WorldWideScience

Sample records for streamlined hydrologic simulation

  1. LOADING SIMULATION PROGRAM C

    Science.gov (United States)

    LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality

  2. LOADING SIMULATION PROGRAM C

    Data.gov (United States)

    U.S. Environmental Protection Agency — LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for...

  3. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  4. Integration of Local Hydrology into Regional Hydrologic Simulation Model

    Science.gov (United States)

    Van Zee, R. J.; Lal, W. A.

    2002-05-01

    South Florida hydrology is dominated by the Central and South Florida (C&SF) Project that is managed to provide flood protection, water supply and environmental protection. A complex network of levees canals and structures provide these services to the individual drainage basins. The landscape varies widely across the C&SF system, with corresponding differences in the way water is managed within each basin. Agricultural areas are managed for optimal crop production. Urban areas maximize flood protection while maintaining minimum water levels to protect adjacent wetlands and local water supplies. "Natural" areas flood and dry out in response to the temporal distribution of rainfall. The evaluation of planning, regulation and operational issues require access to a simulation model that captures the effects of both regional and local hydrology. The Regional Simulation Model (RSM) uses a "pseudo-cell" approach to integrate local hydrology within the context of a regional hydrologic system. A 2-dimensional triangulated mesh is used to represent the regional surface and ground water systems and a 1-dimensional canal network is superimposed onto this mesh. The movement of water is simulated using a finite volume formulation with a diffusive wave approximation. Each cell in the triangulated mesh has a "pseudo-cell" counterpart, which represents the same area as the cell, but it is conceptualized such that it simulates the localized hydrologic conditions Protocols have been established to provide an interface between a cell and its pseudo-cell counterpart. . A number of pseudo-cell types have already been developed and tested in the simulation of Water Conservation Area 1 and several have been proposed to deal with specific local issues in the Southwest Florida Feasibility Study. This presentation will provide an overview of the overall RSM design, describe the relationship between cells and pseudo-cells, and illustrate how pseudo-cells are be used to simulate agriculture

  5. Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China

    OpenAIRE

    Zhaofu Li; Chuan Luo; Kaixia Jiang; Rongrong Wan; Hengpeng Li

    2017-01-01

    The Hydrological Simulation Program–Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nu...

  6. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrological process simulation in an inland river basin in China, Heihe River basin. It is divided into the upper, middle, and lower reaches based on the distinctive hydrological characteristics in the Heihe River basin, and three hydrological models are selected, applied, and tested to simulate the hydrological cycling processes for each reach. The upper reach is the contributing area with the complex runoff generation processes, therefore, the hydrological informatic modeling system (HIMS is utilized due to its combined runoff generation mechanisms. The middle reach has strong impacts of intensive human activities on the interactions of surface and subsurface flows, so a conceptual water balance model is applied to simulate the water balance process. For the lower reach, as the dissipative area with groundwater dominating the hydrological process, a groundwater modeling system with the embedment of MODFLOW model is applied to simulate the groundwater dynamics. Statistical parameters and water balance analysis prove that the three models have excellent performances in simulating the hydrological process of the three reaches. Therefore, it is an effective way to simulate the hydrological process of inland river basin with multiple hydrological models according to the characteristics of each subbasin.

  7. Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current

    Directory of Open Access Journals (Sweden)

    A. M. Treguier

    2007-12-01

    Full Text Available An eddying global model is used to study the characteristics of the Antarctic Circumpolar Current (ACC in a streamline-following framework. Previous model-based estimates of the meridional circulation were calculated using zonal averages: this method leads to a counter-intuitive poleward circulation of the less dense waters, and underestimates the eddy effects. We show that on the contrary, the upper ocean circulation across streamlines agrees with the theoretical view: an equatorward mean flow partially cancelled by a poleward eddy mass flux. Two model simulations, in which the buoyancy forcing above the ACC changes from positive to negative, suggest that the relationship between the residual meridional circulation and the surface buoyancy flux is not as straightforward as assumed by the simplest theoretical models: the sign of the residual circulation cannot be inferred from the surface buoyancy forcing only. Among the other processes that likely play a part in setting the meridional circulation, our model results emphasize the complex three-dimensional structure of the ACC (probably not well accounted for in streamline-averaged, two-dimensional models and the distinct role of temperature and salinity in the definition of the density field. Heat and salt transports by the time-mean flow are important even across time-mean streamlines. Heat and salt are balanced in the ACC, the model drift being small, but the nonlinearity of the equation of state cannot be ignored in the density balance.

  8. Global-Scale Hydrology: Simple Characterization of Complex Simulation

    Science.gov (United States)

    Koster, Randal D.

    1999-01-01

    Atmospheric general circulation models (AGCMS) are unique and valuable tools for the analysis of large-scale hydrology. AGCM simulations of climate provide tremendous amounts of hydrological data with a spatial and temporal coverage unmatched by observation systems. To the extent that the AGCM behaves realistically, these data can shed light on the nature of the real world's hydrological cycle. In the first part of the seminar, I will describe the hydrological cycle in a typical AGCM, with some emphasis on the validation of simulated precipitation against observations. The second part of the seminar will focus on a key goal in large-scale hydrology studies, namely the identification of simple, overarching controls on hydrological behavior hidden amidst the tremendous amounts of data produced by the highly complex AGCM parameterizations. In particular, I will show that a simple 50-year-old climatological relation (and a recent extension we made to it) successfully predicts, to first order, both the annual mean and the interannual variability of simulated evaporation and runoff fluxes. The seminar will conclude with an example of a practical application of global hydrology studies. The accurate prediction of weather statistics several months in advance would have tremendous societal benefits, and conventional wisdom today points at the use of coupled ocean-atmosphere-land models for such seasonal-to-interannual prediction. Understanding the hydrological cycle in AGCMs is critical to establishing the potential for such prediction. Our own studies show, among other things, that soil moisture retention can lead to significant precipitation predictability in many midlatitude and tropical regions.

  9. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    OpenAIRE

    Lili Wang; Zhonggen Wang; Jingjie Yu; Yichi Zhang; Suzhen Dang

    2018-01-01

    Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrolo...

  10. Simulating hydrological processes of a typical small mountainous catchment in Tibetan Plateau

    Science.gov (United States)

    Xu, Y. P.; Bai, Z.; Fu, Q.; Pan, S.; Zhu, C.

    2017-12-01

    Water cycle of small watersheds with seasonal/permanent frozen soil and snow pack in Tibetan Plateau is seriously affected by climate change. The objective of this study is to find out how much and in what way the frozen soil and snow pack will influence the hydrology of small mountainous catchments in cold regions and how can the performance of simulation by a distributed hydrological model be improved. The Dong catchment, a small catchment located in Tibetan Plateau, is used as a case study. Two measurement stations are set up to collect basic meteorological and hydrological data for the modeling purpose. Annual and interannual variations of runoff indices are first analyzed based on historic data series. The sources of runoff in dry periods and wet periods are analyzed respectively. Then, a distributed hydrology soil vegetation model (DHSVM) is adopted to simulate the hydrological process of Dong catchment based on limited data set. Global sensitivity analysis is applied to help determine the important processes of the catchment. Based on sensitivity analysis results, the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) is finally added into the hydrological model to calibrate the hydrological model in a multi-objective way and analyze the performance of DHSVM model. The performance of simulation is evaluated with several evaluation indices. The final results show that frozen soil and snow pack do play an important role in hydrological processes in cold mountainous region, in particular in dry periods without precipitation, while in wet periods precipitation is often the main source of runoff. The results also show that although the DHSVM hydrological model has the potential to model the hydrology well in small mountainous catchments with very limited data in Tibetan Plateau, the simulation of hydrology in dry periods is not very satisfactory due to the model's insufficiency in simulating seasonal frozen soil.

  11. Simulations of ecosystem hydrological processes using a unified multi-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin; Hinkle, Ross; Li, Hong-Yi; Bailey, Vanessa; Bond-Lamberty, Ben

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling of hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.

  12. Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program-Fortran in a Mesoscale Monsoon Watershed, China.

    Science.gov (United States)

    Li, Zhaofu; Luo, Chuan; Jiang, Kaixia; Wan, Rongrong; Li, Hengpeng

    2017-12-19

    The Hydrological Simulation Program-Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nutrient simulation was calibrated and validated using monthly observed data during the period from July 2009 to July 2010. These results of model performance evaluation showed that the streamflows were well simulated over the study period. The determination coefficient ( R ²) was 0.87, 0.77 and 0.63, and the Nash-Sutcliffe coefficient of efficiency (Ens) was 0.82, 0.76 and 0.65 for the streamflow simulation in annual, monthly and daily time-steps, respectively. Although limited to monthly observed data, satisfactory performance was still achieved during the quantitative evaluation for nutrients. The R ² was 0.73, 0.82 and 0.92, and the Ens was 0.67, 0.74 and 0.86 for nitrate, ammonium and orthophosphate simulation, respectively. Some issues may affect the application of HSPF were also discussed, such as input data quality, parameter values, etc. Overall, the HSPF model can be successfully used to describe streamflow and nutrients transport in the mesoscale watershed located in the East Asian monsoon climate area. This study is expected to serve as a comprehensive and systematic documentation of understanding the HSPF model for wide application and avoiding possible misuses.

  13. Effects of the Temporal Variability of Evapotranspiration on Hydrologic Simulation in Central Florida

    Science.gov (United States)

    O'Reilly, Andrew M.

    2007-01-01

    The transient response of a hydrologic system can be of concern to water-resource managers, because it is often extreme relatively short-lived events, such as floods or droughts, that profoundly influence the management of the resource. The water available to a hydrologic system for stream flow and aquifer recharge is determined by the difference of precipitation and evapotranspiration (ET). As such, temporal variations in precipitation and ET determine the degree of influence each has on the transient response of the hydrologic system. Meteorological, ET, and hydrologic data collected from 1993 to 2003 and spanning 1- to 3 2/3 -year periods were used to develop a hydrologic model for each of five sites in central Florida. The sensitivities of simulated water levels and flows to simple approximations of ET were quantified and the adequacy of each ET approximation was assessed. ET was approximated by computing potential ET, using the Hargreaves and Priestley-Taylor equations, and applying vegetation coefficients to adjust the potential ET values to actual ET. The Hargreaves and Priestley-Taylor ET approximations were used in the calibrated hydrologic models while leaving all other model characteristics and parameter values unchanged. Two primary factors that influence how the temporal variability of ET affects hydrologic simulation in central Florida were identified: (1) stochastic character of precipitation and ET and (2) the ability of the local hydrologic system to attenuate variability in input stresses. Differences in the stochastic character of precipitation and ET, both the central location and spread of the data, result in substantial influence of precipitation on the quantity and timing of water available to the hydrologic system and a relatively small influence of ET. The temporal variability of ET was considerably less than that of precipitation at each site over a wide range of time scales (from daily to annual). However, when precipitation and ET are of

  14. Development of capability for microtopography-resolving simulations of hydrologic processes in permafrost affected regions

    Science.gov (United States)

    Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.

    2012-12-01

    The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J

  15. Physics-based simulations of the impacts forest management practices have on hydrologic response

    Science.gov (United States)

    Adrianne Carr; Keith Loague

    2012-01-01

    The impacts of logging on near-surface hydrologic response at the catchment and watershed scales were examined quantitatively using numerical simulation. The simulations were conducted with the Integrated Hydrology Model (InHM) for the North Fork of Caspar Creek Experimental Watershed, located near Fort Bragg, California. InHM is a comprehensive physics-based...

  16. Geologic storage of carbon dioxide and enhanced oil recovery. I. Uncertainty quantification employing a streamline based proxy for reservoir flow simulation

    International Nuclear Information System (INIS)

    Kovscek, A.R.; Wang, Y.

    2005-01-01

    Carbon dioxide (CO 2 ) is already injected into a limited class of reservoirs for oil recovery purposes; however, the engineering design question for simultaneous oil recovery and storage of anthropogenic CO 2 is significantly different from that of oil recovery alone. Currently, the volumes of CO 2 injected solely for oil recovery are minimized due to the purchase cost of CO 2 . If and when CO 2 emissions to the atmosphere are managed, it will be necessary to maximize simultaneously both economic oil recovery and the volumes of CO 2 emplaced in oil reservoirs. This process is coined 'cooptimization'. This paper proposes a work flow for cooptimization of oil recovery and geologic CO 2 storage. An important component of the work flow is the assessment of uncertainty in predictions of performance. Typical methods for quantifying uncertainty employ exhaustive flow simulation of multiple stochastic realizations of the geologic architecture of a reservoir. Such approaches are computationally intensive and thereby time consuming. An analytic streamline based proxy for full reservoir simulation is proposed and tested. Streamline trajectories represent the three-dimensional velocity field during multiphase flow in porous media and so are useful for quantifying the similarity and differences among various reservoir models. The proxy allows rational selection of a representative subset of equi-probable reservoir models that encompass uncertainty with respect to true reservoir geology. The streamline approach is demonstrated to be thorough and rapid

  17. Streamline segment statistics of premixed flames with nonunity Lewis numbers

    Science.gov (United States)

    Chakraborty, Nilanjan; Wang, Lipo; Klein, Markus

    2014-03-01

    The interaction of flame and surrounding fluid motion is of central importance in the fundamental understanding of turbulent combustion. It is demonstrated here that this interaction can be represented using streamline segment analysis, which was previously applied in nonreactive turbulence. The present work focuses on the effects of the global Lewis number (Le) on streamline segment statistics in premixed flames in the thin-reaction-zones regime. A direct numerical simulation database of freely propagating thin-reaction-zones regime flames with Le ranging from 0.34 to 1.2 is used to demonstrate that Le has significant influences on the characteristic features of the streamline segment, such as the curve length, the difference in the velocity magnitude at two extremal points, and their correlations with the local flame curvature. The strengthenings of the dilatation rate, flame normal acceleration, and flame-generated turbulence with decreasing Le are principally responsible for these observed effects. An expression for the probability density function (pdf) of the streamline segment length, originally developed for nonreacting turbulent flows, captures the qualitative behavior for turbulent premixed flames in the thin-reaction-zones regime for a wide range of Le values. The joint pdfs between the streamline length and the difference in the velocity magnitude at two extremal points for both unweighted and density-weighted velocity vectors are analyzed and compared. Detailed explanations are provided for the observed differences in the topological behaviors of the streamline segment in response to the global Le.

  18. Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China

    Science.gov (United States)

    Li, Zhanjie; Yu, Jingshan; Xu, Xinyi; Sun, Wenchao; Pang, Bo; Yue, Jiajia

    2018-06-01

    Hydrological models are important and effective tools for detecting complex hydrological processes. Different models have different strengths when capturing the various aspects of hydrological processes. Relying on a single model usually leads to simulation uncertainties. Ensemble approaches, based on multi-model hydrological simulations, can improve application performance over single models. In this study, the upper Yalongjiang River Basin was selected for a case study. Three commonly used hydrological models (SWAT, VIC, and BTOPMC) were selected and used for independent simulations with the same input and initial values. Then, the BP neural network method was employed to combine the results from the three models. The results show that the accuracy of BP ensemble simulation is better than that of the single models.

  19. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated

  20. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation

    NARCIS (Netherlands)

    Vrugt, J.A.; Braak, ter C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A.

    2008-01-01

    There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled

  1. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    Science.gov (United States)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  2. Visualization in hydrological and atmospheric modeling and observation

    Science.gov (United States)

    Helbig, C.; Rink, K.; Kolditz, O.

    2013-12-01

    In recent years, visualization of geoscientific and climate data has become increasingly important due to challenges such as climate change, flood prediction or the development of water management schemes for arid and semi-arid regions. Models for simulations based on such data often have a large number of heterogeneous input data sets, ranging from remote sensing data and geometric information (such as GPS data) to sensor data from specific observations sites. Data integration using such information is not straightforward and a large number of potential problems may occur due to artifacts, inconsistencies between data sets or errors based on incorrectly calibrated or stained measurement devices. Algorithms to automatically detect various of such problems are often numerically expensive or difficult to parameterize. In contrast, combined visualization of various data sets is often a surprisingly efficient means for an expert to detect artifacts or inconsistencies as well as to discuss properties of the data. Therefore, the development of general visualization strategies for atmospheric or hydrological data will often support researchers during assessment and preprocessing of the data for model setup. When investigating specific phenomena, visualization is vital for assessing the progress of the ongoing simulation during runtime as well as evaluating the plausibility of the results. We propose a number of such strategies based on established visualization methods that - are applicable to a large range of different types of data sets, - are computationally inexpensive to allow application for time-dependent data - can be easily parameterized based on the specific focus of the research. Examples include the highlighting of certain aspects of complex data sets using, for example, an application-dependent parameterization of glyphs, iso-surfaces or streamlines. In addition, we employ basic rendering techniques allowing affine transformations, changes in opacity as well

  3. SWOT Oceanography and Hydrology Data Product Simulators

    Science.gov (United States)

    Peral, Eva; Rodriguez, Ernesto; Fernandez, Daniel Esteban; Johnson, Michael P.; Blumstein, Denis

    2013-01-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would demonstrate a new measurement technique using radar interferometry to obtain wide-swath measurements of water elevation at high resolution over ocean and land, addressing the needs of both the hydrology and oceanography science communities. To accurately evaluate the performance of the proposed SWOT mission, we have developed several data product simulators at different levels of fidelity and complexity.

  4. Development of the Hydrological-Ecological Integrated watershed Flow Model (HEIFLOW): an application to the Heihe River Basin

    Science.gov (United States)

    Tian, Y.; Zheng, Y.; Zheng, C.; Han, F., Sr.

    2017-12-01

    Physically based and fully-distributed integrated hydrological models (IHMs) can quantitatively depict hydrological processes, both surface and subsurface, with sufficient spatial and temporal details. However, the complexity involved in pre-processing data and setting up models seriously hindered the wider application of IHMs in scientific research and management practice. This study introduces our design and development of Visual HEIFLOW, hereafter referred to as VHF, a comprehensive graphical data processing and modeling system for integrated hydrological simulation. The current version of VHF has been structured to accommodate an IHM named HEIFLOW (Hydrological-Ecological Integrated watershed-scale FLOW model). HEIFLOW is a model being developed by the authors, which has all typical elements of physically based and fully-distributed IHMs. It is based on GSFLOW, a representative integrated surface water-groundwater model developed by USGS. HEIFLOW provides several ecological modules that enable to simulate growth cycle of general vegetation and special plants (maize and populus euphratica). VHF incorporates and streamlines all key steps of the integrated modeling, and accommodates all types of GIS data necessary to hydrological simulation. It provides a GIS-based data processing framework to prepare an IHM for simulations, and has functionalities to flexibly display and modify model features (e.g., model grids, streams, boundary conditions, observational sites, etc.) and their associated data. It enables visualization and various spatio-temporal analyses of all model inputs and outputs at different scales (i.e., computing unit, sub-basin, basin, or user-defined spatial extent). The above system features, as well as many others, can significantly reduce the difficulty and time cost of building and using a complex IHM. The case study in the Heihe River Basin demonstrated the applicability of VHF for large scale integrated SW-GW modeling. Visualization and spatial

  5. Research on Multi Hydrological Models Applicability and Modelling Data Uncertainty Analysis for Flash Flood Simulation in Hilly Area

    Science.gov (United States)

    Ye, L.; Wu, J.; Wang, L.; Song, T.; Ji, R.

    2017-12-01

    Flooding in small-scale watershed in hilly area is characterized by short time periods and rapid rise and recession due to the complex underlying surfaces, various climate type and strong effect of human activities. It is almost impossible for a single hydrological model to describe the variation of flooding in both time and space accurately for all the catchments in hilly area because the hydrological characteristics can vary significantly among different catchments. In this study, we compare the performance of 5 hydrological models with varying degrees of complexity for simulation of flash flood for 14 small-scale watershed in China in order to find the relationship between the applicability of the hydrological models and the catchments characteristics. Meanwhile, given the fact that the hydrological data is sparse in hilly area, the effect of precipitation data, DEM resolution and their interference on the uncertainty of flood simulation is also illustrated. In general, the results showed that the distributed hydrological model (HEC-HMS in this study) performed better than the lumped hydrological models. Xinajiang and API models had good simulation for the humid catchments when long-term and continuous rainfall data is provided. Dahuofang model can simulate the flood peak well while the runoff generation module is relatively poor. In addition, the effect of diverse modelling data on the simulations is not simply superposed, and there is a complex interaction effect among different modelling data. Overall, both the catchment hydrological characteristics and modelling data situation should be taken into consideration in order to choose the suitable hydrological model for flood simulation for small-scale catchment in hilly area.

  6. On the Fidelity of Semi-distributed Hydrologic Model Simulations for Large Scale Catchment Applications

    Science.gov (United States)

    Ajami, H.; Sharma, A.; Lakshmi, V.

    2017-12-01

    Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.

  7. Streamline-concentration balance model for in-situ uranium leaching and site restoration

    International Nuclear Information System (INIS)

    Bommer, P.M.; Schechter, R.S.; Humenick, M.J.

    1981-03-01

    This work presents two computer models. One describes in-situ uranium leaching and the other describes post leaching site restoration. Both models use a streamline generator to set up the flow field over the reservoir. The leaching model then uses the flow data in a concentration balance along each streamline coupled with the appropriate reaction kinetics to calculate uranium production. The restoration model uses the same procedure except that binary cation exchange is used as the restoring mechanism along each streamline and leaching cation clean up is simulated. The mathematical basis for each model is shown in detail along with the computational schemes used. Finally, the two models have been used with several data sets to point out their capabilities and to illustrate important leaching and restoration parameters and schemes

  8. Effects of baseline conditions on the simulated hydrologic response to projected climate change

    Science.gov (United States)

    Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.

    2011-01-01

    Changes in temperature and precipitation projected from five general circulation models, using one late-twentieth-century and three twenty-first-century emission scenarios, were downscaled to three different baseline conditions. Baseline conditions are periods of measured temperature and precipitation data selected to represent twentieth-century climate. The hydrologic effects of the climate projections are evaluated using the Precipitation-Runoff Modeling System (PRMS), which is a watershed hydrology simulation model. The Almanor Catchment in the North Fork of the Feather River basin, California, is used as a case study. Differences and similarities between PRMS simulations of hydrologic components (i.e., snowpack formation and melt, evapotranspiration, and streamflow) are examined, and results indicate that the selection of a specific time period used for baseline conditions has a substantial effect on some, but not all, hydrologic variables. This effect seems to be amplified in hydrologic variables, which accumulate over time, such as soil-moisture content. Results also indicate that uncertainty related to the selection of baseline conditions should be evaluated using a range of different baseline conditions. This is particularly important for studies in basins with highly variable climate, such as the Almanor Catchment.

  9. Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models

    Science.gov (United States)

    Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.

    2016-12-01

    This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.

  10. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  11. Stochastic Simulation and Forecast of Hydrologic Time Series Based on Probabilistic Chaos Expansion

    Science.gov (United States)

    Li, Z.; Ghaith, M.

    2017-12-01

    Hydrological processes are characterized by many complex features, such as nonlinearity, dynamics and uncertainty. How to quantify and address such complexities and uncertainties has been a challenging task for water engineers and managers for decades. To support robust uncertainty analysis, an innovative approach for the stochastic simulation and forecast of hydrologic time series is developed is this study. Probabilistic Chaos Expansions (PCEs) are established through probabilistic collocation to tackle uncertainties associated with the parameters of traditional hydrological models. The uncertainties are quantified in model outputs as Hermite polynomials with regard to standard normal random variables. Sequentially, multivariate analysis techniques are used to analyze the complex nonlinear relationships between meteorological inputs (e.g., temperature, precipitation, evapotranspiration, etc.) and the coefficients of the Hermite polynomials. With the established relationships between model inputs and PCE coefficients, forecasts of hydrologic time series can be generated and the uncertainties in the future time series can be further tackled. The proposed approach is demonstrated using a case study in China and is compared to a traditional stochastic simulation technique, the Markov-Chain Monte-Carlo (MCMC) method. Results show that the proposed approach can serve as a reliable proxy to complicated hydrological models. It can provide probabilistic forecasting in a more computationally efficient manner, compared to the traditional MCMC method. This work provides technical support for addressing uncertainties associated with hydrological modeling and for enhancing the reliability of hydrological modeling results. Applications of the developed approach can be extended to many other complicated geophysical and environmental modeling systems to support the associated uncertainty quantification and risk analysis.

  12. SWAT-simulated hydrological impact of land-use change in the Zanjanrood basin, Northwest Iran

    NARCIS (Netherlands)

    Ghaffari, G.; Ghodousi, J.; Ahmadi, H.; Keesstra, S.D.

    2010-01-01

    Understanding the impacts of land-use changes on hydrology at the watershed scale can facilitate development of sustainable water resource strategies. This paper investigates the hydrological effects of land-use change in Zanjanrood basin, Iran. The water balance was simulated using the Soil and

  13. Using Data Warehouses to extract knowledge from Agro-Hydrological simulations

    Science.gov (United States)

    Bouadi, Tassadit; Gascuel-Odoux, Chantal; Cordier, Marie-Odile; Quiniou, René; Moreau, Pierre

    2013-04-01

    In recent years, simulation models have been used more and more in hydrology to test the effect of scenarios and help stakeholders in decision making. Agro-hydrological models have oriented agricultural water management, by testing the effect of landscape structure and farming system changes on water and chemical emission in rivers. Such models generate a large amount of data while few of them, such as daily concentrations at the outlet of the catchment, or annual budgets regarding soil, water and atmosphere emissions, are stored and analyzed. Thus, a great amount of information is lost from the simulation process. This is due to the large volumes of simulated data, but also to the difficulties in analyzing and transforming the data in an usable information. In this talk we illustrate a data warehouse which has been built to store and manage simulation data coming from the agro-hydrological model TNT (Topography-based nitrogen transfer and transformations, (Beaujouan et al., 2002)). This model simulates the transfer and transformation of nitrogen in agricultural catchments. TNT was used over 10 years on the Yar catchment (western France), a 50 km2 square area which present a detailed data set and have to facing to environmental issue (coastal eutrophication). 44 output key simulated variables are stored at a daily time step, i.e, 8 GB of storage size, which allows the users to explore the N emission in space and time, to quantify all the processes of transfer and transformation regarding the cropping systems, their location within the catchment, the emission in water and atmosphere, and finally to get new knowledge and help in making specific and detailed decision in space and time. We present the dimensional modeling process of the Nitrogen in catchment data warehouse (i.e. the snowflake model). After identifying the set of multileveled dimensions with complex hierarchical structures and relationships among related dimension levels, we chose the snowflake model to

  14. Dynamically adaptive data-driven simulation of extreme hydrological flows

    Science.gov (United States)

    Kumar Jain, Pushkar; Mandli, Kyle; Hoteit, Ibrahim; Knio, Omar; Dawson, Clint

    2018-02-01

    Hydrological hazards such as storm surges, tsunamis, and rainfall-induced flooding are physically complex events that are costly in loss of human life and economic productivity. Many such disasters could be mitigated through improved emergency evacuation in real-time and through the development of resilient infrastructure based on knowledge of how systems respond to extreme events. Data-driven computational modeling is a critical technology underpinning these efforts. This investigation focuses on the novel combination of methodologies in forward simulation and data assimilation. The forward geophysical model utilizes adaptive mesh refinement (AMR), a process by which a computational mesh can adapt in time and space based on the current state of a simulation. The forward solution is combined with ensemble based data assimilation methods, whereby observations from an event are assimilated into the forward simulation to improve the veracity of the solution, or used to invert for uncertain physical parameters. The novelty in our approach is the tight two-way coupling of AMR and ensemble filtering techniques. The technology is tested using actual data from the Chile tsunami event of February 27, 2010. These advances offer the promise of significantly transforming data-driven, real-time modeling of hydrological hazards, with potentially broader applications in other science domains.

  15. Dynamically adaptive data-driven simulation of extreme hydrological flows

    KAUST Repository

    Kumar Jain, Pushkar

    2017-12-27

    Hydrological hazards such as storm surges, tsunamis, and rainfall-induced flooding are physically complex events that are costly in loss of human life and economic productivity. Many such disasters could be mitigated through improved emergency evacuation in real-time and through the development of resilient infrastructure based on knowledge of how systems respond to extreme events. Data-driven computational modeling is a critical technology underpinning these efforts. This investigation focuses on the novel combination of methodologies in forward simulation and data assimilation. The forward geophysical model utilizes adaptive mesh refinement (AMR), a process by which a computational mesh can adapt in time and space based on the current state of a simulation. The forward solution is combined with ensemble based data assimilation methods, whereby observations from an event are assimilated into the forward simulation to improve the veracity of the solution, or used to invert for uncertain physical parameters. The novelty in our approach is the tight two-way coupling of AMR and ensemble filtering techniques. The technology is tested using actual data from the Chile tsunami event of February 27, 2010. These advances offer the promise of significantly transforming data-driven, real-time modeling of hydrological hazards, with potentially broader applications in other science domains.

  16. Influence of feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    Science.gov (United States)

    van Walsum, P. E. V.

    2011-11-01

    Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a

  17. Perturbations in the initial soil moisture conditions: Impacts on hydrologic simulation in a large river basin

    Science.gov (United States)

    Niroula, Sundar; Halder, Subhadeep; Ghosh, Subimal

    2018-06-01

    Real time hydrologic forecasting requires near accurate initial condition of soil moisture; however, continuous monitoring of soil moisture is not operational in many regions, such as, in Ganga basin, extended in Nepal, India and Bangladesh. Here, we examine the impacts of perturbation/error in the initial soil moisture conditions on simulated soil moisture and streamflow in Ganga basin and its propagation, during the summer monsoon season (June to September). This provides information regarding the required minimum duration of model simulation for attaining the model stability. We use the Variable Infiltration Capacity model for hydrological simulations after validation. Multiple hydrologic simulations are performed, each of 21 days, initialized on every 5th day of the monsoon season for deficit, surplus and normal monsoon years. Each of these simulations is performed with the initial soil moisture condition obtained from long term runs along with positive and negative perturbations. The time required for the convergence of initial errors is obtained for all the cases. We find a quick convergence for the year with high rainfall as well as for the wet spells within a season. We further find high spatial variations in the time required for convergence; the region with high precipitation such as Lower Ganga basin attains convergence at a faster rate. Furthermore, deeper soil layers need more time for convergence. Our analysis is the first attempt on understanding the sensitivity of hydrological simulations of Ganga basin on initial soil moisture conditions. The results obtained here may be useful in understanding the spin-up requirements for operational hydrologic forecasts.

  18. Adaptable Web Modules to Stimulate Active Learning in Engineering Hydrology using Data and Model Simulations of Three Regional Hydrologic Systems

    Science.gov (United States)

    Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.

    2013-12-01

    The hydrologic community has long recognized the need for broad reform in hydrologic education. A paradigm shift is critically sought in undergraduate hydrology and water resource education by adopting context-rich, student-centered, and active learning strategies. Hydrologists currently deal with intricate issues rooted in complex natural ecosystems containing a multitude of interconnected processes. Advances in the multi-disciplinary field include observational settings such as Critical Zone and Water, Sustainability and Climate Observatories, Hydrologic Information Systems, instrumentation and modeling methods. These research advances theory and practices call for similar efforts and improvements in hydrologic education. The typical, text-book based approach in hydrologic education has focused on specific applications and/or unit processes associated with the hydrologic cycle with idealizations, rather than the contextual relations in the physical processes and the spatial and temporal dynamics connecting climate and ecosystems. An appreciation of the natural variability of these processes will lead to graduates with the ability to develop independent learning skills and understanding. This appreciation cannot be gained in curricula where field components such as observational and experimental data are deficient. These types of data are also critical when using simulation models to create environments that support this type of learning. Additional sources of observations in conjunction with models and field data are key to students understanding of the challenges associated with using models to represent such complex systems. Recent advances in scientific visualization and web-based technologies provide new opportunities for the development of active learning techniques utilizing ongoing research. The overall goal of the current study is to develop visual, case-based, data and simulation driven learning experiences to instructors and students through a web

  19. Simulations of hydrologic response in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern United States

    Science.gov (United States)

    LaFontaine, Jacob H.; Jones, L. Elliott; Painter, Jaime A.

    2017-12-29

    A suite of hydrologic models has been developed for the Apalachicola-Chattahoochee-Flint River Basin (ACFB) as part of the National Water Census, a U.S. Geological Survey research program that focuses on developing new water accounting tools and assessing water availability and use at the regional and national scales. Seven hydrologic models were developed using the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, land cover, and water use on basin hydrology. A coarse-resolution PRMS model was developed for the entire ACFB, and six fine-resolution PRMS models were developed for six subbasins of the ACFB. The coarse-resolution model was loosely coupled with a groundwater model to better assess the effects of water use on streamflow in the lower ACFB, a complex geologic setting with karst features. The PRMS coarse-resolution model was used to provide inputs of recharge to the groundwater model, which in turn provide simulations of groundwater flow that were aggregated with PRMS-based simulations of surface runoff and shallow-subsurface flow. Simulations without the effects of water use were developed for each model for at least the calendar years 1982–2012 with longer periods for the Potato Creek subbasin (1942–2012) and the Spring Creek subbasin (1952–2012). Water-use-affected flows were simulated for 2008–12. Water budget simulations showed heterogeneous distributions of precipitation, actual evapotranspiration, recharge, runoff, and storage change across the ACFB. Streamflow volume differences between no-water-use and water-use simulations were largest along the main stem of the Apalachicola and Chattahoochee River Basins, with streamflow percentage differences largest in the upper Chattahoochee and Flint River Basins and Spring Creek in the lower Flint River Basin. Water-use information at a shorter time step and a fully coupled simulation in

  20. Intercomparison of Streamflow Simulations between WRF-Hydro and Hydrology Laboratory-Research Distributed Hydrologic Model Frameworks

    Science.gov (United States)

    KIM, J.; Smith, M. B.; Koren, V.; Salas, F.; Cui, Z.; Johnson, D.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA)-National Weather Service (NWS) developed the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) framework as an initial step towards spatially distributed modeling at River Forecast Centers (RFCs). Recently, the NOAA/NWS worked with the National Center for Atmospheric Research (NCAR) to implement the National Water Model (NWM) for nationally-consistent water resources prediction. The NWM is based on the WRF-Hydro framework and is run at a 1km spatial resolution and 1-hour time step over the contiguous United States (CONUS) and contributing areas in Canada and Mexico. In this study, we compare streamflow simulations from HL-RDHM and WRF-Hydro to observations from 279 USGS stations. For streamflow simulations, HL-RDHM is run on 4km grids with the temporal resolution of 1 hour for a 5-year period (Water Years 2008-2012), using a priori parameters provided by NOAA-NWS. The WRF-Hydro streamflow simulations for the same time period are extracted from NCAR's 23 retrospective run of the NWM (version 1.0) over CONUS based on 1km grids. We choose 279 USGS stations which are relatively less affected by dams or reservoirs, in the domains of six different RFCs. We use the daily average values of simulations and observations for the convenience of comparison. The main purpose of this research is to evaluate how HL-RDHM and WRF-Hydro perform at USGS gauge stations. We compare daily time-series of observations and both simulations, and calculate the error values using a variety of error functions. Using these plots and error values, we evaluate the performances of HL-RDHM and WRF-Hydro models. Our results show a mix of model performance across geographic regions.

  1. Evaluation of Hydrologic Simulations Developed Using Multi-Model Synthesis and Remotely-Sensed Data within a Portfolio of Calibration Strategies

    Science.gov (United States)

    Lafontaine, J.; Hay, L.; Markstrom, S. L.

    2016-12-01

    The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. Hydrologic models for 1,576 gaged watersheds across the CONUS were developed to test the feasibility of improving streamflow simulations linking physically-based hydrologic models with remotely-sensed data products (i.e. snow water equivalent). Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison across multiple calibration strategy tests. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve hydrologic simulations for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of modeled and measured information for hydrologic model development and calibration. In addition, these calibration strategies have been developed to be flexible so that new data products can be assimilated. This analysis provides a foundation to understand how well models work when sufficient streamflow data are not available and could be used to further inform hydrologic model parameter development for ungaged areas.

  2. Joint statistics and conditional mean strain rates of streamline segments

    International Nuclear Information System (INIS)

    Schaefer, P; Gampert, M; Peters, N

    2013-01-01

    Based on four different direct numerical simulations of turbulent flows with Taylor-based Reynolds numbers ranging from Re λ = 50 to 300 among which are two homogeneous isotropic decaying, one forced and one homogeneous shear flow, streamlines are identified and the obtained space curves are parameterized with the pseudo-time as well as the arclength. Based on local extrema of the absolute value of the velocity along the streamlines, the latter are partitioned into segments following Wang (2010 J. Fluid Mech. 648 183–203). Streamline segments are then statistically analyzed based on both parameterizations using the joint probability density function of the pseudo-time lag τ (arclength l, respectively) between and the velocity difference Δu at the extrema: P(τ,Δu), (P(l,Δu)). We distinguish positive and negative streamline segments depending on the sign of the velocity difference Δu. Differences as well as similarities in the statistical description for both parameterizations are discussed. In particular, it turns out that the normalized probability distribution functions (pdfs) (of both parameterizations) of the length of positive, negative and all segments assume a universal shape for all Reynolds numbers and flow types and are well described by a model derived in Schaefer P et al (2012 Phys. Fluids 24 045104). Particular attention is given to the conditional mean velocity difference at the ending points of the segments, which can be understood as a first-order structure function in the context of streamline segment analysis. It determines to a large extent the stretching (compression) of positive (negative) streamline segments and corresponds to the convective velocity in phase space in the transport model equation for the pdf. While based on the random sweeping hypothesis a scaling ∝ (u rms ετ) 1/3 is found for the parameterization based on the pseudo-time, the parameterization with the arclength l yields a much larger than expected l 1/3 scaling. A

  3. Testing the ability of a semidistributed hydrological model to simulate contributing area

    Science.gov (United States)

    Mengistu, S. G.; Spence, C.

    2016-06-01

    A dry climate, the prevalence of small depressions, and the lack of a well-developed drainage network are characteristics of environments with extremely variable contributing areas to runoff. These types of regions arguably present the greatest challenge to properly understanding catchment streamflow generation processes. Previous studies have shown that contributing area dynamics are important for streamflow response, but the nature of the relationship between the two is not typically understood. Furthermore, it is not often tested how well hydrological models simulate contributing area. In this study, the ability of a semidistributed hydrological model, the PDMROF configuration of Environment Canada's MESH model, was tested to determine if it could simulate contributing area. The study focused on the St. Denis Creek watershed in central Saskatchewan, Canada, which with its considerable topographic depressions, exhibits wide variation in contributing area, making it ideal for this type of investigation. MESH-PDMROF was able to replicate contributing area derived independently from satellite imagery. Daily model simulations revealed a hysteretic relationship between contributing area and streamflow not apparent from the less frequent remote sensing observations. This exercise revealed that contributing area extent can be simulated by a semi-distributed hydrological model with a scheme that assumes storage capacity distribution can be represented with a probability function. However, further investigation is needed to determine if it can adequately represent the complex relationship between streamflow and contributing area that is such a key signature of catchment behavior.

  4. HYDRASTAR - a code for stochastic simulation of groundwater flow

    International Nuclear Information System (INIS)

    Norman, S.

    1992-05-01

    The computer code HYDRASTAR was developed as a tool for groundwater flow and transport simulations in the SKB 91 safety analysis project. Its conceptual ideas can be traced back to a report by Shlomo Neuman in 1988, see the reference section. The main idea of the code is the treatment of the rock as a stochastic continuum which separates it from the deterministic methods previously employed by SKB and also from the discrete fracture models. The current report is a comprehensive description of HYDRASTAR including such topics as regularization or upscaling of a hydraulic conductivity field, unconditional and conditional simulation of stochastic processes, numerical solvers for the hydrology and streamline equations and finally some proposals for future developments

  5. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    Science.gov (United States)

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  6. The importance of parameterization when simulating the hydrologic response of vegetative land-cover change

    Science.gov (United States)

    White, Jeremy; Stengel, Victoria; Rendon, Samuel; Banta, John

    2017-08-01

    Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-cover change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-cover change. Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in southern Texas to investigate the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land-cover change. The watershed was instrumented before and after brush-management activities were undertaken, and estimates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parameters (reduced parameterization) and one with 1305 adjustable parameters (full parameterization). Both models were subjected to global sensitivity analysis as well as Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many realizations from both parameterizations were identified as behavioral in that they reproduce daily mean streamflow acceptably well according to Nash-Sutcliffe model efficiency coefficient, percent bias, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush management remains highly uncertain after conditioning to daily mean streamflow, indicating that streamflow data alone are not sufficient to inform the model inputs that influence the simulated outcomes of brush management

  7. Flood Simulations and Uncertainty Analysis for the Pearl River Basin Using the Coupled Land Surface and Hydrological Model System

    Directory of Open Access Journals (Sweden)

    Yongnan Zhu

    2017-06-01

    Full Text Available The performances of hydrological simulations for the Pearl River Basin in China were analysed using the Coupled Land Surface and Hydrological Model System (CLHMS. Three datasets, including East Asia (EA, high-resolution gauge satellite-merged China Merged Precipitation Analysis (CMPA-Daily, and the Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE daily precipitation were used to drive the CLHMS model to simulate daily hydrological processes from 1998 to 2006. The results indicate that the precipitation data was the most important source of uncertainty in the hydrological simulation. The simulated streamflow driven by the CMPA-Daily agreed well with observations, with a Pearson correlation coefficient (PMC greater than 0.70 and an index of agreement (IOA similarity coefficient greater than 0.82 at Liuzhou, Shijiao, and Wuzhou Stations. Comparison of the Nash-Sutcliffe efficiency coefficient (NSE shows that the peak flow simulation ability of CLHMS driven with the CMPA-Daily rainfall is relatively superior to that with the EA and APHRODITE datasets. The simulation results for the high-flow periods in 1998 and 2005 indicate that the CLHMS is promising for its future application in the flood simulation and prediction.

  8. Parameterization and Uncertainty Analysis of SWAT model in Hydrological Simulation of Chaohe River Basin

    Science.gov (United States)

    Jie, M.; Zhang, J.; Guo, B. B.

    2017-12-01

    As a typical distributed hydrological model, the SWAT model also has a challenge in calibrating parameters and analysis their uncertainty. This paper chooses the Chaohe River Basin China as the study area, through the establishment of the SWAT model, loading the DEM data of the Chaohe river basin, the watershed is automatically divided into several sub-basins. Analyzing the land use, soil and slope which are on the basis of the sub-basins and calculating the hydrological response unit (HRU) of the study area, after running SWAT model, the runoff simulation values in the watershed are obtained. On this basis, using weather data, known daily runoff of three hydrological stations, combined with the SWAT-CUP automatic program and the manual adjustment method are used to analyze the multi-site calibration of the model parameters. Furthermore, the GLUE algorithm is used to analyze the parameters uncertainty of the SWAT model. Through the sensitivity analysis, calibration and uncertainty study of SWAT, the results indicate that the parameterization of the hydrological characteristics of the Chaohe river is successful and feasible which can be used to simulate the Chaohe river basin.

  9. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability

    International Nuclear Information System (INIS)

    Han, Jing-Cheng; Huang, Guohe; Huang, Yuefei; Zhang, Hua; Li, Zhong; Chen, Qiuwen

    2015-01-01

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications. - Highlights: • We develop an improved hydrologic model considering the scaling effect of rainfall. • A

  10. Chance-constrained overland flow modeling for improving conceptual distributed hydrologic simulations based on scaling representation of sub-daily rainfall variability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jing-Cheng [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Huang, Guohe, E-mail: huang@iseis.org [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Huang, Yuefei [State Key Laboratory of Hydroscience & Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Hua [College of Science and Engineering, Texas A& M University — Corpus Christi, Corpus Christi, TX 78412-5797 (United States); Li, Zhong [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Chen, Qiuwen [Center for Eco-Environmental Research, Nanjing Hydraulics Research Institute, Nanjing 210029 (China)

    2015-08-15

    Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications. - Highlights: • We develop an improved hydrologic model considering the scaling effect of rainfall. • A

  11. Hydrological simulation of the Brahmaputra basin using global datasets

    Science.gov (United States)

    Bhattacharya, Biswa; Conway, Crystal; Craven, Joanne; Masih, Ilyas; Mazzolini, Maurizio; Shrestha, Shreedeepy; Ugay, Reyne; van Andel, Schalk Jan

    2017-04-01

    Brahmaputra River flows through China, India and Bangladesh to the Bay of Bengal and is one of the largest rivers of the world with a catchment size of 580K km2. The catchment is largely hilly and/or forested with sparse population and with limited urbanisation and economic activities. The catchment experiences heavy monsoon rainfall leading to very high flood discharges. Large inter-annual variation of discharge leading to flooding, erosion and morphological changes are among the major challenges. The catchment is largely ungauged; moreover, limited availability of hydro-meteorological data limits the possibility of carrying out evidence based research, which could provide trustworthy information for managing and when needed, controlling, the basin processes by the riparian countries for overall basin development. The paper presents initial results of a current research project on Brahmaputra basin. A set of hydrological and hydraulic models (SWAT, HMS, RAS) are developed by employing publicly available datasets of DEM, land use and soil and simulated using satellite based rainfall products, evapotranspiration and temperature estimates. Remotely sensed data are compared with sporadically available ground data. The set of models are able to produce catchment wide hydrological information that potentially can be used in the future in managing the basin's water resources. The model predications should be used with caution due to high level of uncertainty because the semi-calibrated models are developed with uncertain physical representation (e.g. cross-section) and simulated with global meteorological forcing (e.g. TRMM) with limited validation. Major scientific challenges are seen in producing robust information that can be reliably used in managing the basin. The information generated by the models are uncertain and as a result, instead of using them per se, they are used in improving the understanding of the catchment, and by running several scenarios with varying

  12. Streamline topology: Patterns in fluid flows and their bifurcations

    DEFF Research Database (Denmark)

    Brøns, Morten

    2007-01-01

    Using dynamical systems theory, we consider structures such as vortices and separation in the streamline patterns of fluid flows. Bifurcation of patterns under variation of external parameters is studied using simplifying normal form transformations. Flows away from boundaries, flows close to fix...... walls, and axisymmetric flows are analyzed in detail. We show how to apply the ideas from the theory to analyze numerical simulations of the vortex breakdown in a closed cylindrical container....

  13. Spatially Explicit Simulation of Mesotopographic Controls on Peatland Hydrology and Carbon Fluxes

    Science.gov (United States)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.

    2006-12-01

    A number of field carbon flux measurements, paleoecological records, and model simulations have acknowledged the importance of northern peatlands in terrestrial carbon cycling and methane emissions. An important parameter in peatlands that influences both net primary productivity, the net gain of carbon through photosynthesis, and decomposition under aerobic and anaerobic conditions, is the position of the water table. Biological and physical processes involved in peatland carbon dynamics and their hydrological controls operate at different spatial scales. The highly variable hydraulic characteristics of the peat profile and the overall shape of the peat body as defined by its surface topography at the mesoscale (104 m2) are of major importance for peatland water table dynamics. Common types of peatlands include bogs with a slightly domed centre. As a result of the convex profile, their water supply is restricted to atmospheric inputs, and water is mainly shed by shallow subsurface flow. From a modelling perspective the influence of mesotopographic controls on peatland hydrology and thus carbon balance requires that process-oriented models that examine the links between peatland hydrology, ecosystem functioning, and climate must incorporate some form of lateral subsurface flow consideration. Most hydrological and ecological modelling studies in complex terrain explicitly account for the topographic controls on lateral subsurface flow through digital elevation models. However, modelling studies in peatlands often employ simple empirical parameterizations of lateral subsurface flow, neglecting the influence of peatlands low relief mesoscale topography. Our objective is to explicitly simulate the mesotopographic controls on peatland hydrology and carbon fluxes using the Boreal Ecosystem Productivity Simulator (BEPS) adapted to northern peatlands. BEPS is a process-oriented ecosystem model in a remote sensing framework that takes into account peatlands multi

  14. A new method for calculating volumetric sweeps efficiency using streamline simulation concepts

    International Nuclear Information System (INIS)

    Hidrobo, E A

    2000-01-01

    One of the purposes of reservoir engineering is to quantify the volumetric sweep efficiency for optimizing reservoir management decisions. The estimation of this parameter has always been a difficult task. Until now, sweep efficiency correlations and calculations have been limited to mostly homogeneous 2-D cases. Calculating volumetric sweep efficiency in a 3-D heterogeneous reservoir becomes difficult due to inherent complexity of multiple layers and arbitrary well configurations. In this paper, a new method for computing volumetric sweep efficiency for any arbitrary heterogeneity and well configuration is presented. The proposed method is based on Datta-Gupta and King's formulation of streamline time-of-flight (1995). Given the fact that the time-of-flight reflects the fluid front propagation at various times, then the connectivity in the time-of-flight represents a direct measure of the volumetric sweep efficiency. The proposed approach has been applied to synthetic as well as field examples. Synthetic examples are used to validate the volumetric sweep efficiency calculations using the streamline time-of-flight connectivity criterion by comparison with analytic solutions and published correlations. The field example, which illustrates the feasibility of the approach for large-scale field applications, is from the north Robertson unit, a low permeability carbonate reservoir in west Texas

  15. Comparison of hydrological simulations of climate change using perturbation of observations and distribution-based scaling

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Sonnenborg, Torben; Jensen, Karsten Høgh

    2011-01-01

    of the HIRHAM4 regional climate model (RCM). The aim of this study was to determine whether the choice of bias-correction method, applied to the RCM data, aff ected the projected hydrological changes. One method consisted of perturbation of observed data (POD) using climate change signals derived from the RCM......Projected climate change eff ects on groundwater and stream discharges were investigated through simulations with a distributed, physically based, surface water–groundwater model. Input to the hydrological model includes precipitation, reference evapotranspiration, and temperature data...... the simulations using both methods, only small differences between the projected changes in hydrological variables for the scenario period were found. Mean annual recharge increased by 15% for the DBS method and 12% for POD, and drain flow increased by 24 and 19%, respectively, while the increases in base flow...

  16. Improving Simulations of Extreme Flows by Coupling a Physically-based Hydrologic Model with a Machine Learning Model

    Science.gov (United States)

    Mohammed, K.; Islam, A. S.; Khan, M. J. U.; Das, M. K.

    2017-12-01

    With the large number of hydrologic models presently available along with the global weather and geographic datasets, streamflows of almost any river in the world can be easily modeled. And if a reasonable amount of observed data from that river is available, then simulations of high accuracy can sometimes be performed after calibrating the model parameters against those observed data through inverse modeling. Although such calibrated models can succeed in simulating the general trend or mean of the observed flows very well, more often than not they fail to adequately simulate the extreme flows. This causes difficulty in tasks such as generating reliable projections of future changes in extreme flows due to climate change, which is obviously an important task due to floods and droughts being closely connected to people's lives and livelihoods. We propose an approach where the outputs of a physically-based hydrologic model are used as an input to a machine learning model to try and better simulate the extreme flows. To demonstrate this offline-coupling approach, the Soil and Water Assessment Tool (SWAT) was selected as the physically-based hydrologic model, the Artificial Neural Network (ANN) as the machine learning model and the Ganges-Brahmaputra-Meghna (GBM) river system as the study area. The GBM river system, located in South Asia, is the third largest in the world in terms of freshwater generated and forms the largest delta in the world. The flows of the GBM rivers were simulated separately in order to test the performance of this proposed approach in accurately simulating the extreme flows generated by different basins that vary in size, climate, hydrology and anthropogenic intervention on stream networks. Results show that by post-processing the simulated flows of the SWAT models with ANN models, simulations of extreme flows can be significantly improved. The mean absolute errors in simulating annual maximum/minimum daily flows were minimized from 4967

  17. Simulated hydrologic response to climate change during the 21st century in New Hampshire

    Science.gov (United States)

    Bjerklie, David M.; Sturtevant, Luke P.

    2018-01-24

    The U.S. Geological Survey, in cooperation with the New Hampshire Department of Environmental Services and the Department of Health and Human Services, has developed a hydrologic model to assess the effects of short- and long-term climate change on hydrology in New Hampshire. This report documents the model and datasets developed by using the model to predict how climate change will affect the hydrologic cycle and provide data that can be used by State and local agencies to identify locations that are vulnerable to the effects of climate change in areas across New Hampshire. Future hydrologic projections were developed from the output of five general circulation models for two future climate scenarios. The scenarios are based on projected future greenhouse gas emissions and estimates of land-use and land-cover change within a projected global economic framework. An evaluation of the possible effect of projected future temperature on modeling of evapotranspiration is summarized to address concerns regarding the implications of the future climate on model parameters that are based on climate variables. The results of the model simulations are hydrologic projections indicating increasing streamflow across the State with large increases in streamflow during winter and early spring and general decreases during late spring and summer. Wide spatial variability in changes to groundwater recharge is projected, with general decreases in the Connecticut River Valley and at high elevations in the northern part of the State and general increases in coastal and lowland areas of the State. In general, total winter snowfall is projected to decrease across the State, but there is a possibility of increasing snow in some locations, particularly during November, February, and March. The simulated future changes in recharge and snowfall vary by watershed across the State. This means that each area of the State could experience very different changes, depending on topography or other

  18. Impact assessment: Eroding benefits through streamlining?

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Alan, E-mail: alan.bond@uea.ac.uk [School of Environmental Sciences, University of East Anglia (United Kingdom); School of Geo and Spatial Sciences, North-West University (South Africa); Pope, Jenny, E-mail: jenny@integral-sustainability.net [Integral Sustainability (Australia); Curtin University Sustainability Policy Institute (Australia); Morrison-Saunders, Angus, E-mail: A.Morrison-Saunders@murdoch.edu.au [School of Geo and Spatial Sciences, North-West University (South Africa); Environmental Science, Murdoch University (Australia); Retief, Francois, E-mail: francois.retief@nwu.ac.za [School of Geo and Spatial Sciences, North-West University (South Africa); Gunn, Jill A.E., E-mail: jill.gunn@usask.ca [Department of Geography and Planning and School of Environment and Sustainability, University of Saskatchewan (Canada)

    2014-02-15

    This paper argues that Governments have sought to streamline impact assessment in recent years (defined as the last five years) to counter concerns over the costs and potential for delays to economic development. We hypothesise that this has had some adverse consequences on the benefits that subsequently accrue from the assessments. This hypothesis is tested using a framework developed from arguments for the benefits brought by Environmental Impact Assessment made in 1982 in the face of the UK Government opposition to its implementation in a time of economic recession. The particular benefits investigated are ‘consistency and fairness’, ‘early warning’, ‘environment and development’, and ‘public involvement’. Canada, South Africa, the United Kingdom and Western Australia are the jurisdictions tested using this framework. The conclusions indicate that significant streamlining has been undertaken which has had direct adverse effects on some of the benefits that impact assessment should deliver, particularly in Canada and the UK. The research has not examined whether streamlining has had implications for the effectiveness of impact assessment, but the causal link between streamlining and benefits does sound warning bells that merit further investigation. -- Highlights: • Investigation of the extent to which government has streamlined IA. • Evaluation framework was developed based on benefits of impact assessment. • Canada, South Africa, the United Kingdom, and Western Australia were examined. • Trajectory in last five years is attrition of benefits of impact assessment.

  19. Impact assessment: Eroding benefits through streamlining?

    International Nuclear Information System (INIS)

    Bond, Alan; Pope, Jenny; Morrison-Saunders, Angus; Retief, Francois; Gunn, Jill A.E.

    2014-01-01

    This paper argues that Governments have sought to streamline impact assessment in recent years (defined as the last five years) to counter concerns over the costs and potential for delays to economic development. We hypothesise that this has had some adverse consequences on the benefits that subsequently accrue from the assessments. This hypothesis is tested using a framework developed from arguments for the benefits brought by Environmental Impact Assessment made in 1982 in the face of the UK Government opposition to its implementation in a time of economic recession. The particular benefits investigated are ‘consistency and fairness’, ‘early warning’, ‘environment and development’, and ‘public involvement’. Canada, South Africa, the United Kingdom and Western Australia are the jurisdictions tested using this framework. The conclusions indicate that significant streamlining has been undertaken which has had direct adverse effects on some of the benefits that impact assessment should deliver, particularly in Canada and the UK. The research has not examined whether streamlining has had implications for the effectiveness of impact assessment, but the causal link between streamlining and benefits does sound warning bells that merit further investigation. -- Highlights: • Investigation of the extent to which government has streamlined IA. • Evaluation framework was developed based on benefits of impact assessment. • Canada, South Africa, the United Kingdom, and Western Australia were examined. • Trajectory in last five years is attrition of benefits of impact assessment

  20. USGS Geospatial Fabric and Geo Data Portal for Continental Scale Hydrology Simulations

    Science.gov (United States)

    Sampson, K. M.; Newman, A. J.; Blodgett, D. L.; Viger, R.; Hay, L.; Clark, M. P.

    2013-12-01

    This presentation describes use of United States Geological Survey (USGS) data products and server-based resources for continental-scale hydrologic simulations. The USGS Modeling of Watershed Systems (MoWS) group provides a consistent national geospatial fabric built on NHDPlus. They have defined more than 100,000 hydrologic response units (HRUs) over the continental United States based on points of interest (POIs) and split into left and right bank based on the corresponding stream segment. Geophysical attributes are calculated for each HRU that can be used to define parameters in hydrologic and land-surface models. The Geo Data Portal (GDP) project at the USGS Center for Integrated Data Analytics (CIDA) provides access to downscaled climate datasets and processing services via web-interface and python modules for creating forcing datasets for any polygon (such as an HRU). These resources greatly reduce the labor required for creating model-ready data in-house, contributing to efficient and effective modeling applications. We will present an application of this USGS cyber-infrastructure for assessments of impacts of climate change on hydrology over the continental United States.

