle of invariance of the action integral under a one-parameter family of infinitesimal transformations. Exact, direct solution procedures for linear systems are developed by a careful choice of the arbitrary functions used to generate the infinitesimal transformations. It is demonstrated that the well-known methods for the solution of differential equations can be directly adapted to the required variational statements. Examples in particle and continuum mechanics are presented

  11. A parallel solution to the cutting stock problem for a cluster of workstations

    Energy Technology Data Exchange (ETDEWEB)

    Nicklas, L.D.; Atkins, R.W.; Setia, S.V.; Wang, P.Y. [George Mason Univ., Fairfax, VA (United States)

    1996-12-31

    This paper describes the design and implementation of a solution to the constrained 2-D cutting stock problem on a cluster of workstations. The constrained 2-D cutting stock problem is an irregular problem with a dynamically modified global data set and irregular amounts and patterns of communication. A replicated data structure is used for the parallel solution since the ratio of reads to writes is known to be large. Mutual exclusion and consistency are maintained using a token-based lazy consistency mechanism, and a randomized protocol for dynamically balancing the distributed work queue is employed. Speedups are reported for three benchmark problems executed on a cluster of workstations interconnected by a 10 Mbps Ethernet.

  12. Computer methods in physics 250 problems with guided solutions

    CERN Document Server

    Landau, Rubin H

    2018-01-01

    Our future scientists and professionals must be conversant in computational techniques. In order to facilitate integration of computer methods into existing physics courses, this textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple). It’s also intended as a self-study guide for learning how to use computer methods in physics. The authors include an introductory chapter on numerical tools and indication of computational and physics difficulty level for each problem.

  13. Conversion of three mixed-waste streams

    International Nuclear Information System (INIS)

    Harmer, D.E.; Porter, D.L.; Conley, C.W.

    1990-01-01

    At the present time, commercial mixed waste (containing both radioactive and hazardous components) is not handled by any disposal site in this country. Thus, a generator of such material is faced with the prospect of separating or altering the nature of the waste components. A chemical or physical separation may be possible. However, if separation fails there remains the opportunity of chemically transforming the hazardous ingredients to non-hazardous substances, allowing disposal at an existing radioactive burial site. Finally, chemical or physical stabilization can be used as a tool to achieve an acceptable waste form lacking the characteristics of mixed waste. A practical application of these principles has been made in the case of certain mixed waste streams at Aerojet Ordnance Tennessee. Three different streams were involved: (1) lead and lead oxide contaminated with uranium, (2) mixed chloride salts including barium chloride, contaminated with uranium, and (3) bricks impregnated with the barium salt mixture. This paper summarizes the approach of this mixed-waste problem, the laboratory solutions found, and the intended field remediations to be followed. Mixture (1), above, was successfully converted to a vitreous insoluble form. Mixture (2) was separated into radioactive and non-radioactive streams, and the hazardous characteristics of the latter altered chemically. Mixture (3) was treated to an extraction process, after which the extractant could be treated by the methods of Mixture (2). Field application of these methods is scheduled in the near future

  14. Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization: Human Factors in Streaming Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Aritra [Pacific Northwest National Laboratory, Richland Washington USA; Arendt, Dustin L. [Pacific Northwest National Laboratory, Richland Washington USA; Franklin, Lyndsey R. [Pacific Northwest National Laboratory, Richland Washington USA; Wong, Pak Chung [Pacific Northwest National Laboratory, Richland Washington USA; Cook, Kristin A. [Pacific Northwest National Laboratory, Richland Washington USA

    2017-09-01

    Real-world systems change continuously and across domains like traffic monitoring, cyber security, etc., such changes occur within short time scales. This leads to a streaming data problem and produces unique challenges for the human in the loop, as analysts have to ingest and make sense of dynamic patterns in real time. In this paper, our goal is to study how the state-of-the-art in streaming data visualization handles these challenges and reflect on the gaps and opportunities. To this end, we have three contributions: i) problem characterization for identifying domain-specific goals and challenges for handling streaming data, ii) a survey and analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space, and iii) reflections on the perceptually motivated design challenges and potential research directions for addressing them.

  15. Singular Solutions to a (3 + 1-D Protter-Morawetz Problem for Keldysh-Type Equations

    Directory of Open Access Journals (Sweden)

    Nedyu Popivanov

    2017-01-01

    Full Text Available We study a boundary value problem for (3 + 1-D weakly hyperbolic equations of Keldysh type (problem PK. The Keldysh-type equations are known in some specific applications in plasma physics, optics, and analysis on projective spaces. Problem PK is not well-posed since it has infinite-dimensional cokernel. Actually, this problem is analogous to a similar one proposed by M. Protter in 1952, but for Tricomi-type equations which, in part, are closely connected with transonic fluid dynamics. We consider a properly defined, in a special function space, generalized solution to problem PK for which existence and uniqueness theorems hold. It is known that it may have a strong power-type singularity at one boundary point even for very smooth right-hand sides of the equation. In the present paper we study the asymptotic behavior of the generalized solutions of problem PK at the singular point. There are given orthogonality conditions on the right-hand side of the equation, which are necessary and sufficient for the existence of a generalized solution with fixed order of singularity.

  16. Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)

    Science.gov (United States)

    Liu, Z. J.; Low, T. S.

    1996-04-01

    The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.

  17. Approximate solutions of some problems of scattering of surface ...

    Indian Academy of Sciences (India)

    A Choudhary

    Abstract. A class of mixed boundary value problems (bvps), occurring in the study of scattering of surface water waves by thin vertical rigid barriers placed in water of finite depth, is examined for their approximate solutions. Two different placings of vertical barriers are analyzed, namely, (i) a partially immersed barrier and.

  18. The role of the hyporheic zone across stream networks

    Science.gov (United States)

    Steven M. Wondzell

    2011-01-01

    Many hyporheic papers state that the hyporheic zone is a critical component of stream ecosystems, and many of these papers focus on the biogeochemical effects of the hyporheic zone on stream solute loads. However, efforts to show such relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly...

  19. The exact fundamental solution for the Benes tracking problem

    Science.gov (United States)

    Balaji, Bhashyam

    2009-05-01

    The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.

  20. Problems in classical electromagnetism 157 exercises with solutions

    CERN Document Server

    Macchi, Andrea; Pegoraro, Francesco

    2017-01-01

    This book contains 157 problems in classical electromagnetism, most of them new and original compared to those found in other textbooks. Each problem is presented with a title in order to highlight its inspiration in different areas of physics or technology, so that the book is also a survey of historical discoveries and applications of classical electromagnetism. The solutions are complete and include detailed discussions, which take into account typical questions and mistakes by the students. Without unnecessary mathematical complexity, the problems and related discussions introduce the student to advanced concepts such as unipolar and homopolar motors, magnetic monopoles, radiation pressure, angular momentum of light, bulk and surface plasmons, radiation friction, as well as to tricky concepts and ostensible ambiguities or paradoxes related to the classical theory of the electromagnetic field. With this approach the book is both a teaching tool for undergraduates in physics, mathematics and electric engine...

  1. Estimates for mild solutions to semilinear Cauchy problems

    Directory of Open Access Journals (Sweden)

    Kresimir Burazin

    2014-09-01

    Full Text Available The existence (and uniqueness results on mild solutions of the abstract semilinear Cauchy problems in Banach spaces are well known. Following the results of Tartar (2008 and Burazin (2008 in the case of decoupled hyperbolic systems, we give an alternative proof, which enables us to derive an estimate on the mild solution and its time of existence. The nonlinear term in the equation is allowed to be time-dependent. We discuss the optimality of the derived estimate by testing it on three examples: the linear heat equation, the semilinear heat equation that models dynamic deflection of an elastic membrane, and the semilinear Schrodinger equation with time-dependent nonlinearity, that appear in the modelling of numerous physical phenomena.

  2. Problems of evaluating isotope analysis of concentrated salt solutions in potash mines

    International Nuclear Information System (INIS)

    Schmiedl, H.D.

    1980-01-01

    Three problems of quantitative evaluation of analytic D and 18 O isotope data of concentrated salt solutions are discussed: (1) Consideration of the influence of admixtures of hydrated salts in determining meteoric or marine water fractions in a concentrated salt solution, (2) analytic accuracy and detection limits in determining meteoric water in salt solutions, and (3) processes of isotopic exchange with reservoir rock and sample matrix

  3. An algorithm for finding a common solution for a system of mixed equilibrium problem, quasi-variational inclusion problem and fixed point problem of nonexpansive semigroup

    Directory of Open Access Journals (Sweden)

    Liu Min

    2010-01-01

    Full Text Available In this paper, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a system of mixed equilibrium problems, the set of common fixed points for a nonexpansive semigroup and the set of solutions of the quasi-variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in a Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extend some recent results in the literature.

  4. Least bad solutions to the 'drugs problem'.

    Science.gov (United States)

    Mugford, S

    1991-01-01

    This paper examines the current difficulties being faced in Australia by policy-makers attempting to regulate the non-medical use of illegal drugs, and it is suggested that the difficulties centre upon two aspects. First, existing prohibitions are unsuccessful, with use levels rising and, in some arenas (e.g. cocaine use in the USA), quite out of control. On the other hand, a move towards decriminalization or legalization is difficult because past propaganda has been so vehement that a change now apparently risks sending the wrong messages to young people. This dilemma means that there is no solution, including inertia, which is risk-free, nor is there one free of difficulties. It is thus relevant to think in terms of 'least bad' rather than 'best' when formulating a system to face these problems. The exploration of what this least bad solution might be begins with the examination of the prominent myths (such as 'the drug-free society', 'the evil pusher', 'the user as victim' and 'the young person as cultural dope') that hinder our reasoning. Secondly, by suggesting that, in a climate of increasing crime related to drugs, inability of prohibitions to control that use and escalating health risks attendant on use (including the AIDS problem), the central policy thrust must be harm reduction and damage minimization rather than illusory goals such as widespread abstinence. The paper concludes with a discussion of some relevant evidence on alternative options.

  5. Optimal solution of full fuzzy transportation problems using total integral ranking

    Science.gov (United States)

    Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.

    2018-03-01

    Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.

  6. Research and implementation on improving I/O performance of streaming media storage system

    Science.gov (United States)

    Lu, Zheng-wu; Wang, Yu-de; Jiang, Guo-song

    2008-12-01

    In this paper, we study the special requirements of a special storage system: streaming media server, and propose a solution to improve I/O performance of RAID storage system. The solution is suitable for streaming media applications. A streaming media storage subsystem includes the I/O interfaces, RAID arrays, I/O scheduling and device drivers. The solution is implemented on the top of the storage subsystem I/O Interface. Storage subsystem is the performance bottlenecks of a streaming media system, and I/O interface directly affect the performance of the storage subsystem. According to theoretical analysis, 64 KB block-size is most appropriate for streaming media applications. We carry out experiment in detail, and verified that the proper block-size really is 64KB. It is in accordance with our analysis. The experiment results also show that by using DMA controller, efficient memory management technology and mailbox interface design mechanism, streaming media storage system achieves a high-speed data throughput.

  7. Care of the Aged: Old Problems in Need of New Solutions.

    Science.gov (United States)

    Kane, Robert; Kane, Rosalie

    The tendency in the United States to view the nursing home as an all-purpose solution to the health problems of the elderly has created a set of self-made problems: increased dependency, depression and social isolation among the aged. In the United States, unlike in many European nations, institutional care of the elderly is conceived of and…

  8. Existence of stationary solutions in the coronal loop problem

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, J; Terman, D; Verhulst, F

    1988-01-01

    The study of a hot plasma confined to a magnetic loop in the sun's corona leads to a singularly perturbed nonlinear reaction-diffusion equation with rather unusual side conditions. Monotone solutions of the stationary problem appear as fixed points of an iteration map which is contractive if the perturbation parameter is sufficiently small.

  9. Global solutions to the electrodynamic two-body problem on a straight line

    Science.gov (United States)

    Bauer, G.; Deckert, D.-A.; Dürr, D.; Hinrichs, G.

    2017-06-01

    The classical electrodynamic two-body problem has been a long standing open problem in mathematics. For motion constrained to the straight line, the interaction is similar to that of the two-body problem of classical gravitation. The additional complication is the presence of unbounded state-dependent delays in the Coulomb forces due to the finiteness of the speed of light. This circumstance renders the notion of local solutions meaningless, and therefore, straightforward ODE techniques cannot be applied. Here, we study the time-symmetric case, i.e., the Fokker-Schwarzschild-Tetrode (FST) equations, comprising both advanced and retarded delays. We extend the technique developed in Deckert and Hinrichs (J Differ Equ 260:6900-6929, 2016), where existence of FST solutions was proven on the half line, to ensure global existence—a result that had been obtained by Bauer (Ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik, Herbert Utz Verlag, München, 1997). Due to the novel technique, the presented proof is shorter and more transparent but also relies on the idea to employ asymptotic data to characterize solutions.

  10. Solar neutrino problem accounting for self-consistent magnetohydrodynamics solution for solar magnetic fields

    International Nuclear Information System (INIS)

    Miranda, O.G.; Pena-Garay, C.; Valle, J.W.F.; Rashba, T.I.; Semikoz, V.B.

    2001-01-01

    The analysis of the resonant spin-flavour (RSF) solutions to the solar neutrino problem in the framework of the simplest analytical solutions to the solar magnetohydrodynamics (MHD) equations is presented. We performed the global fit of the recent solar neutrino data, including event rates as well as zenith angle distributions and recoil electron spectra induced by solar neutrino interactions in Superkamiokande. We compare quantitatively our simplest MHD-RSF fit with vacuum oscillation (VAC) and MSW-type (SMA, LMA and LOW) solutions to the solar neutrino problem using a common well-calibrated theoretical calculation and fit procedure and find MHD-RSF fit to be somewhat better than those obtained for the favored neutrino oscillation solutions. We made the predictions for future experiments (e.g., SNO) to disentangle the MHD-RSF scenario from other scenarios

  11. Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems

    KAUST Repository

    Whiteley, J. P.

    2011-05-09

    Mathematical models in many fields often consist of coupled sub-models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub-models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss-Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss-Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non-linear coupled fluid-temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss-Seidel iteration. © 2011 John Wiley & Sons, Ltd.

  12. Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems

    KAUST Repository

    Whiteley, J. P.; Gillow, K.; Tavener, S. J.; Walter, A. C.

    2011-01-01

    Mathematical models in many fields often consist of coupled sub-models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub-models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss-Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss-Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non-linear coupled fluid-temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss-Seidel iteration. © 2011 John Wiley & Sons, Ltd.

  13. Acoustic Streaming and Its Suppression in Inhomogeneous Fluids.

    Science.gov (United States)

    Karlsen, Jonas T; Qiu, Wei; Augustsson, Per; Bruus, Henrik

    2018-02-02

    We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed with inhomogeneous aqueous iodixanol solutions in a glass-silicon microchip.

  14. Flow Field and Acoustic Predictions for Three-Stream Jets

    Science.gov (United States)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  15. The existence and the stability of solutions for equilibrium problems with lower and upper bounds

    Directory of Open Access Journals (Sweden)

    Congjun Zhang

    2012-12-01

    Full Text Available In this paper, we study a class of equilibrium problems with lower and upper bounds. We obtain some existence results of solutions for equilibrium problems with lower and upper bounds by employing some classical fixed-point theorems. We investigate the stability of the solution sets for the problems, and establish sufficient conditions for the upper semicontinuity, lower semicontinuity and continuity of the solution set mapping $S:Lambda_1imesLambda_2o2^{X}$ in a Hausdorff topological vector space, in the case where a set $K$ and a mapping $f$ are perturbed respectively by parameters $lambda$ and $mu.$

  16. Integrating LPR with CCTV systems: problems and solutions

    Science.gov (United States)

    Bissessar, David; Gorodnichy, Dmitry O.

