Sample records for streambed sediment characteristics

  1. Linkages between unpaved forest roads and streambed sediment: why context matters in directing road restoration

    Al-Chokhachy, Robert K.; Black, Tom A.; Thomas, Cameron; Luce, Charlie H.; Rieman, Bruce; Cissel, Richard; Carlson, Anne; Hendrickson, Shane; Archer, Eric K.; Kershner, Jeffrey L.


    Unpaved forest roads remain a pervasive disturbance on public lands and mitigating sediment from road networks remains a priority for management agencies. Restoring roaded landscapes is becoming increasingly important for many native coldwater fishes that disproportionately rely on public lands for persistence. However, effectively targeting restoration opportunities requires a comprehensive understanding of the effects of roads across different ecosystems. Here, we combine a review and a field study to evaluate the status of knowledge supporting the conceptual framework linking unpaved forest roads with streambed sediment. Through our review, we specifically focused on those studies linking measures of the density of forest roads or sediment delivery with empirical streambed sediment measures. Our field study provides an example of a targeted effort of linking spatially explicit estimates of sediment production with measures of streambed sediment. Surprisingly, our review uncovered few studies (n = 8) that empirically tested the conceptual framework linking unpaved forest roads and streambed sediment, and the results varied considerably. Field results generally supported the conceptual model that unpaved forest roads can control streambed sediment quality, but demonstrated high-spatial variability in the effects of forest roads on streambed sediment and the need to address hotspots of sediment sources. The importance of context in the effects of forest roads is apparent in both our review and field data, suggesting the need for in situ studies to avoid misdirected restoration actions.

  2. Primary sources and toxicity of PAHs in Milwaukee-area streambed sediment

    Baldwin, Austin K.; Corsi, Steven R.; Lutz, Michelle A.; Ingersoll, Christopher G.; Dorman, Rebecca A.; Magruder, Christopher; Magruder, Matthew


    High concentrations of polycyclic aromatic hydrocarbons (PAHs) in streams can be a significant stressor to aquatic organisms. To understand the likely sources and toxicity of PAHs in Milwaukee-area streams, streambed sediment samples from 40 sites and parking lot dust samples from 6 sites were analyzed for 38 parent PAHs and 25 alkylated PAHs. Diagnostic ratios, profile correlations, principal components analysis, source-receptor modeling, and mass fractions analysis were used to identify potential PAH sources to streambed sediment samples, and land-use analysis was used to relate streambed sediment PAH concentrations to different urban-related land uses. On the basis of this multiple lines-of-evidence approach, coal-tar pavement sealant was indicated as the primary source of PAHs in a majority of streambed sediment samples, contributing an estimated 77% of total PAHs to samples, on average. Comparison to the Probable Effect Concentrations and (or) the Equilibrium Partitioning Sediment Benchmark indicates that 78% of stream sediment samples are likely to cause adverse effects to benthic organisms. Laboratory toxicity tests on a 16-sample subset of the streambed sites using the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) measured significant reductions in one or more biological endpoints, including survival, in 75% of samples, with H. azteca more responsive than C. dilutus.

  3. Trace-element concentrations in streambed sediment across the conterminous United States

    Rice, Karen C.


    Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined:  arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.

  4. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R


    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution.

  5. Measuring Spatial and Temporal Heterogeneity of Dissolved Oxygen in Streambed Sediments Using Pressure Sensitive Paint (PSP)

    Huynh, K. T.; Salus, A.; Xie, M.; Roche, K. R.; Packman, A. I.


    Pressure sensitive paints (PSP) have been largely used in aerodynamic applications to measure pressure distributions on complex bodies such as aircraft. One common family of PSPs employ fluorescent pigments that are quenched in the presence of oxygen, yielding an inverse relationship between fluorescence intensity and oxygen concentration that is used to measure pressure in aerodynamic applications through the partial pressure of oxygen. These PSPs offer unexplored potential for visualizing dissolved oxygen (DO) concentration distributions on surfaces underwater. PSP was used to measure dissolved oxygen concentrations in streambed sediments in a laboratory flume. Two PSP-coated 2.5 cm diameter spheres were emplaced in a bed of similar material, and imaged under varying DO concentrations. Calibration curves relating fluorescence intensity to dissolved oxygen concentration were developed on a pixel-by-pixel basis, enabling spatial patterns of oxygen to be resolved in the sediment bed. This method of measuring dissolved oxygen concentration is advantageous because of its fast response time and ability to measure heterogeneous oxygen distributions in sediments. Future work will explore the combined effects of stream flow and biofilm growth on oxygen distributions in streambed sediments.

  6. Selected streambed sediment compounds and water toxicity results for Westside Creeks, San Antonio, Texas, 2014

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.


    IntroductionThe Alazán, Apache, Martínez, and San Pedro Creeks in San Antonio, Texas, are part of a network of urban tributaries to the San Antonio River, known locally as the Westside Creeks. The Westside Creeks flow through some of the oldest neighborhoods in San Antonio. The disruption of streambed sediment is anticipated during a planned restoration to improve and restore the environmental condition of 14 miles of channelized sections of the Westside Creeks in San Antonio. These construction activities can create the potential to reintroduce chemicals found in the sediments into the ecosystem where, depending on hydrologic and environmental conditions, they could become bioavailable and toxic to aquatic life. Elevated concentrations of sediment-associated contaminants often are measured in urban areas such as San Antonio, Tex. Contaminants found in sediment can affect the health of aquatic organisms that ingest sediment. The gradual accumulation of trace elements and organic compounds in aquatic organisms can cause various physiological issues and can ultimately result in death of the aquatic organisms; in addition, subsequent ingestion of aquatic organisms can transfer the accumulated contaminants upward through the food chain (a process called biomagnification).The U.S. Geological Survey, in cooperation with the San Antonio River Authority, collected sediment samples and water samples for toxicity testing from sites on the Westside Creeks as part of an initial characterization of selected contaminants in the study area. Samples were collected in January 2014 during base-flow conditions and again in May 2104 after a period of stormwater runoff (poststorm conditions). Sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, brominated flame retardants, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). In addition, as an indicator of ecological health (and

  7. Streambed sediment controls on hyporheic greenhouse gas production - a microcosm experiment

    Romejn, Paul; Comer, Sophie; Gooddy, Daren; Ullah, Sami; Hannah, David; Krause, Stefan


    Hyporheic zones, as the interfaces between groundwater and surface water, can contribute significantly to whole stream carbon respiration. The drivers and controls of rates and magnitude of hyporheic greenhouse gas (GHG) production remain poorly understood. Recent research has hypothesised that nitrous oxide emissions resulting from incomplete denitrification in nutrient rich agricultural streams may contribute substantially to GHG emissions. This paper reports on a controlled microcosm incubation experiment that has been set up to quantify the sensitivity of hyporheic zone GHG production to temperature and nutrient concentrations. Experiments were conducted with sediment from two contrasting UK lowland rivers (sandstone and chalk). Adopting a gradient approach, sediments with different organic matter and carbon content were analysed from both rivers. Our analytical approach integrated several novel methods, such as push-pull application of the Resazurin/Resorufin smart tracer system for estimation of sediment microbial metabolic activity, high-resolution gas sampling and analysis of methane, carbon dioxide and nitrous oxide by gas chromatography with mass spectrometry, coupled with and high precision in-situ dissolved oxygen measurements. Our results indicate strong temperature controls of GHG production rates, overlapping with the observed impacts of different sediment types. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may enhance substantially sediment respiration and thus, GHG emissions from the streambed interface. The presented results integrated with field experiments of respiration and GHG emission rates under different treatments. This research advances understanding of scale dependent drivers and controls of whole stream carbon and nitrogen budgets and the role of streambed interfaces in GHG emissions.

  8. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  9. Variation in reach-scale hydraulic conductivity of streambeds

    Stewardson, M. J.; Datry, T.; Lamouroux, N.; Pella, H.; Thommeret, N.; Valette, L.; Grant, S. B.


    Streambed hydraulic conductivity is an important control on flow within the hyporheic zone, affecting hydrological, ecological, and biogeochemical processes essential to river ecosystem function. Despite many published field measurements, few empirical studies examine the drivers of spatial and temporal variations in streambed hydraulic conductivity. Reach-averaged hydraulic conductivity estimated for 119 surveys in 83 stream reaches across continental France, even of coarse bed streams, are shown to be characteristic of sand and finer sediments. This supports a model where processes leading to the accumulation of finer sediments within streambeds largely control hydraulic conductivity rather than the size of the coarse bed sediment fraction. After describing a conceptual model of relevant processes, we fit an empirical model relating hydraulic conductivity to candidate geomorphic and hydraulic drivers. The fitted model explains 72% of the deviance in hydraulic conductivity (and 30% using an external cross-validation). Reach hydraulic conductivity increases with the amplitude of bedforms within the reach, the bankfull channel width-depth ratio, stream power and upstream catchment erodibility but reduces with time since the last streambed disturbance. The correlation between hydraulic conductivity and time since a streambed mobilisation event is likely a consequence of clogging processes. Streams with a predominantly suspended load and less frequent streambed disturbances are expected to have a lower streambed hydraulic conductivity and reduced hyporheic fluxes. This study suggests a close link between streambed sediment transport dynamics and connectivity between surface water and the hyporheic zone.

  10. Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods

    Abe, Yumiko; Aravena, Ramon; Zopfi, Jakob; Parker, Beth; Hunkeler, Daniel


    The occurrence of chlorinated ethene transformation in a streambed was investigated using concentration and carbon isotope data from water samples taken at different locations and depths within a 15 × 25 m study area across which a tetrachloroethene (PCE) plume discharges. Furthermore, it was evaluated how the degree of transformation is related to groundwater discharge rates, redox conditions, solid organic matter content (SOM) and microbial factors. Groundwater discharge rates were quantified based on streambed temperatures, and redox conditions using concentrations of dissolved redox-sensitive species. The degree of chlorinated ethene transformation was highly variable in space from no transformation to transformation beyond ethene. Complete reductive dechlorination to ethane and ethene occurred at locations with at least sulfate-reducing conditions and with a residence time in the samples streambed zone (80 cm depth) of at least 10 days. Among these locations, Dehalococcoides was detected using a PCR method where SOM contents were > 2% w/w and where transformation proceeded beyond ethene. However, it was not detected at locations with low SOM, which may cause an insufficient H 2 supply to sustain a detectably dense Dehalococcoides population. Additionally, it is possible that other organisms are responsible for the biodegradation. A microcosm study with streambed sediments demonstrated the potential of VC oxidation throughout the site even at locations without a pre-exposure to VC, consistent with the detection of the epoxyalkane:coenzyme M transferase (EaCoMT) gene involved in the degradation of chlorinated ethenes via epoxidation. In contrast, no aerobic transformation of cDCE in microcosms over a period of 1.5 years was observed. In summary, the study demonstrated that carbon isotope analysis is a sensitive tool to identify the degree of chlorinated ethene transformation even in hydrologically and geochemically complex streambed systems. In addition, it was

  11. Benthic-invertebrate, fish-community, and streambed-sediment-chemistry data for streams in the Indianapolis metropolitan area, Indiana, 2009–2012

    Voelker, David C.


    Aquatic-biology and sediment-chemistry data were collected at seven sites on the White River and at six tributary sites in the Indianapolis metropolitan area of Indiana during the period 2009 through 2012. Data collected included benthic-invertebrate and fish-community information and concentrations of metals, insecticides, herbicides, and semivolatile organic compounds adsorbed to streambed sediments. A total of 120 benthic-invertebrate samples were collected, of which 16 were replicate samples. A total of 26 fish-community samples were collected in 2010 and 2012. Thirty streambed-sediment chemistry samples were collected in 2009 and 2011, of which four were concurrent duplicate samples

  12. Effect of contaminant concentration on aerobic microbial mineralization of DCE and VC in stream-bed sediments

    Bradley, P.M.; Chapelle, F.H.


    Discharge of DCE and VC to an aerobic surface water system simultaneously represents a significant environmental concern and, potentially, a non-engineered opportunity for efficient contaminant bioremediation. The potential for bioremediation, however, depends on the ability of the stream-bed microbial community to efficiently and completely degrade DCE and VC over a range of contaminant concentrations. The purposes of the studies reported here were to assess the potential for aerobic DCE and VC mineralization by stream-bed microorganisms and to evaluate the effects of DCE and VC concentrations on the apparent rates of aerobic mineralization. Bed-sediment microorganisms indigenous to a creek, where DCE-contaminated groundwater continuously discharges, demonstrated rapid mineralization of DCE and VC under aerobic conditions. Over 8 days, the recovery of [1,2-14C]DCE radioactivity as 14CO2 ranged from 17% to 100%, and the recovery of [1,2- 14C]VC radioactivity as 14CO2 ranged from 45% to 100%. Rates of DCE and VC mineralization increased significantly with increasing contaminant concentration, and the response of apparent mineralization rates to changes in DCE and VC concentrations was adequately described by Michaelis-Menten kinetics.Discharge of DCE and VC to an aerobic surface water system simultaneously represents a significant environmental concern and, potentially, a non-engineered opportunity for efficient contaminant bioremediation. The potential for bioremediation, however, depends on the ability of the stream-bed microbial community to efficiently and completely degrade DCE and VC over a range of contaminant concentrations. The purposes of the studies reported here were to assess the potential for aerobic DCE and VC mineralization by stream-bed microorganisms and to evaluate the effects of DCE and VC concentrations on the apparent rates of aerobic mineralization. Bed-sediment microorganisms indigenous to a creek, where DCE-contaminated groundwater

  13. Low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream

    DeTemple, B.; Wilcock, P.


    In an alluvial, gravel-bed stream governed by a plane-bed bedload transport regime, the physicochemical properties, size distribution, and granular architecture of the sediment grains that constitute the streambed surface influence many hydrodynamic, geomorphic, chemical, and ecological processes. Consequently, the abilities to accurately characterize the morphology and model the morphodynamics of the streambed surface and its interaction with the bedload above and subsurface below are necessary for a more complete understanding of how sediment, flow, organisms, and biogeochemistry interact. We report on our progress in the bottom-up development of low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream. These balance laws are assembled in a four stage process. First, the stream sediment-water system is conceptually abstracted as a nested, multi-phase, multi-species, structured continuum. Second, the granular surface of an aggregate of sediment grains is mathematically defined. Third, an integral approach to mass balance, founded in the continuum theory of multiphase flow, is used to formulate primordial, differential, instantaneous, local, continuum, mass balance laws applicable at any material point within a gravel-bed stream. Fourth, area averaging and time-after-area averaging, employing planform, low-pass filtering expressed as correlation or convolution integrals and based on the spatial and temporal filtering techniques found in the fields of multiphase flow, porous media flow, and large eddy simulation of turbulent fluid flow, are applied to smooth the primordial equations while maximizing stratigraphic resolution and preserving the definitions of relevant morphodynamic surfaces. Our approach unifies, corrects, contextualizes, and generalizes prior efforts at developing stream sediment continuity equations, including the top-down derivations of the surface layer (or "active layer") approach of Hirano

  14. Relations of benthic macroinvertebrates to concentrations of trace elements in water, streambed sediments, and transplanted bryophytes and stream habitat conditions in nonmining and mining areas of the upper Colorado River basin, Colorado, 1995-98

    Mize, Scott V.; Deacon, Jeffrey R.


    Intensive mining activity and highly mineralized rock formations have had significant impacts on surface-water and streambed-sediment quality and aquatic life within the upper reaches of the Uncompahgre River in western Colorado. A synoptic study by the U.S. Geological Survey National Water-Quality Assessment Program was completed in the upper Uncompahgre River Basin in 1998 to better understand the relations of trace elements (with emphasis on aluminum, arsenic, copper, iron, lead, and zinc concentrations) in water, streambed sediment, and aquatic life. Water-chemistry, streambed-sediment, and benthic macroinvertebrate samples were collected during low-flow conditions between October 1995 and July 1998 at five sites on the upper Uncompahgre River, all downstream from historical mining, and at three sites in drainage basins of the Upper Colorado River where mining has not occurred. Aquatic bryophytes were transplanted to all sites for 15 days of exposure to the water column during which time field parameters were measured and chemical water-quality and benthic macroinvertebrate samples were collected. Stream habitat characteristics also were documented at each site. Certain attributes of surface-water chemistry among streams were significantly different. Concentrations of total aluminum, copper, iron, lead, and zinc in the water column and concentrations of dissolved aluminum, copper, and zinc were significantly different between nonmining and mining sites. Some sites associated with mining exceeded Colorado acute aquatic-life standards for aluminum, copper, and zinc and exceeded Colorado chronic aquatic-life standards for aluminum, copper, iron, lead, and zinc. Concentrations of copper, lead, and zinc in streambed sediments were significantly different between nonmining and mining sites. Generally, concentrations of arsenic, copper, lead, and zinc in streambed sediments at mining sites exceeded the Canadian Sediment Quality Guidelines probable effect level (PEL

  15. Use of fallout radionuclides ((7)Be, (210)Pb) to estimate resuspension of Escherichia coli from streambed sediments during floods in a tropical montane catchment.