  1. Global Climate Model Simulated Hydrologic Droughts and Floods in the Nelson-Churchill Watershed

    Science.gov (United States)

    Vieira, M. J. F.; Stadnyk, T. A.; Koenig, K. A.

    2014-12-01

    There is uncertainty surrounding the duration, magnitude and frequency of historical hydroclimatic extremes such as hydrologic droughts and floods prior to the observed record. In regions where paleoclimatic studies are less reliable, Global Climate Models (GCMs) can provide useful information about past hydroclimatic conditions. This study evaluates the use of Coupled Model Intercomparison Project 5 (CMIP5) GCMs to enhance the understanding of historical droughts and floods across the Canadian Prairie region in the Nelson-Churchill Watershed (NCW). The NCW is approximately 1.4 million km2 in size and drains into Hudson Bay in Northern Manitoba, Canada. One hundred years of observed hydrologic records show extended dry and wet periods in this region; however paleoclimatic studies suggest that longer, more severe droughts have occurred in the past. In Manitoba, where hydropower is the primary source of electricity, droughts are of particular interest as they are important for future resource planning. Twenty-three GCMs with daily runoff are evaluated using 16 metrics for skill in reproducing historic annual runoff patterns. A common 56-year historic period of 1950-2005 is used for this evaluation to capture wet and dry periods. GCM runoff is then routed at a grid resolution of 0.25° using the WATFLOOD hydrological model storage-routing algorithm to develop streamflow scenarios. Reservoir operation is naturalized and a consistent temperature scenario is used to determine ice-on and ice-off conditions. These streamflow simulations are compared with the historic record to remove bias using quantile mapping of empirical distribution functions. GCM runoff data from pre-industrial and future projection experiments are also bias corrected to obtain extended streamflow simulations. GCM streamflow simulations of more than 650 years include a stationary (pre-industrial) period and future periods forced by radiative forcing scenarios. Quantile mapping adjusts for magnitude

  2. [Review on HSPF model for simulation of hydrology and water quality processes].

    Science.gov (United States)

    Li, Zhao-fu; Liu, Hong-Yu; Li, Yan

    2012-07-01

    Hydrological Simulation Program-FORTRAN (HSPF), written in FORTRAN, is one ol the best semi-distributed hydrology and water quality models, which was first developed based on the Stanford Watershed Model. Many studies on HSPF model application were conducted. It can represent the contributions of sediment, nutrients, pesticides, conservatives and fecal coliforms from agricultural areas, continuously simulate water quantity and quality processes, as well as the effects of climate change and land use change on water quantity and quality. HSPF consists of three basic application components: PERLND (Pervious Land Segment) IMPLND (Impervious Land Segment), and RCHRES (free-flowing reach or mixed reservoirs). In general, HSPF has extensive application in the modeling of hydrology or water quality processes and the analysis of climate change and land use change. However, it has limited use in China. The main problems with HSPF include: (1) some algorithms and procedures still need to revise, (2) due to the high standard for input data, the accuracy of the model is limited by spatial and attribute data, (3) the model is only applicable for the simulation of well-mixed rivers, reservoirs and one-dimensional water bodies, it must be integrated with other models to solve more complex problems. At present, studies on HSPF model development are still undergoing, such as revision of model platform, extension of model function, method development for model calibration, and analysis of parameter sensitivity. With the accumulation of basic data and imorovement of data sharing, the HSPF model will be applied more extensively in China.

  3. Development of a hydrological model for simulation of runoff from catchments unbounded by ridge lines

    Science.gov (United States)

    Vema, Vamsikrishna; Sudheer, K. P.; Chaubey, I.

    2017-08-01

    Watershed hydrological models are effective tools for simulating the hydrological processes in the watershed. Although there are a plethora of hydrological models, none of them can be directly applied to make water conservation decisions in irregularly bounded areas that do not confirm to topographically defined ridge lines. This study proposes a novel hydrological model that can be directly applied to any catchment, with or without ridge line boundaries. The model is based on the water balance concept, and a linear function concept to approximate the cross-boundary flow from upstream areas to the administrative catchment under consideration. The developed model is tested in 2 watersheds - Riesel Experimental Watershed and a sub-basin of Cedar Creek Watershed in Texas, USA. Hypothetical administrative catchments that did not confirm to the location of ridge lines were considered for verifying the efficacy of the model for hydrologic simulations. The linear function concept used to account the cross boundary flow was based on the hypothesis that the flow coming from outside the boundary to administrative area was proportional to the flow generated in the boundary grid cell. The model performance was satisfactory with an NSE and r2 of ≥0.80 and a PBIAS of administrative catchments of the watersheds were in good agreement with the observed hydrographs, indicating a satisfactory performance of the model in the administratively bounded areas.

  4. Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem

    Science.gov (United States)

    Govind, Ajit; Chen, Jing Ming; Ju, Weimin

    2009-06-01

    Ecosystem models that simulate biogeochemical processes usually ignore hydrological controls that govern them. It is quite possible that topographically driven water fluxes significantly influence the spatial distribution of C sources and sinks because of their large contribution to the local water balance. To investigate this, we simulated biogeochemical processes along with the associated feedback mechanisms in a boreal ecosystem using a spatially explicit hydroecological model, boreal ecosystem productivity simulator (BEPS)-TerrainLab V2.0, that has a tight coupling of ecophysiological, hydrological, and biogeochemical processes. First, the simulated dynamics of snowpack, soil temperature, net ecosystem productivity (NEP), and total ecosystem respiration (TER) were validated with high-frequency measurements for 2 years. The model was able to explain 80% of the variability in NEP and 84% of the variability in TER. Further, we investigated the influence of topographically driven subsurface base flow on soil C and N cycling and on the spatiotemporal patterns of C sources and sinks using three hydrological modeling scenarios that differed in hydrological conceptualizations. In general, the scenarios that had nonexplicit hydrological representation overestimated NEP, as opposed to the scenario that had an explicit (realistic) representation. The key processes controlling the NEP differences were attributed to the combined effects of variations in photosynthesis (due to changes in stomatal conductance and nitrogen (N) availability), heterotrophic respiration, and autotrophic respiration, all of which occur simultaneously affecting NEP. Feedback relationships were also found to exacerbate the differences. We identified six types of NEP differences (biases), of which the most commonly found was due to an underestimation of the existing C sources, highlighting the vulnerability of regional-scale ecosystem models that ignore hydrological processes.

  5. Flash Floods Simulation using a Physical-Based Hydrological Model at Different Hydroclimatic Regions

    Science.gov (United States)

    Saber, Mohamed; Kamil Yilmaz, Koray

    2016-04-01

    Currently, flash floods are seriously increasing and affecting many regions over the world. Therefore, this study will focus on two case studies; Wadi Abu Subeira, Egypt as arid environment, and Karpuz basin, Turkey as Mediterranean environment. The main objective of this work is to simulate flash floods at both catchments considering the hydrometeorological differences between them which in turn effect their flash flood behaviors. An integrated methodology incorporating Hydrological River Basin Environmental Assessment Model (Hydro-BEAM) and remote sensing observations was devised. Global Satellite Mapping of Precipitation (GSMAP) were compared with the rain gauge network at the target basins to estimate the bias in an effort to further use it effectively in simulation of flash floods. Based on the preliminary results of flash floods simulation on both basins, we found that runoff behaviors of flash floods are different due to the impacts of climatology, hydrological and topographical conditions. Also, the simulated surface runoff hydrographs are reasonably coincide with the simulated ones. Consequently, some mitigation strategies relying on this study could be introduced to help in reducing the flash floods disasters at different climate regions. This comparison of different climatic basins would be a reasonable implication for the potential impact of climate change on the flash floods frequencies and occurrences.

  6. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  7. Improving Long-term Post-wildfire hydrologic simulations using ParFlow

    Science.gov (United States)

    Lopez, S. R.; Kinoshita, A. M.

    2015-12-01

    Wildfires alter the natural hydrologic processes within a watershed. After vegetation is burned, the combustion of organic material and debris settles into the soil creating a hydrophobic layer beneath the soil surface with varying degree of thickness and depth. Vegetation regrowth rates vary as a function of radiative exposure, burn severity, and precipitation patterns. Hydrologic models used by the Burned Area Emergency Response (BAER) teams use input data and model calibration constraints that are generally either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models estimate runoff measurements at the watershed outlet; however, do not provide a distributed hydrologic simulation at each point within the watershed. This work uses ParFlow, a three-dimensional, distributed hydrologic model to (1) correlate burn severity with hydrophobicity, (2) evaluate vegetation recovery rate on water components, and (3) improve flood prediction for managers to help with resource allocation and management operations in burned watersheds. ParFlow is applied to Devil Canyon (43 km2) in San Bernardino, California, which was 97% burned in the 2003 Old Fire. The model set-up uses a 30m-cell size resolution over a 6.7 km by 6.4 km lateral extent. The subsurface reaches 30 m and is assigned a variable cell thickness. Variable subsurface thickness allows users to explicitly consider the degree of recovery throughout the stages of regrowth. Burn severity maps from remotely sensed imagery are used to assign initial hydrophobic layer parameters and thickness. Vegetation regrowth is represented with satellite an Enhanced Vegetation Index. Pre and post-fire hydrologic response is evaluated using runoff measurements at the watershed outlet, and using water component (overland flow, lateral flow, baseflow) measurements.

  8. Simulating hydrological processes in a sub-basin of the Mekong using GBHM and RS data

    Directory of Open Access Journals (Sweden)

    W. Wang

    2015-05-01

    Full Text Available This paper presents simulations of daily hydrological process of the Mun River, the largest tributary of the Mekong, with a geomorphology-based hydrological model (GBHM driven by two forcing sets: traditional station data and grid data derived from remote sensing and GLDAS products. Driven by the station data, the Mun-GBHM model is successfully calibrated against the discharge observed in 1991, but the model accuracy decreases with the increase of simulation time during the validation period of 1992–1999. Driven by the TRMM rainfall and other meteorological data from GLDAS, using the same parameters as above, the model performs reliably at both the monthly and daily scale. Moreover, when the model is calibrated with one year of gridded data, its performance can be further improved. Our results demonstrate that TRMM and GLDAS are able to drive the GBHM so providing reliable hydrologic predictions in such data-poor or ungauged basins.

  9. Hydrological simulation and uncertainty analysis using the improved TOPMODEL in the arid Manas River basin, China.

    Science.gov (United States)

    Xue, Lianqing; Yang, Fan; Yang, Changbing; Wei, Guanghui; Li, Wenqian; He, Xinlin

    2018-01-11

    Understanding the mechanism of complicated hydrological processes is important for sustainable management of water resources in an arid area. This paper carried out the simulations of water movement for the Manas River Basin (MRB) using the improved semi-distributed Topographic hydrologic model (TOPMODEL) with a snowmelt model and topographic index algorithm. A new algorithm is proposed to calculate the curve of topographic index using internal tangent circle on a conical surface. Based on the traditional model, the improved indicator of temperature considered solar radiation is used to calculate the amount of snowmelt. The uncertainty of parameters for the TOPMODEL model was analyzed using the generalized likelihood uncertainty estimation (GLUE) method. The proposed model shows that the distribution of the topographic index is concentrated in high mountains, and the accuracy of runoff simulation has certain enhancement by considering radiation. Our results revealed that the performance of the improved TOPMODEL is acceptable and comparable to runoff simulation in the MRB. The uncertainty of the simulations resulted from the parameters and structures of model, climatic and anthropogenic factors. This study is expected to serve as a valuable complement for widely application of TOPMODEL and identify the mechanism of hydrological processes in arid area.

  10. ACHP | News | ACHP Issues Program Comment to Streamline Communication

    Science.gov (United States)

    Program Comment to Streamline Communication Facilities Construction and Modification ACHP Issues Program Comment to Streamline Communication Facilities Construction and Modification The Advisory Council on

  11. Hydrological Modelling Using a Rainfall Simulator over an Experimental Hillslope Plot

    Directory of Open Access Journals (Sweden)

    Arpit Chouksey

    2017-03-01

    Full Text Available Hydrological processes are complex to compute in hilly areas when compared to plain areas. The governing processes behind runoff generation on hillslopes are subsurface storm flow, saturation excess flow, overland flow, return flow and pipe storage. The simulations of the above processes in the soil matrix require detailed hillslope hydrological modelling. In the present study, a hillslope experimental plot has been designed to study the runoff generation processes on the plot scale. The setup is designed keeping in view the natural hillslope conditions prevailing in the Northwestern Himalayas, India where high intensity rainfall events occur frequently. A rainfall simulator was installed over the experimental hillslope plot to generate rainfall with an intensity of 100 mm/h, which represents the dominating rainfall intensity range in the region. Soil moisture sensors were also installed at variable depths from 100 to 1000 mm at different locations of the plot to observe the soil moisture regime. From the experimental observations it was found that once the soil is saturated, it remains at field capacity for the next 24–36 h. Such antecedent moisture conditions are most favorable for the generation of rapid stormflow from hillslopes. A dye infiltration test was performed on the undisturbed soil column to observe the macropore fraction variability over the vegetated hillslopes. The estimated macropore fractions are used as essential input for the hillslope hydrological model. The main objective of the present study was to develop and test a method for estimating runoff responses from natural rainfall over hillslopes of the Northwestern Himalayas using a portable rainfall simulator. Using the experimental data and the developed conceptual model, the overland flow and the subsurface flow through a macropore-dominated area have been estimated/analyzed. The surface and subsurface runoff estimated using the developed hillslope hydrological model

  12. Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900-2099 *

    Science.gov (United States)

    Dettinger, M.D.; Cayan, D.R.; Meyer, M.K.; Jeton, A.

    2004-01-01

    Hydrologic responses of river basins in the Sierra Nevada of California to historical and future climate variations and changes are assessed by simulating daily streamflow and water-balance responses to simulated climate variations over a continuous 200-yr period. The coupled atmosphere-ocean-ice-land Parallel Climate Model provides the simulated climate histories, and existing hydrologic models of the Merced, Carson, and American Rivers are used to simulate the basin responses. The historical simulations yield stationary climate and hydrologic variations through the first part of the 20th century until about 1975 when temperatures begin to warm noticeably and when snowmelt and streamflow peaks begin to occur progressively earlier within the seasonal cycle. A future climate simulated with business-as-usual increases in greenhouse-gas and aerosol radiative forcings continues those recent trends through the 21st century with an attendant +2.5??C warming and a hastening of snowmelt and streamflow within the seasonal cycle by almost a month. The various projected trends in the business-as-usual simulations become readily visible despite realistic simulated natural climatic and hydrologic variability by about 2025. In contrast to these changes that are mostly associated with streamflow timing, long-term average totals of streamflow and other hydrologic fluxes remain similar to the historical mean in all three simulations. A control simulation in which radiative forcings are held constant at 1995 levels for the 50 years following 1995 yields climate and streamflow timing conditions much like the 1980s and 1990s throughout its duration. The availability of continuous climate-change projection outputs and careful design of initial conditions and control experiments, like those utilized here, promise to improve the quality and usability of future climate-change impact assessments.

  13. Hydrologic Simulation in Mediterranean flood prone Watersheds using high-resolution quality data

    Science.gov (United States)

    Eirini Vozinaki, Anthi; Alexakis, Dimitrios; Pappa, Polixeni; Tsanis, Ioannis

    2015-04-01

    Flooding is a significant threat causing lots of inconveniencies in several societies, worldwide. The fact that the climatic change is already happening, increases the flooding risk, which is no longer a substantial menace to several societies and their economies. The improvement of spatial-resolution and accuracy of the topography and land use data due to remote sensing techniques could provide integrated flood inundation simulations. In this work hydrological analysis of several historic flood events in Mediterranean flood prone watersheds (island of Crete/Greece) takes place. Satellite images of high resolution are elaborated. A very high resolution (VHR) digital elevation model (DEM) is produced from a GeoEye-1 0.5-m-resolution satellite stereo pair and is used for floodplain management and mapping applications such as watershed delineation and river cross-section extraction. Sophisticated classification algorithms are implemented for improving Land Use/ Land Cover maps accuracy. In addition, soil maps are updated with means of Radar satellite images. The above high-resolution data are innovatively used to simulate and validate several historical flood events in Mediterranean watersheds, which have experienced severe flooding in the past. The hydrologic/hydraulic models used for flood inundation simulation in this work are HEC-HMS and HEC-RAS. The Natural Resource Conservation Service (NRCS) curve number (CN) approach is implemented to account for the effect of LULC and soil on the hydrologic response of the catchment. The use of high resolution data provides detailed validation results and results of high precision, accordingly. Furthermore, the meteorological forecasting data, which are also combined to the simulation model results, manage the development of an integrated flood forecasting and early warning system tool, which is capable of confronting or even preventing this imminent risk. The research reported in this paper was fully supported by the

  14. Applicability of the SWAT model for hydrologic simulation in Paraopeba river basin, MG

    Directory of Open Access Journals (Sweden)

    Matheus Fonseca Durães

    2011-12-01

    Full Text Available The SWAT model (Soil and Water Assessment Tool was applied for simulating the hydrologic pattern of Paraopeba river basin, in Minas Gerais state, under different land use and occupation scenarios, looking to support basin management actions. The model parameters were calibrated and validated, with respect to the data observed from 1983 to 2005. The basin was assessed at the ‘Porto do Mesquita’ gauging station and change in land use and occupation was based on the annual growth scenarios proposed in the partial report of Paraopeba basin’s master plan. The model was found to be highly sensitive to baseflow, its main calibration variable. Statistical analyses produced a Nash-Sutcliffe coefficient above 0.75, which is considered good and acceptable. The SWAT model provided satisfactory results in simulating hydrologic pattern under different scenarios of land use change, demonstrating that it can be applied for forecasting discharge in the aforesaid basin. The current land use scenario provided a peak discharge simulation of 1250 m³ s-1, while in years 2019 and 2029 peak discharge simulations were 1190 m³ s-1 and 1230 m³ s-1 respectively. The 2019 scenario provided the best results with respect to baseflow increase and peak discharge reduction.

  15. Rainfall simulators in hydrological and geomorphological sciences: benefits, applications and future research directions

    Science.gov (United States)

    Iserloh, Thomas; Cerdà, Artemi; Fister, Wolfgang; Seitz, Steffen; Keesstra, Saskia; Green, Daniel; Gabriels, Donald

    2017-04-01

    Rainfall simulators are used extensively within the hydrological and geomorphological sciences and provide a useful investigative tool to understand many processes, such as: (i) plot-scale runoff, infiltration and erosion; (ii) irrigation and crop management, and; (iii) investigations into flooding within a laboratory setting. Although natural rainfall is desirable as it represents actual conditions in a given geographic location, data acquisition relying on natural rainfall is often hindered by its unpredictable nature. Furthermore, rainfall characteristics such as the intensity, duration, drop size distribution and kinetic energy cannot be spatially or temporally regulated or repeated between experimentation. Rainfall simulators provide a suitable method to overcome the issues associated with depending on potentially erratic and unpredictable natural rainfall as they allow: (i) multiple measurements to be taken quickly without waiting for suitable natural rainfall conditions; (ii) the simulation of spatially and/or temporally controlled rainfall patterns over a given plot area, and; (iii) the creation of a closed environment, allowing simplified measurement of input and output conditions. There is no standardisation of rainfall simulation and as such, rainfall simulators differ in their design, rainfall characteristics and research application. Although this impedes drawing meaningful comparisons between studies, this allows researchers to create a bespoke and tailored rainfall simulator for the specific research application. This paper summarises the rainfall simulators used in European research institutions (Universities of Trier, Valencia, Basel, Tuebingen, Wageningen, Loughborough and Ghent) to investigate a number of hydrological and geomorphological issues and includes details on the design specifications (such as the extent and characteristics of simulated rainfall), as well as a discussion of the purpose and application of the rainfall simulator.

  16. Simulation of streamflows and basin-wide hydrologic variables over several climate-change scenarios, Methow River basin, Washington

    Science.gov (United States)

    Voss, Frank D.; Mastin, Mark C.

    2012-01-01

    The purpose of this project was to demonstrate the capabilities of an existing watershed model and downscaling procedures to provide simulated hydrological data over various greenhouse gas emission scenarios for use in the Methow River framework prototype. An existing watershed model was used to simulate daily time series of streamflow and basin-wide hydrologic variables for baseline conditions (1990–2000), and then for all combinations of three greenhouse gas emission scenarios and five general circulation models for future conditions (2008–2095). Input data for 18 precipitation and 17 temperature model input sites were generated using statistical techniques to downscale general circulation model data. The simulated results were averaged using an 11-year moving window to characterize the central year of the window to provide simulated data for water years 2008–2095.

  17. Comparison between SAR Soil Moisture Estimates and Hydrological Model Simulations over the Scrivia Test Site

    Directory of Open Access Journals (Sweden)

    Alberto Pistocchi

    2013-10-01

    Full Text Available In this paper, the results of a comparison between the soil moisture content (SMC estimated from C-band SAR, the SMC simulated by a hydrological model, and the SMC measured on ground are presented. The study was carried out in an agricultural test site located in North-west Italy, in the Scrivia river basin. The hydrological model used for the simulations consists of a one-layer soil water balance model, which was found to be able to partially reproduce the soil moisture variability, retaining at the same time simplicity and effectiveness in describing the topsoil. SMC estimates were derived from the application of a retrieval algorithm, based on an Artificial Neural Network approach, to a time series of ENVISAT/ASAR images acquired over the Scrivia test site. The core of the algorithm was represented by a set of ANNs able to deal with the different SAR configurations in terms of polarizations and available ancillary data. In case of crop covered soils, the effect of vegetation was accounted for using NDVI information, or, if available, for the cross-polarized channel. The algorithm results showed some ability in retrieving SMC with RMSE generally <0.04 m3/m3 and very low bias (i.e., <0.01 m3/m3, except for the case of VV polarized SAR images: in this case, the obtained RMSE was somewhat higher than 0.04 m3/m3 (≤0.058 m3/m3. The algorithm was implemented within the framework of an ESA project concerning the development of an operative algorithm for the SMC retrieval from Sentinel-1 data. The algorithm should take into account the GMES requirements of SMC accuracy (≤5% in volume, spatial resolution (≤1 km and timeliness (3 h from observation. The SMC estimated by the SAR algorithm, the SMC estimated by the hydrological model, and the SMC measured on ground were found to be in good agreement. The hydrological model simulations were performed at two soil depths: 30 and 5 cm and showed that the 30 cm simulations indicated, as expected, SMC

  18. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    Directory of Open Access Journals (Sweden)

    Ernest Ohene Asare

    Full Text Available Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.

  19. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    Science.gov (United States)

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.

  20. Improved Regional Climate Model Simulation of Precipitation by a Dynamical Coupling to a Hydrology Model

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Hesselbjerg Christensen, Jens

    convective precipitation systems. As a result climate model simulations let alone future projections of precipitation often exhibit substantial biases. Here we show that the dynamical coupling of a regional climate model to a detailed fully distributed hydrological model - including groundwater-, overland...... of local precipitation dynamics are seen for time scales of app. Seasonal duration and longer. We show that these results can be attributed to a more complete treatment of land surface feedbacks. The local scale effect on the atmosphere suggests that coupled high-resolution climate-hydrology models...... including a detailed 3D redistribution of sub- and land surface water have a significant potential for improving climate projections even diminishing the need for bias correction in climate-hydrology studies....

  1. Hydrological simulations driven by RCM climate scenarios at basin scale in the Po River, Italy

    Directory of Open Access Journals (Sweden)

    R. Vezzoli

    2014-09-01

    Full Text Available River discharges are the main expression of the hydrological cycle and are the results of climate natural variability. The signal of climate changes occurrence raises the question of how it will impact on river flows and on their extreme manifestations: floods and droughts. This question can be addressed through numerical simulations spanning from the past (1971 to future (2100 under different climate change scenarios. This work addresses the capability of a modelling chain to reproduce the observed discharge of the Po River over the period 1971–2000. The modelling chain includes climate and hydrological/hydraulic models and its performance is evaluated through indices based on the flow duration curve. The climate datasets used for the 1971–2000 period are (a a high resolution observed climate dataset, and COSMO-CLM regional climate model outputs with (b perfect boundary condition, ERA40 Reanalysis, and (c suboptimal boundary conditions provided by the global climate model CMCC–CM. The aim of the different simulations is to evaluate how the uncertainties introduced by the choice of the regional and/or global climate models propagate in the simulated discharges. This point is relevant to interpret the results of the simulated discharges when scenarios for the future are considered. The hydrological/hydraulic components are simulated through a physically-based distributed model (TOPKAPI and a water balance model at the basin scale (RIBASIM. The aim of these first simulations is to quantify the uncertainties introduced by each component of the modelling chain and their propagation. Estimation of the overall uncertainty is relevant to correctly understand the future river flow regimes. The results show how bias correction algorithms can help in reducing the overall uncertainty associated to the different stages of the modelling chain.

  2. Influence of hydrological models on cumulative flow simulation under climate change scenarios : an application in the Baskatong watershed

    International Nuclear Information System (INIS)

    Chartier, I.

    2006-01-01

    Since Hydro-Quebec owns and operates many hydroelectric power plants, from which it draws 96 per cent of its electricity, the electric utility found it necessary to study the impact of climate change on water resources and cumulative flow. This paper described Hydro-Quebec's method for evaluating climatic change impacts using hydrological simulations, with particular reference to the Baskatong watershed in the Outaouais region of Quebec. This basin is one of 5 sub-basins within the Gatineau River. Hydro-Quebec's studies were conducted using 3 hydrological models known as MOHYSE, HSAMI and HYDROTEL; 4 general circulation models (GCM) known as HadCM3, CSIRO, ECHAM4 and CGCM3; and, 4 greenhouse gas scenarios called A1, B1, A2 and B2. GCMs were shown to have a larger impact on the final hydrological simulation result compared to greenhouse gas scenarios or the hydrological models, although the latter two did have a significant impact on the final result of the simulation. Each scenario provided long term predictions despite the use of different models. The study demonstrated that many regions will have to rely on a range of GCM for more elaborate climatic scenarios. 9 refs., 1 tab., 9 figs

  3. Extract useful knowledge from agro-hydrological simulations data for decision making

    Science.gov (United States)

    Gascuel-odoux, C.; Bouadi, T.; Cordier, M.; Quiniou, R.

    2013-12-01

    In recent years, models have been developed and used to test the effect of scenarios and help stakeholders in decision making. Agro-hydrological models have guided agricultural water management by testing the effect of landscape structure and farming system changes on water quantity and quality. Such models generate a large amount of data but few are stored and are often not customized for stakeholders, so that a great amount of information is lost from the simulation process or not transformed in a usable format. A first approach, already published (Trepos et al., 2012), has been developed to identify object oriented tree patterns, that represent surface flow and pollutant pathways from plot to plot, involved in water pollution by herbicides. A simulation model (Gascuel-odoux et al., 2009) predicted herbicide transfer rate, defined as the proportion of applied herbicide that reaches water courses. The predictions were used as a set of learning examples for symbolic learning techniques to induce rules based on qualitative and quantitative attributes and explain two extreme classes in transfer rate. Two automatic symbolic learning techniques were used: the inductive logic programming approach to induce spatial tree patterns, and an attribute-value method to induce aggregated attributes of the trees. A visualization interface allows the users to identify rules explaining contamination and mitigation measures improving the current situation. A second approach has been recently developed to analyse directly the simulated data (Bouadi et al, submitted). A data warehouse called N-catch has been built to store and manage simulation data from the agro-hydrological model TNT2 (Beaujouan et al., 2002). 44 output key simulated variables are stored per plot and at a daily time step on a 50 squared km area, i.e, 8 GB of storage size. After identifying the set of multileveled dimensions integrating hierarchical structures and relationships among related dimension levels, N

  4. The design of the Comet streamliner: An electric land speed record motorcycle

    Science.gov (United States)

    McMillan, Ethan Alexander

    The development of the land speed record electric motorcycle streamliner, the Comet, is discussed herein. Its design process includes a detailed literary review of past and current motorcycle streamliners in an effort to highlight the main components of such a vehicle's design, while providing baseline data for performance comparisons. A new approach to balancing a streamliner at low speeds is also addressed, a system henceforth referred to as landing gear, which has proven an effective means for allowing the driver to control the low speed instabilities of the vehicle with relative ease compared to tradition designs. This is accompanied by a dynamic stability analysis conducted on a test chassis that was developed for the primary purpose of understanding the handling dynamics of streamliners, while also providing a test bed for the implementation of the landing gear system and a means to familiarize the driver to the operation and handling of such a vehicle. Data gathered through the use of GPS based velocity tracking, accelerometers, and a linear potentiometer provided a means to validate a dynamic stability analysis of the weave and wobble modes of the vehicle through linearization of a streamliner model developed in the BikeSIM software suite. Results indicate agreement between the experimental data and the simulation, indicating that the conventional recumbent design of a streamliner chassis is in fact highly stable throughout the performance envelope beyond extremely low speeds. A computational fluid dynamics study was also performed, utilized in the development of the body of the Comet to which a series of tests were conducted in order to develop a shape that was both practical to transport and highly efficient. By creating a hybrid airfoil from a NACA 0018 and NACA 66-018, a drag coefficient of 0.1 and frontal area of 0.44 m2 has been found for the final design. Utilizing a performance model based on the proposed vehicle's motor, its rolling resistance, and

  5. Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach

    Science.gov (United States)

    Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault

    2017-08-01

    Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.

  6. Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Singaiah Chintalapudi

    2014-05-01

    Full Text Available In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km2 watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze the precipitation products. Comparison with rain gauge observations reveals that there were significant biases in the satellite rainfall products and large variations in the estimated amounts. The radar basin average precipitation compared very well with the rain gauge product while the gauge-adjusted TRMM 3B42V7 precipitation compared best with observed rainfall among all satellite precipitation products. The NEXRAD MPE simulated streamflows matched the observed ones the best yielding the highest Nash-Sutcliffe Efficiency correlation coefficient values for both the July and August 2007 events. Simulations driven by TRMM 3B42V7 matched the observed streamflow better than other satellite products for both events. The PERSIANN coarse resolution product yielded better runoff results than the higher resolution product. The study reveals that satellite rainfall products are viable alternatives when rain gauge or ground radar observations are sparse or non-existent.

  7. GIS based generation of dynamic hydrological and land patch simulation models for rural watershed areas

    Directory of Open Access Journals (Sweden)

    M. Varga

    2016-03-01

    Full Text Available This paper introduces a GIS based methodology to generate dynamic process model for the simulation based analysis of a sensitive rural watershed. The Direct Computer Mapping (DCM based solution starts from GIS layers and, via the graph interpretation and graphical edition of the process network, the expert interface is able to integrate the field experts’ knowledge in the computer aided generation of the simulation model. The methodology was applied and tested for the Southern catchment basin of Lake Balaton, Hungary. In the simplified hydrological model the GIS description of nine watercourses, 121 water sections, 57 small lakes and 20 Lake Balaton compartments were mapped through the expert interface to the dynamic databases of the DCM model. The hydrological model involved precipitation, evaporation, transpiration, runoff, infiltration. The COoRdination of INformation on the Environment (CORINE land cover based simplified “land patch” model considered the effect of meteorological and hydrological scenarios on freshwater resources in the land patches, rivers and lakes. The first results show that the applied model generation methodology helps to build complex models, which, after validation can support the analysis of various land use, with the consideration of environmental aspects.

  8. Large-watershed flood simulation and forecasting based on different-resolution distributed hydrological model

    Science.gov (United States)

    Li, J.

    2017-12-01

    Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.

  9. The impact of groundwater velocity fields on streamlines in an aquifer system with a discontinuous aquitard (Inner Mongolia, China)

    Science.gov (United States)

    Wu, Qiang; Zhao, Yingwang; Xu, Hua

    2018-04-01

    Many numerical methods that simulate groundwater flow, particularly the continuous Galerkin finite element method, do not produce velocity information directly. Many algorithms have been proposed to improve the accuracy of velocity fields computed from hydraulic potentials. The differences in the streamlines generated from velocity fields obtained using different algorithms are presented in this report. The superconvergence method employed by FEFLOW, a popular commercial code, and some dual-mesh methods proposed in recent years are selected for comparison. The applications to depict hydrogeologic conditions using streamlines are used, and errors in streamlines are shown to lead to notable errors in boundary conditions, the locations of material interfaces, fluxes and conductivities. Furthermore, the effects of the procedures used in these two types of methods, including velocity integration and local conservation, are analyzed. The method of interpolating velocities across edges using fluxes is shown to be able to eliminate errors associated with refraction points that are not located along material interfaces and streamline ends at no-flow boundaries. Local conservation is shown to be a crucial property of velocity fields and can result in more accurate streamline densities. A case study involving both three-dimensional and two-dimensional cross-sectional models of a coal mine in Inner Mongolia, China, are used to support the conclusions presented.

  10. An ensemble-based dynamic Bayesian averaging approach for discharge simulations using multiple global precipitation products and hydrological models

    Science.gov (United States)

    Qi, Wei; Liu, Junguo; Yang, Hong; Sweetapple, Chris

    2018-03-01

    Global precipitation products are very important datasets in flow simulations, especially in poorly gauged regions. Uncertainties resulting from precipitation products, hydrological models and their combinations vary with time and data magnitude, and undermine their application to flow simulations. However, previous studies have not quantified these uncertainties individually and explicitly. This study developed an ensemble-based dynamic Bayesian averaging approach (e-Bay) for deterministic discharge simulations using multiple global precipitation products and hydrological models. In this approach, the joint probability of precipitation products and hydrological models being correct is quantified based on uncertainties in maximum and mean estimation, posterior probability is quantified as functions of the magnitude and timing of discharges, and the law of total probability is implemented to calculate expected discharges. Six global fine-resolution precipitation products and two hydrological models of different complexities are included in an illustrative application. e-Bay can effectively quantify uncertainties and therefore generate better deterministic discharges than traditional approaches (weighted average methods with equal and varying weights and maximum likelihood approach). The mean Nash-Sutcliffe Efficiency values of e-Bay are up to 0.97 and 0.85 in training and validation periods respectively, which are at least 0.06 and 0.13 higher than traditional approaches. In addition, with increased training data, assessment criteria values of e-Bay show smaller fluctuations than traditional approaches and its performance becomes outstanding. The proposed e-Bay approach bridges the gap between global precipitation products and their pragmatic applications to discharge simulations, and is beneficial to water resources management in ungauged or poorly gauged regions across the world.

  11. Creating customer value by streamlining business processes.

    Science.gov (United States)

    Vantrappen, H

    1992-02-01

    Much of the strategic preoccupation of senior managers in the 1990s is focusing on the creation of customer value. Companies are seeking competitive advantage by streamlining the three processes through which they interact with their customers: product creation, order handling and service assurance. 'Micro-strategy' is a term which has been coined for the trade-offs and decisions on where and how to streamline these three processes. The article discusses micro-strategies applied by successful companies.

  12. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  13. Development of computational infrastructure to support hyper-resolution large-ensemble hydrology simulations from local-to-continental scales

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of computational infrastructure to support hyper-resolution large-ensemble hydrology simulations from local-to-continental scales A move is currently...

  14. Uncertainty in hydrological change modelling

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige

    applied at the grid scale. Flux and state hydrological outputs which integrate responses over time and space showed more sensitivity to precipitation mean spatial biases and less so on extremes. In the investigated catchments, the projected change of groundwater levels and basin discharge between current......Hydrological change modelling methodologies generally use climate models outputs to force hydrological simulations under changed conditions. There are nested sources of uncertainty throughout this methodology, including choice of climate model and subsequent bias correction methods. This Ph.......D. study evaluates the uncertainty of the impact of climate change in hydrological simulations given multiple climate models and bias correction methods of varying complexity. Three distribution based scaling methods (DBS) were developed and benchmarked against a more simplistic and commonly used delta...

  15. A streamlined failure mode and effects analysis

    International Nuclear Information System (INIS)

    Ford, Eric C.; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-01-01

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed

  16. A streamlined failure mode and effects analysis.

    Science.gov (United States)

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  17. A streamlined failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287 (United States)

    2014-06-15

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  18. Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed

    Science.gov (United States)

    Valentin, Melissa M.; Viger, Roland J.; Van Beusekom, Ashley E.; Hay, Lauren E.; Hogue, Terri S.; Foks, Nathan Leon

    2018-01-01

    The U.S. Geological Survey monthly water balance model (MWBM) was enhanced with the capability to simulate glaciers in order to make it more suitable for simulating cold region hydrology. The new model, MWBMglacier, is demonstrated in the heavily glacierized and ecologically important Copper River watershed in Southcentral Alaska. Simulated water budget components compared well to satellite‐based observations and ground measurements of streamflow, evapotranspiration, snow extent, and total water storage, with differences ranging from 0.2% to 7% of the precipitation flux. Nash Sutcliffe efficiency for simulated and observed streamflow was greater than 0.8 for six of eight stream gages. Snow extent matched satellite‐based observations with Nash Sutcliffe efficiency values of greater than 0.89 in the four Copper River ecoregions represented. During the simulation period 1949 to 2009, glacier ice melt contributed 25% of total runoff, ranging from 12% to 45% in different tributaries, and glacierized area was reduced by 6%. Statistically significant (p < 0.05) decreasing and increasing trends in annual glacier mass balance occurred during the multidecade cool and warm phases of the Pacific Decadal Oscillation, respectively, reinforcing the link between climate perturbations and glacier mass balance change. The simulations of glaciers and total runoff for a large, remote region of Alaska provide useful data to evaluate hydrologic, cryospheric, ecologic, and climatic trends. MWBM glacier is a valuable tool to understand when, and to what extent, streamflow may increase or decrease as glaciers respond to a changing climate.

  19. Hydrological simulation of Sperchios River basin in Central Greece using the MIKE SHE model and geographic information systems

    Science.gov (United States)

    Paparrizos, Spyridon; Maris, Fotios

    2017-05-01

    The MIKE SHE model is able to simulate the entire stream flow which includes direct and basic flow. Many models either do not simulate or use simplistic methods to determine the basic flow. The MIKE SHE model takes into account many hydrological data. Since this study was directed towards the simulation of surface runoff and infiltration into saturated and unsaturated zone, the MIKE SHE is an appropriate model for reliable conclusions. In the current research, the MIKE SHE model was used to simulate runoff in the area of Sperchios River basin. Meteorological data from eight rainfall stations within the Sperchios River basin were used as inputs. Vegetation as well as geological data was used to perform the calibration and validation of the physical processes of the model. Additionally, ArcGIS program was used. The results indicated that the model was able to simulate the surface runoff satisfactorily, representing all the hydrological data adequately. Some minor differentiations appeared which can be eliminated with the appropriate adjustments that can be decided by the researcher's experience.

  20. Application of a hybrid multiscale approach to simulate hydrologic and biogeochemical processes in the river-groundwater interaction zone.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang; Song, Hyun-Seob; Hou, Zhangshuan; Chen, Xingyuan; Liu, Yuanyuan; Scheibe, Tim

    2017-03-01

    The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scales of interest.

  1. airGRteaching: an R-package designed for teaching hydrology with lumped hydrological models

    Science.gov (United States)

    Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Andréassian, Vazken; Brigode, Pierre

    2017-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. Although its initial target public was hydrological modellers, the package is already used for educational purposes. Indeed, simple models allow for rapidly visualising the effects of parameterizations and model components on flows hydrographs. In order to avoid the difficulties that students may have when manipulating R and datasets, we developed (Delaigue and Coron, 2016): - Three simplified functions to prepare data, calibrate a model and run a simulation - Simplified and dynamic plot functions - A shiny (Chang et al., 2016) interface that connects this R-package to a browser-based visualisation tool. On this interface, the students can use different hydrological models (including the possibility to use a snow-accounting model), manually modify their parameters and automatically calibrate their parameters with diverse objective functions. One of the visualisation tabs of the interface includes observed precipitation and temperature, simulated snowpack (if any), observed and simulated

  2. Results From an International Simulation Study on Coupled Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-01-01

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level

  3. Distributed simulation of long-term hydrological processes in a medium-sized periurban catchment under changing land use and rainwater management.

    Science.gov (United States)

    Labbas, Mériem; Braud, Isabelle; Branger, Flora; Kralisch, Sven

    2013-04-01

    Growing urbanization and related anthropogenic processes have a high potential to influence hydrological process dynamics. Typical consequences are an increase of surface imperviousness and modifications of water flow paths due to artificial channels and barriers (combined and separated system, sewer overflow device, roads, ditches, etc.). Periurban catchments, at the edge of large cities, are especially affected by fast anthropogenic modifications. They usually consist of a combination of natural areas, rural areas with dispersed settlements and urban areas mostly covered by built zones and spots of natural surfaces. In the context of the European Water Framework Directive (2000) and the Floods Directive (2007), integrated and sustainable solutions are needed to reduce flooding risks and river pollution at the scale of urban conglomerations or whole catchments. Their thorough management requires models able to assess the vulnerability of the territory and to compare the impact of different rainwater management options and planning issues. To address this question, we propose a methodology based on a multi-scale distributed hydrological modelling approach. It aims at quantifying the impact of ongoing urbanization and stormwater management on the long-term hydrological cycle in medium-sized periurban watershed. This method focuses on the understanding and formalization of dominant periurban hydrological processes from small scales (few ha to few km2) to larger scales (few hundred km2). The main objectives are to 1) simulate both urban and rural hydrological processes and 2) test the effects of different long-term land use and water management scenarios. The method relies on several tools and data: a distributed hydrological model adapted to the characteristics of periurban areas, land use and land cover maps from different dates (past, present, future) and information about rainwater management collected from local authorities. For the application of the method, the

  4. Hydrology and phosphorus transport simulation in a lowland polder by a coupled modeling system.

    Science.gov (United States)

    Yan, Renhua; Huang, Jiacong; Li, Lingling; Gao, Junfeng

    2017-08-01

    Modeling the rain-runoff processes and phosphorus transport processes in lowland polders is critical in finding reasonable measures to alleviate the eutrophication problem of downstream rivers and lakes. This study develops a lowland Polder Hydrology and Phosphorus modeling System (PHPS) by coupling the WALRUS-paddy model and an improved phosphorus module of a Phosphorus Dynamic model for lowland Polder systems (PDP). It considers some important hydrological characteristics, such as groundwater-unsaturated zone coupling, groundwater-surface water feedback, human-controlled irrigation and discharge, and detailed physical and biochemical cycles of phosphorus in surface water. The application of the model in the Jianwei polder shows that the simulated phosphorus matches well with the measured values. The high precision of this model combined with its low input data requirement and efficient computation make it practical and easy to the water resources management of Chinese polders. Parameter sensitivity analysis demonstrates that K uptake , c Q2 , c W1 , and c Q1 exert a significant effect on the modeled results, whereas K resuspensionMax , K settling , and K mineralization have little effect on the modeled total phosphorus. Among the three types of uncertainties (i.e., parameter, initial condition, and forcing uncertainties), forcing uncertainty produces the strongest effect on the simulated phosphorus. Based on the analysis result of annual phosphorus balance when considering the high import from irrigation and fertilization, lowland polder is capable of retaining phosphorus and reducing phosphorus export to surrounding aquatic ecosystems because of their special hydrological regulation regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Comparison of Forced ENSO-Like Hydrological Expressions in Simulations of the Preindustrial and Mid-Holocene

    Science.gov (United States)

    Lewis, Sophie C.; LeGrande, Allegra N.; Schmidt, Gavin A.; Kelley, Maxwell

    2014-01-01

    Using the water isotope- and vapor source distribution (VSD) tracer-enabled Goddard Institute for Space Studies ModelE-R, we examine changing El Nino-Southern Oscillation (ENSO)-like expressions in the hydrological cycle in a suite of model experiments. We apply strong surface temperature anomalies associated with composite observed El Nino and La Nina events as surface boundary conditions to preindustrial and mid-Holocene model experiments in order to investigate ENSO-like expressions in the hydrological cycle under varying boundary conditions. We find distinct simulated hydrological anomalies associated with El Nino-like ("ENSOWARM") and La Nina-like ("ENSOCOOL") conditions, and the region-specific VSD tracers show hydrological differences across the Pacific basin between El Nino-like and La Nina-like events. The application of ENSOCOOL forcings does not produce climatological anomalies that represent the equal but opposite impacts of the ENSOWARM experiment, as the isotopic anomalies associated with ENSOWARM conditions are generally stronger than with ENSOCOOL and the spatial patterns of change distinct. Also, when the same ENSO-like surface temperature anomalies are imposed on the mid-Holocene, the hydrological response is muted, relative to the preindustrial. Mid-Holocene changes in moisture sources to the analyzed regions across the Pacific reveal potentially complex relationships between ENSO-like conditions and boundary conditions. Given the complex impacts of ENSO-like conditions on various aspects of the hydrological cycle, we suggest that proxy record insights into paleo-ENSO variability are most likely to be robust when synthesized from a network of many spatially diverse archives, which can account for the potential nonstationarity of ENSO teleconnections under different boundary conditions.

  6. Efficient uncertainty quantification in fully-integrated surface and subsurface hydrologic simulations

    Science.gov (United States)

    Miller, K. L.; Berg, S. J.; Davison, J. H.; Sudicky, E. A.; Forsyth, P. A.

    2018-01-01

    Although high performance computers and advanced numerical methods have made the application of fully-integrated surface and subsurface flow and transport models such as HydroGeoSphere common place, run times for large complex basin models can still be on the order of days to weeks, thus, limiting the usefulness of traditional workhorse algorithms for uncertainty quantification (UQ) such as Latin Hypercube simulation (LHS) or Monte Carlo simulation (MCS), which generally require thousands of simulations to achieve an acceptable level of accuracy. In this paper we investigate non-intrusive polynomial chaos for uncertainty quantification, which in contrast to random sampling methods (e.g., LHS and MCS), represents a model response of interest as a weighted sum of polynomials over the random inputs. Once a chaos expansion has been constructed, approximating the mean, covariance, probability density function, cumulative distribution function, and other common statistics as well as local and global sensitivity measures is straightforward and computationally inexpensive, thus making PCE an attractive UQ method for hydrologic models with long run times. Our polynomial chaos implementation was validated through comparison with analytical solutions as well as solutions obtained via LHS for simple numerical problems. It was then used to quantify parametric uncertainty in a series of numerical problems with increasing complexity, including a two-dimensional fully-saturated, steady flow and transient transport problem with six uncertain parameters and one quantity of interest; a one-dimensional variably-saturated column test involving transient flow and transport, four uncertain parameters, and two quantities of interest at 101 spatial locations and five different times each (1010 total); and a three-dimensional fully-integrated surface and subsurface flow and transport problem for a small test catchment involving seven uncertain parameters and three quantities of interest at

  7. The UP modelling system for large scale hydrology: simulation of the Arkansas-Red River basin

    Directory of Open Access Journals (Sweden)

    C. G. Kilsby

    1999-01-01

    Full Text Available The UP (Upscaled Physically-based hydrological modelling system to the Arkansas-Red River basin (USA is designed for macro-scale simulations of land surface processes, and aims for a physical basis and, avoids the use of discharge records in the direct calibration of parameters. This is achieved in a two stage process: in the first stage parametrizations are derived from detailed modelling of selected representative small and then used in a second stage in which a simple distributed model is used to simulate the dynamic behaviour of the whole basin. The first stage of the process is described in a companion paper (Ewen et al., this issue, and the second stage of this process is described here. The model operated at an hourly time-step on 17-km grid squares for a two year simulation period, and represents all the important hydrological processes including regional aquifer recharge, groundwater discharge, infiltration- and saturation-excess runoff, evapotranspiration, snowmelt, overland and channel flow. Outputs from the model are discussed, and include river discharge at gauging stations and space-time fields of evaporation and soil moisture. Whilst the model efficiency assessed by comparison of simulated and observed discharge records is not as good as could be achieved with a model calibrated against discharge, there are considerable advantages in retaining a physical basis in applications to ungauged river basins and assessments of impacts of land use or climate change.

  8. Assessing the skill of hydrology models at simulating the water cycle in the HJ Andrews LTER: Assumptions, strengths and weaknesses

    Science.gov (United States)

    Simulated impacts of climate on hydrology can vary greatly as a function of the scale of the input data, model assumptions, and model structure. Four models are commonly used to simulate streamflow in model assumptions, and model structure. Four models are commonly used to simu...

  9. Dividing Streamline Formation Channel Confluences by Physical Modeling

    Directory of Open Access Journals (Sweden)

    Minarni Nur Trilita

    2010-02-01

    Full Text Available Confluence channels are often found in open channel network system and is the most important element. The incoming flow from the branch channel to the main cause various forms and cause vortex flow. Phenomenon can cause erosion of the side wall of the channel, the bed channel scour and sedimentation in the downstream confluence channel. To control these problems needed research into the current width of the branch channel. The incoming flow from the branch channel to the main channel flow bounded by a line distributors (dividing streamline. In this paper, the wide dividing streamline observed in the laboratory using a physical model of two open channels, a square that formed an angle of 30º. Observations were made with a variety of flow coming from each channel. The results obtained in the laboratory observation that the width of dividing streamline flow is influenced by the discharge ratio between the channel branch with the main channel. While the results of a comparison with previous studies showing that the observation in the laboratory is smaller than the results of previous research.

  10. Streamlining air import operations by trade facilitation measures

    Directory of Open Access Journals (Sweden)

    Yuri da Cunha Ferreira

    2017-12-01

    Full Text Available Global operations are subject to considerable uncertainties. Due to the Trade Facilitation Agreement that became effective in February 2017, the study of measures to streamline customs controls is urgent. This study aims to assess the impact of trade facilitation measures on import flows. An experimental study was performed in the largest cargo airport in South America through discrete-event simulation and design of experiments. Operation impacts of three trade facilitation measures are assessed on import flow by air. We shed light in the following trade facilitation measures: the use of X-ray equipment for physical inspection; increase of the number of qualified companies in the trade facilitation program; performance targets for customs officials. All trade facilitation measures used indicated potential to provide more predictability, cost savings, time reduction, and increase in security in international supply chain.

  11. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing

    2017-08-01

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  12. Simulated effects of hydrologic, water quality, and land-use changes of the Lake Maumelle watershed, Arkansas, 2004–10

    Science.gov (United States)

    Hart, Rheannon M.; Green, W. Reed; Westerman, Drew A.; Petersen, James C.; DeLanois, Jeanne L.

    2012-01-01

    Lake Maumelle, located in central Arkansas northwest of the cities of Little Rock and North Little Rock, is one of two principal drinking-water supplies for the Little Rock, and North Little Rock, Arkansas, metropolitan areas. Lake Maumelle and the Maumelle River (its primary tributary) are more pristine than most other reservoirs and streams in the region with 80 percent of the land area in the entire watershed being forested. However, as the Lake Maumelle watershed becomes increasingly more urbanized and timber harvesting becomes more extensive, concerns about the sustainability of the quality of the water supply also have increased. Two hydrodynamic and water-quality models were developed to examine the hydrology and water quality in the Lake Maumelle watershed and changes that might occur as the watershed becomes more urbanized and timber harvesting becomes more extensive. A Hydrologic Simulation Program–FORTRAN watershed model was developed using continuous streamflow and discreet suspended-sediment and water-quality data collected from January 2004 through 2010. A CE–QUAL–W2 model was developed to simulate reservoir hydrodynamics and selected water-quality characteristics using the simulated output from the Hydrologic Simulation Program–FORTRAN model from January 2004 through 2010. The calibrated Hydrologic Simulation Program–FORTRAN model and the calibrated CE–QUAL–W2 model were developed to simulate three land-use scenarios and to examine the potential effects of these land-use changes, as defined in the model, on the water quality of Lake Maumelle during the 2004 through 2010 simulation period. These scenarios included a scenario that simulated conversion of most land in the watershed to forest (scenario 1), a scenario that simulated conversion of potentially developable land to low-intensity urban land use in part of the watershed (scenario 2), and a scenario that simulated timber harvest in part of the watershed (scenario 3). Simulated land

  13. Stream-lined Gating Systems with Improved Yield - Dimensioning and Experimental Validation

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Skov-Hansen, Søren Peter

    the two types of lay-outs are cast in production. It is shown that flow in the stream-lined lay-out is well controlled and that the quality of the castings is as at least equal to that of castings produced with a traditional lay-out. Further, the yield is improved by 4 % relative to a traditional lay-out.......The paper describes how a stream-lined gating system where the melt is confined and controlled during filling can be designed. Commercial numerical modelling software has been used to compare the stream-lined design with a traditional gating system. These results are confirmed by experiments where...

  14. The progress of hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Chow, V T [University of Illinois, Urbana, IL (United States)

    1967-05-15

    This paper discusses mainly the challenge of hydrology, recent activities, events, and major problems in hydrology, and advances in hydrological techniques. New scientific knowledge and techniques developed in many modern scientific disciplines, and the recognition of the importance of hydrology in water-resources development enable and encourage the hydrologist to advance scientific hydrology. Many programmes to promote hydrology and to expand its attendant activities have been developed in recent years. Therefore, the activities in the United States of America, such as the Universities Council on Water Resources and the President's Water for Peace Programme, and the programmes in the International Hydrological Decade are mentioned. The most important advance in theoretical hydrology is the development of a new concept of dynamic sequential systems for the hydrological cycle, thus creating new fields of systems, parametric, and stochastic hydrology. Modern scientific instrumentation provide the hydrologist with better tools for solving his problems. The most important of these, such as electronic computers, remote sensing, and nuclear techniques are discussed. Today various major problems, both theoretical and practical, face the hydrologist. Theoretical problems concern the basic understanding of hydrological systems and the mathematical simulation and physical interpretation of hydrological phenomena. Major practical problems are numerous and diversified, but they are mostly related to the multiple-purpose development of water resources. Four central problematical subjects are discussed; namely, the effects of man on his environment, the dynamics of aqueous flow systems, hydrological transport mechanism, and groundwater hydrology. Also, the use of nuclear techniques in solving various hydrological problems is discussed. It is believed that the application of nuclear techniques would prove extremely valuable in helping solve problems, but their ultimate use in

  15. The progress of hydrology

    International Nuclear Information System (INIS)

    Chow, V.T.

    1967-01-01

    This paper discusses mainly the challenge of hydrology, recent activities, events, and major problems in hydrology, and advances in hydrological techniques. New scientific knowledge and techniques developed in many modern scientific disciplines, and the recognition of the importance of hydrology in water-resources development enable and encourage the hydrologist to advance scientific hydrology. Many programmes to promote hydrology and to expand its attendant activities have been developed in recent years. Therefore, the activities in the United States of America, such as the Universities Council on Water Resources and the President's Water for Peace Programme, and the programmes in the International Hydrological Decade are mentioned. The most important advance in theoretical hydrology is the development of a new concept of dynamic sequential systems for the hydrological cycle, thus creating new fields of systems, parametric, and stochastic hydrology. Modern scientific instrumentation provide the hydrologist with better tools for solving his problems. The most important of these, such as electronic computers, remote sensing, and nuclear techniques are discussed. Today various major problems, both theoretical and practical, face the hydrologist. Theoretical problems concern the basic understanding of hydrological systems and the mathematical simulation and physical interpretation of hydrological phenomena. Major practical problems are numerous and diversified, but they are mostly related to the multiple-purpose development of water resources. Four central problematical subjects are discussed; namely, the effects of man on his environment, the dynamics of aqueous flow systems, hydrological transport mechanism, and groundwater hydrology. Also, the use of nuclear techniques in solving various hydrological problems is discussed. It is believed that the application of nuclear techniques would prove extremely valuable in helping solve problems, but their ultimate use in

  16. Application-Tailored I/O with Streamline

    NARCIS (Netherlands)

    de Bruijn, W.J.; Bos, H.J.; Bal, H.E.

    2011-01-01

    Streamline is a stream-based OS communication subsystem that spans from peripheral hardware to userspace processes. It improves performance of I/O-bound applications (such as webservers and streaming media applications) by constructing tailor-made I/O paths through the operating system for each

  17. CFD Prediction on the Pressure Distribution and Streamlines around an Isolated Single-Storey House Considering the Effect of Topographic Characteristics

    Science.gov (United States)

    Abdullah, J.; Zaini, S. S.; Aziz, M. S. A.; Majid, T. A.; Deraman, S. N. C.; Yahya, W. N. W.

    2018-04-01

    Single-storey houses are classified as low rise building and vulnerable to damages under windstorm event. This study was carried out with the aim to investigate the pressure distribution and streamlines around an isolated house by considering the effect of terrain characteristics. The topographic features such as flat, depression, ridge, and valley, are considered in this study. This simulation were analysed with Ansys FLUENT 14.0 software package. The result showed the topography characteristics influence the value of pressure coefficient and streamlines especially when the house was located at ridge terrain. The findings strongly suggested that wind analysis should include all topographic features in the analysis in order to establish the true wind force exerted on any structure.

  18. Validation of SWAT+ at field level and comparison with previous SWAT models in simulating hydrologic quantity

    Science.gov (United States)

    GAO, J.; White, M. J.; Bieger, K.; Yen, H.; Arnold, J. G.