    2011-06-01

    A new generation of high-resolution surveillance cameras makes it possible to apply video processing and recognition techniques on live video feeds for the purpose of automatically detecting and identifying objects and events of interest. This paper addresses a particular application of detecting and identifying vehicles passing through a checkpoint. This application is of interest to border services agencies and is also related to many other applications. With many commercial automated License Plate Recognition (LPR) systems available on the market, some of which are available as a plug-in for surveillance systems, this application still poses many unresolved technological challenges, the main two of which are: i) multiple and often noisy license plate readings generated for the same vehicle, and ii) failure to detect a vehicle or license plate altogether when the license plate is occluded or not visible. This paper presents a solution to both of these problems. A data fusion technique based on the Levenshtein distance is used to resolve the first problem. An integration of a commercial LPR system with the in-house built Video Analytic Platform is used to solve the latter. The developed solution has been tested in field environments and has been shown to yield a substantial improvement over standard off-the-shelf LPR systems.

  17. Dynamically Partitionable Autoassociative Networks as a Solution to the Neural Binding Problem

    Directory of Open Access Journals (Sweden)

    Kenneth Jeffrey Hayworth

    2012-09-01

    Full Text Available An outstanding question in theoretical neuroscience is how the brain solves the neural binding problem. In vision, binding can be summarized as the ability to represent that certain properties belong to one object while other properties belong to a different object. I review the binding problem in visual and other domains, and review its simplest proposed solution – the anatomical binding hypothesis. This hypothesis has traditionally been rejected as a true solution because it seems to require a type of one-to-one wiring of neurons that would be impossible in a biological system (as opposed to an engineered system like a computer. I show that this requirement for one-to-one wiring can be loosened by carefully considering how the neural representation is actually put to use by the rest of the brain. This leads to a solution where a symbol is represented not as a particular pattern of neural activation but instead as a piece of a global stable attractor state. I introduce the Dynamically Partitionable AutoAssociative Network (DPAAN as an implementation of this solution and show how DPANNs can be used in systems which perform perceptual binding and in systems that implement syntax-sensitive rules. Finally I show how the core parts of the cognitive architecture ACT-R can be neurally implemented using a DPAAN as ACT-R’s global workspace. Because the DPAAN solution to the binding problem requires only ‘flat’ neural representations (as opposed to the phase encoded representation hypothesized in neural synchrony solutions it is directly compatible with the most well developed neural models of learning, memory, and pattern recognition.

  18. Fuzzy solution of the linear programming problem with interval coefficients in the constraints

    OpenAIRE

    Dorota Kuchta

    2005-01-01

    A fuzzy concept of solving the linear programming problem with interval coefficients is proposed. For each optimism level of the decision maker (where the optimism concerns the certainty that no errors have been committed in the estimation of the interval coefficients and the belief that optimistic realisations of the interval coefficients will occur) another interval solution of the problem will be generated and the decision maker will be able to choose the final solution having a complete v...

  19. Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, P.S., E-mail: petrov@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Prants, S.V., E-mail: prants@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Petrova, T.N., E-mail: petrova.tn@dvfu.ru [Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok (Russian Federation)

    2017-06-21

    The problem of sound propagation in a shallow sea with variable bottom slope is considered. The sound pressure field produced by a time-harmonic point source in such inhomogeneous 3D waveguide is expressed in the form of a modal expansion. The expansion coefficients are computed using the adiabatic mode parabolic equation theory. The mode parabolic equations are solved explicitly, and the analytical expressions for the modal coefficients are obtained using a Lie-algebraic technique. - Highlights: • A group-theoretical approach is applied to a problem of sound propagation in a shallow sea with variable bottom slope. • An analytical solution of this problem is obtained in the form of modal expansion with analytical expressions of the coefficients. • Our result is the only analytical solution of the 3D sound propagation problem with no translational invariance. • This solution can be used for the validation of the numerical propagation models.

  20. An approximate and an analytical solution to the carousel-pendulum problem

    Energy Technology Data Exchange (ETDEWEB)

    Vial, Alexandre [Pole Physique, Mecanique, Materiaux et Nanotechnologies, Universite de technologie de Troyes, 12, rue Marie Curie BP-2060, F-10010 Troyes Cedex (France)], E-mail: alexandre.vial@utt.fr

    2009-09-15

    We show that an improved solution to the carousel-pendulum problem can be easily obtained through a first-order Taylor expansion, and its accuracy is determined after the obtention of an unusable analytical exact solution, advantageously replaced by a numerical one. It is shown that the accuracy is unexpectedly high, even when the ratio length of the pendulum to carousel radius approaches unity. (letters and comments)

  1. Group-invariant solutions of nonlinear elastodynamic problems of plates and shells

    International Nuclear Information System (INIS)

    Dzhupanov, V.A.; Vassilev, V.M.; Dzhondzhorov, P.A.

    1993-01-01

    Plates and shells are basic structural components in nuclear reactors and their equipment. The prediction of the dynamic response of these components to fast transient loadings (e.g., loadings caused by earthquakes, missile impacts, etc.) is a quite important problem in the general context of the design, reliability and safety of nuclear power stations. Due to the extreme loading conditions a more adequate treatment of the foregoing problem should rest on a suitable nonlinear shell model, which would allow large deflections of the structures regarded to be taken into account. Such a model is provided in the nonlinear Donnell-Mushtari-Vlasov (DMV) theory. The governing system of equations of the DMV theory consists of two coupled nonlinear fourth order partial differential equations in three independent and two dependent variables. It is clear, as the case stands, that the obtaining solutions to this system directly, by using any of the general analytical or numerical techniques, would involve considerable difficulties. In the present paper, the invariance of the governing equations of DMV theory for plates and cylindrical shells relative to local Lie groups of local point transformations will be employed to get some advantages in connection with the aforementioned problem. First, the symmetry of a functional, corresponding to the governing equations of DMV theory for plates and cylindrical shells is studied. Next, the densities in the corresponding conservation laws are determined on the basis of Noether theorem. Finally, we study a class of invariant solutions of the governing equations. As is well known, group-invariant solutions are often intermediate asymptotics for a wider class of solutions of the corresponding equations. When such solutions are considered, the number of the independent variables can be reduced. For the class of invariant solutions studied here, the system of governing equations converts into a system of ordinary differential equations

  2. Approximate solutions for the two-dimensional integral transport equation. Solution of complex two-dimensional transport problems

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr

  3. Stability of stationary solutions for inflow problem on the micropolar fluid model

    Science.gov (United States)

    Yin, Haiyan

    2017-04-01

    In this paper, we study the asymptotic behavior of solutions to the initial boundary value problem for the micropolar fluid model in a half-line R+:=(0,∞). We prove that the corresponding stationary solutions of the small amplitude to the inflow problem for the micropolar fluid model are time asymptotically stable under small H1 perturbations in both the subsonic and degenerate cases. The microrotation velocity brings us some additional troubles compared with Navier-Stokes equations in the absence of the microrotation velocity. The proof of asymptotic stability is based on the basic energy method.

  4. Three symmetric positive solutions of fourth-order singular nonlocal boundary value problems

    Directory of Open Access Journals (Sweden)

    Fuyi Xu

    2011-12-01

    Full Text Available In this paper, we study the existence of three positive solutions of fourth-order singular nonlocal boundary value problems. We show that there exist triple symmetric positive solutions by using Leggett-Williams fixed-point theorem. The conclusions in this paper essentially extend and improve some known results.

  5. Physically - engineering problems of the Salaspils Nuclear reactor: Solutions and their topicality

    International Nuclear Information System (INIS)

    Mozgirs, Z.V.

    2005-01-01

    The paper generalizes technical solutions of physically-engineering problems of the Salaspils nuclear research reactor, experience of its modernization and exploitation. New equipment and the related technical solutions have been tested at the Salaspils reactor during its operation time and are now recommended for further use at nuclear reactors. (author)

  6. On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis

    International Nuclear Information System (INIS)

    Ignatyev, M. Yu.

    2013-01-01

    This paper is concerned with the Korteweg–de Vries (KdV) equation on the semi-axis. The boundary value problem with inhomogeneous integrable boundary conditions is studied. We establish some characteristic properties of solutions of the problem. Also we construct a wide class of solutions of the problem using the inverse spectral method.

  7. The uniqueness of the solution for the definite problem of a parabolic variational inequality

    Directory of Open Access Journals (Sweden)

    Liping Song

    2016-12-01

    Full Text Available Abstract The uniqueness of the solution for the definite problem of a parabolic variational inequality is proved. The problem comes from the study of the optimal exercise strategies for the perpetual executive stock options with unrestricted exercise in financial market. Because the variational inequality is degenerate and the obstacle condition contains the partial derivative of an unknown function, it makes the theoretical study of the definite problem of the variational inequality problem very difficult. Firstly, the property which the value function satisfies is derived by applying the Jensen inequality. Then the uniqueness of the solution is proved by using this property and maximum principles.

  8. Distribution-valued weak solutions to a parabolic problem arising in financial mathematics

    Directory of Open Access Journals (Sweden)

    Michael Eydenberg

    2009-07-01

    Full Text Available We study distribution-valued solutions to a parabolic problem that arises from a model of the Black-Scholes equation in option pricing. We give a minor generalization of known existence and uniqueness results for solutions in bounded domains $Omega subset mathbb{R}^{n+1}$ to give existence of solutions for certain classes of distributions $fin mathcal{D}'(Omega$. We also study growth conditions for smooth solutions of certain parabolic equations on $mathbb{R}^nimes (0,T$ that have initial values in the space of distributions.

  9. Existence of solutions for quasistatic problems of unilateral contact with nonlocal friction for nonlinear elastic materials

    Directory of Open Access Journals (Sweden)

    Alain Mignot

    2005-09-01

    Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.

  10. L^p-continuity of solutions to parabolic free boundary problems

    Directory of Open Access Journals (Sweden)

    Abdeslem Lyaghfouri

    2015-07-01

    Full Text Available In this article, we consider a class of parabolic free boundary problems. We establish some properties of the solutions, including L^infinity-regularity in time and a monotonicity property, from which we deduce strong L^p-continuity in time.

  11. Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs

    Directory of Open Access Journals (Sweden)

    Marco Calahorrano

    2004-04-01

    Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$

  12. Geometric projection filter: an efficient solution to the SLAM problem

    Science.gov (United States)

    Newman, Paul M.; Durrant-Whyte, Hugh F.

    2001-10-01

    This paper is concerned with the simultaneous localization and map building (SLAM) problem. The SLAM problem asks if it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute absolute vehicle location. Conventional approaches to this problem are plagued with a prohibitively large increase in computation with the size of the environment. This paper offers a new solution to the SLAM problem that is both consistent and computationally feasible. The proposed algorithm builds a map expressing the relationships between landmarks which is then transformed into landmark locations. Experimental results are presented employing the new algorithm on a subsea vehicle using a scanning sonar sensor.

  13. Long-term patterns and short-term dynamics of stream solutes and suspended sediment in a rapidly weathering tropical watershed

    Science.gov (United States)

    Shanley, James B.; McDowell, William H.; Stallard, Robert F.

    2011-07-01

    The 326 ha Río Icacos watershed in the tropical wet forest of the Luquillo Mountains, northeastern Puerto Rico, is underlain by granodiorite bedrock with weathering rates among the highest in the world. We pooled stream chemistry and total suspended sediment (TSS) data sets from three discrete periods: 1983-1987, 1991-1997, and 2000-2008. During this period three major hurricanes crossed the site: Hugo in 1989, Hortense in 1996, and Georges in 1998. Stream chemistry reflects sea salt inputs (Na, Cl, and SO4), and high weathering rates of the granodiorite (Ca, Mg, Si, and alkalinity). During rainfall, stream composition shifts toward that of precipitation, diluting 90% or more in the largest storms, but maintains a biogeochemical watershed signal marked by elevated K and dissolved organic carbon (DOC) concentration. DOC exhibits an unusual "boomerang" pattern, initially increasing with flow but then decreasing at the highest flows as it becomes depleted and/or vigorous overland flow minimizes contact with watershed surfaces. TSS increased markedly with discharge (power function slope 1.54), reflecting the erosive power of large storms in a landslide-prone landscape. The relations of TSS and most solute concentrations with stream discharge were stable through time, suggesting minimal long-term effects from repeated hurricane disturbance. Nitrate concentration, however, increased about threefold in response to hurricanes then returned to baseline over several years following a pseudo first-order decay pattern. The combined data sets provide insight about important hydrologic pathways, a long-term perspective to assess response to hurricanes, and a framework to evaluate future climate change in tropical ecosystems.

  14. Spectral Solutions of Self-adjoint Elliptic Problems with Immersed Interfaces

    International Nuclear Information System (INIS)

    Auchmuty, G.; Klouček, P.

    2011-01-01

    This paper describes a spectral representation of solutions of self-adjoint elliptic problems with immersed interfaces. The interface is assumed to be a simple non-self-intersecting closed curve that obeys some weak regularity conditions. The problem is decomposed into two problems, one with zero interface data and the other with zero exterior boundary data. The problem with zero interface data is solved by standard spectral methods. The problem with non-zero interface data is solved by introducing an interface space H Γ (Ω) and constructing an orthonormal basis of this space. This basis is constructed using a special class of orthogonal eigenfunctions analogously to the methods used for standard trace spaces by Auchmuty (SIAM J. Math. Anal. 38, 894–915, 2006). Analytical and numerical approximations of these eigenfunctions are described and some simulations are presented.

  15. Solution of the neutron transport problem with anisotropic scattering in cylindrical geometry by the decomposition method

    International Nuclear Information System (INIS)

    Goncalves, G.A.; Bogado Leite, S.Q.; Vilhena, M.T. de

    2009-01-01

    An analytical solution has been obtained for the one-speed stationary neutron transport problem, in an infinitely long cylinder with anisotropic scattering by the decomposition method. Series expansions of the angular flux distribution are proposed in terms of suitably constructed functions, recursively obtainable from the isotropic solution, to take into account anisotropy. As for the isotropic problem, an accurate closed-form solution was chosen for the problem with internal source and constant incident radiation, obtained from an integral transformation technique and the F N method

  16. Exact self-similar solutions for the magnetized Noh Z pinch problem

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Thornhill, J. W.; Zalesak, S. T.; Gardiner, T. A.

    2012-01-01

    A self-similar solution is derived for a radially imploding cylindrical plasma with an embedded, azimuthal magnetic field. The plasma stagnates through a strong, outward propagating shock wave of constant velocity. This analysis is an extension of the classic Noh gasdynamics problem to its ideal magnetohydrodynamics (MHD) counterpart. The present exact solution is especially suitable as a test for MHD codes designed to simulate linear Z pinches. To demonstrate the application of the new solution to code verification, simulation results from the cylindrical R-Z version of Mach2 and the 3D Cartesian code Athena are compared against the analytic solution. Alternative routines from the default ones in Athena lead to significant improvement of the results, thereby demonstrating the utility of the self-similar solution for verification.

  17. Sturm solutions of the two-centre problem in quantum mechanics

    International Nuclear Information System (INIS)

    Truskova, N.F.

    1984-01-01

    Algorithm of computer calculation of the Sturm solutions of the two-body problem in quantum mechanics has been presented for different magnitudes of internuclear distance R and at energies E<0, which correspond to a definite term of the above problem or to a constants. Formulae of transition from spherical quantum numbers to parabolic ones have been presented, and asymptotics of eigen values at R→0 and R→infinity have been obtained. Calculation results are presented in a graphical form

  18. Transport-constrained extensions of collision and track length estimators for solutions of radiative transport problems

    International Nuclear Information System (INIS)

    Kong, Rong; Spanier, Jerome

    2013-01-01

    In this paper we develop novel extensions of collision and track length estimators for the complete space-angle solutions of radiative transport problems. We derive the relevant equations, prove that our new estimators are unbiased, and compare their performance with that of more conventional estimators. Such comparisons based on numerical solutions of simple one dimensional slab problems indicate the the potential superiority of the new estimators for a wide variety of more general transport problems

  19. VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast.

    Directory of Open Access Journals (Sweden)

    Weidong Gu

    Full Text Available Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member's departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs, i.e., multicast VMs (MVMs and compensation VMs (CVMs. MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD, and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast. The results show that it can obviously enhance the stability of the data distribution.