    Ribolzi, Olivier; Evrard, Olivier; Huon, Sylvain; Rochelle-Newall, Emma; Henri-des-Tureaux, Thierry; Silvera, Norbert; Thammahacksac, Chanthamousone; Sengtaheuanghoung, Oloth


    Consumption of water polluted by faecal contaminants is responsible for 2 million deaths annually, most of which occur in developing countries without adequate sanitation. In tropical aquatic systems, streambeds can be reservoirs of persistent pathogenic bacteria and high rainfall can lead to contaminated soils entering streams and to the resuspension of sediment-bound microbes in the streambed. Here, we present a novel method using fallout radionuclides ((7)Be and (210)Pbxs) to estimate the proportions of Escherichia coli, an indicator of faecal contamination, associated with recently eroded soil particles and with the resuspension of streambed sediments. We show that using these radionuclides and hydrograph separations we are able to characterize the proportion of particles originating from highly contaminated soils and that from the resuspension of particle-attached bacteria within the streambed. We also found that although overland flow represented just over one tenth of the total flood volume, it was responsible for more than two thirds of the downstream transfer of E. coli. We propose that data obtained using this method can be used to understand the dynamics of faecal indicator bacteria (FIB) in streams thereby providing information for adapted management plans that reduce the health risks to local populations. Graphical Abstract Graphical abstract showing (1) the main water flow processes (i.e. overland flow, groundwater return flow, blue arrows) and sediment flow components (i.e. resuspension and soil erosion, black arrows) during floods in the Houay Pano catchment; (2) the general principle of the method using fallout radionuclide markers (i.e. (7)Be and (210)Pbxs) to estimate E. coli load from the two main sources (i.e. streambed resuspension vs soil surface washoff); and 3) the main results obtained during the 15 May 2012 storm event (i.e. relative percentage contribution of each process to the total streamflow, values in parentheses).

  16. Streambeds Merit Recognition as a Scientific Discipline

    Constantz, J. E.


    Streambeds are generally viewed as simply sediments beneath streams, sediments topping alluvial aquifers, or sediments housing aquatic life, rather than as distinct geographic features comparable to soils and surficial geologic formations within watersheds. Streambeds should be viewed as distinct elements within watersheds, e.g., as akin to soils. In this presentation, streambeds are described as central features in watersheds, cycling water between the surface and underlying portions of the watershed. Regarding their kinship to soils, soils are often described as surficial sediments largely created by atmospheric weathering of underlying geologic parent material, and similarly, streambeds should be described as submerged sediments largely created by streamflow modification of underlying geologic parent material. Thus, streambeds are clearly overdue for recognition as their own scientific discipline along side other well-recognized disciplines within watersheds; however, slowing progress in this direction, the point is often made that hyporheic zones should be considered comparable to streambeds, but this is as misguided as equating unsaturated zones to soils. Streambeds and soils are physical geographic features of relatively constant volume, while hyporheic and unsaturated zones are hydrologic features of varying volume. Expanded upon in this presentation, 'Streambed Science' is proposed for this discipline, which will require both a well-designed protocol to physically characterize streambeds as well as development of streambed taxonomy, for suitable recognition as an independent discipline within watersheds.

  17. Apportioning sources of organic matter in streambed sediments: An integrated molecular and compound-specific stable isotope approach

    Cooper, Richard J., E-mail: [School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ (United Kingdom); Pedentchouk, Nikolai; Hiscock, Kevin M.; Disdle, Paul [School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ (United Kingdom); Krueger, Tobias [IRI THESys, Humboldt University, 10099 Berlin (Germany); Rawlins, Barry G. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom)


    We present a novel application for quantitatively apportioning sources of organic matter in streambed sediments via a coupled molecular and compound-specific isotope analysis (CSIA) of long-chain leaf wax n-alkane biomarkers using a Bayesian mixing model. Leaf wax extracts of 13 plant species were collected from across two environments (aquatic and terrestrial) and four plant functional types (trees, herbaceous perennials, and C{sub 3} and C{sub 4} graminoids) from the agricultural River Wensum catchment, UK. Seven isotopic (δ{sup 13}C{sub 27}, δ{sup 13}C{sub 29}, δ{sup 13}C{sub 31}, δ{sup 13}C{sub 27–31}, δ{sup 2}H{sub 27}, δ{sup 2}H{sub 29}, and δ{sup 2}H{sub 27–29}) and two n-alkane ratio (average chain length (ACL), carbon preference index (CPI)) fingerprints were derived, which successfully differentiated 93% of individual plant specimens by plant functional type. The δ{sup 2}H values were the strongest discriminators of plants originating from different functional groups, with trees (δ{sup 2}H{sub 27–29} = − 208‰ to − 164‰) and C{sub 3} graminoids (δ{sup 2}H{sub 27–29} = − 259‰ to − 221‰) providing the largest contrasts. The δ{sup 13}C values provided strong discrimination between C{sub 3} (δ{sup 13}C{sub 27–31} = − 37.5‰ to − 33.8‰) and C{sub 4} (δ{sup 13}C{sub 27–31} = − 23.5‰ to − 23.1‰) plants, but neither δ{sup 13}C nor δ{sup 2}H values could uniquely differentiate aquatic and terrestrial species, emphasizing a stronger plant physiological/biochemical rather than environmental control over isotopic differences. ACL and CPI complemented isotopic discrimination, with significantly longer chain lengths recorded for trees and terrestrial plants compared with herbaceous perennials and aquatic species, respectively. Application of a comprehensive Bayesian mixing model for 18 streambed sediments collected between September 2013 and March 2014 revealed considerable temporal variability in the

  18. Effect Of Imposed Anaerobic Conditions On Metals Release From Acid-Mine Drainage Contaminated Streambed Sediments

    Remediation of streams influenced by mine-drainage may require removal and burial of metal-containing bed sediments. Burial of aerobic sediments into an anaerobic environment may release metals, such as through reductive dissolution of metal oxyhydroxides. Mining-impacted aerob...

  19. Arsenate Retention by Epipsammic Biofilms Developed on Streambed Sediments: Influence of Phosphate

    D. M. Prieto


    Full Text Available Natural geological conditions together with the impact of human activities could produce environmental problems due to high As concentrations. The aim of this study was to assess the role of epipsammic biofilm-sediment systems onto As (V sorption and to evaluate the effect of the presence of equimolar P concentrations on As retention. A natural biofilm was grown on sediment samples in the laboratory, using river water as nutrient supplier. Sorption experiments with initial As concentrations 0, 5, 25, 50, 100, 250, and 500 μg L−1 were performed. The average percentage of As sorbed was 78.9±3.5 and 96.9±6.6% for the sediment and biofilm-sediment systems, respectively. Phosphate decreased by 25% the As sorption capactity in the sediment devoid of biofilm, whereas no significant effect was observed in the systems with biofilm. Freundlich, Sips, and Toth models were the best to describe experimental data. The maximum As sorption capacity of the sediment and biofilm-sediment systems was, respectively, 6.6 and 6.8 μg g−1 and 4.5 and 7.8 μg g−1 in the presence of P. In conclusion, epipsammic biofilms play an important role in the environmental quality of river systems, increasing As retention by the system, especially in environments where both As and P occur simultaneously.

  20. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    Parnell, J.M.


    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  1. Potential for Microbial Degradation of cis-Dichloroethene and Vinyl Chloride in Streambed Sediment at the U.S. Department of Energy, Kansas City Plant, Missouri, 2008

    Bradley, Paul M.


    A series of carbon-14 (14C) radiotracer-based microcosm experiments was conducted to assess the mechanisms and products of degradation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) in streambed sediments at the U.S. Department of Energy, Kansas City Plant in Kansas City, Missouri. The focus of the investigation was the potential for biotic and abiotic cis-DCE and VC degradation in surficial and underlying hyporheic sediment from the Blue River and its tributaries, Indian Creek and Boone Creek. Substantial degradation of [1,2-14C] cis-DCE and [1,2-14C] VC to 14C-carbon dioxide (14CO2) was observed in all viable surficial sediment microcosms prepared under oxic conditions. No significant accumulation of reductive dechlorination products was observed under these oxic incubation conditions. The results indicate that microbial mineralization processes involving direct oxidation or co-metabolic oxidation are the primary mechanisms of cis-DCE and VC biodegradation in oxic stream sediment at the Kansas City Plant. Substantial mineralization of [1,2-14C] VC also was observed in all viable surficial sediment microcosms incubated in the absence of detectable oxygen (dissolved oxygen concentrations less than 25 micrograms per liter). In general, the accumulation of mineralization products (14CO2 and 14C-methane [14CH4]) predominated with only trace-level detection of the reductive dechlorination product, 14C-ethene. In contrast, microbial degradation of [1,2-14C] cis-DCE by reductive dechlorination or mineralization was not significant in the absence of detectable oxygen. The potential for [1,2-14C] VC biodegradation also was significant in sediments from the deeper hyporheic zones under oxic conditions and in the absence of detectable oxygen. In this study, microbial degradation of [1,2-14C] cis-DCE was not significant in hyporheic sediment treatments under either oxygen condition. Taken together, the results indicate that microbial mineralization processes in

  2. Does streambed heterogeneity matter for hyporheic residence time distribution in sand-bedded streams?

    Tonina, Daniele; de Barros, Felipe P. J.; Marzadri, Alessandra; Bellin, Alberto


    Stream water residence times within streambed sediments are key values to quantify hyporheic processes including sediment thermal regime, solute transient storage, dilution rates and biogeochemical transformations, such as those controlling degassing nitrous oxide. Heterogeneity of the streambed sediment hydraulic properties has been shown to be potentially an important factor to characterize hyporheic processes. Here, we quantify the importance of streambed heterogeneity on residence times of dune-like bedform induced hyporheic fluxes at the bedform and reach scales. We show that heterogeneity has a net effect of compression of the hyporheic zone (HZ) toward the streambed, changing HZ volume from the homogenous case and thus inducing remarkable differences in the flow field with respect to the homogeneous case. We unravel the physical conditions for which the commonly used homogenous field assumption is applicable for quantifying hyporheic processes thus explaining why predictive measures based on a characteristic residence time, like the Damköhler number, are robust in heterogeneous sand bedded streams.

  3. The relationship between land use and organochlorine compounds in streambed sediment and fish in the Central Columbia Plateau, Washington and Idaho, USA

    Munn, M.D.; Gruber, S.J.


    We analyzeds streambed sediment and fish in the Central Columbia Plateau in eastern Washington and Idaho for or ganochlorine pesticides and polychlorinated biphenyls (ΣPCB). Our objective was to assess the effects of land use on the occurrence and distribution of these compounds; land uses in the study area included forest, dryland and irrigated farming, and urban. We detected 16 organochlorine compounds in streambed sediment and fish tissue; fish usually had more compounds and a greater frequency of detection. The most frequently detected compound was ΣDDT (sum of six isomers), which was found in 52% of bed sediment samples and 94% of whole fish composite samples. The other commonly detected compounds were dimethyl tetrachloroterephthalate (DCPA), dieldrin, hexachlorobenzene, and Σchlordane (sum of cis- and trans-chlordane, cis- and trans-nonachlor oxychlordane, heptachlor, and heptachlor epoxide). Forest was the only land use with no detections of organochlorine compounds in either fish or bed sediment. Hexachlorobenzene was the only organochlorine pesticide detected at concentrations that differed significantly among land uses: concentrations were higher in the dryland farming areas than in the irrigated farming or urban areas. In agricultural areas irrigated by surface water, ΣDDT concentrations in both streambed sediment and fish tissue were related to the percentage of land irrigated by water delivered via furrows (gravity irrigation), although ΣDDT was not detectable in bed sediments until gravity irrigation exceeded 30%. Because of the relation between gravity irrigation and soil erosion, our study supports the importance of controlling soil erosion in order to reduce the overall loading of organochlorine compounds to surface waters.

  4. The interplay between transport and reaction rates as controls on nitrate attenuation in permeable, streambed sediments

    Lansdown, K.; Heppell, C. M.; Trimmer, M.; Binley, A.; Heathwaite, A. L.; Byrne, P.; Zhang, H.


    Anthropogenic nitrogen fixation and subsequent use of this nitrogen as fertilizer have greatly disturbed the global nitrogen cycle. Rivers are recognized hot spots of nitrogen removal in the landscape as interaction between surface water and sediments creates heterogeneous redox environments conducive for nitrogen transformations. Our understanding of riverbed nitrogen dynamics to date comes mainly from shallow sediments or hyporheic exchange flow pathways with comparatively little attention paid to groundwater-fed, gaining reaches. We have used 15N techniques to quantify in situ rates of nitrate removal to 1 m depth within a groundwater-fed riverbed where subsurface hydrology ranged from strong upwelling to predominantly horizontal water fluxes. We combine these rates with detailed hydrologic measurements to investigate the interplay between biogeochemical activity and water transport in controlling nitrogen attenuation along upwelling flow pathways. Nitrate attenuation occurred via denitrification rather than dissimilatory nitrate reduction to ammonium or anammox (range = 12 to >17,000 nmol 15N L-1 h-1). Overall, nitrate removal within the upwelling groundwater was controlled by water flux rather than reaction rate (i.e., Damköhler numbers rates of denitrification and short water residence time close to the riverbed surface balanced by slower rates of denitrification and water flux at depth. Within this permeable riverbed >80% of nitrate removal occurs within sediments not exposed to hyporheic exchange flows under base flow conditions, illustrating the importance of deep sediments as nitrate sinks in upwelling systems.

  5. Water and Streambed Sediment Quality, and Ecotoxicology of a Stream along the Blue Ridge Parkway, Adjacent to a Closed Landfill, near Roanoke, Virginia: 1999

    Ebner, Donna Belval; Cherry, Donald S.; Currie, Rebecca J.


    A study was done of the effects of a closed landfill on the quality of water and streambed sediment and the benthic macroinvertebrate community of an unnamed stream and its tributary that flow through Blue Ridge Parkway lands in west-central Virginia. The primary water source for the tributary is a 4-inch polyvinyl chloride (PVC) pipe that protrudes from the slope at the base of the embankment bordering the landfill. An unusual expanse of precipitate was observed in the stream near the PVC pipe. Stream discharge was measured and water and streambed sediment samples were collected at a nearby reference site and at three sites downstream of the landfill in April and September 1999. Water samples were analyzed for major ions, nitrate, total and dissolved metals, total dissolved solids, total organic carbon, and volatile and semivolatile organic compounds, including organochlorine pesticides and polychlorinated biphenyls (PCBs). Streambed sediment samples were analyzed for total metals, total organic carbon, percent moisture, and volatile and semivolatile organic compounds, including organochlorine pesticides and PCBs. The benthic macroinvertebrate community within the stream channel also was sampled at the four chemical sampling sites and at one additional site in April and September. Each of the five sites was assessed for physical habitat quality. Water collected periodically at the PVC pipe discharge between November 1998 and November 1999 was used to conduct 48-hour acute and 7-day chronic toxicity tests using selected laboratory test organisms. Two 10-day chronic toxicity tests of streambed sediments collected near the discharge pipe also were conducted. Analyses showed that organic and inorganic constituents in water from beneath the landfill were discharged into the sampled tributary. In April, 79 percent of inorganic constituents detected in water had their highest concentrations at the site closest to the landfill; at the same site, 59 percent of inorganic

  6. New empirical relationship between grain size distribution and hydraulic conductivity for ephemeral streambed sediments

    Rosas, Jorge


    Grain size distribution, porosity, and hydraulic conductivity were determined for 39 sediment samples collected from ephemeral streams (wadis) in western Saudi Arabia. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations commonly used to estimate hydraulic conductivity from grain size analyses. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly with the measured hydraulic conductivity values. Modifications of the empirical equations, including changes to special coefficients and statistical offsets, were made to produce modified equations that considerably improved the hydraulic conductivity estimates from grain size data for wadi sediments. The Chapuis, Hazen, Kozeny, Slichter, Terzaghi, and Barr equations produced the best correlations, but still had relatively high predictive errors. The Chapius equation was modified for wadi sediments by incorporating mud percentage and the standard deviation (in phi units) into a new equation that reduced the predicted hydraulic conductivity error to ±14.1 m/day. The equation is best applied to ephemeral stream samples that have hydraulic conductive values greater than 2 m/day.

  7. Occurrence and distribution of trace elements in snow, streams, and streambed sediments, Cape Krusenstern National Monument, Alaska, 2002-2003

    Brabets, Timothy P.