    2017-12-01

    Over the past 20 years, the Soil and Water Assessment Tool (SWAT) has been adopted by many researches to assess water quantity and quality in watersheds around the world. As the demand increases in facilitating model support, maintenance, and future development, the SWAT source code and data have undergone major modifications over the past few years. To make the model more flexible in terms of interactions of spatial units and processes occurring in watersheds, a completely revised version of SWAT (SWAT+) was developed to improve SWAT's ability in water resource modelling and management. There are only several applications of SWAT+ in large watersheds, however, no study pays attention to validate the new model at field level and assess its performance. To test the basic hydrologic function of SWAT+, it was implemented in five field cases across five states in the U.S. and compared the SWAT+ created results with that from the previous models at the same fields. Additionally, an automatic calibration tool was used to test which model is easier to be calibrated well in a limited number of parameter adjustments. The goal of the study was to evaluate the performance of SWAT+ in simulating stream flow on field level at different geographical locations. The results demonstrate that SWAT+ demonstrated similar performance with previous SWAT model, but the flexibility offered by SWAT+ via the connection of different spatial objects can result in a more accurate simulation of hydrological processes in spatial, especially for watershed with artificial facilities. Autocalibration shows that SWAT+ is much easier to obtain a satisfied result compared with the previous SWAT. Although many capabilities have already been enhanced in SWAT+, there exist inaccuracies in simulation. This insufficiency will be improved with advancements in scientific knowledge on hydrologic process in specific watersheds. Currently, SWAT+ is prerelease, and any errors are being addressed.

  19. A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation

    Science.gov (United States)

    Arsenault, Richard; Gatien, Philippe; Renaud, Benoit; Brissette, François; Martel, Jean-Luc

    2015-10-01

    This study aims to test whether a weighted combination of several hydrological models can simulate flows more accurately than the models taken individually. In addition, the project attempts to identify the most efficient model averaging method and the optimal number of models to include in the weighting scheme. In order to address the first objective, streamflow was simulated using four lumped hydrological models (HSAMI, HMETS, MOHYSE and GR4J-6), each of which were calibrated with three different objective functions on 429 watersheds. The resulting 12 hydrographs (4 models × 3 metrics) were weighted and combined with the help of 9 averaging methods which are the simple arithmetic mean (SAM), Akaike information criterion (AICA), Bates-Granger (BGA), Bayes information criterion (BICA), Bayesian model averaging (BMA), Granger-Ramanathan average variant A, B and C (GRA, GRB and GRC) and the average by SCE-UA optimization (SCA). The same weights were then applied to the hydrographs in validation mode, and the Nash-Sutcliffe Efficiency metric was measured between the averaged and observed hydrographs. Statistical analyses were performed to compare the accuracy of weighted methods to that of individual models. A Kruskal-Wallis test and a multi-objective optimization algorithm were then used to identify the most efficient weighted method and the optimal number of models to integrate. Results suggest that the GRA, GRB, GRC and SCA weighted methods perform better than the individual members. Model averaging from these four methods were superior to the best of the individual members in 76% of the cases. Optimal combinations on all watersheds included at least one of each of the four hydrological models. None of the optimal combinations included all members of the ensemble of 12 hydrographs. The Granger-Ramanathan average variant C (GRC) is recommended as the best compromise between accuracy, speed of execution, and simplicity.

  20. Adaptation to hydrological extremes through insurance: a financial fund simulation model under changing scenarios

    Science.gov (United States)

    Guzman, Diego; Mohor, Guilherme; Câmara, Clarissa; Mendiondo, Eduardo

    2017-04-01

    Researches from around the world relate global environmental changes with the increase of vulnerability to extreme events, such as heavy and scarce precipitations - floods and droughts. Hydrological disasters have caused increasing losses in recent years. Thus, risk transfer mechanisms, such as insurance, are being implemented to mitigate impacts, finance the recovery of the affected population, and promote the reduction of hydrological risks. However, among the main problems in implementing these strategies, there are: First, the partial knowledge of natural and anthropogenic climate change in terms of intensity and frequency; Second, the efficient risk reduction policies require accurate risk assessment, with careful consideration of costs; Third, the uncertainty associated with numerical models and input data used. The objective of this document is to introduce and discuss the feasibility of the application of Hydrological Risk Transfer Models (HRTMs) as a strategy of adaptation to global climate change. The article shows the development of a methodology for the collective and multi-sectoral vulnerability management, facing the hydrological risk in the long term, under an insurance funds simulator. The methodology estimates the optimized premium as a function of willingness to pay (WTP) and the potential direct loss derived from hydrological risk. The proposed methodology structures the watershed insurance scheme in three analysis modules. First, the hazard module, which characterizes the hydrologic threat from the recorded series input or modelled series under IPCC / RCM's generated scenarios. Second, the vulnerability module calculates the potential economic loss for each sector1 evaluated as a function of the return period "TR". Finally, the finance module determines the value of the optimal aggregate premium by evaluating equiprobable scenarios of water vulnerability; taking into account variables such as the maximum limit of coverage, deductible

  1. A global hydrological simulation to specify the sources of water used by humans

    Science.gov (United States)

    Hanasaki, Naota; Yoshikawa, Sayaka; Pokhrel, Yadu; Kanae, Shinjiro

    2018-01-01

    Humans abstract water from various sources to sustain their livelihood and society. Some global hydrological models (GHMs) include explicit schemes of human water abstraction, but the representation and performance of these schemes remain limited. We substantially enhanced the water abstraction schemes of the H08 GHM. This enabled us to estimate water abstraction from six major water sources, namely, river flow regulated by global reservoirs (i.e., reservoirs regulating the flow of the world's major rivers), aqueduct water transfer, local reservoirs, seawater desalination, renewable groundwater, and nonrenewable groundwater. In its standard setup, the model covers the whole globe at a spatial resolution of 0.5° × 0.5°, and the calculation interval is 1 day. All the interactions were simulated in a single computer program, and all water fluxes and storage were strictly traceable at any place and time during the simulation period. A global hydrological simulation was conducted to validate the performance of the model for the period of 1979-2013 (land use was fixed for the year 2000). The simulated water fluxes for water abstraction were validated against those reported in earlier publications and showed a reasonable agreement at the global and country level. The simulated monthly river discharge and terrestrial water storage (TWS) for six of the world's most significantly human-affected river basins were compared with gauge observations and the data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. It is found that the simulation including the newly added schemes outperformed the simulation without human activities. The simulated results indicated that, in 2000, of the 3628±75 km3 yr-1 global freshwater requirement, 2839±50 km3 yr-1 was taken from surface water and 789±30 km3 yr-1 from groundwater. Streamflow, aqueduct water transfer, local reservoirs, and seawater desalination accounted for 1786±23, 199±10, 106±5, and 1.8

  2. Improved hydrological modeling for remote regions using a combination of observed and simulated precipitation data

    DEFF Research Database (Denmark)

    van der Linden, Sandra; Christensen, Jens Hesselbjerg

    2003-01-01

    -resolution regional climate model (HIRHAM4) with a mean-field bias correction using observed precipitation. A hydrological model (USAFLOW) was applied to simulate runoff using observed precipitation and a combination of observed and simulated precipitation as input. The method was illustrated for the remote Usa basin......, situated in the European part of Arctic Russia, close to the Ural Mountains. It was shown that runoff simulations agree better with observations when the combined precipitation data set was used than when only observed precipitation was used. This appeared to be because the HIRHAM4 model data compensated...... for the absence of observed data from mountainous areas where precipitation is orographically enhanced. In both cases, the runoff simulated by USAFLOW was superior to the runoff simulated within the HIRHAM4 model itself. This was attributed to the rather simplistic description of the water balance in the HIRHAM4...

  3. Results from an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q.S. Liu; Y. Oda; W. Wang; C.Y. Zhang

    2006-01-01

    As part of the ongoing international code comparison project DECOVALEX, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near underground waste emplacement drifts. The simulations were conducted for two generic repository types with open or back-filled repository drifts under higher and lower post-closure temperature, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses are currently being resolved. Good agreement in the basic thermal-mechanical responses was achieved for both repository types, even with some teams using relatively simplified thermal-elastic heat-conduction models that neglect complex near-field thermal-hydrological processes. The good agreement between the complex and simplified (and well-known) process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level. The research teams have now moved on to the second phase of the project, the analysis of THM-induced permanent (irreversible) changes and the impact of those changes on the fluid flow field near an emplacement drift

  4. Accelerated Logistics: Streamlining the Army's Supply Chain

    National Research Council Canada - National Science Library

    Wang, Mark

    2000-01-01

    ...) initiative, the Army has dramatically streamlined its supply chain, cutting order and ship times for repair parts by nearly two-thirds nationwide and over 75 percent at several of the major Forces Command (FORSCOM) installations...

  5. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance

    Science.gov (United States)

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2016-01-01

    Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.

  6. A Lightweight Modeling System for Region-Wide Monitoring of Hydrologic Threats

    Science.gov (United States)

    Luna, D.; Hernandez, F.; Wang, R.; Liang, Y.; Teng, W. L.; Liang, X.

    2016-12-01

    Transportation infrastructure is subject to multiple hydrology-related threats, including floods, bridge scouring, landslides, and icing. While modern land-surface models could potentially assist in forecast and response operations, applying these models is challenging, because of the extensiveness of the infrastructure that the government transportation agencies are responsible for. Constructing detailed models for every point of interest and running them in real time would require significant efforts from a team of modeling professionals and considerable computational resources. To address this challenge, we introduce the Hydrologic Disaster Forecast and Response (HDFR) system, a lightweight software framework (under development) that streamlines the process of acquiring real-time and forecast data, inputting it into hydrologic models, and translating the results into concrete actionable information for field-team deployment. HDFR integrates a series of data, modeling, and severity modules behind a unified GIS graphical user interface. The latter interface allows non-expert users to easily execute complex workflows, ranging from forcing information acquisition to severity level computations at specific locations. The HDFR allows the performance of these monitoring tasks without the need of a supercomputer-grade infrastructure. Currently, the HDFR uses a regression algorithm as a proxy for physically-based models, to estimate return periods of variables of interest for watersheds of concern, based on key forcing and state variables (e.g., precipitation, soil moisture). This method only requires the execution of land-surface simulations during an offline training phase; however, the HDFR also features a hierarchical multi-scale modeling strategy for improved forecast precision. This approach minimizes the number of models runs to those for selected areas and resolutions, depending on observed conditions. Several prototype versions of the HDFR built on GRASS GIS

  7. Streamline-based microfluidic device

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Kasdan, Harvey (Inventor)

    2013-01-01

    The present invention provides a streamline-based device and a method for using the device for continuous separation of particles including cells in biological fluids. The device includes a main microchannel and an array of side microchannels disposed on a substrate. The main microchannel has a plurality of stagnation points with a predetermined geometric design, for example, each of the stagnation points has a predetermined distance from the upstream edge of each of the side microchannels. The particles are separated and collected in the side microchannels.

  8. MODFLOW-OWHM v2: The next generation of fully integrated hydrologic simulation software

    Science.gov (United States)

    Boyce, S. E.; Hanson, R. T.; Ferguson, I. M.; Reimann, T.; Henson, W.; Mehl, S.; Leake, S.; Maddock, T.

    2016-12-01

    The One-Water Hydrologic Flow Model (One-Water) is a MODFLOW-based integrated hydrologic flow model designed for the analysis of a broad range of conjunctive-use and climate-related issues. One-Water fully links the movement and use of groundwater, surface water, and imported water for consumption by agriculture and natural vegetation on the landscape, and for potable and other uses within a supply-and-demand framework. One-Water includes linkages for deformation-, flow-, and head-dependent flows; additional observation and parameter options for higher-order calibrations; and redesigned code for facilitation of self-updating models and faster simulation run times. The next version of One-Water, currently under development, will include a new surface-water operations module that simulates dynamic reservoir operations, a new sustainability analysis package that facilitates the estimation and simulation of reduced storage depletion and captured discharge, a conduit-flow process for karst aquifers and leaky pipe networks, a soil zone process that adds an enhanced infiltration process, interflow, deep percolation and soil moisture, and a new subsidence and aquifer compaction package. It will also include enhancements to local grid refinement, and additional features to facilitate easier model updates, faster execution, better error messages, and more integration/cross communication between the traditional MODFLOW packages. By retaining and tracking the water within the hydrosphere, One-Water accounts for "all of the water everywhere and all of the time." This philosophy provides more confidence in the water accounting by the scientific community and provides the public a foundation needed to address wider classes of problems. Ultimately, more complex questions are being asked about water resources, so they require a more complete answer about conjunctive-use and climate-related issues.

  9. Streamlining: Reducing costs and increasing STS operations effectiveness

    Science.gov (United States)

    Petersburg, R. K.

    1985-01-01

    The development of streamlining as a concept, its inclusion in the space transportation system engineering and operations support (STSEOS) contract, and how it serves as an incentive to management and technical support personnel is discussed. The mechanics of encouraging and processing streamlining suggestions, reviews, feedback to submitters, recognition, and how individual employee performance evaluations are used to motivation are discussed. Several items that were implemented are mentioned. Information reported and the methodology of determining estimated dollar savings are outlined. The overall effect of this activity on the ability of the McDonnell Douglas flight preparation and mission operations team to support a rapidly increasing flight rate without a proportional increase in cost is illustrated.

  10. An Educational Model for Hands-On Hydrology Education

    Science.gov (United States)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  11. Simulation of Reactive Constituent Fate and Transport in Hydrologic Simulator GSSHA

    National Research Council Canada - National Science Library

    Downer, Charles W

    2009-01-01

    The purpose of this System-Wide Water Resources Program (SWWRP) technical note is to describe the new fate and transport routines in the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model...

  12. Land Use Management in the Panama Canal Watershed to Maximize Hydrologic Ecosystem Services Benefits: Explicit Simulation of Preferential Flow Paths in an HPC Environment

    Science.gov (United States)

    Regina, J. A.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Cheng, Y.; Zhu, J.

    2017-12-01

    Preferential flow paths (PFP) resulting from biotic and abiotic factors contribute significantly to the generation of runoff in moist lowland tropical watersheds. Flow through PFPs represents the dominant mechanism by which land use choices affect hydrological behavior. The relative influence of PFP varies depending upon land-use management practices. Assessing the possible effects of land-use and landcover change on flows, and other ecosystem services, in the humid tropics partially depends on adequate simulation of PFP across different land-uses. Currently, 5% of global trade passes through the Panama Canal, which is supplied with fresh water from the Panama Canal Watershed. A third set of locks, recently constructed, are expected to double the capacity of the Canal. We incorporated explicit simulation of PFPs in to the ADHydro HPC distributed hydrological model to simulate the effects of land-use and landcover change due to land management incentives on water resources availability in the Panama Canal Watershed. These simulations help to test hypotheses related to the effectiveness of various proposed payments for ecosystem services schemes. This presentation will focus on hydrological model formulation and performance in an HPC environment.

  13. Findings and Challenges in Fine-Resolution Large-Scale Hydrological Modeling

    Science.gov (United States)

    Her, Y. G.

    2017-12-01

    Fine-resolution large-scale (FL) modeling can provide the overall picture of the hydrological cycle and transport while taking into account unique local conditions in the simulation. It can also help develop water resources management plans consistent across spatial scales by describing the spatial consequences of decisions and hydrological events extensively. FL modeling is expected to be common in the near future as global-scale remotely sensed data are emerging, and computing resources have been advanced rapidly. There are several spatially distributed models available for hydrological analyses. Some of them rely on numerical methods such as finite difference/element methods (FDM/FEM), which require excessive computing resources (implicit scheme) to manipulate large matrices or small simulation time intervals (explicit scheme) to maintain the stability of the solution, to describe two-dimensional overland processes. Others make unrealistic assumptions such as constant overland flow velocity to reduce the computational loads of the simulation. Thus, simulation efficiency often comes at the expense of precision and reliability in FL modeling. Here, we introduce a new FL continuous hydrological model and its application to four watersheds in different landscapes and sizes from 3.5 km2 to 2,800 km2 at the spatial resolution of 30 m on an hourly basis. The model provided acceptable accuracy statistics in reproducing hydrological observations made in the watersheds. The modeling outputs including the maps of simulated travel time, runoff depth, soil water content, and groundwater recharge, were animated, visualizing the dynamics of hydrological processes occurring in the watersheds during and between storm events. Findings and challenges were discussed in the context of modeling efficiency, accuracy, and reproducibility, which we found can be improved by employing advanced computing techniques and hydrological understandings, by using remotely sensed hydrological

  14. CO2 and the hydrologic cycle: Simulation of two Texas river basins

    International Nuclear Information System (INIS)

    King, K.W.; Srinivasan, R.; Arnold, J.G.; Williams, J.R.

    1994-01-01

    Increasing concentrations of CO 2 , in the atmosphere have been speculated to have a major effect on water supplies as well as other ecological characteristics. SWAT (Soil Water Assessment Tool) is a river basin scale hydrologic model that was modified to simulate the impact of CO 2 concentration on ET and biomass production. The model was utilized to analyze the impact of global climate change on two contrasting Texas basins. Climatic changes included doubling of CO 2 concentration from 330 ppm to 660 ppm and varying temperatures 0, ±2, and ±4 C from present values. Potential impacts of six hydrologic parameters including ET, potential ET, water yield, water stress, soil water, and biomass were simulated. CO 2 doubling had a more pronounced effect than did temperature variances. When temperature alone was varied, water yield at the outlet of the basins ranged from -4.4% to 6.5% for basin 1202 and from 2.9% to 26.7% for basin 1208. But, when coupled with an elevated CO 2 concentration, water yields increased in the range of 13.1% to 24.5% for basin 1202 and 5.6% to 33.7% for basin 1208. Rising CO 2 levels reduced ET for both basins, representing an enhanced water use efficiency. Seasonal fluctuations of soil water were a result of different growing periods and are evident from water stress encountered by the plant. With enriched CO 2 levels, increases in biomass production ranged from 6.9% to 47.4% and from 14.5 % to 31.4% for basins 1202 and 1208, respectively. 42 refs., 10 figs., 2 tabs

  15. Determining hydrological changes in a small Arctic treeline basin using cold regions hydrological modelling and a pseudo-global warming approach

    Science.gov (United States)

    Krogh, S. A.; Pomeroy, J. W.

    2017-12-01

    Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.

  16. Simulating the complex output of rainfall and hydrological processes using the information contained in large data sets: the Direct Sampling approach.

    Science.gov (United States)

    Oriani, Fabio

    2017-04-01

    The unpredictable nature of rainfall makes its estimation as much difficult as it is essential to hydrological applications. Stochastic simulation is often considered a convenient approach to asses the uncertainty of rainfall processes, but preserving their irregular behavior and variability at multiple scales is a challenge even for the most advanced techniques. In this presentation, an overview on the Direct Sampling technique [1] and its recent application to rainfall and hydrological data simulation [2, 3] is given. The algorithm, having its roots in multiple-point statistics, makes use of a training data set to simulate the outcome of a process without inferring any explicit probability measure: the data are simulated in time or space by sampling the training data set where a sufficiently similar group of neighbor data exists. This approach allows preserving complex statistical dependencies at different scales with a good approximation, while reducing the parameterization to the minimum. The straights and weaknesses of the Direct Sampling approach are shown through a series of applications to rainfall and hydrological data: from time-series simulation to spatial rainfall fields conditioned by elevation or a climate scenario. In the era of vast databases, is this data-driven approach a valid alternative to parametric simulation techniques? [1] Mariethoz G., Renard P., and Straubhaar J. (2010), The Direct Sampling method to perform multiple-point geostatistical simulations, Water. Rerous. Res., 46(11), http://dx.doi.org/10.1029/2008WR007621 [2] Oriani F., Straubhaar J., Renard P., and Mariethoz G. (2014), Simulation of rainfall time series from different climatic regions using the direct sampling technique, Hydrol. Earth Syst. Sci., 18, 3015-3031, http://dx.doi.org/10.5194/hess-18-3015-2014 [3] Oriani F., Borghi A., Straubhaar J., Mariethoz G., Renard P. (2016), Missing data simulation inside flow rate time-series using multiple-point statistics, Environ. Model

  17. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

  18. Advancing the Implementation of Hydrologic Models as Web-based Applications

    Science.gov (United States)

    Dahal, P.; Tarboton, D. G.; Castronova, A. M.

    2017-12-01

    Advanced computer simulations are required to understand hydrologic phenomenon such as rainfall-runoff response, groundwater hydrology, snow hydrology, etc. Building a hydrologic model instance to simulate a watershed requires investment in data (diverse geospatial datasets such as terrain, soil) and computer resources, typically demands a wide skill set from the analyst, and the workflow involved is often difficult to reproduce. This work introduces a web-based prototype infrastructure in the form of a web application that provides researchers with easy to use access to complete hydrological modeling functionality. This includes creating the necessary geospatial and forcing data, preparing input files for a model by applying complex data preprocessing, running the model for a user defined watershed, and saving the results to a web repository. The open source Tethys Platform was used to develop the web app front-end Graphical User Interface (GUI). We used HydroDS, a webservice that provides data preparation processing capability to support backend computations used by the app. Results are saved in HydroShare, a hydrologic information system that supports the sharing of hydrologic data, model and analysis tools. The TOPographic Kinematic APproximation and Integration (TOPKAPI) model served as the example for which we developed a complete hydrologic modeling service to demonstrate the approach. The final product is a complete modeling system accessible through the web to create input files, and run the TOPKAPI hydrologic model for a watershed of interest. We are investigating similar functionality for the preparation of input to Regional Hydro-Ecological Simulation System (RHESSys). Key Words: hydrologic modeling, web services, hydrologic information system, HydroShare, HydroDS, Tethys Platform

  19. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    Science.gov (United States)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff

  20. The impact of runoff and surface hydrology on Titan's climate

    Science.gov (United States)

    Faulk, Sean; Lora, Juan; Mitchell, Jonathan

    2017-10-01

    Titan’s surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane “wetlands” reservoirs realistically produce many observed features of Titan’s atmosphere, whereas “aquaplanet” simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan’s surface. The wetlands configuration is, in part, motivated by Titan’s large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. To isolate the singular impact of surface runoff on Titan’s climatology, we run simulations without parameterizations of subsurface flow and topography-atmosphere interactions. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan’s hydrology provides new insight into the complex interaction between Titan’s atmosphere and surface, demonstrates the influence of surface runoff on Titan’s global climate

  1. Implications of the methodological choices for hydrologic portrayals of climate change over the contiguous United States: Statistically downscaled forcing data and hydrologic models

    Science.gov (United States)

    Mizukami, Naoki; Clark, Martyn P.; Gutmann, Ethan D.; Mendoza, Pablo A.; Newman, Andrew J.; Nijssen, Bart; Livneh, Ben; Hay, Lauren E.; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.

  2. Effectiveness of and obstacles to antibiotic streamlining to amoxicillin monotherapy in bacteremic pneumococcal pneumonia.

    Science.gov (United States)

    Blot, Mathieu; Pivot, Diane; Bourredjem, Abderrahmane; Salmon-Rousseau, Arnaud; de Curraize, Claire; Croisier, Delphine; Chavanet, Pascal; Binquet, Christine; Piroth, Lionel

    2017-09-01

    Antibiotic streamlining is pivotal to reduce the emergence of resistant bacteria. However, whether streamlining is frequently performed and safe in difficult situations, such as bacteremic pneumococcal pneumonia (BPP), has still to be assessed. All adult patients admitted to Dijon Hospital (France) from 2005 to 2013 who had BPP without complications, and were alive on the third day were enrolled. Clinical, biological, radiological, microbiological and therapeutic data were recorded. A first analysis was conducted to assess factors associated with being on amoxicillin on the third day. A second analysis, adjusting for a propensity score, was performed to determine whether 30-day mortality was associated with streamlining to amoxicillin monotherapy. Of the 196 patients hospitalized for BPP, 161 were still alive on the third day and were included in the study. Treatment was streamlined to amoxicillin in 60 patients (37%). Factors associated with not streamlining were severe pneumonia (OR 3.11, 95%CI [1.23-7.87]) and a first-line antibiotic combination (OR 3.08, 95%CI [1.34-7.09]). By contrast, starting with amoxicillin monotherapy correlated inversely with the risk of subsequent treatment with antibiotics other than amoxicillin (OR 0.06, 95%CI [0.01-0.30]). The Cox model adjusted for the propensity-score analysis showed that streamlining to amoxicillin during BPP was not significantly associated with a higher risk of 30-day mortality (HR 0.38, 95%CI [0.08-1.87]). Streamlining to amoxicillin is insufficiently implemented during BPP. This strategy is safe and potentially associated with ecological and economic benefits; therefore, it should be further encouraged, particularly when antibiotic combinations are started for severe pneumonia. Copyright © 2017. Published by Elsevier B.V.

  3. Modeling the hydrological cycle on Mars

    Directory of Open Access Journals (Sweden)

    Ghada Machtoub

    2012-03-01

    Full Text Available The study provides a detailed analysis of the hydrological cycle on Mars simulated with a newly developed microphysical model, incorporated in a spectral Mars General Circulation Model. The modeled hydrological cycle is compared well with simulations of other global climate models. The simulated seasonal migration ofwater vapor, circulation instability, and the high degree of temporal variability of localized water vapor outbursts are shown closely consistent with recent observations. The microphysical parameterization provides a significant improvement in the modeling of ice clouds evolved over the tropics and major ancient volcanoes on Mars. The most significant difference between the simulations presented here and other GCM results is the level at which the water ice clouds are found. The model findings also support interpretation of observed thermal anomalies in the Martian tropics during northern spring and summer seasons.

  4. Calibration by Hydrological Response Unit of a National Hydrologic Model to Improve Spatial Representation and Distribution of Parameters

    Science.gov (United States)

    Norton, P. A., II

    2015-12-01

    The U. S. Geological Survey is developing a National Hydrologic Model (NHM) to support consistent hydrologic modeling across the conterminous United States (CONUS). The Precipitation-Runoff Modeling System (PRMS) simulates daily hydrologic and energy processes in watersheds, and is used for the NHM application. For PRMS each watershed is divided into hydrologic response units (HRUs); by default each HRU is assumed to have a uniform hydrologic response. The Geospatial Fabric (GF) is a database containing initial parameter values for input to PRMS and was created for the NHM. The parameter values in the GF were derived from datasets that characterize the physical features of the entire CONUS. The NHM application is composed of more than 100,000 HRUs from the GF. Selected parameter values commonly are adjusted by basin in PRMS using an automated calibration process based on calibration targets, such as streamflow. Providing each HRU with distinct values that captures variability within the CONUS may improve simulation performance of the NHM. During calibration of the NHM by HRU, selected parameter values are adjusted for PRMS based on calibration targets, such as streamflow, snow water equivalent (SWE) and actual evapotranspiration (AET). Simulated SWE, AET, and runoff were compared to value ranges derived from multiple sources (e.g. the Snow Data Assimilation System, the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS) Global Evapotranspiration Project, the Simplified Surface Energy Balance model, and the Monthly Water Balance Model). This provides each HRU with a distinct set of parameter values that captures the variability within the CONUS, leading to improved model performance. We present simulation results from the NHM after preliminary calibration, including the results of basin-level calibration for the NHM using: 1) default initial GF parameter values, and 2) parameter values calibrated by HRU.

  5. Microbial Enhanced Oil Recovery: 3D Simulation with Gravity Effects

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Jessen, K.; Shapiro, Alexander

    2010-01-01

    Microbial enhanced oil recovery (MEOR) utilizes the activity of microorganisms, where microorganisms simultaneously grow in a reservoir and convert substrate into recovery enhancing products (usually, surfactants). In order to predict the performance of a MEOR process, a simulation tool is required...... using an operator splitting technique. To the best of our knowledge, this has resulted in the first full 3D MEOR streamline simulator. For verification purposes, we compare results from our streamline MEOR simulator to those of a conventional finite difference approach for 1D and 2D displacement...

  6. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    Science.gov (United States)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  7. Using an ensemble of climate projections for simulating recent and near-future hydrological change to lake Vaenern in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Jonas; Yang, Wei; Graham, L. Phil; Rosberg, Joergen; Andreasson, Johan (Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)), e-mail: jonas.olsson@smhi.se

    2011-01-15

    Lake Vaenern and River Goeta aelv in southern Sweden constitute a large and complex hydrological system that is highly vulnerable to climate change. In this study, an ensemble of 12 regional climate projections is used to simulate the inflow to Lake Vaenern by the HBV hydrological model. By using distribution based scaling of the climate model output, all projections can accurately reproduce the annual cycle of mean monthly inflows for the period 1961-1990 as simulated using HBV with observed temperature and precipitation ('HBVobs'). Significant changes towards higher winter inflow and a reduced spring flood were found when comparing the period 1991-2008 to 1961-1990 in the HBVobs simulations and the ability of the regional projections to reproduce these changes varied. The main uncertainties in the projections for 1991-2008 were found to originate from the global climate model used, including its initialization, and in one case, the emissions scenario, whereas the regional climate model used and its resolution showed a smaller influence. The projections that most accurately reproduce the recent change suggest that the current trends in the winter and spring inflows will continue over the period 2009-2030

  8. Eco-hydrological process simulations within an integrated surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Loinaz, Maria Christina; Bauer-Gottwein, Peter

    2014-01-01

    Integrated water resources management requires tools that can quantify changes in groundwater, surface water, water quality and ecosystem health, as a result of changes in catchment management. To address these requirements we have developed an integrated eco-hydrological modelling framework...... that allows hydrologists and ecologists to represent the complex and dynamic interactions occurring between surface water, ground water, water quality and freshwater ecosystems within a catchment. We demonstrate here the practical application of this tool to two case studies where the interaction of surface...... water and ground water are important for the ecosystem. In the first, simulations are performed to understand the importance of surface water-groundwater interactions for a restored riparian wetland on the Odense River in Denmark as part of a larger investigation of water quality and nitrate retention...

  9. Streamlined approach to waste management at CRL

    International Nuclear Information System (INIS)

    Adams, L.; Campbell, B.

    2011-01-01

    Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at Chalk River Laboratories (CRL) as a result of research and development activities and operations since the 1940s. Over the years, the wastes produced as a byproduct of activities delivering the core missions of the CRL site have been of many types, and today, over thirty distinct waste streams have been identified, all requiring efficient management. With the commencement of decommissioning of the legacy created as part of the development of the Canadian nuclear industry, the volumes and range of wastes to be managed have been increasing in the near term, and this trend will continue into the future. The development of a streamlined approach to waste management is a key to successful waste management at CRL. Waste management guidelines that address all of the requirements have become complex, and so have the various waste management groups receiving waste, with their many different processes and capabilities. This has led to difficulties for waste generators in understanding all of the requirements to be satisfied for the various CRL waste receivers, whose primary concerns are to be safe and in compliance with their acceptance criteria and license conditions. As a result, waste movement on site can often be very slow, especially for non-routine waste types. Recognizing an opportunity for improvement, the Waste Management organization at CRL has implemented a more streamlined approach with emphasis on early identification of waste type and possible disposition path. This paper presents a streamlined approach to waste identification and waste management at CRL, the implementation methodology applied and the early results achieved from this process improvement. (author)

  10. Preface: Research advances in vadose zone hydrology through simulations with the TOUGH codes

    International Nuclear Information System (INIS)

    Finsterle, Stefan; Oldenburg, Curtis M.

    2004-01-01

    Numerical simulators are playing an increasingly important role in advancing our fundamental understanding of hydrological systems. They are indispensable tools for managing groundwater resources, analyzing proposed and actual remediation activities at contaminated sites, optimizing recovery of oil, gas, and geothermal energy, evaluating subsurface structures and mining activities, designing monitoring systems, assessing the long-term impacts of chemical and nuclear waste disposal, and devising improved irrigation and drainage practices in agricultural areas, among many other applications. The complexity of subsurface hydrology in the vadose zone calls for sophisticated modeling codes capable of handling the strong nonlinearities involved, the interactions of coupled physical, chemical and biological processes, and the multiscale heterogeneities inherent in such systems. The papers in this special section of ''Vadose Zone Journal'' are illustrative of the enormous potential of such numerical simulators as applied to the vadose zone. The papers describe recent developments and applications of one particular set of codes, the TOUGH family of codes, as applied to nonisothermal flow and transport in heterogeneous porous and fractured media (http://www-esd.lbl.gov/TOUGH2). The contributions were selected from presentations given at the TOUGH Symposium 2003, which brought together developers and users of the TOUGH codes at the Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California, for three days of information exchange in May 2003 (http://www-esd.lbl.gov/TOUGHsymposium). The papers presented at the symposium covered a wide range of topics, including geothermal reservoir engineering, fracture flow and vadose zone hydrology, nuclear waste disposal, mining engineering, reactive chemical transport, environmental remediation, and gas transport. This Special Section of ''Vadose Zone Journal'' contains revised and expanded versions of selected papers from the

  11. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    Science.gov (United States)

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  12. Streamlining the Bankability Process using International Standards

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Repins, Ingrid L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, George [Sunset Technology, Mount Airy, MD; Ramu, Govind [SunPower, San Jose, California; Heinz, Matthias [TUV Rheinland, Cologne, Germany; Chen, Yingnan [CGC (China General Certification Center), Beijing; Wohlgemuth, John [PowerMark, Union Hall, VA; Lokanath, Sumanth [First Solar, Tempe, Arizona; Daniels, Eric [Suncycle USA, Frederick MD; Hsi, Edward [Swiss RE, Zurich, Switzerland; Yamamichi, Masaaki [RTS, Trumbull, CT

    2017-09-27

    NREL has supported the international efforts to create a streamlined process for documenting bankability and/or completion of each step of a PV project plan. IECRE was created for this purpose in 2014. This poster describes the goals, current status of this effort, and how individuals and companies can become involved.

  13. Modeling the Hydrologic Effects of Large-Scale Green Infrastructure Projects with GIS

    Science.gov (United States)

    Bado, R. A.; Fekete, B. M.; Khanbilvardi, R.

    2015-12-01

    Impervious surfaces in urban areas generate excess runoff, which in turn causes flooding, combined sewer overflows, and degradation of adjacent surface waters. Municipal environmental protection agencies have shown a growing interest in mitigating these effects with 'green' infrastructure practices that partially restore the perviousness and water holding capacity of urban centers. Assessment of the performance of current and future green infrastructure projects is hindered by the lack of adequate hydrological modeling tools; conventional techniques fail to account for the complex flow pathways of urban environments, and detailed analyses are difficult to prepare for the very large domains in which green infrastructure projects are implemented. Currently, no standard toolset exists that can rapidly and conveniently predict runoff, consequent inundations, and sewer overflows at a city-wide scale. We demonstrate how streamlined modeling techniques can be used with open-source GIS software to efficiently model runoff in large urban catchments. Hydraulic parameters and flow paths through city blocks, roadways, and sewer drains are automatically generated from GIS layers, and ultimately urban flow simulations can be executed for a variety of rainfall conditions. With this methodology, users can understand the implications of large-scale land use changes and green/gray storm water retention systems on hydraulic loading, peak flow rates, and runoff volumes.

  14. Streamline-concentration balance model for in situ uranium leaching and site restoration

    International Nuclear Information System (INIS)

    Bommer, P.M.

    1979-01-01

    This work presents two computer models. One describes in situ uranium leaching and the other describes post leaching site restoration. Both models use a streamline generator to set up the flow field over the reservoir. The leaching model then uses the flow data in a concentration balance along each streamline coupled with the appropriate reaction kinetics to calculate uranium production. The restoration model uses the same procedure ecept that binary cation exchange is used as the restoring mechanism along each streamline and leaching cation clean up is stimulated. The mathematical basis for each model is shown in detail along with the computational schemes used. Finally, the two models have been used with several data sets to point out their capabilities and to illustrate important leaching and restoration parameters and schemes

  15. Simulation and Hydrologic Modeling of Urban Watershed for Flooding Forecast: The case of the Rio das Antas in the city of Anápolis-GO

    Directory of Open Access Journals (Sweden)

    Eduardo Dourado Argolo

    2016-12-01

    Full Text Available The study area is located along the Rio das Antas basin in the city of Anápolis, Goiás. This study exemplifies an urban area exposed to flooding by rainwater. Decline in the permeability of the river basin area is result of significant real state development in recent years. This study proposes to simulate water flows and respective flooding areas along different sections of the River in response to different rainfall intensities. The simulated flow rates are the result of interpretation of land use scenarios and hydrologic modeling of the river basin area. The rational method and the Bernoulli equation were used in the hydraulic simulation model of the computer program HEC-RAS (Hydrologic Engineering Center's River Analysis System...

  16. Estimating hydrologic budgets for six Persian Gulf watersheds, Iran

    Science.gov (United States)

    Hosseini, Majid; Ghafouri, Mohammad; Tabatabaei, MahmoudReza; Goodarzi, Masoud; Mokarian, Zeinab

    2017-10-01

    Estimation of the major components of the hydrologic budget is important for determining the impacts on the water supply and quality of either planned or proposed land management projects, vegetative changes, groundwater withdrawals, and reservoir management practices and plans. As acquisition of field data is costly and time consuming, models have been created to test various land use practices and their concomitant effects on the hydrologic budget of watersheds. To simulate such management scenarios realistically, a model should be able to simulate the individual components of the hydrologic budget. The main objective of this study is to perform the SWAT2012 model for estimation of hydrological budget in six subbasin of Persian Gulf watershed; Golgol, Baghan, Marghab Shekastian, Tangebirim and Daragah, which are located in south and south west of Iran during 1991-2009. In order to evaluate the performance of the model, hydrological data, soil map, land use map and digital elevation model (DEM) are obtained and prepared for each catchment to run the model. SWAT-CUP with SUFI2 program was used for simulation, uncertainty and validation with 95 Percent Prediction Uncertainty. Coefficient of determination ( R 2) and Nash-Sutcliffe coefficient (NS) were used for evaluation of the model simulation results. Comparison of measured and predicted values demonstrated that each component of the model gave reasonable output and that the interaction among components was realistic. The study has produced a technique with reliable capability for annual and monthly water budget components in Persian Gulf watershed.

  17. Publishing and sharing of hydrologic models through WaterHUB

    Science.gov (United States)

    Merwade, V.; Ruddell, B. L.; Song, C.; Zhao, L.; Kim, J.; Assi, A.

    2011-12-01

    Most hydrologists use hydrologic models to simulate the hydrologic processes to understand hydrologic pathways and fluxes for research, decision making and engineering design. Once these tasks are complete including publication of results, the models generally are not published or made available to the public for further use and improvement. Although publication or sharing of models is not required for journal publications, sharing of models may open doors for new collaborations, and avoids duplication of efforts if other researchers are interested in simulating a particular watershed for which a model already exists. For researchers, who are interested in sharing models, there are limited avenues to publishing their models to the wider community. Towards filling this gap, a prototype cyberinfrastructure (CI), called WaterHUB, is developed for sharing hydrologic data and modeling tools in an interactive environment. To test the utility of WaterHUB for sharing hydrologic models, a system to publish and share SWAT (Soil Water Assessment Tool) is developed. Users can utilize WaterHUB to search and download existing SWAT models, and also upload new SWAT models. Metadata such as the name of the watershed, name of the person or agency who developed the model, simulation period, time step, and list of calibrated parameters also published with individual model.

  18. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    Science.gov (United States)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked

  19. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Science.gov (United States)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.

    2017-08-01

    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  20. Assessment of the effect of climate change on the hydrological cycle

    DEFF Research Database (Denmark)

    Karlsson, Ida Bjørnholt

    , implying that when doing a future impact study, hydrological predictions could be compromised when using hydrological models calibrated on present time series. The hydrological response to a future high-end emission scenario was also explored. The hydrological model simulations and drought indices analyses...... showed longer and dryer periods leading to enhanced root zone dryness, lowered river discharge, and decreasing groundwater head elevation increasing the risk of stream flow drought and crop failure. In contrast, wetter winters will lead to increased flood risks. Finally, the influence of choosing...... a specific impact study setup was also investigated by simulating and analysing results from three factors; four climate models in combinations with three hydrological models and four land use scenarios. Results showed that the climate model was the dominant uncertainty factor on stream flow and hydraulic...

  1. Streamlining Research by Using Existing Tools

    OpenAIRE

    Greene, Sarah M.; Baldwin, Laura-Mae; Dolor, Rowena J.; Thompson, Ella; Neale, Anne Victoria

    2011-01-01

    Over the past two decades, the health research enterprise has matured rapidly, and many recognize an urgent need to translate pertinent research results into practice, to help improve the quality, accessibility, and affordability of U.S. health care. Streamlining research operations would speed translation, particularly for multi-site collaborations. However, the culture of research discourages reusing or adapting existing resources or study materials. Too often, researchers start studies and...

  2. A sensitivity analysis of regional and small watershed hydrologic models

    Science.gov (United States)

    Ambaruch, R.; Salomonson, V. V.; Simmons, J. W.

    1975-01-01

    Continuous simulation models of the hydrologic behavior of watersheds are important tools in several practical applications such as hydroelectric power planning, navigation, and flood control. Several recent studies have addressed the feasibility of using remote earth observations as sources of input data for hydrologic models. The objective of the study reported here was to determine how accurately remotely sensed measurements must be to provide inputs to hydrologic models of watersheds, within the tolerances needed for acceptably accurate synthesis of streamflow by the models. The study objective was achieved by performing a series of sensitivity analyses using continuous simulation models of three watersheds. The sensitivity analysis showed quantitatively how variations in each of 46 model inputs and parameters affect simulation accuracy with respect to five different performance indices.

  3. 48 CFR 12.602 - Streamlined evaluation of offers.

    Science.gov (United States)

    2010-10-01

    ... offers. 12.602 Section 12.602 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... for Commercial Items 12.602 Streamlined evaluation of offers. (a) When evaluation factors are used... evaluation factors. (b) Offers shall be evaluated in accordance with the criteria contained in the...

  4. Scaling, Similarity, and the Fourth Paradigm for Hydrology

    Science.gov (United States)

    Peters-Lidard, Christa D.; Clark, Martyn; Samaniego, Luis; Verhoest, Niko E. C.; van Emmerik, Tim; Uijlenhoet, Remko; Achieng, Kevin; Franz, Trenton E.; Woods, Ross

    2017-01-01

    In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm), and assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modelling, have laid the foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses. We summarize important scaling and similarity concepts (hypotheses) that require testing, describe a mutual information framework for testing these hypotheses, describe boundary condition, state flux, and parameter data requirements across scales to support testing these hypotheses, and discuss some challenges to overcome while pursuing the fourth hydrological paradigm. We call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply this to outstanding challenges in scaling and similarity.

  5. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  6. A "total parameter estimation" method in the varification of distributed hydrological models

    Science.gov (United States)

    Wang, M.; Qin, D.; Wang, H.

    2011-12-01

    Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in

  7. Spatial-Scale Characteristics of Precipitation Simulated by Regional Climate Models and the Implications for Hydrological Modeling

    DEFF Research Database (Denmark)

    Rasmussen, S.H.; Christensen, J. H.; Drews, Martin

    2012-01-01

    Precipitation simulated by regional climate models (RCMs) is generally biased with respect to observations, especially at the local scale of a few tens of kilometers. This study investigates how well two different RCMs are able to reproduce the spatial correlation patterns of observed summer...... length scales on the order of 130 km are found in both observed data and RCM simulations. When simulations and observations are aggregated to different grid sizes, the pattern correlation significantly decreases when the aggregation length is less than roughly 100 km. Furthermore, the intermodel standard......, reflecting larger predictive certainty of the RCMs at larger scales. The findings on aggregated grid scales are shown to be largely independent of the underlying RCMs grid resolutions but not of the overall size of RCM domain. With regard to hydrological modeling applications, these findings indicate...

  8. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.

    Science.gov (United States)

    Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta

    2012-12-01

    River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  10. The transferability of hydrological models under nonstationary climatic conditions

    Directory of Open Access Journals (Sweden)

    C. Z. Li

    2012-04-01

    Full Text Available This paper investigates issues involved in calibrating hydrological models against observed data when the aim of the modelling is to predict future runoff under different climatic conditions. To achieve this objective, we tested two hydrological models, DWBM and SIMHYD, using data from 30 unimpaired catchments in Australia which had at least 60 yr of daily precipitation, potential evapotranspiration (PET, and streamflow data. Nash-Sutcliffe efficiency (NSE, modified index of agreement (d1 and water balance error (WBE were used as performance criteria. We used a differential split-sample test to split up the data into 120 sub-periods and 4 different climatic sub-periods in order to assess how well the calibrated model could be transferred different periods. For each catchment, the models were calibrated for one sub-period and validated on the other three. Monte Carlo simulation was used to explore parameter stability compared to historic climatic variability. The chi-square test was used to measure the relationship between the distribution of the parameters and hydroclimatic variability. The results showed that the performance of the two hydrological models differed and depended on the model calibration. We found that if a hydrological model is set up to simulate runoff for a wet climate scenario then it should be calibrated on a wet segment of the historic record, and similarly a dry segment should be used for a dry climate scenario. The Monte Carlo simulation provides an effective and pragmatic approach to explore uncertainty and equifinality in hydrological model parameters. Some parameters of the hydrological models are shown to be significantly more sensitive to the choice of calibration periods. Our findings support the idea that when using conceptual hydrological models to assess future climate change impacts, a differential split-sample test and Monte Carlo simulation should be used to quantify uncertainties due to

  11. Case studies in geographic information systems for environmental streamlining

    Science.gov (United States)

    2012-05-31

    This 2012 summary report addresses the current use of geographic information systems (GIS) and related technologies by State Departments of Transportation (DOTs) for environmental streamlining and stewardship, particularly in relation to the National...

  12. A framework for human-hydrologic system model development integrating hydrology and water management: application to the Cutzamala water system in Mexico

    Science.gov (United States)

    Wi, S.; Freeman, S.; Brown, C.

    2017-12-01

    This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.

  13. Characterizing Flow and Suspended Sediment Trends in the Sacramento River Basin, CA Using Hydrologic Simulation Program - FORTRAN (HSPF)

    Science.gov (United States)

    Stern, M. A.; Flint, L. E.; Flint, A. L.; Wright, S. A.; Minear, J. T.

    2014-12-01

    A watershed model of the Sacramento River Basin, CA was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay Delta (SFBD) for fifty years (1958-2008) using the Hydrological Simulation Program - FORTRAN (HSPF). To compensate for the large model domain and sparse data, rigorous meteorological development and characterization of hydraulic geometry were employed to spatially distribute climate and hydrologic processes in unmeasured locations. Parameterization techniques sought to include known spatial information for tributaries such as soil information and slope, and then parameters were scaled up or down during calibration to retain the spatial characteristics of the land surface in un-gaged areas. Accuracy was assessed by comparing model calibration to measured streamflow. Calibration and validation of the Sacramento River ranged from "good" to "very good" performance based upon a "goodness-of-fit" statistical guideline. Model calibration to measured sediment loads were underestimated on average by 39% for the Sacramento River, and model calibration to suspended sediment concentrations were underestimated on average by 22% for the Sacramento River. Sediment loads showed a slight decreasing trend from 1958-2008 and was significant (p < 0.0025) in the lower 50% of stream flows. Hypothetical climate change scenarios were developed using the Climate Assessment Tool (CAT). Several wet and dry scenarios coupled with temperature increases were imposed on the historical base conditions to evaluate sensitivity of streamflow and sediment on potential changes in climate. Wet scenarios showed an increase of 9.7 - 17.5% in streamflow, a 7.6 - 17.5% increase in runoff, and a 30 - 93% increase in sediment loads. The dry scenarios showed a roughly 5% decrease in flow and runoff, and a 16 - 18% decrease in sediment loads. The base hydrology was most sensitive to a temperature increase of 1.5 degrees Celsius and an increase in storm intensity and

  14. JAMS - a software platform for modular hydrological modelling

    Science.gov (United States)

    Kralisch, Sven; Fischer, Christian

    2015-04-01

    Current challenges of understanding and assessing the impacts of climate and land use changes on environmental systems demand for an ever-increasing integration of data and process knowledge in corresponding simulation models. Software frameworks that allow for a seamless creation of integrated models based on less complex components (domain models, process simulation routines) have therefore gained increasing attention during the last decade. JAMS is an Open-Source software framework that has been especially designed to cope with the challenges of eco-hydrological modelling. This is reflected by (i) its flexible approach for representing time and space, (ii) a strong separation of process simulation components from the declarative description of more complex models using domain specific XML, (iii) powerful analysis and visualization functions for spatial and temporal input and output data, and (iv) parameter optimization and uncertainty analysis functions commonly used in environmental modelling. Based on JAMS, different hydrological and nutrient-transport simulation models were implemented and successfully applied during the last years. We will present the JAMS core concepts and give an overview of models, simulation components and support tools available for that framework. Sample applications will be used to underline the advantages of component-based model designs and to show how JAMS can be used to address the challenges of integrated hydrological modelling.

  15. The PCR-GLOBWB global hydrological reanalysis product

    Science.gov (United States)

    Wanders, Niko; Bierkens, Marc; Sutanudjaja, Edwin; van Beek, Rens

    2014-05-01

    Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal "land surface hydrological reanalysis" dataset with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we use PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB simulates moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid variations of elevation, land cover and soil saturation distribution. The model includes improved schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. It also dynamically simulates water storage in reservoirs, water demand and the withdrawal, allocation and consumptive use of surface water and groundwater resources. By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrate the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow accumulation and melt, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation

  16. VIC–CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Directory of Open Access Journals (Sweden)

    K. Malek

    2017-08-01

    Full Text Available Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively. A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC–CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology, it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC–CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC–CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land–atmosphere interactions. The performance of VIC–CropSyst was evaluated on both regional (over the US Pacific Northwest and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois. The agreement between recorded and simulated evapotranspiration (ET, applied irrigation water, soil moisture, leaf area index (LAI, and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  17. Streamlined Darwin simulation of nonneutral plasmas

    International Nuclear Information System (INIS)

    Hewett, D.W.; Boyd, J.K.

    1987-01-01

    Efficient, new algorithms that require less formal manipulation than previous implementations have been formulated for the numerical solution of the Darwin model. These new procedures reduce the effort required to achieve some of the advantages that the Darwin model offers. Because the Courant--Friedrichs--Lewy stability limit for radiation modes is eliminated, the Darwin model has the advantage of a substantially larger time-step. Further, without radiation modes, simulation results are less sensitive to enhanced particle fluctation noise. We discuss methods for calculating the magnetic field that avoid formal vector decomposition and offer a new procedure for finding the inductive electric field. This procedure avoids vector decomposition of plasma source terms and circumvents some source gradient issues that slow convergence. As a consequence, the numerical effort required for each of the field time-steps is reduced, and more importantly, the need to specify several nonintuitive boundary conditions is eliminated. copyright 1987 Academic Press, Inc

  18. Mean streamline analysis for performance prediction of cross-flow fans

    International Nuclear Information System (INIS)

    Kim, Jae Won; Oh, Hyoung Woo

    2004-01-01

    This paper presents the mean streamline analysis using the empirical loss correlations for performance prediction of cross-flow fans. Comparison of overall performance predictions with test data of a cross-flow fan system with a simplified vortex wall scroll casing and with the published experimental characteristics for a cross-flow fan has been carried out to demonstrate the accuracy of the proposed method. Predicted performance curves by the present mean streamline analysis agree well with experimental data for two different cross-flow fans over the normal operating conditions. The prediction method presented herein can be used efficiently as a tool for the preliminary design and performance analysis of general-purpose cross-flow fans

  19. Effects of Land Use Changes on the Runoff in the Landscape Based on Hydrological Simulation in HEC-HMS and HEC-RAS Using Different Elevation Data

    Directory of Open Access Journals (Sweden)

    Josef Divín

    2016-01-01

    Full Text Available The aim of this paper is to determine the effects of land use changes on the runoff in the landscape by means of hydrological modelling. Our partial aim is also to determine the effect of different elevation data and define optimal data sources for this modelling. The research was conducted on the Starozuberský stream experimental watershed. For comparing elevation models, three scenarios were developed with different input data. Based on a comparison of these models an optimal data source for hydrological modelling was selected. To simulate the change in land use, we have created two scenarios based either upon the current land use and historical data from the fifties of the twentieth century. Comparison was carried out using the HEC-HMS software interface for rainfall-runoff simulation and HEC-RAS for the flooding simulation. Data for the simulation were prepared using the ESRI ArcGIS extensions, namely HEC- GeoHMS and HEC-GeoRAS.

  20. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques

    Science.gov (United States)

    Bellos, Vasilis; Tsakiris, George

    2016-09-01

    The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.

  1. Improving Permafrost Hydrology Prediction Through Data-Model Integration

    Science.gov (United States)

    Wilson, C. J.; Andresen, C. G.; Atchley, A. L.; Bolton, W. R.; Busey, R.; Coon, E.; Charsley-Groffman, L.

    2017-12-01

    The CMIP5 Earth System Models were unable to adequately predict the fate of the 16GT of permafrost carbon in a warming climate due to poor representation of Arctic ecosystem processes. The DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic project aims to reduce uncertainty in the Arctic carbon cycle and its impact on the Earth's climate system by improved representation of the coupled physical, chemical and biological processes that drive how much buried carbon will be converted to CO2 and CH4, how fast this will happen, which form will dominate, and the degree to which increased plant productivity will offset increased soil carbon emissions. These processes fundamentally depend on permafrost thaw rate and its influence on surface and subsurface hydrology through thermal erosion, land subsidence and changes to groundwater flow pathways as soil, bedrock and alluvial pore ice and massive ground ice melts. LANL and its NGEE colleagues are co-developing data and models to better understand controls on permafrost degradation and improve prediction of the evolution of permafrost and its impact on Arctic hydrology. The LANL Advanced Terrestrial Simulator was built using a state of the art HPC software framework to enable the first fully coupled 3-dimensional surface-subsurface thermal-hydrology and land surface deformation simulations to simulate the evolution of the physical Arctic environment. Here we show how field data including hydrology, snow, vegetation, geochemistry and soil properties, are informing the development and application of the ATS to improve understanding of controls on permafrost stability and permafrost hydrology. The ATS is being used to inform parameterizations of complex coupled physical, ecological and biogeochemical processes for implementation in the DOE ACME land model, to better predict the role of changing Arctic hydrology on the global climate system. LA-UR-17-26566.

  2. An Evaluation of the Acquisition Streamlining Methods at the Fleet and Industrial Supply Center Pearl Harbor Hawaii

    National Research Council Canada - National Science Library

    Henry, Mark

    1999-01-01

    ...) Pearl Harbor's implementation of acquisition streamlining initiatives and recommends viable methods of streamlining the acquisition process at FISC Pearl Harbor and other Naval Supply Systems Command...

  3. An experimental seasonal hydrological forecasting system over the Yellow River basin - Part 1: Understanding the role of initial hydrological conditions

    Science.gov (United States)

    Yuan, Xing; Ma, Feng; Wang, Linying; Zheng, Ziyan; Ma, Zhuguo; Ye, Aizhong; Peng, Shaoming

    2016-06-01

    The hydrological cycle over the Yellow River has been altered by the climate change and human interventions greatly during past decades, with a decadal drying trend mixed with a large variation of seasonal hydrological extremes. To provide support for the adaptation to a changing environment, an experimental seasonal hydrological forecasting system is established over the Yellow River basin. The system draws from a legacy of a global hydrological forecasting system that is able to make use of real-time seasonal climate predictions from North American Multimodel Ensemble (NMME) climate models through a statistical downscaling approach but with a higher resolution and a spatially disaggregated calibration procedure that is based on a newly compiled hydrological observation dataset with 5 decades of naturalized streamflow at 12 mainstream gauges and a newly released meteorological observation dataset including 324 meteorological stations over the Yellow River basin. While the evaluation of the NMME-based seasonal hydrological forecasting will be presented in a companion paper to explore the added values from climate forecast models, this paper investigates the role of initial hydrological conditions (ICs) by carrying out 6-month Ensemble Streamflow Prediction (ESP) and reverse ESP-type simulations for each calendar month during 1982-2010 with the hydrological models in the forecasting system, i.e., a large-scale land surface hydrological model and a global routing model that is regionalized over the Yellow River. In terms of streamflow predictability, the ICs outweigh the meteorological forcings up to 2-5 months during the cold and dry seasons, but the latter prevails over the former in the predictability after the first month during the warm and wet seasons. For the streamflow forecasts initialized at the end of the rainy season, the influence of ICs for lower reaches of the Yellow River can be 5 months longer than that for the upper reaches, while such a difference

  4. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  5. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    Science.gov (United States)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan

  6. On Approaches to Analyze the Sensitivity of Simulated Hydrologic Fluxes to Model Parameters in the Community Land Model

    Directory of Open Access Journals (Sweden)

    Jie Bao

    2015-12-01

    Full Text Available Effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash–Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA approaches, including analysis of variance based on the generalized linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.

  7. Modeling the Hydrological Regime of Turkana Lake (Kenya, Ethiopia) by Combining Spatially Distributed Hydrological Modeling and Remote Sensing Datasets

    Science.gov (United States)

    Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.

    2017-12-01

    Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological

  8. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    Science.gov (United States)

    Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub

    2016-05-01

    Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.

  9. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: Calibration and validation tests

    Directory of Open Access Journals (Sweden)

    Donizete dos R. Pereira

    2016-09-01

    New hydrological insights: The SWAT model was qualified for simulating the Pomba River sub-basin in the sites where rainfall representation was reasonable to good. The model can be used in the simulation of maximum, average and minimum annual daily streamflow based on the paired t-test, contributing with the water resources management of region, although the model still needs to be improved, mainly in the representativeness of rainfall, to give better estimates of extreme values.

  10. Analysis of Streamline Separation at Infinity Using Time-Discrete Markov Chains.

    Science.gov (United States)

    Reich, W; Scheuermann, G

    2012-12-01

    Existing methods for analyzing separation of streamlines are often restricted to a finite time or a local area. In our paper we introduce a new method that complements them by allowing an infinite-time-evaluation of steady planar vector fields. Our algorithm unifies combinatorial and probabilistic methods and introduces the concept of separation in time-discrete Markov-Chains. We compute particle distributions instead of the streamlines of single particles. We encode the flow into a map and then into a transition matrix for each time direction. Finally, we compare the results of our grid-independent algorithm to the popular Finite-Time-Lyapunov-Exponents and discuss the discrepancies.