  20. A solution of the strong CP problem in models with scalars

    International Nuclear Information System (INIS)

    Dimopoulos, S.

    1979-01-01

    A possible solution to the strong CP problem within the context of a Weinberg-Salam model with two Higgs fields coupled in a Peccei-Quinn symmetric fashion is pointed out. This is done by extending the colour group to a bigger simple group which is broken at some very high energy. The model contains a heavy axion. No old or new U(1) problem re-emerges. (Auth.)

  1. Existence and uniqueness of entropy solution to initial boundary value problem for the inviscid Burgers equation

    CERN Document Server

    Zhu, C

    2003-01-01

    This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation.

  2. Existence and uniqueness of entropy solution to initial boundary value problem for the inviscid Burgers equation

    International Nuclear Information System (INIS)

    Zhu, Changjiang; Duan, Renjun

    2003-01-01

    This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation

  3. Positive solutions of nonlinear fractional boundary value problems with Dirichlet boundary conditions

    Directory of Open Access Journals (Sweden)

    Qingkai Kong

    2012-02-01

    Full Text Available In this paper, we study the existence and multiplicity of positive solutions of a class of nonlinear fractional boundary value problems with  Dirichlet boundary conditions. By applying the fixed point theory on cones we establish a series of criteria for the existence of one, two, any arbitrary finite number, and an infinite number of positive solutions. A criterion for the nonexistence of positive solutions is also derived. Several examples are given for demonstration.

  4. Finding Solutions to Different Problems Simultaneously in a Multi-molecule Simulated Reactor

    Directory of Open Access Journals (Sweden)

    Jaderick P. Pabico

    2014-12-01

    Full Text Available – In recent years, the chemical metaphor has emerged as a computational paradigm based on the observation of different researchers that the chemical systems of living organisms possess inherent computational properties. In this metaphor, artificial molecules are considered as data or solutions, while the interactions among molecules are defined by an algorithm. In recent studies, the chemical metaphor was used as a distributed stochastic algorithm that simulates an abstract reactor to solve the traveling salesperson problem (TSP. Here, the artificial molecules represent Hamiltonian cycles, while the reactor is governed by reactions that can re-order Hamiltonian cycles. In this paper, a multi-molecule reactor (MMR-n that simulates chemical catalysis is introduced. The MMR-n solves in parallel three NP-hard computational problems namely, the optimization of the genetic parameters of a plant growth simulation model, the solution to large instances of symmetric and asymmetric TSP, and the static aircraft landing scheduling problems (ALSP. The MMR-n was shown as a computational metaphor capable of optimizing the cultivar coefficients of CERES-Rice model, and at the same time, able to find solutions to TSP and ALSP. The MMR-n as a computational paradigm has a better computational wall clock time compared to when these three problems are solved individually by a single-molecule reactor (MMR-1.

  5. Asymptotic shape of solutions to the perturbed simple pendulum problems

    Directory of Open Access Journals (Sweden)

    Tetsutaro Shibata

    2007-05-01

    Full Text Available We consider the positive solution of the perturbed simple pendulum problem $$ u''(r + frac{N-1}{r}u'(r - g(u(t + lambda sin u(r = 0, $$ with $0 < r < R$, $ u'(0 = u(R = 0$. To understand well the shape of the solution $u_lambda$ when $lambda gg 1$, we establish the leading and second terms of $Vert u_lambdaVert_q$ ($1 le q < infty$ with the estimate of third term as $lambda o infty$. We also obtain the asymptotic formula for $u_lambda'(R$ as $lambda o infty$.

  6. Stream ciphers and number theory

    CERN Document Server

    Cusick, Thomas W; Renvall, Ari R

    2004-01-01

    This is the unique book on cross-fertilisations between stream ciphers and number theory. It systematically and comprehensively covers known connections between the two areas that are available only in research papers. Some parts of this book consist of new research results that are not available elsewhere. In addition to exercises, over thirty research problems are presented in this book. In this revised edition almost every chapter was updated, and some chapters were completely rewritten. It is useful as a textbook for a graduate course on the subject, as well as a reference book for researchers in related fields. · Unique book on interactions of stream ciphers and number theory. · Research monograph with many results not available elsewhere. · A revised edition with the most recent advances in this subject. · Over thirty research problems for stimulating interactions between the two areas. · Written by leading researchers in stream ciphers and number theory.

  7. Existence and uniqueness of solution for a model problem of transonic flow

    International Nuclear Information System (INIS)

    Tangmanee, S.

    1985-11-01

    A model problem of transonic flow ''the Tricomi equation'' bounded by the rectangular-curve boundary is studied. We transform the model problem into a symmetric positive system and an admissible boundary condition is posed. We show that with some conditions the existence and uniqueness of the solution are guaranteed. (author)

  8. Constructive Solution of Ellipticity Problem for the First Order Differential System

    Directory of Open Access Journals (Sweden)

    Vladimir E. Balabaev

    2017-01-01

    Full Text Available We built first order elliptic systems with any possible number of unknown functions and the maximum possible number of unknowns, i.e, in general. These systems provide the basis for studying the properties of any first order elliptic systems. The study of the Cauchy-Riemann system and its generalizations led to the identification of a class of elliptic systems of first-order of a special structure. An integral representation of solutions is of great importance in the study of these systems. Only by means of a constructive method of integral representations we can solve a number of problems in the theory of elliptic systems related mainly to the boundary properties of solutions. The obtained integral representation could be applied to solve a number of problems that are hard to solve, if you rely only on the non-constructive methods. Some analogues of the theorems of Liouville, Weierstrass, Cauchy, Gauss, Morera, an analogue of Green’s formula are established, as well as an analogue of the maximum principle. The used matrix operators allow the new structural arrangement of the maximum number of linearly independent vector fields on spheres of any possible dimension. Also the built operators allow to obtain a constructive solution of the extended problem ”of the sum of squares” known in algebra. 

  9. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  10. Methods of removing a constituent from a feed stream using adsorption media

    Science.gov (United States)

    Tranter, Troy J [Idaho Falls, ID; Mann, Nicholas R [Rigby, ID; Todd, Terry A [Aberdeen, ID; Herbst, Ronald S [Idaho Falls, ID

    2011-05-24

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  11. Pollutant transport in natural streams

    International Nuclear Information System (INIS)

    Buckner, M.R.; Hayes, D.W.

    1975-01-01

    A mathematical model has been developed to estimate the downstream effect of chemical and radioactive pollutant releases to tributary streams and rivers. The one-dimensional dispersion model was employed along with a dead zone model to describe stream transport behavior. Options are provided for sorption/desorption, ion exchange, and particle deposition in the river. The model equations are solved numerically by the LODIPS computer code. The solution method was verified by application to actual and simulated releases of radionuclides and other chemical pollutants. (U.S.)

  12. Mathematical models and heuristic solutions for container positioning problems in port terminals

    DEFF Research Database (Denmark)

    Kallehauge, Louise Sibbesen

    2008-01-01

    presents an efficient solution algorithm for the CPP. Based on a number of new concepts, an event-based construction heuristic is developed and its ability to solve real-life problem instances is established. The backbone of the algorithm is a list of events, corresponding to a sequence of operations...... by constructing mathematical programming formulations of the problem and developing an efficient heuristic algorithm for its solution. The thesis consists of an introduction, two main chapters concerning new mathematical formulations and a new heuristic for the CPP, technical issues, computational results...... concerning the subject is reviewed. The research presented in this thesis is divided into two main parts: Construction and investigation of new mathematical programming formulations of the CPP and development and implementation of a new event-based heuristic for the problem. The first part presents three...

  13. On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study

    KAUST Repository

    Lima, Ricardo

    2016-06-16

    This paper addresses the solution of a cardinality Boolean quadratic programming problem using three different approaches. The first transforms the original problem into six mixed-integer linear programming (MILP) formulations. The second approach takes one of the MILP formulations and relies on the specific features of an MILP solver, namely using starting incumbents, polishing, and callbacks. The last involves the direct solution of the original problem by solvers that can accomodate the nonlinear combinatorial problem. Particular emphasis is placed on the definition of the MILP reformulations and their comparison with the other approaches. The results indicate that the data of the problem has a strong influence on the performance of the different approaches, and that there are clear-cut approaches that are better for some instances of the data. A detailed analysis of the results is made to identify the most effective approaches for specific instances of the data. © 2016 Springer Science+Business Media New York

  14. On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study

    KAUST Repository

    Lima, Ricardo; Grossmann, Ignacio E.

    2016-01-01

    This paper addresses the solution of a cardinality Boolean quadratic programming problem using three different approaches. The first transforms the original problem into six mixed-integer linear programming (MILP) formulations. The second approach takes one of the MILP formulations and relies on the specific features of an MILP solver, namely using starting incumbents, polishing, and callbacks. The last involves the direct solution of the original problem by solvers that can accomodate the nonlinear combinatorial problem. Particular emphasis is placed on the definition of the MILP reformulations and their comparison with the other approaches. The results indicate that the data of the problem has a strong influence on the performance of the different approaches, and that there are clear-cut approaches that are better for some instances of the data. A detailed analysis of the results is made to identify the most effective approaches for specific instances of the data. © 2016 Springer Science+Business Media New York

  15. Numerical solution of system of boundary value problems using B-spline with free parameter

    Science.gov (United States)

    Gupta, Yogesh

    2017-01-01

    This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.

  16. A general solution of the plane problem in thermoelasticity in polar coordinates

    International Nuclear Information System (INIS)

    Tabakman, H.D.; Lin, Y.J.

    1977-01-01

    A general solution, in polar coordinates, of the plane problem in thermoelasticity is obtained in terms of a stress and displacement function. The solution is valid for arbitrary temperature distribution T(r,theta). The characteristic feature of the paper is the forthright determination of the displacement components brought about by the introduction of a displacement function. (Auth.)

  17. Enterprise architecture patterns practical solutions for recurring IT-architecture problems

    CERN Document Server

    Perroud, Thierry

    2013-01-01

    Every enterprise architect faces similar problems when designing and governing the enterprise architecture of a medium to large enterprise. Design patterns are a well-established concept in software engineering, used to define universally applicable solution schemes. By applying this approach to enterprise architectures, recurring problems in the design and implementation of enterprise architectures can be solved over all layers, from the business layer to the application and data layer down to the technology layer.Inversini and Perroud describe patterns at the level of enterprise architecture

  18. Expanding the Space of Plausible Solutions in a Medical Tutoring System for Problem-Based Learning

    Science.gov (United States)

    Kazi, Hameedullah; Haddawy, Peter; Suebnukarn, Siriwan

    2009-01-01

    In well-defined domains such as Physics, Mathematics, and Chemistry, solutions to a posed problem can objectively be classified as correct or incorrect. In ill-defined domains such as medicine, the classification of solutions to a patient problem as correct or incorrect is much more complex. Typical tutoring systems accept only a small set of…

  19. Nuclear waste disposal: Can there be a resolution? Past problems and future solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ahearne, J [Scientific Research Society, Sigma Xi, Research Triangle Park, NC (United States)

    1990-07-01

    Why does the high level waste problem have to be solved now? There are perhaps three answers to that question. First, to have a recovery of nuclear power. But a lack of resolution of the high level waste problem is not the principal reason that nuclear power has foundered and, consequently, solving it will not automatically revive nuclear power. However, if the nuclear industry is adamantly convinced that this is the key to reviving nuclear power, then the nuclear industry should demonstrate its conviction by putting much greater effort into resolving the high level waste problem technically, not through public relations. For example, a substantial effort on the actinide burning approach might demonstrate, in the old American phrase, 'putting your money where your mouth is'. Second, the high level waste problem must be solved now because it is a devil's brew. However, chemical wastes last longer, as we all know, than do the radioactive wastes. As one expert has noted: 'There is real risk in nuclear power, just as there is real risk in coal power.... For some of [these risks], like the greenhouse effect, the potential damage is devastating. While for others, like nuclear accidents, the risk is limited, but imaginations are not. For still others, like the risk posed by a high-level waste repository, there is essentially nothing outside the imagination of the gullible.' Furthermore, any technical solution or any solution to a risky problem requires one to think carefully. It is often better to do it right than quickly. A third reason for requiring it to be solved right now is that HLW disposal is a major technical problem blocking a potentially valuable energy source. But we need a new solution. The current solutions are not working. I believe that we ought to recognize the failure of the geologic repository approach. I believe the federal government should identify, with industry's assistance, the best techniques for surface storage. Some federal locations should be

  20. Nuclear waste disposal: Can there be a resolution? Past problems and future solutions

    International Nuclear Information System (INIS)

    Ahearne, J.

    1990-01-01

    Why does the high level waste problem have to be solved now? There are perhaps three answers to that question. First, to have a recovery of nuclear power. But a lack of resolution of the high level waste problem is not the principal reason that nuclear power has foundered and, consequently, solving it will not automatically revive nuclear power. However, if the nuclear industry is adamantly convinced that this is the key to reviving nuclear power, then the nuclear industry should demonstrate its conviction by putting much greater effort into resolving the high level waste problem technically, not through public relations. For example, a substantial effort on the actinide burning approach might demonstrate, in the old American phrase, 'putting your money where your mouth is'. Second, the high level waste problem must be solved now because it is a devil's brew. However, chemical wastes last longer, as we all know, than do the radioactive wastes. As one expert has noted: 'There is real risk in nuclear power, just as there is real risk in coal power.... For some of [these risks], like the greenhouse effect, the potential damage is devastating. While for others, like nuclear accidents, the risk is limited, but imaginations are not. For still others, like the risk posed by a high-level waste repository, there is essentially nothing outside the imagination of the gullible.' Furthermore, any technical solution or any solution to a risky problem requires one to think carefully. It is often better to do it right than quickly. A third reason for requiring it to be solved right now is that HLW disposal is a major technical problem blocking a potentially valuable energy source. But we need a new solution. The current solutions are not working. I believe that we ought to recognize the failure of the geologic repository approach. I believe the federal government should identify, with industry's assistance, the best techniques for surface storage. Some federal locations should be

  1. Storage Solutions for Power Quality Problems in Cyprus Electricity Distribution Network

    Directory of Open Access Journals (Sweden)

    Andreas Poullikkas

    2014-01-01

    Full Text Available In this work, a prediction of the effects of introducing energy storage systems on the network stability of the distribution network of Cyprus and a comparison in terms of cost with a traditional solution is carried out. In particular, for solving possible overvoltage problems, several scenarios of storage units' installation are used and compared with the alternative solution of extra cable connection between the node with the lowest voltage and the node with the highest voltage of the distribution network. For the comparison, a case study of a typical LV distribution feeder in the power system of Cyprus is used. The results indicated that the performance indicator of each solution depends on the type, the size and the position of installation of the storage unit. Also, as more storage units are installed the better the performance indicator and the more attractive is the investment in storage units to solve power quality problems in the distribution network. In the case where the technical requirements in voltage limitations according to distribution regulations are satisfied with one storage unit, the installation of an additional storage unit will only increase the final cost. The best solution, however, still remains the alternative solution of extra cable connection between the node with the lowest voltage and the node with the highest voltage of the distribution network, due to the lower investment costs compared to that of the storage units.

  2. IT Infrastructure Planning from a North Denmark Perspective: Major Problems, Consequences and Possible Solutions

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip; Madsen, Ole Brun

    2004-01-01

    are proposed. These problems appear on the background of a dawning understanding of IT infrastructure as a crucial part of the modern society comparable to the recognised infrastructures, such as roads and electricity. The IT-infrastructure and the problems are placed in the context of the growing importance......This paper gives an overview of the more prominent problems in IT infrastructure evolution and in particular the neccessary planning process in Denmark. A discussion of consequences and possible solutions is presented. Through the DDN-project Nordjysk Netforum, NJNF, and its partners and attendant...... research at Aalborg University, AAU, it has become apparent that several problems pose significant hindrances to an efficient IT-infrastructrure planning and implementation. These problems range form awareness of IT-infrastructure issues, over education and research to main cause and possible solutions...