    Cape Krusenstern National Monument is located in Northwest Alaska. In 1985, an exchange of lands and interests in lands between the Northwest Alaska Native Association and the United States resulted in a 100-year transportation system easement for 19,747 acres in the monument. A road was then constructed along the easement from the Red Dog Mine, a large zinc concentrate producer and located northeast of the monument, through the monument to the coast and a port facility. Each year approximately 1.3 million tonnes of zinc and lead concentrate are transported from the Red Dog Mine via this access road. Concern about the possible deposition of cadmium, lead, zinc and other trace elements in the monument was the basis of a cooperative project with the National Park Service. Concentrations of dissolved cadmium, dissolved lead, and dissolved zinc from 28 snow samples from a 28 mile by 16 mile grid were below drinking water standards. In the particulate phase, approximately 25 percent of the samples analyzed for these trace elements were higher than the typical range found in Alaska soils. Boxplots of concentrations of these trace elements, both in the dissolved and particulate phase, indicate higher concentrations north of the access road, most likely due to the prevailing southeast wind. The waters of four streams sampled in Cape Krusenstern National Monument are classified as calcium bicarbonate. Trace-element concentrations from these streams were below drinking water standards. Median concentrations of 39 trace elements from streambed sediments collected from 29 sites are similar to the median concentrations of trace elements from the U.S. Geological Survey?s National Water-Quality Assessment database. Statistical differences were noted between trace-element concentrations of cadmium, lead, and zinc at sites along the access road and sites north and south of the access road; concentrations along the access road being higher than north or south of the road. When

  8. Total Mercury, Methylmercury, Methylmercury Production Potential, and Ancillary Streambed-Sediment and Pore-Water Data for Selected Streams in Oregon, Wisconsin, and Florida, 2003-04

    Marvin-DiPasquale, Mark C.; Lutz, Michelle A.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.; DeWild, John F.; Brigham, Mark E.


    Mercury contamination of aquatic ecosystems is an issue of national concern, affecting both wildlife and human health. Detailed information on mercury cycling and food-web bioaccumulation in stream settings and the factors that control these processes is currently limited. In response, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) conducted detailed studies from 2002 to 2006 on various media to enhance process-level understanding of mercury contamination, biogeochemical cycling, and trophic transfer. Eight streams were sampled for this study: two streams in Oregon, and three streams each in Wisconsin and Florida. Streambed-sediment and pore-water samples were collected between February 2003 and September 2004. This report summarizes the suite of geochemical and microbial constituents measured, the analytical methods used, and provides the raw data in electronic form for both bed-sediment and pore-water media associated with this study.

  9. Discharge of landfill leachate to streambed sediments impacts the mineralization potential of phenoxy acid herbicides depending on the initial abundance of tfdA gene classes

    Pazarbasi, Meric Batioglu; Milosevic, Nemanja; Malaguerra, Flavio


    To understand the role of abundance of tfdA gene classes belonging to β- and γ-proteobacteria on phenoxy acid herbicide degradation, streambed sediments were sampled around three seepage meters (SMs) installed in a landfill-impacted groundwater–surface water interface. Highest herbicide mass...... faster mineralization. The observed difference in mineralization rates between discharge zones was simulated by a Monod-based kinetic model, which confirmed the role of abundance of tfdA gene classes. This study suggests presence of specific degraders adapted to slow growth rate and high yield strategy...... due to long-term herbicide exposure; and thus groundwater–surface water interface could act as a natural biological filter and protect stream water quality....

  10. Streambed-material characteristics and surface-water quality, Green Pond Brook and tributaries, Picatinny Arsenal, New Jersey, 1983-90

    Storck, D.A.; Lacombe, Pierre


    This report presents the results of a study designed to determine whether Green Pond Brook and its tributaries contain contaminated streambed sediments and to characterize the quaity of water in the brook. Results of previous investigations at Picatinny Arsenal, Morris County, New Jersey, indicate that significant contamination of ground water, surface water, and soil is present at the arsenal. Forty-five streambed-material samples were collected for analysis to determine whether contaminants have migrated to the brook from the surrounding area. Samples were analyzed for trace elements, base/neutral- and acid-etractable compounds, insecticides, and other constituents. Results of an electromagnetic-conductivity and natural-gamma-ray survey were used to describe the distribution of particle sizes in streambed and substreambed sediments. Historical results of analyses of streambed-material and surface-water samples also are presented. Samples of streambed material from three areas in Green Pond Brook and its tributaries contained organic and (or) inorganic constituents in concentrations greater than those typically found at the arsenal. These areas are Green Pond Brook, from the area near the outflow of Picatinny Lake downstream to Farley Avenue; Bear Swamp Brook, from the area near building 241 downstream to the confluence with Green Pond Brook; and Green Pond Brook, from the open burning area downstream to the dam near building 1178. Contaminants identified include trace elements, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine insecticides. Surface water in Green Pond Brook contained several volatile organic compounds, including trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene, at maximum concen- trations of 3.8, 4.6, and 11 micrograms per liter, respectively. Volatilization is expected to remove volatile organic compounds in the steep, fast- flowing reaches of the brook. No organic or inorganic constituents were

  11. Development of a passive sensor for measuring vertical cumulative water and solute mass fluxes in lake sediments and streambeds

    Layton, Leif; Klammler, Harald; Hatfield, Kirk; Cho, Jaehyun; Newman, Mark A.; Annable, Michael D.


    This paper introduces the sediment bed passive flux meter (SBPFM) as a new tool for in situ measurements of vertical volumetric water and contaminant mass fluxes across hyporheic and hypolentic zones (i.e., stream or lake bed sediments that function as the contiguous zone between the overlying surface water body and the underlying aquifer). The device is a direct-push probe which contains a permeable internal sorbent located between two screened intervals. In the presence of a vertical hydraulic gradient the screens allow water flow through the SBPFM's internal sorbent matrix that is impregnated with resident tracers. These tracers are displaced from the sorbent at rates proportional to the water flux through the sorbent. At the same time, dissolved contaminants present in the intercepted sediment water are retained on the SBPFM sorbent at rates proportional to the ambient contaminant mass flux in the hyporheic zone. Potential flow theory is applied to convert observations of water and contaminant fluxes through the SBPFM into estimates of undisturbed ambient vertical water and contaminant fluxes in the sediment. To validate the theory and demonstrate the SBPFM as a potential site characterization tool, multiple bench-scale sediment bed experiments are performed. Results demonstrate that water and contaminant mass fluxes are accurately measured in the laboratory and that future field tests are warranted.

  12. Screening Level Assessment of Metal Concentrations in Streambed Sediments and Floodplain Soils within the Grand Lake Watershed in Northeastern Oklahoma, USA.

    Garvin, Ean M; Bridge, Cas F; Garvin, Meredith S


    Metal releases have been received by the Grand Lake watershed from the Tri-State Mining District (TSMD) since the mid 1800s. To address data gaps in metal distributions in the Oklahoma portion of the watershed, streambed sediment and floodplain soil was sampled on various streams. The biomass of benthic invertebrates was highly impacted at Tar Creek, highly to moderately impacted at Spring River and Elm Creek, and unimpacted at Lost Creek and Grand Lake as a result of sediment metal concentrations. It also was found that soil metal concentrations were likely sufficient to impact plant populations at all streams. Within the Oklahoma portion of the watershed, the majority of environmental studies, remediation, and restoration efforts by local, state, and federal agencies have been primarily focused within the Tar Creek Superfund Site (TCSS) boundary. Importantly, the findings of this study highlighted the downstream extent of metals contamination as well as the resulting potential toxicities to benthic invertebrates and plants that is present outside of the TCSS boundary. Because the Oklahoma portion of the watershed comprises the jurisdictional lands of ten tribes, these results emphasized the potential tribal loss of use of benthic invertebrates and plants due to their decline in population as a result of metal toxicity. These overall findings provide an important basis for future data needs in assessing metal concentrations in aquatic and terrestrial biota that are consumed by tribal communities within the watershed to determine if certain organisms are unsafe to consume or warrant consumption advisories. This will allow risk assessors and risk managers to better understand the potential loss of use of tribal biological resources as well as improving risk-based decision making to be protective of these resources and tribal human health.

  13. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.


    The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations

  14. Occurrence and concentrations of selected trace elements, halogenated organic compounds, and polycyclic aromatic hydrocarbons in streambed sediments and results of water-toxicity testing in Westside Creeks and the San Antonio River, San Antonio, Texas, 2014

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.


    Sediment samples and samples for water-toxicity testing were collected during 2014 from several streams in San Antonio, Texas, known locally as the Westside Creeks (Alazán, Apache, Martínez, and San Pedro Creeks) and from the San Antonio River. Samples were collected during base flow and after periods of stormwater runoff (poststorm conditions) to determine baseline sediment- and water-quality conditions. Streambed-sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, polychlorinated biphenyls (PCBs), brominated flame retardants, and polycyclic aromatic hydrocarbons (PAHs). Potential risks of contaminants in sediment were evaluated by comparing concentrations of contaminants in sediment to two effects-based sediment-quality guidelines: (1) a lower level, called the threshold effect concentration, below which, harmful effects to benthic biota are not expected, and (2) a higher level, the probable effect concentration (PEC), above which harmful effects are expected to occur frequently. Samples for water-toxicity testing were collected from each stream to provide information about fish toxicity in the study area. The trace metal lead was detected at potentially toxic concentrations greater than the PEC in both the base-flow and poststorm samples collected at two sites sampled on San Pedro Creek. The PECs for the pesticides dichlorodiphenyldichloroethane, dichlorodiphenyldichloroethylene, dichlorodiphenyltrichloroethane, and chlordane were exceeded in some of the samples at the same two sites on San Pedro Creek. Brominated flame retardants and polybrominated diphenyl ether (PBDE) 85, 153, and 154 were found in all streambed-sediment samples. Federal Environmental Quality Guidelines established by Environment Canada for PBDE 99 and PBDE 100 were exceeded in all samples in which PBDE 99 was detected and in a majority of the samples in which PBDE 100 was detected; the greatest concentrations

  15. Flood-induced transport of PAHs from streambed coal tar deposits.

    Vulava, Vijay M; Vaughn, D Syreeta; McKay, Larry D; Driese, Steven G; Cooper, Lee W; Menn, Fu-Min; Levine, Norman S; Sayler, Gary S


    We assessed whether coal tar present in contaminated streambed sediments can be mobilized by flood events and be re-deposited in an adjacent floodplain. The study was conducted within a contaminated urban stream where coal tar wastes were released into a 4-km reach from a coke plant in Chattanooga, Tennessee, USA. Sediments containing visible amounts of coal tar were dredged from the streambed in 1997-98 and 2007 as part of a cleanup effort. However, post-dredging sampling indicated that very high concentrations of polycyclic aromatic hydrocarbons (PAHs) remained in streambed sediments. Sampling of sediments in the floodplain at two sites downstream of the coke plant indicated that high concentrations of PAHs were also present in the floodplain, even though no coal tar was observed in the samples. Age-dating of the floodplain sediments using (137)Cs indicated that peak PAH concentrations were contemporary with coke plant operations. While there was little or any direct contamination of the floodplain sediments by coal tar, sediment contamination was likely a result of deposition of suspended streambed sediments containing sorbed PAHs. A flood model developed to delineate the extent of flooding in various flood recurrence scenarios confirmed the potential for contaminated streambed sediments to be transported into the adjacent floodplain. It was hypothesized that coal tar, which was visibly "sticky" during dredging-based stream cleanup, may act as a binding agent for streambed sediments, decreasing mobility and transport in the stream. Therefore, coal tar is likely to remain a persistent contaminant source for downstream reaches of the stream and the adjacent floodplain during flood events. This study also showed that even after excavation of tar-rich streambed sediments, PAH contaminated non-tarry sediments may be a source of flood-related contamination in the adjacent flood plain. A conceptual framework was developed to delineate specific mechanisms that can

  16. Protocols for collection of streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data to describe stream quality for the Hydrobiological Monitoring Program, Equus Beds Aquifer Storage and Recovery Program, city of Wichita, Kansas

    Stone, Mandy L.; Rasmussen, Teresa J.; Bennett, Trudy J.; Poulton, Barry C.; Ziegler, Andrew C.


    The city of Wichita, Kansas uses the Equus Beds aquifer, one of two sources, for municipal water supply. To meet future water needs, plans for artificial recharge of the aquifer have been implemented in several phases. Phase I of the Equus Beds Aquifer Storage and Recovery (ASR) Program began with injection of water from the Little Arkansas River into the aquifer for storage and subsequent recovery in 2006. Construction of a river intake structure and surface-water treatment plant began as implementation of Phase II of the Equus Beds ASR Program in 2010. An important aspect of the ASR Program is the monitoring of water quality and the effects of recharge activities on stream conditions. Physical, chemical, and biological data provide the basis for an integrated assessment of stream quality. This report describes protocols for collecting streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data as part of the city of Wichita's hydrobiological monitoring program (HBMP). Following consistent and reliable methods for data collection and processing is imperative for the long-term success of the monitoring program.

  17. River sedimentation and channel bed characteristics in northern Ethiopia

    Demissie, Biadgilgn; Billi, Paolo; Frankl, Amaury; Haile, Mitiku; Lanckriet, Sil; Nyssen, Jan


    Excessive sedimentation and flood hazard are common in ephemeral streams which are characterized by flashy floods. The purposes of this study was to investigate the temporal variability of bio-climatic factors in controlling sediment supply to downstream channel reaches and the effect of bridges on local hydro-geomorphic conditions in causing the excess sedimentation and flood hazard in ephemeral rivers of the Raya graben (northern Ethiopia). Normalized Difference Vegetation Index (NDVI) was analyzed for the study area using Landsat imageries of 1972, 1986, 2000, 2005, 2010, and 2012). Middle term, 1993-2011, daily rainfall data of three meteorological stations, namely, Alamata, Korem and Maychew, were considered to analyse the temporal trends and to calculate the return time intervals of rainfall intensity in 24 hours for 2, 5, 10 and 20 years using the log-normal and the Gumbel extreme events method. Streambed gradient and bed material grain size were measured in 22 river reaches (at bridges and upstream). In the study catchments, the maximum NDVI values were recorded in the time interval from 2000 to 2010, i.e. the decade during which the study bridges experienced the most severe excess sedimentation problems. The time series analysis for a few rainfall parameters do not show any evidence of rainfall pattern accountable for an increase in sediment delivery from the headwaters nor for the generation of higher floods with larger bedload transport capacities. Stream bed gradient and bed material grain size data were measured in order to investigate the effect of the marked decrease in width from the wide upstream channels to the narrow recently constructed bridges. The study found the narrowing of the channels due to the bridges as the main cause of the thick sedimentation that has been clogging the study bridges and increasing the frequency of overbank flows during the last 15 years. Key terms: sedimentation, ephemeral streams, sediment size, bridge clogging

  18. Effects of a small-scale, abandoned gold mine on the geochemistry of fine stream-bed and floodplain sediments in the Horsefly River watershed, British Columbia, Canada

    Clark, Deirdre E.; Vogels, Marjolein; van der Perk, Marcel; Owens, Philip N.; Petticrew, Ellen L.


    Mining is known to be a major source of metal contamination for fluvial systems worldwide. Monitoring and understanding the effects on downstream water and sediment quality is essential for its management and to mitigate against detrimental environmental impacts. This study aimed to examine the effe

  19. Surface-water-quality assessment of the lower Kansas River basin, Kansas and Nebraska; selected metals, arsenic, and phosphorus in streambed sediments of first- and second-order streams, 1987

    Tanner, D.Q.; Ryder, J.L.


    Concentrations of metals and nonmetallic elements were measured in the less than 63-micrometer-sized fraction of streambed-sediment samples from 422 sites on first- and second-order streams in the lower Kansas River Basin of Kansas and Nebraska. Median concentrations were of the same order of magnitude as the geometric mean concentrations in soils of the western United States. Either threshold concentrations (based on normal-probability plots) or upper percentile classes (greater than 50 percent) of concentrations were determined for 14 metals, arsenic, and phosphorus. Samples with a concentration greater than the threshold concentration indicated possible enrichment with respect to that particular element. Concentrations of the transition metals, which included chromium, cobalt, copper, manganese, nickel, and vanadium, generally were larger in the southeastern part of the study unit where Permian and Pennsylvanian shale and limestone predominate. The largest concen- trations of alakali metals, potassium and sodium, mainly were in the northwestern part of the study unit, which is an area of Quaternary loess deposits irrigated with ground water. Larger concentrations of the alkaline-earth metal, barium, also were in the northwestern part of the study unit. Concentrations of the other alkaline-earth metals, calcium, magnesium, and strontium, were larger in the southern part of the basin, which is underlain by Permian and Pennsylvanian shale and limestone. The largest concentrations of arsenic and lead and were mainly in the southeastern part of the study unit. Large concentrations of phosphorus occurred in the northwestern part of the study unit and were associated with irrigated agriculture.

  20. [Effects of invertebrate bioturbation on vertical hydraulic conductivity of streambed for a river].