  11. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    NARCIS (Netherlands)

    Loon, van A.F.; Huijgevoort, van M.H.J.; Lanen, van H.A.J.

    2012-01-01

    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological

  12. Hydrochemical simulation of a mountain basin under hydrological variability

    Science.gov (United States)

    Montserrat, S.; Trewhela, T. A.; Navarro, L.; Navarrete, A.; Lagos Zuniga, M. A.; Garcia, A.; Caraballo, M.; Niño, Y.; McPhee, J. P.

    2016-12-01

    Water quality and the comprehension of hydrochemical phenomena in natural basins should be of complete relevance under hydrological uncertainties. The importance of identifying the main variables that are controlling a natural system and finding a way to predict their behavior under variable scenarios is mandatory to preserve these natural basins. This work presents an interdisciplinary model for the Yerba Loca watershed, a natural reserve basin in the Chilean central Andes. Based on different data sets, provided by public and private campaigns, a natural hydrochemical regime was identified. Yerba Loca is a natural reserve, characterized by the presence of several glaciers and wide sediment deposits crossed by a small low-slope creek in the upper part of the basin that leads to a high-slope narrow channel with less sediment depositions. Most relevant is the geological context around the glaciers, considering that most of them cover hydrothermal zones rich in both sulfides and sulfates, a situation commonly found in the Andes due to volcanic activity. Low pH (around 3), calcium-sulfate water with high concentrations of Iron, Copper and Zinc are found in the upper part of the basin in summer. These values can be attributed to the glaciers melting down and draining of the mentioned country rocks, which provide most of the creek flow in the upper basin. The latter clearly contrasts with the creek outlet, located 18 km downstream, showing near to neutral pH values and lower concentrations of the elements already mentioned. The scope of the present research is to account for the sources of the different hydrological inlets (e.g., rainfall, snow and/or glacier melting) that, depending on their location, may interact with a variety of reactive minerals and generate acid rock drainage (ARD). The inlet water is modeled along the creek using the softwares HEC-RAS and PHREEQC coupled, in order to characterize the water quality and to detect preferred sedimentation sections

  13. Flood frequency estimation by national-scale continuous hydrological simulations: an application in Great Britain

    Science.gov (United States)

    Formetta, Giuseppe; Stewart, Elizabeth; Bell, Victoria; Reynard, Nick

    2017-04-01

    measured floods with a correlation coefficient that ranges from 0.8 for low return periods to 0.65 for the highest. It is shown that model performance is robust and independent of catchment features such as area and mean annual rainfall. The promising results for Great Britain support the aspiration that continuous simulation from large-scale hydrological models, supported by the increasing availability of global weather, climate and hydrological products, could be used to develop robust methods to help engineers estimate design floods in regions with limited gauge data or affected by environmental change.

  14. Roof Box Shape Streamline Adaptation and the Impact towards Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Abdul Latif M.F.

    2017-01-01

    Full Text Available The fuel price hike is currently a sensational national issue in Malaysia. Since the rationalization of fuel subsidies many were affected especially the middle income family. Vehicle aerodynamic were directly related to the fuel consumption, were extra frontal area result a higher drag force hence higher fuel consumption. Roof box were among the largest contributor to the extra drag, thus the roof box shape rationalization were prominent to reduce the extra drag. The idea of adopting water drop shape to the roof box design shows prominent result. The roof box has been simulated using MIRA virtual wind tunnel modelling via commercial computational fluid dynamic (CFD package. This streamline shape drastically reduce the drag force by 34% resulting to a 1.7% fuel saving compare to the conventional boxy roof box. This is an effort to reduce the carbon foot print for a sustainable green world.

  15. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    Science.gov (United States)

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  16. A flexible hydrological warning system in Denmark for real-time surface water and groundwater simulations

    Science.gov (United States)

    He, Xin; Stisen, Simon; Wiese, Marianne B.; Jørgen Henriksen, Hans

    2015-04-01

    In Denmark, increasing focus on extreme weather events has created considerable demand for short term forecasts and early warnings in relation to groundwater and surface water flooding. The Geological Survey of Denmark and Greenland (GEUS) has setup, calibrated and applied a nationwide water resources model, the DK-Model, primarily for simulating groundwater and surface water flows and groundwater levels during the past 20 years. So far, the DK-model has only been used in offline historical and future scenario simulations. Therefore, challenges arise in operating such a model for online forecasts and early warnings, which requires access to continuously updated observed climate input data and forecast data of precipitation, temperature and global radiation for the next 48 hours or longer. GEUS has a close collaboration with the Danish Meteorological Institute in order to test and enable this data input for the DK model. Due to the comprehensive physical descriptions of the DK-Model, the simulation results can potentially be any component of the hydrological cycle within the models domain. Therefore, it is important to identify which results need to be updated and saved in the real-time mode, since it is not computationally economical to save every result considering the heavy load of data. GEUS have worked closely with the end-users and interest groups such as water planners and emergency managers from the municipalities, water supply and waste water companies, consulting companies and farmer organizations, in order to understand their possible needs for real time simulation and monitoring of the nationwide water cycle. This participatory process has been supported by a web based questionnaire survey, and a workshop that connected the model developers and the users. For qualifying the stakeholder engagement, GEUS has selected a representative catchment area (Skjern River) for testing and demonstrating a prototype of the web based hydrological warning system at the

  17. Verification of HYDRASTAR - A code for stochastic continuum simulation of groundwater flow

    International Nuclear Information System (INIS)

    Norman, S.

    1991-07-01

    HYDRASTAR is a code developed at Starprog AB for use in the SKB 91 performance assessment project with the following principal function: - Reads the actual conductivity measurements from a file created from the data base GEOTAB. - Regularizes the measurements to a user chosen calculation scale. - Generates three dimensional unconditional realizations of the conductivity field by using a supplied model of the conductivity field as a stochastic function. - Conditions the simulated conductivity field on the actual regularized measurements. - Reads the boundary conditions from a regional deterministic NAMMU computation. - Calculates the hydraulic head field, Darcy velocity field, stream lines and water travel times by solving the stationary hydrology equation and the streamline equation obtained with the velocities calculated from Darcy's law. - Generates visualizations of the realizations if desired. - Calculates statistics such as semivariograms and expectation values of the output fields by repeating the above procedure by iterations of the Monte Carlo type. When using computer codes for safety assessment purpose validation and verification of the codes are important. Thus this report describes a work performed with the goal of verifying parts of HYDRASTAR. The verification described in this report uses comparisons with two other solutions of related examples: A. Comparison with a so called perturbation solution of the stochastical stationary hydrology equation. This as an analytical approximation of the stochastical stationary hydrology equation valid in the case of small variability of the unconditional random conductivity field. B. Comparison with the (Hydrocoin, 1988), case 2. This is a classical example of a hydrology problem with a deterministic conductivity field. The principal feature of the problem is the presence of narrow fracture zones with high conductivity. the compared output are the hydraulic head field and a number of stream lines originating from a

  18. Hydrological Modeling of the Jiaoyi Watershed (China) Using HSPF Model

    Science.gov (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R 2), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin. PMID:25013863

  19. Parameterization of a Hydrological Model for a Large, Ungauged Urban Catchment

    Directory of Open Access Journals (Sweden)

    Gerald Krebs

    2016-10-01

    Full Text Available Urbanization leads to the replacement of natural areas by impervious surfaces and affects the catchment hydrological cycle with adverse environmental impacts. Low impact development tools (LID that mimic hydrological processes of natural areas have been developed and applied to mitigate these impacts. Hydrological simulations are one possibility to evaluate the LID performance but the associated small-scale processes require a highly spatially distributed and explicit modeling approach. However, detailed data for model development are often not available for large urban areas, hampering the model parameterization. In this paper we propose a methodology to parameterize a hydrological model to a large, ungauged urban area by maintaining at the same time a detailed surface discretization for direct parameter manipulation for LID simulation and a firm reliance on available data for model conceptualization. Catchment delineation was based on a high-resolution digital elevation model (DEM and model parameterization relied on a novel model regionalization approach. The impact of automated delineation and model regionalization on simulation results was evaluated for three monitored study catchments (5.87–12.59 ha. The simulated runoff peak was most sensitive to accurate catchment discretization and calibration, while both the runoff volume and the fit of the hydrograph were less affected.

  20. Global operational hydrological forecasts through eWaterCycle

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Central goal of the eWaterCycle project (www.ewatercycle.org) is the development of an operational hyper-resolution hydrological global model. This model is able to produce 14 day ensemble forecasts based on a hydrological model and operational weather data (presently NOAA's Global Ensemble Forecast System). Special attention is paid to prediction of situations in which water related issues are relevant, such as floods, droughts, navigation, hydropower generation, and irrigation stress. Near-real time satellite data will be assimilated in the hydrological simulations, which is a feature that will be presented for the first time at EGU 2015. First, we address challenges that are mainly computer science oriented but have direct practical hydrological implications. An important feature in this is the use of existing standards and open-source software to the maximum extent possible. For example, we use the Community Surface Dynamics Modeling System (CSDMS) approach to coupling models (Basic Model Interface (BMI)). The hydrological model underlying the project is PCR-GLOBWB, built by Utrecht University. This is the motor behind the predictions and state estimations. Parts of PCR-GLOBWB have been re-engineered to facilitate running it in a High Performance Computing (HPC) environment, run parallel on multiple nodes, as well as to use BMI. Hydrological models are not very CPU intensive compared to, say, atmospheric models. They are, however, memory hungry due to the localized processes and associated effective parameters. To accommodate this memory need, especially in an ensemble setting, a variation on the traditional Ensemble Kalman Filter was developed that needs much less on-chip memory. Due to the operational nature, the coupling of the hydrological model with hydraulic models is very important. The idea is not to run detailed hydraulic routing schemes over the complete globe but to have on-demand simulation prepared off-line with respect to topography and

  1. The Effects of Propulsive Jetting on Drag of a Streamlined body

    Science.gov (United States)

    Krieg, Michael; Mohseni, Kamran

    2017-11-01

    Recently an abundance of bioinspired underwater vehicles have emerged to leverage eons of evolution. Our group has developed a propulsion technique inspired by jellyfish and squid. Propulsive jets are generated by ingesting and expelling water from a flexible internal cavity. We have demonstrated thruster capabilities for maneuvering on AUV platforms, where the internal thruster geometry minimized forward drag; however, such a setup cannot characterize propulsive efficiency. Therefore, we created a new streamlined vehicle platform that produces unsteady jets for forward propulsion rather than maneuvering. The streamlined jetting body is placed in a water tunnel and held stationary while jetting frequency and background flow velocity are varied. For each frequency/velocity pair the flow field is measured around the surface and in the wake using PIV. Using the zero jetting frequency as a baseline for each background velocity, the passive body drag is related to the velocity distribution. For cases with active jetting the drag and jetting forces are estimated from the velocity field and compared to the passive case. For this streamlined body, the entrainment of surrounding flow into the propulsive jet can reduce drag forces in addition to the momentum transfer of the jet itself. Office of Naval Research.

  2. Technical note: Representing glacier geometry changes in a semi-distributed hydrological model

    Directory of Open Access Journals (Sweden)

    J. Seibert

    2018-04-01

    Full Text Available Glaciers play an important role in high-mountain hydrology. While changing glacier areas are considered of highest importance for the understanding of future changes in runoff, glaciers are often only poorly represented in hydrological models. Most importantly, the direct coupling between the simulated glacier mass balances and changing glacier areas needs feasible solutions. The use of a complex glacier model is often not possible due to data and computational limitations. The Δh parameterization is a simple approach to consider the spatial variation of glacier thickness and area changes. Here, we describe a conceptual implementation of the Δh parameterization in the semi-distributed hydrological model HBV-light, which also allows for the representation of glacier advance phases and for comparison between the different versions of the implementation. The coupled glacio-hydrological simulation approach, which could also be implemented in many other semi-distributed hydrological models, is illustrated based on an example application.

  3. Streamline Patterns and their Bifurcations near a wall with Navier slip Boundary Conditions

    DEFF Research Database (Denmark)

    Tophøj, Laust; Møller, Søren; Brøns, Morten

    2006-01-01

    We consider the two-dimensional topology of streamlines near a surface where the Navier slip boundary condition applies. Using transformations to bring the streamfunction in a simple normal form, we obtain bifurcation diagrams of streamline patterns under variation of one or two external parameters....... Topologically, these are identical with the ones previously found for no-slip surfaces. We use the theory to analyze the Stokes flow inside a circle, and show how it can be used to predict new bifurcation phenomena. ©2006 American Institute of Physics...

  4. Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks.

    Science.gov (United States)

    Garcia-Prats, Alberto; González-Sanchis, María; Del Campo, Antonio D; Lull, Cristina

    2018-05-23

    Hydrology-oriented forest management sets water as key factor of the forest management for adaptation due to water is the most limiting factor in the Mediterranean forest ecosystems. The aim of this study was to apply Bayesian Network modeling to assess potential indirect effects and trade-offs when hydrology-oriented forest management is applied to a real Mediterranean forest ecosystem. Water, carbon and nitrogen cycles, and forest fire risk were included in the modeling framework. Field data from experimental plots were employed to calibrate and validate the mechanistic Biome-BGCMuSo model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere. Many other 50-year long scenarios with different conditions to the ones measured in the field experiment were simulated and the outcomes employed to build the Bayesian Network in a linked chain of models. Hydrology-oriented forest management was very positive insofar as more water was made available to the stand because of an interception reduction. This resource was made available to the stand, which increased the evapotranspiration and its components, the soil water content and a slightly increase of deep percolation. Conversely, Stemflow was drastically reduced. No effect was observed on Runof due to the thinning treatment. The soil organic carbon content was also increased which in turn caused a greater respiration. The long-term effect of the thinning treatment on the LAI was very positive. This was undoubtedly due to the increased vigor generated by the greater availability of water and nutrients for the stand and the reduction of competence between trees. This greater activity resulted in an increase in GPP and vegetation carbon, and therefore, we would expect a higher carbon sequestration. It is worth emphasizing that this extra amount of water and nutrients was taken up by the stand and did not entail any loss of nutrients. Copyright © 2018 Elsevier B.V. All

  5. Simulation, evaluation and optimization of hydrological storage systems; Simulation, Bewertung und Optimierung von Betriebsregeln fuer wasserwirtschaftliche Speichersysteme

    Energy Technology Data Exchange (ETDEWEB)

    Lohr, H.

    2001-07-01

    The investigation focused on controlled hydrological storage system. Existing operating schedules and new control options were analyzed, classified and generalized in order to obtain a standardized terminology and operating concept. This generalized approach will do away with the need for system-specific analyses and models for every single new system. [German] Der Schwerpunkt dieser Arbeit ist der wasserwirtschaftliche Betrieb von regelbaren Speichersystemen und ihre Simulation. Dabei bestand das Ziel darin, bestehende Betriebsplaene und neue praktikable Steuerungsmoeglichkeiten zu analysieren, zu klassifizieren und so zu generalisieren, dass eine einheitliche Terminologie und Konzeption zum Betrieb von Speichern entstand. Dieses Konzept erlaubt, in Verbindung mit den Prinzipien aus der Modellierung von Flussgebieten, verschieden strukturierte Speichersysteme mit unterschiedlichsten Steuerungsvorschriften abzubilden. Damit erhaelt man den Vorteil einer generalisierten Anwendung im Gegensatz zu einer fuer den speziellen Fall konzipierten und nicht uebertragbaren Einzelloesung. Als Folge davon entfaellt das systemspezifische, je nach Aufgabenstellung neu zu entwerfende und zu programmierende Einzelmodell. (orig.)

  6. Nonlinear Prediction Model for Hydrologic Time Series Based on Wavelet Decomposition

    Science.gov (United States)

    Kwon, H.; Khalil, A.; Brown, C.; Lall, U.; Ahn, H.; Moon, Y.

    2005-12-01

    Traditionally forecasting and characterizations of hydrologic systems is performed utilizing many techniques. Stochastic linear methods such as AR and ARIMA and nonlinear ones such as statistical learning theory based tools have been extensively used. The common difficulty to all methods is the determination of sufficient and necessary information and predictors for a successful prediction. Relationships between hydrologic variables are often highly nonlinear and interrelated across the temporal scale. A new hybrid approach is proposed for the simulation of hydrologic time series combining both the wavelet transform and the nonlinear model. The present model employs some merits of wavelet transform and nonlinear time series model. The Wavelet Transform is adopted to decompose a hydrologic nonlinear process into a set of mono-component signals, which are simulated by nonlinear model. The hybrid methodology is formulated in a manner to improve the accuracy of a long term forecasting. The proposed hybrid model yields much better results in terms of capturing and reproducing the time-frequency properties of the system at hand. Prediction results are promising when compared to traditional univariate time series models. An application of the plausibility of the proposed methodology is provided and the results conclude that wavelet based time series model can be utilized for simulating and forecasting of hydrologic variable reasonably well. This will ultimately serve the purpose of integrated water resources planning and management.

  7. Development of a hybrid 3-D hydrological model to simulate hillslopes and the regional unconfined aquifer system in Earth system models

    Science.gov (United States)

    Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.

    2015-12-01

    The terrestrial hydrological system, including surface and subsurface water, is an essential component of the Earth's climate system. Over the past few decades, land surface modelers have built one-dimensional (1D) models resolving the vertical flow of water through the soil column for use in Earth system models (ESMs). These models generally have a relatively coarse model grid size (~25-100 km) and only account for sub-grid lateral hydrological variations using simple parameterization schemes. At the same time, hydrologists have developed detailed high-resolution (~0.1-10 km grid size) three dimensional (3D) models and showed the importance of accounting for the vertical and lateral redistribution of surface and subsurface water on soil moisture, the surface energy balance and ecosystem dynamics on these smaller scales. However, computational constraints have limited the implementation of the high-resolution models for continental and global scale applications. The current work presents a hybrid-3D hydrological approach is presented, where the 1D vertical soil column model (available in many ESMs) is coupled with a high-resolution lateral flow model (h2D) to simulate subsurface flow and overland flow. H2D accounts for both local-scale hillslope and regional-scale unconfined aquifer responses (i.e. riparian zone and wetlands). This approach was shown to give comparable results as those obtained by an explicit 3D Richards model for the subsurface, but improves runtime efficiency considerably. The h3D approach is implemented for the Delaware river basin, where Noah-MP land surface model (LSM) is used to calculated vertical energy and water exchanges with the atmosphere using a 10km grid resolution. Noah-MP was coupled within the WRF-Hydro infrastructure with the lateral 1km grid resolution h2D model, for which the average depth-to-bedrock, hillslope width function and soil parameters were estimated from digital datasets. The ability of this h3D approach to simulate

  8. Modelling of hydrologic processes and potential response to climate change through the use of a multisite SWAT

    DEFF Research Database (Denmark)

    Gül, G.O.; Rosbjerg, Dan

    2010-01-01

    Hydrologic models that use components for integrated modelling of surface water and groundwater systems help conveniently simulate the dynamically linked hydrologic and hydraulic processes that govern flow conditions in watersheds. The Soil and Water Assessment Tool (SWAT) is one such model...... that allows continuous simulations over long time periods in the land phase of the hydrologic cycle by incorporating surface water and groundwater interactions. This study provides a verified structure for the SWAT to evaluate existing flow regimes in a small-sized catchment in Denmark and examines a simple...... simulation to help quantify the effects of climate change on regional water quantities. SWAT can be regarded among the alternative hydrologic simulation tools applicable for catchments with similar characteristics and of similar sizes in Denmark. However, the modellers would be required to determine a proper...

  9. Evaluation of two streamlined life cycle assessment methods

    International Nuclear Information System (INIS)

    Hochschomer, Elisabeth; Finnveden, Goeran; Johansson, Jessica

    2002-02-01

    Two different methods for streamlined life cycle assessment (LCA) are described: the MECO-method and SLCA. Both methods are tested on an already made case-study on cars fuelled with petrol or ethanol, and electric cars with electricity produced from hydro power or coal. The report also contains some background information on LCA and streamlined LCA, and a deschption of the case study used. The evaluation of the MECO and SLCA-methods are based on a comparison of the results from the case study as well as practical aspects. One conclusion is that the SLCA-method has some limitations. Among the limitations are that the whole life-cycle is not covered, it requires quite a lot of information and there is room for arbitrariness. It is not very flexible instead it difficult to develop further. We are therefore not recommending the SLCA-method. The MECO-method does in comparison show several attractive features. It is also interesting to note that the MECO-method produces information that is complementary compared to a more traditional quantitative LCA. We suggest that the MECO method needs some further development and adjustment to Swedish conditions

  10. Study of streamline flow in the portal system

    International Nuclear Information System (INIS)

    Atkins, H.L.; Deitch, J.S.; Oster, Z.H.; Perkes, E.A.

    1985-01-01

    The study was undertaken to determine if streamline flow occurs in the portal vein, thus separating inflow from the superior mesenteric artery (SMA) and the inferior mesenteric artery. Previously published data on this subject is inconsistent. Patients undergoing abdominal angiography received two administrations of Tc-99m sulfur colloid, first via the SMA during angiography and, after completion of the angiographic procedure, via a peripheral vein (IV). Anterior images of the liver were recorded over a three minute acquisition before and after the IV injection without moving the patient. The image from the SMA injection was subtracted from the SMA and IV image to provide a pure IV image. Analysis of R to L ratios for selected regions of interest as well as whole lobes was carried out and the shift of R to L (SMA to IV) determined. Six patients had liver metastases from the colon, four had cirrhosis and four had no known liver disease. The shift in the ratio was highly variable without a consistent pattern. Large changes in some patients could be attributed to hepatic artery flow directed to metastases. No consistent evidence for streamlining of portal flow was discerned

  11. Evaluation of a simple, point-scale hydrologic model in simulating soil moisture using the Delaware environmental observing system

    Science.gov (United States)

    Legates, David R.; Junghenn, Katherine T.

    2018-04-01

    Many local weather station networks that measure a number of meteorological variables (i.e. , mesonetworks) have recently been established, with soil moisture occasionally being part of the suite of measured variables. These mesonetworks provide data from which detailed estimates of various hydrological parameters, such as precipitation and reference evapotranspiration, can be made which, when coupled with simple surface characteristics available from soil surveys, can be used to obtain estimates of soil moisture. The question is Can meteorological data be used with a simple hydrologic model to estimate accurately daily soil moisture at a mesonetwork site? Using a state-of-the-art mesonetwork that also includes soil moisture measurements across the US State of Delaware, the efficacy of a simple, modified Thornthwaite/Mather-based daily water balance model based on these mesonetwork observations to estimate site-specific soil moisture is determined. Results suggest that the model works reasonably well for most well-drained sites and provides good qualitative estimates of measured soil moisture, often near the accuracy of the soil moisture instrumentation. The model exhibits particular trouble in that it cannot properly simulate the slow drainage that occurs in poorly drained soils after heavy rains and interception loss, resulting from grass not being short cropped as expected also adversely affects the simulation. However, the model could be tuned to accommodate some non-standard siting characteristics.

  12. Development of a Coupled Ocean-Hydrologic Model to Simulate Pollutant Transport in Singapore Coastal Waters

    Science.gov (United States)

    Chua, V. P.

    2015-12-01

    Intensive agricultural, economic and industrial activities in Singapore and Malaysia have made our coastal areas under high risk of water pollution. A coupled ocean-hydrologic model is employed to perform three-dimensional simulations of flow and pollutant transport in Singapore coastal waters. The hydrologic SWAT model is coupled with the coastal ocean SUNTANS model by outputting streamflow and pollutant concentrations from the SWAT model and using them as inputs for the SUNTANS model at common boundary points. The coupled model is calibrated with observed sea surface elevations and velocities, and high correlation coefficients that exceed 0.97 and 0.91 are found for sea surface elevations and velocities, respectively. The pollutants are modeled as Gaussian passive tracers, and are released at five upstream locations in Singapore coastal waters. During the Northeast monsoon, pollutants released in Source 1 (Johor River), Source 2 (Tiram River), Source 3 (Layang River) and Source 4 (Layau River) enter the Singapore Strait after 4 days of release and reach Sentosa Island within 9 days. Meanwhile, pollutants released in Source 5 (Kallang River) reach Sentosa Island after 4 days. During the Southwest monsoon, the dispersion time is roughly doubled, with pollutants from Sources 1 - 4 entering the Singapore Strait only after 12 days of release due to weak currents.

  13. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange

    International Nuclear Information System (INIS)

    Sonnentag, O.

    2008-01-01

    A recent version of the Boreal Ecosystem Productivity Simulator (BEPS) was extended and modified to include northern peatlands. This thesis evaluated the BEPS-TerrainLab using observations made at the Mer Bleue bog located near Ottawa, Ontario, and the Sandhill fen located near Prince Albert, Saskatchewan. The code was revised to represent the multi-layer canopy and processes related to energy, water vapour and carbon dioxide fluxes through remotely-sensed leaf area index (LAI) maps. A quick and reliable method was also developed to determine shrub LAI with the LAI-2000 plant canopy analyzer. A large number of LAI data was collected at the Mer Bleue bog for the development of a new remote sensing-based methodology using multiple end member spectral unmixing to allow for separate tree and shrub LAI mapping in ombrotrophic peatlands. The methodology was also adapted for use in minerotrophic peatlands and their surrounding landscapes. These LAI maps within the BEPS-TerrainLab represented the tree and shrub layers of the Mer Bleue bog and the tree and shrub/sedge layers of the Sandhill fen. The study examined the influence of mesoscale topography (Mer Bleue bog) and macro- and mesoscale topography (Sandhill fen) on wetness, evapotranspiration, and gross primary productivity during the snow-free period of 2004. The results suggested that a peatland type-specific differentiation of macro- and mesoscale topographic effects on hydrology should be included in future peatland ecosystem modelling efforts in order to allow for a more realistic simulation of the soil water balance in peatlands and to reduce uncertainties in carbon dioxide and methane annual fluxes from wetlands

  14. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange

    Energy Technology Data Exchange (ETDEWEB)

    Sonnentag, O.

    2008-08-01

    A recent version of the Boreal Ecosystem Productivity Simulator (BEPS) was extended and modified to include northern peatlands. This thesis evaluated the BEPS-TerrainLab using observations made at the Mer Bleue bog located near Ottawa, Ontario, and the Sandhill fen located near Prince Albert, Saskatchewan. The code was revised to represent the multi-layer canopy and processes related to energy, water vapour and carbon dioxide fluxes through remotely-sensed leaf area index (LAI) maps. A quick and reliable method was also developed to determine shrub LAI with the LAI-2000 plant canopy analyzer. A large number of LAI data was collected at the Mer Bleue bog for the development of a new remote sensing-based methodology using multiple end member spectral unmixing to allow for separate tree and shrub LAI mapping in ombrotrophic peatlands. The methodology was also adapted for use in minerotrophic peatlands and their surrounding landscapes. These LAI maps within the BEPS-TerrainLab represented the tree and shrub layers of the Mer Bleue bog and the tree and shrub/sedge layers of the Sandhill fen. The study examined the influence of mesoscale topography (Mer Bleue bog) and macro- and mesoscale topography (Sandhill fen) on wetness, evapotranspiration, and gross primary productivity during the snow-free period of 2004. The results suggested that a peatland type-specific differentiation of macro- and mesoscale topographic effects on hydrology should be included in future peatland ecosystem modelling efforts in order to allow for a more realistic simulation of the soil water balance in peatlands and to reduce uncertainties in carbon dioxide and methane annual fluxes from wetlands.

  15. Streamlining environmental product declarations: a stage model

    Science.gov (United States)

    Lefebvre, Elisabeth; Lefebvre, Louis A.; Talbot, Stephane; Le Hen, Gael

    2001-02-01

    General public environmental awareness and education is increasing, therefore stimulating the demand for reliable, objective and comparable information about products' environmental performances. The recently published standard series ISO 14040 and ISO 14025 are normalizing the preparation of Environmental Product Declarations (EPDs) containing comprehensive information relevant to a product's environmental impact during its life cycle. So far, only a few environmentally leading manufacturing organizations have experimented the preparation of EPDs (mostly from Europe), demonstrating its great potential as a marketing weapon. However the preparation of EPDs is a complex process, requiring collection and analysis of massive amounts of information coming from disparate sources (suppliers, sub-contractors, etc.). In a foreseeable future, the streamlining of the EPD preparation process will require product manufacturers to adapt their information systems (ERP, MES, SCADA) in order to make them capable of gathering, and transmitting the appropriate environmental information. It also requires strong functional integration all along the product supply chain in order to ensure that all the information is made available in a standardized and timely manner. The goal of the present paper is two fold: first to propose a transitional model towards green supply chain management and EPD preparation; second to identify key technologies and methodologies allowing to streamline the EPD process and subsequently the transition toward sustainable product development

  16. Gsflow-py: An integrated hydrologic model development tool

    Science.gov (United States)

    Gardner, M.; Niswonger, R. G.; Morton, C.; Henson, W.; Huntington, J. L.

    2017-12-01

    Integrated hydrologic modeling encompasses a vast number of processes and specifications, variable in time and space, and development of model datasets can be arduous. Model input construction techniques have not been formalized or made easily reproducible. Creating the input files for integrated hydrologic models (IHM) requires complex GIS processing of raster and vector datasets from various sources. Developing stream network topology that is consistent with the model resolution digital elevation model is important for robust simulation of surface water and groundwater exchanges. Distribution of meteorologic parameters over the model domain is difficult in complex terrain at the model resolution scale, but is necessary to drive realistic simulations. Historically, development of input data for IHM models has required extensive GIS and computer programming expertise which has restricted the use of IHMs to research groups with available financial, human, and technical resources. Here we present a series of Python scripts that provide a formalized technique for the parameterization and development of integrated hydrologic model inputs for GSFLOW. With some modifications, this process could be applied to any regular grid hydrologic model. This Python toolkit automates many of the necessary and laborious processes of parameterization, including stream network development and cascade routing, land coverages, and meteorological distribution over the model domain.

  17. Global hydrological droughts in the 21st century under a changing hydrological regime

    Directory of Open Access Journals (Sweden)

    N. Wanders

    2015-01-01

    Full Text Available Climate change very likely impacts future hydrological drought characteristics across the world. Here, we quantify the impact of climate change on future low flows and associated hydrological drought characteristics on a global scale using an alternative drought identification approach that considers adaptation to future changes in hydrological regime. The global hydrological model PCR-GLOBWB was used to simulate daily discharge at 0.5° globally for 1971–2099. The model was forced with CMIP5 climate projections taken from five global circulation models (GCMs and four emission scenarios (representative concentration pathways, RCPs, from the Inter-Sectoral Impact Model Intercomparison Project. Drought events occur when discharge is below a threshold. The conventional variable threshold (VTM was calculated by deriving the threshold from the period 1971–2000. The transient variable threshold (VTMt is a non-stationary approach, where the threshold is based on the discharge values of the previous 30 years implying the threshold to vary every year during the 21st century. The VTMt adjusts to gradual changes in the hydrological regime as response to climate change. Results show a significant negative trend in the low flow regime over the 21st century for large parts of South America, southern Africa, Australia and the Mediterranean. In 40–52% of the world reduced low flows are projected, while increased low flows are found in the snow-dominated climates. In 27% of the global area both the drought duration and the deficit volume are expected to increase when applying the VTMt. However, this area will significantly increase to 62% when the VTM is applied. The mean global area in drought, with the VTMt, remains rather constant (11.7 to 13.4%, compared to the substantial increase when the VTM is applied (11.7 to 20%. The study illustrates that an alternative drought identification that considers adaptation to an altered hydrological regime has a

  18. Hydrology in a Mediterranean mountain environment, the Vallcebre Research basins (North Eastern Spain). IV. Testing hydrological and erosion models

    International Nuclear Information System (INIS)

    Gallart, F.; Latron, J.; Llorens, P.; Martinez-Carreras, N.

    2009-01-01

    Three modelling exercises were carried out in the Vallcebre research basins in order to both improve the understanding of the hydrological processes and test the adequate of some models in such Mediterranean mountain conditions. These exercises consisted of i) the analysis of the hydrological role of the agricultural terraces using the TOPMODEL topographic index, ii) the parametrisation of TOPMODEL using internal basin information, and iii) a test of the erosion model KINEROS2 for simulating badlands erosion. (Author) 13 refs.

  19. Hydrologic Design in the Anthropocene

    Science.gov (United States)

    Vogel, R. M.; Farmer, W. H.; Read, L.

    2014-12-01

    In an era dubbed the Anthropocene, the natural world is being transformed by a myriad of human influences. As anthropogenic impacts permeate hydrologic systems, hydrologists are challenged to fully account for such changes and develop new methods of hydrologic design. Deterministic watershed models (DWM), which can account for the impacts of changes in land use, climate and infrastructure, are becoming increasing popular for the design of flood and/or drought protection measures. As with all models that are calibrated to existing datasets, DWMs are subject to model error or uncertainty. In practice, the model error component of DWM predictions is typically ignored yet DWM simulations which ignore model error produce model output which cannot reproduce the statistical properties of the observations they are intended to replicate. In the context of hydrologic design, we demonstrate how ignoring model error can lead to systematic downward bias in flood quantiles, upward bias in drought quantiles and upward bias in water supply yields. By reincorporating model error, we document how DWM models can be used to generate results that mimic actual observations and preserve their statistical behavior. In addition to use of DWM for improved predictions in a changing world, improved communication of the risk and reliability is also needed. Traditional statements of risk and reliability in hydrologic design have been characterized by return periods, but such statements often assume that the annual probability of experiencing a design event remains constant throughout the project horizon. We document the general impact of nonstationarity on the average return period and reliability in the context of hydrologic design. Our analyses reveal that return periods do not provide meaningful expressions of the likelihood of future hydrologic events. Instead, knowledge of system reliability over future planning horizons can more effectively prepare society and communicate the likelihood

  20. Estimation of climate change impacts on hydrology and floods in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Veijalainen, N.

    2012-07-01

    Climate scenarios project increases in air temperature and precipitation in Finland during the 21st century and these will results in changes in hydrology. In this thesis climate change impacts on hydrology and floods in Finland were estimated with hydrological modelling and several climate scenarios. One of the goals was to understand the influence of different processes and catchment characteristics on the hydrological response to climate change in boreal conditions. The tool of the climate change impact assessment was the conceptual hydrological model WSFS (Watershed Simulation and Forecasting System). The studies employed and compared two methods of transferring the climate change signal from climate models to the WSFS hydrological model (delta change approach and direct bias corrected Regional Climate Model (RCM) data). Direct RCM data was used to simulate transient hydrological scenarios for 1951- 2100 and the simulation results were analysed to detect changes in water balance components and trends in discharge series. The results revealed that seasonal changes in discharges in Finland were the clearest impacts of climate change. Air temperature increase will affect snow accumulation and melt, increase winter discharge and decrease spring snowmelt discharge. The impacts of climate change on floods in Finland by 2070-2099 varied considerably depending on the location, catchment characteristics, timing of the floods and climate scenario. Floods caused by spring snowmelt decreased or remained unchanged, whereas autumn and winter floods caused by precipitation increased especially in large lakes and their outflow rivers. Since estimation of climate change impacts includes uncertainties in every step of the long modelling process, the accumulated uncertainties by the end of the process become large. The large differences between results from different climate scenarios highlight the need to use several climate scenarios in climate change impact studies

  1. Assessment of NASA's Physiographic and Meteorological Datasets as Input to HSPF and SWAT Hydrological Models

    Science.gov (United States)

    Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David

    2011-01-01

    This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations

  2. Development of total maximum daily loads for bacteria impaired watershed using the comprehensive hydrology and water quality simulation model.

    Science.gov (United States)

    Kim, Sang M; Brannan, Kevin M; Zeckoski, Rebecca W; Benham, Brian L

    2014-01-01

    The objective of this study was to develop bacteria total maximum daily loads (TMDLs) for the Hardware River watershed in the Commonwealth of Virginia, USA. The TMDL program is an integrated watershed management approach required by the Clean Water Act. The TMDLs were developed to meet Virginia's water quality standard for bacteria at the time, which stated that the calendar-month geometric mean concentration of Escherichia coli should not exceed 126 cfu/100 mL, and that no single sample should exceed a concentration of 235 cfu/100 mL. The bacteria impairment TMDLs were developed using the Hydrological Simulation Program-FORTRAN (HSPF). The hydrology and water quality components of HSPF were calibrated and validated using data from the Hardware River watershed to ensure that the model adequately simulated runoff and bacteria concentrations. The calibrated and validated HSPF model was used to estimate the contributions from the various bacteria sources in the Hardware River watershed to the in-stream concentration. Bacteria loads were estimated through an extensive source characterization process. Simulation results for existing conditions indicated that the majority of the bacteria came from livestock and wildlife direct deposits and pervious lands. Different source reduction scenarios were evaluated to identify scenarios that meet both the geometric mean and single sample maximum E. coli criteria with zero violations. The resulting scenarios required extreme and impractical reductions from livestock and wildlife sources. Results from studies similar to this across Virginia partially contributed to a reconsideration of the standard's applicability to TMDL development.

  3. Building an ensemble of climate scenarios for decision-making in hydrology: benefits, pitfalls and uncertainties

    Science.gov (United States)

    Braun, Marco; Chaumont, Diane

    2013-04-01

    Using climate model output to explore climate change impacts on hydrology requires several considerations, choices and methods in the post treatment of the datasets. In the effort of producing a comprehensive data base of climate change scenarios for over 300 watersheds in the Canadian province of Québec, a selection of state of the art procedures were applied to an ensemble comprising 87 climate simulations. The climate data ensemble is based on global climate simulations from the Coupled Model Intercomparison Project - Phase 3 (CMIP3) and regional climate simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and operational simulations produced at Ouranos. Information on the response of hydrological systems to changing climate conditions can be derived by linking climate simulations with hydrological models. However, the direct use of raw climate model output variables as drivers for hydrological models is limited by issues such as spatial resolution and the calibration of hydro models with observations. Methods for downscaling and bias correcting the data are required to achieve seamless integration of climate simulations with hydro models. The effects on the results of four different approaches to data post processing were explored and compared. We present the lessons learned from building the largest data base yet for multiple stakeholders in the hydro power and water management sector in Québec putting an emphasis on the benefits and pitfalls in choosing simulations, extracting the data, performing bias corrections and documenting the results. A discussion of the sources and significance of uncertainties in the data will also be included. The climatological data base was subsequently used by the state owned hydro power company Hydro-Québec and the Centre d'expertise hydrique du Québec (CEHQ), the provincial water authority, to simulate future stream flows and analyse the impacts on hydrological indicators. While this

  4. Towards an integrated model of floodplain hydrology representing feedbacks and anthropogenic effects

    Science.gov (United States)

    Andreadis, K.; Schumann, G.; Voisin, N.; O'Loughlin, F.; Tesfa, T. K.; Bates, P.

    2017-12-01

    The exchange of water between hillslopes, river channels and floodplain can be quite complex and the difficulty in capturing the mechanisms behind it is exacerbated by the impact of human activities such as irrigation and reservoir operations. Although there has been a vast body of work on modeling hydrological processes, most of the resulting models have been limited with regards to aspects of the coupled human-natural system. For example, hydrologic models that represent processes such as evapotranspiration, infiltration, interception and groundwater dynamics often neglect anthropogenic effects or do not adequately represent the inherently two-dimensional floodplain flow. We present an integrated modeling framework that is comprised of the Variable Infiltration Capacity (VIC) hydrology model, the LISFLOOD-FP hydrodynamic model, and the Water resources Management (WM) model. The VIC model solves the energy and water balance over a gridded domain and simulates a number of hydrologic features such as snow, frozen soils, lakes and wetlands, while also representing irrigation demand from cropland areas. LISFLOOD-FP solves an approximation of the Saint-Venant equations to efficiently simulate flow in river channels and the floodplain. The implementation of WM accommodates a variety of operating rules in reservoirs and withdrawals due to consumptive demands, allowing the successful simulation of regulated flow. The models are coupled so as to allow feedbacks between their corresponding processes, therefore providing the ability to test different hypotheses about the floodplain hydrology of large-scale basins. We test this integrated framework over the Zambezi River basin by simulating its hydrology from 2000-2010, and evaluate the results against remotely sensed observations. Finally, we examine the sensitivity of streamflow and water inundation to changes in reservoir operations, precipitation and temperature.

  5. Effect of Downscaled Forcings and Soil Texture Properties on Hyperresolution Hydrologic Simulations in a Regional Basin in Northwest Mexico

    Science.gov (United States)

    Ko, A.; Mascaro, G.; Vivoni, E. R.

    2017-12-01

    Hyper-resolution ( 10 km) scales. In this study, we address some of the challenges by applying a parallel version of the Triangulated Irregular Network (TIN)-based Real Time Integrated Basin Simulator (tRIBS) to the Rio Sonora Basin (RSB) in northwest Mexico. The RSB is a large, semiarid watershed ( 21,000 km2) characterized by complex topography and a strong seasonality in vegetation conditions, due to the North American monsoon. We conducted simulations at an average spatial resolution of 88 m over a decadal (2004-2013) period using spatially-distributed forcings from remotely-sensed and reanalysis products. Meteorological forcings were derived from the North American Land Data Assimilation System (NLDAS) at the original resolution of 12 km and were downscaled at 1 km with techniques accounting for terrain effects. Two grids of soil properties were created from different sources, including: (i) CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) at 6 km resolution; and (ii) ISRIC (International Soil Reference Information Centre) at 250 m. Time-varying vegetation parameters were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) composite products. The model was first calibrated and validated through distributed soil moisture data from a network of 20 soil moisture stations during the monsoon season. Next, hydrologic simulations were conducted with five different combinations of coarse and downscaled forcings and soil properties. Outputs in the different configurations were then compared with independent observations of soil moisture, and with estimates of land surface temperature (1 km, daily) and evapotranspiration (1 km, monthly) from MODIS. This study is expected to support the community involved in hyper-resolution hydrologic modeling by identifying the crucial factors that, if available at higher resolution, lead to the largest improvement of the simulation prognostic capability.

  6. Sensitivity of hydrological modeling to meteorological data and implications for climate change studies

    International Nuclear Information System (INIS)

    Roy, L.G.; Roy, R.; Desrochers, G.E.; Vaillancourt, C.; Chartier, I.

    2008-01-01

    There are uncertainties associated with the use of hydrological models. This study aims to analyse one source of uncertainty associated with hydrological modeling, particularly in the context of climate change studies on water resources. Additional intent of this study is to compare the ability of some meteorological data sources, used in conjunction with an hydrological model, to reproduce the hydrologic regime of a watershed. A case study on a watershed of south-western Quebec, Canada using five different sources of meteorological data as input to an offline hydrological model are presented in this paper. Data used came from weather stations, NCEP reanalysis, ERA40 reanalysis and two Canadian Regional Climate Model (CRCM) runs driven by NCEP and ERA40 reanalysis, providing atmospheric driving boundary conditions to this limited-area climate model. To investigate the sensitivity of simulated streamflow to different sources of meteorological data, we first calibrated the hydrological model with each of the meteorological data sets over the 1961-1980 period. The five different sets of parameters of the hydrological model were then used to simulate streamflow of the 1981-2000 validation period with the five meteorological data sets as inputs. The 25 simulated streamflow series have been compared to the observed streamflow of the watershed. The five meteorological data sets do not have the same ability, when used with the hydrological model, to reproduce streamflow. Our results show also that the hydrological model parameters used may have an important influence on results such as water balance, but it is linked with the differences that may have in the characteristics of the meteorological data used. For climate change impacts assessments on water resources, we have found that there is an uncertainty associated with the meteorological data used to calibrate the model. For expected changes on mean annual flows of the Chateauguay River, our results vary from a small

  7. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  8. Linear infrastructure impacts on landscape hydrology.

    Science.gov (United States)

    Raiter, Keren G; Prober, Suzanne M; Possingham, Hugh P; Westcott, Fiona; Hobbs, Richard J

    2018-01-15

    The extent of roads and other forms of linear infrastructure is burgeoning worldwide, but their impacts are inadequately understood and thus poorly mitigated. Previous studies have identified many potential impacts, including alterations to the hydrological functions and soil processes upon which ecosystems depend. However, these impacts have seldom been quantified at a regional level, particularly in arid and semi-arid systems where the gap in knowledge is the greatest, and impacts potentially the most severe. To explore the effects of extensive track, road, and rail networks on surface hydrology at a regional level we assessed over 1000 km of linear infrastructure, including approx. 300 locations where ephemeral streams crossed linear infrastructure, in the largely intact landscapes of Australia's Great Western Woodlands. We found a high level of association between linear infrastructure and altered surface hydrology, with erosion and pooling 5 and 6 times as likely to occur on-road than off-road on average (1.06 erosional and 0.69 pooling features km -1 on vehicle tracks, compared with 0.22 and 0.12 km -1 , off-road, respectively). Erosion severity was greater in the presence of tracks, and 98% of crossings of ephemeral streamlines showed some evidence of impact on water movement (flow impedance (62%); diversion of flows (73%); flow concentration (76%); and/or channel initiation (31%)). Infrastructure type, pastoral land use, culvert presence, soil clay content and erodibility, mean annual rainfall, rainfall erosivity, topography and bare soil cover influenced the frequency and severity of these impacts. We conclude that linear infrastructure frequently affects ephemeral stream flows and intercepts natural overland and near-surface flows, artificially changing site-scale moisture regimes, with some parts of the landscape becoming abnormally wet and other parts becoming water-starved. In addition, linear infrastructure frequently triggers or exacerbates erosion

  9. Isotope and chemical tracers in groundwater hydrology

    International Nuclear Information System (INIS)

    Kendall, C.; Stewart, M.K.; Morgenstern, U.; Trompetter, V.

    1999-01-01

    The course sessions cover: session 1, Fundamentals of stable and radioactive isotopes; session 2, Stable oxygen and hydrogen isotopes in hydrology: background, examples, sampling strategy; session 3, Catchment studies using oxygen and hydrogen isotopes: background - the hydrologic water balance, evapotranspiration - the lion's share, runoff generation - new water/old water fractions, groundwater recharge - the crumbs; session 4, Isotopes in catchment hydrology: survey of applications, future developments; session 5, Applications of tritium in hydrology: background and measurement, interpretation, examples; session 6, Case studies using mixing models: Hutt Valley groundwater system, an extended mixing model for simulating tracer transport in the unsaturated zone; session 7, Groundwater dating using CFC concentrations: background, sampling and measurement, use and applications; session 8, Groundwater dating with carbon-14: background, sampling and measurement, use and applications; session 9, NZ case studies: Tauranga warm springs, North Canterbury Plains groundwater; session 10, Stable carbon and nitrogen isotopes: background and examples, biological applications of C-N-S isotopes; session 11, New developments in isotope hydrology: gas isotopes, compound specific applications, age dating of sediments etc; session 12, NZ case studies: North Canterbury Plains groundwater (continued), Waimea Plains groundwater. (author). refs., figs

  10. The observed sensitivity of the global hydrological cycle to changes in surface temperature

    International Nuclear Information System (INIS)

    Arkin, Phillip A; Janowiak, John; Smith, Thomas M; Sapiano, Mathew R P

    2010-01-01

    Climate models project large changes in global surface temperature in coming decades that are expected to be accompanied by significant changes in the global hydrological cycle. Validation of model simulations is essential to support their use in decision making, but observing the elements of the hydrological cycle is challenging, and model-independent global data sets exist only for precipitation. We compute the sensitivity of the global hydrological cycle to changes in surface temperature using available global precipitation data sets and compare the results against the sensitivities derived from model simulations of 20th century climate. The implications of the results for the global climate observing system are discussed.

  11. User's guide for MAGIC-Meteorologic and hydrologic genscn (generate scenarios) input converter

    Science.gov (United States)

    Ortel, Terry W.; Martin, Angel

    2010-01-01

    Meteorologic and hydrologic data used in watershed modeling studies are collected by various agencies and organizations, and stored in various formats. Data may be in a raw, un-processed format with little or no quality control, or may be checked for validity before being made available. Flood-simulation systems require data in near real-time so that adequate flood warnings can be made. Additionally, forecasted data are needed to operate flood-control structures to potentially mitigate flood damages. Because real-time data are of a provisional nature, missing data may need to be estimated for use in floodsimulation systems. The Meteorologic and Hydrologic GenScn (Generate Scenarios) Input Converter (MAGIC) can be used to convert data from selected formats into the Hydrologic Simulation System-Fortran hourly-observations format for input to a Watershed Data Management database, for use in hydrologic modeling studies. MAGIC also can reformat the data to the Full Equations model time-series format, for use in hydraulic modeling studies. Examples of the application of MAGIC for use in the flood-simulation system for Salt Creek in northeastern Illinois are presented in this report.

  12. Multi-criteria evaluation of hydrological models

    Science.gov (United States)

    Rakovec, Oldrich; Clark, Martyn; Weerts, Albrecht; Hill, Mary; Teuling, Ryan; Uijlenhoet, Remko

    2013-04-01

    Over the last years, there is a tendency in the hydrological community to move from the simple conceptual models towards more complex, physically/process-based hydrological models. This is because conceptual models often fail to simulate the dynamics of the observations. However, there is little agreement on how much complexity needs to be considered within the complex process-based models. One way to proceed to is to improve understanding of what is important and unimportant in the models considered. The aim of this ongoing study is to evaluate structural model adequacy using alternative conceptual and process-based models of hydrological systems, with an emphasis on understanding how model complexity relates to observed hydrological processes. Some of the models require considerable execution time and the computationally frugal sensitivity analysis, model calibration and uncertainty quantification methods are well-suited to providing important insights for models with lengthy execution times. The current experiment evaluates two version of the Framework for Understanding Structural Errors (FUSE), which both enable running model inter-comparison experiments. One supports computationally efficient conceptual models, and the second supports more-process-based models that tend to have longer execution times. The conceptual FUSE combines components of 4 existing conceptual hydrological models. The process-based framework consists of different forms of Richard's equations, numerical solutions, groundwater parameterizations and hydraulic conductivity distribution. The hydrological analysis of the model processes has evolved from focusing only on simulated runoff (final model output), to also including other criteria such as soil moisture and groundwater levels. Parameter importance and associated structural importance are evaluated using different types of sensitivity analyses techniques, making use of both robust global methods (e.g. Sobol') as well as several

  13. airGR: an R-package suitable for large sample hydrology presenting a suite of lumped hydrological models

    Science.gov (United States)

    Thirel, G.; Delaigue, O.; Coron, L.; Perrin, C.; Andreassian, V.

    2016-12-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2015; Coron et al., 2016), called airGR, to make these models widely available. It includes: - the water balance annual GR1A (Mouehli et al., 2006), - the monthly GR2M (Mouehli, 2003) models, - three versions of the daily model, namely GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al., 2011), - the hourly GR4H model (Mathevet, 2005), - a degree-day snow module CemaNeige (Valéry et al., 2014). The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithm selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is already used for educational purposes. It allows for convenient implementation of model inter-comparisons and

  14. Streamlining genomes: toward the generation of simplified and stabilized microbial systems

    NARCIS (Netherlands)

    Leprince, A.; Passel, van M.W.J.; Martins Dos Santos, V.A.P.

    2012-01-01

    At the junction between systems and synthetic biology, genome streamlining provides a solid foundation both for increased understanding of cellular circuitry, and for the tailoring of microbial chassis towards innovative biotechnological applications. Iterative genomic deletions (targeted and

  15. Hydrological Modelling using HEC-HMS for Flood Risk Assessment of Segamat Town, Malaysia

    Science.gov (United States)

    Romali, N. S.; Yusop, Z.; Ismail, A. Z.

    2018-03-01

    This paper presents an assessment of the applicability of using Hydrologic Modelling System developed by the Hydrologic Engineering Center (HEC-HMS) for hydrological modelling of Segamat River. The objective of the model application is to assist in the assessment of flood risk by providing the peak flows of 2011 Segamat flood for the generation of flood mapping of Segamat town. The capability of the model was evaluated by comparing the historical observed data with the simulation results of the selected flood events. The model calibration and validation efficiency was verified using Nash-Sutcliffe model efficiency coefficient. The results demonstrate the interest to implement the hydrological model for assessing flood risk where the simulated peak flow result is in agreement with historical observed data. The model efficiency of the calibrated and validated exercises is 0.90 and 0.76 respectively, which is acceptable.

  16. How much expert knowledge is it worth to put in conceptual hydrological models?

    Science.gov (United States)

    Antonetti, Manuel; Zappa, Massimiliano

    2017-04-01

    Both modellers and experimentalists agree on using expert knowledge to improve our conceptual hydrological simulations on ungauged basins. However, they use expert knowledge differently for both hydrologically mapping the landscape and parameterising a given hydrological model. Modellers use generally very simplified (e.g. topography-based) mapping approaches and put most of the knowledge for constraining the model by defining parameter and process relational rules. In contrast, experimentalists tend to invest all their detailed and qualitative knowledge about processes to obtain a spatial distribution of areas with different dominant runoff generation processes (DRPs) as realistic as possible, and for defining plausible narrow value ranges for each model parameter. Since, most of the times, the modelling goal is exclusively to simulate runoff at a specific site, even strongly simplified hydrological classifications can lead to satisfying results due to equifinality of hydrological models, overfitting problems and the numerous uncertainty sources affecting runoff simulations. Therefore, to test to which extent expert knowledge can improve simulation results under uncertainty, we applied a typical modellers' modelling framework relying on parameter and process constraints defined based on expert knowledge to several catchments on the Swiss Plateau. To map the spatial distribution of the DRPs, mapping approaches with increasing involvement of expert knowledge were used. Simulation results highlighted the potential added value of using all the expert knowledge available on a catchment. Also, combinations of event types and landscapes, where even a simplified mapping approach can lead to satisfying results, were identified. Finally, the uncertainty originated by the different mapping approaches was compared with the one linked to meteorological input data and catchment initial conditions.

  17. Unique encoding for streamline topologies of incompressible and inviscid flows in multiply connected domains

    Energy Technology Data Exchange (ETDEWEB)

    Sakajo, T [Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Sawamura, Y; Yokoyama, T, E-mail: sakajo@math.kyoto-u.ac.jp [JST CREST, Kawaguchi, Saitama 332-0012 (Japan)

    2014-06-01

    This study considers the flow of incompressible and inviscid fluid in two-dimensional multiply connected domains. For such flows, encoding algorithms to assign a unique sequence of words to any structurally stable streamline topology based on the theory presented by Yokoyama and Sakajo (2013 Proc. R. Soc. A 469 20120558) are proposed. As an application, we utilize the algorithms to characterize the evolution of an incompressible and viscid flow around a flat plate inclined to the uniform flow in terms of the change of the word representations for their instantaneous streamline topologies. (papers)

  18. Using Modeling Tools to Better Understand Permafrost Hydrology

    Directory of Open Access Journals (Sweden)

    Clément Fabre

    2017-06-01

    Full Text Available Modification of the hydrological cycle and, subsequently, of other global cycles is expected in Arctic watersheds owing to global change. Future climate scenarios imply widespread permafrost degradation caused by an increase in air temperature, and the expected effect on permafrost hydrology is immense. This study aims at analyzing, and quantifying the daily water transfer in the largest Arctic river system, the Yenisei River in central Siberia, Russia, partially underlain by permafrost. The semi-distributed SWAT (Soil and Water Assessment Tool hydrological model has been calibrated and validated at a daily time step in historical discharge simulations for the 2003–2014 period. The model parameters have been adjusted to embrace the hydrological features of permafrost. SWAT is shown capable to estimate water fluxes at a daily time step, especially during unfrozen periods, once are considered specific climatic and soils conditions adapted to a permafrost watershed. The model simulates average annual contribution to runoff of 263 millimeters per year (mm yr−1 distributed as 152 mm yr−1 (58% of surface runoff, 103 mm yr−1 (39% of lateral flow and 8 mm yr−1 (3% of return flow from the aquifer. These results are integrated on a reduced basin area downstream from large dams and are closer to observations than previous modeling exercises.

  19. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Carmichael, Matthew J.; Inglis, Gordon N.; Badger, Marcus P. S.; Naafs, B. David A.; Behrooz, Leila; Remmelzwaal, Serginio; Monteiro, Fanny M.; Rohrssen, Megan; Farnsworth, Alexander; Buss, Heather L.; Dickson, Alexander J.; Valdes, Paul J.; Lunt, Daniel J.; Pancost, Richard D.

    2017-10-01

    The Paleocene-Eocene Thermal Maximum (PETM) hyperthermal, 56 million years ago (Ma), is the most dramatic example of abrupt Cenozoic global warming. During the PETM surface temperatures increased between 5 and 9 °C and the onset likely took hydrological and associated biogeochemical feedbacks, and proxy data from the PETM can provide constraints on changes in warm climate hydrology simulated by general circulation models (GCMs). In this paper, we provide a critical review of biological and geochemical signatures interpreted as direct or indirect indicators of hydrological change at the PETM, explore the importance of adopting multi-proxy approaches, and present a preliminary model-data comparison. Hydrological records complement those of temperature and indicate that the climatic response at the PETM was complex, with significant regional and temporal variability. This is further illustrated by the biogeochemical consequences of inferred changes in hydrology and, in fact, changes in precipitation and the biogeochemical consequences are often conflated in geochemical signatures. There is also strong evidence in many regions for changes in the episodic and/or intra-annual distribution of precipitation that has not widely been considered when comparing proxy data to GCM output. Crucially, GCM simulations indicate that the response of the hydrological cycle to the PETM was heterogeneous - some regions are associated with increased precipitation - evaporation (P - E), whilst others are characterised by a decrease. Interestingly, the majority of proxy data come from the regions where GCMs predict an increase in PETM precipitation. We propose that comparison of hydrological proxies to GCM output can be an important test of model skill, but this will be enhanced by further data from regions of model-simulated aridity and simulation of extreme precipitation events.