  3. IT infrastructure planning from a North Denmark perspective: Major problems, consequences and possible solutions

    DEFF Research Database (Denmark)

    Madsen, Ole Brun; Knudsen, Thomas Phillip

    are proposed. These problems appear on the background of a dawning understanding of IT infrastructure as a crucial part of the modern society comparable to the recognised infrastructures, such as roads and electricity. The IT-infrastructure and the problems are placed in the context of the growing importance......This paper gives an overview of the more prominent problems in IT infrastructure evolution and in particular the neccessary planning process in Denmark. A discussion of consequences and possible solutions is presented. Through the DDN-project Nordjysk Netforum, NJNF, and its partners and attendant...... research at Aalborg University, AAU, it has become apparent that several problems pose significant hindrances to an efficient IT-infrastructrure planning and implementation. These problems range form awareness of IT-infrastructure issues, over education and research to main cause and possible solutions...

  4. Environmental problems caused by bituminous schist and possible solutions

    International Nuclear Information System (INIS)

    Elmas, N.; Aykul, H.; Erarslan, K.; Ediz, I.G.

    1998-01-01

    Schist, as a disposal of mine, has harmful effects on environment. however, several manners can be utilized to prevent the environmental destruction as well as an economical benefit is gained. In this study, environmental problems caused by bituminous schist and other disposals have been investigated on a specific lignite coal mine where schist is disposed as waste material. Pollution and damage on land and in water sources around the coal district and the villages have been observed, recorded and several solutions to environmental problems have been proposed. Discussed proposals will not only solve the environmental pollution problem but also provide waste management facility. Industrial structure of the district enables such a disposal to be used as an economical raw material. Besides, general effects of the coal mine and the power plant nearby have been discussed from environmental point of view, too. 7 refs

  5. Constraints on decay plus oscillation solutions of the solar neutrino problem

    Science.gov (United States)

    Joshipura, Anjan S.; Massó, Eduard; Mohanty, Subhendra

    2002-12-01

    We examine the constraints on the nonradiative decay of neutrinos from the observations of solar neutrino experiments. The standard oscillation hypothesis among three neutrinos solves the solar and atmospheric neutrino problems. The decay of a massive neutrino mixed with the electron neutrino results in the depletion of the solar neutrino flux. We introduce neutrino decay in the oscillation hypothesis and demand that decay does not spoil the successful explanation of solar and atmospheric observations. We obtain a lower bound on the ratio of the lifetime over the mass of ν2, τ2/m2>22.7 s/MeV for the Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem and τ2/m2>27.8 s/MeV for the vacuum oscillation solution (at 99% C.L.).

  6. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers

    Science.gov (United States)

    Lin, Chao-Chih; Chang, Ya-Chi; Yeh, Hund-Der

    2018-04-01

    Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007). The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR) from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007).

  7. An Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems

    Directory of Open Access Journals (Sweden)

    Masoud Shafiei

    2015-12-01

    Full Text Available In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams. The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, adaptive points are determined using the wavelet theory. This part is done employing the Deslauries-Dubuc (D-D wavelets. By solving the problem in the first step, the domain of the problem is discretized by the same cells taking into consideration the load and characteristics of the structure. After the first trial solution, the D-D interpolation shows the lack and redundancy of points in the domain. These points will be added or eliminated for the next solution. This process may be repeated for obtaining an adaptive mesh for each step. Also, the smoothing spline fit is used to eliminate the noisy portion of the solution. Finally, the results of the proposed method are compared with the results available in the literature. The comparison shows excellent agreement between the obtained results and those already reported.

  8. Updating QR factorization procedure for solution of linear least squares problem with equality constraints.

    Science.gov (United States)

    Zeb, Salman; Yousaf, Muhammad

    2017-01-01

    In this article, we present a QR updating procedure as a solution approach for linear least squares problem with equality constraints. We reduce the constrained problem to unconstrained linear least squares and partition it into a small subproblem. The QR factorization of the subproblem is calculated and then we apply updating techniques to its upper triangular factor R to obtain its solution. We carry out the error analysis of the proposed algorithm to show that it is backward stable. We also illustrate the implementation and accuracy of the proposed algorithm by providing some numerical experiments with particular emphasis on dense problems.

  9. Solution of the linearly anisotropic neutron transport problem in a infinite cylinder combining the decomposition and HTSN methods

    International Nuclear Information System (INIS)

    Goncalves, Glenio A.; Bodmann, Bardo; Bogado, Sergio; Vilhena, Marco T.

    2008-01-01

    Analytical solutions for neutron transport in cylindrical geometry is available for isotropic problems, but to the best of our knowledge for anisotropic problems are not available, yet. In this work, an analytical solution for the neutron transport equation in an infinite cylinder assuming anisotropic scattering is reported. Here we specialize the solution, without loss of generality, for the linearly anisotropic problem using the combined decomposition and HTS N methods. The key feature of this method consists in the application of the decomposition method to the anisotropic problem by virtue of the fact that the inverse of the operator associated to isotropic problem is well know and determined by the HTS N approach. So far, following the idea of the decomposition method, we apply this operator to the integral term, assuming that the angular flux appearing in the integrand is considered to be equal to the HTS N solution interpolated by polynomial considering only even powers. This leads to the first approximation for an anisotropic solution. Proceeding further, we replace this solution for the angular flux in the integral and apply again the inverse operator for the isotropic problem in the integral term and obtain a new approximation for the angular flux. This iterative procedure yields a closed form solution for the angular flux. This methodology can be generalized, in a straightforward manner, for transport problems with any degree of anisotropy. For the sake of illustration, we report numerical simulations for linearly anisotropic transport problems. (author)

  10. Admissible solutions for a class of nonlinear parabolic problem with non-negative data

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Petzeltová, Hana; Simondon, F.

    2001-01-01

    Roč. 131, č. 5 (2001), s. 857-883 ISSN 0308-2105 R&D Projects: GA AV ČR IAA1019703 Keywords : admissible solutions%nonlinear parabolic problem * admissible solutions * comparison principle * non-negative data Subject RIV: BA - General Mathematics Impact factor: 0.441, year: 2001

  11. A Solution to Hammer's X-ray Reconstruction Problem

    DEFF Research Database (Denmark)

    Gardner, Richard J.; Kiderlen, Markus

    2007-01-01

    We propose algorithms for reconstructing a planar convex body K from possibly noisy measurements of either its parallel X-rays taken in a fixed finite set of directions or its point X-rays taken at a fixed finite set of points, in known situations that guarantee a unique solution when the data is...... to K in the Hausdorff metric as k tends to infinity. This solves, for the first time in the strongest sense, Hammer’s X-ray problem published in 1963....

  12. Electrical circuits in biomedical engineering problems with solutions

    CERN Document Server

    Keskin, Ali Ümit

    2017-01-01

    This authored monograph presents a comprehensive and in-depth analysis of electrical circuit theory in biomedical engineering, ideally suited as textbook for a course program. The book contains methods and theory, but the topical focus is placed on practical applications of circuit theory, including problems, solutions and case studies. The target audience primarily comprises researchers and experts in electrical engineering who intend to embark on biomedical applications. The book is also very well suited for graduate students in the field. .

  13. Sensitivity analysis of efficient solution in vector MINMAX boolean programming problem

    Directory of Open Access Journals (Sweden)

    Vladimir A. Emelichev

    2002-11-01

    Full Text Available We consider a multiple criterion Boolean programming problem with MINMAX partial criteria. The extreme level of independent perturbations of partial criteria parameters such that efficient (Pareto optimal solution preserves optimality was obtained.

  14. Erratum to : Wireless three-hop networks with stealing II : exact solutions through boundary value problems

    NARCIS (Netherlands)

    Guillemin, F.; Knessl, C.; Leeuwaarden, van J.S.H.

    2014-01-01

    Contrary to what we claimed in [5], the solution to the Riemann–Hilbert problem (4) considered in [5] for some domain Dx is in general not the restriction to Dx of the solution to the modified Riemann–Hilbert problem (6) in [5]. This occurs only when Dx is a circle, which is not the case considered

  15. POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

    Directory of Open Access Journals (Sweden)

    FAOUZI HADDOUCHI

    2015-11-01

    Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.

  16. Is rewritten Bible/Scripture the solution to the Synoptic Problem?

    African Journals Online (AJOL)

    2014-05-28

    May 28, 2014 ... This article examines. Müller's hypothesis by first investigating the history of the controversial term rewritten Bible/. Scripture and its recent application to the New Testament Gospels. Müller's hypothesis is then compared to other solutions to the Synoptic Problem, such as the Augustine, Griesbach, and.

  17. Boundary Element Solution of Geometrical Inverse Heat Conduction Problems for Development of IR CAT Scan

    International Nuclear Information System (INIS)

    Choi, C. Y.; Park, C. T.; Kim, T. H.; Han, K. N.; Choe, S. H.

    1995-01-01

    A geometrical inverse heat conduction problem is solved for the development of Infrared Computerized-Axial-Tomography (IR CAT) Scan by using a boundary element method in conjunction with regularization procedure. In this problem, an overspecified temperature condition by infrared scanning is provided on the surface, and is used together with other conditions to solve the position of an unknown boundary (cavity). An auxiliary problem is introduced in the solution of this problem. By defining a hypothetical inner boundary for the auxiliary problem domain, the cavity is located interior to the domain and its position is determined by solving a potential problem. Boundary element method with regularization procedure is used to solve this problem, and the effects of regularization on the inverse solution method are investigated by means of numerical analysis

  18. Consequences of variation in stream-landscape connections for stream nitrate retention and export

    Science.gov (United States)

    Handler, A. M.; Helton, A. M.; Grimm, N. B.

    2017-12-01

    Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work

  19. IMPSOR, 3-D Boundary Problems Solution for Thermal Conductivity Calculation

    International Nuclear Information System (INIS)

    Wilson, D.G.; Williams, M.A.

    1994-01-01

    1 - Description of program or function: IMPSOR implements finite difference methods for multidimensional moving boundary problems with Dirichlet or Neumann boundary conditions. The geometry of the spatial domain is a rectangular parallelepiped with dimensions specified by the user. Dirichlet or Neumann boundary conditions may be specified on each face of the box independently. The user defines the initial and boundary conditions as well as the thermal and physical properties of the problem and several parameters for the numerical method, e.g. degree of implicitness, time-step size. 2 - Method of solution: The spatial domain is partitioned and the governing equation discretized, which yields a nonlinear system of equations at each time-step. This nonlinear system is solved using a successive over-relaxation (SOR) algorithm. For a given node, the previous iteration's temperature and thermal conductivity values are used for advanced points with current values at previous points. This constitutes a Gauss-Seidel iteration. Most of the computing time used by the numerical method is spent in the iterative solution of the nonlinear system. The SOR scheme employed is designed to accommodate vectorization on a Cray X-MP. 3 - Restrictions on the complexity of the problem: Maximum of 70,000 nodes

  20. The numerical solution of boundary value problems over an infinite domain

    International Nuclear Information System (INIS)

    Shepherd, M.; Skinner, R.

    1976-01-01

    A method is presented for the numerical solution of boundary value problems over infinite domains. An example that illustrates also the strength and accuracy of a numerical procedure for calculating Green's functions is described in detail

  1. Method for the removal of elemental mercury from a gas stream

    Science.gov (United States)

    Mendelsohn, Marshall H.; Huang, Hann-Sheng

    1999-01-01

    A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents.

  2. Characterizing the Fundamental Intellectual Steps Required in the Solution of Conceptual Problems

    Science.gov (United States)

    Stewart, John

    2010-02-01

    At some level, the performance of a science class must depend on what is taught, the information content of the materials and assignments of the course. The introductory calculus-based electricity and magnetism class at the University of Arkansas is examined using a catalog of the basic reasoning steps involved in the solution of problems assigned in the class. This catalog was developed by sampling popular physics textbooks for conceptual problems. The solution to each conceptual problem was decomposed into its fundamental reasoning steps. These fundamental steps are, then, used to quantify the distribution of conceptual content within the course. Using this characterization technique, an exceptionally detailed picture of the information flow and structure of the class can be produced. The intellectual structure of published conceptual inventories is compared with the information presented in the class and the dependence of conceptual performance on the details of coverage extracted. )

  3. The algebraic method of the scattering inverse problem solution under untraditional statements

    CERN Document Server

    Popushnoj, M N

    2001-01-01

    The algebraic method of the scattering inverse problem solution under untraditional statements is proposed consistently in this review, in the framework of which some quantum theory od scattering charged particles problem were researched afterwards. The inverse problem of scattering theory of charged particles on the complex plane of the Coulomb coupling constant (CCC) is considered. A procedure of interaction potential restoration is established for the case when the energy, orbital moment quadrate and CCC are linearly dependent. The relation between one-parametric problems of the potential scattering of charged particles is investigated

  4. On the asymptotic of solutions of elliptic boundary value problems in domains with edges

    International Nuclear Information System (INIS)

    Nkemzi, B.

    2005-10-01

    Solutions of elliptic boundary value problems in three-dimensional domains with edges may exhibit singularities. The usual procedure to study these singularities is by the application of the classical Mellin transformation or continuous Fourier transformation. In this paper, we show how the asymptotic behavior of solutions of elliptic boundary value problems in general three-dimensional domains with straight edges can be investigated by means of discrete Fourier transformation. We apply this approach to time-harmonic Maxwell's equations and prove that the singular solutions can fully be described in terms of Fourier series. The representation here can easily be used to approximate three-dimensional stress intensity factors associated with edge singularities. (author)

  5. Effects of turbulent hyporheic mixing on reach-scale solute transport

    Science.gov (United States)

    Roche, K. R.; Li, A.; Packman, A. I.

    2017-12-01

    Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of

  6. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael; Kosinka, Jin; Calo, Victor M.

    2015-01-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these 'stretch-free' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  7. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  8. Neutron streaming analysis for shield design of FMIT Facility

    International Nuclear Information System (INIS)

    Carter, L.L.

    1980-12-01

    Applications of the Monte Carlo method have been summarized relevant to neutron streaming problems of interest in the shield design for the FMIT Facility. An improved angular biasing method has been implemented to further optimize the calculation of streaming and this method has been applied to calculate streaming within a double bend pipe

  9. Professional Problems Experienced by Information Technology Teachers and Suggested Solutions: Longitudinal Survey

    Directory of Open Access Journals (Sweden)

    Hafize Keser

    2013-02-01

    Full Text Available The study aimed to determine the opinions of teacher candidates in the fourth year of Computer Education & Instructional Technologies department (CEIT on the Problems Experienced by Information Technology (IT Teachers and Suggested Solutions and it has been designed in case study routine taking place within qualitative research tradition and in a longitudinal survey model. The final year IT teacher candidates receiving education in Ankara University Educational Sciences Faculty CEIT department in academic years 2011-2012 and 2012-2013 have formed the study group of the research (N=123. The data obtained in the research by open-end questionnaire have been analysed and interpreted by inductive encoding technique, freuency analysis and descriptive content analysis. At the end of the study carried out, it has been determined that the IT teacher candidates have handled in two sub-dimensions the problems experienced by the IT teachers, these being, problems towards the courses the IT teachers attend and problems regarding the professional lives of IT teachers and suggested solutions in line with these. The leading problems towards the courses the IT teachers attend are that the courses are optional, the courses are grade-free, the course hours are few, the significance of IT not being comprehended very well by the executives, teachers, parents and students, inadequacy of physical means of IT classes and references of the course. And, the main problems regarding professional lives of IT course teachers are the duty, power and responsibility of IT teachers not made clear enough, difficulties in formative teacher practice, course hours which have to be completed by IT teachers not being able to be completed and problem of permanent staff, the courses that must be attended by IT teachers being taugth by teachers from other branches, lack of executives and experts trained from a field to supervise IT and formative teachers. And, the suggested leading

  10. A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000

    Science.gov (United States)

    Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.