    Ren, Chao-Liang; Song, Jin-Xi; Yang, Xiao-Gang; Xue, Jian


    Streambed hydraulic conductivity is a key factor influencing water exchange between surface water and groundwater. However, the streambed invertebrate bioturbation has a great effect on the hydraulic conductivity. In order to determine the impact of invertebrate bioturbation on streambed hydraulic conductivity, the investigation of invertebrate bioturbation and in-situ test of vertical hydraulic conductivity of streambed are simultaneously conducted at five points along the main stream of the Weihe River. Firstly, correlation between the streambed vertical hydraulic conductivity and grain size distribution is analyzed. Secondly, type and density of the invertebrate and their correlation to hydraulic conductivity are determined. Finally, the effect of invertebrate bioturbation on the streambed hydraulic conductivity is illustrated. The results show that the vertical hydraulic conductivity and biological density of invertebrate are 18.479 m x d(-1) and 139 ind x m(-2), respectively for the Caotan site, where sediment composition with a large amount of sand and gravel particles. For Meixian site, the sediment constitutes a large amount of silt and clay particles, in which the vertical hydraulic conductivity and biological density of invertebrate are 2.807 m x d(-1) and 2 742 ind x m(-2) respectively. Besides, for the low permeability of four sites (Meixian, Xianyang, Lintong and Huaxian), grain size particles are similar while the vertical hydraulic conductivity and biological density of invertebrate are significantly different from one site to another. However, for each site, the vertical hydraulic conductivity closely related to biological density of invertebrate, the Pearson correlation coefficient is 0.987. It can be concluded that both grain size particles and invertebrate bioturbation influence sediment permeability. For example, higher values of streambed hydraulic conductivity from strong permeability site mainly due to the large amount of large-size particles

  1. Concentrations of selected constituents in surface-water and streambed-sediment samples collected from streams in and near an area of oil and natural-gas development, south-central Texas, 2011-13

    Opsahl, Stephen P.; Crow, Cassi L.


    During 2011–13, the U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Guadalupe-Blanco River Authority, analyzed surface-water and streambed-sediment samples collected from 10 sites in the San Antonio River Basin to provide data for a broad range of constituents that might be associated with hydraulic fracturing and the produced waters that are a consequence of hydraulic fracturing. Among surface-water samples, all sulfide concentrations were less than the method detection limit of 0.79 milligrams per liter. Four glycols—diethylene glycol, ethylene glycol, propylene glycol, and triethylene glycol—were analyzed for in surface-water samples collected for this study, and none were detected. Of the 91 semivolatile organic compounds analyzed for this study, there were six detections, all but one of which were in storm-runoff samples. The base-flow sample collected at the San Antonio River at Goliad, Tex. (SAR Goliad), site contained bis(2-ethylhexyl) phthalate, a plasticizer in polyvinyl chloride and a constituent in hydraulic fracturing fluids. The storm-runoff samples collected at the San Antonio River near Elmendorf, Tex. (SAR Elmendorf), and Ecleto Creek at County Road 326 near Runge, Tex. (Ecleto 2), sites also contained bis(2-ethylhexyl) phthalate. The storm-runoff sample collected at the SAR Elmendorf site contained the plasticizer diethyl phthalate. Both storm-runoff samples collected at the Ecleto Creek near Runge, Tex. (Ecleto 1), and Ecleto 2 sites contained benzyl alcohol, a solvent commonly used in paints. Of the 67 volatile organic compounds analyzed in this study, there were a total of six detections, all of which were in base-flow samples. The surface-water sample collected at the SAR Elmendorf site contained bromodichloromethane, dibromochloromethane, and trichloromethane, all of which are disinfection byproducts associated with the chlorination of municipal water supplies and of treated municipal wastewater. The

  2. Investigation on the Sediment Characteristics of the Electrostatic Cyclonic Precipitator


    In order to find out the relationship between the sediment characteristics and collecting efficiency of the electrostatic cyclonic precipitator, an online study for the sediment characteristics of electrostatic cyclonic precipitator had been done with Kompton back scatter method, with the collecting efficiency tested at the same time. And the relationship between the sediment characteristics and the collecting efficiency was gotten. The sediment thickness increased with time extended and the concentration increased when the inlet velocity was fixed. The collecting efficiency increased with the inlet velocity increased, but dropped with the concentration increased. When the concentration and inlet velocity were fixed, the collecting efficiency drop a little with the increase of sediment thickness. The sediment would decrease the corona current in the collecting filed, which would make the electrostatic effect fall, then made the collecting efficiency drop a little.

  3. Sediment characteristics and wind-induced sediment dynamics in shallow Lake Markermeer, the Netherlands

    Kelderman, P.; Ang'weya, R.O.; De Rozari, P.; Vijverberg, T.


    In 2007/08, a study was undertaken on the sediment dynamics in shallow Lake Markermeer (the Netherlands). Firstly, sediment characteristics were determined at 49 sites in the lake. Parameters such as median grain size and loss on ignition showed a spatial as well as water depth related pattern, indi

  4. Sediment transport and carbon sequestration characteristics along mangrove fringed coasts

    TU Qiang; YANG Shengyun; ZHOU Qiulin; YANG Juan


    Mangroves play an important role in sequestering carbon and trapping sediments. However, the effectiveness of such functions is unclear due to the restriction of knowledge on the sedimentation process across the vegetation boun-daries. To detect the effects of mangrove forests on sediment transportation and organic carbon sequestration, the granulometric and organic carbon characteristics of mangrove sediments were investigated from three vegetation zones of four typical mangrove habitats on the Leizhou Peninsula coast. Based on our results, sediment transport was often“environmentally sensitive”to the vegetation friction. A transition of the sediment transport mode from the mudflat zone to the interior/fringe zone was often detected from the cumulative frequency curve. The vegetation cover also assists the trapping of material, resulting in a significantly higher concentration of organic carbon in the interior surface sediments. However, the graphic parameters of core sediments reflected a highly temporal variability due to the sedimentation process at different locations. The sediment texture ranges widely from sand to mud, altho-ugh the sedimentary environments are restricted within the same energy level along the fluvial-marine transition zone. Based on the PCA results, the large variation was mainly attributed to either the mean grain size features or the organic carbon features. A high correlation between the depth andδ13C value also indicated an increasing storage of mangrove-derived organic carbon with time.

  5. Investigation of relationship between sediment characteristics and ...


    Sediments are the final sink of heavy metals in the water body. This study examined .... environmental and health issues in many parts of the world affects many ..... erythrinus) tissues from the Eastern Aegean Sea,. Turkey. Water Research, 41(6), 1185-1192. doi: ... United State Environmental Protection Agency,. Office of ...

  6. Sediment oxygen demand in eastern Kansas streams, 2014 and 2015

    Foster, Guy M.; King, Lindsey R.; Graham, Jennifer L.


    Dissolved oxygen concentrations in streams are affected by physical, chemical, and biological factors in the water column and streambed, and are an important factor for the survival of aquatic organisms. Sediment oxygen demand (SOD) rates in Kansas streams are not well understood. During 2014 and 2015, the U.S. Geological Survey, in cooperation with the Kansas Department of Health and Environment, measured SOD at eight stream sites in eastern Kansas to quantify SOD rates and variability with respect to season, land use, and bottom-sediment characteristics. Sediment oxygen demand rates (SODT) ranged from 0.01 to 3.15 grams per square meter per day at the ambient temperature of the measurements. The summer mean SOD rate was 3.0-times larger than the late fall mean rate, likely because of increased biological activity at warm water temperatures. Given the substantial amount of variability in SOD rates possible within sites, heterogeneity of substrate type is an important consideration when designing SOD studies and interpreting the results. Sediment oxygen demand in eastern Kansas streams was correlated with land use and streambed-sediment characteristics, though the strength of relations varied seasonally. The small number of study sites precluded a more detailed analysis. The effect of basin land use and streambed sediment characteristics on SOD is currently (2016) not well understood, and there may be many contributing factors including basin influences on water quality that affect biogeochemical cycles and the biological communities supported by the stream.

  7. E. coli release from streambed to water column during base flow periods: a modeling study

    Microbial quality of stream water is important for recreation, irrigation, and other uses. It is usually evaluated by concentrations of fecal indicator bacteria (FIB) such as E. coli. Streambed sediments have been shown to harbor large FIB populations that could be released into the water column dur...

  8. A new method for mapping variability in vertical seepage flux in streambeds

    Chen, Xunhong; Song, Jinxi; Cheng, Cheng; Wang, Deming; Lackey, Susan O.


    A two-step approach was used to measure the flux across the water-sediment interface in river channels. A hollow tube was pressed into the streambed and an in situ sediment column of the streambed was created inside the tube. The hydraulic gradient between the two ends of the sediment column was measured. The vertical hydraulic conductivity of the sediment column was determined using a falling-head permeameter test in the river. Given the availability of the hydraulic gradient and vertical hydraulic conductivity of the streambed, Darcy’s law was used to calculate the specific discharge. This approach was applied to the Elkhorn River and one tributary in northeastern Nebraska, USA. The results suggest that the magnitude of the vertical flux varied greatly within a short distance. Furthermore, the flux can change direction from downward to upward between two locations only several meters apart. This spatial pattern of variation probably represents the inflow and outflow within the hyporheic zone, not the regional ambient flow systems. In this study, a thermal infrared camera was also used to detect the discharge locations of groundwater in the streambed. After the hydraulic gradient and the vertical hydraulic conductivity were estimated from the groundwater spring, the discharge rate was calculated.

  9. Sediment characteristics and transportation dynamics of the Ganga River

    Singh, Munendra; Singh, Indra Bir; Müller, German


    Understanding of river systems that have experienced various forcing mechanisms such as climate, tectonics, sea level fluctuations and their linkages is a major concern for fluvial scientists. The 2525-km-long Ganga River derives its fluvial flux from northern part of the Indian subcontinent and drops in the Ganga-Brahmaputra delta and the Bengal fan regions. This paper presents a study of the Ganga River sediments for their textural properties, grainsize characteristics, and transportation dynamics. A suite of recently deposited sediments (189 bedload samples and 27 suspended load samples) of the river and its tributaries was collected from 63 locations. Dry and wet sieve methods of grainsize analysis were performed and Folk and Ward's parameters were calculated. Transportation dynamics of the sediment load was assessed by means of channel hydrology, flow/sediment rating curves, bedform mechanics, grainsize images, and cumulative curves. Textural properties of the bedload sediments of the Ganga River tributaries originating from the Himalaya orogenic belt, the northern Indian craton and the Ganga alluvial plain regions are characterised by the predominance of fine to very fine sand, medium to fine sand, and very fine sand to clay, respectively. Downstream textural variations in the bedload and suspended load sediments of the Ganga River are, therefore, complex and are strongly influenced by lateral sediment inputs by the tributaries and channel slope. At the base of the Himalaya, a very sharp gravel-sand transition is present in which median grainsize of bedload sediments decreases from over - 0.16 Φ to 2.46 Φ within a distance of 35 km. Downstream decline in mean grainsize of bedload sediments in the upper Ganga River within the alluvial plain can be expressed by an exponential formula as: mean grainsize (in Φ) = 0.0024 × Distance (in kilometres from the Himalayan front) + 1.29. It is a result of selective transport phenomena rather than of abrasion, the

  10. Streambed microstructure predicts evolution of development and life history mode in the plethodontid salamander Eurycea tynerensis.

    Bonett, Ronald M; Chippindale, Paul T


    Habitat variation strongly influences the evolution of developmentally flexible traits, and may drive speciation and diversification. The plethodontid salamander Eurycea tynerensis is endemic to the geologically diverse Ozark Plateau of south-central North America, and comprises both strictly aquatic paedomorphic populations (achieving reproductive maturity while remaining in the larval form) and more terrestrial metamorphic populations. The switch between developmental modes has occurred many times, but populations typically exhibit a single life history mode. This unique system offers an opportunity to study the specific ecological circumstances under which alternate developmental and life history modes evolve. We use phylogenetic independent contrasts to test for relationships between a key microhabitat feature (streambed sediment) and this major life history polymorphism. We find streambed microstructure (sediment particle size, type and degree of sorting) to be highly correlated with life-history mode. Eurycea tynerensis is paedomorphic in streams containing large chert gravel, but metamorphoses in nearby streams containing poorly sorted, clastic material such as sandstone or siltstone. Deposits of large chert gravel create loosely associated streambeds, which provide access to subsurface water during dry summer months. Conversely, streambeds composed of more densely packed sandstone and siltstone sediments leave no subterranean refuge when surface water dries, presumably necessitating metamorphosis and use of terrestrial habitats. This represents a clear example of the relationship between microhabitat structure and evolution of a major developmental and life history trait, and has broad implications for the role of localized ecological conditions on larger-scale evolutionary processes.

  11. Effect of streambed substrate on macroinvertebrate biodiversity

    Xuehua DUAN; Zhaoyin WANG; Shimin TIAN


    Macroinvertebrates are important components of stream ecosystems, and are often used as indicator spe-cies for the assessment of river ecology. Numerous studies have shown that substrate is the primary physical envir-onmental variable affecting the taxa richness and density of macroinvertebrates. The aim of this work is to study the effects of the characteristics of streambed substrate, such as grain size, shape, and roughness, on the composition and biodiversity of macroinvertebrates. A field experi-ment was done on the Juma River, a second-order moun-tain stream in northern China. Substrata of cobbles, hewn stones, pebbles, coarse sand, and fine sand were used to replace the original gravel and sand bed in a stretch of 30 m in length. The sampling results indicated that the macroinvertebrate assemblage is significantly affected by the grain size, porosity and interstitial dimension of the substrate, while it is rarely affected by the shape and the surface roughness of the experimental substrata. Macroinvertebrate compositions in cobbles and hewn stones were stable and changed least over time. The taxa richness and density of individuals in the substrata of cobbles, hewn stones, and pebbles are much higher than in those of the coarse sand and fine sand.

  12. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds.

    Landon, M K; Rus, D L; Harvey, F E


    Streambed hydraulic conductivity (K) values were determined at seven stream transects in the Platte River Basin in Nebraska using different instream measurement techniques. Values were compared to determine the most appropriate technique(s) for use in sandy streambeds. Values of K determined from field falling- and constant-head permeameter tests analyzed using the Darcy equation decreased as permeameter diameter increased. Seepage meters coupled with hydraulic gradient measurements failed to yield K values in 40% of the trials. Consequently, Darcy permeameter and seepage meter tests were not preferred approaches. In the upper 0.25 m of the streambed, field falling- and constant-head permeameter tests analyzed with the Hvorslev solution generally had similar K values that were significantly greater than those determined using the Hazen grain-size, Bouwer and Rice slug test for anisotropic and isotropic conditions, and Alyamani and Sen grain-size methods; median differences between these tests and the Hvorslev falling-head 60 cm diameter permeameter were about 8, 9, 17, and 35 m/day, respectively. The Hvorslev falling-head permeameter test is considered the most robust method for measuring K of the upper 0.25 m of the streambed because of the inherent limitations of the empirical grain-size methods and less sediment disturbance for permeameter than slug tests. However, lateral variability in K along transects on the Platte, North Platte, and Wood Rivers was greater than variability in K between valid permeameter, grain-size, or slug tests, indicating that the method used may matter less than making enough measurements to characterize spatial variability adequately. At the Platte River tributary sites, the upper 0.3 m of the streambed typically had greater K than sediment located 0.3 to 2.5 m below the streambed surface, indicating that deposits below the streambed may limit ground water/surface water fluxes. The Hvorslev permeameter tests are not a practical

  13. Sedimentation Characteristics of Kaolin and Bentonite in Concentrated Solutions

    Abdulah Obut


    Full Text Available The sedimentation characteristics of two clays, namely kaolinite and bentonite, were determinated at high clay (5 % wt/vol and electrolyte (1 N concentrations using various inorganic-organic compounds. It was observed that the settling behaviour of kaolinite (1:1 clay and montmorillonite (2:1 clay is quite different due to the structural differences between these minerals. Although, similar initial settling rates and final sediment volumes were obtained after 24 hours of settling time for kaolin suspensions, the corresponding rates and volumes for bentonite suspensions varied greatly with the used chemical compound. According to the experimental results, a further intensive theoretical and experimental investigation is needed to reveal the mechanism underlying the sedimentation characteristics of clay minerals at high clay and electrolyte concentrations.

  14. Surface pore tension and adsorption characteristics of polluted sediment


    Most natural sediment particles have numerous pores and a complex surface texture which facilitates their adsorption of contaminants. Particle surface structure,therefore,is an important instrumental factor in the transport of contaminants,especially in water environments. This paper reports on the results of adsorption-desorption experiments to analyze polluted sediment surface pore tension characteristics performed on samples from the bottom of Guanting Reservoir. In our analysis,the Frenkel-Halsey-Hill(FHH) equation is applied to calculate the fractal dimensions of particles to quantify the surface roughness and pore tension characteristics. The results show that the surface fractal dimensions of sediment particle surfaces normally measure from 2.6 to 2.85. The volume of pores smaller than 10 nm changes significantly after being contaminated with pollutants and the fractal dimension decreases because the pores adsorb the contaminants.