  20. West Virginia peer exchange : streamlining highway safety improvement program project delivery.

    Science.gov (United States)

    2015-01-01

    The West Virginia Division of Highways (WV DOH) hosted a Peer Exchange to share information and experiences : for streamlining Highway Safety Improvement Program (HSIP) project delivery. The event was held September : 22 to 23, 2014 in Charleston, We...

  1. Lightroom 5 streamlining your digital photography process

    CERN Document Server

    Sylvan, Rob

    2014-01-01

    Manage your images with Lightroom and this beautifully illustrated guide Image management can soak up huge amounts of a photographer's time, but help is on hand. This complete guides teaches you how to use Adobe Lightroom 5 to import, manage, edit, and showcase large quantities of images with impressive results. The authors, both professional photographers and Lightroom experts, walk you through step by step, demonstrating real-world techniques as well as a variety of practical tips, tricks, and shortcuts that save you time. Streamline image management tasks like a pro, and get back to doing

  2. Novel diffusion tensor imaging technique reveals developmental streamline volume changes in the corticospinal tract associated with leg motor control.

    Science.gov (United States)

    Kamson, David O; Juhász, Csaba; Chugani, Harry T; Jeong, Jeong-Won

    2015-04-01

    Diffusion tensor imaging (DTI) has expanded our knowledge of corticospinal tract (CST) anatomy and development. However, previous developmental DTI studies assessed the CST as a whole, overlooking potential differences in development of its components related to control of the upper and lower extremities. The present cross-sectional study investigated age-related changes, side and gender differences in streamline volume of the leg- and hand-related segments of the CST in children. DTI data of 31 children (1-14 years; mean age: 6±4 years; 17 girls) with normal conventional MRI were analyzed. Leg- and hand-related CST streamline volumes were quantified separately, using a recently validated novel tractography approach. CST streamline volumes on both sides were compared between genders and correlated with age. Higher absolute streamline volumes were found in the left leg-related CST compared to the right (p=0.001) without a gender effect (p=0.4), whereas no differences were found in the absolute hand-related CST volumes (p>0.4). CST leg-related streamline volumes, normalized to hemispheric white matter volumes, declined with age in the right hemisphere only (R=-.51; p=0.004). Absolute leg-related CST streamline volumes showed similar, but slightly weaker correlations. Hand-related absolute or normalized CST streamline volumes showed no age-related variations on either side. These results suggest differential development of CST segments controlling hand vs. leg movements. Asymmetric volume changes in the lower limb motor pathway may be secondary to gradually strengthening left hemispheric dominance and is consistent with previous data suggesting that footedness is a better predictor of hemispheric lateralization than handedness. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. HYDROLOGIC MODEL UNCERTAINTY ASSOCIATED WITH SIMULATING FUTURE LAND-COVER/USE SCENARIOS: A RETROSPECTIVE ANALYSIS

    Science.gov (United States)

    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...

  4. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    Science.gov (United States)

    Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-10-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.

  5. A fully integrated SWAT-MODFLOW hydrologic model

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) and MODFLOW models are being used worldwide for managing surface and groundwater water resources. The SWAT models hydrological processes occurring at the surface including shallow aquifers, while MODFLOW simulate groundwater processes. However, neither SWAT ...

  6. Some History and Hydrology of the Panama Canal

    National Research Council Canada - National Science Library

    Pabst, Arthur

    2000-01-01

    At the request of the Panama Canal Commission (now Panama Canal Authority), the Hydrologic Engineering Center participated in the development of a model to simulate the existing operation of the Panama Canal System...

  7. CalSimHydro Tool - A Web-based interactive tool for the CalSim 3.0 Hydrology Prepropessor

    Science.gov (United States)

    Li, P.; Stough, T.; Vu, Q.; Granger, S. L.; Jones, D. J.; Ferreira, I.; Chen, Z.

    2011-12-01

    CalSimHydro, the CalSim 3.0 Hydrology Preprocessor, is an application designed to automate the various steps in the computation of hydrologic inputs for CalSim 3.0, a water resources planning model developed jointly by California State Department of Water Resources and United States Bureau of Reclamation, Mid-Pacific Region. CalSimHydro consists of a five-step FORTRAN based program that runs the individual models in succession passing information from one model to the next and aggregating data as required by each model. The final product of CalSimHydro is an updated CalSim 3.0 state variable (SV) DSS input file. CalSimHydro consists of (1) a Rainfall-Runoff Model to compute monthly infiltration, (2) a Soil moisture and demand calculator (IDC) that estimates surface runoff, deep percolation, and water demands for natural vegetation cover and various crops other than rice, (3) a Rice Water Use Model to compute the water demands, deep percolation, irrigation return flow, and runoff from precipitation for the rice fields, (4) a Refuge Water Use Model that simulates the ponding operations for managed wetlands, and (5) a Data Aggregation and Transfer Module to aggregate the outputs from the above modules and transfer them to the CalSim SV input file. In this presentation, we describe a web-based user interface for CalSimHydro using Google Earth Plug-In. The CalSimHydro tool allows users to - interact with geo-referenced layers of the Water Budget Areas (WBA) and Demand Units (DU) displayed over the Sacramento Valley, - view the input parameters of the hydrology preprocessor for a selected WBA or DU in a time series plot or a tabular form, - edit the values of the input parameters in the table or by downloading a spreadsheet of the selected parameter in a selected time range, - run the CalSimHydro modules in the backend server and notify the user when the job is done, - visualize the model output and compare it with a base run result, - download the output SV file to be

  8. THE HYDROLOGIC RESPONSE OF A SMALL CATCHMENT TO CLEAR-CUTTING

    Science.gov (United States)

    We simulated how a landscape disturbance (e.g., fire or clear-cutting) alters hillslope and catchment hydrologic processes. Specifically, we simulated how the pattern and magnitude of tree removal in a catchment increases downslope transport of water and alters catchment soil moi...

  9. Damage Detection with Streamlined Structural Health Monitoring Data

    OpenAIRE

    Li, Jian; Deng, Jun; Xie, Weizhi

    2015-01-01

    The huge amounts of sensor data generated by large scale sensor networks in on-line structural health monitoring (SHM) systems often overwhelms the systems’ capacity for data transmission and analysis. This paper presents a new concept for an integrated SHM system in which a streamlined data flow is used as a unifying thread to integrate the individual components of on-line SHM systems. Such an integrated SHM system has a few desirable functionalities including embedded sensor data compressio...

  10. Zephyr: A secure Internet process to streamline engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, C.W.; Niven, W.A.; Cavitt, R.E. [and others

    1998-05-12

    Lawrence Livermore National Laboratory (LLNL) is implementing an Internet-based process pilot called `Zephyr` to streamline engineering and commerce using the Internet. Major benefits have accrued by using Zephyr in facilitating industrial collaboration, speeding the engineering development cycle, reducing procurement time, and lowering overall costs. Programs at LLNL are potentializing the efficiencies introduced since implementing Zephyr. Zephyr`s pilot functionality is undergoing full integration with Business Systems, Finance, and Vendors to support major programs at the Laboratory.

  11. Developing a Hydrologic Assessment Tool for Designing Bioretention in a watershed

    Science.gov (United States)

    Baek, Sangsoo; Ligaray, Mayzonee; Park, Jeong-Pyo; Kwon, Yongsung; Cho, Kyung Hwa

    2017-04-01

    Continuous urbanization has negatively impacted the ecological and hydrological environments at the global, regional, and local scales. This issue was addressed by developing Low Impact Development (LID) practices to deliver better hydrologic function and improve the environmental, economic, social and cultural outcomes. This study developed a modeling software to simulate and optimize bioretentions among LID in a given watershed. The model calculated a detailed soil infiltration process in bioretention with hydrological conditions and hydraulic facilities (e.g. riser and underdrain) and also generated an optimized plan using Flow Duration Curve (FDC). The optimization result from the simulation demonstrated that the location and size of bioretention, as well as the soil texture, are important elements for an efficient bioretention. We hope that the developed software in this study could be useful for establishing an appropriate scheme of LID installment

  12. Streamlining the license renewal review process

    International Nuclear Information System (INIS)

    Dozier, J.; Lee, S.; Kuo, P.T.

    2001-01-01

    The staff of the NRC has been developing three regulatory guidance documents for license renewal: the Generic Aging Lessons Learned (GALL) report, Standard Review Plan for License Renewal (SRP-LR), and Regulatory Guide (RG) for Standard Format and Content for Applications to Renew Nuclear Power Plant Operating Licenses. These documents are designed to streamline the license renewal review process by providing clear guidance for license renewal applicants and the NRC staff in preparing and reviewing license renewal applications. The GALL report systematically catalogs aging effects on structures and components; identifies the relevant existing plant programs; and evaluates the existing programs against the attributes considered necessary for an aging management program to be acceptable for license renewal. The GALL report also provides guidance for the augmentation of existing plant programs for license renewal. The revised SRP-LR allows an applicant to reference the GALL report to preclude further NRC staff evaluation if the plant's existing programs meet the criteria described in the GALL report. During the review process, the NRC staff will focus primarily on existing programs that should be augmented or new programs developed specifically for license renewal. The Regulatory Guide is expected to endorse the Nuclear Energy Institute (NEI) guideline, NEI 95-10, Revision 2, entitled 'Industry Guideline for Implementing the Requirements of 10 CFR Part 54 - The License Renewal Rule', which provides guidance for preparing a license renewal application. This paper will provide an introduction to the GALL report, SRP-LR, Regulatory Guide, and NEI 95-10 to show how these documents are interrelated and how they will be used to streamline the license renewal review process. This topic will be of interest to domestic power utilities considering license renewal and international ICONE participants seeking state-of-the-art information about license renewal in the United States

  13. Assimilation of remote sensing and hydrological data using adaptive filtering techniques for watershed modelling

    OpenAIRE

    Kumar, Sat; Sekhar, M; Bandyopadhyay, Sanjoy

    2009-01-01

    The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variab...

  14. Evaluation of uncertainty in capturing the spatial variability and magnitudes of extreme hydrological events for the uMngeni catchment, South Africa

    Science.gov (United States)

    Kusangaya, Samuel; Warburton Toucher, Michele L.; van Garderen, Emma Archer

    2018-02-01

    Downscaled General Circulation Models (GCMs) output are used to forecast climate change and provide information used as input for hydrological modelling. Given that our understanding of climate change points towards an increasing frequency, timing and intensity of extreme hydrological events, there is therefore the need to assess the ability of downscaled GCMs to capture these extreme hydrological events. Extreme hydrological events play a significant role in regulating the structure and function of rivers and associated ecosystems. In this study, the Indicators of Hydrologic Alteration (IHA) method was adapted to assess the ability of simulated streamflow (using downscaled GCMs (dGCMs)) in capturing extreme river dynamics (high and low flows), as compared to streamflow simulated using historical climate data from 1960 to 2000. The ACRU hydrological model was used for simulating streamflow for the 13 water management units of the uMngeni Catchment, South Africa. Statistically downscaled climate models obtained from the Climate System Analysis Group at the University of Cape Town were used as input for the ACRU Model. Results indicated that, high flows and extreme high flows (one in ten year high flows/large flood events) were poorly represented both in terms of timing, frequency and magnitude. Simulated streamflow using dGCMs data also captures more low flows and extreme low flows (one in ten year lowest flows) than that captured in streamflow simulated using historical climate data. The overall conclusion was that although dGCMs output can reasonably be used to simulate overall streamflow, it performs poorly when simulating extreme high and low flows. Streamflow simulation from dGCMs must thus be used with caution in hydrological applications, particularly for design hydrology, as extreme high and low flows are still poorly represented. This, arguably calls for the further improvement of downscaling techniques in order to generate climate data more relevant and

  15. Effects of timber management on the hydrology of wetland forests in the Southern United States

    Science.gov (United States)

    Ge Sun; Steven G. McNulty; James P. Shepard; Devendra M. Amatya; Hans Riekerk; Nicholas B. Comerford; Wayne Skaggs; Lloyd Swift

    2001-01-01

    The objectives of this paper are to review the hydrologic impacts of various common forest management practices that include harvesting, site preparation, and drainage. Field hydrological data collected during the past 5±10 years from ten forested wetland sites across the southern US are synthesized using various methods including hydrologic simulation models and...

  16. Accounting for water management issues within hydrological simulation: Alternative modelling options and a network optimization approach

    Science.gov (United States)

    Efstratiadis, Andreas; Nalbantis, Ioannis; Rozos, Evangelos; Koutsoyiannis, Demetris

    2010-05-01

    In mixed natural and artificialized river basins, many complexities arise due to anthropogenic interventions in the hydrological cycle, including abstractions from surface water bodies, groundwater pumping or recharge and water returns through drainage systems. Typical engineering approaches adopt a multi-stage modelling procedure, with the aim to handle the complexity of process interactions and the lack of measured abstractions. In such context, the entire hydrosystem is separated into natural and artificial sub-systems or components; the natural ones are modelled individually, and their predictions (i.e. hydrological fluxes) are transferred to the artificial components as inputs to a water management scheme. To account for the interactions between the various components, an iterative procedure is essential, whereby the outputs of the artificial sub-systems (i.e. abstractions) become inputs to the natural ones. However, this strategy suffers from multiple shortcomings, since it presupposes that pure natural sub-systems can be located and that sufficient information is available for each sub-system modelled, including suitable, i.e. "unmodified", data for calibrating the hydrological component. In addition, implementing such strategy is ineffective when the entire scheme runs in stochastic simulation mode. To cope with the above drawbacks, we developed a generalized modelling framework, following a network optimization approach. This originates from the graph theory, which has been successfully implemented within some advanced computer packages for water resource systems analysis. The user formulates a unified system which is comprised of the hydrographical network and the typical components of a water management network (aqueducts, pumps, junctions, demand nodes etc.). Input data for the later include hydraulic properties, constraints, targets, priorities and operation costs. The real-world system is described through a conceptual graph, whose dummy properties

  17. Simulating the hydrologic impacts of land cover and climate changes in a semi-arid watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic...

  18. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

    Science.gov (United States)

    Wanders, N.; Bierkens, M. F. P.; de Jong, S. M.; de Roo, A.; Karssenberg, D.

    2014-08-01

    Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas. This article was corrected on 15 SEP 2014. See the end of the full text for details.

  19. Streamlining Smart Meter Data Analytics

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    of the so-called big data possible. This can improve energy management, e.g., help utilities improve the management of energy and services, and help customers save money. As this regard, the paper focuses on building an innovative software solution to streamline smart meter data analytic, aiming at dealing......Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social......-economic metrics such as the geographic information of meters, the information about users and their property, geographic location and others, which make the data management very complex. On the other hand, data-mining and the emerging cloud computing technologies make the collection, management, and analysis...

  20. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  1. Simulating hydrologic response to climate change scenarios in four selected watersheds of New Hampshire

    Science.gov (United States)

    Bjerklie, David M.; Ayotte, Joseph D.; Cahillane, Matthew J.

    2015-01-01

    The State of New Hampshire has initiated a coordinated effort to proactively prepare for the effects of climate change on the natural and human resources of New Hampshire. An important aspect of this effort is to develop a vulnerability assessment of hydrologic response to climate change. The U.S. Geological Survey, in cooperation with the New Hampshire Department of Health and Human Services, is developing tools to predict how projected changes in temperature and precipitation will affect change in the hydrology of watersheds in the State. This study is a test case to assemble the information and create the tools to assess the hydrologic vulnerabilities in four specific watersheds.

  2. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2012-11-01

    Full Text Available Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP. For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity, drought propagation features (pooling, attenuation, lag, lengthening, and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought.

    Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an

  3. Modelling hydrology of a single bioretention system with HYDRUS-1D.

    Science.gov (United States)

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

  4. Evaluation of radar-derived precipitation estimates using runoff simulation : report for the NFR Energy Norway funded project 'Utilisation of weather radar data in atmospheric and hydrological models'

    Energy Technology Data Exchange (ETDEWEB)

    Abdella, Yisak; Engeland, Kolbjoern; Lepioufle, Jean-Marie

    2012-11-01

    This report presents the results from the project called 'Utilisation of weather radar data in atmospheric and hydrological models' funded by NFR and Energy Norway. Three precipitation products (radar-derived, interpolated and combination of the two) were generated as input for hydrological models. All the three products were evaluated by comparing the simulated and observed runoff at catchments. In order to expose any bias in the precipitation inputs, no precipitation correction factors were applied. Three criteria were used to measure the performance: Nash, correlation coefficient, and bias. The results shows that the simulations with the combined precipitation input give the best performance. We also see that the radar-derived precipitation estimates give reasonable runoff simulation even without a region specific parameters for the Z-R relationship. All the three products resulted in an underestimation of the estimated runoff, revealing a systematic bias in measurements (e.g. catch deficit, orographic effects, Z-R relationships) that can be improved. There is an important potential of using radar-derived precipitation for simulation of runoff, especially in catchments without precipitation gauges inside.(Author)

  5. Analysis of Hydrological Sensitivity for Flood Risk Assessment

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Sharma

    2018-02-01

    Full Text Available In order for the Indian government to maximize Integrated Water Resource Management (IWRM, the Brahmaputra River has played an important role in the undertaking of the Pilot Basin Study (PBS due to the Brahmaputra River’s annual regional flooding. The selected Kulsi River—a part of Brahmaputra sub-basin—experienced severe floods in 2007 and 2008. In this study, the Rainfall-Runoff-Inundation (RRI hydrological model was used to simulate the recent historical flood in order to understand and improve the integrated flood risk management plan. The ultimate objective was to evaluate the sensitivity of hydrologic simulation using different Digital Elevation Model (DEM resources, coupled with DEM smoothing techniques, with a particular focus on the comparison of river discharge and flood inundation extent. As a result, the sensitivity analysis showed that, among the input parameters, the RRI model is highly sensitive to Manning’s roughness coefficient values for flood plains, followed by the source of the DEM, and then soil depth. After optimizing its parameters, the simulated inundation extent showed that the smoothing filter was more influential than its simulated discharge at the outlet. Finally, the calibrated and validated RRI model simulations agreed well with the observed discharge and the Moderate Imaging Spectroradiometer (MODIS-detected flood extents.

  6. Response of terrestrial hydrology to climate and permafrost change for the 21st century as simulated by JSBACH offline experiments

    Science.gov (United States)

    Blome, Tanja; Hagemann, Stefan; Ekici, Altug; Beer, Christian

    2015-04-01

    Permafrost (PF) or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. In terms of hydrology, changes in permafrost characteristics may lead to contradicting effects. E.g., observations show that the deepening of the Active Layer (AL) can both decrease and increase soil moisture, depending on the specific conditions. For the investigation of hydrological changes in response to climatic and thus PF change, it is therefore necessary to use a model. To address this response of the terrestrial hydrology to projected changes for the 21st century, the global land surface model of the Max-Planck-Institute for Meteorology, JSBACH, was used to simulate several future climate scenarios. JSBACH recently has been equipped with important physical PF processes, such as the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In order to identify hydrological impacts originating solely in the physical forcing, experiments were conducted in an offline mode and with fixed vegetation cover. Feedback mechanisms, e.g. via the carbon cycle, were thus excluded. The uncertainty range arising through different Representative Concentration Pathways (RCPs) as well as through different

  7. Evaluating post-wildfire hydrologic recovery using ParFlow in southern California

    Science.gov (United States)

    Lopez, S. R.; Kinoshita, A. M.; Atchley, A. L.

    2016-12-01

    Wildfires are naturally occurring hazards that can have catastrophic impacts. They can alter the natural processes within a watershed, such as surface runoff and subsurface water storage. Generally, post-fire hydrologic models are either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful in providing runoff measurements at the watershed outlet; however, do not provide distributed hydrologic simulation at each point within the watershed. This research demonstrates how ParFlow, a three-dimensional, distributed hydrologic model can simulate post-fire hydrologic processes by representing soil burn severity (via hydrophobicity) and vegetation recovery as they vary both spatially and temporally. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This model is initially developed for a hillslope in Devil Canyon, burned in 2003 by the Old Fire in southern California (USA). The domain uses a 2m-cell size resolution over a 25 m by 25 m lateral extent. The subsurface reaches 2 m and is assigned a variable cell thickness, allowing an explicit consideration of the soil burn severity throughout the stages of recovery and vegetation regrowth. Vegetation regrowth is incorporated represented by satellite-based Enhanced Vegetation Index (EVI) products. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated and will be used as a basis for developing a watershed-scale model. Long-term continuous simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management.

  8. Open source data assimilation framework for hydrological modeling

    Science.gov (United States)

    Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik

    2013-04-01

    An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent

  9. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    Science.gov (United States)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  10. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected...... global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...

  11. Upscaling from research watersheds: an essential stage of trustworthy general-purpose hydrologic model building

    Science.gov (United States)

    McNamara, J. P.; Semenova, O.; Restrepo, P. J.

    2011-12-01

    Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in

  12. Agricultural watershed modeling: a review for hydrology and soil erosion processes

    Directory of Open Access Journals (Sweden)

    Carlos Rogério de Mello

    2016-02-01

    Full Text Available ABSTRACT Models have been used by man for thousands of years to control his environment in a favorable way to better human living conditions. The use of hydrologic models has been a widely effective tool in order to support decision makers dealing with watersheds related to several economic and social activities, like public water supply, energy generation, and water availability for agriculture, among others. The purpose of this review is to briefly discuss some models on soil and water movement on landscapes (RUSLE, WEPP, GeoWEPP, LASH, DHSVM and AnnAGNPS to provide information about them to help and serve in a proper manner in order to discuss particular problems related to hydrology and soil erosion processes. Models have been changed and evaluated significantly in recent years, highlighting the use of remote sense, GIS and automatic calibration process, allowing them capable of simulating watersheds under a given land-use and climate change effects. However, hydrology models have almost the same physical structure, which is not enough for simulating problems related to the long-term effects of different land-uses. That has been our challenge for next future: to understand entirely the hydrology cycle, having as reference the critical zone, in which the hydrological processes act together from canopy to the bottom of aquifers.

  13. Hydrology

    Science.gov (United States)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  14. A new algorithm for the simulation of the Boltzmann equation using the direct simulation monte-carlo method

    International Nuclear Information System (INIS)

    Ganjaei, A. A.; Nourazar, S. S.

    2009-01-01

    A new algorithm, the modified direct simulation Monte-Carlo (MDSMC) method, for the simulation of Couette- Taylor gas flow problem is developed. The Taylor series expansion is used to obtain the modified equation of the first order time discretization of the collision equation and the new algorithm, MDSMC, is implemented to simulate the collision equation in the Boltzmann equation. In the new algorithm (MDSMC) there exists a new extra term which takes in to account the effect of the second order collision. This new extra term has the effect of enhancing the appearance of the first Taylor instabilities of vortices streamlines. In the new algorithm (MDSMC) there also exists a second order term in time step in the probabilistic coefficients which has the effect of simulation with higher accuracy than the previous DSMC algorithm. The appearance of the first Taylor instabilities of vortices streamlines using the MDSMC algorithm at different ratios of ω/ν (experimental data of Taylor) occurred at less time-step than using the DSMC algorithm. The results of the torque developed on the stationary cylinder using the MDSMC algorithm show better agreement in comparison with the experimental data of Kuhlthau than the results of the torque developed on the stationary cylinder using the DSMC algorithm

  15. Development and comparison of Bayesian modularization method in uncertainty assessment of hydrological models

    Science.gov (United States)

    Li, L.; Xu, C.-Y.; Engeland, K.

    2012-04-01

    With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD

  16. HYDROLOGY AND SEDIMENT MODELING USING THE BASINS NON-POINT SOURCE MODEL

    Science.gov (United States)

    The Non-Point Source Model (Hydrologic Simulation Program-Fortran, or HSPF) within the EPA Office of Water's BASINS watershed modeling system was used to simulate streamflow and total suspended solids within Contentnea Creek, North Carolina, which is a tributary of the Neuse Rive...

  17. Importance of hydrological parameters in contaminant transport modeling in a terrestrial environment

    International Nuclear Information System (INIS)

    Tsuduki, Katsunori; Matsunaga, Takeshi

    2007-01-01

    A grid type multi-layered distributed parameter model for calculating discharge in a watershed was described. Model verification with our field observation resulted in different sets of hydrological parameter values, all of which reproduced the observed discharge. The effect of those varied hydrological parameters on contaminant transport calculation was examined and discussed by simulation of event water transfer. (author)

  18. Ensemble catchment hydrological modelling for climate change impact analysis

    Science.gov (United States)

    Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick

    2014-05-01

    It is vital to investigate how the hydrological model structure affects the climate change impact given that future changes not in the range for which the models were calibrated or validated are likely. Thus an ensemble modelling approach which involves a diversity of models with different structures such as spatial resolutions and process descriptions is crucial. The ensemble modelling approach was applied to a set of models: from the lumped conceptual models NAM, PDM and VHM, an intermediate detailed and distributed model WetSpa, to the highly detailed and fully distributed model MIKE-SHE. Explicit focus was given to the high and low flow extremes. All models were calibrated for sub flows and quick flows derived from rainfall and potential evapotranspiration (ETo) time series. In general, all models were able to produce reliable estimates of the flow regimes under the current climate for extreme peak and low flows. An intercomparison of the low and high flow changes under changed climatic conditions was made using climate scenarios tailored for extremes. Tailoring was important for two reasons. First, since the use of many scenarios was not feasible it was necessary to construct few scenarios that would reasonably represent the range of extreme impacts. Second, scenarios would be more informative as changes in high and low flows would be easily traced to changes of ETo and rainfall; the tailored scenarios are constructed using seasonal changes that are defined using different levels of magnitude (high, mean and low) for rainfall and ETo. After simulation of these climate scenarios in the five hydrological models, close agreement was found among the models. The different models predicted similar range of peak flow changes. For the low flows, however, the differences in the projected impact range by different hydrological models was larger, particularly for the drier scenarios. This suggests that the hydrological model structure is critical in low flow predictions

  19. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    Science.gov (United States)

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  20. How runoff begins (and ends): characterizing hydrologic response at the catchment scale

    Science.gov (United States)

    Mirus, Benjamin B.; Loague, Keith

    2013-01-01

    Improved understanding of the complex dynamics associated with spatially and temporally variable runoff response is needed to better understand the hydrology component of interdisciplinary problems. The objective of this study was to quantitatively characterize the environmental controls on runoff generation for the range of different streamflow-generation mechanisms illustrated in the classic Dunne diagram. The comprehensive physics-based model of coupled surface-subsurface flow, InHM, is employed in a heuristic mode. InHM has been employed previously to successfully simulate the observed hydrologic response at four diverse, well-characterized catchments, which provides the foundation for this study. The C3 and CB catchments are located within steep, forested terrain; the TW and R5 catchments are located in gently sloping rangeland. The InHM boundary-value problems for these four catchments provide the corner-stones for alternative simulation scenarios designed to address the question of how runoff begins (and ends). Simulated rainfall-runoff events are used to systematically explore the impact of soil-hydraulic properties and rainfall characteristics. This approach facilitates quantitative analysis of both integrated and distributed hydrologic responses at high-spatial and temporal resolution over the wide range of environmental conditions represented by the four catchments. The results from 140 unique simulation scenarios illustrate how rainfall intensity/depth, subsurface permeability contrasts, characteristic curve shapes, and topography provide important controls on the hydrologic-response dynamics. The processes by which runoff begins (and ends) are shown, in large part, to be defined by the relative rates of rainfall, infiltration, lateral flow convergence, and storage dynamics within the variably saturated soil layers.

  1. A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design

    Science.gov (United States)

    Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.

    2017-12-01

    Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.

  2. Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains

    Directory of Open Access Journals (Sweden)

    X. Fang

    2013-04-01

    Full Text Available One of the purposes of the Cold Regions Hydrological Modelling platform (CRHM is to diagnose inadequacies in the understanding of the hydrological cycle and its simulation. A physically based hydrological model including a full suite of snow and cold regions hydrology processes as well as warm season, hillslope and groundwater hydrology was developed in CRHM for application in the Marmot Creek Research Basin (~ 9.4 km2, located in the Front Ranges of the Canadian Rocky Mountains. Parameters were selected from digital elevation model, forest, soil, and geological maps, and from the results of many cold regions hydrology studies in the region and elsewhere. Non-calibrated simulations were conducted for six hydrological years during the period 2005–2011 and were compared with detailed field observations of several hydrological cycle components. The results showed good model performance for snow accumulation and snowmelt compared to the field observations for four seasons during the period 2007–2011, with a small bias and normalised root mean square difference (NRMSD ranging from 40 to 42% for the subalpine conifer forests and from 31 to 67% for the alpine tundra and treeline larch forest environments. Overestimation or underestimation of the peak SWE ranged from 1.6 to 29%. Simulations matched well with the observed unfrozen moisture fluctuation in the top soil layer at a lodgepole pine site during the period 2006–2011, with a NRMSD ranging from 17 to 39%, but with consistent overestimation of 7 to 34%. Evaluations of seasonal streamflow during the period 2006–2011 revealed that the model generally predicted well compared to observations at the basin scale, with a NRMSD of 60% and small model bias (1%, while at the sub-basin scale NRMSDs were larger, ranging from 72 to 76%, though overestimation or underestimation for the cumulative seasonal discharge was within 29%. Timing of discharge was better predicted at the Marmot Creek basin outlet

  3. Streamlining the Online Course Development Process by Using Project Management Tools

    Science.gov (United States)

    Abdous, M'hammed; He, Wu

    2008-01-01

    Managing the design and production of online courses is challenging. Insufficient instructional design and inefficient management often lead to issues such as poor course quality and course delivery delays. In an effort to facilitate, streamline, and improve the overall design and production of online courses, this article discusses how we…

  4. Diagnosis of inconsistencies in multi-year gridded precipitation data over mountainous areas and related impacts on hydrologic simulations

    Science.gov (United States)

    Mizukami, N.; Smith, M. B.

    2010-12-01

    It is common for the error characteristics of long-term precipitation data to change over time due to various factors such as gauge relocation and changes in data processing methods. The temporal consistency of precipitation data error characteristics is as important as data accuracy itself for hydrologic model calibration and subsequent use of the calibrated model for streamflow prediction. In mountainous areas, the generation of precipitation grids relies on sparse gage networks, the makeup of which often varies over time. This causes a change in error characteristics of the long-term precipitation data record. We will discuss the diagnostic analysis of the consistency of gridded precipitation time series and illustrate the adverse effect of inconsistent precipitation data on a hydrologic model simulation. We used hourly 4 km gridded precipitation time series over a mountainous basin in the Sierra Nevada Mountains of California from October 1988 through September 2006. The basin is part of the broader study area that served as the focus of the second phase of the Distributed Model Intercomparison Project (DMIP-2), organized by the U.S. National Weather Service (NWS) of the National Oceanographic and Atmospheric Administration (NOAA). To check the consistency of the gridded precipitation time series, double mass analysis was performed using single pixel and basin mean areal precipitation (MAP) values derived from gridded DMIP-2 and Parameter-Elevation Regressions on Independent Slopes Model (PRISM) precipitation data. The analysis leads to the conclusion that over the entire study time period, a clear change in error characteristics in the DMIP-2 data occurred in the beginning of 2003. This matches the timing of one of the major gage network changes. The inconsistency of two MAP time series computed from the gridded precipitation fields over two elevation zones was corrected by adjusting hourly values based on the double mass analysis. We show that model

  5. Macroscale hydrologic modeling of ecologically relevant flow metrics

    Science.gov (United States)

    Wenger, Seth J.; Luce, Charles H.; Hamlet, Alan F.; Isaak, Daniel J.; Neville, Helen M.

    2010-09-01

    Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe and forecast hydrologic changes but has been calibrated and applied mainly to large rivers. An important question is how well VIC runoff simulations serve to answer questions about hydrologic changes in smaller streams, which are important habitat for many fish species. To answer this question, we aggregated gridded VIC outputs within the drainage basins of 55 streamflow gages in the Pacific Northwest United States and compared modeled hydrographs and summary metrics to observations. For most streams, several ecologically relevant aspects of the hydrologic regime were accurately modeled, including center of flow timing, mean annual and summer flows and frequency of winter floods. Frequencies of high and low flows in the summer were not well predicted, however. Predictions were worse for sites with strong groundwater influence, and some sites showed errors that may result from limitations in the forcing climate data. Higher resolution (1/16th degree) modeling provided small improvements over lower resolution (1/8th degree). Despite some limitations, the VIC model appears capable of representing several ecologically relevant hydrologic characteristics in streams, making it a useful tool for understanding the effects of hydrology in delimiting species distributions and predicting the potential effects of climate shifts on aquatic organisms.

  6. A distributed eco-hydrological model and its application

    Directory of Open Access Journals (Sweden)

    Zong-xue Xu

    2017-10-01

    Full Text Available Eco-hydrological processes in arid areas are the focus of many hydrological and water resources studies. However, the hydrological cycle and the ecological system have usually been considered separately in most previous studies, and the correlation between the two has not been fully understood. Interdisciplinary research on eco-hydrological processes using multidisciplinary knowledge has been insufficient. In order to quantitatively analyze and evaluate the interaction between the ecosystem and the hydrological cycle, a new kind of eco-hydrological model, the ecology module for a grid-based integrated surface and groundwater model (Eco-GISMOD, is proposed with a two-way coupling approach, which combines the ecological model (EPIC and hydrological model (GISMOD by considering water exchange in the soil layer. Water interaction between different soil layers is simply described through a generalized physical process in various situations. A special method was used to simulate the water exchange between plants and the soil layer, taking into account precipitation, evapotranspiration, infiltration, soil water replenishment, and root water uptake. In order to evaluate the system performance, the Heihe River Basin in northwestern China was selected for a case study. The results show that forests and crops were generally growing well with sufficient water supply, but water shortages, especially in the summer, inhibited the growth of grass and caused grass degradation. This demonstrates that water requirements and water consumption for different kinds of vegetation can be estimated by considering the water-supply rules of Eco-GISMOD, which will be helpful for the planning and management of water resources in the future.

  7. Simulating Hydrologic Changes with Climate Change Scenarios in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; XIE Zheng-Hui; LIU Qian; XIA Jun

    2005-01-01

    Climate change scenarios, predicted using the regional climate modeling system of PRECIS (providing regional climates for impacts studies), were used to derive three-layer variable infiltration capacity (VIC-3L) land surface model for the simulation of hydrologic processes at a spatial resolution of 0.25°× 0.25° in the Haihe River Basin. Three climate scenaxios were considered in this study: recent climate (1961-1990), future climate A2 (1991-2100) and future climate B2 (1991-2100) with A2 and B2 being two storylines of future emissions developed with the Intergovernmental Panel on Climate Change (IPCC) special report on emissions scenarios. Overall, under future climate scenarios A2 and B2, the Haihe River Basin would experience warmer climate with increased precipitation, evaporation and runoff production as compared with recent climate, but would be still likely prone to water shortages in the period of 2031-2070. In addition,under future climate A2 and B2, an increase in runoff during the wet season was noticed, indicating a future rise in the flood occurrence possibility in the Haihe River Basin.

  8. Hydrology Project

    International Nuclear Information System (INIS)

    Anon.

    Research carried out in the 'Hydrology Project' of the Centro de Energia Nuclear na Agricultura', Piracicaba, Sao Paulo State, Brazil, are described. Such research comprises: Amazon hydrology and Northeast hydrology. Techniques for the measurement of isotope ratios are used. (M.A.) [pt

  9. Hydrological simulation approaches for BMPs and LID practices in highly urbanized area and development of hydrological performance indicator system

    Directory of Open Access Journals (Sweden)

    Yan-wei Sun

    2014-04-01

    Full Text Available Urbanization causes hydrological change and increases stormwater runoff volumes, leading to flooding, erosion, and the degradation of instream ecosystem health. Best management practices (BMPs, like detention ponds and infiltration trenches, have been widely used to control flood runoff events for the past decade. However, low impact development (LID options have been proposed as an alternative approach to better mimic the natural flow regime by using decentralized designs to control stormwater runoff at the source, rather than at a centralized location in the watershed. For highly urbanized areas, LID stormwater management practices such as bioretention cells and porous pavements can be used to retrofit existing infrastructure and reduce runoff volumes and peak flows. This paper describes a modeling approach to incorporate these LID practices and the two BMPs of detention ponds and infiltration trenches in an existing hydrological model to estimate the impacts of BMPs and LID practices on the surface runoff. The modeling approach has been used in a parking lot located in Lenexa, Kansas, USA, to predict hydrological performance of BMPs and LID practices. A performance indicator system including the flow duration curve, peak flow frequency exceedance curve, and runoff coefficient have been developed in an attempt to represent impacts of BMPs and LID practices on the entire spectrum of the runoff regime. Results demonstrate that use of these BMPs and LID practices leads to significant stormwater control for small rainfall events and less control for flood events.

  10. Hydrology and Mosquito Population Dynamics around a Hydropower Reservoir in Africa

    Science.gov (United States)

    Endo, N.; Eltahir, E. A.

    2013-12-01

    Malaria is associated with dams because their reservoirs provide mosquitoes, the vector of malaria, with permanent breeding sites. The risk of contracting malaria is likely to be enhanced following the increasing trend of hydropower dam construction to satisfy the expanding energy needs in developing countries. A close examination of its adverse health impacts is critical in the design, construction, and operation phases. We will present results of extensive field studies in 2012 and 2013 around the Koka Reservoir, Ethiopia. The results uncover the importance of reservoir management especially after the rainy seasons. Furthermore, we show the capability of a newly modified hydrology, entomology and malaria transmission simulator, HYDREMATS (Bomblies et al, 2008), and its potential as a tool for evaluating environmental management strategies to control malaria. HYDREMATS was developed to represent how the hydrology in nearby villages is impacted by the reservoir system, and the role of different types of vector ecologies associated with different Anopheles mosquito species. The hydrology component of HYDREMATS simulates three different mosquito breeding habitats: rain-fed pools, groundwater pools, and shoreline water. The entomology component simulates the life cycles of An. funestus and An. arabiensis, the two main vectors around the reservoir. The model was calibrated over the 2012-2013 period. The impact of reservoir water level management on the mosquito population is explored based on numerical model simulations and field experiments.

  11. Adaptation of Land-Use Demands to the Impact of Climate Change on the Hydrological Processes of an Urbanized Watershed

    Science.gov (United States)

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-01-01

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology. PMID:23202833

  12. A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations

    Science.gov (United States)

    Demir, I.; Agliamzanov, R.

    2014-12-01

    Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.

  13. How to handle spatial heterogeneity in hydrological models.

    Science.gov (United States)

    Loritz, Ralf; Neuper, Malte; Gupta, Hoshin; Zehe, Erwin

    2017-04-01

    The amount of data we observe in our environmental systems is larger than ever. This leads to a new kind of problem where hydrological modelers can have access to large datasets with various quantitative and qualitative observations but are uncertain about the information content with respect to the hydrological functioning of a landscape. For example digital elevation models obviously contain plenty of information about the topography of a landscape; however the question of relevance for Hydrology is how much of this information is important for the hydrological functioning of a landscape. This kind of question is not limited to topography and we can ask similar questions when handling distributed rainfall data or geophysical images. In this study we would like to show how one can separate dominant patterns in the landscape from idiosyncratic system details. We use a 2D numerical hillslope model in combination with an extensive research data set to test a variety of different model setups that are built upon different landscape characteristics and run by different rainfalls measurements. With the help of information theory based measures we can identify and learn how much heterogeneity is really necessary for successful hydrological simulations and how much of it we can neglect.

  14. Effect of earthquake and faulting on the hydrological environment

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hironobu [Japan Nuclear Cycle Development Inst., Toki, Gifu (Japan). Tono Geoscience Center; Sakai, Ryutaro

    1999-12-01

    The effects of earthquakes and active faults on the geological environment have been studied at the Tono Geoscience Center. The Hyogoken-Nanbu earthquake (January 17, 1995; M7.2) in Kobe and Awaji island caused significant changes in hydrology, involving a large amount of groundwater discharge in low-lying land and drastic water-table lowering (during only about 2-4 months) in elevated land near the epicenter. Simulation of the groundwater behavior in the vicinity of the Nojima fault was analysed to evaluate permeability enhancements. Calculated values such as water level changes were matched in a time series with the hydrological observed data in order to optimize this simulation model. Results indicate that the increase of hydraulic conductivity (5 x 10{sup -3} cm/s in weathered granitic rocks) and 1 x 10{sup -5} cm/s in fresh granitic rocks would produce a lowering of the water level at EL 180 m, and increase of discharge at less than EL 100 m, within four months after the earthquake. The study also suggested that the change in the hydraulic conductivity in the Nojima fault could not depend on the change in geological hydrology. (author)

  15. Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands

    Science.gov (United States)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Pontes, Paulo; Crétaux, Jean-François; Bergé-Nguyen, Muriel; Biancamaria, Sylvain; Gosset, Marielle; Calmant, Stephane; Tanimoun, Bachir

    2018-06-01

    Hydrological and hydrodynamic models are core tools for simulation of large basins and complex river systems associated to wetlands. Recent studies have pointed towards the importance of online coupling strategies, representing feedbacks between floodplain inundation and vertical hydrology. Especially across semi-arid regions, soil-floodplain interactions can be strong. In this study, we included a two-way coupling scheme in a large scale hydrological-hydrodynamic model (MGB) and tested different model structures, in order to assess which processes are important to be simulated in large semi-arid wetlands and how these processes interact with water budget components. To demonstrate benefits from this coupling over a validation case, the model was applied to the Upper Niger River basin encompassing the Niger Inner Delta, a vast semi-arid wetland in the Sahel Desert. Simulation was carried out from 1999 to 2014 with daily TMPA 3B42 precipitation as forcing, using both in-situ and remotely sensed data for calibration and validation. Model outputs were in good agreement with discharge and water levels at stations both upstream and downstream of the Inner Delta (Nash-Sutcliffe Efficiency (NSE) >0.6 for most gauges), as well as for flooded areas within the Delta region (NSE = 0.6; r = 0.85). Model estimates of annual water losses across the Delta varied between 20.1 and 30.6 km3/yr, while annual evapotranspiration ranged between 760 mm/yr and 1130 mm/yr. Evaluation of model structure indicated that representation of both floodplain channels hydrodynamics (storage, bifurcations, lateral connections) and vertical hydrological processes (floodplain water infiltration into soil column; evapotranspiration from soil and vegetation and evaporation of open water) are necessary to correctly simulate flood wave attenuation and evapotranspiration along the basin. Two-way coupled models are necessary to better understand processes in large semi-arid wetlands. Finally, such coupled

  16. Gridded Surface Subsurface Hydrologic Analysis (GSSHA) User's Manual; Version 1.43 for Watershed Modeling System 6.1

    National Research Council Canada - National Science Library

    Downer, Charles W; Ogden, Fred L

    2006-01-01

    The need to simulate surface water flows in watersheds with diverse runoff production mechanisms has led to the development of the physically-based hydrologic model Gridded Surface Subsurface Hydrologic Analysis (GSSHA...

  17. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin

    Directory of Open Access Journals (Sweden)

    M. T. Taye

    2011-01-01

    Full Text Available The potential impact of climate change was investigated on the hydrological extremes of Nyando River and Lake Tana catchments, which are located in two source regions of the Nile River basin. Climate change scenarios were developed for rainfall and potential evapotranspiration (ETo, considering 17 General Circulation Model (GCM simulations to better understand the range of possible future change. They were constructed by transferring the extracted climate change signals to the observed series using a frequency perturbation downscaling approach, which accounts for the changes in rainfall extremes. Projected changes under two future SRES emission scenarios A1B and B1 for the 2050s were considered. Two conceptual hydrological models were calibrated and used for the impact assessment. Their difference in simulating the flows under future climate scenarios was also investigated.

    The results reveal increasing mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend is observed for Lake Tana catchment for mean volumes and high/low flows. The hydrological models for Lake Tana catchment, however, performed better in simulating the hydrological regimes than for Nyando, which obviously also induces a difference in the reliability of the extreme future projections for both catchments. The unclear impact result for Lake Tana catchment implies that the GCM uncertainty is more important for explaining the unclear trend than the hydrological models uncertainty. Nevertheless, to have a better understanding of future impact, hydrological models need to be verified for their credibility of simulating extreme flows.

  18. Some challenges in eco-hydrology

    Science.gov (United States)

    Porporato, A.

    2007-12-01

    The importance of the mutual interactions between biosphere in hydrosphere has become increasingly apparent in both the ecological and hydrological sciences. In hydrology, while the role of plants in controlling soil water balance has been recognized from some time, more subtle controls have also been realized, such as the impact of soil organic matter on soil water dynamics and soil properties, the plant control on infiltration, erosion, and geomorphology. Ecosystem dynamics and land-use changes have also been recognized to impact water availability and quality. On the other hand, biologists and ecologists have increased their attention towards the dynamics of the terrestrial water balance and its impact on plants (photosynthesis, plant growth and reproduction) as well as microbial life (and thus decomposition and the entire cycling of nutrients and carbon fluxes). In this eco-hydrological context, we discuss: (i) the need to distinguish complex from complicated eco- hydrologic behaviors, which are both expected to be present in systems with many degrees of freedom, spatial heterogeneity, nonlinearities and feedbacks (and with biological components). (ii) The use of ideas and tools from complex systems science and non-equilibrium statistical mechanics to explore possible emerging behaviors and patterns. (iii) The importance of intermittency and of the entire spectrum of eco-hydrologic fluctuations conferred by the system nonlinearities, and their connection to a possible theory of biologically- meaningful hydroclimatic extremes. (iv) The need for further research of basic questions yet unanswered (e.g., role of organic matter/roots on soil water balance and soil properties; vegetation control on infiltration; competition for water by plants; role of plant control on uptake (e.g., hydraulic lift)). (v) Ways to merge observations, minimalist models and complex numerical simulations as well as to increase communication of hydrologists with physicists, statisticians

  19. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Yang, T.; Müller, C.; Leng, G.; Tang, Q.; Portmann, F. T.; Hagemann, S.; Gerten, D.; Wada, Y.; Masaki, Y.; Alemayehu, T.; Satoh, Y.; Samaniego, L.

    2017-01-04

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.

  20. Multi-objective Calibration of DHSVM Based on Hydrologic Key Elements in Jinhua River Basin, East China

    Science.gov (United States)

    Pan, S.; Liu, L.; Xu, Y. P.

    2017-12-01

    Abstract: In physically based distributed hydrological model, large number of parameters, representing spatial heterogeneity of watershed and various processes in hydrologic cycle, are involved. For lack of calibration module in Distributed Hydrology Soil Vegetation Model, this study developed a multi-objective calibration module using Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) and based on parallel computing of Linux cluster for DHSVM (ɛP-DHSVM). In this study, two hydrologic key elements (i.e., runoff and evapotranspiration) are used as objectives in multi-objective calibration of model. MODIS evapotranspiration obtained by SEBAL is adopted to fill the gap of lack of observation for evapotranspiration. The results show that good performance of runoff simulation in single objective calibration cannot ensure good simulation performance of other hydrologic key elements. Self-developed ɛP-DHSVM model can make multi-objective calibration more efficiently and effectively. The running speed can be increased by more than 20-30 times via applying ɛP-DHSVM. In addition, runoff and evapotranspiration can be simulated very well simultaneously by ɛP-DHSVM, with superior values for two efficiency coefficients (0.74 for NS of runoff and 0.79 for NS of evapotranspiration, -10.5% and -8.6% for PBIAS of runoff and evapotranspiration respectively).

  1. The critical role of the routing scheme in simulating peak river discharge in global hydrological models

    Science.gov (United States)

    Zhao, F.; Veldkamp, T.; Frieler, K.; Schewe, J.; Ostberg, S.; Willner, S. N.; Schauberger, B.; Gosling, S.; Mueller Schmied, H.; Portmann, F. T.; Leng, G.; Huang, M.; Liu, X.; Tang, Q.; Hanasaki, N.; Biemans, H.; Gerten, D.; Satoh, Y.; Pokhrel, Y. N.; Stacke, T.; Ciais, P.; Chang, J.; Ducharne, A.; Guimberteau, M.; Wada, Y.; Kim, H.; Yamazaki, D.

    2017-12-01

    Global hydrological models (GHMs) have been applied to assess global flood hazards, but their capacity to capture the timing and amplitude of peak river discharge—which is crucial in flood simulations—has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971-2010) within the ISIMIP2a project. The runoff simulations were used as input for the global river routing model CaMa-Flood. The simulated daily discharge was compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, likely induced by the buffering capacity of floodplain reservoirs. For a majority of river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over about 2/3 of the analysed basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme choice in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not represented in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.

  2. Real-Time Analysis and Forecasting of Multisite River Flow Using a Distributed Hydrological Model

    Directory of Open Access Journals (Sweden)

    Mingdong Sun

    2014-01-01

    Full Text Available A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.

  3. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  4. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    Science.gov (United States)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  5. Hydrological effects on carbon cycles of Canada's forests and wetlands

    International Nuclear Information System (INIS)

    Ju, Weimin; Chen, Jing M.; Black, T. Andrew; Barr, Alan G.; Mccaughey, Harry; Roulet, Nigel T.

    2006-01-01

    The hydrological cycle has significant effects on the terrestrial carbon (C) balance through its controls on photosynthesis and C decomposition. A detailed representation of the water cycle in terrestrial C cycle models is essential for reliable estimates of C budgets. However, it is challenging to accurately describe the spatial and temporal variations of soil water, especially for regional and global applications. Vertical and horizontal movements of soil water should be included. To constrain the hydrology-related uncertainty in modelling the regional C balance, a three-dimensional hydrological module was incorporated into the Integrated Terrestrial Ecosystem Carbon-budget model (InTEC V3.0). We also added an explicit parameterization of wetlands. The inclusion of the hydrological module considerably improved the model's ability to simulate C content and balances in different ecosystems. Compared with measurements at five flux-tower sites, the model captured 85% and 82% of the variations in volumetric soil moisture content in the 0-10 cm and 10-30 cm depths during the growing season and 84% of the interannual variability in the measured C balance. The simulations showed that lateral subsurface water redistribution is a necessary mechanism for simulating water table depth for both poorly drained forest and peatland sites. Nationally, soil C content and their spatial variability are significantly related to drainage class. Poorly drained areas are important C sinks at the regional scale, however, their soil C content and balances are difficult to model and may have been inadequately represented in previous C cycle models. The InTEC V3.0 model predicted an annual net C uptake by Canada's forests and wetlands for the period 1901-1998 of 111.9 Tg C/yr, which is 41.4 Tg C/yr larger than our previous estimate (InTEC V2.0). The increase in the net C uptake occurred mainly in poorly drained regions and resulted from the inclusion of a separate wetland parameterization

  6. The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements

    Science.gov (United States)

    Wiggs, Giles F. S.; Livingstone, Ian; Warren, Andrew

    1996-09-01

    Field measurements on an unvegetated, 10 m high barchan dune in Oman are compared with measurements over a 1:200 scale fixed model in a wind tunnel. Both the field and wind tunnel data demonstrate similar patterns of wind and shear velocity over the dune, confirming significant flow deceleration upwind of and at the toe of the dune, acceleration of flow up the windward slope, and deceleration between the crest and brink. This pattern, including the widely reported upwind reduction in shear velocity, reflects observations of previous studies. Such a reduction in shear velocity upwind of the dune should result in a reduction in sand transport and subsequent sand deposition. This is not observed in the field. Wind tunnel modelling using a near-surface pulse-wire probe suggests that the field method of shear velocity derivation is inadequate. The wind tunnel results exhibit no reduction in shear velocity upwind of or at the toe of the dune. Evidence provided by Reynolds stress profiles and turbulence intensities measured in the wind tunnel suggest that this maintenance of upwind shear stress may be a result of concave (unstable) streamline curvature. These additional surface stresses are not recorded by the techniques used in the field measurements. Using the occurrence of streamline curvature as a starting point, a new 2-D model of dune dynamics is deduced. This model relies on the establishment of an equilibrium between windward slope morphology, surface stresses induced by streamline curvature, and streamwise acceleration. Adopting the criteria that concave streamline curvature and streamwise acceleration both increase surface shear stress, whereas convex streamline curvature and deceleration have the opposite effect, the relationships between form and process are investigated in each of three morphologically distinct zones: the upwind interdune and concave toe region of the dune, the convex portion of the windward slope, and the crest-brink region. The

  7. Stable–streamlined and helical cavities following the impact of Leidenfrost spheres

    KAUST Repository

    Mansoor, Mohammad M.

    2017-06-23

    We report results from an experimental study on the formation of stable–streamlined and helical cavity wakes following the free-surface impact of Leidenfrost spheres. Similar to the observations of Mansoor et al. (J. Fluid Mech., vol. 743, 2014, pp. 295–326), we show that acoustic ripples form along the interface of elongated cavities entrained in the presence of wall effects as soon as the primary cavity pinch-off takes place. The crests of these ripples can act as favourable points for closure, producing multiple acoustic pinch-offs, which are found to occur in an acoustic pinch-off cascade. We show that these ripples pacify with time in the absence of physical contact between the sphere and the liquid, leading to extremely smooth cavity wake profiles. More importantly, the downward-facing jet at the apex of the cavity is continually suppressed due to a skin-friction drag effect at the colliding cavity-wall junction, which ultimately produces a stable–streamlined cavity wake. This streamlined configuration is found to experience drag coefficients an order of a magnitude lower than those acting on room-temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. The contact line is shown to result from the degeneration of Kelvin–Helmholtz billows into turbulence which are observed forming along the liquid–vapour interface around the bottom hemisphere of the sphere. Using sphere trajectory measurements, we show that this helical cavity wake configuration has 40 %–55 % smaller force coefficients than those obtained in the formation of stable cavity wakes.

  8. Stable–streamlined and helical cavities following the impact of Leidenfrost spheres

    KAUST Repository

    Mansoor, Mohammad M.; Vakarelski, Ivan Uriev; Marston, J. O.; Truscott, T. T.; Thoroddsen, Sigurdur T

    2017-01-01

    We report results from an experimental study on the formation of stable–streamlined and helical cavity wakes following the free-surface impact of Leidenfrost spheres. Similar to the observations of Mansoor et al. (J. Fluid Mech., vol. 743, 2014, pp. 295–326), we show that acoustic ripples form along the interface of elongated cavities entrained in the presence of wall effects as soon as the primary cavity pinch-off takes place. The crests of these ripples can act as favourable points for closure, producing multiple acoustic pinch-offs, which are found to occur in an acoustic pinch-off cascade. We show that these ripples pacify with time in the absence of physical contact between the sphere and the liquid, leading to extremely smooth cavity wake profiles. More importantly, the downward-facing jet at the apex of the cavity is continually suppressed due to a skin-friction drag effect at the colliding cavity-wall junction, which ultimately produces a stable–streamlined cavity wake. This streamlined configuration is found to experience drag coefficients an order of a magnitude lower than those acting on room-temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. The contact line is shown to result from the degeneration of Kelvin–Helmholtz billows into turbulence which are observed forming along the liquid–vapour interface around the bottom hemisphere of the sphere. Using sphere trajectory measurements, we show that this helical cavity wake configuration has 40 %–55 % smaller force coefficients than those obtained in the formation of stable cavity wakes.

  9. Hydrological and meteorological aspects of floods in the Alps: an overview

    Directory of Open Access Journals (Sweden)

    Baldassare Bacchi

    2003-01-01

    Full Text Available This introductory paper presents and summarises recent research on meteorological and hydrological aspects of floods in the Alps. The research activities were part of the international research project RAPHAEL (Runoff and Atmospheric Processes for flood HAzard forEcasting and controL together with experiments within the Special Observing Period-SOP conducted in autumn 1999 for the Mesoscale Alpine Programme —MAP. The investigations were based on both field experiments and numerical simulations, using meteorological and hydrological models, of ten major floods that occurred in the past decade in the European Alps. The two basins investigated were the Ticino (6599 km2 at the Lago Maggiore outlet on the southern side of the Alps and the Ammer catchment (709 km2 in the Bavarian Alps. These catchments and their sub-catchments cover an appropriate range of spatial scales with which to investigate and test in an operational context the potential of both mesoscale meteorological and distributed hydrological models for flood forecasting. From the data analyses and model simulations described in this Special Issue, the major sources of uncertainties for flood forecasts in mid-size mountain basins are outlined and the accuracy flood forecasts is assessed. Keywords: floods, mountain hydrology, meteorological models, Alps

  10. Rainfall Simulator Experiments to Investigate Macropore Impacts on Hillslope Hydrological Response

    NARCIS (Netherlands)

    Smit, Y.; Teuling, Adriaan J.; van der Ploeg, Martine J.

    2016-01-01

    Understanding hillslope runoff response to intense rainfall is an important topic in hydrology, and is key to correct prediction of extreme stream flow, erosion and landslides. Although it is known that preferential flow processes activated by macropores are an important phenomena in understanding

  11. Flood Modelling of Banjir Kanal Barat (Integration of Hydrology Model and GIS

    Directory of Open Access Journals (Sweden)

    Muhammad Aris Marfai

    2004-01-01

    Full Text Available Hydrological modelling has an advantage on river flood study. Hydrological factors can be easily determined and calculated using hydrological model. HEC-RAS (Hydrological Engineering Centre-River Analysis System software is well known as hydrological modelling software for flood simulation and encroachment analysis of the floodplain area. For spatial performance and analysis of flood, the integration of the Geographic Information Systems (GIS and hydrological model is needed. The aims of this research are 1 to perform a flood encroachment using HEC-RAS software, and 2 to generate a flood hazard map. The methodology for this research omprise of 1 generating geometric data as a requirement of the data input on HEC-RAS hydrological model, 2 Hydrological data inputting, 3 generating of the flood encroachment analysis, and 4 transformation of flood encroachment into flood hazard map. The spatial pattern of the flood hazard is illustrated in a map. The result shows that hydrological model as integration with GIS can be used for flood hazard map generation. This method has advantages on the calculation of the hydrological factors of flood and spatial performance of the flood hazard map. For further analysis, the landuse map can be used on the overlay operation with the flood hazard map in order to obtain the impact of the flood on the landuse.