    2004-01-01

    The increasing concern for water and its quality require improved methods to evaluate the interaction between streams and aquifers and the strong influence that streams can have on the flow and transport of contaminants through many aquifers. For this reason, a new Streamflow-Routing (SFR1) Package was written for use with the U.S. Geological Survey's MODFLOW-2000 ground-water flow model. The SFR1 Package is linked to the Lake (LAK3) Package, and both have been integrated with the Ground-Water Transport (GWT) Process of MODFLOW-2000 (MODFLOW-GWT). SFR1 replaces the previous Stream (STR1) Package, with the most important difference being that stream depth is computed at the midpoint of each reach instead of at the beginning of each reach, as was done in the original Stream Package. This approach allows for the addition and subtraction of water from runoff, precipitation, and evapotranspiration within each reach. Because the SFR1 Package computes stream depth differently than that for the original package, a different name was used to distinguish it from the original Stream (STR1) Package. The SFR1 Package has five options for simulating stream depth and four options for computing diversions from a stream. The options for computing stream depth are: a specified value; Manning's equation (using a wide rectangular channel or an eight-point cross section); a power equation; or a table of values that relate flow to depth and width. Each stream segment can have a different option. Outflow from lakes can be computed using the same options. Because the wetted perimeter is computed for the eight-point cross section and width is computed for the power equation and table of values, the streambed conductance term no longer needs to be calculated externally whenever the area of streambed changes as a function of flow. The concentration of solute is computed in a stream network when MODFLOW-GWT is used in conjunction with the SFR1 Package. The concentration of a solute in a

  11. StreamSqueeze: a dynamic stream visualization for monitoring of event data

    Science.gov (United States)

    Mansmann, Florian; Krstajic, Milos; Fischer, Fabian; Bertini, Enrico

    2012-01-01

    While in clear-cut situations automated analytical solution for data streams are already in place, only few visual approaches have been proposed in the literature for exploratory analysis tasks on dynamic information. However, due to the competitive or security-related advantages that real-time information gives in domains such as finance, business or networking, we are convinced that there is a need for exploratory visualization tools for data streams. Under the conditions that new events have higher relevance and that smooth transitions enable traceability of items, we propose a novel dynamic stream visualization called StreamSqueeze. In this technique the degree of interest of recent items is expressed through an increase in size and thus recent events can be shown with more details. The technique has two main benefits: First, the layout algorithm arranges items in several lists of various sizes and optimizes the positions within each list so that the transition of an item from one list to the other triggers least visual changes. Second, the animation scheme ensures that for 50 percent of the time an item has a static screen position where reading is most effective and then continuously shrinks and moves to the its next static position in the subsequent list. To demonstrate the capability of our technique, we apply it to large and high-frequency news and syslog streams and show how it maintains optimal stability of the layout under the conditions given above.

  12. Analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1983-01-01

    We construct an analytic solution to the spinless S-wave Salpeter equation for two quarks interacting via a Coulomb potential, [2(-del 2 +m 2 )/sup 1/2/-M-α/r] psi(r) = 0, by transforming the momentum-space form of the equation into a mapping or boundary-value problem for analytic functions. The principal part of the three-dimensional wave function is identical to the solution of a one-dimensional Salpeter equation found by one of us and discussed here. The remainder of the wave function can be constructed by the iterative solution of an inhomogeneous singular integral equation. We show that the exact bound-state eigenvalues for the Coulomb problem are M/sub n/ = 2m/(1+α 2 /4n 2 )/sup 1/2/, n = 1,2,..., and that the wave function for the static interaction diverges for r→0 as C(mr)/sup -nu/, where #betta# = (α/π)(1+α/π+...) is known exactly

  13. A Robust Solution of the Spherical Burmester Problem

    DEFF Research Database (Denmark)

    Angeles, Jorge; Bai, Shaoping

    2010-01-01

    The problem of spherical four-bar linkage synthesis is revisited in this paper. The work is aimed at developing a robust synthesis method by taking into account both the formulation and the solution method. In addition, the synthesis of linkages with spherical prismatic joints is considered...... by treating them as a special case of the linkages under study. A two-step synthesis method is developed, which sequentially deals with equation-solving by a semigraphical approach and branching-detection. Examples are included to demonstrate the proposed method....

  14. Method for the removal of elemental mercury from a gas stream

    Science.gov (United States)

    Mendelsohn, M.H.; Huang, H.S.

    1999-05-04

    A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents. 7 figs.

  15. Shape space figure-8 solution of three body problem with two equal masses

    Science.gov (United States)

    Yu, Guowei

    2017-06-01

    In a preprint by Montgomery (https://people.ucsc.edu/~rmont/Nbdy.html), the author attempted to prove the existence of a shape space figure-8 solution of the Newtonian three body problem with two equal masses (it looks like a figure 8 in the shape space, which is different from the famous figure-8 solution with three equal masses (Chenciner and Montgomery 2000 Ann. Math. 152 881-901)). Unfortunately there is an error in the proof and the problem is still open. Consider the α-homogeneous Newton-type potential, 1/rα, using action minimization method, we prove the existence of this solution, for α \\in (1, 2) ; for α=1 (the Newtonian potential), an extra condition is required, which unfortunately seems hard to verify at this moment.

  16. MC21/CTF and VERA multiphysics solutions to VERA core physics benchmark progression problems 6 and 7

    Directory of Open Access Journals (Sweden)

    Daniel J. Kelly, III

    2017-09-01

    Full Text Available The continuous energy Monte Carlo neutron transport code, MC21, was coupled to the CTF subchannel thermal-hydraulics code using a combination of Consortium for Advanced Simulation of Light Water Reactors (CASL tools and in-house Python scripts. An MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 6 demonstrated good agreement with MC21/COBRA-IE and VERA solutions. The MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 7, Watts Bar Unit 1 at beginning of cycle hot full power equilibrium xenon conditions, is the first published coupled Monte Carlo neutronics/subchannel T-H solution for this problem. MC21/CTF predicted a critical boron concentration of 854.5 ppm, yielding a critical eigenvalue of 0.99994 ± 6.8E-6 (95% confidence interval. Excellent agreement with a VERA solution of Problem 7 was also demonstrated for integral and local power and temperature parameters.

  17. Benchmarking the invariant embedding method against analytical solutions in model transport problems

    International Nuclear Information System (INIS)

    Malin, Wahlberg; Imre, Pazsit

    2005-01-01

    The purpose of this paper is to demonstrate the use of the invariant embedding method in a series of model transport problems, for which it is also possible to obtain an analytical solution. Due to the non-linear character of the embedding equations, their solution can only be obtained numerically. However, this can be done via a robust and effective iteration scheme. In return, the domain of applicability is far wider than the model problems investigated in this paper. The use of the invariant embedding method is demonstrated in three different areas. The first is the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production. Both constant and energy dependent cross sections with a power law dependence were used in the calculations. The second application concerns the calculation of the path length distribution of reflected particles from a medium without multiplication. This is a relatively novel and unexpected application, since the embedding equations do not resolve the depth variable. The third application concerns the demonstration that solutions in an infinite medium and a half-space are interrelated through embedding-like integral equations, by the solution of which the reflected flux from a half-space can be reconstructed from solutions in an infinite medium or vice versa. In all cases the invariant embedding method proved to be robust, fast and monotonically converging to the exact solutions. (authors)

  18. FAST LABEL: Easy and efficient solution of joint multi-label and estimation problems

    KAUST Repository

    Sundaramoorthi, Ganesh; Hong, Byungwoo

    2014-01-01

    that plague local solutions. Further, in comparison to global methods for the multi-label problem, the method is more efficient and it is easy for a non-specialist to implement. We give sample Matlab code for the multi-label Chan-Vese problem in this paper

  19. Development of solute transport models in YMPYRÄ framework to simulate solute migration in military shooting and training areas

    Science.gov (United States)

    Warsta, L.; Karvonen, T.

    2017-12-01

    There are currently 25 shooting and training areas in Finland managed by The Finnish Defence Forces (FDF), where military activities can cause contamination of open waters and groundwater reservoirs. In the YMPYRÄ project, a computer software framework is being developed that combines existing open environmental data and proprietary information collected by FDF with computational models to investigate current and prevent future environmental problems. A data centric philosophy is followed in the development of the system, i.e. the models are updated and extended to handle available data from different areas. The results generated by the models are summarized as easily understandable flow and risk maps that can be opened in GIS programs and used in environmental assessments by experts. Substances investigated with the system include explosives and metals such as lead, and both surface and groundwater dominated areas can be simulated. The YMPYRÄ framework is composed of a three dimensional soil and groundwater flow model, several solute transport models and an uncertainty assessment system. Solute transport models in the framework include particle based, stream tube and finite volume based approaches. The models can be used to simulate solute dissolution from source area, transport in the unsaturated layers to groundwater and finally migration in groundwater to water extraction wells and springs. The models can be used to simulate advection, dispersion, equilibrium adsorption on soil particles, solubility and dissolution from solute phase and dendritic solute decay chains. Correct numerical solutions were confirmed by comparing results to analytical 1D and 2D solutions and by comparing the numerical solutions to each other. The particle based and stream tube type solute transport models were useful as they could complement the traditional finite volume based approach which in certain circumstances produced numerical dispersion due to piecewise solution of the

  20. Comparison of three Stark problem solution techniques for the bounded case

    Science.gov (United States)

    Hatten, Noble; Russell, Ryan P.

    2015-01-01

    Three methods of obtaining solutions to the Stark problem—one developed by Lantoine and Russell using Jacobi elliptic and related functions, one developed by Biscani and Izzo using Weierstrass elliptic and related functions, and one developed by Pellegrini, Russell, and Vittaldev using and Taylor series extended to the Stark problem—are compared qualitatively and quantitatively for the bounded motion case. For consistency with existing available code for the series solution, Fortran routines of the Lantoine method and Biscani method are newly implemented and made available. For these implementations, the Lantoine formulation is found to be more efficient than the Biscani formulation in the propagation of a single trajectory segment. However, for applications for which acceptable accuracy may be achieved by orders up to 16, the Pellegrini series solution is shown to be more efficient than either analytical method. The three methods are also compared in the propagation of sequentially connected trajectory segments in a low-thrust orbital transfer maneuver. Separate tests are conducted for discretizations between 8 and 96 segments per orbit. For the series solution, the interaction between order and step size leads to computation times that are nearly invariable to discretization for a given truncation error tolerance over the tested range of discretizations. This finding makes the series solution particularly attractive for mission design applications where problems may require both coarse and fine discretizations. Example applications include the modeling of low-thrust propulsion and time-varying perturbations—problems for which the efficient propagation of relatively short Stark segments is paramount because the disturbing acceleration generally varies continuously.

  1. An analytic solution of the static problem of inclined risers conveying fluid

    KAUST Repository

    Alfosail, Feras

    2016-05-28

    We use the method of matched asymptotic expansion to develop an analytic solution to the static problem of clamped–clamped inclined risers conveying fluid. The inclined riser is modeled as an Euler–Bernoulli beam taking into account its self-weight, mid-plane stretching, an applied axial tension, and the internal fluid velocity. The solution consists of three parts: an outer solution valid away from the two boundaries and two inner solutions valid near the two ends. The three solutions are then matched and combined into a so-called composite expansion. A Newton–Raphson method is used to determine the value of the mid-plane stretching corresponding to each applied tension and internal velocity. The analytic solution is in good agreement with those obtained with other solution methods for large values of applied tensions. Therefore, it can be used to replace other mathematical solution methods that suffer numerical limitations and high computational cost. © 2016 Springer Science+Business Media Dordrecht

  2. Principles of selection ofdrilling mud stream volume when drilling with a stream pump

    Directory of Open Access Journals (Sweden)

    Jan Macuda

    2006-10-01

    Full Text Available The reverse mud circulation induced by a stream pump is most frequently applied for large diameter drilling. This system is treated as auxiliary in all design solutions. It is implemented to drilling wells from the surface to the depth of deposition of the preliminary column. It enables performing wells in loose sands, gravel, clays clayey shales, marls, limestones, sandstones and other sedimentary rocks.A principle of selecting a drilling mud stream volume for various bit diameters and drilling rates in loose rocks are presented in the paper. A special attention has been paid to the drop of efficiency of cuttings removal with an increasing depth of the borehole.

  3. A discrete-ordinates solution for a radiation therapy problem

    International Nuclear Information System (INIS)

    Goldschmidt, Gustavo Brun; Reichert, Janice Teresinha; Barichello, Liliane Basso

    2008-01-01

    A concise and accurate procedure for evaluating dose distribution, in a radiation therapy planning, is presented. The analytical discrete-ordinates method (ADO method) is used to develop a complete solution for a spectral dependent radiative transfer equation, in a one-dimensional medium, according to a multigroup scheme. Numerical results are presented for test problems, where the Klein-Nishina scattering kernel was used to describe the interaction processes. (author)

  4. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers

    Directory of Open Access Journals (Sweden)

    C.-C. Lin

    2018-04-01

    Full Text Available Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007. The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007.

  5. Global existence and decay of solutions of the Cauchy problem in thermoelasticity with second sound

    KAUST Repository

    Kasimov, Aslan R.; Racke, Reinhard; Said-Houari, Belkacem

    2013-01-01

    We consider the one-dimensional Cauchy problem in non-linear thermoelasticity with second sound, where the heat conduction is modelled by Cattaneo's law. After presenting decay estimates for solutions to the linearized problem, including refined estimates for data in weighted Lebesgue-spaces, we prove a global existence theorem for small data together with improved decay estimates, in particular for derivatives of the solutions. © 2013 Taylor & Francis.

  6. Optimality conditions for the numerical solution of optimization problems with PDE constraints :

    Energy Technology Data Exchange (ETDEWEB)

    Aguilo Valentin, Miguel Alejandro; Ridzal, Denis

    2014-03-01

    A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.

  7. The Solution of Large Time-Dependent Problems Using Reduced Coordinates.

    Science.gov (United States)

    1987-06-01

    numerical intergration schemes for dynamic problems, the algorithm known as Newmark’s Method. The behavior of the Newmark scheme, as well as the basic...T’he horizontal displacements at the mid-height and the bottom of the buildin- are shown in f igure 4. 13. The solution history illustrated is for a

  8. Building Science and Technology Solutions for National Problems

    International Nuclear Information System (INIS)

    Bishop, Alan R.

    2012-01-01

    The nation's investment in Los Alamos has fostered scientific capabilities for national security missions. As the premier national security science laboratory, Los Alamos tackles: (1) Multidisciplinary science, technology, and engineering challenges; (2) Problems demanding unique experimental and computational facilities; and (3) Highly complex national security issues requiring fundamental breakthroughs. Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) ensure the safety, security, and reliability of the US nuclear deterrent; (2) protect against the nuclear threat; and (3) solve national security challenges.

  9. Monte Carlo methods for flux expansion solutions of transport problems

    International Nuclear Information System (INIS)

    Spanier, J.

    1999-01-01

    Adaptive Monte Carlo methods, based on the use of either correlated sampling or importance sampling, to obtain global solutions to certain transport problems have recently been described. The resulting learning algorithms are capable of achieving geometric convergence when applied to the estimation of a finite number of coefficients in a flux expansion representation of the global solution. However, because of the nonphysical nature of the random walk simulations needed to perform importance sampling, conventional transport estimators and source sampling techniques require modification to be used successfully in conjunction with such flux expansion methods. It is shown how these problems can be overcome. First, the traditional path length estimators in wide use in particle transport simulations are generalized to include rather general detector functions (which, in this application, are the individual basis functions chosen for the flus expansion). Second, it is shown how to sample from the signed probabilities that arise as source density functions in these applications, without destroying the zero variance property needed to ensure geometric convergence to zero error

  10. Existence of positive solutions for a multi-point four-order boundary-value problem

    Directory of Open Access Journals (Sweden)

    Le Xuan Truong

    2011-10-01

    Full Text Available The article shows sufficient conditions for the existence of positive solutions to a multi-point boundary-value problem for a fourth-order differential equation. Our main tools are the Guo-Krasnoselskii fixed point theorem and the monotone iterative technique. We also show that the set of positive solutions is compact.