  15. Magnetic Characteristics of Surface Sediments of Liaodong Bay, China

    WANG ShuangP; WANG Yonghong; LIU Jian; YU Yiyong


    Analysis of magnetic properties of marine surface sediments has been gradually proved to be one of the effective means for researching the source of marine sediments. In this paper, samples from 39 sites in Liaodong Bay were collected to analyze the magnetic characteristics of the surface sediments. Magnetic study indicated that the surface sediments of the Liaodong Bay are char-acterized by magnetite. In the middle and eastern part and the southwest corner of the Bay, the main magnetic grains were coarse multi-domain and pseudo-single-domain particles, while in other areas single-domain and pseudo-single-domain particles constitute the majority. Based on grain size and environmental magnetism data, the content of magnetic minerals has a positive correlation with the hydrodynamic environment when the magnetic mineral domain is finer. However, the content of magnetic minerals is in a complex relationship with the hydrodynamic environment in the coarse magnetic domain of magnetic minerals found in central Liaodong Bay and places outside the Fuzhou Bay, implying that the strong hydrodynamic environment accelerates the sedimentation of coarse magnetic minerals. Based on geographic pattern of magnetic properties, it can be inferred that the main provenance of the surface sediments of the Liaodong Bay is the surrounding rivers, and the comparative analysis indicates that Yellow River substances maybe also exist in the bay.

  16. Sediment characteristic on hydropower plant Bakaru, South Sulawesi

    Firman, Yunus, A. M. Shiddiq; Yunus, M. Yusuf


    This research is aimed to determine the distributed sediment composition and its size particle impact on flow profile in the pipe. The sediment sample is collected from Hydropower Plant's dam located at Bakaru Sulawesi Selatan. The sample is dried in the oven then steered up using a screen with 0.25; 0.5; and 0.75 mm. Sediment identification is measured using Fourier Transform Infrared Spectrophotometer (FTIR) and X-Ray Fluorescence Spectrophotometer (XRF). The assessment of flow type in the pipe with five flow rate variation for every single sediment diameter is assessed in Fluid Measurement Laboratory under Mechanical Engineering Department, State Polytechnic of Ujung Pandang. As a result of steered up processed, it is obtained that the sediment distribution with diameter of ø = 0.25 mm is 55.80%; for ø = 0.5 mm is 7.91%; and ø = 0.75 mm is 36.29%. From FTIR test, it is obtained the spectra with wave number of 466.77; 536.14; 644.22; 694.37; 788.89; 912.33; 1006.77; 1031.92; and 105.21 cm-1. From XRF assessment, it can be obtained that composition of SiO2 is 53.64%, Al2O3 is 22.93%, Fe2O3 is 9.24%, MgO is 4.0%, K2O is 3.84%, Na2O is 2.4%, CaO is 1.71%, and TiO2 is 1.06%. From the flow profile assessment, it obtains Reynolds number is lesser than 500 for these three particle diameters variation. It can be concluded that sediment characteristic consists of fine sand about 55.80% and coarse sand about 44.20%, where SiO2 dominates it by about 53.64% where flow in the pipe shown the laminar type.

  17. Biogeochemical characteristics of nitrogen and phosphorus in Jiaozhou Bay sediments

    LI Xuegang; SONG Jinming; YUAN Huamao; DAI Jicui; LI Ning


    Sediment samples were cored from 3 locations representing the inner bay, the outer bay and the bay mouth of Jiaozhou Bay in September 2003 to study the source and biogeochemical characteristics of nitrogen and phosphorus in the bay. The content and vertical distributions of total nitrogen (TN), total phosphorus (TP), organic nitrogen (ON), organic phosphorus (OP), inorganic nitrogen (IN), inorganic phosphorus (IP), the ratio of organic carbon and total nitrogen (OC/TN), and the ratio of total nitrogen and total phosphorus (TN/TP) in the sediments were analyzed. The results show that both TN and TP in surface sediments decrease from the inner bay to the outer bay. In general, ON occupies 50%-70% of TN and IP accounts for more than 60% of TP. In ratio of OC:TN, the nitrogen accumulated in the sediments from the inner bay and the bay mouth came mainly from terrestrial sources, and the portion of autogenetic nitrogen was 28.9% and 13.1%, respectively. However, in the outer bay, nitrogen was mainly autogenetic,accounting for 62.1% of TN, whereas phosphorus was mainly land-derived. The sedimentation fluxes of nitrogen and phosphorus varied spatially. The overall diagenesis rate of nitrogen was higher than that of phosphorus. Specifically, the diagenesis rate of OP was higher than that of IP. However, the diagenesis rate of ON was not always higher than that of IN. In species, the diagenesis rate of IN is sometimes much higher than that of the OC. In various environments, the diagenesis rate is, to some degree, affected by OC, pH, Eh, and Es.

  18. Quantifying streambed advection and conduction heat fluxes

    Caissie, Daniel; Luce, Charles H.


    Groundwater and accompanying heat fluxes are particularly relevant for aquatic habitats as they influence living conditions both within the river and streambed. This study focuses on the theory and the development of new equations to estimate conduction and advection heat fluxes into and out of the bed, correcting some earlier misunderstandings and adding parameterizations that extend our understanding of timing of heat fluxes. The new heat flux equations are illustrated using Catamaran Brook (New Brunswick, Canada) stream/streambed temperature data. We show important relationships between fluxes when the surface water temperature (1) follows a sinusoidal function superimposed on a steady state condition (constant deep streambed temperature) and (2) when sinusoidal variations in stream temperature at two frequencies (annual and diel) are superimposed. When the stream temperature is used as a prescribed boundary condition, the contribution of bed fluid fluxes to stream temperature occurs through the effects of conductive thermal gradients, not through direct contribution/mixing of cold/warm water. Boundary conditions can be modified, however, to account for direct contribution of cold/warm water (e.g., localized upwelling) and consequences for the conduction heat flux. Equations developed allow for prediction of conductive fluxes to the bed during summer driven by diel and annual temperature fluctuations of the stream water and good agreement was observed between analytic solutions and field data. Results from this study provide a better insight into groundwater and heat fluxes which will ultimately result in better stream temperature models and a better management of fisheries resources.

  19. Solidification of Suspended Sediments with Two Characteristic Grain Sizes

    Zarski, G.; Borja, R. I.


    We use mixture theory to formulate the problem of solidification of sediments with two characteristic grain sizes in a suspension. The formulation involves a mixture of larger grains in a thick fluid, where the thick fluid is a mixture of smaller particles in a host fluid. This mixture within a mixture description resembles a double porosity representation in unsaturated soil mechanics. Two independent variables of interest include the volume fraction of the larger grains relative to the total volume of the mixture, and the volume fraction of the smaller grains relative to the volume of the thick fluid. The two volume fractions are coupled by a constitutive law based on the Richardson-Zaki equation. The governing partial differential equations describing the settling velocities of the two solid groups are solved simultaneously in space and time using the finite element method.

  20. Temporal Variability in Vertical Groundwater Fluxes and the Effect of Solar Radiation on Streambed Temperatures Based on Vertical High Resolution Distributed Temperature Sensing

    Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.


    Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow

  1. Evaluation of streambed scour at bridges over tidal waterways in Alaska

    Conaway, Jeffrey S.; Schauer, Paul V.


    The potential for streambed scour was evaluated at 41 bridges that cross tidal waterways in Alaska. These bridges are subject to several coastal and riverine processes that have the potential, individually or in combination, to induce streambed scour or to damage the structure or adjacent channel. The proximity of a bridge to the ocean and water-surface elevation and velocity data collected over a tidal cycle were criteria used to identify the flow regime at each bridge, whether tidal, riverine, or mixed, that had the greatest potential to induce streambed scour. Water-surface elevations measured through at least one tide cycle at 32 bridges were correlated to water levels at the nearest tide station. Asymmetry of the tidal portion of the hydrograph during the outgoing tide at 12 bridges indicated that riverine flows were stored upstream of the bridge during the tidal exchange. This scenario results in greater discharges and velocities during the outgoing tide compared to those on the incoming tide. Velocity data were collected during outgoing tides at 10 bridges that experienced complete flow reversals, and measured velocities during the outgoing tide exceeded the critical velocity required to initiate sediment transport at three sites. The primary risk for streambed scour at most of the sites considered in this study is from riverine flows rather than tidal fluctuations. A scour evaluation for riverine flow was completed at 35 bridges. Scour from riverine flow was not the primary risk for six tidally-controlled bridges and therefore not evaluated at those sites. Field data including channel cross sections, a discharge measurement, and a water-surface slope were collected at the 35 bridges. Channel instability was identified at 14 bridges where measurable scour and or fill were noted in repeated surveys of channel cross sections at the bridge. Water-surface profiles for the 1-percent annual exceedance probability discharge were calculated by using the Hydrologic

  2. Evaluation of streambed scour at bridges over tidal waterways in Alaska

    Conaway, Jeffrey S.; Schauer, Paul V.


    The potential for streambed scour was evaluated at 41 bridges that cross tidal waterways in Alaska. These bridges are subject to several coastal and riverine processes that have the potential, individually or in combination, to induce streambed scour or to damage the structure or adjacent channel. The proximity of a bridge to the ocean and water-surface elevation and velocity data collected over a tidal cycle were criteria used to identify the flow regime at each bridge, whether tidal, riverine, or mixed, that had the greatest potential to induce streambed scour. Water-surface elevations measured through at least one tide cycle at 32 bridges were correlated to water levels at the nearest tide station. Asymmetry of the tidal portion of the hydrograph during the outgoing tide at 12 bridges indicated that riverine flows were stored upstream of the bridge during the tidal exchange. This scenario results in greater discharges and velocities during the outgoing tide compared to those on the incoming tide. Velocity data were collected during outgoing tides at 10 bridges that experienced complete flow reversals, and measured velocities during the outgoing tide exceeded the critical velocity required to initiate sediment transport at three sites. The primary risk for streambed scour at most of the sites considered in this study is from riverine flows rather than tidal fluctuations. A scour evaluation for riverine flow was completed at 35 bridges. Scour from riverine flow was not the primary risk for six tidally-controlled bridges and therefore not evaluated at those sites. Field data including channel cross sections, a discharge measurement, and a water-surface slope were collected at the 35 bridges. Channel instability was identified at 14 bridges where measurable scour and or fill were noted in repeated surveys of channel cross sections at the bridge. Water-surface profiles for the 1-percent annual exceedance probability discharge were calculated by using the Hydrologic

  3. [Limnology of high mountain tropical lake, in Ecuador: characteristics of sediments and rate of sedimentation].

    Gunkel, Günter


    Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (limnological study was therefore undertaken at Lake San Pablo, Ecuador, to analyze the basic limnological processes of the lake, which has a tendency for eutrophication. Sediment quality of San Pablo Lake is given under consideration of horizontal and vertical distribution using sediment cores. Significance of sediments for eutrophication process of lakes is demonstrated using phosphorus concentration of sediments as well as the phosphorus retention capacity of the sediments by ratio Fe/P. Dating of the sediments is done using 137Cs and 210Pb, but the activity of 137Cs in the sediment was very low nearly at the detection level. Sedimentation rate is determined to be 3.5 mm/year and the sediment cores represent about 110 years. P concentration of the sediments is high (approximately 5 g/kg dry substance), and P retention capacity by Fe is insufficient (Fe/P = 4). The sediment quality did not change significantly during the past decades, and the trophic state of San Pablo Lake was already less or more eutrophic 110 years ago. The contamination of the lake sediments by heavy metals is insignificant.

  4. [Distribution Characteristics and Pollution Status Evaluation of Sediments Nutrients in a Drinking Water Reservoir].

    Huang, Ting-lin; Liu, Fei; Shi, Jian-chao


    The main purpose of this paper is to illustrate the influence of nutrients distribution in sediments on the eutrophication of drinking water reservoir. The sediments of three representative locations were field-sampled and analyzed in laboratory in March 2015. The distribution characteristics of TOC, TN and TP were measured, and the pollution status of sediments was evaluated by the comprehensive pollution index and the manual for sediment quality assessment. The content of TOC in sediments decreased with depth, and there was an increasing trend of the nitrogen content. The TP was enriched in surface sediment, implying the nutrients load in Zhoucun Reservoir was aggravating as the result of human activities. Regression analysis indicated that the content of TOC in sediments was positively correlated with contents of TN and TP in sediments. The TOC/TN values reflected that the vascular land plants, which contain cellulose, were the main source of organic matter in sediments. The comprehensive pollution index analysis result showed that the surface sediments in all three sampling sites were heavily polluted. The contents of TN and TP of surface sediments in three sampling sites were 3273-4870 mg x kg(-1) and 653-2969 mg x kg(-1), and the content of TOC was 45.65-83.00 mg x g(-1). According to the manual for sediment quality assessment, the TN, TP and TOC contents in sediments exceed the standard values for the lowest level of ecotoxicity, so there is a risk of eutrophication in Zhoucun Reservoir.

  5. The non-layering of gravel streambeds under ephemeral flood regimes

    Laronne, Jonathan B.; Reid, Ian; Yitshak, Yitshak; Frostick, Lynne E.


    The two-layer format common to perennial streambeds, in which a relatively coarse armour overlies a finer subarmour, develops as a function of both the ingress and subsequent near-surface winnowing of interstitial material and the selective non-entrainment or slower transport velocity of coarse clasts. Ephemeral streams appear to lack such vertical layering or are characterized by weak layer development. Some of this may be due to the degree of mixing associated with the scour-and-fill process. However, continuous monitoring of bedload discharge in the Nahal Yatir in the northern Negev Desert reveals that sediment transport rates are extremely high so that the chance of armour layer development through selective non-entrainment is much reduced. Indeed, a comparison of the bedload and bed material size-distributions confirms a high degree of similarity and hints at equal mobility regardless of clast size. The monitoring programme also indicates that the bed becomes highly mobile at comparatively modest fluid shear, so that practically all floods are associated with high transport rates. Consequently, the winnowing that might be brought about by low transport-rate events does not occur. Even within a single event, winnowing is precluded by the rapid nature of flow recession that is so characteristic of flash-floods. The high degree of bed material mobility is attributable, in part, to the lack of strength that would otherwise be a corollary of armour development. However, it also highlights the divergent nature of the feedback loops that govern the relationship between flow and channel deposit in ephemeral and perennial systems.

  6. sediment characteristics and hydrodynamic setting of reef platform ...


    Sediment grain size distribution, carbonate content and current velocities for the Kunduchi area are used to determine .... calculated as weight loss during leaching. The grain size .... biogenic remains such as whole shells and shell fragments.

  7. Biogeochemical characteristics of sedimenting particles in Dona Paula Bay, India

    DeSouza, F.P.; Garg, A.; Bhosle, N.B.

    of total sedimented particulate matter (TPM), biogenic silica (BSi) and total neutral carbohydrates (TCHO). TPM, BSi and TCHO fluxes showed seasonal and annual variations. Fluxes of BSi showed significant correlations with the fluxes of TCHO and fucose...

  8. Characteristics of humic and fulvic acids in Arabian Sea sediments

    Sardessai, S.

    Humic and fulvic acids isolated from some of the shelf, slope and offshore sediments of the Arabian Sea were studied. The molecular weight, functional groups, elemental composition and infrared spectra were examined. Humic substances, dominated...

  9. Characteristics of Water and Sediment Exchange Between Yangtze Estuary and Hangzhou Bay

    KONG Jun; SONG Zhi-yao; XIA Yun-feng; ZHANG Wei-sheng


    Based on the 2-D flow and sediment numerical model of the Yangtze Estuary and the Hangzhou Bay, the characteristics of water and sediment exchange in their joint waters is studied through quantitative calculation and analysis of the characteristics of water flow and sediment transportation. The results show that there is periodical water and sediment exchange in this joint waters, that the net water exchange appears mainly between 0~6 m depth (theoretical datum plane, the same below) offshore and the maximum is near the depth of 2 m, and that the net sediment exchange mainly appears between 0~5 m depth and the maximum is near the depth of 3 m, indicating that the range of water flow passage is different from that of sediment transport from the Yangtze Estuary to the Hangzhou Bay. Combined with the results of numerical simulation, this paper also analyzes the hydrodynamical mechanism influencing water and sediment exchange between the Yangtze Estuary and the Hangzhou Bay, including tidal fluctuation, tidal current kinetic energy, tide-induced residual current and the trace of water particles. Finally, the sediment transportation passage on the Nanhui tidal flat is discussed, and the results show that sediment is transported into the Hangzhou Bay from the south side of Shipilei, while sediment is brought back to the South Channel of the Yangtze Estuary from the north side.

  10. Effects of Spatial Variability in Flow and Sediment Transport on Benthic Invertebrates During Runoff Events: Patch and Reach-Scale Challenges

    Kenworthy, S.


    The short-term impact of streamflow increases on benthic populations depends on spatial patterns of organism dispersal and mortality that are difficult to observe and quantify in the field. Laboratory and field experiments suggest that the size distribution, structure, and stability of streambed sediment play critical roles in mediating the effects of flow increases on dispersal and mortality of organisms. I present the results of laboratory flume experiments in which flow and sediment transport were progressively increased and the resulting displacement of aquatic insect larvae was quantified. These and other experiments demonstrate that the displacement and mortality of benthic organisms scales with streambed entrainment and sediment transport, but that bed structure and the physical and behavioral traits of the biota can strongly influence this relationship. Application of these patch-scale experimental results to understanding the hydrogeomorphic determinants of reach-scale flood impacts involves important scientific challenges and uncertainties. Reliable estimation of the spatial variability of streambed mobilization and sediment transport as a function of channel and substrate characteristics, flow history and sediment supply is necessary to compare the effects of different events or among different stream reaches. Also needed is a better appreciation of the spatial scales of organism dispersal during flow events and the physical and biological controls on patterns of dispersal at various scales.