  12. Using Advances in Research on Louisiana Coastal Restoration and Protection to Develop Undergraduate Hydrology Education Experiences Delivered via a Web Interface

    Science.gov (United States)

    Bodin, M.; Habib, E. H.; Meselhe, E. A.; Visser, J.; Chimmula, S.

    2014-12-01

    Utilizing advances in hydrologic research and technology, learning modules can be developed to deliver visual, case-based, data and simulation driven educational experiences. This paper focuses on the development of web modules based on case studies in Coastal Louisiana, one of three ecosystems that comprise an ongoing hydrology education online system called HydroViz. The Chenier Plain ecosystem in Coastal Louisiana provides an abundance of concepts and scenarios appropriate for use in many undergraduate water resource and hydrology curricula. The modules rely on a set of hydrologic data collected within the Chenier Plain along with inputs and outputs of eco-hydrology and vegetation-change simulation models that were developed to analyze different restoration and protection projects within the 2012 Louisiana Costal Master Plan. The modules begin by investigating the basic features of the basin and it hydrologic characteristics. The eco-hydrology model is then introduced along with its governing equations, numerical solution scheme and how it represents the study domain. Concepts on water budget in a coastal basin are then introduced using the simulation model inputs, outputs and boundary conditions. The complex relationships between salinity, water level and vegetation changes are then investigated through the use of the simulation models and associated field data. Other student activities focus on using the simulation models to evaluate tradeoffs and impacts of actual restoration and protection projects that were proposed as part of 2012 Louisiana Master Plan. The hands-on learning activities stimulate student learning of hydrologic and water management concepts by providing real-world context and opportunity to build fundamental knowledge as well as practical skills. The modules are delivered through a carefully designed user interface using open source and free technologies which enable wide dissemination and encourage adaptation by others.

  13. Toward the Development of a Cold Regions Regional-Scale Hydrologic Model, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, Larry D [Univ. of Alaska, Fairbanks, AK (United States); Bolton, William Robert [Univ. of Alaska, Fairbanks, AK (United States); Young-Robertson, Jessica (Cable) [Univ. of Alaska, Fairbanks, AK (United States)

    2018-01-02

    This project improves meso-scale hydrologic modeling in the boreal forest by: (1) demonstrating the importance of capturing the heterogeneity of the landscape using small scale datasets for parameterization for both small and large basins; (2) demonstrating that in drier parts of the landscape and as the boreal forest dries with climate change, modeling approaches must consider the sensitivity of simulations to soil hydraulic parameters - such as residual water content - that are usually held constant. Thus, variability / flexibility in residual water content must be considered for accurate simulation of hydrologic processes in the boreal forest; (3) demonstrating that assessing climate change impacts on boreal forest hydrology through multiple model integration must account for direct effects of climate change (temperature and precipitation), and indirect effects from climate impacts on landscape characteristics (permafrost and vegetation distribution). Simulations demonstrated that climate change will increase runoff, but will increase ET to a greater extent and result in a drying of the landscape; and (4) vegetation plays a significant role in boreal hydrologic processes in permafrost free areas that have deciduous trees. This landscape type results in a decoupling of ET and precipitation, a tight coupling of ET and temperature, low runoff, and overall soil drying.

  14. Hydrologic impacts of thawing permafrost—A review

    Science.gov (United States)

    Walvoord, Michelle Ann; Kurylyk, Barret L.

    2016-01-01

    Where present, permafrost exerts a primary control on water fluxes, flowpaths, and distribution. Climate warming and related drivers of soil thermal change are expected to modify the distribution of permafrost, leading to changing hydrologic conditions, including alterations in soil moisture, connectivity of inland waters, streamflow seasonality, and the partitioning of water stored above and below ground. The field of permafrost hydrology is undergoing rapid advancement with respect to multiscale observations, subsurface characterization, modeling, and integration with other disciplines. However, gaining predictive capability of the many interrelated consequences of climate change is a persistent challenge due to several factors. Observations of hydrologic change have been causally linked to permafrost thaw, but applications of process-based models needed to support and enhance the transferability of empirical linkages have often been restricted to generalized representations. Limitations stem from inadequate baseline permafrost and unfrozen hydrogeologic characterization, lack of historical data, and simplifications in structure and process representation needed to counter the high computational demands of cryohydrogeologic simulations. Further, due in part to the large degree of subsurface heterogeneity of permafrost landscapes and the nonuniformity in thaw patterns and rates, associations between various modes of permafrost thaw and hydrologic change are not readily scalable; even trajectories of change can differ. This review highlights promising advances in characterization and modeling of permafrost regions and presents ongoing research challenges toward projecting hydrologic and ecologic consequences of permafrost thaw at time and spatial scales that are useful to managers and researchers.

  15. Hydrologic modeling of the Columbia Plateau basalts

    International Nuclear Information System (INIS)

    Dove, F.H.; Cole, C.R.; Bond, F.W.; Zimmerman, D.A.

    1982-09-01

    The Office of Nuclear Waste Isolation (ONWI) directed the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program to conduct a technology demonstration of current performance assessment techniques for the Department of Energy (DOE) as applied to a nuclear waste repository in the Columbia Plateau Basalts. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The hydrologic simulation was divided into three major parts: (1) aquifer recharge calculations, (2) a regional hydrologic model, and (3) a local hydrologic model of the Pasco Basin. The presentation discusses the regional model. An estimate of the amount of water transmitted through the groundwater system was required to bound the transmissivity values and to estimate the transmissivity distributions for the deeper basalts. The multiple layer two-dimensional Variable Thickness Transient (VTT) code was selected as appropriate for the amount of data available and for the conditions existing in the regional systems. This model uses a finite difference formulation to represent the partial differential flow equation. The regional study area as defined for the VTT model was divided into 55 by 55 square pattern with each grid 5 kilometers on a side. The regional system was modeled as a held potential surface layer and two underlying basalt layers. The regional model established the boundary conditions for the hydrologic model the Pasco Basin

  16. Design and Implementation of Hydrologic Process Knowledge-base Ontology: A case study for the Infiltration Process

    Science.gov (United States)

    Elag, M.; Goodall, J. L.

    2013-12-01

    Hydrologic modeling often requires the re-use and integration of models from different disciplines to simulate complex environmental systems. Component-based modeling introduces a flexible approach for integrating physical-based processes across disciplinary boundaries. Several hydrologic-related modeling communities have adopted the component-based approach for simulating complex physical systems by integrating model components across disciplinary boundaries in a workflow. However, it is not always straightforward to create these interdisciplinary models due to the lack of sufficient knowledge about a hydrologic process. This shortcoming is a result of using informal methods for organizing and sharing information about a hydrologic process. A knowledge-based ontology provides such standards and is considered the ideal approach for overcoming this challenge. The aims of this research are to present the methodology used in analyzing the basic hydrologic domain in order to identify hydrologic processes, the ontology itself, and how the proposed ontology is integrated with the Water Resources Component (WRC) ontology. The proposed ontology standardizes the definitions of a hydrologic process, the relationships between hydrologic processes, and their associated scientific equations. The objective of the proposed Hydrologic Process (HP) Ontology is to advance the idea of creating a unified knowledge framework for components' metadata by introducing a domain-level ontology for hydrologic processes. The HP ontology is a step toward an explicit and robust domain knowledge framework that can be evolved through the contribution of domain users. Analysis of the hydrologic domain is accomplished using the Formal Concept Approach (FCA), in which the infiltration process, an important hydrologic process, is examined. Two infiltration methods, the Green-Ampt and Philip's methods, were used to demonstrate the implementation of information in the HP ontology. Furthermore, a SPARQL

  17. Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling

    Science.gov (United States)

    Chen, Jie; Li, Chao; Brissette, François P.; Chen, Hua; Wang, Mingna; Essou, Gilles R. C.

    2018-05-01

    Bias correction is usually implemented prior to using climate model outputs for impact studies. However, bias correction methods that are commonly used treat climate variables independently and often ignore inter-variable dependencies. The effects of ignoring such dependencies on impact studies need to be investigated. This study aims to assess the impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. To this end, a joint bias correction (JBC) method which corrects the joint distribution of two variables as a whole is compared with an independent bias correction (IBC) method; this is considered in terms of correcting simulations of precipitation and temperature from 26 climate models for hydrological modeling over 12 watersheds located in various climate regimes. The results show that the simulated precipitation and temperature are considerably biased not only in the individual distributions, but also in their correlations, which in turn result in biased hydrological simulations. In addition to reducing the biases of the individual characteristics of precipitation and temperature, the JBC method can also reduce the bias in precipitation-temperature (P-T) correlations. In terms of hydrological modeling, the JBC method performs significantly better than the IBC method for 11 out of the 12 watersheds over the calibration period. For the validation period, the advantages of the JBC method are greatly reduced as the performance becomes dependent on the watershed, GCM and hydrological metric considered. For arid/tropical and snowfall-rainfall-mixed watersheds, JBC performs better than IBC. For snowfall- or rainfall-dominated watersheds, however, the two methods behave similarly, with IBC performing somewhat better than JBC. Overall, the results emphasize the advantages of correcting the P-T correlation when using climate model-simulated precipitation and temperature to assess the impact of climate change on watershed

  18. Assessing the hydrologic response to wildfires in mountainous regions

    Science.gov (United States)

    Havel, Aaron; Tasdighi, Ali; Arabi, Mazdak

    2018-04-01

    This study aims to understand the hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate the hydrologic responses of the upper Cache la Poudre Watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. A procedure involving land use and curve number updating was implemented to assess the effects of wildfires. Application of the proposed procedure provides the ability to simulate the hydrologic response to wildfires seamlessly through mimicking the dynamic of the changes due to wildfires. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre- and post-wildfire conditions. Daily calibration and testing of the model produced very good results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 % was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow duration curves developed for burned sub-watersheds using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A linear regression model was developed to assess the relationship between percent burned area and runoff increase in Cache la Poudre Watershed. A strong (R2 > 0.8) and significant (p statistics through application of flow duration curves revealed that the wildfires had a higher effect on peak flows, which may increase the risk of flash floods in post

  19. Hydrologic Effects of Global Climate Change on a Large Drained Pine Forest

    Science.gov (United States)

    Devendra M. Amatya; Ge Sun; R. W. Skaggs; G. M Chescheir; J. E. Nettles

    2006-01-01

    A simulation study using a watershed scale forest hydrology model (DRAINWAT) was conducted to evaluate potential effects of climate change on the hydrology of a 3,000 ha managed pine forest in coastal North Carolina. The model was first validated with a five-year (1996-2000) data set fro111 the study site and then run with 50-years (1951-00) of historic weather data...

  20. Streamlining of the RELAP5-3D Code

    International Nuclear Information System (INIS)

    Mesina, George L; Hykes, Joshua; Guillen, Donna Post

    2007-01-01

    RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR( ) STRUCT, was applied to the RELAP5-3D source files. The

  1. Modeling and assessment of hydrological changes in a developing urban catchment

    OpenAIRE

    Guan, M; Sillanpää, N; Koivusalo, H

    2015-01-01

    Urbanization strongly changes natural catchment by increasing impervious coverage and by creating a need for efficient drainage systems. Such land cover changes lead to more rapid hydrological response to storms and change distribution of peak and low flows. This study aims to explore and assess how gradual hydrological changes occur during urban development from rural area to a medium-density residential catchment. The Stormwater Management Model (SWMM) is utilized to simulate a series of sc...

  2. Hydrological peculiarities of high mountain basins: the case of the Spanish Pyrenees

    International Nuclear Information System (INIS)

    Ferrer Castillo, Cesar; Alonso-Muiioyerro, Justo Mora; Parra, Miguel Arenillas; Campos, Guillermo Cobos

    2004-01-01

    The exploitation of a reservoir is determined by the availability of information within which the information provided by hydrological information systems must be included. This should be complemented, especially in flood circumstances, by meteorological forecasts and the results obtained by from hydrological and hydraulic simulation and forecasting models. In mountain basins with marked influence of snow, specific hydrological modelling is necessary, permitting simulation of the phenomenon of snow runoff. In particular, the hydrology of the basin of the River Ebro (Spain) is clearly influenced by this phenomenon. This basin is affected by flood situations caused by rapid melt of the snow accumulated on its Pyrenean slopes. This has brought about the need for a specific study to be undertaken in order to facilitate greater understanding and control. Additionally, the volume of accumulated snow in the catchment areas determines the management and everyday exploitation of the reservoirs for the achievement of maximum yield from water resources. This interest in the understanding of snow phenomena has given rise to numerous studies in the Pyrenean area: field study campaigns to carry out point measurements of thickness and density, hydrological-statistical modelling for the forecasting of melts and course flows and the development and application of hydrological simulation models. In the Pyrenean slopes basin the ASTER model has been applied to the reservoir of Yesa during a period of more than five years, achieving quite satisfactory results with regard to watercourse flow forecasting and the volume of water stored in the form of snow. This has enabled appropriate management of the reservoir during flood circumstances - minimising possible damage as well as under everyday conditions. The results obtained from this period have led to the generalisation of the ASTER model to apply to all sources of the Pyrenean tributaries of the Ebro with clear snow influence and

  3. A Streamlined Artificial Variable Free Version of Simplex Method

    OpenAIRE

    Inayatullah, Syed; Touheed, Nasir; Imtiaz, Muhammad

    2015-01-01

    This paper proposes a streamlined form of simplex method which provides some great benefits over traditional simplex method. For instance, it does not need any kind of artificial variables or artificial constraints; it could start with any feasible or infeasible basis of an LP. This method follows the same pivoting sequence as of simplex phase 1 without showing any explicit description of artificial variables which also makes it space efficient. Later in this paper, a dual version of the new ...

  4. Hydrology of Fritchie Marsh, coastal Louisiana

    Science.gov (United States)

    Kuniansky, E.L.

    1985-01-01

    Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)

  5. [Socio-hydrology: A review].

    Science.gov (United States)

    Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning

    2015-04-01

    Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.

  6. Using expert knowledge of the hydrological system to constrain multi-objective calibration of SWAT models

    Science.gov (United States)

    The SWAT model is a helpful tool to predict hydrological processes in a study catchment and their impact on the river discharge at the catchment outlet. For reliable discharge predictions, a precise simulation of hydrological processes is required. Therefore, SWAT has to be calibrated accurately to ...

  7. Interpolation of Missing Precipitation Data Using Kernel Estimations for Hydrologic Modeling

    Directory of Open Access Journals (Sweden)

    Hyojin Lee

    2015-01-01

    Full Text Available Precipitation is the main factor that drives hydrologic modeling; therefore, missing precipitation data can cause malfunctions in hydrologic modeling. Although interpolation of missing precipitation data is recognized as an important research topic, only a few methods follow a regression approach. In this study, daily precipitation data were interpolated using five different kernel functions, namely, Epanechnikov, Quartic, Triweight, Tricube, and Cosine, to estimate missing precipitation data. This study also presents an assessment that compares estimation of missing precipitation data through Kth nearest neighborhood (KNN regression to the five different kernel estimations and their performance in simulating streamflow using the Soil Water Assessment Tool (SWAT hydrologic model. The results show that the kernel approaches provide higher quality interpolation of precipitation data compared with the KNN regression approach, in terms of both statistical data assessment and hydrologic modeling performance.

  8. Modeling post-wildfire hydrological processes with ParFlow

    Science.gov (United States)

    Escobar, I. S.; Lopez, S. R.; Kinoshita, A. M.

    2017-12-01

    Wildfires alter the natural processes within a watershed, such as surface runoff, evapotranspiration rates, and subsurface water storage. Post-fire hydrologic models are typically one-dimensional, empirically-based models or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful for modeling and predictions at the watershed outlet; however, do not provide detailed, distributed hydrologic processes at the point scale within the watershed. This research uses ParFlow, a three-dimensional, distributed hydrologic model to simulate post-fire hydrologic processes by representing the spatial and temporal variability of soil burn severity (via hydrophobicity) and vegetation recovery. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This work builds upon previous field and remote sensing analysis conducted for the 2003 Old Fire Burn in Devil Canyon, located in southern California (USA). This model is initially developed for a hillslope defined by a 500 m by 1000 m lateral extent. The subsurface reaches 12.4 m and is assigned a variable cell thickness to explicitly consider soil burn severity throughout the stages of recovery and vegetation regrowth. We consider four slope and eight hydrophobic layer configurations. Evapotranspiration is used as a proxy for vegetation regrowth and is represented by the satellite-based Simplified Surface Energy Balance (SSEBOP) product. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated at the point scale. Results will be used as a basis for developing and fine-tuning a watershed-scale model. Long-term simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management. In reference

  9. Investigating impacts of natural and human-induced environmental changes on hydrological processes and flood hazards using a GIS-based hydrological/hydraulic model and remote sensing data

    Science.gov (United States)

    Wang, Lei

    Natural and human-induced environmental changes have been altering the earth's surface and hydrological processes, and thus directly contribute to the severity of flood hazards. To understand these changes and their impacts, this research developed a GIS-based hydrological and hydraulic modeling system, which incorporates state-of-the-art remote sensing data to simulate flood under various scenarios. The conceptual framework and technical issues of incorporating multi-scale remote sensing data have been addressed. This research develops an object-oriented hydrological modeling framework. Compared with traditional lumped or cell-based distributed hydrological modeling frameworks, the object-oriented framework allows basic spatial hydrologic units to have various size and irregular shape. This framework is capable of assimilating various GIS and remotely-sensed data with different spatial resolutions. It ensures the computational efficiency, while preserving sufficient spatial details of input data and model outputs. Sensitivity analysis and comparison of high resolution LIDAR DEM with traditional USGS 30m resolution DEM suggests that the use of LIDAR DEMs can greatly reduce uncertainty in calibration of flow parameters in the hydrologic model and hence increase the reliability of modeling results. In addition, subtle topographic features and hydrologic objects like surface depressions and detention basins can be extracted from the high resolution LiDAR DEMs. An innovative algorithm has been developed to efficiently delineate surface depressions and detention basins from LiDAR DEMs. Using a time series of Landsat images, a retrospective analysis of surface imperviousness has been conducted to assess the hydrologic impact of urbanization. The analysis reveals that with rapid urbanization the impervious surface has been increased from 10.1% to 38.4% for the case study area during 1974--2002. As a result, the peak flow for a 100-year flood event has increased by 20% and

  10. Revisiting an interdisciplinary hydrological modelling project. A socio-hydrology (?) example from the early 2000s

    Science.gov (United States)

    Seidl, Roman; Barthel, Roland

    2016-04-01

    (see also, Hamilton, ElSawah, Guillaume, Jakeman, and Pierce 2015; Jakeman and Letcher 2003). Our contribution attempts to close a gap between previous concepts of integration of socio-economic aspects into hydrology (typically inspired by Integrated Water Resources Management) and the new socio-hydrology approach. We suppose that socio-hydrology could benefit from widening its scope and considering previous research at the boundaries between hydrology and social sciences. At the same time, concepts developed prior to socio-hydrology were seldom entirely successful. It might be beneficial to review these approaches developed earlier and those that are being developed in parallel from the perspective of socio-hydrology. References: Barthel, R., S. Janisch, N. Schwarz, A. Trifkovic, D. Nickel, C. Schulz, and W. Mauser. 2008. An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environmental Modelling & Software, 23: 1095-1121. Barthel, R., D. Nickel, A. Meleg, A. Trifkovic, and J. Braun. 2005. Linking the physical and the socio-economic compartments of an integrated water and land use management model on a river basin scale using an object-oriented water supply model. Physics and Chemistry of the Earth, 30: 389-397. doi: 10.1016/j.pce.2005.06.006 Hamilton, S. H., S. ElSawah, J. H. A. Guillaume, A. J. Jakeman, and S. A. Pierce. 2015. Integrated assessment and modelling: Overview and synthesis ofsalient dimensions. Environmental Modelling and Software, 64: 215-229. doi: 10.1016/j.envsoft.2014.12.005 Jakeman, A. J., and R. A. Letcher. 2003. Integrated assessment and modelling: features, principles and examples for catchment management. Environmental Modelling & Software, 18: 491-501. doi: http://dx.doi.org/10.1016/S1364-8152(03)00024-0 Mauser, W., and M. Prasch. 2016. Regional Assessment of Global Change Impacts - The Project GLOWA-Danube: Springer International Publishing.

  11. Use of hydrologic and hydrodynamic modeling for ecosystem restoration

    Science.gov (United States)

    Obeysekera, J.; Kuebler, L.; Ahmed, S.; Chang, M.-L.; Engel, V.; Langevin, C.; Swain, E.; Wan, Y.

    2011-01-01

    Planning and implementation of unprecedented projects for restoring the greater Everglades ecosystem are underway and the hydrologic and hydrodynamic modeling of restoration alternatives has become essential for success of restoration efforts. In view of the complex nature of the South Florida water resources system, regional-scale (system-wide) hydrologic models have been developed and used extensively for the development of the Comprehensive Everglades Restoration Plan. In addition, numerous subregional-scale hydrologic and hydrodynamic models have been developed and are being used for evaluating project-scale water management plans associated with urban, agricultural, and inland costal ecosystems. The authors provide a comprehensive summary of models of all scales, as well as the next generation models under development to meet the future needs of ecosystem restoration efforts in South Florida. The multiagency efforts to develop and apply models have allowed the agencies to understand the complex hydrologic interactions, quantify appropriate performance measures, and use new technologies in simulation algorithms, software development, and GIS/database techniques to meet the future modeling needs of the ecosystem restoration programs. Copyright ?? 2011 Taylor & Francis Group, LLC.

  12. A comparative appraisal of hydrological behavior of SRTM DEM at catchment level

    Science.gov (United States)

    Sharma, Arabinda; Tiwari, K. N.

    2014-11-01

    The Shuttle Radar Topography Mission (SRTM) data has emerged as a global elevation data in the past one decade because of its free availability, homogeneity and consistent accuracy compared to other global elevation dataset. The present study explores the consistency in hydrological behavior of the SRTM digital elevation model (DEM) with reference to easily available regional 20 m contour interpolated DEM (TOPO DEM). Analysis ranging from simple vertical accuracy assessment to hydrological simulation of the studied Maithon catchment, using empirical USLE model and semidistributed, physical SWAT model, were carried out. Moreover, terrain analysis involving hydrological indices was performed for comparative assessment of the SRTM DEM with respect to TOPO DEM. Results reveal that the vertical accuracy of SRTM DEM (±27.58 m) in the region is less than the specified standard (±16 m). Statistical analysis of hydrological indices such as topographic wetness index (TWI), stream power index (SPI), slope length factor (SLF) and geometry number (GN) shows a significant differences in hydrological properties of the two studied DEMs. Estimation of soil erosion potentials of the catchment and conservation priorities of microwatersheds of the catchment using SRTM DEM and TOPO DEM produce considerably different results. Prediction of soil erosion potential using SRTM DEM is far higher than that obtained using TOPO DEM. Similarly, conservation priorities determined using the two DEMs are found to be agreed for only 34% of microwatersheds of the catchment. ArcSWAT simulation reveals that runoff predictions are less sensitive to selection of the two DEMs as compared to sediment yield prediction. The results obtained in the present study are vital to hydrological analysis as it helps understanding the hydrological behavior of the DEM without being influenced by the model structural as well as parameter uncertainty. It also reemphasized that SRTM DEM can be a valuable dataset for

  13. [Gene method for inconsistent hydrological frequency calculation. 2: Diagnosis system of hydrological genes and method of hydrological moment genes with inconsistent characters].

    Science.gov (United States)

    Xie, Ping; Zhao, Jiang Yan; Wu, Zi Yi; Sang, Yan Fang; Chen, Jie; Li, Bin Bin; Gu, Hai Ting

    2018-04-01

    The analysis of inconsistent hydrological series is one of the major problems that should be solved for engineering hydrological calculation in changing environment. In this study, the diffe-rences of non-consistency and non-stationarity were analyzed from the perspective of composition of hydrological series. The inconsistent hydrological phenomena were generalized into hydrological processes with inheritance, variability and evolution characteristics or regulations. Furthermore, the hydrological genes were identified following the theory of biological genes, while their inheritance bases and variability bases were determined based on composition of hydrological series under diffe-rent time scales. To identify and test the components of hydrological genes, we constructed a diagnosis system of hydrological genes. With the P-3 distribution as an example, we described the process of construction and expression of the moment genes to illustrate the inheritance, variability and evolution principles of hydrological genes. With the annual minimum 1-month runoff series of Yunjinghong station in Lancangjiang River basin as an example, we verified the feasibility and practicability of hydrological gene theory for the calculation of inconsistent hydrological frequency. The results showed that the method could be used to reveal the evolution of inconsistent hydrological series. Therefore, it provided a new research pathway for engineering hydrological calculation in changing environment and an essential reference for the assessment of water security.

  14. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many of the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.

  15. Development of a Coupled Hydrological/Sediment Yield Model for a Watershed at Regional Level

    Science.gov (United States)

    Rajbhandaril, Narayan; Crosson, William; Tsegaye, Teferi; Coleman, Tommy; Liu, Yaping; Soman, Vishwas

    1998-01-01

    Development of a hydrologic model for the study of environmental conservation requires a comprehensive understanding of individual-storm affecting hydrologic and sedimentologic processes. The hydrologic models that we are currently coupling are the Simulator for Hydrology and Energy Exchange at the Land Surface (SHEELS) and the Distributed Runoff Model (DRUM). SHEELS runs continuously to estimate surface energy fluxes and sub-surface soil water fluxes, while DRUM operates during and following precipitation events to predict surface runoff and peak flow through channel routing. The lateral re-distribution of surface water determined by DRUM is passed to SHEELS, which then adjusts soil water contents throughout the profile. The model SHEELS is well documented in Smith et al. (1993) and Laymen and Crosson (1995). The model DRUM is well documented in Vieux et al. (1990) and Vieux and Gauer (1994). The coupled hydrologic model, SHEELS/DRUM, does not simulate sedimentologic processes. The simulation of the sedimentologic process is important for environmental conservation planning and management. Therefore, we attempted to develop a conceptual frame work for coupling a sediment yield model with SHEELS/DRUM to estimate individual-storm sediment yield from a watershed at a regional level. The sediment yield model that will be used for this study is the Universal Soil Loss Equation (USLE) with some modifications to enable the model to predict individual-storm sediment yield. The predicted sediment yield does not include wind erosion and erosion caused by irrigation and snow melt. Units used for this study are those given by Foster et al. (1981) for SI units.

  16. Hydrological processes obtained on the plot scale under four simulated rainfall tests during the cycle of different crop systems

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2014-04-01

    Full Text Available The cropping system influences the interception of water by plants, water storage in depressions on the soil surface, water infiltration into the soil and runoff. The aim of this study was to quantify some hydrological processes under no tillage cropping systems at the edge of a slope, in 2009 and 2010, in a Humic Dystrudept soil, with the following treatments: corn, soybeans, and common beans alone; and intercropped corn and common bean. Treatments consisted of four simulated rainfall tests at different times, with a planned intensity of 64 mm h-1 and 90 min duration. The first test was applied 18 days after sowing, and the others at 39, 75 and 120 days after the first test. Different times of the simulated rainfall and stages of the crop cycle affected soil water content prior to the rain, and the time runoff began and its peak flow and, thus, the surface hydrological processes. The depth of the runoff and the depth of the water intercepted by the crop + soil infiltration + soil surface storage were affected by the crop systems and the rainfall applied at different times. The corn crop was the most effective treatment for controlling runoff, with a water loss ratio of 0.38, equivalent to 75 % of the water loss ratio exhibited by common bean (0.51, the least effective treatment in relation to the others. Total water loss by runoff decreased linearly with an increase in the time that runoff began, regardless of the treatment; however, soil water content on the gravimetric basis increased linearly from the beginning to the end of the rainfall.

  17. Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: Observations, calibrated models, simulations and agro-hydrological conclusions

    Science.gov (United States)

    Kurtzman, Daniel; Shapira, Roi H.; Bar-Tal, Asher; Fine, Pinchas; Russo, David

    2013-08-01

    Nitrate contamination of groundwater under land used for intensive-agriculture is probably the most worrisome agro-hydrological sustainability problem worldwide. Vadose-zone samples from 0 to 9 m depth under citrus orchards overlying an unconfined aquifer were analyzed for variables controlling water flow and the fate and transport of nitrogen fertilizers. Steady-state estimates of water and NO3-N fluxes to groundwater were found to vary spatially in the ranges of 90-330 mm yr- 1 and 50-220 kg ha- 1 yr- 1, respectively. Calibration of transient models to two selected vadose-zone profiles required limiting the concentration of NO3-N in the solution that is taken up by the roots to 30 mg L- 1. Results of an independent lysimeter experiment showed a similar nitrogen-uptake regime. Simulations of past conditions revealed a significant correlation between NO3-N flux to groundwater and the previous year's precipitation. Simulations of different nitrogen-application rates showed that using half of the nitrogen fertilizer added to the irrigation water by farmers would reduce average NO3-N flux to groundwater by 70%, decrease root nitrogen uptake by 20% and reduce the average pore water NO3-N concentration in the deep vadose zone to below the Israeli drinking water standard; hence this rate of nitrogen application was found to be agro-hydrologically sustainable. Beyond the investigation of nitrate fluxes to groundwater under citrus orchards and the interesting case-study aspects, this work demonstrates a methodology that enables skillful decisions concerning joint sustainability of both the water resource and agricultural production in a common environmental setting.

  18. Estimating Runoff From Roadcuts With a Distributed Hydrologic Model

    Science.gov (United States)

    Cuhaciyan, C.; Luce, C.; Voisin, N.; Lettenmaier, D.; Black, T.

    2008-12-01

    Roads can have a substantial effect on hydrologic patterns of forested watersheds; the most noteworthy being the resurfacing of shallow groundwater at roadcuts. The influence of roads on hydrology has compelled hydrologists to include water routing and storage routines in rainfall-runoff models, such as those in the Distributed Hydrologic Soil Vegetation Model (DHSVM). We tested the ability of DHSVM to match observed runoff in roadcuts of a watershed in the Coast Range of Oregon. Eight roadcuts were instrumented using large tipping bucket gauges designed to capture only the water entering the roadside ditch from an 80-m long roadcut. The roadcuts were categorized by the topography of the upstream hillside as either swale, planar, or ridge. The simulation was run from December 2002 to December 2003 at a relatively fine spatial resolution (10-m). Average observed soil depths are 1.8-m across the watershed, below which there lies deep and highly weathered sandstone. DHSVM was designed for relatively impermeable bedrock and shallow soils; therefore it does not provide a mechanism for deep groundwater movement and storage. In the geologic setting of the study basin, however, water is routed through the sandstone allowing water to pass under roads through the parent material. For this reason a uniformly deep soil of 6.5-m with a decreased decay in conductivity with depth was used in the model to allow water to be routed beneath roadcuts that are up to 5.5-m in height. Up to three, typically shallow, soil layers can be modeled in DHSVM. We used the lowest of the three soil layers to mimic the hydraulically-well-connected sandstone exposed at deeper roadcuts. The model was calibrated against observed discharge at the outlet of the watershed. While model results closely matched the observed hydrograph at the watershed outlet, simulated runoff at an upstream gauge and the roadside ditches were varied and often higher than those observed in the field. The timing of the field

  19. Hydrological modeling using a multi-site stochastic weather generator

    Science.gov (United States)

    Weather data is usually required at several locations over a large watershed, especially when using distributed models for hydrological simulations. In many applications, spatially correlated weather data can be provided by a multi-site stochastic weather generator which considers the spatial correl...

  20. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    Directory of Open Access Journals (Sweden)

    A. Endalamaw

    2017-09-01

    Full Text Available Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which better represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW in Interior Alaska: one nearly permafrost-free (LowP sub-basin and one permafrost-dominated (HighP sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC mesoscale hydrological model to simulate runoff, evapotranspiration (ET, and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub

  1. Sediment transport modelling in a distributed physically based hydrological catchment model

    Directory of Open Access Journals (Sweden)

    M. Konz

    2011-09-01

    Full Text Available Bedload sediment transport and erosion processes in channels are important components of water induced natural hazards in alpine environments. A raster based distributed hydrological model, TOPKAPI, has been further developed to support continuous simulations of river bed erosion and deposition processes. The hydrological model simulates all relevant components of the water cycle and non-linear reservoir methods are applied for water fluxes in the soil, on the ground surface and in the channel. The sediment transport simulations are performed on a sub-grid level, which allows for a better discretization of the channel geometry, whereas water fluxes are calculated on the grid level in order to be CPU efficient. Several transport equations as well as the effects of an armour layer on the transport threshold discharge are considered. Flow resistance due to macro roughness is also considered. The advantage of this approach is the integrated simulation of the entire basin runoff response combined with hillslope-channel coupled erosion and transport simulation. The comparison with the modelling tool SETRAC demonstrates the reliability of the modelling concept. The devised technique is very fast and of comparable accuracy to the more specialised sediment transport model SETRAC.

  2. Beam Simulations for IRE and Driver-Status and Strategy

    International Nuclear Information System (INIS)

    Friedman, A.; Grote, D.P.; Lee, E.P.; Sonnendrucker, E.

    2000-01-01

    The methods and codes employed in the U.S. Heavy Ion Fusion program to simulate the beams in an Integrated Research Experiments (IRE) facility and a fusion driver are presented in overview. A new family of models incorporating accelerating module impedance, multi-beam, and self-magnetic effects is described, and initial WARP3d particle simulations of beams using these models are presented. Finally, plans for streamlining the machine-design simulation sequence, and for simulating beam dynamics from the source to the target in a consistent and comprehensive manner, are described

  3. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  4. Assessing the Added Value of Dynamical Downscaling in the Context of Hydrologic Implication

    Science.gov (United States)

    Lu, M.; IM, E. S.; Lee, M. H.

    2017-12-01

    There is a scientific consensus that high-resolution climate simulations downscaled by Regional Climate Models (RCMs) can provide valuable refined information over the target region. However, a significant body of hydrologic impact assessment has been performing using the climate information provided by Global Climate Models (GCMs) in spite of a fundamental spatial scale gap. It is probably based on the assumption that the substantial biases and spatial scale gap from GCMs raw data can be simply removed by applying the statistical bias correction and spatial disaggregation. Indeed, many previous studies argue that the benefit of dynamical downscaling using RCMs is minimal when linking climate data with the hydrological model, from the comparison of the impact between bias-corrected GCMs and bias-corrected RCMs on hydrologic simulations. It may be true for long-term averaged climatological pattern, but it is not necessarily the case when looking into variability across various temporal spectrum. In this study, we investigate the added value of dynamical downscaling focusing on the performance in capturing climate variability. For doing this, we evaluate the performance of the distributed hydrological model over the Korean river basin using the raw output from GCM and RCM, and bias-corrected output from GCM and RCM. The impacts of climate input data on streamflow simulation are comprehensively analyzed. [Acknowledgements]This research is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 17AWMP-B083066-04).

  5. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to

  6. Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River Basin

    Science.gov (United States)

    Ji, H. J.; Liu, J.

    2017-12-01

    Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River BasinHaijuan Ji1* Jintao Liu1,2 Shanshan Xu1___________________ 1College of Hydrology and Water Resources, Hohai University, Nanjing 210098, People's Republic of China 2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, People's Republic of China ___________________ * Corresponding author. Tel.: +86-025-83786973; Fax: +86-025-83786606. E-mail address: Hhu201510@163.com (H.J. Ji). Abstract: The Tibetan Plateau plays an important role in regulating the regional hydrological processes due to its high elevations and being the headwaters of many major Asian river basins. If familiar with the distribution of hydrological characteristics, will help us improve the level of development and utilization the water resources. However, there exist glaciers and snow with few sites. It is significance for us to understand the glacier and snow hydrological process in order to recognize the evolution of water resources in the Tibetan. This manuscript takes Lhasa River as the study area, taking use of ground, remote sensing and assimilation data, taking advantage of high precision TRMM precipitation data and MODIS snow cover data, first, according to the data from ground station evaluation of TRMM data in the application of the accuracy of the Lhasa River, and based on MODIS data fusion of multi source microwave snow making cloudless snow products, which are used for discriminant and analysis glacier and snow regulation mechanism on day scale, add snow and glacier unit into xinanjing model, this model can simulate the study region's runoff evolution, parameter sensitivity even spatial variation of hydrological characteristics the next ten years on region grid scale. The results of hydrological model in Lhasa River can simulate the glacier and snow runoff variation in high cold region better, to enhance the predictive ability of the spring

  7. Evaluating hydrological model performance using information theory-based metrics

    Science.gov (United States)

    The accuracy-based model performance metrics not necessarily reflect the qualitative correspondence between simulated and measured streamflow time series. The objective of this work was to use the information theory-based metrics to see whether they can be used as complementary tool for hydrologic m...

  8. Performance Assessment of Spatial Interpolation of Precipitation for Hydrological Process Simulation in the Three Gorges Basin

    Directory of Open Access Journals (Sweden)

    Meiling Cheng

    2017-11-01

    Full Text Available Accurate assessment of spatial and temporal precipitation is crucial for simulating hydrological processes in basins, but is challenging due to insufficient rain gauges. Our study aims to analyze different precipitation interpolation schemes and their performances in runoff simulation during light and heavy rain periods. In particular, combinations of different interpolation estimates are explored and their performances in runoff simulation are discussed. The study was carried out in the Pengxi River basin of the Three Gorges Basin. Precipitation data from 16 rain gauges were interpolated using the Thiessen Polygon (TP, Inverse Distance Weighted (IDW, and Co-Kriging (CK methods. Results showed that streamflow predictions employing CK inputs demonstrated the best performance in the whole process, in terms of the Nash–Sutcliffe Coefficient (NSE, the coefficient of determination (R2, and the Root Mean Square Error (RMSE indices. The TP, IDW, and CK methods showed good performance in the heavy rain period but poor performance in the light rain period compared with the default method (least sophisticated nearest neighbor technique in Soil and Water Assessment Tool (SWAT. Furthermore, the correlation between the dynamic weight of one method and its performance during runoff simulation followed a parabolic function. The combination of CK and TP achieved a better performance in decreasing the largest and lowest absolute errors compared to any single method, but the IDW method outperformed all methods in terms of the median absolute error. However, it is clear from our findings that interpolation methods should be chosen depending on the amount of precipitation, adaptability of the method, and accuracy of the estimate in different rain periods.

  9. Ice sheet hydrology - a review

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars

    2007-03-01

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  10. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  11. Exploring drivers of wetland hydrologic fluxes across parameters and space

    Science.gov (United States)

    Jones, C. N.; Cheng, F. Y.; Mclaughlin, D. L.; Basu, N. B.; Lang, M.; Alexander, L. C.

    2017-12-01

    Depressional wetlands provide diverse ecosystem services, ranging from critical habitat to the regulation of landscape hydrology. The latter is of particular interest, because while hydrologic connectivity between depressional wetlands and downstream waters has been a focus of both scientific research and policy, it remains difficult to quantify the mode, magnitude, and timing of this connectivity at varying spatial and temporary scales. To do so requires robust empirical and modeling tools that accurately represent surface and subsurface flowpaths between depressional wetlands and other landscape elements. Here, we utilize a parsimonious wetland hydrology model to explore drivers of wetland water fluxes in different archetypal wetland-rich landscapes. We validated the model using instrumented sites from regions that span North America: Prairie Pothole Region (south-central Canada), Delmarva Peninsula (Mid-Atlantic Coastal Plain), and Big Cypress Swamp (southern Florida). Then, using several national scale datasets (e.g., National Wetlands Inventory, USFWS; National Hydrography Dataset, USGS; Soil Survey Geographic Database, NRCS), we conducted a global sensitivity analysis to elucidate dominant drivers of simulated fluxes. Finally, we simulated and compared wetland hydrology in five contrasting landscapes dominated by depressional wetlands: prairie potholes, Carolina and Delmarva bays, pocosins, western vernal pools, and Texas coastal prairie wetlands. Results highlight specific drivers that vary across these regions. Largely, hydroclimatic variables (e.g., PET/P ratios) controlled the timing and magnitude of wetland connectivity, whereas both wetland morphology (e.g., storage capacity and watershed size) and soil characteristics (e.g., ksat and confining layer depth) controlled the duration and mode (surface vs. subsurface) of wetland connectivity. Improved understanding of the drivers of wetland hydrologic connectivity supports enhanced, region

  12. Regional Eco-hydrologic Sensitivity to Projected Amazonian Land Use Scenarios

    Science.gov (United States)

    Knox, R. G.; Longo, M.; Zhang, K.; Levine, N. M.; Moorcroft, P. R.; Bras, R. L.

    2011-12-01

    Given business as usual land-use practices, it is estimated that by 2050 roughly half of the Amazon's pre-anthropogenic closed-canopy forest stands would remain. Of this, eight of the Amazon's twelve major hydrologic basins would lose more than half of their forest cover to deforestation. With the availability of these land-use projections, we may start to question the associated response of the region's hydrologic climate to significant land-cover change. Here the Ecosystem-Demography Model 2 (EDM2, a dynamic and spatially distributed terrestrial model of plant structure and composition, succession, disturbance and thermodynamic transfer) is coupled with the Brazilian Regional Atmospheric Model (BRAMS, a three-dimensional limited area model of the atmospheric fluid momentum equations and physics parameterizations for closing the system of equations at the lower boundary, convection, radiative transfer, microphysics, etc). This experiment conducts decadal simulations, framed with high-reliability lateral boundary conditions of reanalysis atmospheric data (ERA-40 interim) and variable impact of land-use scenarios (SimAmazonia). This is done by initializing the regional ecosystem structure with both aggressive and conservationist deforestation scenarios, and also by differentially allowing and not-allowing dynamic vegetation processes. While the lateral boundaries of the simulation will not reflect the future climate in the region, reanalysis data has provided improved realism as compared to results derived from GCM boundary data. Therefore, the ecosystem response (forest composition and structure) and the time-space patterns of hydrologic information (soil moisture, rainfall, evapotranspiration) are objectively compared in the context of a sensitivity experiment, as opposed to a forecast. The following questions are addressed. How do aggressive and conservative scenarios of Amazonian deforestation effect the regional patterning of hydrologic information in the

  13. A Model for Wetland Hydrology: Description and Validation

    Science.gov (United States)

    R.S. Mansell; S.A. Bloom; Ge Sun

    2000-01-01

    WETLANDS, a multidimensional model describing water flow in variably saturated soil and evapotranspiration, was used to simulate successfully 3-years of local hydrology for a cypress pond located within a relatively flat Coastal Plain pine forest landscape. Assumptions included negligible net regional groundwater flow and radially symmetric local flow impinging on a...

  14. Rainfall Simulator Experiments to Investigate Macropore Impacts on Hillslope Hydrological Response

    Directory of Open Access Journals (Sweden)

    Yvonne Smit

    2016-11-01

    Full Text Available Understanding hillslope runoff response to intense rainfall is an important topic in hydrology, and is key to correct prediction of extreme stream flow, erosion and landslides. Although it is known that preferential flow processes activated by macropores are an important phenomena in understanding runoff processes inside a hillslope, hydrological models have generally not embraced the concept of an extra parameter that represents ‘macropores’ because of the complexity of the phenomenon. Therefore, it is relevant to investigate the influence of macropores on runoff processes in an experimental small artificial hillslope. Here, we report on a controlled experiment where we could isolate the influence of macropores without the need for assumptions regarding their characteristics. Two identical hillslopes were designed, of which one was filled with artificial macropores. Twelve artificial rainfall events were applied to the two hillslopes and results of drainage and soil moisture were investigated. After the experiments, it could be concluded that the influence of macropores on runoff processes was minimal. The S90 sand used for this research caused runoff to respond fast to rainfall, leading to little or no development of saturation near the macropores. In addition, soil moisture data showed a large amount of pendular water in the hillslopes, which implies that the soil has a low air entry value, and, in combination with the lack of vertical flow, could have caused the pressure difference between the matrix and the macropores to vanish sooner and result in equilibrium being reached in a relatively short time. Nevertheless, a better outline is given to determine a correct sand type for these types of experiments and, by using drainage recession analysis to investigate the influences of macropores on runoff, heterogeneity in rainfall intensity can be overcome. This study is a good point of reference to start future experiments from concerning

  15. Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations

    Science.gov (United States)

    Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.

    2016-11-01

    Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.

  16. Intensification of hydrological drought due to human activity in the middle reaches of the Yangtze River, China.

    Science.gov (United States)

    Zhang, Dan; Zhang, Qi; Qiu, Jiaming; Bai, Peng; Liang, Kang; Li, Xianghu

    2018-10-01

    Hydrological extremes are changing under the impacts of environmental change, i.e., climate variation and human activity, which can substantially influence ecosystems and the living environment of humans in affected region. This study investigates the impacts of environmental change on hydrological drought in the middle reaches of the Yangtze River in China based on hydrological modelling. Change points for streamflow into two major lakes and a reservoir in the study area were detected in the late 1980s using the Mann-Kendall test. Streamflow simulation by a water balance model was performed, and the resulting Kling-Gupta efficiency value was >0.90. Hydrological drought events were identified based on the simulated streamflow under different scenarios. The results show that the hydrological drought occurrence was increased by precipitation, whereas the drought peak value was increased by potential evapotranspiration. The impacts of precipitation and potential evapotranspiration on drought severity and duration varied in the study area. However, hydrological drought was intensified by the influence of human activity, which increased the severity, duration and peak value of droughts. The dominant factor for hydrological drought severity is precipitation, followed by potential evapotranspiration and human activity. The impacts of climate variation and human activity on drought severity are larger than on drought duration. In addition, environmental change is shown to have an "accumulation effect" on hydrological drought, demonstrating that the indirect impacts of environmental change on hydrological drought are much larger than the direct impacts on streamflow. This study improves our understanding of the responses of hydrological extremes to environmental change, which is useful for the management of water resources and the prediction of hydrological disasters. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Impact of physical permafrost processes on hydrological change

    Science.gov (United States)

    Hagemann, Stefan; Blome, Tanja; Beer, Christian; Ekici, Altug

    2015-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact projected hydrological changes over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Observed SST and sea ice for 1979-1999 are used to consider induced changes in the simulated hydrological cycle. In addition, simulated SST and sea ice are taken from a MPI-ESM simulation conducted for CMIP5 following the RCP8.5 scenario. The

  18. Effect of water table dynamics on land surface hydrologic memory

    Science.gov (United States)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  19. Legacy model integration for enhancing hydrologic interdisciplinary research

    Science.gov (United States)

    Dozier, A.; Arabi, M.; David, O.

    2013-12-01

    Many challenges are introduced to interdisciplinary research in and around the hydrologic science community due to advances in computing technology and modeling capabilities in different programming languages, across different platforms and frameworks by researchers in a variety of fields with a variety of experience in computer programming. Many new hydrologic models as well as optimization, parameter estimation, and uncertainty characterization techniques are developed in scripting languages such as Matlab, R, Python, or in newer languages such as Java and the .Net languages, whereas many legacy models have been written in FORTRAN and C, which complicates inter-model communication for two-way feedbacks. However, most hydrologic researchers and industry personnel have little knowledge of the computing technologies that are available to address the model integration process. Therefore, the goal of this study is to address these new challenges by utilizing a novel approach based on a publish-subscribe-type system to enhance modeling capabilities of legacy socio-economic, hydrologic, and ecologic software. Enhancements include massive parallelization of executions and access to legacy model variables at any point during the simulation process by another program without having to compile all the models together into an inseparable 'super-model'. Thus, this study provides two-way feedback mechanisms between multiple different process models that can be written in various programming languages and can run on different machines and operating systems. Additionally, a level of abstraction is given to the model integration process that allows researchers and other technical personnel to perform more detailed and interactive modeling, visualization, optimization, calibration, and uncertainty analysis without requiring deep understanding of inter-process communication. To be compatible, a program must be written in a programming language with bindings to a common

  20. Technology computer aided design simulation for VLSI MOSFET

    CERN Document Server

    Sarkar, Chandan Kumar

    2013-01-01

    Responding to recent developments and a growing VLSI circuit manufacturing market, Technology Computer Aided Design: Simulation for VLSI MOSFET examines advanced MOSFET processes and devices through TCAD numerical simulations. The book provides a balanced summary of TCAD and MOSFET basic concepts, equations, physics, and new technologies related to TCAD and MOSFET. A firm grasp of these concepts allows for the design of better models, thus streamlining the design process, saving time and money. This book places emphasis on the importance of modeling and simulations of VLSI MOS transistors and

  1. Modelling past hydrology of an interfluve area in the Campine region (NE Belgium)

    Science.gov (United States)

    Leterme, Bertrand; Beerten, Koen; Gedeon, Matej; Vandersteen, Katrijn

    2015-04-01

    This study aims at hydrological model verification of a small lowland interfluve area (18.6 km²) in NE Belgium, for conditions that are different than today. We compare the current state with five reference periods in the past (AD 1500, 1770, 1854, 1909 and 1961) representing important stages of landscape evolution in the study area. Historical information and proxy data are used to derive conceptual model features and boundary conditions specific to each period: topography, surface water geometry (canal, drains and lakes), land use, soils, vegetation and climate. The influence of landscape evolution on the hydrological cycle is assessed using numerical simulations of a coupled unsaturated zone - groundwater model (HYDRUS-MODFLOW). The induced hydrological changes are assessed in terms of groundwater level, recharge, evapotranspiration, and surface water discharge. HYDRUS-MODFLOW coupling allows including important processes such as the groundwater contribution to evapotranspiration. Major land use change occurred between AD 1854 and 1909, with about 41% of the study area being converted from heath to coniferous forest, together with the development of a drainage network. Results show that this led to a significant decrease of groundwater recharge and lowering of the groundwater table. A limitation of the study lies in the comparison of simulated past hydrology with appropriate palaeo-records. Examples are given as how some indicators (groundwater head, swamp zones) can be used to tend to model validation. Quantifying the relative impact of land use and climate changes requires running sensitivity simulations where the models using alternative land use are run with the climate forcing of other periods. A few examples of such sensitivity runs are presented in order to compare the influence of land use and climate change on the study area hydrology.

  2. Optimizing Use of Water Management Systems during Changes of Hydrological Conditions

    Science.gov (United States)

    Výleta, Roman; Škrinár, Andrej; Danáčová, Michaela; Valent, Peter

    2017-10-01

    When designing the water management systems and their components, there is a need of more detail research on hydrological conditions of the river basin, runoff of which creates the main source of water in the reservoir. Over the lifetime of the water management systems the hydrological time series are never repeated in the same form which served as the input for the design of the system components. The design assumes the observed time series to be representative at the time of the system use. However, it is rather unrealistic assumption, because the hydrological past will not be exactly repeated over the design lifetime. When designing the water management systems, the specialists may occasionally face the insufficient or oversized capacity design, possibly wrong specification of the management rules which may lead to their non-optimal use. It is therefore necessary to establish a comprehensive approach to simulate the fluctuations in the interannual runoff (taking into account the current dry and wet periods) in the form of stochastic modelling techniques in water management practice. The paper deals with the methodological procedure of modelling the mean monthly flows using the stochastic Thomas-Fiering model, while modification of this model by Wilson-Hilferty transformation of independent random number has been applied. This transformation usually applies in the event of significant asymmetry in the observed time series. The methodological procedure was applied on the data acquired at the gauging station of Horné Orešany in the Parná Stream. Observed mean monthly flows for the period of 1.11.1980 - 31.10.2012 served as the model input information. After extrapolation the model parameters and Wilson-Hilferty transformation parameters the synthetic time series of mean monthly flows were simulated. Those have been compared with the observed hydrological time series using basic statistical characteristics (e. g. mean, standard deviation and skewness) for testing

  3. Green roof hydrologic performance and modeling: a review.

    Science.gov (United States)

    Li, Yanling; Babcock, Roger W

    2014-01-01

    Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.

  4. Student-Centered Modules to Support Active Learning in Hydrology: Development Experiences and Users' Perspectives

    Science.gov (United States)

    Tarboton, D. G.; Habib, E. H.; Deshotel, M.; Merck, M. F.; Lall, U.; Farnham, D. J.

    2016-12-01

    Traditional approaches to undergraduate hydrology and water resource education are textbook based, adopt unit processes and rely on idealized examples of specific applications, rather than examining the contextual relations in the processes and the dynamics connecting climate and ecosystems. The overarching goal of this project is to address the needed paradigm shift in undergraduate education of engineering hydrology and water resources education to reflect parallel advances in hydrologic research and technology, mainly in the areas of new observational settings, data and modeling resources and web-based technologies. This study presents efforts to develop a set of learning modules that are case-based, data and simulation driven and delivered via a web user interface. The modules are based on real-world case studies from three regional hydrologic settings: Coastal Louisiana, Utah Rocky Mountains and Florida Everglades. These three systems provide unique learning opportunities on topics such as: regional-scale budget analysis, hydrologic effects of human and natural changes, flashflood protection, climate-hydrology teleconnections and water resource management scenarios. The technical design and contents of the modules aim to support students' ability for transforming their learning outcomes and skills to hydrologic systems other than those used by the specific activity. To promote active learning, the modules take students through a set of highly engaging learning activities that are based on analysis of hydrologic data and model simulations. The modules include user support in the form of feedback and self-assessment mechanisms that are integrated within the online modules. Module effectiveness is assessed through an improvement-focused evaluation model using a mixed-method research approach guiding collection and analysis of evaluation data. Both qualitative and quantitative data are collected through student learning data, product analysis, and staff interviews

  5. Hydrologic modelling and dendrochronology as tool of site-species adequation assessment in a changing climate context

    OpenAIRE

    Sohier, Catherine; Debruxelles, Jérôme; Brusten, Thomas; Bauwens, Alexandra; Claessens, Hugues; Degre, Aurore

    2010-01-01

    A hydrologic model is related to dendrochronological measurements performed in a 52 years old Spruce stand. The site is situated on a hillside with shallow and acid brown soil in the ecoregion of Ardenne (Wallonia, Southern Belgium). Hydrologic modelling The hydrologic simulation runs from 1971 to 2005 at daily time step. The model is based on an EPIC code, adapted to the site concerning soil reservoirs depth, characteristic water contents, root profile and water uptake. Weather data c...

  6. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.

    Science.gov (United States)

    Larose, M; Heathman, G C; Norton, L D; Engel, B

    2007-01-01

    One of the major factors contributing to surface water contamination in agricultural areas is the use of pesticides. The Soil and Water Assessment Tool (SWAT) is a hydrologic model capable of simulating the fate and transport of pesticides in an agricultural watershed. The SWAT model was used in this study to estimate stream flow and atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) losses to surface water in the Cedar Creek Watershed (CCW) within the St. Joseph River Basin in northeastern Indiana. Model calibration and validation periods consisted of five and two year periods, respectively. The National Agricultural Statistics Survey (NASS) 2001 land cover classification and the Soil Survey Geographic (SSURGO) database were used as model input data layers. Data from the St. Joseph River Watershed Initiative and the Soil and Water Conservation Districts of Allen, Dekalb, and Noble counties were used to represent agricultural practices in the watershed which included the type of crops grown, tillage practices, fertilizer, and pesticide application rates. Model results were evaluated based on efficiency coefficient values, standard statistical measures, and visual inspection of the measured and simulated hydrographs. The Nash and Sutcliffe model efficiency coefficients (E(NS)) for monthly and daily stream flow calibration and validation ranged from 0.51 to 0.66. The E(NS) values for atrazine calibration and validation ranged from 0.43 to 0.59. All E(NS) values were within the range of acceptable model performance standards. The results of this study indicate that the model is an effective tool in capturing the dynamics of stream flow and atrazine concentrations on a large-scale agricultural watershed in the midwestern USA.

  7. Hydrologic characterization for Spring Creek and hydrologic budget and model scenarios for Sheridan Lake, South Dakota, 1962-2007

    Science.gov (United States)

    Driscoll, Daniel G.; Norton, Parker A.