  11. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran

    Impact from groundwater abstraction on freshwater resources and ecosystems is an issue of sincere concern in Denmark and many other countries worldwide. In addition, climate change projections add complexity to the existing conflict between water demands to satisfy human needs and water demands...... required to conserve streams as biologically diverse and healthy ecosystems. Solutions to this intensifying conflict require a holistic approach whereby stream biota is related to their physical environment at catchment scale, as also demanded by the EU Water Framework Directive. In the present study......, climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  12. Logic problems and solutions for memory signal of SEC pump in FQNP

    International Nuclear Information System (INIS)

    Lu Yanfei; Dang Xiaoqiang; Zhou Li; Ye Aiai

    2014-01-01

    In the Fuqing nuclear power plant, as a nuclear safety function system, the essential service water system is set two trains, and there are two pumps in each train. These pumps can be switched automatically according to the operation conditions. The signal which performs the automatic switch function called memory signal. This paper introduces the definition and role of the memory signal firstly, and then analyzes the logic of the two mutual backup SEC pumps, and the implementation method based on DCS platform. Finally, this paper presents the problems of memory signal during the commissioning and operation. Meanwhile, this paper proposes solutions to solve these problems, and analyzes the risk of the solutions, as well the significance for later units. (authors)

  13. Equilibrium Solutions of the Logarithmic Hamiltonian Leapfrog for the N-body Problem

    Science.gov (United States)

    Minesaki, Yukitaka

    2018-04-01

    We prove that a second-order logarithmic Hamiltonian leapfrog for the classical general N-body problem (CGNBP) designed by Mikkola and Tanikawa and some higher-order logarithmic Hamiltonian methods based on symmetric multicompositions of the logarithmic algorithm exactly reproduce the orbits of elliptic relative equilibrium solutions in the original CGNBP. These methods are explicit symplectic methods. Before this proof, only some implicit discrete-time CGNBPs proposed by Minesaki had been analytically shown to trace the orbits of elliptic relative equilibrium solutions. The proof is therefore the first existence proof for explicit symplectic methods. Such logarithmic Hamiltonian methods with a variable time step can also precisely retain periodic orbits in the classical general three-body problem, which generic numerical methods with a constant time step cannot do.

  14. New Class of Solutions for Water Infiltration Problems in Unsaturated Soils

    DEFF Research Database (Denmark)

    Barari, Amin; Omidvar, M; Momeni, M

    2010-01-01

    This paper presents the results of approximate analytical solutions to Richards’ equation, which governs the problem of unsaturated flow in porous media. The existing methods generally fall within the category of numerical and analytical methods, often having many restrictions for practical situa...

  15. Nuclear plant problem needs a federal solution

    International Nuclear Information System (INIS)

    Zitser, B.S.

    1984-01-01

    Utilities presently committed to nuclear construction programs, regardless of their stage of completion, are experiencing a marked decline in financial health which the author of the following believes will be a long-term trend. Concerns over quality control, siting misgivings, cost underestimates, and consequential rate shock have increased pessimism on the part of investors, ratepayers, and regulators. The article describes the financial challenges facing one nuclear utility and discusses the factors contributing to widely disparate rate impact projections offered by utilities and regulators. The solution to financing difficulties imposed by cancellations and delays may lie with yet another player: the federal government. Outlining its potential advantages and problems, the author offers his proposal

  16. Where humans meet machines innovative solutions for knotty natural-language problems

    CERN Document Server

    Markowitz, Judith

    2013-01-01

    Where Humans Meet Machines: Innovative Solutions for Knotty Natural-Language Problems brings humans and machines closer together by showing how linguistic complexities that confound the speech systems of today can be handled effectively by sophisticated natural-language technology. Some of the most vexing natural-language problems that are addressed in this book entail   recognizing and processing idiomatic expressions, understanding metaphors, matching an anaphor correctly with its antecedent, performing word-sense disambiguation, and handling out-of-vocabulary words and phrases. This fourteen-chapter anthology consists of contributions from industry scientists and from academicians working at major universities in North America and Europe. They include researchers who have played a central role in DARPA-funded programs and developers who craft real-world solutions for corporations. These contributing authors analyze the role of natural language technology in the global marketplace; they explore the need f...

  17. Positive solutions for a nonlinear periodic boundary-value problem with a parameter

    Directory of Open Access Journals (Sweden)

    Jingliang Qiu

    2012-08-01

    Full Text Available Using topological degree theory with a partially ordered structure of space, sufficient conditions for the existence and multiplicity of positive solutions for a second-order nonlinear periodic boundary-value problem are established. Inspired by ideas in Guo and Lakshmikantham [6], we study the dependence of positive periodic solutions as a parameter approaches infinity, $$ lim_{lambdao +infty}|x_{lambda}|=+infty,quadhbox{or}quad lim_{lambdao+infty}|x_{lambda}|=0. $$

  18. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.

    Science.gov (United States)

    Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin

    2016-01-01

    This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.

  19. Global existence and decay of solutions of the Cauchy problem in thermoelasticity with second sound

    KAUST Repository

    Kasimov, Aslan R.

    2013-06-04

    We consider the one-dimensional Cauchy problem in non-linear thermoelasticity with second sound, where the heat conduction is modelled by Cattaneo\\'s law. After presenting decay estimates for solutions to the linearized problem, including refined estimates for data in weighted Lebesgue-spaces, we prove a global existence theorem for small data together with improved decay estimates, in particular for derivatives of the solutions. © 2013 Taylor & Francis.

  20. Efficient Numerical Solution of Coupled Radial Differential Equations in Multichannel Scattering Problems

    International Nuclear Information System (INIS)

    Houfek, Karel

    2008-01-01

    Numerical solution of coupled radial differential equations which are encountered in multichannel scattering problems is presented. Numerical approach is based on the combination of the exterior complex scaling method and the finite-elements method with the discrete variable representation. This method can be used not only to solve multichannel scattering problem but also to find bound states and resonance positions and widths directly by diagonalization of the corresponding complex scaled Hamiltonian. Efficiency and accuracy of this method is demonstrated on an analytically solvable two-channel problem.

  1. Global existence of solutions to the Cauchy problem for time-dependent Hartree equations

    International Nuclear Information System (INIS)

    Chadam, J.M.; Glassey, R.T.

    1975-01-01

    The existence of global solutions to the Cauchy problem for time-dependent Hartree equations for N electrons is established. The solution is shown to have a uniformly bounded H 1 (R 3 ) norm and to satisfy an estimate of the form two parallel PSI (t) two parallel/sub H 2 ; less than or equal to c exp(kt). It is shown that ''negative energy'' solutions do not converge uniformly to zero as t → infinity. (U.S.)

  2. A Fast Condensing Method for Solution of Linear-Quadratic Control Problems

    DEFF Research Database (Denmark)

    Frison, Gianluca; Jørgensen, John Bagterp

    2013-01-01

    consider a condensing (or state elimination) method to solve an extended version of the LQ control problem, and we show how to exploit the structure of this problem to both factorize the dense Hessian matrix and solve the system. Furthermore, we present two efficient implementations. The first......In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be solved at each iteration. The solution of these sub-problems is usually the main computational effort. In this paper we...... implementation is formally identical to the Riccati recursion based solver and has a computational complexity that is linear in the control horizon length and cubic in the number of states. The second implementation has a computational complexity that is quadratic in the control horizon length as well...

  3. Analytical solution to the circularity problem in the discounted cash flow valuation framework

    Directory of Open Access Journals (Sweden)

    Felipe Mejía-Peláez

    2011-12-01

    Full Text Available In this paper we propose an analytical solution to the circularity problem between value and cost of capital. Our solution is derived starting from a central principle of finance that relates value today to value, cash flow, and the discount rate for next period. We present a general formulation without circularity for the equity value (E, cost of levered equity (Ke, levered firm value (V, and the weighted average cost of capital (WACC. We furthermore compare the results obtained from these formulas with the results of the application of the Adjusted Present Value approach (no circularity and the iterative solution of circularity based upon the iteration feature of a spreadsheet, concluding that all methods yield exactly the same answer. The advantage of this solution is that it avoids problems such as using manual methods (i.e., the popular “Rolling WACC” ignoring the circularity issue, setting a target leverage (usually constant with the inconsistencies that result from it, the wrong use of book values, or attributing the discrepancies in values to rounding errors.

  4. On solution to the problem of criticality by alternative Monte Carlo method

    International Nuclear Information System (INIS)

    Kyncl, J.

    2005-03-01

    The problem of criticality for the neutron transport equation is analyzed. The problem is transformed into an equivalent problem in a suitable set of complex functions, and the existence and uniqueness of its solution is demonstrated. The source iteration method is discussed. It is shown that the final result of the iterative process is strongly affected by the insufficient accuracy of the individual iterations. A modified method is suggested to circumvent this problem based on the theory of positive operators; the criticality problem is solved by the Monte Carlo method constructing special random process and variable so that the difference between the result and the true value can be arbitrarily small. The efficiency of this alternative method is analysed

  5. Definition and use of Solution-focused Sustainability Assessment: A novel approach to generate, explore and decide on sustainable solutions for wicked problems

    NARCIS (Netherlands)

    Zijp, M.C.; Posthuma, L.; Wintersen, A.; Devilee, J.; Swartjes, F.A.

    2016-01-01

    This paper introduces Solution-focused Sustainability Assessment (SfSA), provides practical guidance formatted as a versatile process framework, and illustrates its utility for solving a wicked environmental management problem. Society faces complex and increasingly wicked environmental problems for

  6. Approximate Analytic Solutions for the Two-Phase Stefan Problem Using the Adomian Decomposition Method

    Directory of Open Access Journals (Sweden)

    Xiao-Ying Qin

    2014-01-01

    Full Text Available An Adomian decomposition method (ADM is applied to solve a two-phase Stefan problem that describes the pure metal solidification process. In contrast to traditional analytical methods, ADM avoids complex mathematical derivations and does not require coordinate transformation for elimination of the unknown moving boundary. Based on polynomial approximations for some known and unknown boundary functions, approximate analytic solutions for the model with undetermined coefficients are obtained using ADM. Substitution of these expressions into other equations and boundary conditions of the model generates some function identities with the undetermined coefficients. By determining these coefficients, approximate analytic solutions for the model are obtained. A concrete example of the solution shows that this method can easily be implemented in MATLAB and has a fast convergence rate. This is an efficient method for finding approximate analytic solutions for the Stefan and the inverse Stefan problems.

  7. Multiple solutions of a free-boundary FRC equilibrium problem in a metal cylinder

    International Nuclear Information System (INIS)

    Spencer, R.L.; Hewett, D.W.

    1981-01-01

    A new approach to the computation of FRC equilibria that avoids previously encountered difficulties is presented. For arbitrary pressure profiles it is computationally expensive, but for one special pressure profile the problem is simple enough to require only minutes of Cray time; it is this problem that we have solved. We solve the Grad-Shafranov equation, Δ/sup */psi = r 2 p'(psi), in an infinitely long flux conserving cylinder of radius a with the boundary conditions that psi(a,z) = -psi/sub w/ and that delta psi/delta z = 0 as [z] approaches infinity. The pressure profile is p'(psi) = cH(psi) where c is a constant and where H(x) is the Heaviside function. We have found four solutions to this problem: There is a purely vacuum state, two z-independent plasma solutions, and an r-z-dependent plasma state

  8. A numerical method for finding sign-changing solutions of superlinear Dirichlet problems

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, J.M.

    1996-12-31

    In a recent result it was shown via a variational argument that a class of superlinear elliptic boundary value problems has at least three nontrivial solutions, a pair of one sign and one which sign changes exactly once. These three and all other nontrivial solutions are saddle points of an action functional, and are characterized as local minima of that functional restricted to a codimension one submanifold of the Hilbert space H-0-1-2, or an appropriate higher codimension subset of that manifold. In this paper, we present a numerical Sobolev steepest descent algorithm for finding these three solutions.

  9. A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion

    International Nuclear Information System (INIS)

    Hussein, A.; Selim, M.M.

    2013-01-01

    This paper considers the solution of the stochastic integro-differential equation of Milne problem with random operator. The Pomraning–Eddington method is implemented to get a closed form solution deterministically. Relying on the spectral properties of the covariance function, the Karhunen–Loeve (K–L) expansion is used to represent the input stochastic process in the deterministic solution. This leads to an explicit expression for the solution process as a multivariate functional of a set of uncorrelated random variables. By using different distributions for these variables, the work is realized through computing the mean and the variance of the solution. The numerical results are found in agreement with those obtained in the literature. -- Highlights: •The solution of the stochastic Milne problem is considered. •We dealt with the random cross-section itself not with the optical transformation of it. •Pomraning–Eddington method together with the (K–L) expansion were implemented. •The solution process is obtained as a functional of a set of uncorrelated random variables. •Good results are obtained for different distributions of these variables

  10. Algorithmic solution of arithmetic problems and operands-answer associations in long-term memory.

    Science.gov (United States)

    Thevenot, C; Barrouillet, P; Fayol, M

    2001-05-01

    Many developmental models of arithmetic problem solving assume that any algorithmic solution of a given problem results in an association of the two operands and the answer in memory (Logan & Klapp, 1991; Siegler, 1996). In this experiment, adults had to perform either an operation or a comparison on the same pairs of two-digit numbers and then a recognition task. It is shown that unlike comparisons, the algorithmic solution of operations impairs the recognition of operands in adults. Thus, the postulate of a necessary and automatic storage of operands-answer associations in memory when young children solve additions by algorithmic strategies needs to be qualified.

  11. Development of a coarse mesh code for the solution of two group static diffusion problems

    International Nuclear Information System (INIS)

    Barros, R.C. de.

    1985-01-01

    This new coarse mesh code designed for the solution of 2 and 3 dimensional static diffusion problems, is based on an alternating direction method which consists in the solution of one dimensional problem along each coordinate direction with leakage terms for the remaining directions estimated from previous interactions. Four versions of this code have been developed: AD21 - 2D - 1/4, AD21 - 2D - 4/4, AD21 - 3D - 1/4 and AD21 - 3D - 4/4; these versions have been designed for 2 and 3 dimensional problems with or without 1/4 symmetry. (Author) [pt

  12. VPipe: Virtual Pipelining for Scheduling of DAG Stream Query Plans

    Science.gov (United States)

    Wang, Song; Gupta, Chetan; Mehta, Abhay

    There are data streams all around us that can be harnessed for tremendous business and personal advantage. For an enterprise-level stream processing system such as CHAOS [1] (Continuous, Heterogeneous Analytic Over Streams), handling of complex query plans with resource constraints is challenging. While several scheduling strategies exist for stream processing, efficient scheduling of complex DAG query plans is still largely unsolved. In this paper, we propose a novel execution scheme for scheduling complex directed acyclic graph (DAG) query plans with meta-data enriched stream tuples. Our solution, called Virtual Pipelined Chain (or VPipe Chain for short), effectively extends the "Chain" pipelining scheduling approach to complex DAG query plans.

  13. Solutions to the strong-CP problem in a world with gravity

    International Nuclear Information System (INIS)

    Holman, R.; Watkins, R.; Widrow, L.M.; Toronto Univ., ON

    1992-01-01

    We examine various solutions of the strong-CP problem to determine their sensitivity to possible violations of global symmetries by Plauck scale physics. While some solutions remain viable even in the face of such effects. Violations of the Peccei-Quinn (PQ) symmetry by non-renormalizable operators of dimension less than 10 will generally shift the value of bar θ to values inconsistent with the experimental bound bar θ approx-lt 10 - 9. We show that it is possible to construct axion models where gauge symmetries protect PQ symmetry to the requisite level

  14. Regularization and computational methods for precise solution of perturbed orbit transfer problems

    Science.gov (United States)

    Woollands, Robyn Michele

    The author has developed a suite of algorithms for solving the perturbed Lambert's problem in celestial mechanics. These algorithms have been implemented as a parallel computation tool that has broad applicability. This tool is composed of four component algorithms and each provides unique benefits for solving a particular type of orbit transfer problem. The first one utilizes a Keplerian solver (a-iteration) for solving the unperturbed Lambert's problem. This algorithm not only provides a "warm start" for solving the perturbed problem but is also used to identify which of several perturbed solvers is best suited for the job. The second algorithm solves the perturbed Lambert's problem using a variant of the modified Chebyshev-Picard iteration initial value solver that solves two-point boundary value problems. This method converges over about one third of an orbit and does not require a Newton-type shooting method and thus no state transition matrix needs to be computed. The third algorithm makes use of regularization of the differential equations through the Kustaanheimo-Stiefel transformation and extends the domain of convergence over which the modified Chebyshev-Picard iteration two-point boundary value solver will converge, from about one third of an orbit to almost a full orbit. This algorithm also does not require a Newton-type shooting method. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver to solve the perturbed two-impulse Lambert problem over multiple revolutions. The method of particular solutions is a shooting method but differs from the Newton-type shooting methods in that it does not require integration of the state transition matrix. The mathematical developments that underlie these four algorithms are derived in the chapters of this dissertation. For each of the algorithms, some orbit transfer test cases are included to provide insight on accuracy and efficiency of these

  15. Simple and Accurate Analytical Solutions of the Electrostatically Actuated Curled Beam Problem

    KAUST Repository

    Younis, Mohammad I.