  11. Characteristics of Sediments in the James River Estuary, Virginia, 1968 (NODC Accession 7001081)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report presents data on the physical and chemical characteristics of bottom sediments in the James River estuary, Virgina. The data were generated as part of a...

  12. The types and characteristics of man-induced sediment disaster


    The man-induced sediment disaster includes material erosion, transportation and accumula-tion by human activities. It possesses special attribute in sociology and disaster science. In accordancewith human activities, geomorphologic location, behavior and particular, the man-induced sedimentdisaster can be divided into 4 types: the drainage network, slope and gully, channel and plain-estu-au-coastline. Each type includes erosion, transportation, accumulation, complexity and cascading.Based on human activity, geomorphology, sediment mechanics and catastrophology, the man-inducedsediment disaster is characterized as follows: (1) accelerating tendency with geographical zoning back-ground; (2) non-order characters by blind action without special technical training; (3) gradually andsharply changing with human environment vibration; and (4) complexity and non-linear figure, etc.One of the reasons leading to man-induced sediment disaster is human environment vibration.

  13. Experimental Investigation on Flow Characteristics at Leeside of Suspended Flexible Curtain for Sedimentation Enhancement

    LI Yan-hong; YU Guo-liang


    A new patent registered device-suspended flexible curtain (SFC) for sedimentation enhancement is proposed in this paper, which consists of two parts: a hght-weight curtain with sediment-passing windows and a heavy pillar for the device stability. The mechanism of trapping nearbed sediment by the SFC is such that a primary and a secondary circulations with horizontal hubs would be formed at the leeside when it is placed on beds in running flow; the velocities within the sediment-passing windows are locally accelerated, the nearbed sediments would be brought by the flow through the win-dows, and then settled down within the primary circulation zone. Experimental tests on hydraulic characteristics are con-ducted in a laboratory flume with rigid bed. It is found that the dimensions of the curtain and the sediment-passing win-dows determine the characteristics of the primary and the secondary circulations. The intensity of the primary and the sec-ondary circulations is dominated by the size of the sediment-passing window. Whether the secondary circulation would contact the bed or not depends on the level of the sediment-passing window. The length and the height of the primary cir-culation zone demonstrate quasi linear relationships with the effective height of the SFC. And the tests on sandy bed flume show that the sediment deposition happens just in the primary circulation zone.

  14. Biogeochemical characteristics of sedimenting particles in Dona Paula Bay, India

    D'souza, Fraddry; Garg, Anita; Bhosle, Narayan B.


    Sedimenting particles were collected at weekly intervals from October to May during 1995-1997 at a station in the coastal waters of Dona Paula Bay on the west coast of India. Sedimenting particles were analysed for concentration and composition of total sedimented particulate matter (TPM), biogenic silica (BSi) and total neutral carbohydrates (TCHO). TPM, BSi and TCHO fluxes showed seasonal and annual variations. Fluxes of BSi showed significant correlations with the fluxes of TCHO and fucose indicating that at the study site diatoms were associated with the production of carbohydrates. However, a high content of arabinose plus xylose (˜56% of TCHO without glucose) in some samples and their negative correlations with fucose may suggest terrestrial inputs. Sedimenting particles depleted in glucose content were enriched in rhamnose, fucose, xylose, mannose and galactose. A principal component analysis based on log-normalized wt% of monosaccharides established three factors that contributed 78% of total variance. The first factor was mostly controlled by the abundance of arabinose and xylose while the second and third factors were dependent on fucose, galactose, mannose and rhamnose. Carbohydrate composition data suggest that the nature and sources of organic matter at the study site varied over the period of study.

  15. Sediment characteristics and provenance of the Taiwan Shoal in the southern Taiwan Strait

    Koo, W. S.; Lin, A. T.; Kuo, L. W.; Lee, Y. H.


    The Taiwan Shoal in the southern Taiwan Strait exhibits a lobe-shaped shallow water area, with a depth less than around 40 m and an area approximately of 13,000 km2. The Shoal consists of relict sediments remnant from deltaic deposits during the last glacial period and associated with the paleo-Min River. We collected seafloor sediments in and around the Taiwan Shoal to study the sediment characteristics and provenance of the Shoal as well as Taiwanese river sediments to characterize sediment sourced from southern Taiwan. Our results help to understand possible sediment delivery pathways in a source-to-sink context from the southern Taiwan Strait to the northern South China Sea. The method of X-ray diffraction is used to identify mineral compositions for muds and mineral compositions are examined under polarized microscope for sands. Zircon grains are separated from heavy minerals for U-Pb dating in order to understand the sediment source terranes. Sediments of the Taiwan Shoal are mostly tawny-colored, medium to coarse-grained sands with abundant shell fragments and shallow-water benthic foraminifera. Sediments to the south of the Taiwan Shoal and in the outer shelf consist of dark brown-colored and fine-grained sands with rare shell fragments. Siliciclastic compositions of the Taiwan Shoal sediments are mostly quartz. The second abundant composition is rock fragments with more occurrences near the Chinese coastline and the Penghu archipelago. Slate fragments are found to occur near Taiwan, especially in the Penghu Channel area. Clay minerals from the Penghu Channels and south of the Taiwan Shoal are dominated by illite and chlorite with minor smectite and kaolinite. The sediment colors and mineral species are very different for the sediments of the Taiwan Shoal and outer shelf, revealing that these two areas featuring different oceanographic processes and sediment provenance.

  16. Inversion of Tsunamis Characteristics from Sediment Deposits Based on Ensemble Kalman Filtering

    Wang, Jian-Xun; Xiao, Heng; Weiss, Robert


    Sediment deposits are the only leftover records from paleo tsunami events. Therefore, inverse modeling method based on the information contained in the deposit is an indispensable way of deciphering the quantitative characteristics of the tsunamis, e.g., the flow speed and the flow depth. While several models have been proposed to perform tsunami inversion, i.e., to infer the tsunami characteristics based on the sediment deposits, the existing methods lack mathematical rigorousness and are not able to account for uncertainties in the inferred quantities. In this work, we propose an inversion scheme based on Ensemble Kalman Filtering (EnKF) to infer tsunami characteristics from sediment deposits. In contrast to traditional data assimilation methods using EnKF, a novelty of the current work is that we augment the system state to include both the physical variables (sediment fluxes) that are observable and the unknown parameters (flow speed and flow depth) to be inferred. Based on the rigorous Bayesian inference...

  17. Hydraulic and sediment characteristics at the North Channel Bridge, Jamaica Bay, New York

    Staubitz, W.W.; Wolcott, S.W.


    Data were collected during the spring of 1984 in the vicinity of North Channel Bridge in Jamaica Bay, New York to define the hydraulic regime and the physical characteristics and chemical quality of bottom sediments. The data were used in a semiquantitative analysis to predict the effects of bridge replacement and the attendant resuspension of bottom sediments, on the hydraulics and quality of water and bottom sediments. The bay-bottom configuration at the bridge site was defined, and continuous tidal stage and tidal velocity data were collected for about a month. In addition, eight bottom-sediment samples were collected near the bridge and analyzed. Results of the hydraulic analysis show that the proposed bridge should not have any measurable effect on the net water transport at the bridge cross section. The sediment data indicate that bottom sediments are relatively unpolluted in the vicinity of the bridge. Seventy-five percent of the resuspended bottom sediments will probably settle within 186 m of the bridge during an average ebb tide. Metals and nutrients released from the sediments to the water column are expected to be diluted far below detection limits. The extra oxygen demand exerted by the resuspended bottom sediments is also expected to be far less than ambient biochemical oxygen demand of the water column. (USGS)


    Sonoda, Yoshihiro; Takikawa, Kiyoshi; Aoyama, Chiharu; Saito, Takashi

    In recent years, the Ariake Sea environment has become severely degraded, resulting in changes in biota, a marked overall decrease in the number of species, frequent outbreaks of red tides, and the deterioration of water quality and the sediment environment. In this study, we examined the relationship between increases in red tide frequency and duration and fluctuations in the aquatic environment. We also investigated the distribution of sediments, and the correlation between benthic species distribution and sediment type. The results show that interannual fluctuations in water quality (water temperature, transparency, and nutrient levels) were responsible for the increases in red tide outbreaks. The Ariake Sea was divided into zones on the basis of the granularity and chemical characteristics of the sediment. The results showed differing number of benthic species in each zone, demonstrating a relationship between the sediment environment and benthos distributions.

  19. Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies

    Sebök, Éva; Calvache, Carlos Duque; Engesgaard, Peter Knudegaard;


    Streambed hydraulic conductivity is one of the main factors controlling variability in surface water-groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were...... therefore determined from in-stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in-stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater-dominated stream. Seasonal...... small-scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional...

  20. Sediment pollution characteristics and in situ control in a deep drinking water reservoir.

    Zhou, Zizhen; Huang, Tinglin; Li, Yang; Ma, Weixing; Zhou, Shilei; Long, Shenghai


    Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42mg/L, 3.33mg/L, 0.22mg/L, 2.56mg/L, and 0.61mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively.

  1. Streambed scour evaluations and conditions at selected bridge sites in Alaska, 2012

    Beebee, Robin A.; Schauer, Paul V.


    Streambed scour potential was evaluated at 18 river- and stream-spanning bridges in Alaska that have unknown foundation details or a lack of existing scour analysis. All sites were evaluated for stream stability and long-term scour potential. Contraction scour and abutment scour were calculated for 17 bridges, and pier scour was calculated for 7 bridges that had piers. Vertical contraction (pressure flow) scour was calculated for sites with overtopping floods (where the modeled water surface was higher than the superstructure of the bridge). In most cases, hydraulic models of the 1- and 0.2-percent annual exceedance probability floods (also known as the 100- and 500-year floods, respectively) were used to derive hydraulic variables for the scour calculations. Alternate flood values were used in scour calculations for sites where smaller floods overtopped a bridge or where standard flood-frequency estimation techniques did not apply. Scour was also calculated for large recorded floods at several sites. Equations for scour in cohesive soils were used for sites where streambed sediment was silt-sized or smaller.

  2. Human impact on the Middle and Late Holocene floodplain sediment characteristics along the River Rhine

    Erkens, G.; Prins, M.; Toonen, W.


    The Rhine catchment has an extensive history of human land use. Deforestation to create arable land started as early as 6300 cal BP, at the onset of the Late Neolithic. This caused increased erosion and sediment production on the hillslopes in the upstream part of the fluvial system. Recent studies show that this human-induced erosion also increased the suspended load sedimentation rates in the Rhine trunk valley and delta from approximately 3000 years ago. Besides such changes in the quantity of fine sediment, it is hypothesised that human land use may also change the source of the sediment supplied to the fluvial system. Sediment released by erosion during agricultural practises may be different than the sediments that erode under conditions of forest cover. If this is true, the Late Holocene floodplain sediments have different characteristics in terms of grain size and texture than older floodplain deposits (Middle Holocene). To test this, we collected 15 cores from three large stretches along the trunk Rhine River: the Upper Rhine Graben, the Lower Rhine Valley, and the Rhine Delta. Using detailed palaeogeographic reconstructions of the area, the cores were carefully selected in order to (i) to obtain the longest possible record (preferably up to 5000 years), and (ii) to have a continuous sedimentation record as much as possible. Cores are taken from residual channels, and distal flood basin and plains, although very distal sites were avoided to minimise the amount of peat or soil formation. Individual age-depth models are derived from radiocarbon dates taken in the cores, correlation of the regional deposits with a known age, and by using groundwater models (in the delta). Grain size characteristics of the siliciclastic sediment fraction were analysed every 2-5 cm, which yielded a record of grain size variations of the floodplains depositions in time. Using the end-member modelling algorithm EMMA it was possible to distinguish different groups of sediment

  3. Sediment Characteristics and Transport in the Kootenai River White Sturgeon Critical Habitat near Bonners Ferry, Idaho

    Fosness, Ryan L.; Williams, Marshall L.


    Recovery efforts for the endangered Kootenai River population of white sturgeon require an understanding of the characteristics and transport of suspended and bedload sediment in the critical habitat reach of the river. In 2007 and 2008, the U.S. Geological Survey in cooperation with the Kootenai Tribe of Idaho, conducted suspended- and bedload-sediment sampling in the federally designated critical habitat of the endangered Kootenai River white sturgeon population. Three sediment-sampling sites were selected that represent the hydraulic differences in the critical habitat. Suspended- and bedload-sediment samples along with acoustic Doppler current profiles were collected at these sites during specific river discharges. Samples were analyzed to determine suspended- and bedload-sediment characteristics and transport rates. Sediment transport data were analyzed to provide total loading estimates for suspended and bedload sediment in the critical habitat reach. Total suspended-sediment discharge primarily occurred as fine material that moved through the system in suspension. Total suspended-sediment discharge ranged from about 300 metric tons per day to more than 23,000 metric tons per day. Total suspended sediment remained nearly equal throughout the critical habitat, with the exception of a few cases where mass wasting of the banks may have caused sporadic spikes in total suspended sediment. Bedload-sediment discharge averaged 0-3 percent of the total loading. These bedload discharges ranged from 0 to 271 tons per day. The bedload discharge in the upper part of the critical habitat primarily consisted of fine to coarse gravel. A decrease in river competence in addition to an armored channel may be the cause of this limited bedload discharge. The bedload discharge in the middle part of the white sturgeon critical habitat varied greatly, depending on the extent of the backwater from Kootenay Lake. A large quantity of fine-to-coarse gravel is present in the braided

  4. Distribution and Pollution Characteristics Analysis of Heavy Metals in Surface Sediment in Bi River

    Huang, Qianrui; Danek, Tomas; Cheng, Xianfeng; Dong, Tao; Qi, Wufu; Zou, Liling; Zhao, Xueqiong; Zhao, Xinliang; Xiang, Yungang


    The author analyzes distribution characteristics of heavy metals’ content in surface sediments of Bi River (Cu, Zn, As and Cd) and evaluates the potential ecological harm of heavy metal pollution in surface sediment by index method of potential ecological harm. Results show that heavy metals, such as Cu, Zn, As, Pb and Cd in surface sediments of Bi River are badly out of limitation. Especially, the heavy metals’ content in Jinding mining area is far higher than the national first class standard. The content of heavy metal is still high in the intersection of Bi River and Lancang River, which have certain influence on the Lancang River sediment and its water system. And, Pb and Cd, as the main pollutants, should be regarded as a key research subject.

  5. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao


    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely

  6. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments

    J. E. Sawicka


    Full Text Available The temperature responses of sulfate-reducing microbial communities were used as community temperature characteristics for their in situ temperature adaptation, their origin, and dispersal in the deep sea. Sediments were collected from a suite of coastal, continental shelf, and slope sediments from the southwest and southeast Atlantic and permanently cold Arctic fjords from water depths ranging from the intertidal zone to 4327 m. In situ temperatures ranged from 8 °C on the shelf to −1 °C in the Arctic. Temperature characteristics of the active sulfate-reducing community were determined in short-term incubations with 35S-sulfate in a temperature gradient block spanning a temperature range from 0 to 40 °C. An optimum temperature (Topt between 27 °C and 30 °C for the South Atlantic shelf sediments and for the intertidal flat sediment from Svalbard was indicative of a psychrotolerant/mesophilic sulfate-reducing community, whereas Topt ≤20 °C in South Atlantic slope and Arctic shelf sediments suggested a predominantly psychrophilic community. High sulfate reduction rates (20–50% at in situ temperatures compared to those at Topt further support this interpretation and point to the importance of the ambient temperature regime for regulating the short-term temperature response of sulfate-reducing communities. A number of cold (<4 °C continental slope sediments showed broad temperature optima reaching as high as 30 °C, suggesting the additional presence of apparently mesophilic sulfate-reducing bacteria. Since the temperature characteristics of these mesophiles do not fit with the permanently cold deep-sea environment, we suggest that these mesophilic microorganisms are of allochthonous origin and transported to this site. It is likely that they were deposited along with the mass-flow movement of warmer shelf-derived sediment. These data therefore suggest that temperature



    The incipient velocity of sediment is one of themost important basic theory problems of hydraulic engineers.The initial motion of sediment is a random process. Based on the combination methods of classical mechanics with statisticstheory the formula to calculate the incipient motion of sedi-ment was established. According to the standard of incipientmotion, motion status, relative degree of expose for sedimentand equivalent grain was defined in this paper. The coefficientin the formula included the flow fluctuation and relative degreeof exposition. The value of the coefficient was calculated by u-sing some parameters value. The results show that the valueof dimensionless shear stress coefficient is not a constant, butlocating in a range from 0. 022 to 0. 063 to weak and middlemotion status, and varying with the relative degree of sedi-ment expose. The value of dimensionless Shields numbers thatput forward in the text can explain the reason that why the co-efficients in difference formulas have wide scatter. The theo-retical formula has been verified with amount of data collectedfrom both natural rivers and flumes. The results can reflectthe motion characteristic of the sediment.