    2009-01-01

    The U.S. Geological Survey cooperated with South Dakota Game, Fish and Parks to characterize hydrologic information relevant to management of water resources associated with Sheridan Lake, which is formed by a dam on Spring Creek. This effort consisted primarily of characterization of hydrologic data for a base period of 1962 through 2006, development of a hydrologic budget for Sheridan Lake for this timeframe, and development of an associated model for simulation of storage deficits and drawdown in Sheridan Lake for hypothetical release scenarios from the lake. Historically, the dam has been operated primarily as a 'pass-through' system, in which unregulated outflows pass over the spillway; however, the dam recently was retrofitted with an improved control valve system that would allow controlled releases of about 7 cubic feet per second (ft3/s) or less from a fixed depth of about 60 feet (ft). Development of a hydrologic budget for Sheridan Lake involved compilation, estimation, and characterization of data sets for streamflow, precipitation, and evaporation. The most critical data need was for extrapolation of available short-term streamflow records for Spring Creek to be used as the long-term inflow to Sheridan Lake. Available short-term records for water years (WY) 1991-2004 for a gaging station upstream from Sheridan Lake were extrapolated to WY 1962-2006 on the basis of correlations with streamflow records for a downstream station and for stations located along two adjacent streams. Comparisons of data for the two streamflow-gaging stations along Spring Creek indicated that tributary inflow is approximately proportional to the intervening drainage area, which was used as a means of estimating tributary inflow for the hydrologic budget. Analysis of evaporation data shows that sustained daily rates may exceed maximum monthly rates by a factor of about two. A long-term (1962-2006) hydrologic budget was developed for computation of reservoir outflow from

  8. Guessing right for the next war: streamlining, pooling, and right-timing force design decisions for an environment of uncertainty

    Science.gov (United States)

    2017-05-25

    key ingredients for not only how the Army fought World War II, but also how it continues to organize today. In essence , streamlining pares down every...Germans.1 The Battle of Mortain reflected the US Army in World War II at its best.2 It defined US Army success in the European theater of operations...continues to organize today.5 In essence , streamlining pared down every unit to its essentials based around a critical capability it provided to

  9. Regional hydrological impacts of climate change: implications for water management in India

    Directory of Open Access Journals (Sweden)

    A. Mondal

    2015-04-01

    Full Text Available Climate change is most likely to introduce an additional stress to already stressed water systems in developing countries. Climate change is inherently linked with the hydrological cycle and is expected to cause significant alterations in regional water resources systems necessitating measures for adaptation and mitigation. Increasing temperatures, for example, are likely to change precipitation patterns resulting in alterations of regional water availability, evapotranspirative water demand of crops and vegetation, extremes of floods and droughts, and water quality. A comprehensive assessment of regional hydrological impacts of climate change is thus necessary. Global climate model simulations provide future projections of the climate system taking into consideration changes in external forcings, such as atmospheric carbon-dioxide and aerosols, especially those resulting from anthropogenic emissions. However, such simulations are typically run at a coarse scale, and are not equipped to reproduce regional hydrological processes. This paper summarizes recent research on the assessment of climate change impacts on regional hydrology, addressing the scale and physical processes mismatch issues. Particular attention is given to changes in water availability, irrigation demands and water quality. This paper also includes description of the methodologies developed to address uncertainties in the projections resulting from incomplete knowledge about future evolution of the human-induced emissions and from using multiple climate models. Approaches for investigating possible causes of historically observed changes in regional hydrological variables are also discussed. Illustrations of all the above-mentioned methods are provided for Indian regions with a view to specifically aiding water management in India.

  10. Projections of future floods and hydrological droughts in Europe under a +2°C global warming

    NARCIS (Netherlands)

    Roudier, Philippe; Andersson, Jafet C.M.; Donnelly, Chantal; Feyen, Luc; Greuell, Wouter; Ludwig, Fulco

    2016-01-01

    We present an assessment of the impacts of a +2°C global warming on extreme floods and hydrological droughts (1 in 10 and 1 in 100 year events) in Europe using eleven bias-corrected climate model simulations from CORDEX Europe and three hydrological models. The results show quite contrasted results

  11. Evaluation and hydrological modelization in the natural hazard prevention

    International Nuclear Information System (INIS)

    Pla Sentis, Ildefonso

    2011-01-01

    Soil degradation affects negatively his functions as a base to produce food, to regulate the hydrological cycle and the environmental quality. All over the world soil degradation is increasing partly due to lacks or deficiencies in the evaluations of the processes and causes of this degradation on each specific situation. The processes of soil physical degradation are manifested through several problems as compaction, runoff, hydric and Eolic erosion, landslides with collateral effects in situ and in the distance, often with disastrous consequences as foods, landslides, sedimentations, droughts, etc. These processes are frequently associated to unfavorable changes into the hydrologic processes responsible of the water balance and soil hydric regimes, mainly derived to soil use changes and different management practices and climatic changes. The evaluation of these processes using simple simulation models; under several scenarios of climatic change, soil properties and land use and management; would allow to predict the occurrence of this disastrous processes and consequently to select and apply the appropriate practices of soil conservation to eliminate or reduce their effects. This simulation models require, as base, detailed climatic information and hydrologic soil properties data. Despite of the existence of methodologies and commercial equipment (each time more sophisticated and precise) to measure the different physical and hydrological soil properties related with degradation processes, most of them are only applicable under really specific or laboratory conditions. Often indirect methodologies are used, based on relations or empiric indexes without an adequate validation, that often lead to expensive mistakes on the evaluation of soil degradation processes and their effects on natural disasters. It could be preferred simple field methodologies, direct and adaptable to different soil types and climates and to the sample size and the spatial variability of the

  12. The Zig-zag Instability of Streamlined Bodies

    Science.gov (United States)

    Guillet, Thibault; Coux, Martin; Quere, David; Clanet, Christophe

    2017-11-01

    When a floating bluff body, like a sphere, impacts water with a vertical velocity, its trajectory is straight and the depth of its dive increases with its initial velocity. Even though we observe the same phenomenon at low impact speed for axisymmetric streamlined bodies, the trajectory is found to deviate from the vertical when the velocity overcomes a critical value. This instability results from a competition between the destabilizing torque of the lift and the stabilizing torque of the Archimede's force. Balancing these torques yields a prediction on the critical velocity above which the instability appears. This theoretical value is found to depend on the position of the gravity center of the projectile and predicts with a full agreement the behaviour observed in our different experiments. Project funded by DGA.

  13. Stream-groundwater exchange and hydrologic turnover at the network scale

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  14. Simulation of hydrological processes in the Zhalong wetland within a river basin, Northeast China

    Directory of Open Access Journals (Sweden)

    X. Q. Feng

    2013-07-01

    Full Text Available Zhalong National Nature Preserve is a large wetland reserve on the Songnen Plain in Northeast China. Wetlands in the preserve play a key role in maintaining regional ecosystem function and integrity. Global climate change and intensified anthropogenic activities in the region have raised great concerns over the change of natural flow regime, wetland degradation and loss. In this study, two key hydrologic components in the preserve, water surface area and water volume, as well as their variations during the period 1985–2006, were investigated with a spatially-distributed hydrologic modeling system (SWAT. A wetland module was incorporated into the SWAT model to represent hydrological linkages between the wetland and adjacent upland areas. The modified modeling system was calibrated with streamflow measurements from 1987 to 1989 and was validated for the period 2005–2006. The calibration achieved a Nash efficiency coefficient (Ens of 0.86, and the validation yielded an Ens of 0.66. In the past 20 yr, water surface area in the Zhalong wetland fluctuated from approximately 200 km2 to 1145 km2 with a rapid decreasing trend through the early 2000s. Consequently, water volume decreased largely in the preserve, especially in the dry seasons. The situation changed following the implementation of a river diversion in 2001. Overall, the modeling yielded plausible estimates of hydrologic changes in this large wetland reserve, building a foundation for assessing ecological water requirements and developing strategies and plans for future water resources management within the river basin.

  15. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model

    Science.gov (United States)

    Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip

    2017-07-01

    A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.

  16. A streamlined ribosome profiling protocol for the characterization of microorganisms

    DEFF Research Database (Denmark)

    Latif, Haythem; Szubin, Richard; Tan, Justin

    2015-01-01

    Ribosome profiling is a powerful tool for characterizing in vivo protein translation at the genome scale, with multiple applications ranging from detailed molecular mechanisms to systems-level predictive modeling. Though highly effective, this intricate technique has yet to become widely used...... in the microbial research community. Here we present a streamlined ribosome profiling protocol with reduced barriers to entry for microbial characterization studies. Our approach provides simplified alternatives during harvest, lysis, and recovery of monosomes and also eliminates several time-consuming steps...

  17. Streamlining digital signal processing a tricks of the trade guidebook

    CERN Document Server

    2012-01-01

    Streamlining Digital Signal Processing, Second Edition, presents recent advances in DSP that simplify or increase the computational speed of common signal processing operations and provides practical, real-world tips and tricks not covered in conventional DSP textbooks. It offers new implementations of digital filter design, spectrum analysis, signal generation, high-speed function approximation, and various other DSP functions. It provides:Great tips, tricks of the trade, secrets, practical shortcuts, and clever engineering solutions from seasoned signal processing professionalsAn assortment.

  18. Hydrologic impacts of climate change on the Nile River basin: Implications of the 2007 IPCC climate scenarios

    NARCIS (Netherlands)

    Beyene, T.; Lettenmaier, D.P.; Kabat, P.

    2010-01-01

    We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions

  19. Hydrology team

    Science.gov (United States)

    Ragan, R.

    1982-01-01

    General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.

  20. Hydrological Impacts of Climate Change: A Case Study on the Ebro River Basin (Spain)

    Science.gov (United States)

    Zambrano-Bigiarini, M.; Bellin, A.; Majone, B.; Bovolo, C. I.; Blenkinsop, S.

    2009-12-01

    Uncertainty in projections from climate models limits the understanding of future hydrological impacts and complicates the assessment of mitigation policies. This work presents hydrological simulations of the Ebro River Basin (Spain), using both control (1961-1990) and future (2071-2100) climate scenarios, in order to investigate the effect of climate change on the water availability of the basin. Using the SWAT model, hydrological simulations were carried out for four catchments with different climatological regimes. Sets of model parameters were identified using sensitivity analysis, long-term calibration and uncertainty analysis procedures, which enabled the historical behaviour of the catchments to be reproduced. Following validation, the parameters were used to simulate the effects of climate change on future streamflow. Bias-corrected daily time series of precipitation and mean temperature from an ensemble of 6 Regional Climate Models (RCMs), using the SRES A2 emissions scenario, were used as drivers of the hydrological simulations during the future scenarios. Important annual and seasonal differences in the projected future precipitation and temperature fields were observed among the RCMs. However, a general decrease in annual mean precipitation and an increase in annual mean temperature relative to the control period were observed, with the strongest differences during the summer season. When these changes were used to project future streamflows, a general decrease was observed at the outlet of the catchments. Changes in streamflows were in general agreement with the projections of daily precipitation and temperature fields, with a larger drop in predicted monthly streamflows for catchments with more semi-arid climatological regimes, and seasonal differences that are related to the elevation range of the catchments.

  1. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery

    Directory of Open Access Journals (Sweden)

    Q. Wu

    2017-07-01

    Full Text Available In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling–spilling–merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic connectivity analysis.

  2. One-Water Hydrologic Flow Model (MODFLOW-OWHM)

    Science.gov (United States)

    Hanson, Randall T.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.; Mehl, Steffen W.; Leake, Stanley A.; Maddock, Thomas; Niswonger, Richard G.

    2014-01-01

    The One-Water Hydrologic Flow Model (MF-OWHM) is a MODFLOW-based integrated hydrologic flow model (IHM) that is the most complete version, to date, of the MODFLOW family of hydrologic simulators needed for the analysis of a broad range of conjunctive-use issues. Conjunctive use is the combined use of groundwater and surface water. MF-OWHM allows the simulation, analysis, and management of nearly all components of human and natural water movement and use in a physically-based supply-and-demand framework. MF-OWHM is based on the Farm Process for MODFLOW-2005 (MF-FMP2) combined with Local Grid Refinement (LGR) for embedded models to allow use of the Farm Process (FMP) and Streamflow Routing (SFR) within embedded grids. MF-OWHM also includes new features such as the Surface-water Routing Process (SWR), Seawater Intrusion (SWI), and Riparian Evapotrasnpiration (RIP-ET), and new solvers such as Newton-Raphson (NWT) and nonlinear preconditioned conjugate gradient (PCGN). This IHM also includes new connectivities to expand the linkages for deformation-, flow-, and head-dependent flows. Deformation-dependent flows are simulated through the optional linkage to simulated land subsidence with a vertically deforming mesh. Flow-dependent flows now include linkages between the new SWR with SFR and FMP, as well as connectivity with embedded models for SFR and FMP through LGR. Head-dependent flows now include a modified Hydrologic Flow Barrier Package (HFB) that allows optional transient HFB capabilities, and the flow between any two layers that are adjacent along a depositional or erosional boundary or displaced along a fault. MF-OWHM represents a complete operational hydrologic model that fully links the movement and use of groundwater, surface water, and imported water for consumption by irrigated agriculture, but also of water used in urban areas and by natural vegetation. Supply and demand components of water use are analyzed under demand-driven and supply

  3. Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

    Science.gov (United States)

    Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul

    2018-02-01

    We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

  4. A framework for improving a seasonal hydrological forecasting system using sensitivity analysis

    Science.gov (United States)

    Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah

    2017-04-01

    Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of

  5. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities...... under specific circumstances. Initially a general water balance equation is defined for a typical landfill, and the different parts of the water balance are discussed. A separate section discusses water flow and the hydrogeology of landfilled wastes and considers the impact of water short...

  6. InterviewStreamliner, a minimalist, free, open source, relational approach to computer-assisted qualitative data analysis software

    NARCIS (Netherlands)

    H.D. Pruijt (Hans)

    2010-01-01

    textabstractInterviewStreamliner is a free, open source, minimalist alternative to complex computer-assisted qualitative data analysis packages. It builds on the flexibility of relational database management technology.

  7. Data Assimilation in Integrated and Distributed Hydrological Models

    DEFF Research Database (Denmark)

    Zhang, Donghua

    processes and provide simulations in refined temporal and spatial resolutions. Recent developments in measurement and sensor technologies have significantly improved the coverage, quality, frequency and diversity of hydrological observations. Data assimilation provides a great potential in relation...... point of view, different assimilation methodologies and techniques have been developed or customized to better serve hydrological assimilation. From the application point of view, real data and real-world complex catchments are used with the focus of investigating the models’ improvements with data...... a variety of model uncertainty sources and scales. Next the groundwater head assimilation experiment was tested in a much more complex catchment with assimilation of biased real observations. In such cases, the bias-aware assimilation method significantly outperforms the standard assimilation method...

  8. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.

    Science.gov (United States)

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V, Oliver C

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov-Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities.

  9. Robustness and Uncertainty: Applications for Policy in Climate and Hydrological Modeling

    Science.gov (United States)

    Fields, A. L., III

    2015-12-01

    Policymakers must often decide how to proceed when presented with conflicting simulation data from hydrological, climatological, and geological models. While laboratory sciences often appeal to the reproducibility of results to argue for the validity of their conclusions, simulations cannot use this strategy for a number of pragmatic and methodological reasons. However, robustness of predictions and causal structures can serve the same function for simulations as reproducibility does for laboratory experiments and field observations in either adjudicating between conflicting results or showing that there is insufficient justification to externally validate the results. Additionally, an interpretation of the argument from robustness is presented that involves appealing to the convergence of many well-built and diverse models rather than the more common version which involves appealing to the probability that one of a set of models is likely to be true. This interpretation strengthens the case for taking robustness as an additional requirement for the validation of simulation results and ultimately supports the idea that computer simulations can provide information about the world that is just as trustworthy as data from more traditional laboratory studies and field observations. Understanding the importance of robust results for the validation of simulation data is especially important for policymakers making decisions on the basis of potentially conflicting models. Applications will span climate, hydrological, and hydroclimatological models.

  10. Wetland Hydrology

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  11. Integrated climate and hydrology modelling - Coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Dahl Larsen, M.A. [Technical Univ. of Denmark. DTU Management Engineering, DTU Risoe Campus, Roskilde (Denmark)

    2013-10-15

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate and hydrology have used each model component in an offline mode where the models are run in sequential steps and one model serves as a boundary condition or data input source to the other. Within recent years a new field of research has emerged where efforts have been made to dynamically couple existing climate and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface. The modelling tool consists of a fully dynamic two-way coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model. The expected gain is twofold. Firstly, HIRHAM utilizes the land surface component of the combined MIKE SHE/SWET hydrology and land surface model (LSM), which is superior to the LSM in HIRHAM. A wider range of processes are included at the land surface, subsurface flow is distributed in three dimensions and the temporal and spatial resolution is higher. Secondly, the feedback mechanisms of e.g. soil moisture and precipitation between the two models are included. The preparation of the HIRHAM and MIKE SHE models for the coupled study revealed several findings. The performance of HIRHAM was highly affected by the domain size, domain

  12. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  13. Assimilating Merged Remote Sensing and Ground based Snowpack Information for Runoff Simulation and Forecasting using Hydrological Models

    Science.gov (United States)

    Infante Corona, J. A.; Lakhankar, T.; Khanbilvardi, R.; Pradhanang, S. M.

    2013-12-01

    Stream flow estimation and flood prediction influenced by snow melting processes have been studied for the past couple of decades because of their destruction potential, money losses and demises. It has been observed that snow, that was very stationary during its seasons, now is variable in shorter time-scales (daily and hourly) and rapid snowmelt can contribute or been the cause of floods. Therefore, good estimates of snowpack properties on ground are necessary in order to have an accurate prediction of these destructive events. The snow thermal model (SNTHERM) is a 1-dimensional model that analyzes the snowpack properties given the climatological conditions of a particular area. Gridded data from both, in-situ meteorological observations and remote sensing data will be produced using interpolation methods; thus, snow water equivalent (SWE) and snowmelt estimations can be obtained. The soil and water assessment tool (SWAT) is a hydrological model capable of predicting runoff quantity and quality of a watershed given its main physical and hydrological properties. The results from SNTHERM will be used as an input for SWAT in order to have simulated runoff under snowmelt conditions. This project attempts to improve the river discharge estimation considering both, excess rainfall runoff and the snow melting process. Obtaining a better estimation of the snowpack properties and evolution is expected. A coupled use of SNTHERM and SWAT based on meteorological in situ and remote sensed data will improve the temporal and spatial resolution of the snowpack characterization and river discharge estimations, and thus flood prediction.

  14. The role of the antecedent soil moisture condition on the distributed hydrologic modelling of the Toce alpine basin floods.

    Science.gov (United States)

    Ravazzani, G.; Montaldo, N.; Mancini, M.; Rosso, R.

    2003-04-01

    Event-based hydrologic models need the antecedent soil moisture condition, as critical boundary initial condition for flood simulation. Land-surface models (LSMs) have been developed to simulate mass and energy transfers, and to update the soil moisture condition through time from the solution of water and energy balance equations. They are recently used in distributed hydrologic modeling for flood prediction systems. Recent developments have made LSMs more complex by inclusion of more processes and controlling variables, increasing parameter number and uncertainty of their estimates. This also led to increasing of computational burden and parameterization of the distributed hydrologic models. In this study we investigate: 1) the role of soil moisture initial conditions in the modeling of Alpine basin floods; 2) the adequate complexity level of LSMs for the distributed hydrologic modeling of Alpine basin floods. The Toce basin is the case study; it is located in the North Piedmont (Italian Alps), and it has a total drainage area of 1534 km2 at Candoglia section. Three distributed hydrologic models of different level of complexity are developed and compared: two (TDLSM and SDLSM) are continuous models, one (FEST02) is an event model based on the simplified SCS-CN method for rainfall abstractions. In the TDLSM model a two-layer LSM computes both saturation and infiltration excess runoff, and simulates the evolution of the water table spatial distribution using the topographic index; in the SDLSM model a simplified one-layer distributed LSM only computes hortonian runoff, and doesn’t simulate the water table dynamic. All the three hydrologic models simulate the surface runoff propagation through the Muskingum-Cunge method. TDLSM and SDLSM models have been applied for the two-year (1996 and 1997) simulation period, during which two major floods occurred in the November 1996 and in the June 1997. The models have been calibrated and tested comparing simulated and

  15. High resolution global flood hazard map from physically-based hydrologic and hydraulic models.

    Science.gov (United States)

    Begnudelli, L.; Kaheil, Y.; McCollum, J.

    2017-12-01

    The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak

  16. Hydrologic Responses to Land Use Change in the Loess Plateau: Case Study in the Upper Fenhe River Watershed

    Directory of Open Access Journals (Sweden)

    Zhixiang Lu

    2015-01-01

    Full Text Available We applied an integrated approach to investigate the impacts of land use and land cover (LULC changes on hydrology at different scales in the Loess Plateau of China. Hydrological modeling was conducted for the LULC maps from remote sensing images at two times in the Upper Fenhe River watershed using the SWAT model. The main LULC changes in this watershed from 1995 to 2010 were the transformation of farmland into forests, grassland, and built-up land. The simulation results showed that forested land contributed more than any other LULC class to water yield, but built-up land had most impact due to small initial loss and infiltration. At basin scale, a comparison of the simulated hydrological components of two LULC maps showed that there were slight increases in average annual potential evapotranspiration, actual evapotranspiration, and water yield, but soil water decreased, between the two intervals. In subbasins, obvious LULC changes did not have clear impacts on hydrology, and the impacts may be affected by precipitation conditions. By linking a hydrological model to remote sensing image analysis, our approach of quantifying the impacts of LULC changes on hydrology at different scales provide quantitative information for stakeholders in making decisions for land and water resource management.

  17. Quantum mechanical streamlines. I - Square potential barrier

    Science.gov (United States)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  18. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1998-01-01

    Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of non-linear coordinate c...

  19. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1999-01-01

    Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate ch...

  20. One multi-media environmental system with linkage between meteorology/ hydrology/ air quality models and water quality model

    Science.gov (United States)

    Tang, C.; Lynch, J. A.; Dennis, R. L.

    2016-12-01

    The biogeochemical processing of nitrogen and associated pollutants is driven by meteorological and hydrological processes in conjunction with pollutant loading. There are feedbacks between meteorology and hydrology that will be affected by land-use change and climate change. Changes in meteorology will affect pollutant deposition. It is important to account for those feedbacks and produce internally consistent simulations of meteorology, hydrology, and pollutant loading to drive the (watershed/water quality) biogeochemical models. In this study, the ecological response to emission reductions in streams in the Potomac watershed was evaluated. Firstly, we simulated the deposition by using the fully coupled Weather Research & Forecasting (WRF) model and the Community Multiscale Air Quality (CAMQ) model; secondly, we created the hydrological data by the offline linked Variable Infiltration Capacity (VIC) model and the WRF model. Lastly, we investigated the water quality by one comprehensive/environment model, namely the linkage of CMAQ, WRF, VIC and the Model of Acidification of Groundwater In Catchment (MAGIC) model from 2002 to 2010.The simulated results (such as NO3, SO4, and SBC) fit well to the observed values. The linkage provides a generally accurate, well-tested tool for evaluating sensitivities to varying meteorology and environmental changes on acidification and other biogeochemical processes, with capability to comprehensively explore strategic policy and management design.

  1. Geologic simulation model for a hypothetical site in the Columbia Plateau

    International Nuclear Information System (INIS)

    Petrie, G.M.; Zellmer, J.T.; Lindberg, J.W.; Foley, M.G.

    1981-04-01

    This report describes the structure and operation of the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Geologic Simulation Model, a computer simulation model of the geology and hydrology of an area of the Columbia Plateau, Washington. The model is used to study the long-term suitability of the Columbia Plateau Basalts for the storage of nuclear waste in a mined repository. It is also a starting point for analyses of such repositories in other geologic settings. The Geologic Simulation Model will aid in formulating design disruptive sequences (i.e. those to be used for more detailed hydrologic, transport, and dose analyses) from the spectrum of hypothetical geological and hydrological developments that could result in transport of radionuclides out of a repository. Quantitative and auditable execution of this task, however, is impossible without computer simulation. The computer simulation model aids the geoscientist by generating the wide spectrum of possible future evolutionary paths of the areal geology and hydrology, identifying those that may affect the repository integrity. This allows the geoscientist to focus on potentially disruptive processes, or series of events. Eleven separate submodels are used in the simulation portion of the model: Climate, Continental Glaciation, Deformation, Geomorphic Events, Hydrology, Magmatic Events, Meteorite Impact, Sea-Level Fluctuations, Shaft-Seal Failure, Sub-Basalt Basement Faulting, and Undetected Features. Because of the modular construction of the model, each submodel can easily be replaced with an updated or modified version as new information or developments in the state of the art become available. The model simulates the geologic and hydrologic systems of a hypothetical repository site and region for a million years following repository decommissioning. The Geologic Simulation Model operates in both single-run and Monte Carlo modes

  2. 77 FR 50691 - Request for Information (RFI): Guidance on Data Streamlining and Reducing Undue Reporting Burden...

    Science.gov (United States)

    2012-08-22

    .... Attention: HIV Data Streamlining. FOR FURTHER INFORMATION CONTACT: Andrew D. Forsyth Ph.D. or Vera... of HIV/AIDS programs that vary in their specifications (e.g., numerators, denominators, time frames...

  3. RESPONSE OF LANDUSE CHANGE ON HYDROLOGICAL CHARACTERISTICS OF WAY BETUNG WATERSHED - LAMPUNG

    Directory of Open Access Journals (Sweden)

    Zaenal Mubarok

    2015-05-01

    Full Text Available Change in landuse caused by a population increase from 114,973 people in 2007 to 134,792 people in 2012 (14.70% increased has influenced the hydrological characteristics of Way Betung watershed. The Soil and Water Assesment Tools (SWAT hydrological model could predict the hydrological characteristics influenced by the change in landuse. The aims of this study were: 1 to assess the impact of landuse change on hydrological characteristics; and, 2 to recommend the best landuse of Way Betung Watershed.The SWAT model was applied to simulate the change of landuse in Way Betung watershed. The effects of landuse change on the hydrological characteristics of Way Betung Watershed in 2001, 2006, and 2010 showed  the water yield of 874.66, 1047.70, and 774.04 mm respectively. The coefficient of surface runoff (C for those three years were 0.16, 0.31, and 0.23, whereas the coeficient of river regime were 30.65, 66.25, and 53.57 respectively. The application of agrotechnology on agricultural land and in line with the functions of forest area (scenario 4 gave the best response towards hydrological characteristics in the form of 709.69 mm of water yield with C being 0.14, whereas the coeficient of river regime value was 3.66. 

  4. Hydrologic Landscape Classification to Estimate Bristol Bay Watershed Hydrology

    Science.gov (United States)

    The use of hydrologic landscapes has proven to be a useful tool for broad scale assessment and classification of landscapes across the United States. These classification systems help organize larger geographical areas into areas of similar hydrologic characteristics based on cl...

  5. Developing an approach to effectively use super ensemble experiments for the projection of hydrological extremes under climate change

    Science.gov (United States)

    Watanabe, S.; Kim, H.; Utsumi, N.

    2017-12-01

    This study aims to develop a new approach which projects hydrology under climate change using super ensemble experiments. The use of multiple ensemble is essential for the estimation of extreme, which is a major issue in the impact assessment of climate change. Hence, the super ensemble experiments are recently conducted by some research programs. While it is necessary to use multiple ensemble, the multiple calculations of hydrological simulation for each output of ensemble simulations needs considerable calculation costs. To effectively use the super ensemble experiments, we adopt a strategy to use runoff projected by climate models directly. The general approach of hydrological projection is to conduct hydrological model simulations which include land-surface and river routing process using atmospheric boundary conditions projected by climate models as inputs. This study, on the other hand, simulates only river routing model using runoff projected by climate models. In general, the climate model output is systematically biased so that a preprocessing which corrects such bias is necessary for impact assessments. Various bias correction methods have been proposed, but, to the best of our knowledge, no method has proposed for variables other than surface meteorology. Here, we newly propose a method for utilizing the projected future runoff directly. The developed method estimates and corrects the bias based on the pseudo-observation which is a result of retrospective offline simulation. We show an application of this approach to the super ensemble experiments conducted under the program of Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI). More than 400 ensemble experiments from multiple climate models are available. The results of the validation using historical simulations by HAPPI indicates that the output of this approach can effectively reproduce retrospective runoff variability. Likewise, the bias of runoff from super ensemble climate

  6. Users manual for an expert system (HSPEXP) for calibration of the hydrological simulation program; Fortran

    Science.gov (United States)

    Lumb, A.M.; McCammon, R.B.; Kittle, J.L.

    1994-01-01

    Expert system software was developed to assist less experienced modelers with calibration of a watershed model and to facilitate the interaction between the modeler and the modeling process not provided by mathematical optimization. A prototype was developed with artificial intelligence software tools, a knowledge engineer, and two domain experts. The manual procedures used by the domain experts were identified and the prototype was then coded by the knowledge engineer. The expert system consists of a set of hierarchical rules designed to guide the calibration of the model through a systematic evaluation of model parameters. When the prototype was completed and tested, it was rewritten for portability and operational use and was named HSPEXP. The watershed model Hydrological Simulation Program--Fortran (HSPF) is used in the expert system. This report is the users manual for HSPEXP and contains a discussion of the concepts and detailed steps and examples for using the software. The system has been tested on watersheds in the States of Washington and Maryland, and the system correctly identified the model parameters to be adjusted and the adjustments led to improved calibration.

  7. Analysing the temporal dynamics of model performance for hydrological models

    NARCIS (Netherlands)

    Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E.

    2009-01-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or

  8. A Hydrological Response Analysis Considering Climatic Variability: Case Study of Hunza Catchment

    Directory of Open Access Journals (Sweden)

    A. N. Laghari

    2018-06-01

    Full Text Available The hydrological response of mountainous catchments particularly dependent on melting runoff is very vulnerable to climatic variability. This study is an attempt to assess hydrological response towards climatic variability of the Hunza catchment located in the mountainous chain of greater Hindu Kush-Himalaya (HKH region. The hydrological response is analyzed through changes in snowmelt, ice melt and total runoff simulated through the application of the hydrological modeling system PREVAH under hypothetically developed climate change scenarios. The developed scenarios are based on changes in precipitation (Prp and temperature (Tmp and their combination. Under all the warmer scenarios, the increase in temperature systematically decreases the mean annual snow melt and increases significantly glacier melt volume. Temperature changes from 1°C to 4°C produce a large increase in spring and summer runoff, while no major variation was observed in the winter and autumn runoff. The maximum seasonal changes recorded under the Tmp+4°C, Prp+10% scenario.

  9. A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE

    Directory of Open Access Journals (Sweden)

    Giuliana Zanchi

    2016-03-01

    Full Text Available The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows simulation of a saturated and an unsaturated zone in the soil as well as water flow that reaches the stream comparable to measurements. The most relevant differences compared to streamflow measurements are that the model simulates a higher base flow in winter and lower flow peaks after snowmelt. These differences are mainly caused by the assumptions made to regulate the percolation at the bottom of the simulated soil columns. The capability for simulating lateral flows and a saturated zone in ForSAFE can greatly improve the simulation of chemical exchange in the soil and export of elements from the soil to watercourses. Such a model can help improve the understanding of how environmental changes in the forest landscape will influence chemical loads to surface waters.

  10. Streamlining the process: A strategy for making NEPA work better and cost less

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R.P.; Hansen, J.D. [Hansen Environmental Consultants, Englewood, CO (United States); Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States)

    1998-05-01

    When the National Environmental Policy Act (NEPA) was enacted in 1969, neither Congress nor the Federal Agencies affected anticipated that implementation of the NEPA process would result in the intolerable delays, inefficiencies, duplication of effort, commitments of excessive financial and personnel resources, and bureaucratic gridlock that have become institutionalized. The 1975 Council on Environmental Quality (CEQ) regulations, which were intended to make the NEPA process more efficient and more useful to decision makers and the public, have either been largely ignored or unintentionally subverted. Agency policy mandates, like those of former Secretary of Energy Hazel R. O`Leary, to ``make NEPA work better and cost less`` have, so far, been disappointingly ineffectual. Federal Agencies have reached the point where almost every constituent of the NEPA process must be subjected to crisis management. This paper focuses on a ten-point strategy for streamlining the NEPA process in order to achieve the Act`s objectives while easing the considerable burden on agencies, the public, and the judicial system. How the ten points are timed and implemented is critical to any successful streamlining.

  11. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function

    Science.gov (United States)

    Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape

  12. Streamlining cardiovascular clinical trials to improve efficiency and generalisability.

    Science.gov (United States)

    Zannad, Faiez; Pfeffer, Marc A; Bhatt, Deepak L; Bonds, Denise E; Borer, Jeffrey S; Calvo-Rojas, Gonzalo; Fiore, Louis; Lund, Lars H; Madigan, David; Maggioni, Aldo Pietro; Meyers, Catherine M; Rosenberg, Yves; Simon, Tabassome; Stough, Wendy Gattis; Zalewski, Andrew; Zariffa, Nevine; Temple, Robert

    2017-08-01

    Controlled trials provide the most valid determination of the efficacy and safety of an intervention, but large cardiovascular clinical trials have become extremely costly and complex, making it difficult to study many important clinical questions. A critical question, and the main objective of this review, is how trials might be simplified while maintaining randomisation to preserve scientific integrity and unbiased efficacy assessments. Experience with alternative approaches is accumulating, specifically with registry-based randomised controlled trials that make use of data already collected. This approach addresses bias concerns while still capitalising on the benefits and efficiencies of a registry. Several completed or ongoing trials illustrate the feasibility of using registry-based controlled trials to answer important questions relevant to daily clinical practice. Randomised trials within healthcare organisation databases may also represent streamlined solutions for some types of investigations, although data quality (endpoint assessment) is likely to be a greater concern in those settings. These approaches are not without challenges, and issues pertaining to informed consent, blinding, data quality and regulatory standards remain to be fully explored. Collaboration among stakeholders is necessary to achieve standards for data management and analysis, to validate large data sources for use in randomised trials, and to re-evaluate ethical standards to encourage research while also ensuring that patients are protected. The rapidly evolving efforts to streamline cardiovascular clinical trials have the potential to lead to major advances in promoting better care and outcomes for patients with cardiovascular disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Streamlined library programming how to improve services and cut costs

    CERN Document Server

    Porter-Reynolds, Daisy

    2014-01-01

    In their roles as community centers, public libraries offer many innovative and appealing programs; but under current budget cuts, library resources are stretched thin. With slashed budgets and limited staff hours, what can libraries do to best serve their publics? This how-to guide provides strategies for streamlining library programming in public libraries while simultaneously maintaining-or even improving-quality delivery. The wide variety of principles and techniques described can be applied on a selective basis to libraries of all sizes. Based upon the author's own extensive experience as

  14. Optimizing Multireservoir System Operating Policies Using Exogenous Hydrologic Variables

    Science.gov (United States)

    Pina, Jasson; Tilmant, Amaury; Côté, Pascal

    2017-11-01

    Stochastic dual dynamic programming (SDDP) is one of the few available algorithms to optimize the operating policies of large-scale hydropower systems. This paper presents a variant, called SDDPX, in which exogenous hydrologic variables, such as snow water equivalent and/or sea surface temperature, are included in the state space vector together with the traditional (endogenous) variables, i.e., past inflows. A reoptimization procedure is also proposed in which SDDPX-derived benefit-to-go functions are employed within a simulation carried out over the historical record of both the endogenous and exogenous hydrologic variables. In SDDPX, release policies are now a function of storages, past inflows, and relevant exogenous variables that potentially capture more complex hydrological processes than those found in traditional SDDP formulations. To illustrate the potential gain associated with the use of exogenous variables when operating a multireservoir system, the 3,137 MW hydropower system of Rio Tinto (RT) located in the Saguenay-Lac-St-Jean River Basin in Quebec (Canada) is used as a case study. The performance of the system is assessed for various combinations of hydrologic state variables, ranging from the simple lag-one autoregressive model to more complex formulations involving past inflows, snow water equivalent, and winter precipitation.

  15. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    Science.gov (United States)

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand

  16. West Virginia Peer Exchange : Streamlining Highway Safety Improvement Program Project Delivery - An RSPCB Peer Exchange

    Science.gov (United States)

    2014-09-01

    The West Virginia Division of Highways (WV DOH) hosted a Peer Exchange to share information and experiences for streamlining Highway Safety Improvement Program (HSIP) project delivery. The event was held September 23 to 24, 2014 in Charleston, West V...

  17. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections

    Science.gov (United States)

    Aryal, Anil; Shrestha, Sangam; Babel, Mukand S.

    2018-01-01

    The objective of this paper is to quantify the various sources of uncertainty in the assessment of climate change impact on hydrology in the Tamakoshi River Basin, located in the north-eastern part of Nepal. Multiple climate and hydrological models were used to simulate future climate conditions and discharge in the basin. The simulated results of future climate and river discharge were analysed for the quantification of sources of uncertainty using two-way and three-way ANOVA. The results showed that temperature and precipitation in the study area are projected to change in near- (2010-2039), mid- (2040-2069) and far-future (2070-2099) periods. Maximum temperature is likely to rise by 1.75 °C under Representative Concentration Pathway (RCP) 4.5 and by 3.52 °C under RCP 8.5. Similarly, the minimum temperature is expected to rise by 2.10 °C under RCP 4.5 and by 3.73 °C under RCP 8.5 by the end of the twenty-first century. Similarly, the precipitation in the study area is expected to change by - 2.15% under RCP 4.5 and - 2.44% under RCP 8.5 scenarios. The future discharge in the study area was projected using two hydrological models, viz. Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center's Hydrologic Modelling System (HEC-HMS). The SWAT model projected discharge is expected to change by small amount, whereas HEC-HMS model projected considerably lower discharge in future compared to the baseline period. The results also show that future climate variables and river hydrology contain uncertainty due to the choice of climate models, RCP scenarios, bias correction methods and hydrological models. During wet days, more uncertainty is observed due to the use of different climate models, whereas during dry days, the use of different hydrological models has a greater effect on uncertainty. Inter-comparison of the impacts of different climate models reveals that the REMO climate model shows higher uncertainty in the prediction of precipitation and

  18. Catchment Integration of Sensor Array Observations to Understand Hydrologic Connectivity

    Science.gov (United States)

    Redfern, S.; Livneh, B.; Molotch, N. P.; Suding, K.; Neff, J. C.; Hinckley, E. L. S.

    2017-12-01

    Hydrologic connectivity and the land surface water balance are likely to be impacted by climate change in the coming years. Although recent work has started to demonstrate that climate modulates connectivity, we still lack knowledge of how local ecology will respond to environmental and atmospheric changes and subsequently interact with connectivity. The overarching goal of this research is to address and forecast how climate change will affect hydrologic connectivity in an alpine environment, through the use of near-surface observations (temperature, humidity, soil moisture, snow depth) from a new 16-sensor array (plus 5 precipitation gauges), together with a distributed hydrologic model, over a small catchment on Colorado's Niwot Ridge (above 3000m). Model simulations will be constrained to distributed sensor measurements taken in the study area and calibrated with streamflow. Periods of wetting and dry-down will be analyzed to identify signatures of connectivity across the landscape, its seasonal signals and its sensitivity to land cover. Further work will aim to develop future hydrologic projections, compare model output with related observations, conduct multi-physics experiments, and continue to expand the existing sensor network.

  19. Improving rainfall representation for large-scale hydrological modelling of tropical mountain basins

    Science.gov (United States)

    Zulkafli, Zed; Buytaert, Wouter; Onof, Christian; Lavado, Waldo; Guyot, Jean-Loup

    2013-04-01

    Errors in the forcing data are sometimes overlooked in hydrological studies even when they could be the most important source of uncertainty. The latter particularly holds true in tropical countries with short historical records of rainfall monitoring and remote areas with sparse rain gauge network. In such instances, alternative data such as the remotely sensed precipitation from the TRMM (Tropical Rainfall Measuring Mission) satellite have been used. These provide a good spatial representation of rainfall processes but have been established in the literature to contain volumetric biases that may impair the results of hydrological modelling or worse, are compensated during model calibration. In this study, we analysed precipitation time series from the TMPA (TRMM Multiple Precipitation Algorithm, version 6) against measurements from over 300 gauges in the Andes and Amazon regions of Peru and Ecuador. We found moderately good monthly correlation between the pixel and gauge pairs but a severe underestimation of rainfall amounts and wet days. The discrepancy between the time series pairs is particularly visible over the east side of the Andes and may be attributed to localized and orographic-driven high intensity rainfall, which the satellite product may have limited skills at capturing due to technical and scale issues. This consequently results in a low bias in the simulated streamflow volumes further downstream. In comparison, with the recently released TMPA, version 7, the biases reduce. This work further explores several approaches to merge the two sources of rainfall measurements, each of a different spatial and temporal support, with the objective of improving the representation of rainfall in hydrological simulations. The methods used are (1) mean bias correction (2) data assimilation using Kalman filter Bayesian updating. The results are evaluated by means of (1) a comparison of runoff ratios (the ratio of the total runoff and the total precipitation over an

  20. Tools for Interdisciplinary Data Assimilation and Sharing in Support of Hydrologic Science

    Science.gov (United States)

    Blodgett, D. L.; Walker, J.; Suftin, I.; Warren, M.; Kunicki, T.

    2013-12-01

    Information consumed and produced in hydrologic analyses is interdisciplinary and massive. These factors put a heavy information management burden on the hydrologic science community. The U.S. Geological Survey (USGS) Office of Water Information Center for Integrated Data Analytics (CIDA) seeks to assist hydrologic science investigators with all-components of their scientific data management life cycle. Ongoing data publication and software development projects will be presented demonstrating publically available data access services and manipulation tools being developed with support from two Department of the Interior initiatives. The USGS-led National Water Census seeks to provide both data and tools in support of nationally consistent water availability estimates. Newly available data include national coverages of radar-indicated precipitation, actual evapotranspiration, water use estimates aggregated by county, and South East region estimates of streamflow for 12-digit hydrologic unit code watersheds. Web services making these data available and applications to access them will be demonstrated. Web-available processing services able to provide numerous streamflow statistics for any USGS daily flow record or model result time series and other National Water Census processing tools will also be demonstrated. The National Climate Change and Wildlife Science Center is a USGS center leading DOI-funded academic global change adaptation research. It has a mission goal to ensure data used and produced by funded projects is available via web services and tools that streamline data management tasks in interdisciplinary science. For example, collections of downscaled climate projections, typically large collections of files that must be downloaded to be accessed, are being published using web services that allow access to the entire dataset via simple web-service requests and numerous processing tools. Recent progress on this front includes, data web services for Climate

  1. A Flexible Framework Hydrological Informatic Modeling System - HIMS

    Science.gov (United States)

    WANG, L.; Wang, Z.; Changming, L.; Li, J.; Bai, P.

    2017-12-01

    Simulating water cycling process temporally and spatially fitting for the characteristics of the study area was important for floods prediction and streamflow simulation with high accuracy, as soil properties, land scape, climate, and land managements were the critical factors influencing the non-linear relationship of rainfall-runoff at watershed scales. Most existing hydrological models cannot simulate water cycle process at different places with customized mechanisms with fixed single structure and mode. This study develops Hydro-Informatic Modeling System (HIMS) model with modular of each critical hydrological process with multiple choices for various scenarios to solve this problem. HIMS has the structure accounting for two runoff generation mechanisms of infiltration excess and saturation excess and estimated runoff with different methods including Time Variance Gain Model (TVGM), LCM which has good performance at ungauged areas, besides the widely used Soil Conservation Service-Curve Number (SCS-CN) method. Channel routing model contains the most widely used Muskingum, and kinematic wave equation with new solving method. HIMS model performance with its symbolic runoff generation model LCM was evaluated through comparison with the observed streamflow datasets of Lasha river watershed at hourly, daily, and monthly time steps. Comparisons between simulational and obervational streamflows were found with NSE higher than 0.87 and WE within ±20%. Water balance analysis about precipitation, streamflow, actual evapotranspiration (ET), and soil moisture change was conducted temporally at annual time step and it has been proved that HIMS model performance was reliable through comparison with literature results at the Lhasa River watershed.

  2. Modelling water use in global hydrological models: review, challenges and directions

    Science.gov (United States)

    Bierkens, M. F.; de Graaf, I.; Wada, Y.; Wanders, N.; Van Beek, L. P.

    2017-12-01

    During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (demand, withdrawal, consumption, return flow) in the hydrology; simulating the effects of land use change. We show example studies for each of these steps. We identify We identify major challenges that hamper the further development of integrated water resources modelling. Examples of these are: 1) simulating reservoir operations; 2) including local infrastructure and redistribution; 3) using the correct allocations rules; 4) projecting future water demand and water use. For each of these challenges we signify promising directions for further research.

  3. Watershed sensitivity and hydrologic response to high-resolution climate model

    Science.gov (United States)

    Troin, M.; Caya, D.

    2012-12-01

    Global climate models (GCMs) are fundamental research tools to assess climate change impacts on water resources. Regional climate models (RCMs) are complementary to GCMs. The added benefit of RCMs for hydrological applications is still not well understood because watersheds respond differently to RCM experiments. It is expected that the new generation of RCMs improve the representation of climate processes making it more attractive for impact studies. Given the cost of RCMs, it is ascertain to identify whether high-resolution RCMs allow offering more details than what is simulated in GCMs or RCMs with coarser resolution to address impacts on water resources. This study aims to assess the added value of RCM with emphasis on using high-resolution climate models. More specifically is how the hydrological cycle is represented when the resolution in climate models is increased (45 vs 200km; 15 vs 45km). We used simulations from the Canadian RCM (CRCM) driven by reanalyses integrated on high-resolution domains (45 and 15km) and CRCM driven by multiple members of two GCMs (the Canadian CGCM3; the German ECHAM5) with a horizontal resolution of 45 km. CRCM data and data from their host GCMs are compared to observation over 1971-2000. Precipitation and temperature from CRCM and GCMs' simulations are inputted into the hydrological SWAT model to simulate streamflow in watersheds for the historical period. The selected watersheds are two basins in Quebec (QC) and one basin in British Columbia (BC), Canada. CRCM-45km driven by GCMs performs well in representing precipitation but shows a cold bias of 3.3°C. Such bias in temperature is more significant for the BC basin (4.5°C) due to the Rocky Mountains. For the CRCM-45km/GCM combination (CGCM3 or ECHAM5), comparable skills in reproducing the observed climate are identified even though CGCM3 analyzed alone provides more accurate indication of climatology in the basins than ECHAM5. When we compared to GCMs results, CRCM-45km

  4. Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

    International Nuclear Information System (INIS)

    Stanzel, Ph; Haberl, U; Nachtnebel, H P

    2008-01-01

    Hydrological models for flood forecasting in Alpine basins need accurate representation of snow accumulation and snow melt processes. A continuous, semi-distributed rainfall-runoff model with snow modelling procedures using only precipitation and temperature as input is presented. Simulation results from an application in an Alpine Danube tributary watershed are shown and evaluated with snow depth measurements and MODIS remote sensing snow cover information. Seasonal variations of runoff due to snow melt were simulated accurately. Evaluation of simulated snow depth and snow covered area showed strengths and limitations of the model and allowed an assessment of input data quality. MODIS snow cover images were found to be valuable sources of information for hydrological modelling in alpine areas, where ground observations are scarce.

  5. Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, Ph; Haberl, U; Nachtnebel, H P [Institute of Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190 Vienna (Austria)], E-mail: philipp.stanzel@boku.ac.at

    2008-11-01

    Hydrological models for flood forecasting in Alpine basins need accurate representation of snow accumulation and snow melt processes. A continuous, semi-distributed rainfall-runoff model with snow modelling procedures using only precipitation and temperature as input is presented. Simulation results from an application in an Alpine Danube tributary watershed are shown and evaluated with snow depth measurements and MODIS remote sensing snow cover information. Seasonal variations of runoff due to snow melt were simulated accurately. Evaluation of simulated snow depth and snow covered area showed strengths and limitations of the model and allowed an assessment of input data quality. MODIS snow cover images were found to be valuable sources of information for hydrological modelling in alpine areas, where ground observations are scarce.

  6. Investigating the spatial scaling effect of the non-linear hydrological ...

    African Journals Online (AJOL)

    Precipitation is the most important component and critical to the study of water and energy cycle. In this study we investigated the propagation of precipitation retrieval uncertainty in the simulation of hydrological variables, such as soil moisture, temperature, runoff, and fluxes, for varying spatial resolution on different ...

  7. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    Science.gov (United States)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  8. Local control on precipitation in a fully coupled climate-hydrology model

    DEFF Research Database (Denmark)

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin

    2016-01-01

    simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface...

  9. Use of Vortex Generators to Reduce Distortion for Mach 1.6 Streamline-Traced Supersonic Inlets

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank; Slater, John W.; Trefny, Chuck

    2016-01-01

    Reduce the total pressure distortion at the engine-fan face due to low-momentum flow caused by the interaction of an external terminal shock at the turbulent boundary layer along a streamline-traced external-compression (STEX) inlet for Mach 1.6.

  10. Feedback loops and temporal misalignment in component-based hydrologic modeling

    Science.gov (United States)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  11. A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction

    Science.gov (United States)

    Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.

    2017-12-01

    Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.

  12. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model

    OpenAIRE

    Shimaa M. Ghoraba

    2015-01-01

    Modern mathematical models have been developed for studying the complex hydrological processes of a watershed and their direct relation to weather, topography, geology and land use. In this study the hydrology of Simly Dam watershed located in Saon River basin at the north-east of Islamabad is modeled, using the Soil and Water Assessment Tool (SWAT). It aims to simulate the stream flow, establish the water balance and estimate the monthly volume inflow to Simly Dam in order to help the manage...

  13. Hydrologic Modeling and Parameter Estimation under Data Scarcity for Java Island, Indonesia

    Science.gov (United States)

    Yanto, M.; Livneh, B.; Rajagopalan, B.; Kasprzyk, J. R.

    2015-12-01

    The Indonesian island of Java is routinely subjected to intense flooding, drought and related natural hazards, resulting in severe social and economic impacts. Although an improved understanding of the island's hydrology would help mitigate these risks, data scarcity issues make the modeling challenging. To this end, we developed a hydrological representation of Java using the Variable Infiltration Capacity (VIC) model, to simulate the hydrologic processes of several watersheds across the island. We measured the model performance using Nash-Sutcliffe Efficiency (NSE) at monthly time step. Data scarcity and quality issues for precipitation and streamflow warranted the application of a quality control procedure to data ensure consistency among watersheds resulting in 7 watersheds. To optimize the model performance, the calibration parameters were estimated using Borg Multi Objective Evolutionary Algorithm (Borg MOEA), which offers efficient searching of the parameter space, adaptive population sizing and local optima escape facility. The result shows that calibration performance is best (NSE ~ 0.6 - 0.9) in the eastern part of the domain and moderate (NSE ~ 0.3 - 0.5) in the western part of the island. The validation results are lower (NSE ~ 0.1 - 0.5) and (NSE ~ 0.1 - 0.4) in the east and west, respectively. We surmise that the presence of outliers and stark differences in the climate between calibration and validation periods in the western watersheds are responsible for low NSE in this region. In addition, we found that approximately 70% of total errors were contributed by less than 20% of total data. The spatial variability of model performance suggests the influence of both topographical and hydroclimatic controls on the hydrological processes. Most watersheds in eastern part perform better in wet season and vice versa for the western part. This modeling framework is one of the first attempts at comprehensively simulating the hydrology in this maritime, tropical

  14. A flexible hydrological modelling system developed using an object oriented methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rinde, Trond

    1998-12-31

    The report presents a software system called Process Integrating Network (PINE). The capabilities, working principles, programming technical design and principles of use of the system are described as are some practical applications. PINE is a simulation tool for modelling of hydrological and hydrologically related phenomena. The system is based on object oriented programming principles and was specially designed to provide freedom in the choice of model structures and algorithms for process descriptions. It supports full freedom with regards to spatial distribution and temporal resolution. Geographical information systems (GIS) may be integrated with PINE in order to provide full spatial distribution in system parametrisation, process simulation and visualisation of simulation results. Simulation models are developed by linking components for process description together in a structure. The system can handle compound working media such as water with chemical or biological constituents. Non-hydrological routines may then be included to describe the responses of such constituents. Features such as extensibility and reuse of program components are emphasised in the program design. Separation between process topology, process descriptions and process data facilitates simple and consistent implementation of components for process description. Such components may be automatically prototyped and their response functions may be implemented without knowledge of other parts of the program system and without the need to program import or export routines or a user interface. Model extension is thus a rapid process that does not require extensive programming skills. Components for process descriptions may further be placed in separate program libraries, which can be included in the program as required. The program system can thus be very compact while it still has a large number of process algorithms available. The system can run on both PC and UNIX platforms. 106 figs., 20

  15. Hydrological Evaluation of TRMM Rainfall over the Upper Senegal River Basin

    Directory of Open Access Journals (Sweden)

    Ansoumana Bodian

    2016-04-01

    Full Text Available The availability of climatic data, especially on a daily time step, has become very rare in West Africa over the last few years due to the high costs of climate data monitoring. This scarcity of climatic data is a huge obstacle to conduct hydrological studies over some watersheds. In this context, our study aimed to evaluate the capacity of Tropical Rainfall Measuring Mission (TRMM satellite data to simulate the observed runoffs over the Bafing (the main important tributary of the Senegal River before their potential integration in hydrological studies. The conceptual hydrological model GR4J (modèle du Génie Rural (Agricultural Engineering Model à 4 paramètres Journalier (4 parameters Daily has been used, calibrated and validated over the 1961–1997 period with rainfall and Potential Evapotranspiration (PET as inputs. Then, the parameters that best reflect the rainfall-runoff relation, obtained during the cross-calibration-validation phase, were used to simulate runoff over the 1998–2004 period using observed and TRMM rainfalls. The findings of this study show that there is a high consistency between satellite-based estimates and ground-based observations of rainfall. Over the 1998–2004 simulation period, the two rainfall data series show quite satisfactorily results. The output hydrographs from satellite-based estimates and ground-based observations of rainfall coincide quite well with the shape of observed hydrographs with Nash-Sutcliffe Efficiency coefficient (NSE of 0.88 and 0.80 for observed rainfalls and TRMM rainfalls, respectively.

  16. GLOFRIM v1.0 - A globally applicable computational framework for integrated hydrological-hydrodynamic modelling

    Science.gov (United States)

    Hoch, Jannis M.; Neal, Jeffrey C.; Baart, Fedor; van Beek, Rens; Winsemius, Hessel C.; Bates, Paul D.; Bierkens, Marc F. P.

    2017-10-01

    We here present GLOFRIM, a globally applicable computational framework for integrated hydrological-hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global hydrological model PCR-GLOBWB as well as the hydrodynamic models Delft3D Flexible Mesh (DFM; solving the full shallow-water equations and allowing for spatially flexible meshing) and LISFLOOD-FP (LFP; solving the local inertia equations and running on regular grids). The main advantages of the framework are its open and free access, its global applicability, its versatility, and its extensibility with other hydrological or hydrodynamic models. Before applying GLOFRIM to an actual test case, we benchmarked both DFM and LFP for a synthetic test case. Results show that for sub-critical flow conditions, discharge response to the same input signal is near-identical for both models, which agrees with previous studies. We subsequently applied the framework to the Amazon River basin to not only test the framework thoroughly, but also to perform a first-ever benchmark of flexible and regular grids on a large-scale. Both DFM and LFP produce comparable results in terms of simulated discharge with LFP exhibiting slightly higher accuracy as expressed by a Kling-Gupta efficiency of 0.82 compared to 0.76 for DFM. However, benchmarking inundation extent between DFM and LFP over the entire study area, a critical success index of 0.46 was obtained, indicating that the models disagree as often as they agree. Differences between models in both simulated discharge and inundation extent are to a large extent attributable to the gridding techniques employed. In fact, the results show that both the numerical scheme of the inundation model and the gridding technique can contribute to deviations in simulated inundation extent as we control for model forcing and boundary conditions. This study shows

  17. European Continental Scale Hydrological Model, Limitations and Challenges

    Science.gov (United States)

    Rouholahnejad, E.; Abbaspour, K.

    2014-12-01

    The pressures on water resources due to increasing levels of societal demand, increasing conflict of interest and uncertainties with regard to freshwater availability create challenges for water managers and policymakers in many parts of Europe. At the same time, climate change adds a new level of pressure and uncertainty with regard to freshwater supplies. On the other hand, the small-scale sectoral structure of water management is now reaching its limits. The integrated management of water in basins requires a new level of consideration where water bodies are to be viewed in the context of the whole river system and managed as a unit within their basins. In this research we present the limitations and challenges of modelling the hydrology of the continent Europe. The challenges include: data availability at continental scale and the use of globally available data, streamgauge data quality and their misleading impacts on model calibration, calibration of large-scale distributed model, uncertainty quantification, and computation time. We describe how to avoid over parameterization in calibration process and introduce a parallel processing scheme to overcome high computation time. We used Soil and Water Assessment Tool (SWAT) program as an integrated hydrology and crop growth simulator to model water resources of the Europe continent. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals for the period of 1970-2006. The use of a large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation and provides the overall picture of water resources temporal and spatial distribution across the continent. The calibrated model and results provide information support to the European Water

  18. Hydrological storage variations in a lake water balance, observed from multi-sensor satellite data and hydrological models.

    Science.gov (United States)

    Singh, Alka; Seitz, Florian; Schwatke, Christian; Guentner, Andreas

    2013-04-01

    Freshwater lakes and reservoirs account for 74.5% of continental water storage in surface water bodies and only 1.8% resides in rivers. Lakes and reservoirs are a key component of the continental hydrological cycle but in-situ monitoring networks are very limited either because of sparse spatial distribution of gauges or national data policy. Monitoring and predicting extreme events is very challenging in that case. In this study we demonstrate the use of optical remote sensing, satellite altimetry and the GRACE gravity field mission to monitor the lake water storage variations in the Aral Sea. Aral Sea is one of the most unfortunate examples of a large anthropogenic catastrophe. The 4th largest lake of 1960s has been decertified for more than 75% of its area due to the diversion of its primary rivers for irrigation purposes. Our study is focused on the time frame of the GRACE mission; therefore we consider changes from 2002 onwards. Continuous monthly time series of water masks from Landsat satellite data and water level from altimetry missions were derived. Monthly volumetric variations of the lake water storage were computed by intersecting a digital elevation model of the lake with respective water mask and altimetry water level. With this approach we obtained volume from two independent remote sensing methods to reduce the error in the estimated volume through least square adjustment. The resultant variations were then compared with mass variability observed by GRACE. In addition, GARCE estimates of water storage variations were compared with simulation results of the Water Gap Hydrology Model (WGHM). The different observations from all missions agree that the lake reached an absolute minimum in autumn 2009. A marked reversal of the negative trend occured in 2010 but water storage in the lake decreased again afterwards. The results reveal that water storage variations in the Aral Sea are indeed the principal, but not the only contributor to the GRACE signal of

  19. Rainfall simulation experiments in the Southwestern USA using the Walnut Gulch rainfall simulator

    Science.gov (United States)

    The dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semi-arid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30% of the plots simulations were conducted up to five time...