    2014-01-01

    We present analytical solutions of the electrostatically actuated initially deformed cantilever beam problem. We use a continuous Euler-Bernoulli beam model combined with a single-mode Galerkin approximation. We derive simple analytical expressions

  16. Modelling Difficulties and Their Overcoming Strategies in the Solution of a Modelling Problem

    Science.gov (United States)

    Dede, Ayse Tekin

    2016-01-01

    The purpose of the study is to reveal the elementary mathematics student teachers' difficulties encountered in the solution of a modelling problem, the strategies to overcome those difficulties and whether the strategies worked or not. Nineteen student teachers solved the modelling problem in their four or five-person groups, and the video records…

  17. Solutions Stability of Initial Boundary Problem, Modeling of Dynamics of Some Discrete Continuum Mechanical System

    Directory of Open Access Journals (Sweden)

    D. A. Eliseev

    2015-01-01

    Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.

  18. Is rewritten Bible/Scripture the solution to the Synoptic Problem?

    Directory of Open Access Journals (Sweden)

    Gert J. Malan

    2014-05-01

    Full Text Available New Testament scholars have for centuries posited different solutions to the Synoptic Problem. Recently a new solution was proposed. Mogens Müller applies Geza Vermes’s term rewritten Bible to the canonical gospels. Accepting Markan priority, he views Matthew as rewritten Mark, Luke as rewritten Matthew, and John as additional source. This article examines Müller’s hypothesis by first investigating the history of the controversial term rewritten Bible/Scripture and its recent application to the New Testament Gospels. Müller’s hypothesis is then compared to other solutions to the Synoptic Problem, such as the Augustine, Griesbach, and Farrer-Goulder Hypotheses. The Two Document Hypothesis is discussed and Müller’s 2nd century Luke theory is compared to Burton Mack’s almost similar stance and tested with the argument of synoptic intertextuality in view of the possible but improbable early second century date for Matthew. Lastly, the relationship between the synoptic Gospels is viewed in terms of literary intertextuality. Müller suggests proclamation as motivation for the Gospels’ deliberate intertextual character. This notion is combined with the concept of intertextuality to suggest a more suitable explanation for the relationship between die Gospels, namely intertextual kerugma. This broad concept includes any form of intertextuality in terms of text and context regarding the author and readers. It suitably replaces rewritten Bible, both in reference to genre and textual (exegetical strategy.

  19. The Method of Subsuper Solutions for Weighted p(r-Laplacian Equation Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Zhimei Qiu

    2008-10-01

    Full Text Available This paper investigates the existence of solutions for weighted p(r-Laplacian ordinary boundary value problems. Our method is based on Leray-Schauder degree. As an application, we give the existence of weak solutions for p(x-Laplacian partial differential equations.

  20. Behavior of the maximal solution of the Cauchy problem for some nonlinear pseudoparabolic equation as $|x|oinfty$

    Directory of Open Access Journals (Sweden)

    Tatiana Kavitova

    2012-08-01

    Full Text Available We prove a comparison principle for solutions of the Cauchy problem of the nonlinear pseudoparabolic equation $u_t=Delta u_t+ Deltavarphi(u +h(t,u$ with nonnegative bounded initial data. We show stabilization of a maximal solution to a maximal solution of the Cauchy problem for the corresponding ordinary differential equation $vartheta'(t=h(t,vartheta$ as $|x|oinfty$ under certain conditions on an initial datum.

  1. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    International Nuclear Information System (INIS)

    Roddy, J.W.

    1984-03-01

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables

  2. Multiple and sign-changing solutions for discrete Robin boundary value problem with parameter dependence

    Directory of Open Access Journals (Sweden)

    Long Yuhua

    2017-12-01

    Full Text Available In this paper, we study second-order nonlinear discrete Robin boundary value problem with parameter dependence. Applying invariant sets of descending flow and variational methods, we establish some new sufficient conditions on the existence of sign-changing solutions, positive solutions and negative solutions of the system when the parameter belongs to appropriate intervals. In addition, an example is given to illustrate our results.

  3. Synchronized Multimedia Streaming on the iPhone Platform with Network Coding

    DEFF Research Database (Denmark)

    Vingelmann, Peter; Fitzek, Frank; Pedersen, Morten Videbæk

    2011-01-01

    on the iPhone that use point-to-point architectures. After acknowledging their limitations, we propose a solution based on network coding to efficiently and reliably deliver the multimedia content to many devices in a synchronized manner. Then we introduce an application that implements this technique......This work presents the implementation of synchronized multimedia streaming for the Apple iPhone platform. The idea is to stream multimedia content from a single source to multiple receivers with direct or multihop connections to the source. First we look into existing solutions for video streaming...... on the iPhone. We also present our testbed, which consists of 16 iPod Touch devices to showcase the capabilities of our application....

  4. Description of All Solutions of a Linear Complementarity Problem

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2009-01-01

    Roč. 18, - (2009), s. 246-252 E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : linear complementarity problem * Moore-Penrose inverse * verified solution * absolute value equation Subject RIV: BA - General Mathematics Impact factor: 0.892, year: 2009 http://www.math.technion.ac.il/iic/ ela / ela -articles/articles/vol18_pp246-252.pdf

  5. Infinitely many solutions for a fourth-order boundary-value problem

    Directory of Open Access Journals (Sweden)

    Seyyed Mohsen Khalkhali

    2012-09-01

    Full Text Available In this article we consider the existence of infinitely many solutions to the fourth-order boundary-value problem $$displaylines{ u^{iv}+alpha u''+eta(x u=lambda f(x,u+h(u,quad xin]0,1[cr u(0=u(1=0,cr u''(0=u''(1=0,. }$$ Our approach is based on variational methods and critical point theory.

  6. Solution Algorithm for a New Bi-Level Discrete Network Design Problem

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2013-12-01

    Full Text Available A new discrete network design problem (DNDP was pro-posed in this paper, where the variables can be a series of integers rather than just 0-1. The new DNDP can determine both capacity improvement grades of reconstruction roads and locations and capacity grades of newly added roads, and thus complies with the practical projects where road capacity can only be some discrete levels corresponding to the number of lanes of roads. This paper designed a solution algorithm combining branch-and-bound with Hooke-Jeeves algorithm, where feasible integer solutions are recorded in searching the process of Hooke-Jeeves algorithm, lend -ing itself to determine the upper bound of the upper-level problem. The thresholds for branch cutting and ending were set for earlier convergence. Numerical examples are given to demonstrate the efficiency of the proposed algorithm.

  7. Struggles and Solutions for Streaming Video in the Online Classroom

    Science.gov (United States)

    Fruin, Christine

    2012-01-01

    The upcoming round of exemptions to the Digital Millennium Copyright Act of 1998 anticircumvention provision and the questions raised by the copyright infringement lawsuit filed against the against University of California, Los Angeles (UCLA) for its streaming video practices illustrate the problematic state of the law concerning the digitization…

  8. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domí nguez, Luis F.; Pistikopoulos, Efstratios N.

    2012-01-01

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear

  9. On alternative solutions of interchannel crosstalk problem in multichannel gradiometers

    International Nuclear Information System (INIS)

    Manka, J.; Zrubec, V.

    1990-01-01

    For biomagnetic measurement, the multichannel systems has become the most prospective solution which is, however, associated with the problem of mutual affection of individual signals caused by mutual inductances between the gradiometers. H.J.M. ter Brake et. al. solved this problem by installation of the negative feedback into the input circuit, so that input inductivity of the magnetometer arose to a great value and gradiometer currents were attenuated. Heat breaking of the superconducting state was used for the proof of damping of crosstalk between two gradiometers. This paper deals with specifying the crosstalk coefficients in systems with internal feedback in the working regime

  10. The optimal solution of a non-convex state-dependent LQR problem and its applications.

    Directory of Open Access Journals (Sweden)

    Xudan Xu

    Full Text Available This paper studies a Non-convex State-dependent Linear Quadratic Regulator (NSLQR problem, in which the control penalty weighting matrix [Formula: see text] in the performance index is state-dependent. A necessary and sufficient condition for the optimal solution is established with a rigorous proof by Euler-Lagrange Equation. It is found that the optimal solution of the NSLQR problem can be obtained by solving a Pseudo-Differential-Riccati-Equation (PDRE simultaneously with the closed-loop system equation. A Comparison Theorem for the PDRE is given to facilitate solution methods for the PDRE. A linear time-variant system is employed as an example in simulation to verify the proposed optimal solution. As a non-trivial application, a goal pursuit process in psychology is modeled as a NSLQR problem and two typical goal pursuit behaviors found in human and animals are reproduced using different control weighting [Formula: see text]. It is found that these two behaviors save control energy and cause less stress over Conventional Control Behavior typified by the LQR control with a constant control weighting [Formula: see text], in situations where only the goal discrepancy at the terminal time is of concern, such as in Marathon races and target hitting missions.

  11. Existence of Three Positive Solutions to Some p-Laplacian Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Moulay Rchid Sidi Ammi

    2013-01-01

    Full Text Available We obtain, by using the Leggett-Williams fixed point theorem, sufficient conditions that ensure the existence of at least three positive solutions to some p-Laplacian boundary value problems on time scales.

  12. Why IV Setup for Stream Ciphers is Difficult

    DEFF Research Database (Denmark)

    Zenner, Erik

    2007-01-01

    In recent years, the initialization vector (IV) setup has proven to be the most vulnerable point when designing secure stream ciphers. In this paper, we take a look at possible reasons why this is the case, identifying numerous open research problems in cryptography.......In recent years, the initialization vector (IV) setup has proven to be the most vulnerable point when designing secure stream ciphers. In this paper, we take a look at possible reasons why this is the case, identifying numerous open research problems in cryptography....

  13. Collection of proceedings of the international conference on programming and mathematical methods for solution of physical problems

    International Nuclear Information System (INIS)

    1994-01-01

    Traditional International Conference on programming and mathematical methods for solution of physical problems took place in Dubna in Jun, 14-19, 1993. More than 160 scientists from 14 countries participated in the Conference. They presented about 120 reports, the range of problems including computerized information complexes, experimental data acquisition and processing systems, mathematical simulation and calculation experiment in physics, analytical and numerical methods for solution of physical problems

  14. Positive Solutions of Three-Order Delayed Periodic Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Na Wang

    2017-01-01

    Full Text Available Our main purpose is to consider the existence of positive solutions for three-order two-point boundary value problem in the following form: u′′′(t+ρ3u(t=f(t,u(t-τ,  0≤t≤2π,  u(i(0=u(i(2π,  i=1,2,  u(t=σ,  -τ≤t≤0, where σ,ρ, and τ are given constants satisfying τ∈(0,π/2. Some inequality conditions on ρ3u-f(t,u guaranteeing the existence and nonexistence of positive solutions are presented. Our discussion is based on the fixed point theorem in cones.

  15. Two numerical methods for the solution of two-dimensional eddy current problems

    International Nuclear Information System (INIS)

    Biddlecombe, C.S.

    1978-07-01

    A general method for the solution of eddy current problems in two dimensions - one component of current density and two of magnetic field, is reported. After examining analytical methods two numerical methods are presented. Both solve the two dimensional, low frequency limit of Maxwell's equations for transient eddy currents in conducting material, which may be permeable, in the presence of other non-conducting permeable material. Both solutions are expressed in terms of the magnetic vector potential. The first is an integral equation method, using zero order elements in the discretisation of the unknown source regions. The other is a differential equation method, using a first order finite element mesh, and the Galerkin weighted residual procedure. The resulting equations are solved as initial-value problems. Results from programs based on each method are presented showing the power and limitations of the methods and the range of problems solvable. The methods are compared and recommendations are made for choosing between them. Suggestions are made for improving both methods, involving boundary integral techniques. (author)

  16. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.

    Science.gov (United States)

    Deb, Kalyanmoy; Sinha, Ankur

    2010-01-01

    Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.

  17. Stream-groundwater exchange and hydrologic turnover at the network scale

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  18. Landmine research: technology solutions looking for problems

    Science.gov (United States)

    Trevelyan, James P.

    2004-09-01

    The global landmine problem came to the attention of researchers in the mid 1990's and by 1997 several advanced and expensive sensor research programs had started. Yet, by the end of 2003, there is little sign of a major advance in the technology available to humanitarian demining programs. Given the motivation and dedication of researchers, public goodwill to support such programs, and substantial research resources devoted to the problem, it is worth asking why these programs do not seem to have had an impact on demining costs or casualty rates. Perhaps there are factors that have been overlooked. This paper reviews several research programs to gain a deeper understanding of the problem. A possible explanation is that researchers have accepted mistaken ideas on the nature of the landmine problems that need to be solved. The paper provides several examples where the realities of minefield conditions are quite different to what researchers have been led to believe. Another explanation may lie in the political and economic realities that drive the worldwide effort to eliminate landmines. Most of the resources devoted to landmine clearance programs come from humanitarian aid budgets: landmine affected countries often contribute only a small proportion because they have different priorities based on realistic risk-based assessment of needs and political views of local people. Some aid projects have been driven by the need to find a market for demining technologies rather than by user needs. Finally, there is a common misperception that costs in less developed countries are intrinsically low, reflecting low rates paid for almost all classes of skilled labour. When actual productivity is taken into account, real costs can be higher than industrialized countries. The costs of implementing technological solutions (even using simple technologies) are often significantly under-estimated. Some political decisions may have discouraged thorough investigation of cost

  19. Process for the recovery of alkali metal salts from aqueous solutions thereof

    International Nuclear Information System (INIS)

    Vitner, J.

    1984-01-01

    In an integrated process for the recovery of alkakli metal phenates and carboxylates from aqueous solutions thereof, the aqueous solution is spray dried and the drying gas stream is contacted with an aqueous alkali metal salt solution which dissolves the particles of the alkali metal salt that were entrained in the drying gas stream. The salt-free inert gas stream is then dried, heated, and returned to the spray dryer

  20. Skeletal muscle mechanics: questions, problems and possible solutions.

    Science.gov (United States)

    Herzog, Walter

    2017-09-16

    Skeletal muscle mechanics have been studied ever since people have shown an interest in human movement. However, our understanding of muscle contraction and muscle mechanical properties has changed fundamentally with the discovery of the sliding filament theory in 1954 and associated cross-bridge theory in 1957. Nevertheless, experimental evidence suggests that our knowledge of the mechanisms of contraction is far from complete, and muscle properties and muscle function in human movement remain largely unknown.In this manuscript, I am trying to identify some of the crucial challenges we are faced with in muscle mechanics, offer possible solutions to questions, and identify problems that might be worthwhile exploring in the future. Since it is impossible to tackle all (worthwhile) problems in a single manuscript, I identified three problems that are controversial, important, and close to my heart. They may be identified as follows: (i) mechanisms of muscle contraction, (ii) in vivo whole muscle mechanics and properties, and (iii) force-sharing among synergistic muscles. These topics are fundamental to our understanding of human movement and movement control, and they contain a series of unknowns and challenges to be explored in the future.It is my hope that this paper may serve as an inspiration for some, may challenge current beliefs in selected areas, tackle important problems in the area of muscle mechanics, physiology and movement control, and may guide and focus some of the thinking of future muscle mechanics research.