  8. Comparative characteristics of the insoluble part of organic matter of sediments

    Kuprin, P.N.; Sorokin, V.M.


    Comparative characteristics are presented for the composition of the insoluble part of organic matter (IOM) of sediments of offshore basins from different climate zones. The IOM of the Holocene sediments of the White Sea is characterized by a significant admixture which has a terrestrial (plant) origin. The IOM of the Holocene sediments of the Sidra gulf of the Mediterranean Sea, having a clearly planktonogenic origin is distinguished by significant acidity. The IOM of the middle Wurm deposits record admixture of compounds inherent to terrestrial vegetation. A similar composition of IOM can be associated partially with increase in the role of the terrigenous organic chemistry during the interglacial thawing, and partially with oxidation of the original organic matter. The insoluble part of concentrated and scattered differences in the organic matter of deep-sea Holocene sediments and late Miocene deposits of the Black Sea is characterized by sapropel composition and was formed through phytoplanktons. In this case greater degree of transformation of the IOM from the C /SUB org/ -enriched late Miocene deposits is found as compared to the IOM of the sapropel-like Holocene sediments.

  9. Distribution characteristics of magnetic susceptibility of the surface sediments in the southern Yellow Sea


    The characteristic distributions of magnetic susceptibility (MS) are analyzed on the basis of susceptibility of 172 surface sediment samples in the southern Yellow Sea (SYS). The preliminary results are as follows: first, the distributions clearly correspond to different modern sediment assemblages in the continental sea, which indicates different sediment origins. With the 30 μCGS isoline being taken as demarcation line, the study area can then be divided into section H (high MS value area) and section L (low MS value area). Section H is mainly adjacent to land with two main sources of the Changjiang River and the Huanghe River.Section L is mainly an eddy sediment area, where Yellow Sea Cold Water is entrenched all the year round. The distribution pattern of MS could tell apart strong or weak hydrodynamic conditions and has a close relation to the circulation system in this area. At the areas of the SYS Circumfluent and northern East China Sea (NECS) Circumfluent (weak hydrodynamic), the MS has low values, while in the areas of Coastal Current (strong hydrodynamic), the values are high. At the same time, the oxidizing areas tend to take on higher MS, while the reducing areas have lower one. It seems safe to say that the MS in the continental sea reflects more of the sediment origin and sedimentary environment, which is different from that of loess, lake and surface soil as a climate proxy.

  10. Distribution Characteristics of Heavy Metals and Grain Size of Sediments from Hailing Bay, China

    QIU Yaowen; ZHU Liangsheng; LI Manqiu


    The geochemical properties of sediment in the nearby seawater areas of Hailing Bay of the western Guangdong province were first time investigated in the dry period of 2001 and the flood period of 2002, respectively. The temporal and spatial characteristics of Cu, Pb, Zn, Cd and Hg concentrations, organic carbon and total sulfides contents, and granulometric distribution in the surface sediment from the Hailing Bay were analyzed. Results demonstrated that there were no remarkable changes in the composition of sediment between the dry period and the flood period;the average concentrations of Cu, Pb, Zn, Cd and Hg were 32.1 ± 17.5, 36.1 ± 10.0,respectively; surface sediments were dominated by clayey silt and sand, and their mean grain size was 4.62 ± 2.36 φ and in the range 0.52-7.55 φ; there existed obvious correlation between the concentrations of Cu, Pb, Zn and Hg, and among Cu, Pb, Zn and Hg concentrations, organic carbon contents and grain size of sediments.

  11. Distribution characteristics of magnetic susceptibility of the surface sediments in the southern Yellow Sea

    GEShulan; SHIXuefa; HANYibing


    The characteristic distributions of magnetic susceptibility (MS) are analyzed on the basis of susceptibility of 172 surface sediment samples in the southern Yellow Sea (SYS). The preliminary results are as follows: first, the distributions clearly correspond to different modern sediment assemblages in the continental sea, which indicates different sediment origins. With the 30 μCGS isoline being taken as demarcation line, the study area can then be divided into section H (high MS value area) and section L (low MS value area). Section H is mainly adjacent to land with two main sources of the Changjiang River and the Huanghe River.Section L is mainly an eddy sediment area, where Yellow Sea Cold Water is entrenched all the year round. The distribution pattern of MS could tell apart strong or weak hydrodynamic conditions and has a close relation to the circulation system in this area. At the areas of the SYS Circumfluent and northern East China Sea (NECS) Circumfluent (weak hydrodynamic), the MS has low values, while in the areas of Coastal Current (strong hydrodynamic), the values are high.At the same time, the oxidizing areas tend to take on higher MS, while the reducing areas have lower one. It seems safe to say that the MS in the continental sea reflects more of the sediment origin and sedimentary environment, which is different from that of loess, lake and surface soil as a climate proxy.

  12. Short-term impact of deep sand extraction and ecosystem-based landscaping on macrozoobenthos and sediment characteristics.

    de Jong, Maarten F; Baptist, Martin J; Lindeboom, Han J; Hoekstra, Piet


    We studied short-term changes in macrozoobenthos in a 20m deep borrow pit. A boxcorer was used to sample macrobenthic infauna and a bottom sledge was used to sample macrobenthic epifauna. Sediment characteristics were determined from the boxcore samples, bed shear stress and near-bed salinity were estimated with a hydrodynamic model. Two years after the cessation of sand extraction, macrozoobenthic biomass increased fivefold in the deepest areas. Species composition changed significantly and white furrow shell (Abra alba) became abundant. Several sediment characteristics also changed significantly in the deepest parts. Macrozoobenthic species composition and biomass significantly correlated with time after cessation of sand extraction, sediment and hydrographical characteristics. Ecosystem-based landscaped sand bars were found to be effective in influencing sediment characteristics and macrozoobenthic assemblage. Significant changes in epifauna occurred in deepest parts in 2012 which coincided with the highest sedimentation rate. We recommend continuing monitoring to investigate medium and long-term impacts.

  13. [Impact of wind-water alternate erosion on the characteristics of sediment particles].

    Tuo, Deng-Feng; Xu, Ming-Xiang; Ma, Xin-Xin; Zheng, Shi-Qing


    Wind and water are the two dominant erosion agents that caused soil and water losses in the wind-water alternate erosion region on the Loess Plateau. It is meaningful to study the impact of wind-water alternate erosion on the characteristics of soil particles for understanding the response of soil quality and environment to erosion. Through wind tunnel combined rainfall simulation, this paper studied the characteristics of the erosive sediment particles under the effect of wind-water alternate erosion. The results showed that the particles of 0-1 cm soil were coarsened by wind erosion at the wind speeds of 11 and 14 m x s(-1) compared with no wind erosion. Soil fine particles ( 0.05 mm) increased by 16.8%-20.8%. The physical property of surface soil was changed by the wind erosion, which, in turn, caused an increase in finer particles content in the sediment. Compared with no wind erosion, fine particles (wind alternate erosion increased by 2.7%-18.9% , and coarse particles (> 0.05 mm) decreased by 3.7%-9.3%. However, the changing trend of erosive sediment particles after the wind erosion at wind speeds of 11 and 14 m x s(-1) was different along with the rainfall intensity and duration. The erosive sediment particles at the rainfall intensities of 60, 80, 100 mm x h(-1) changed to greater extents than at the 150 mm x h(-1) rainfall intensity with longer than 15 min runoff flowing.

  14. Effect of Streambed Roughness and Topography on the Solute Transport and Hyporheic Exchanges: Laboratory Experiments

    Chen, Xiaobing; Zhao, Jian; Chen, Li


    Hyporheic zones are critical for maintaining river ecosystem as they provide hyporheic and riparian organisms critical solutes, including nutrients and dissolved gases from bedforms to watershed scales. Among the hyporheic driving factors, the streambed topogaraphy is considered as a significant driving factor for hydraulic process in hyporheic zone that has been well documented in the past few decades. Previous research has implied that the rough streambed impact the flow resistance and continuously affect the hydraulic gradient between the river and the streambed. Recent research works focused more on the realistic pressure distribution along the bedform interface (eg. triangular-shaped sand dunes) on a macro level scale, while only few works related to the hyporheic exchanges induced by pore size scaled topography. How and to what extent that pore size scaled bedform would contribute to the total hyporheic discharge is still unclear. Indeed, the mesoscopic uneven topography can disturb the flow regime that near the water-sand interface, for example, it brings turbulent eddies and fluctuating pressure distribution along a rough gravel bed. In our study, a set of flume experiments were setup to examine the pore size roughness impacts on the solute transport and hyporheic exchanges in surface-subsurface system. Six kinds of riverbed sediments with median diameter range from 1.1 mm to 50.2 mm were chosen for comparative analyses. Also, three kinds of triangular shaped bedforms represented by the ratio α (=δ/?, δ is the amplitude and ? is the wavelength) with value of 0.125, 0.17 and 0.25 were considered as the macro-topography driver variation in our experiments. Our tests revealed that under a flat riverbed condition, the vertical diffusion is the main factor for the solute transport in hyporheic zone, however, the hyporheic exchange rate (represented by the decrease rate in concentration of surface water) is significantly enhanced as the growth of gravel grain


    N. Starkо


    Purpose. Establishing change the basic structural and functional characteristics of the sediments under the influence of waste going fish farming in tanks. Methodology. Bottom sediment samples were collected using a 1 m of dirt tube (SOI-1), according to the standard requirements. Water-physical properties of sediments were investigated in accordance the recommendations of B. Novikov (1985) and A. Denisova et al. (1987). Determination of the gross content of organic matter carried by loss...

  16. Simulation of E. coli release from streambed to water column during base flow periods

    Park, Yongeun; Pachepsky, Yakov; Hong, Eun-Mi; Coppock, Cary; Shelton, Daniel


    Microbial water quality in streams is of importance for recreation, irrigation, and other uses. The streambed sediment has been shown to harbor large fecal indicator bacteria (FIB) population that can be released to water column during high-flow events when sediments are resuspended. There have been numerous studies investigating effect of sediment FIB on in-stream concentration during high-flow events, whereas there has been no research so far that would simulate FIB release from the bottom sediment to water column during baseflow periods. The objective of this work was to evaluate the need in including modeling of the E. coli release from the bottom sediment to water column during baseflow periods. The simulation results obtained from soil and water assessment tool (SWAT) model for the Cove Mountain Creek watershed, Franklin Co. PA, showed that the baseflow E. coli concentrations were underestimated in this work if E coli release was simulated only for high-flow events. Two release assumptions (passive and active release) that correct the underestimation during baseflow periods substantially improved the model performance. The assumption of active release provided more accurate simulations. These simulation results indicate that the release of E. coli to water column during baseflow periods can be considered as a factor substantially affecting concentrations of this organism in streams. These results may be critical to using E. coli concentrations in regulations related to microbial water quality. Modeling the release for baseflow periods in watershed-scale microbial water quality models will decrease the uncertainty in modeling results, and thus can be useful in supporting decision-making regulations to effectively manage fecal contamination in watersheds.

  17. Wave characteristics and tectonic-sedimentation evolution of foreland thrust fault of Micang Mountain


    In this paper,the technology of wave process method for sedimentation is first adopted in the research of the foreland thrust fault of Micang Mountain with respect of oil and reservoir’s formation and tectonic and sedimentary evolution. From the fluctuation characteristics,we could make conclusions in the foreland thrust belt of Micang Mountain that,there existed 2 first-order sedimentary cycles (220 Ma),corresponding to Caledonian-Hercynian and Indo-Chinese-Yanshan-Himalayan tectonic cycles respec-tively; there existed 4 second-order sedimentary cycles (10 Ma),corresponding to two sedimentation peak period and two denudation peak periods in research zone; there existed 12 third-order sedimen-tary cycles (35 Ma) and 21 fourth-sedimentary cycles (20 Ma). These 33 cycles in the research zone corresponded to the sedimentation-denudation process in different periods,furthermore,their fluctua-tion characteristics bore the genetic relationship with the development law of source,reservoir and cap rocks: the source rock had the tendency to develop at the turning part between wave crest and wave trough,or at the superposition of wave turning part in different periods,presenting like "X"; most res-ervoir rocks developed at the place of wave peak; the development of cap rock was located in the wave trough on the right of sedimentation-denudation datum line. As a result,through the application of wave process method for sedimentation,we could rediscover the understanding of the tectonic and sedimentary evolution from another prospective,meanwhile,it enables to make prediction about the development rule of source,reservoir and cap rocks,which means a significant importance to the re-search of oil and reservoir’s forming condition.

  18. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments

    J. E. Sawicka


    Full Text Available The temperature responses of sulfate-reducing microbial communities were used as fingerprints for their in situ temperature adaptation, their origin, and dispersal in the deep-sea. Sediments were collected from a suite of coastal, continental shelf, and slope sediments from the southwest and southeast Atlantic and permanently cold Arctic fjords from water depths ranging from the intertidal zone to 4327 m. In situ temperatures ranged from 8 °C on the shelf to 1 °C on the lower slope and in the Arctic. Temperature characteristics of the active sulfate-reducing community were determined in short-term incubations with 35S-sulfate in a temperature gradient block spanning a temperature range from 0 to 40 °C. An optimum temperature (Topt between 27 °C and 30 °C for the South Atlantic shelf sediments and for the intertidal flat sediment from Svalbard was indicative of a psychrotolerant/mesophilic sulfate-reducing community, whereas Topt ≤ 20 °C in South Atlantic slope and Arctic shelf sediments suggested a predominantly psychrophilic community. High sulfate reduction rates (20–50% at in-situ temperatures compared to those at Topt further support this interpretation, and point to the importance of the ambient temperature regime for regulating the short-term temperature response of sulfate-reducing communities. A number of cold (<4 °C continental slope sediments showed broad temperature optima reaching as high as 30 °C suggesting the additional presence of apparently mesophilic sulfate-reducing bacteria. Since the temperature characteristics of these mesophiles do not fit with the permanently cold deep-sea environment, we suggest that these mesophilic microorganisms are of allochthonous origin and transported to this site. It is likely that they were deposited along with the mass-flow movement of warmer shelf-derived sediment. These data therefore suggest that temperature

  19. A preliminary study on thermoluminescence characteristics of sediments from the North Pacific

    L(U) Huahua; SHI Xuefa; WU Yonghua; YANG Gang; WEI Jianwei; REN Xiangwen


    Thirty-eight surficial deposit samples were collected from the equatorial North Pacific, and the natural thermoluminescence (TL) characteristics of both bulk and clay fraction samples (<2 μm fractions) were studied by the FJ427-A1 automatic TL Dosimeter for the first time. With the measurements of clay mineral composition, element composition by XRD and ICP, the correlations between TL intensity and sedimentary environment proxies were analyzed, such as water depth, ratio of FeO to Fe2O3 contents, LOI, and major clay mineral concentration, and it was found the bulk sample's TL signal was stronger than the clay ones. Usually, increase in the clay components may result in the decrease of TL intensity. From the shape of TL curves, the pelagic sediments can be divided into two groups: the majority group has two glow peaks, in general, the first peak is broad and flat, but the second narrow and sharp; the minority group only has a single peak because the first is absent. The peak centers of TL curves are almost fixed, falling in the temperature sections 230~260 and 390~405 ℃ respectively. Lorentz model packed in the Origin 7.5 was chosen to deal with the TL curves. From the processing results, three parameters (H, C and A), corresponding to the height, center, and kurtosis of TL curve, were obtained to describe the curve characteristics. The correlations between TL curve parameters and sedimentary environment proxies were also calculated. On the basis of the above work, the relationship between TL characteristics and sediment type, mineral composition, sedimentary environment of surface sediments was discussed in the study area, and a conclusion is: sediments from the environment of shallower water, higher organic contents and weaker reductivity have stronger TL signals.

  20. The physical characteristics of the sediments on and surrounding Dauphin Island, Alabama

    Ellis, Alisha M.; Marot, Marci E.; Smith, Christopher G.; Wheaton, Cathryn J.


    Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 303 surface sediment samples from Dauphin Island, Alabama, and the surrounding water bodies in August 2015. These sediments were processed to determine physical characteristics such as organic content, bulk density, and grain-size. The environments where the sediments were collected include high and low salt marshes, washover deposits, dunes, beaches, sheltered bays, and open water. Sampling by the USGS was part of a larger study to assess the feasibility and sustainability of proposed restoration efforts for Dauphin Island, Alabama, and assess the island’s resilience to rising sea level and storm events. The data presented in this publication can be used by modelers to attempt validation of hindcast models and create predictive forecast models for both baseline conditions and storms. This study was funded by the National Fish and Wildlife Foundation, via the Gulf Environmental Benefit Fund.This report serves as an archive for sedimentological data derived from surface sediments. Downloadable data are available as Excel spreadsheets, JPEG files, and formal Federal Geographic Data Committee metadata.

  1. Longitudinal heterogeneity of sediment characteristics during southwest monsoon season in hyper-eutrophic Krishnagiri reservoir, India.