  20. Hydrology and sediment yield calibration for the Barasona reservoir catchment (Spain) using SWAT

    Science.gov (United States)

    Palazón, Leticia; Navas, Ana

    2013-04-01

    Hydrological and soil erosion models, as Soil and Water Assessment Tool (SWAT), have become very useful tools and increasingly serve as vital components of integrated environmental assessments that provide information outside of direct field experiments and causal observation. The purpose of this study was to improve the calibration of SWAT model to use it in an alpine catchment as a simulator of processes related to water quality and soil erosion. SWAT is spatially semi-distributed, agro-hydrological model that operates on a daily time step (as a minimum) at basin scale. It is designed to predict the impact of management on water, sediment and agricultural chemical yields in ungaged catchments. SWAT provides physically based algorithms as an option to define many of the important components of the hydrologic cycle. The input requirements of the model are used to describe the climate, soil properties, topography, vegetation, and land management practices. SWAT analyzes small or large catchments by discretising into sub-basins, which are then further subdivided into hydrological response units (HRUs) with homogeneous land use, soil type and slope. SWAT model (SWAT2009) coupled with a GIS interface (ArcSWAT), was applied to the Barasona reservoir catchment located in the central Spanish Pyrenees. The 1509 km2 agro-forestry catchment presents a mountain type climate, an altitudinal range close to 3000 meters and a precipitation variation close to 1000 mm/km. The mountainous characteristics of the catchment, in addition to the scarcity of climate data in the region, require specific calibration for some processes. Snowfall and snowmelt are significant processes in the hydrologic regime of the area and were calibrated in a previous work. In this work some of the challenges of the catchment to model with SWAT which affected the hydrology and the sediment yield simulation were performed as improvement of the previous calibration. Two reservoirs, a karst system which

  1. Understanding controls of hydrologic processes across two headwater monolithological catchments using model-data synthesis

    Science.gov (United States)

    Xiao, D.; Shi, Y.; Hoagland, B.; Del Vecchio, J.; Russo, T. A.; DiBiase, R. A.; Li, L.

    2017-12-01

    How do watershed hydrologic processes differ in catchments derived from different lithology? This study compares two first order, deciduous forest watersheds in Pennsylvania, a sandstone watershed, Garner Run (GR, 1.34 km2), and a shale-derived watershed, Shale Hills (SH, 0.08 km2). Both watersheds are simulated using a combination of national datasets and field measurements, and a physics-based land surface hydrologic model, Flux-PIHM. We aim to evaluate the effects of lithology on watershed hydrology and assess if we can simulate a new watershed without intensive measurements, i.e., directly use calibration information from one watershed (SH) to reproduce hydrologic dynamics of another watershed (GR). Without any calibration, the model at GR based on national datasets and calibration inforamtion from SH cannot capture some discharge peaks or the baseflow during dry periods. The model prediction agrees well with the GR field discharge and soil moisture after calibrating the soil hydraulic parameters using the uncertainty based Hornberger-Spear-Young algorithm and the Latin Hypercube Sampling method. Agreeing with the field observation and national datasets, the difference in parameter values shows that the sandstone watershed has a larger averaged soil pore diameter, greater water storage created by porosity, lower water retention ability, and greater preferential flow. The water budget calculation shows that the riparian zone and the colluvial valley serves as buffer zones that stores water at GR. Using the same procedure, we compared Flux-PIHM simulations with and without a field measured surface boulder map at GR. When the boulder map is used, the prediction of areal averaged soil moisture is improved, without performing extra calibration. When calibrated separately, the cases with or without boulder map yield different calibration values, but their hydrologic predictions are similar, showing equifinality. The calibrated soil hydraulic parameter values in the

  2. Modelling and simulation of floods in alpine catchments equipped with complex hydropower schemes

    OpenAIRE

    Bieri, Martin; Schleiss, Anton; Frankhauser, A.

    2010-01-01

    The simulation of run-off in an alpine catchment area equipped with complex hydropower schemes is presented by the help of an especially developed tool, called Routing System, which can combine hydrological modelling and operation of hydraulic elements. In the hydrological forecasting tool tridimensional rainfall, temperature and evapotranspiration distributions are taken into account for simulating the dominant hydrological processes, as glacier melt, snow pack constitution and melt, soil in...

  3. TREHS (Temporary Rivers Ecological and Hydrological Status): new software for investigating the degree of hydrologic alteration of temporary streams.

    Science.gov (United States)

    Gallart, Francesc; Llorens, Pilar; Cid, Núria; latron, Jérôme; Bonada, Núria; Prat, Narcís

    2017-04-01

    The evaluation of the hydrological alteration of a stream due to human activities is a first step to assess its overall quality and to design management strategies for its potential restoration. This task is currently made comparing impacted against unimpacted hydrographs, with the help of software tools, such as the IHA (Indicators of Hydrologic Alteration). Then, the environmental evaluation of the hydrological alteration is to be made in terms of its expectable menace for the original biological communities and/or its help for the spread of invasive species. However, when the regime of the target stream is not perennial, there are four main difficulties for implementing methods for assessing hydrological alteration: i) the main hydrological features relevant for biological communities in a temporary stream are not quantitative (discharges) but qualitative (temporal patterns of states such as flowing water, stagnant pools or lack of surface water), ii) stream flow records do not inform on the temporal occurrence of stagnant pools, which act as refugees for many species during the cessation of flow, iii) as most of the temporary streams are ungauged, the evaluation of their regime must be determined by using alternative methods such as remote sensing or citizen science, and iv) the biological quality assessment of the ecological status of a temporary stream must be conducted following a sampling schedule adapted to the flow regime and using adequate reference conditions. In order to overcome these challenges using an operational approach, the TREHS freely available software tool has been developed within the EU LIFE TRIVERS project (LIFE13 ENV/ES/000341). This software allows for the input of information coming from flow simulations obtained using any rainfall-runoff model (to set an unimpacted reference stream regime) and compares them with the information obtained from flow gauging records, interviews made to local citizens, instantaneous observations made by

  4. Dealing with regional hydrologic data-base limitations. Case example: the Columbia River basalts

    International Nuclear Information System (INIS)

    Schalla, R.; Leonhart, L.S.

    1981-01-01

    Limitations are encountered in assembling hydrologic data for a broad geographic region, such as the Columbia Plateau in the northwestern US, into a conceptual model of the hydrologic system. These limitations may become resonant in subsequent numerical simulations of hydrologic system behavior. Included among such data limitations are irregular spatial distributions of data, decreases in information with increasing depth from the land surface, uncertainties about the reliability of reported hydrologic data, disparities in time-dependent parameters, and lack of field verification of data. The preparation of a regional hydrologic system description, therefore, first involves a comprehensive data evaluation, wherein the data are classified and ranked in terms of their utility to the study. The results of this evaluation are essential in planning future data acquisition activities, as well as in selecting and developing models. In turn, iterative use of modeling, data refinement, and data acquisition is considered to be highly effective. The case example of preparing a hydrologic system description for the Columbia Plateau, as required for repository siting, illustrates methods of determining the accuracy of certain data, compensating for data limitations, evaluating the need for acquiring additional data, and refining data through iterative techniques. Emphasis is placed on professional subjectivity, which has proven to be essential in data base evaluation and refinement

  5. airGR: a suite of lumped hydrological models in an R-package

    Science.gov (United States)

    Coron, Laurent; Perrin, Charles; Delaigue, Olivier; Andréassian, Vazken; Thirel, Guillaume

    2016-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2015), called airGR, to make these models widely available. It includes: - the water balance annual GR1A (Mouehli et al., 2006), - the monthly GR2M (Mouehli, 2003) models, - three versions of the daily model, namely GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al., 2011), - the hourly GR4H model (Mathevet, 2005), - a degree-day snow module CemaNeige (Valéry et al., 2014). The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithms selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is already used for educational purposes. The presentation will detail the main functionalities of the package and present a case

  6. Spatially Distributed Assimilation of Remotely Sensed Leaf Area Index and Potential Evapotranspiration for Hydrologic Modeling in Wetland Landscapes

    Science.gov (United States)

    Rajib, A.; Evenson, G. R.; Golden, H. E.; Lane, C.

    2017-12-01

    Evapotranspiration (ET), a highly dynamic flux in wetland landscapes, regulates the accuracy of surface/sub-surface runoff simulation in a hydrologic model. Accordingly, considerable uncertainty in simulating ET-related processes remains, including our limited ability to incorporate realistic ground conditions, particularly those involved with complex land-atmosphere feedbacks, vegetation growth, and energy balances. Uncertainty persists despite using high resolution topography and/or detailed land use data. Thus, a good hydrologic model can produce right answers for wrong reasons. In this study, we develop an efficient approach for multi-variable assimilation of remotely sensed earth observations (EOs) into a hydrologic model and apply it in the 1700 km2 Pipestem Creek watershed in the Prairie Pothole Region of North Dakota, USA. Our goal is to employ EOs, specifically Leaf Area Index (LAI) and Potential Evapotranspiration (PET), as surrogates for the aforementioned processes without overruling the model's built-in physical/semi-empirical process conceptualizations. To do this, we modified the source code of an already-improved version of the Soil and Water Assessment Tool (SWAT) for wetland hydrology (Evenson et al. 2016 HP 30(22):4168) to directly assimilate remotely-sensed LAI and PET (obtained from the 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) gridded products, respectively) into each model Hydrologic Response Unit (HRU). Two configurations of the model, one with and one without EO assimilation, are calibrated against streamflow observations at the watershed outlet. Spatio-temporal changes in the HRU-level water balance, based on calibrated outputs, are evaluated using MODIS Actual Evapotranspiration (AET) as a reference. It is expected that the model configuration having remotely sensed LAI and PET, will simulate more realistic land-atmosphere feedbacks, vegetation growth and energy balance. As a result, this will decrease simulated

  7. Survey of hydrologic models and hydrologic data needs for tracking flow in the Rio Grande, north-central New Mexico, 2010

    Science.gov (United States)

    Tillery, Anne; Eggleston, Jack R.

    2012-01-01

    The six Middle Rio Grande Pueblos have prior and paramount rights to deliveries of water from the Rio Grande for their use. When the pueblos or the Bureau of Indian Affairs Designated Engineer identifies a need for additional flow on the Rio Grande, the Designated Engineer is tasked with deciding the timing and amount of releases of prior and paramount water from storage at El Vado Reservoir to meet the needs of the pueblos. Over the last three decades, numerous models have been developed by Federal, State, and local agencies in New Mexico to simulate, understand, and (or) manage flows in the Middle Rio Grande upstream from Elephant Butte Reservoir. In 2008, the Coalition of Six Middle Rio Grande Basin Pueblos entered into a cooperative agreement with the U.S. Geological Survey to conduct a comprehensive survey of these hydrologic models and their capacity to quantify and track various components of flow. The survey of hydrologic models provided in this report will help water-resource managers at the pueblos, as well as the Designated Engineer, make informed water-resource-management decisions that affect the prior and paramount water use. Analysis of 4 publicly available surface-water models and 13 publicly available groundwater models shows that, although elements from many models can be helpful in tracking flow in the Rio Grande, numerous data gaps and modeling needs indicate that accurate, consistent, and timely tracking of flow on the Rio Grande could be improved. Deficient or poorly constrained hydrologic variables are sources of uncertainty in hydrologic models that can be reduced with the acquisition of more refined data. Data gaps need to be filled to allow hydrologic models to be run on a real-time basis and thus ensure predictable water deliveries to meet needs for irrigation, domestic, stock, and other water uses. Timeliness of flow-data reporting is necessary to facilitate real-time model simulation, but even daily data are sometimes difficult to

  8. Newtonian nudging for a Richards equation-based distributed hydrological model

    Science.gov (United States)

    Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark

    The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation

  9. Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model

    KAUST Repository

    Khaki, M.; Hoteit, Ibrahim; Kuhn, M.; Awange, J.; Forootan, E.; van Dijk, A.; Schumacher, M.; Pattiaratchi, C.

    2017-01-01

    The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques

  10. Role of Hydrological Studies for the Development of the TDPS System

    Directory of Open Access Journals (Sweden)

    Claudia Canedo

    2016-04-01

    Full Text Available The South American Altiplano in the Andes is, aside from Tibet, the most extensive high plateau on Earth. This semiarid area represents important water resources storages, including the Lakes Titicaca and Poopó located in the northern and central Altiplano, respectively. The two lake basins and the southern saltpans constitute a large watershed, called the Lake Titicaca, Desaguadero River, Lake Poopó, and Coipasa Salt Flat System (TDPS hydrologic system. The Altiplano climate, topography, and location determine the TDPS hydrologic functioning. Scarce data and high spatial variability represent challenges to correctly simulate the TDPS water budget. Consequently, there is an important need to improve the understanding of the water resources in current and future climate over the area. The paper provides a comprehensive state-of-the-art regarding current knowledge of the TDPS hydro-socioeconomic system and summarizes the data needs to improve the current hydrological understanding.

  11. Topology of streamlines and vorticity contours for two - dimensional flows

    DEFF Research Database (Denmark)

    Andersen, Morten

    on the vortex filament by the localised induction approximation the stream function is slightly modified and an extra parameter is introduced. In this setting two new flow topologies arise, but not more than two critical points occur for any combination of the parameters. The analysis of the closed form show...... by a point vortex above a wall in inviscid fluid. There is no reason to a priori expect equivalent results of the three vortex definitions. However, the study is mainly motivated by the findings of Kudela & Malecha (Fluid Dyn. Res. 41, 2009) who find good agreement between the vorticity and streamlines...

  12. Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin

    Science.gov (United States)

    Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.J.; Umemoto, M.

    2006-01-01

    The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the water balance and components of the daily hydrograph are simulated, consistently with measured values.

  13. Hydrologic and hydraulic modelling of the Nyl River floodplain Part 3 ...

    African Journals Online (AJOL)

    The ecological functioning of the Nyl River floodplain in the Limpopo Province of South Africa depends on water supplied by catchments which are experiencing continuing water resource development. Hydrological and hydraulic models have been produced to assist in future planning by simulating the effects of ...

  14. Emulation of dynamic simulators with application to hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Machac, David, E-mail: david.machac@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Systems Analysis, Integrated Assessment and Modelling, 8600 Dübendorf (Switzerland); ETH Zurich, Department of Environmental Systems Science, 8092 Zurich (Switzerland); Reichert, Peter [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Systems Analysis, Integrated Assessment and Modelling, 8600 Dübendorf (Switzerland); ETH Zurich, Department of Environmental Systems Science, 8092 Zurich (Switzerland); Albert, Carlo [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Systems Analysis, Integrated Assessment and Modelling, 8600 Dübendorf (Switzerland)

    2016-05-15

    Many simulation-intensive tasks in the applied sciences, such as sensitivity analysis, parameter inference or real time control, are hampered by slow simulators. Emulators provide the opportunity of speeding up simulations at the cost of introducing some inaccuracy. An emulator is a fast approximation to a simulator that interpolates between design input–output pairs of the simulator. Increasing the number of design data sets is a computationally demanding way of improving the accuracy of emulation. We investigate the complementary approach of increasing emulation accuracy by including knowledge about the mechanisms of the simulator into the formulation of the emulator. To approximately reproduce the output of dynamic simulators, we consider emulators that are based on a system of linear, ordinary or partial stochastic differential equations with a noise term formulated as a Gaussian process of the parameters to be emulated. This stochastic model is then conditioned to the design data so that it mimics the behavior of the nonlinear simulator as a function of the parameters. The drift terms of the linear model are designed to provide a simplified description of the simulator as a function of its key parameters so that the required corrections by the conditioned Gaussian process noise are as small as possible. The goal of this paper is to compare the gain in accuracy of these emulators by enlarging the design data set and by varying the degree of simplification of the linear model. We apply this framework to a simulator for the shallow water equations in a channel and compare emulation accuracy for emulators based on different spatial discretization levels of the channel and for a standard non-mechanistic emulator. Our results indicate that we have a large gain in accuracy already when using the simplest mechanistic description by a single linear reservoir to formulate the drift term of the linear model. Adding some more reservoirs does not lead to a significant

  15. Unraveling the Hydrology of the Glacierized Kaidu Basin by Integrating Multisource Data in the Tianshan Mountains, Northwestern China

    Science.gov (United States)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Brenning, Alexander

    2018-01-01

    Understanding the water balance, especially as it relates to the distribution of runoff components, is crucial for water resource management and coping with the impacts of climate change. However, hydrological processes are poorly known in mountainous regions due to data scarcity and the complex dynamics of snow and glaciers. This study aims to provide a quantitative comparison of gridded precipitation products in the Tianshan Mountains, located in Central Asia and in order to further understand the mountain hydrology and distribution of runoff components in the glacierized Kaidu Basin. We found that gridded precipitation products are affected by inconsistent biases based on a spatiotemporal comparison with the nearest weather stations and should be evaluated with caution before using them as boundary conditions in hydrological modeling. Although uncertainties remain in this data-scarce basin, driven by field survey data and bias-corrected gridded data sets (ERA-Interim and APHRODITE), the water balance and distribution of runoff components can be plausibly quantified based on the distributed hydrological model (J2000). We further examined parameter sensitivity and uncertainty with respect to both simulated streamflow and different runoff components based on an ensemble of simulations. This study demonstrated the possibility of integrating gridded products in hydrological modeling. The methodology used can be important for model applications and design in other data-scarce mountainous regions. The model-based simulation quantified the water balance and how the water resources are partitioned throughout the year in Tianshan Mountain basins, although the uncertainties present in this study result in important limitations.

  16. Integrated hydrological modelling of the North China Plain

    DEFF Research Database (Denmark)

    Shu, Yunqiao; Villholth, Karen G.; Jensen, Karsten Høgh

    2012-01-01

    The integrated hydrological model MIKE SHE was applied to a part of the North China Plain to examine the dynamics of the hydrological system and to assess water management options to restore depleted groundwater resources. The model simulates the spatio-temporal distribution of recharge...... for scenario analysis of the effect of different cropping rotations, irrigation intensity, and other water management options, like the implementation of the South to North Water Transfer (SNWT) project. The model analysis verified that groundwater tables in the region are subject to steep declines (up to 1 m....../yr) due to decades of intensive exploitation of the groundwater resources for crop irrigation, primarily the widespread crop rotation of irrigated winter wheat and mostly rainfed summer maize. The SNWT project mitigates water stress in Shijiazhuang city and areas adjacent to wastewater canals but cannot...

  17. Development of hydrological models and surface process modelization Study case in High Mountain slopes

    International Nuclear Information System (INIS)

    Loaiza, Juan Carlos; Pauwels, Valentijn R

    2011-01-01

    Hydrological models are useful because allow to predict fluxes into the hydrological systems, which is useful to predict foods and violent phenomenon associated to water fluxes, especially in materials under a high meteorization level. The combination of these models with meteorological predictions, especially with rainfall models, allow to model water behavior into the soil. On most of cases, this type of models is really sensible to evapotranspiration. On climatic studies, the superficial processes have to be represented adequately. Calibration and validation of these models is necessary to obtain reliable results. This paper is a practical exercise of application of complete hydrological information at detailed scale in a high mountain catchment, considering the soil use and types more representatives. The information of soil moisture, infiltration, runoff and rainfall is used to calibrate and validate TOPLATS hydrological model to simulate the behavior of soil moisture. The finds show that is possible to implement an hydrological model by means of soil moisture information use and an equation of calibration by Extended Kalman Filter (EKF).

  18. Regional frameworks applied to hydrology: can landscape-based frameworks capture the hydrologic variability?

    Science.gov (United States)

    R. McManamay; D. Orth; C. Dolloff; E. Frimpong

    2011-01-01

    Regional frameworks have been used extensively in recent years to aid in broad-scale management. Widely used landscape-based regional frameworks, such as hydrologic landscape regions (HLRs) and physiographic provinces, may provide predictive tools of hydrologic variability. However, hydrologic-based regional frameworks, created using only streamflow data, are also...

  19. Towards simplification of hydrologic modeling: identification of dominant processes

    Directory of Open Access Journals (Sweden)

    S. L. Markstrom

    2016-11-01

    Full Text Available parameter hydrologic model, has been applied to the conterminous US (CONUS. Parameter sensitivity analysis was used to identify: (1 the sensitive input parameters and (2 particular model output variables that could be associated with the dominant hydrologic process(es. Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff and model performance statistic (mean, coefficient of variation, and autoregressive lag 1. Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1 the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2 the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3 different processes require different numbers of parameters for simulation, and (4 some sensitive parameters influence only one hydrologic process, while others may influence many.

  20. Towards simplification of hydrologic modeling: Identification of dominant processes

    Science.gov (United States)

    Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.

    2016-01-01

    The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many

  1. Impact of multicollinearity on small sample hydrologic regression models

    Science.gov (United States)

    Kroll, Charles N.; Song, Peter

    2013-06-01

    Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.

  2. Less is More : Better Compliance and Increased Revenues by Streamlining Business Registration in Uganda

    OpenAIRE

    Sander, Cerstin

    2003-01-01

    A pilot of a streamlined business registration system in Entebbe, Uganda, reduced compliance costs for enterprises by 75 percent, raised registration numbers and fee revenue by 40 percent and reduced the cost of administering the system. It also reduced opportunities for corruption, improved relations between businesses and the local authorities and resulted in better compliance.

  3. Historical trends and the long-term changes of the hydrological cycle components in a Mediterranean river basin.

    Science.gov (United States)

    Mentzafou, A; Wagner, S; Dimitriou, E

    2018-04-29

    Identifying the historical hydrometeorological trends in a river basin is necessary for understanding the dominant interactions between climate, human activities and local hydromorphological conditions. Estimating the hydrological reference conditions in a river is also crucial for estimating accurately the impacts from human water related activities and design appropriate water management schemes. In this effort, the output of a regional past climate model was used, covering the period from 1660 to 1990, in combination with a dynamic, spatially distributed, hydrologic model to estimate the past and recent trends in the main hydrologic parameters such as overland flow, water storages and evapotranspiration, in a Mediterranean river basin. The simulated past hydrologic conditions (1660-1960) were compared with the current hydrologic regime (1960-1990), to assess the magnitude of human and natural impacts on the identified hydrologic trends. The hydrological components of the recent period of 2008-2016 were also examined in relation to the impact of human activities. The estimated long-term trends of the hydrologic parameters were partially assigned to varying atmospheric forcing due to volcanic activity combined with spontaneous meteorological fluctuations. Copyright © 2018. Published by Elsevier B.V.

  4. Digital Hydrologic Networks Supporting Applications Related to Spatially Referenced Regression Modeling

    Science.gov (United States)

    Brakebill, J.W.; Wolock, D.M.; Terziotti, S.E.

    2011-01-01

    Digital hydrologic networks depicting surface-water pathways and their associated drainage catchments provide a key component to hydrologic analysis and modeling. Collectively, they form common spatial units that can be used to frame the descriptions of aquatic and watershed processes. In addition, they provide the ability to simulate and route the movement of water and associated constituents throughout the landscape. Digital hydrologic networks have evolved from derivatives of mapping products to detailed, interconnected, spatially referenced networks of water pathways, drainage areas, and stream and watershed characteristics. These properties are important because they enhance the ability to spatially evaluate factors that affect the sources and transport of water-quality constituents at various scales. SPAtially Referenced Regressions On Watershed attributes (SPARROW), a process-based/statistical model, relies on a digital hydrologic network in order to establish relations between quantities of monitored contaminant flux, contaminant sources, and the associated physical characteristics affecting contaminant transport. Digital hydrologic networks modified from the River Reach File (RF1) and National Hydrography Dataset (NHD) geospatial datasets provided frameworks for SPARROW in six regions of the conterminous United States. In addition, characteristics of the modified RF1 were used to update estimates of mean-annual streamflow. This produced more current flow estimates for use in SPARROW modeling. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  5. Modeling of Andean Páramo Ecosystems’ Hydrological Response to Environmental Change

    Directory of Open Access Journals (Sweden)

    Francisco Flores-López

    2016-03-01

    Full Text Available In the Peruvian Andes, water infiltration from tropical wetlands, called páramo, generates headwaters for downstream rivers. The hydrological processes of these wetlands are not well understood within the larger hydrological system, impeding efforts to mitigate the rapid environmental changes anticipated due to regional population growth and climate change. This study constructed and calibrated a Water Evaluation and Planning (WEAP system model for ecosystems with sparse data in the Quiroz-Chipillico watershed in the Piura region of Peru. The model simulates the impacts of possible changes within the hydrological system to assist decision-makers in strategizing about sustainable development for the region, especially the páramo. Using scenarios designed with stakeholder participation, the WEAP model for the Quiroz-Chipillico watershed examines river headflow production, reservoir water levels, and demand coverage for downstream users when the upstream páramo and its environs are subjected to changes of temperature, precipitation, and land use. The model reveals that while temperature and precipitation changes can be expected to impact páramo water production, the anticipated land use changes will be a primary driver of hydrological responses in the páramo and subsequent changes downstream.

  6. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    Science.gov (United States)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter

  7. Local benefits of retaining natural vegetation for soil retention and hydrological services

    CSIR Research Space (South Africa)

    O'Farrell, PJ

    2009-08-01

    Full Text Available for their conservation on private land. This study explored the benefits of retaining renosterveld fragments at the farm-scale based on the hydrological and soil retention services they provide. Rainfall simulations were carried out at paired sites of renosterveld...

  8. Technical note: Design flood under hydrological uncertainty

    Science.gov (United States)

    Botto, Anna; Ganora, Daniele; Claps, Pierluigi; Laio, Francesco

    2017-07-01

    Planning and verification of hydraulic infrastructures require a design estimate of hydrologic variables, usually provided by frequency analysis, and neglecting hydrologic uncertainty. However, when hydrologic uncertainty is accounted for, the design flood value for a specific return period is no longer a unique value, but is represented by a distribution of values. As a consequence, the design flood is no longer univocally defined, making the design process undetermined. The Uncertainty Compliant Design Flood Estimation (UNCODE) procedure is a novel approach that, starting from a range of possible design flood estimates obtained in uncertain conditions, converges to a single design value. This is obtained through a cost-benefit criterion with additional constraints that is numerically solved in a simulation framework. This paper contributes to promoting a practical use of the UNCODE procedure without resorting to numerical computation. A modified procedure is proposed by using a correction coefficient that modifies the standard (i.e., uncertainty-free) design value on the basis of sample length and return period only. The procedure is robust and parsimonious, as it does not require additional parameters with respect to the traditional uncertainty-free analysis. Simple equations to compute the correction term are provided for a number of probability distributions commonly used to represent the flood frequency curve. The UNCODE procedure, when coupled with this simple correction factor, provides a robust way to manage the hydrologic uncertainty and to go beyond the use of traditional safety factors. With all the other parameters being equal, an increase in the sample length reduces the correction factor, and thus the construction costs, while still keeping the same safety level.

  9. Description of the National Hydrologic Model for use with the Precipitation-Runoff Modeling System (PRMS)

    Science.gov (United States)

    Regan, R. Steven; Markstrom, Steven L.; Hay, Lauren E.; Viger, Roland J.; Norton, Parker A.; Driscoll, Jessica M.; LaFontaine, Jacob H.

    2018-01-08

    This report documents several components of the U.S. Geological Survey National Hydrologic Model of the conterminous United States for use with the Precipitation-Runoff Modeling System (PRMS). It provides descriptions of the (1) National Hydrologic Model, (2) Geospatial Fabric for National Hydrologic Modeling, (3) PRMS hydrologic simulation code, (4) parameters and estimation methods used to compute spatially and temporally distributed default values as required by PRMS, (5) National Hydrologic Model Parameter Database, and (6) model extraction tool named Bandit. The National Hydrologic Model Parameter Database contains values for all PRMS parameters used in the National Hydrologic Model. The methods and national datasets used to estimate all the PRMS parameters are described. Some parameter values are derived from characteristics of topography, land cover, soils, geology, and hydrography using traditional Geographic Information System methods. Other parameters are set to long-established default values and computation of initial values. Additionally, methods (statistical, sensitivity, calibration, and algebraic) were developed to compute parameter values on the basis of a variety of nationally-consistent datasets. Values in the National Hydrologic Model Parameter Database can periodically be updated on the basis of new parameter estimation methods and as additional national datasets become available. A companion ScienceBase resource provides a set of static parameter values as well as images of spatially-distributed parameters associated with PRMS states and fluxes for each Hydrologic Response Unit across the conterminuous United States.

  10. Hydrological modeling of the semi-arid Andarax river basin in Southern Spain

    DEFF Research Database (Denmark)

    Andersen, Flemming Hauge; Jensen, Karsten Høgh; Sandholt, Inge

    as this it will lead to better estimate of the groundwater recharge and hereby of the groundwater availability in the delta region.   The hydrological behaviour of the Andarax river basin is simulated by the MIKE SHE code, which is a physically based, distributed and integrated hydrological model. In the first...... scenario we only use traditional meteorological data and standard values for the vegetation characteristics. The traditional meteorological data are rather sparse for the Andarax river basin and to improve the estimation of evapotranspiration we use an energy-based two-layer SVAT model and apply remote...

  11. The role of hydrology in water resources management

    Science.gov (United States)

    Shamir, U.

    2011-12-01

    ensembles for planning, which consider changing natural and anthropogenic drivers (land use, climate change). Since hydrology is a continuous process that is not divided internally according to the needs of management, the hydrological analysis must be geared to produce the suitable information for the different management issues. - Aggregation and disaggregation in space and time: selection of the level of detail in time and space should begin from the needs of the management issue being addressed, and dictate the monitoring, collection and processing. - Water quality: should receive more attention, as it is playing an ever increasing role in management, including its importance in ecological services. - Optimization, simulation and combining the two: optimization for WRM is used extensively. Some optimization models are able to address uncertainty internally, and further development continues. Simulation is easier to employ, but it merely produces "if-then" analysis. Combination of optimization and simulation is a common way to combine the advantages of the two. - Uncertainty, forecasting, ensembles: the uncertainties inherent in hydrological analysis and forecasting lead to the requirement for generating forecasts with a probabilistic characterization. This can be in the form of PDFs, time series, ensembles.

  12. Multi-model analysis in hydrological prediction

    Science.gov (United States)

    Lanthier, M.; Arsenault, R.; Brissette, F.

    2017-12-01

    Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been

  13. HyCAW: Hydrological Climate change Adaptation Wizard

    Science.gov (United States)

    Bagli, Stefano; Mazzoli, Paolo; Broccoli, Davide; Luzzi, Valerio

    2016-04-01

    Changes in temporal and total water availability due to hydrologic and climate change requires an efficient use of resources through the selection of the best adaptation options. HyCAW provides a novel service to users willing or needing to adapt to hydrological change, by turning available scientific information into a user friendly online wizard that lets to: • Evaluate the monthly reduction of water availability induced by climate change; • Select the best adaptation options and visualize the benefits in terms of water balance and cost reduction; • Quantify potential of water saving by improving of water use efficiency. The tool entails knowledge of the intra-annual distribution of available surface and groundwater flows at a site under present and future (climate change) scenarios. This information is extracted from long term scenario simulation by E-HYPE (European hydrological predictions for the environment) model from Swedish Meteorological and Hydrological Institute, to quantify the expected evolution in water availability (e.g. percent reduction of soil infiltration and aquifer recharge; relative seasonal shift of runoff from summer to winter in mountain areas; etc.). Users are requested to provide in input their actual water supply on a monthly basis, both from surface and groundwater sources. Appropriate decision trees and an embedded precompiled database of Water saving technology for different sectors (household, agriculture, industrial, tourisms) lead them to interactively identify good practices for water saving/recycling/harvesting that they may implement in their specific context. Thanks to this service, users are not required to have a detailed understanding neither of data nor of hydrological processes, but may benefit of scientific analysis directly for practical adaptation in a simple and user friendly way, effectively improving their adaptation capacity. The tool is being developed under a collaborative FP7 funded project called SWITCH

  14. An integrated approach to investigate the hydrological behavior of the Santa Fe River Basin, north central Florida

    Science.gov (United States)

    Vibhava, F.; Graham, W. D.; De Rooij, R.; Maxwell, R. M.; Martin, J. B.; Cohen, M. J.

    2011-12-01

    The Santa Fe River Basin (SFRB) consists of three linked hydrologic units: the upper confined region (UCR), semi-confined transitional region (Cody Escarpment, CE) and lower unconfined region (LUR). Contrasting geological characteristics among these units affect streamflow generation processes. In the UCR, surface runoff and surficial stores dominate whereas in the LCR minimal surface runoff occurs and flow is dominated by groundwater sources and sinks. In the CE region the Santa Fe River (SFR) is captured entirely by a sinkhole into the Floridan aquifer, emerging as a first magnitude spring 6 km to the south. In light of these contrasting hydrological settings, developing a predictive, basin scale, physically-based hydrologic simulation model remains a research challenge. This ongoing study aims to assess the ability of a fully-coupled, physically-based three-dimensional hydrologic model (PARFLOW-CLM), to predict hydrologic conditions in the SFRB. The assessment will include testing the model's ability to adequately represent surface and subsurface flow sources, flow paths, and travel times within the basin as well as the surface-groundwater exchanges throughout the basin. In addition to simulating water fluxes, we also are collecting high resolution specific conductivity data at 10 locations throughout the river. Our objective is to exploit hypothesized strong end-member separation between riverine source water geochemistry to further refine the PARFLOW-CLM representation of riverine mixing and delivery dynamics.

  15. On the Representation of Subgrid Microtopography Effects in Process-based Hydrologic Models

    Science.gov (United States)

    Jan, A.; Painter, S. L.; Coon, E. T.

    2017-12-01

    Increased availability of high-resolution digital elevation are enabling process-based hydrologic modeling on finer and finer scales. However, spatial variability in surface elevation (microtopography) exists below the scale of a typical hyper-resolution grid cell and has the potential to play a significant role in water retention, runoff, and surface/subsurface interactions. Though the concept of microtopographic features (depressions, obstructions) and the associated implications on flow and discharge are well established, representing those effects in watershed-scale integrated surface/subsurface hydrology models remains a challenge. Using the complex and coupled hydrologic environment of the Arctic polygonal tundra as an example, we study the effects of submeter topography and present a subgrid model parameterized by small-scale spatial heterogeneities for use in hyper-resolution models with polygons at a scale of 15-20 meters forming the surface cells. The subgrid model alters the flow and storage terms in the diffusion wave equation for surface flow. We compare our results against sub-meter scale simulations (acts as a benchmark for our simulations) and hyper-resolution models without the subgrid representation. The initiation of runoff in the fine-scale simulations is delayed and the recession curve is slowed relative to simulated runoff using the hyper-resolution model with no subgrid representation. Our subgrid modeling approach improves the representation of runoff and water retention relative to models that ignore subgrid topography. We evaluate different strategies for parameterizing subgrid model and present a classification-based method to efficiently move forward to larger landscapes. This work was supported by the Interoperable Design of Extreme-scale Application Software (IDEAS) project and the Next-Generation Ecosystem Experiments-Arctic (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the

  16. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    Science.gov (United States)

    Xi, Maolong; Lu, Dan; Gui, Dongwei; Qi, Zhiming; Zhang, Guannan

    2017-01-01

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.

  17. Adaptation of Land-Use Demands to the Impact of Climate Change on the Hydrological Processes of an Urbanized Watershed

    OpenAIRE

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-01-01

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functio...

  18. Darwinian hydrology: can the methodology Charles Darwin pioneered help hydrologic science?

    Science.gov (United States)

    Harman, C.; Troch, P. A.

    2013-05-01

    There have been repeated calls for a Darwinian approach to hydrologic science or for a synthesis of Darwinian and Newtonian approaches, to deepen understanding the hydrologic system in the larger landscape context, and so develop a better basis for predictions now and in an uncertain future. But what exactly makes a Darwinian approach to hydrology "Darwinian"? While there have now been a number of discussions of Darwinian approaches, many referencing Harte (2002), the term is potentially a source of confusion while its connections to Darwin remain allusive rather than explicit. Here we discuss the methods that Charles Darwin pioneered to understand a variety of complex systems in terms of their historical processes of change. We suggest that the Darwinian approach to hydrology follows his lead by focusing attention on the patterns of variation in populations, seeking hypotheses that explain these patterns in terms of the mechanisms and conditions that determine their historical development, using deduction and modeling to derive consequent hypotheses that follow from a proposed explanation, and critically testing these hypotheses against new observations. It is not sufficient to catalogue the patterns or predict them statistically. Nor is it sufficient for the explanations to amount to a "just-so" story not subject to critical analysis. Darwin's theories linked present-day variation to mechanisms that operated over history, and could be independently test and falsified by comparing new observations to the predictions of corollary hypotheses they generated. With a Darwinian framework in mind it is easy to see that a great deal of hydrologic research has already been done that contributes to a Darwinian hydrology - whether deliberately or not. The various heuristic methods that Darwin used to develop explanatory theories - extrapolating mechanisms, space for time substitution, and looking for signatures of history - have direct application in hydrologic science. Some

  19. Integration of a Hydrological Model within a Geographical Information System: Application to a Forest Watershed

    Directory of Open Access Journals (Sweden)

    Dimitris Fotakis

    2014-03-01

    Full Text Available Watershed simulation software used for operational purposes must possess both dependability of results and flexibility in parameter selection and testing. The UBC watershed model (UBCWM contains a wide spectrum of parameters expressing meteorological, geological, as well as ecological watershed characteristics. The hydrological model was coupled to the MapInfo GIS and the software created was named Watershed Mapper (WM. WM is endowed with several features permitting operational utilization. These include input data and basin geometry visualization, land use/cover and soil simulation, exporting of statistical results and thematic maps and interactive variation of disputed parameters. For the application of WM two hypothetical scenarios of forest fires were examined in a study watershed. Four major rainfall events were selected from 12-year daily precipitation data and the corresponding peak flows were estimated for the base line data and hypothetical scenarios. A significant increase was observed as an impact of forest fires on peak flows. Due to its flexibility the combined tool described herein may be utilized in modeling long-term hydrological changes in the context of unsteady hydrological analyses.

  20. Quantifying the effects of climate and post-fire landscape change on hydrologic processes

    Science.gov (United States)

    Steimke, A.; Han, B.; Brandt, J.; Som Castellano, R.; Leonard, A.; Flores, A. N.

    2016-12-01

    Seasonally snow-dominated, forested mountain watersheds supply water to many human populations globally. However, the timing and magnitude of water delivery from these watersheds has already and will continue to change as the climate warms. Changes in vegetation also affect the runoff response of watersheds. The largest driver of vegetation change in many mountainous regions is wildfire, whose occurrence is affected by both climate and land management decisions. Here, we quantify how direct (i.e. changes in precipitation and temperature) and indirect (i.e. changing fire regimes) effects of climate change influence hydrologic parameters such as dates of peak streamflow, annual discharge, and snowpack levels. We used the Boise River Basin, ID as a model laboratory to calculate the relative magnitude of change stemming from direct and indirect effects of climate change. This basin is relevant to study as it is well-instrumented and major drainages have experienced burning at different spatial and temporal intervals, aiding in model calibration. We built a hydrology-based integrated model of the region using a multiagent simulation framework, Envision. We used a modified HBV (Hydrologiska Byråns Vattenbalansavdelning) rainfall-runoff model and calibrated it to historic streamflow and snowpack observations. We combined a diverse set of climate projections with wildfire scenarios (low vs. high) representing two distinct intervals in the regional historic fire record. In fire simulations, we altered land cover coefficients to reflect a burned state post-fire, which decreased overall evapotranspiration rates and increased water yields. However, direct climate effects had a larger signal on annual variations of hydrologic parameters. By comparing and analyzing scenario outputs, we identified links and sensitivities between land cover and regional hydrology in the context of a changing climate, with potential implications for local land and water managers. In future

  1. Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology

    Science.gov (United States)

    Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.

    2016-12-01

    Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.

  2. On the use of MODIS and TRMM products to simulate hydrological processes in the La Plata Basin

    Science.gov (United States)

    Saavedra Valeriano, O. C.; Koike, T.; Berbery, E. H.

    2009-12-01

    La Plata basin is targeted to establish a distributed water-energy balance model using NASA and JAXA satellite products to estimate fluxes like the river discharge at sub-basin scales. The coupled model is called the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM), already tested with success in the Little Washita basin, Oklahoma, and the upper Tone River in Japan. The model demonstrated the ability to reproduce point-scale energy fluxes, CO2 flux, and river discharges. Moreover, the model showed the ability to predict the basin-scale surface soil moisture evolution in a spatially distributed fashion. In the context of the La Plata Basin, the first step was to set-up the water balance component of the distributed hydrological model of the entire basin using available global geographical data sets. The geomorphology of the basin was extracted using 1-km DEM resolution (obtained from EROS, Hydro 1K). The total delineated watershed reached 3.246 millions km2, identifying 145 sub-basins with a computing grid of 10-km. The distribution of land cover, land surface temperature, LAI and FPAR were obtained from MODIS products. In a first instance, the model was forced by gridded rainfall from the Climate Prediction Center (derived from available rain gauges) and satellite precipitation from TRMM 3B42 (NASA & JAXA). The simulated river discharge using both sources of data was compared and the overall low flow and normal peaks were identified. It was found that the extreme peaks tend to be overestimated when using TRMM 3B42. However, TRMM data allows tracking rainfall patterns which might be missed by the sparse distribution of rain gauges over some areas of the basin.

  3. Simulation of future land use change and climate change impacts on hydrological processes in a tropical catchment

    Science.gov (United States)

    Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.

    2017-12-01

    Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied

  4. A Model-Model and Data-Model Comparison for the Early Eocene Hydrological Cycle

    Science.gov (United States)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine

    2016-01-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP=dT ) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a

  5. Linking Hydrology and Biogeochemistry to assess the impact of Lateral Nutrient Fluxes

    NARCIS (Netherlands)

    Rebel, K.T.; Osch, F. van; McGuire, K.J.; Rastetter, E.B.; Wassen, M.J.

    2010-01-01

    Until recently, it has been challenging to couple hydrological and biogeochemical processes at the watershed scale. We have coupled two models, WTB and MEL, to simulate lateral water and nutrient fluxes and their influence on ecosystem functioning. WTB is a spatially explicit water balance model.

  6. Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate

    Science.gov (United States)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert

    2017-11-01

    Hydropower production requires optimal dam and reservoir management to prevent flooding damage and avoid operation losses. In a northern climate, where spring freshet constitutes the main inflow volume, seasonal forecasts can help to establish a yearly strategy. Long-term hydrological forecasts often rely on past observations of streamflow or meteorological data. Another alternative is to use ensemble meteorological forecasts produced by climate models. In this paper, those produced by the ECMWF (European Centre for Medium-Range Forecast) System 4 are examined and bias is characterized. Bias correction, through the linear scaling method, improves the performance of the raw ensemble meteorological forecasts in terms of continuous ranked probability score (CRPS). Then, three seasonal ensemble hydrological forecasting systems are compared: (1) the climatology of simulated streamflow, (2) the ensemble hydrological forecasts based on climatology (ESP) and (3) the hydrological forecasts based on bias-corrected ensemble meteorological forecasts from System 4 (corr-DSP). Simulated streamflow computed using observed meteorological data is used as benchmark. Accounting for initial conditions is valuable even for long-term forecasts. ESP and corr-DSP both outperform the climatology of simulated streamflow for lead times from 1 to 5 months depending on the season and watershed. Integrating information about future meteorological conditions also improves monthly volume forecasts. For the 1-month lead time, a gain exists for almost all watersheds during winter, summer and fall. However, volume forecasts performance for spring varies from one watershed to another. For most of them, the performance is close to the performance of ESP. For longer lead times, the CRPS skill score is mostly in favour of ESP, even if for many watersheds, ESP and corr-DSP have comparable skill. Corr-DSP appears quite reliable but, in some cases, under-dispersion or bias is observed. A more complex bias

  7. A meteo-hydrological prediction system based on a multi-model approach for precipitation forecasting

    Directory of Open Access Journals (Sweden)

    S. Davolio

    2008-02-01

    Full Text Available The precipitation forecasted by a numerical weather prediction model, even at high resolution, suffers from errors which can be considerable at the scales of interest for hydrological purposes. In the present study, a fraction of the uncertainty related to meteorological prediction is taken into account by implementing a multi-model forecasting approach, aimed at providing multiple precipitation scenarios driving the same hydrological model. Therefore, the estimation of that uncertainty associated with the quantitative precipitation forecast (QPF, conveyed by the multi-model ensemble, can be exploited by the hydrological model, propagating the error into the hydrological forecast.

    The proposed meteo-hydrological forecasting system is implemented and tested in a real-time configuration for several episodes of intense precipitation affecting the Reno river basin, a medium-sized basin located in northern Italy (Apennines. These episodes are associated with flood events of different intensity and are representative of different meteorological configurations responsible for severe weather affecting northern Apennines.

    The simulation results show that the coupled system is promising in the prediction of discharge peaks (both in terms of amount and timing for warning purposes. The ensemble hydrological forecasts provide a range of possible flood scenarios that proved to be useful for the support of civil protection authorities in their decision.

  8. Arid Zone Hydrology

    Science.gov (United States)

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  9. An educational model for ensemble streamflow simulation and uncertainty analysis

    Directory of Open Access Journals (Sweden)

    A. AghaKouchak

    2013-02-01

    Full Text Available This paper presents the hands-on modeling toolbox, HBV-Ensemble, designed as a complement to theoretical hydrology lectures, to teach hydrological processes and their uncertainties. The HBV-Ensemble can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI and an ensemble simulation scheme that can be used for teaching uncertainty analysis, parameter estimation, ensemble simulation and model sensitivity. HBV-Ensemble was administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of uncertainty in hydrological modeling.

  10. An Alternative Approach to Overcome the Limitation of HRUs in Analyzing Hydrological Processes Based on Land Use/Cover Change

    Directory of Open Access Journals (Sweden)

    Fanhao Meng

    2018-04-01

    Full Text Available Since the concept of hydrological response units (HRUs is used widely in hydrological modeling, the land use change scenarios analysis based on HRU may have direct influence on hydrological processes due to its simplified flow routing and HRU spatial distribution. This paper intends to overcome this issue based on a new analysis approach to explain what impacts for the impact of land use/cover change on hydrological processes (LUCCIHP, and compare whether differences exist between the conventional approach and the improved approach. Therefore, we proposed a sub-basin segmentation approach to obtain more reasonable impact assessment of LUCC scenario by re-discretizing the HRUs and prolonging the flow path in which the LUCC occurs. As a scenario study, the SWAT model is used in the Aksu River Basin, China, to simulate the response of hydrological processes to LUCC over ten years. Moreover, the impacts of LUCC on hydrological processes before and after model modification are compared and analyzed at three levels (catchment scale, sub-basin scale and HRU scale. Comparative analysis of Nash–Sutcliffe coefficient (NSE, RSR and Pbias, model simulations before and after model improvement shows that NSE increased by up to 2%, RSR decreased from 0.73 to 0.72, and Pbias decreased from 0.13 to 0.05. The major LUCCs affecting hydrological elements in this basin are related to the degradation of grassland and snow/ice and expansion of farmland and bare land. Model simulations before and after model improvement show that the average variation of flow components in typical sub-basins (surface runoff, lateral flow and groundwater flow are changed by +11.09%, −4.51%, and −6.58%, and +10.53%, −1.55%, and −8.98% from the base period model scenario, respectively. Moreover, the spatial response of surface runoff at the HRU level reveals clear spatial differences between before and after model improvement. This alternative approach illustrates the potential

  11. Evaluation of the value of radar QPE data and rain gauge data for hydrological modeling

    DEFF Research Database (Denmark)

    He, Xin; Sonnenborg, Torben Obel; Refsgaard, Jens Christian

    2013-01-01

    rainfall and subsequently the simulated hydrological responses. A headwater catchment located in western Denmark is chosen as the study site. Two hydrological models are built using the MIKE SHE code, where they have identical model structures expect for the rainfall forcing: one model is based on rain...... value of the extra information from radar when rain gauge density decreases; however it is not able to sustain the level of model performance preceding the reduction in number of rain gauges......Weather radar-based quantitative precipitation estimation (QPE) is in principle superior to the areal precipitation estimated by using rain gauge data only, and therefore has become increasingly popular in applications such as hydrological modeling. The present study investigates the potential...

  12. Gridded Surface Subsurface Hydrologic Analysis Modeling for Analysis of Flood Design Features at the Picayune Strand Restoration Project

    Science.gov (United States)

    2016-08-01

    restore its predrainage hydrology and ecological function for beneficial effects on flora and fauna in the project area and surrounding public lands. The...partnership with South Florida Water Management District (SFWMD), is constructing these features. Engineering support is required for hydrologic and...simulation accuracy and related resource requirements. Spatial data products such as digital elevation models, surveyed channel cross sections, soil

  13. Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?

    Science.gov (United States)

    Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.

    2006-12-01

    The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.

  14. Calculation of heat transfer in transversely stream-lined tube bundles with chess arrangement

    International Nuclear Information System (INIS)

    Migaj, V.K.

    1978-01-01

    A semiempirical theory of heat transfer in transversely stream-lined chess-board tube bundles has been developed. The theory is based on a single cylinder model and involves external flow parameter evaluation on the basis of the solidification principle of a vortex zone. The effect of turbulence is estimated according to experimental results. The method is extended to both average and local heat transfer coefficients. Comparison with experiment shows satisfactory agreement

  15. Hydrologic Response Unit Routing in SWAT to Simulate Effects of Vegetated Filter Strip for South-Korean Conditions Based on VFSMOD

    Directory of Open Access Journals (Sweden)

    Kyoung Jae Lim

    2011-08-01

    Full Text Available The Soil and Water Assessment Tool (SWAT model has been used worldwide for many hydrologic and Non-Point Source (NPS Pollution analyses on a watershed scale. However, it has many limitations in simulating the Vegetative Filter Strip (VFS because it considers only ‘filter strip width’ when the model estimates sediment trapping efficiency and does not consider the routing of sediment with overland flow which is expected to maximize the sediment trapping efficiency from upper agricultural subwatersheds to lower spatially-explicit filter strips. Therefore, the SWAT overland flow option between landuse-subwatersheds with sediment routing capability was enhanced by modifying the SWAT watershed configuration and SWAT engine based on the numerical model VFSMOD applied to South-Korean conditions. The enhanced SWAT can simulate the VFS sediment trapping efficiency for South-Korean conditions in a manner similar to the desktop VFSMOD-w system. Due to this enhancement, SWAT is applicable to simulate the effects of overland flow from upper subwatersheds to reflect increased runoff volume at the lower subwatershed, which occurs in the field if no diversion channel is installed. In this study, the enhanced SWAT model was applied to small watersheds located at Jaun-ri in South-Korea to simulate a diversion channel and spatially-explicit VFS. Sediment can be reduced by 31%, 65%, and 68%, with a diversion channel, the VFS, and the VFS with diversion channel, respectively. The enhanced SWAT should be used in estimating site-specific effects on sediment reduction with diversion channels and VFS, instead of the currently available SWAT, which does not simulate sediment routing in overland flow and does not consider other sensitive factors affecting sediment reduction with VFS.

  16. Hydrological model calibration for derived flood frequency analysis using stochastic rainfall and probability distributions of peak flows

    Science.gov (United States)

    Haberlandt, U.; Radtke, I.

    2014-01-01

    Derived flood frequency analysis allows the estimation of design floods with hydrological modeling for poorly observed basins considering change and taking into account flood protection measures. There are several possible choices regarding precipitation input, discharge output and consequently the calibration of the model. The objective of this study is to compare different calibration strategies for a hydrological model considering various types of rainfall input and runoff output data sets and to propose the most suitable approach. Event based and continuous, observed hourly rainfall data as well as disaggregated daily rainfall and stochastically generated hourly rainfall data are used as input for the model. As output, short hourly and longer daily continuous flow time series as well as probability distributions of annual maximum peak flow series are employed. The performance of the strategies is evaluated using the obtained different model parameter sets for continuous simulation of discharge in an independent validation period and by comparing the model derived flood frequency distributions with the observed one. The investigations are carried out for three mesoscale catchments in northern Germany with the hydrological model HEC-HMS (Hydrologic Engineering Center's Hydrologic Modeling System). The results show that (I) the same type of precipitation input data should be used for calibration and application of the hydrological model, (II) a model calibrated using a small sample of extreme values works quite well for the simulation of continuous time series with moderate length but not vice versa, and (III) the best performance with small uncertainty is obtained when stochastic precipitation data and the observed probability distribution of peak flows are used for model calibration. This outcome suggests to calibrate a hydrological model directly on probability distributions of observed peak flows using stochastic rainfall as input if its purpose is the

  17. Calibration parameters used to simulate streamflow from application of the Hydrologic Simulation Program-FORTRAN Model (HSPF) to mountainous basins containing coal mines in West Virginia

    Science.gov (United States)

    Atkins, John T.; Wiley, Jeffrey B.; Paybins, Katherine S.

    2005-01-01

    This report presents the Hydrologic Simulation Program-FORTRAN Model (HSPF) parameters for eight basins in the coal-mining region of West Virginia. The magnitude and characteristics of model parameters from this study will assist users of HSPF in simulating streamflow at other basins in the coal-mining region of West Virginia. The parameter for nominal capacity of the upper-zone storage, UZSN, increased from south to north. The increase in UZSN with the increase in basin latitude could be due to decreasing slopes, decreasing rockiness of the soils, and increasing soil depths from south to north. A special action was given to the parameter for fraction of ground-water inflow that flows to inactive ground water, DEEPFR. The basis for this special action was related to the seasonal movement of the water table and transpiration from trees. The models were most sensitive to DEEPFR and the parameter for interception storage capacity, CEPSC. The models were also fairly sensitive to the parameter for an index representing the infiltration capacity of the soil, INFILT; the parameter for indicating the behavior of the ground-water recession flow, KVARY; the parameter for the basic ground-water recession rate, AGWRC; the parameter for nominal capacity of the upper zone storage, UZSN; the parameter for the interflow inflow, INTFW; the parameter for the interflow recession constant, IRC; and the parameter for lower zone evapotranspiration, LZETP.

  18. Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts

    Science.gov (United States)

    Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter

    2017-06-01

    Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets

  19. Land surface modelling in hydrology and meteorology – lessons learned from the Baltic Basin

    Directory of Open Access Journals (Sweden)

    L. P. Graham

    2000-01-01

    Full Text Available By both tradition and purpose, the land parameterization schemes of hydrological and meteorological models differ greatly. Meteorologists are concerned primarily with solving the energy balance, whereas hydrologists are most interested in the water balance. Meteorological climate models typically have multi-layered soil parameterisation that solves temperature fluxes numerically with diffusive equations. The same approach is carried over to a similar treatment of water transport. Hydrological models are not usually so interested in soil temperatures, but must provide a reasonable representation of soil moisture to get runoff right. To treat the heterogeneity of the soil, many hydrological models use only one layer with a statistical representation of soil variability. Such a hydrological model can be used on large scales while taking subgrid variability into account. Hydrological models also include lateral transport of water – an imperative if' river discharge is to be estimated. The concept of a complexity chain for coupled modelling systems is introduced, together with considerations for mixing model components. Under BALTEX (Baltic Sea Experiment and SWECLIM (Swedish Regional Climate Modelling Programme, a large-scale hydrological model of runoff in the Baltic Basin is used to review atmospheric climate model simulations. This incorporates both the runoff record and hydrological modelling experience into atmospheric model development. Results from two models are shown. A conclusion is that the key to improved models may be less complexity. Perhaps the meteorological models should keep their multi-layered approach for modelling soil temperature, but add a simpler, yet physically consistent, hydrological approach for modelling snow processes and water transport in the soil. Keywords: land surface modelling; hydrological modelling; atmospheric climate models; subgrid variability; Baltic Basin

  20. Reservoir Performance Under Future Climate For Basins With Different Hydrologic Sensitivities

    Science.gov (United States)

    Mateus, M. C.; Tullos, D. D.

    2013-12-01

    In addition to long-standing uncertainties related to variable inflows and market price of power, reservoir operators face a number of new uncertainties related to hydrologic nonstationarity, changing environmental regulations, and rapidly growing water and energy demands. This study investigates the impact, sensitivity, and uncertainty of changing hydrology on hydrosystem performance across different hydrogeologic settings. We evaluate the performance of reservoirs in the Santiam River basin, including a case study in the North Santiam Basin, with high permeability and extensive groundwater storage, and the South Santiam Basin, with low permeability, little groundwater storage and rapid runoff response. The modeling objective is to address the following study questions: (1) for the two hydrologic regimes, how does the flood management, water supply, and environmental performance of current reservoir operations change under future 2.5, 50 and 97.5 percentile streamflow projections; and (2) how much change in inflow is required to initiate a failure to meet downstream minimum or maximum flows in the future. We couple global climate model results with a rainfall-runoff model and a formal Bayesian uncertainty analysis to simulate future inflow hydrographs as inputs to a reservoir operations model. To evaluate reservoir performance under a changing climate, we calculate reservoir refill reliability, changes in flood frequency, and reservoir time and volumetric reliability of meeting minimum spring and summer flow target. Reservoir performance under future hydrology appears to vary with hydrogeology. We find higher sensitivity to floods for the North Santiam Basin and higher sensitivity to minimum flow targets for the South Santiam Basin. Higher uncertainty is related with basins with a more complex hydrologeology. Results from model simulations contribute to understanding of the reliability and vulnerability of reservoirs to a changing climate.