  1. Corrosion problems and solutions in oil refining and petrochemical industry

    CERN Document Server

    Groysman, Alec

    2017-01-01

    This book addresses corrosion problems and their solutions at facilities in the oil refining and petrochemical industry, including cooling water and boiler feed water units. Further, it describes and analyzes corrosion control actions, corrosion monitoring, and corrosion management. Corrosion problems are a perennial issue in the oil refining and petrochemical industry, as they lead to a deterioration of the functional properties of metallic equipment and harm the environment – both of which need to be protected for the sake of current and future generations. Accordingly, this book examines and analyzes typical and atypical corrosion failure cases and their prevention at refineries and petrochemical facilities, including problems with: pipelines, tanks, furnaces, distillation columns, absorbers, heat exchangers, and pumps. In addition, it describes naphthenic acid corrosion, stress corrosion cracking, hydrogen damages, sulfidic corrosion, microbiologically induced corrosion, erosion-corrosion, and corrosion...

  2. Non-uniform Mutation Rates for Problems with Unknown Solution Lengths

    DEFF Research Database (Denmark)

    Cathabard, Stephan; Lehre, Per Kristian; Yao, Xin

    2011-01-01

    Many practical optimisation problems allow candidate solu- tions of varying lengths, and where the length of the opti- mal solution is thereby a priori unknown. We suggest that non-uniform mutation rates can be beneficial when solving such problems. In particular, we consider a mutation oper- ator...... that flips each bit with a probability that is inversely proportional to the bit position, rather than the bitstring length. The runtime of the (1+1) EA using this mutation operator is analysed rigorously on standard example func- tions. Furthermore, the behaviour of the new mutation op- erator...... distribution, and show that the new operator can yield exponentially faster runtimes for some parameters of this distribution. The experimental results show that the new mutation operator leads to dramatically shorter runtimes on a class of instances of the software engi- neering problem that is conjectured...

  3. A solution to the decompactification problem in chiral heterotic strings

    Directory of Open Access Journals (Sweden)

    Ioannis Florakis

    2017-08-01

    Full Text Available We present a solution to the decompactification problem of gauge thresholds in chiral heterotic string theories with two large extra dimensions, where supersymmetry is spontaneously broken by the Scherk–Schwarz mechanism. Whenever the Kaluza–Klein scale that controls supersymmetry breaking is much lower than the string scale, the infinite towers of heavy states contribute non-trivially to the renormalisation of gauge couplings, which typically grow linearly with the large volume of the internal space and invalidate perturbation theory. We trace the origin of the decompactification problem to properties of the six dimensional theory obtained in the infinite volume limit and show that thresholds may instead exhibit logarithmic volume dependence and we provide the conditions for this to occur. We illustrate this mechanism with explicit string constructions where the decompactification problem does not occur.

  4. The Train Driver Recovery Problem - a Set Partitioning Based Model and Solution Method

    DEFF Research Database (Denmark)

    Rezanova, Natalia Jurjevna; Ryan, David

    The need to recover a train driver schedule occurs during major disruptions in the daily railway operations. Using data from the train driver schedule of the Danish passenger railway operator DSB S-tog A/S, a solution method to the Train Driver Recovery Problem (TDRP) is developed. The TDRP...... the depth-first search of the Branch & Bound tree. Preliminarily results are encouraging, showing that nearly all tested real-life instances produce integer solutions to the LP relaxation and solutions are found within a few seconds....

  5. Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations

    Science.gov (United States)

    Kanoglu, U.; Aydin, B.

    2014-12-01

    The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV

  6. B-spline solution of a singularly perturbed boundary value problem arising in biology

    International Nuclear Information System (INIS)

    Lin Bin; Li Kaitai; Cheng Zhengxing

    2009-01-01

    We use B-spline functions to develop a numerical method for solving a singularly perturbed boundary value problem associated with biology science. We use B-spline collocation method, which leads to a tridiagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical result is found in good agreement with exact solution.

  7. SLATEC-4.1, Subroutine Library for Solution of Mathematical Problems

    International Nuclear Information System (INIS)

    Boland, W.R.

    1999-01-01

    1 - Description of problem or function: SLATEC4.1 is a large collection of FORTRAN mathematical subprograms brought together in a joint effort by the Air Force Phillips Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Magnetic Fusion Energy Computing Center, National Institute of Standards and Technology, Sandia National Laboratories (Albuquerque and Livermore), and Oak Ridge National Laboratory. SLATEC is characterized by portability, good numerical technology, good documentation, robustness, and quality assurance. The library can be divided into the following subsections following the lines of the GAMS classification system: Error Analysis, Elementary and Special Functions, Elementary Vector Operations, Solutions of Systems of Linear Equations, Eigen analysis, QR Decomposition, Singular Value Decomposition, Overdetermined or Underdetermined Systems, Interpolation, Solution of Nonlinear Equations, Optimization, Quadrature, Ordinary Differential Equations, Partial Differential Equations, Fast Fourier Transforms, Approximation, Pseudo-random Number Generation, Sorting, Machine Constants, and Diagnostics and Error Handling. 2 - Method of solution: This information is provided by comments within the individual library subroutines

  8. Differential and Difference Boundary Value Problem for Loaded Third-Order Pseudo-Parabolic Differential Equations and Difference Methods for Their Numerical Solution

    Science.gov (United States)

    Beshtokov, M. Kh.

    2017-12-01

    Boundary value problems for loaded third-order pseudo-parabolic equations with variable coefficients are considered. A priori estimates for the solutions of the problems in the differential and difference formulations are obtained. These a priori estimates imply the uniqueness and stability of the solution with respect to the initial data and the right-hand side on a layer, as well as the convergence of the solution of each difference problem to the solution of the corresponding differential problem.

  9. On solution of the integral equations for the potential problems of two circular-strips

    Directory of Open Access Journals (Sweden)

    C. Sampath

    1988-01-01

    Dirichlet and Newmann boundary value problems of two equal infinite coaxial circular strips in various branches of potential theory. For illustration, these solutions are applied to solve some boundary value problems in electrostatics, hydrodynamics, and expressions for the physical quantities of interest are derived.

  10. Combinatorial expressions of the solutions to initial value problems of the discrete and ultradiscrete Toda molecules

    International Nuclear Information System (INIS)

    Kamioka, Shuhei; Takagaki, Tomoaki

    2013-01-01

    Combinatorial expressions are presented of the solutions to initial value problems of the discrete and ultradiscrete Toda molecules. For the discrete Toda molecule, a subtraction-free expression of the solution is derived in terms of non-intersecting paths, for which two results in combinatorics, Flajolet’s interpretation of continued fractions and Gessel–Viennot’s lemma on determinants, are applied. By ultradiscretizing the subtraction-free expression, the solution to the ultradiscrete Toda molecule is obtained. It is finally shown that the initial value problem of the ultradiscrete Toda molecule is exactly solved in terms of shortest paths on a specific graph. The behavior of the solution is also investigated in comparison with the box–ball system. (paper)

  11. Solution of direct kinematic problem for Stewart-Gough platform with the use of analytical equation of plane

    Directory of Open Access Journals (Sweden)

    A. L. Lapikov

    2014-01-01

    Full Text Available The paper concerns the solution of direct kinematic problem for the Stewart-Gough platform of the type 6-3. The article represents a detailed analysis of methods of direct kinematic problem solution for platform mechanisms based on the parallel structures. The complexity of the problem solution is estimated for the mechanisms of parallel kinematics in comparison with the classic manipulators, characterized by the open kinematic chain.The method for the solution of this problem is suggested. It consists in setting up the correspondence between the functional dependence of Cartesian coordinates and the orientation of the moving platform centre on the values of generalized coordinates of the manipulator, which may be represented, in the case of platform manipulators, by the lengths of extensible arms to connect the foundation and the moving platform of the manipulator. The method is constructed in such a way that the solution of the direct kinematic problem reduces to solution of the analytical equation of plane where the moving platform is situated. The equation of the required plane is built according to three points which in this case are attachment points of moving platform joints. To define joints coordinates values it is necessary to generate a system of nine nonlinear equations. It ought to be noted that in generating a system of equation are used the equations with the same type of nonlinearity. The physical meaning of all nine equations of the system is Euclidean distance between the points of the manipulator. The location and orientation of the moving platform is represented as a homogeneous transformation matrix. The components of translation and rotation of this matrix can be defined through the required plane.The obtained theoretical results are supposed to be used in the decision support system during the complex research of multi-sectional manipulators of parallel kinematics to describe the geometrically similar 3D-prototype of the

  12. Finite element based composite solution for neutron transport problems

    International Nuclear Information System (INIS)

    Mirza, A.N.; Mirza, N.M.

    1995-01-01

    A finite element treatment for solving neutron transport problems is presented. The employs region-wise discontinuous finite elements for the spatial representation of the neutron angular flux, while spherical harmonics are used for directional dependence. Composite solutions has been obtained by using different orders of angular approximations in different parts of a system. The method has been successfully implemented for one dimensional slab and two dimensional rectangular geometry problems. An overall reduction in the number of nodal coefficients (more than 60% in some cases as compared to conventional schemes) has been achieved without loss of accuracy with better utilization of computational resources. The method also provides an efficient way of handling physically difficult situations such as treatment of voids in duct problems and sharply changing angular flux. It is observed that a great wealth of information about the spatial and directional dependence of the angular flux is obtained much more quickly as compared to Monte Carlo method, where most of the information in restricted to the locality of immediate interest. (author)

  13. The ClusTree : indexing micro-clusters for anytime stream mining

    DEFF Research Database (Denmark)

    Kranen, Philipp; Assent, Ira; Baldauf, Corinna

    2011-01-01

    -arrival times of the stream. Likewise, memory is limited, making it impossible to store all data. For clustering, we are faced with the challenge of maintaining a current result that can be presented to the user at any given time. In this work, we propose a parameter-free algorithm that automatically adapts...... introduce the ClusTree, a compact and self-adaptive index structure for maintaining stream summaries. Additionally we present solutions to handle very fast streams through aggregation mechanisms and propose novel descent strategies that improve the clustering result on slower streams as long as time permits...

  14. The Unintended Consequences of Social Media in Healthcare: New Problems and New Solutions.

    Science.gov (United States)

    Hors-Fraile, S; Atique, S; Mayer, M A; Denecke, K; Merolli, M; Househ, M

    2016-11-10

    Social media is increasingly being used in conjunction with health information technology (health IT). The objective of this paper is to identify some of the undesirable outcomes that arise from this integration and to suggest solutions to these problems. After a discussion with experts to elicit the topics that should be included in the survey, we performed a narrative review based on recent literature and interviewed multidisciplinary experts from different areas. In each case, we identified and analyzed the unintended effects of social media in health IT. Each analyzed topic provided a different set of unintended consequences. Most relevant consequences include lack of privacy with ethical and legal issues, patient confusion in disease management, poor information accuracy in crowdsourcing, unclear responsibilities, misleading and biased information in the prevention and detection of epidemics, and demotivation in gamified health solutions with social components. Using social media in healthcare offers several benefits, but it is not exempt of potential problems, and not all of these problems have clear solutions. We recommend careful design of digital systems in order to minimize patient's feelings of demotivation and frustration and we recommend following specific guidelines that should be created by all stakeholders in the healthcare ecosystem.

  15. Shape functions for separable solutions to cross-field diffusion problems

    International Nuclear Information System (INIS)

    Luning, C.D.; Perry, W.L.

    1984-01-01

    The shape function S(x), which arises in the study of nonlinear diffusion for cross-field diffusion in plasmas, satisfies the equation S''(x)+lambdaa(x)S/sup α/(x) = 0, 0 0. In the cases of physical interest a(x) possesses an integrable singularity at some point in (0,1) but is otherwise continuous. Existence of a positive solution to this problem is established

  16. Highly eccentric hip-hop solutions of the 2 N-body problem

    Science.gov (United States)

    Barrabés, Esther; Cors, Josep M.; Pinyol, Conxita; Soler, Jaume

    2010-02-01

    We show the existence of families of hip-hop solutions in the equal-mass 2 N-body problem which are close to highly eccentric planar elliptic homographic motions of 2 N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ɛ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ɛ≠0, the topological transversality persists and Brouwer’s fixed point theorem shows the existence of this kind of solutions in the full system.

  17. On solution to the problem of reactor kinetics with delayed neutrons by Monte Carlo method

    International Nuclear Information System (INIS)

    Kyncl, Jan

    2013-07-01

    The initial value problem is addressed for the neutron transport equation and for the system of equations that describe the behaviour of emitters of delayed neutrons. Examination of the solution to this problem is based on several main assumptions concerning the behaviour of macroscopic effective cross-sections describing the reaction of the neutron with the medium, the temperature of medium and the remaining parameters of the equations. Formulation of these assumptions is adequately general and is in agreement with the properties of all known models of the physical quantities involved. Among others, the assumptions admit dependence of the macroscopic effective cross-sections and temperature on spatial coordinates and time that can be arbitrary to a great extent. The problem starts from a set of integro-differential equations. This problem is first transposed into the equivalent problem of solving a linear integral equation for neutron flux. This integral equation is solved by the method of successive iterations and its uniqueness is demonstrated. Numeric solution to the integral equation by Monte Carlo method consists in finding a functional of the exact solution. For this, a random process is set up and some random variables are proposed. Then it is demonstrated that each of these variables is an unbiased estimator of that functional. (author)

  18. Solutions obtained to international heat transfer benchmarking problems for nuclear fuel casks using Q/TRAN

    International Nuclear Information System (INIS)

    Sanchez, L.C.

    1987-02-01

    In 1985 Sandia National Laboratories participated in the Nuclear Energy Agency Committee on Reactor Physics (NEACRP) Specialists' Meeting on Heat Transfer Assessment of Transportation Packages. The objective of the meeting was to establish a set of model problems for use in comparing the performance of thermal analysis computer codes that may be used in the design of nuclear fuel shipping casks. The selected problems are to be used to compare code results for the thermal phenomena of conduction, convection, and radiation in cask-like problems. Two model problems were used in this study. The first problem required the determination of the steady-state temperatures of a 16 x 16 array of heated and unheated pins (representing fuel and control rod positions) of a simulated PWR fuel assembly. The second problem required the determination of transient temperatures of a finned surface (representing the external surface of a cask) subjected to an internal heat flux and to an external engulfing fire. Solutions to the problems were obtained with the code ''Q/TRAN.'' Solutions and descriptions of the necessary modeling techniques are given in this report

  19. PN solutions for the slowing-down and the cell calculation problems in plane geometry

    International Nuclear Information System (INIS)

    Caldeira, Alexandre David

    1999-01-01

    In this work P N solutions for the slowing-down and cell problems in slab geometry are developed. To highlight the main contributions of this development, one can mention: the new particular solution developed for the P N method applied to the slowing-down problem in the multigroup model, originating a new class of polynomials denominated Chandrasekhar generalized polynomials; the treatment of a specific situation, known as a degeneracy, arising from a particularity in the group constants and the first application of the P N method, for arbitrary N, in criticality calculations at the cell level reported in literature. (author)

  20. Blended learning as a solution to practice-related problems in vocational schools

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher; Duch, Henriette Skjærbæk; Mark, Lene

    Four different types of vocational schools have experimented with blended learning as a way of dealing with problems faced in their students’ theoretical and practical training and the interplay between these. A large part of this has involved the need for differentiated teaching...... as will be illustrated through selected cases. The foci of the cases are: •How can students be part of school-based teaching and learning during periods of practical training? •How can authentic practice be brought into school-based practical training? •How may blended learning assist and support students who...... are otherwise challenged in terms of meeting the prescribed competence goals? Methodologically, scenarios have been employed as a tool for defining the practice-related problems teachers meet in their practice and describing ways in which blended learning may present solutions. Subsequently, the solutions have...