    Sudha, Velu; Ambujam, Neelakantapillai Kanniperumal


    Krishnagiri reservoir is a hyper-eutrophicated reservoir located in Krishnagiri district which is one of the drought-prone districts in Tamil Nadu, India. The reservoir water is being used for various purposes such as irrigation, drinking, fish rearing, livestock rearing, and recreation. Since there is no an evidence of investigation on bottom sediments in Krishnagiri reservoir, the present study was carried out during southwest monsoon season in 2008. This study examined the physical and chemical characteristics of the bottom sediments such as composition, redox potential, moisture content, organic carbon, organic matter, total phosphorus, and total iron at 15 locations in the reservoir. Phosphorus fractionation study was carried out to find out different fractions such as loosely adsorbed phosphorous, iron and aluminium-bound phosphorus, calcium-bound phosphorous, and organic phosphorous. Results indicated that there was spatial variation in the composition of sediments and low values of redox potential. The significant positive correlation exists between the organic carbon and organic phosphorus concentration. The lacustrine zone of the reservoir showed high accumulation of total phosphorus and total iron when compared to riverine and transition zones. This study concludes an allogenic origin of majority of inorganic phosphorus in the reservoir during the study period and this might have been derived from the catchment during the erosion process. The high concentration of surface sediment phosphorus clearly indicates a greater threat of eutrophication in Krishnagiri reservoir.

  2. Composition And Characteristic Of The Surficial Sediments In The Southern Corniche Of Jeddah, Red Sea Coast

    Talha A Al-Dubai


    Full Text Available This work discusses the composition and characteristic of the surficial sediments in the southern corniche of Jeddah, Saudi Red Sea coast, in an attempt to infer the surficial distribution pattern of minerals and provenance of sediments. Twenty-six superficial sediments samples were collected from backreef and forereef areas and were analyzed for grain size, CaCO3 content, and mineralogy. The textural of grain size range from gravel to mud fraction. The mud-dominated substrates (<63 µm occur generally in the back-reef area near the shoreline (sheltered area and in the lagoon. Gravel rich-sediments are mostly found in forereef regions. The highest content of aragonite and Mg-calcite occur in the forereef area, probably because to suitability the forereef region for chemical and biochemical precipitation of these minerals. High Mg-calcite and Dolomite are low in both the regions. The pyrite occurs in lagoon; this indicates the reductive conditions in this part. However, on the contrary the percentage of carbonate minerals were low in the backreef-flat area, which could be attributed to the supply of non-carbonate terrigenous materials. The terrigenous material contains quartz, k-feldspar, plagioclase and amphibole minerals and are dominant in backreef-flat area with averages of 12.7%, 7.13%, 2.93% and 0.65%, respectively. Their abundance could be attributed to the supply of terrigenous materials by Aeolian deposits and intermittent Wadis.

  3. Morphological, sediment and soil chemical characteristics of dry tropical shallow reservoirs in the Southern Mexican Highlands



    Full Text Available The morphometry, sediment and soil chemical characteristics of eleven dry tropical shallow reservoirs situated in Southern Mexican Highlands were studied. The reservoirs are located at 1104 to 1183 meters above sea level in a sedimentary area. Seventeen morphometric and eight sediment and soil chemical parameters were measured. The results of the morphometric parameters showed that these reservoirs presented a soft and roughness bottom, with an ellipsoid form and a concave depression that permit the mix up of water and sediments, causing turbidity and broken thermal gradients; their slight slopes allowed the colonization of submerged macrophyte and halophyte plants and improved the incidence of sunlight on water surface increasing evaporation and primary productivity. Dry tropical shallow reservoirs have fluctuations in area, and volume according to the amount of rainfall, the effect of evaporation, temperature, lost volume for irrigation, and other causes. The sand-clay was the most important sediment texture and their values fluctuated with the flooded periods. The concentration-dilution cycle showed a direct relationship in the percentage of organic matter in the soil as well as with pH, soil nitrogen and phosphorus. El Tilzate, El Candelero and El Movil were related by the shore development and high concentrations of organic matter and nitrogen in the soil. Finally, we emphasize the importance of this study, in relation to possible future changes in morphometrical parameters as a consequence of human impact.

  4. The Sediment Physical and Chemical Characteristics in Sombreiro River, Niger Delta, Nigeria

    E.N. Ezekiel


    Full Text Available The sediment characteristics in Sombreiro River of the Niger Delta region of Nigeria was studied for a period of two years (January, 2007 - December, 2009 using an Eckman grab of 10 cm diameter and 12 cm long. The sand contents of the sediment were high across the stations. The percentage sand content ranged from 81.96 to 94.52%. Station 4 (Odiemudie had the highest value (94.52% while station 1 (Degema had the lowest value (81.96%. The percentage silt content ranged from 1.53 to 7.72%. The highest percentage silt content was recorded from station 1 (Degema while the lowest value (1.53% was obtained in station 4 (Odiemudie. The percentage clay content ranged from 3.95 to 10.32%. Clay content was highest in station 1 (Degema (10.32%, while the lowest value (3.95% was obtained in station 4 (Odiemudie. The result of the sediment analysis showed that sand was dominant across the stations, except station 1 (Degema which revealed loam sand textual class. The pH values of the sediments were acidic across the stations. Station 2 (Ogbele (5.06 was the most acidic while station 1 (Degema(5.85 was the least. Conductivity of the sediments values ranged from 40 to 1,940 μS/cm. Station 1 (Degema had the highest value (1,940 μS/cm while the lowest value (40 μS/cm was obtained from station 2 (Ogbele. The great difference arose from the fact that station 1 (Degema is brackish sediment while station 2-4 are fresh sediments. The organic carbon percentage ranged from 2.020 to 4.134%. Station 1 (Degema had the highest value of 4.134% while station 4 (Odiemudie had the lowest value of (2.020%. The nitrate content of the sediments values ranged from 2.6 to 4.1 mg/kg. Station 3 (Ihuaba had the highest value (4.1 mg/kg; while the lowest value (2.6 mg/kg was obtained from station 2 (Ogbele. The phosphate content of the sediments ranged from 8.90 and 15.7 mg/kg with a mean value of 13.43 mg/kg. The highest value of 15.7 mg/kg was obtained from station 3 (Ihuaba while

  5. Correlating check dam sedimentation and rainstorm characteristics on the Loess Plateau, China

    Li, Xungui; Wei, Xia; Wei, Ning


    On the Loess Plateau, China, check dams are necessary for soil and water conservation. In this study, the relationships between check dam sedimentation and storm characteristics were investigated, and rainstorm events for an area of data scarcity were reconstructed using optimal regression models. Four typical check dams of the Loess Plateau (the Shipanmao, Hualiang, No. 3 Guandigou, and No. 4 Guandigou dams) were selected for case studies. Soil profiles behind the four dams were divided into 21, 25, 31, and 31 layers, respectively. The one-to-one link between sediment layers and corresponding storm characteristics were considered based on the peak fallout of 137Cs and on the principle that higher flow corresponds to higher sediment deposition volume. Analysis showed that the layered sediment volume (V) was closely related to rainfall erosivity (R), and to the maximum rainfall intensity over 30 min (I30). A statistically significant power regression model between V and R was observed, along with an exponential regression model between V and I30. Based on the power regression model between V and R, a new approach was developed in order to reconstruct rainfall erosivity in rainfall data-scarcity areas. Different hysteresis patterns (counterclockwise, clockwise, and hybrid) at the single storm scale were observed between V and R for the Shipanmao dam deposition wedge (depositional area behind a dam), and these impacted differently on the scale reconstruction results. However, the distance between the reconstructed dams and the known dams had an even stronger influence. The scale method developed in this study was shown to perform well and was able to reconstruct rainstorm events for adjacent regions with similar climatic and geomorphological conditions. Furthermore, the results of this study have improved our understanding of single rainstorm dynamics and soil erosion mechanisms on the Loess Plateau.

  6. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

    Weili, L; Jinling, L; Xingqi, L; Yuan, L, E-mail: [Institute of Water Resources and Hydro-Electric Engineering, Xi' an University of Technology No.5 South Jinhua Road, Xi' an, Shaanxi, 710048 (China)


    The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.

  7. Experimental study on the effects of sediment size and porosity on contaminant adsorption/desorption and interfacial diffusion characteristics

    FAN Jing-yu; HE Xiao-yan; WANG Dao-zeng


    The joint effects of the sediment size and porosity on the contaminant adsorption/desorption and interracial diffusion characteristics were experimentally investigated.The adsorption of Phosphorus (P) on the natural and artificial sediment suspensions was measured with respect to the P adsorption isotherms and kinetics in the experiment.The obtained adsorption isotherms for different grain-sized sediment suspensions fit well with the Langmuir equation,dependent on the initial aqueous concentration and sediment content.The P kinetic adsorption behaviors for cohesive fine-grained and non-cohesive coarse-grained sediment suspensions clearly show the size-dependent feature.On the other hand,the P kinetic release feature of a porous sediment layer is affected by not only the direct desorption of the uppermost sediments,but also the diffusivity in the pore-water within the underlying sediment layer,characterized by the sediment size and porosity,respectively.Furthermore,the temporal contaminant release from the permeable sediment layer into the overlying water colunm increases with the increasing flow velocity,while this enhancement in mediating the interfacial diffusion flux is somewhat insignificant in an immediate release stage,largely due to the resistance of the diffusive boundary layer on the hydrodynamic disturbance.

  8. Herbal mouthwash based on Libidibia ferrea: microbiological control, sensory characteristics, sedimentation, pH and density

    Gisely Naura Venâncio

    Full Text Available Introduction Phytotherapy is the study of herbal medicines and their applicability to cure diseases in general, being a therapeutic method which can be used for the prevention and treatment of mouth diseases. Among the herbal studied, the Libidibia ferrea, known as jucá or ironwood, is widely used in folk medicine by presenting anti-inflammatory, analgesic, antimicrobial and antipyretic therapeutic properties. Objective To evaluate in vitro pharmacological stability of the Libidibia ferrea extract’s mouthwash (INPA - 228 022. Material and method It was held the mouthwash microbiological control by determining the total number of microorganisms and Salmonella sp, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus; stability characteristics (color, odor, brightness and consistency, sedimentation test (centrifuge, the pH measurement (pH meter and density evaluation (pycnometer were analyzed. Result The mouthwash showed to be absent from microorganisms and no changes were observed in the organoleptics and sedimentation characteristics. The average pH values were 6.21, 6.15 and 5.85 at 0, 30 and 60 days, respectively, and 1.029, 1.033 and 1.035 g/ mL density values, respectively, without interfering with the final characteristic of the formulation. Conclusion The mouthwash presented pharmacological stability and quality conditions.

  9. Characteristics of the Flow and Sediment in the Inner Rivers Broad-shallow Shifting Reach


    Rivers are classified into two types.One is the outer river which flows into ocean and the other is the inner river which does not flow into the ocean but into desert or lake.The inner rivers are the erosive rivers that have been seldom studied so far.Based on the field survey data,the analysis on the characteristics of the flow and sediment in the inner rivers' broad-shallow shifting (IRBS) reach.The IRBS reach often bears such the properties as:high gradient bed,usually 10‰or greater;small flow dischar...

  10. Constraining Water Fluxes Through the Streambed of a Semi-arid Losing Stream Using Natural Tracers: Heat and Radioisotopes

    Andersen, M. S.; Rau, G. C.; McCallum, A. M.; Meredith, K.; Acworth, I.


    Natural physical and chemical tracers of flow have different advantages and shortfalls based on their properties and the uncertainty related to variability in their source concentration. Each tracer integrates over a characteristic spatial-temporal scale depending on its decay or production rate and the flow velocity of the system. For instance heat tracing using diurnal temperature fluctuations will, at best, provide information about flow in the upper 1-2 m of the streambed before the signal is dampened below measurement resolution (Constantz et al. 2003). Conversely, radioisotopes used as tracers will integrate over increasing spatio-temporal scales for decreasing decay constants. Radioisotopes with comparatively slow decay rates will be less sensitive for resolving flow conditions on short spatio-temporal scales. Therefore, it is difficult to use these tracers in the streambed of losing systems because the radioactive decay is not discernible against the variability. Consequently, employing a combination of different tracers provides information on different parts of a given flow system. Comparing flow velocities derived from tracers integrating over different scales allows for separating the local hyporheic exchange from the regional groundwater recharge. A field experiment was carried out in a perennial section of the mostly ephemeral Maules Creek in NSW, Australia. Streambed temperature profiles were monitored at three sites along a 400 m stretch of the perennial reach. Streambed temperatures were recorded at 4 depths within one meter below the streambed. Water samples were collected from surface water, streambed and groundwater and analysed for stable water isotopes (18O and 2H) and radioisotopes (222Rn and 3H). The streambed heat profiles provided time series of surface water/groundwater exchange. Using this method it was found that the conditions were losing at all three sites with recharge rates varying between 0 and 0.4 m/d. 222Rn measurements in the

  11. Characteristics of phosphorus fractionated from the sediment resuspension in abrupt expansion flow experiments

    Jun Wan; Ze Wang; Hezhong Yuan


    Phosphorous (P) fraction characteristics in sediment resuspension were investigated under adequately hydrodynamic conditions.Four forms of P in overlying water,including dissolved inorganic P,dissolved total P,total P,and particulate P,and six fractions of P in suspended particulate matter (SPM),including loosely sorbed P (NH4Cl-P),redox-sensitive P (BD-P),aluminum-bound P (Al-P),organic P (NaOH-nrP),calcium-bound P (Ca-P) and residual P (Res-P),were quantified,respectively.Different hydrodynamic conditions resulted in different P form changes.Four states could be ascribed:(1) P desorption by sediment and SPM,and P adsorption by overlying water;(2) P desorption by SPM,and P adsorption by overlying water;(3) P adsorption by SPM,and P desorption by overlying water;and (4) P equilibrium between SPM and overlying water.The contents of P in overlying water acquired peak values in the middle position of the vertical P distribution due to the combined actions of SPM and sediment.P fractions in SPM were in the following order:BD-P>NaOH-nrp>Ca-P>Al-P>Res-P>NH4CI-P.BD-P in SPM frequently exchanged with P forms in overlying water.Resuspension was favorable to forming Ca-P in SPM.

  12. [Adsorption characteristics of typical PPCPs onto river sediments and its influencing factors].

    Wang, Kai; Li, Kan-Zhu; Zhou, Yi-Yuan; Liu, Zhen-Hong; Xue, Gang; Gao, Pin


    A batch equilibrium method was used to investigate the adsorption characteristics of ciprofloxacin (CIP), tetracycline (TC), sulfamethoxazole (SMX) and triclosan (TCS) onto Huangpu River sediments. Effects of adsorption time, initial concentration, solution pH and temperature on the adsorption process were studied. The results showed that the adsorption process of these PPCPs onto sediments was a two-step process: a rapid adsorption followed by a slow balance. The equilibrium time was about 4 h. The pH value had a significant effect on the adsorption of CIP, TC and TCS, whereas the effect on SMX adsorption was negligible. The kinetic results indicated that the adsorption processes followed the pseudo-second-order model, with adsorption rate in the range of 4.89 x 10(-3)-1.96 x 10(-2) kg x (min x mg)(-1). Adsorption isotherms were well described by the Freundlich and linear equations. As temperature increased, the amount of SMX and TC adsorbed increased, whereas CIP and TCS decreased. CIP, TC and TCS had a strong tendency to adsorb onto sediments, while the adsorption of SMX was unfavorable. When the initial concentration of PPCPs was 10 mg x L(-1), the equilibrium adsorption capacities of CIP, TC, SMX and TCS reached 702.8, 733.1, 54.7 and 695.0 mg x kg(-1), respectively.

  13. Maps showing textural characteristics of benthic sediments in the Corpus Christi Bay estuarine system, south Texas

    Shideler, Gerald L.; Stelting, Charles E.; McGowen, Joseph H.


    Corpus Christi Bay is a heavily used estuary on the south Texas coast in the northwest Gulf of Mexico (fig. 1).  The Bay is stressed by diverse activities which could substantially affect its ecosystem.  Such activities include shipping, resource production (oil, gas, and construction aggregate), commercial and sport fishing, and recreation.  Shipping activities alone have had a substantial impact on the bay.  For example, the past maintenance of navigation channels has required extensive dredging and spoil disposal within the estuarine system.  Numerous subaqueous spoil disposal sites and subaerial spoil banks are present throughout the bay (fig. 1), and the selection of future spoil disposal sites is becoming a critical local problem.  As activities in the bay increase, the need for effective environmental management becomes increasingly important, and effective management necessitates a good understanding of the bay's physical characteristics.  The objective of this study is to provide detailed information about the textural composition of bottom sediments within the estuarine system, information which could be used in making environmental-management decisions.  Visual descriptions of bottom sediments in Corpus Christi Bay and adjacent areas have been presented by McGowen and Morton (1979).  Additionally, a study of the textures of sediments on the Inner Continental Shelf adjacent to the bay has been presented by Shideler and Berryhill (1977).

  14. Textural and Geochemical Characteristics of Proglacial Sediments:A Case Study in the Foreland of the Nelson Ice Cap, Antarctica

    LIU Xiaodong; SUN Liguang; YIN Xuebin


    This paper presents a detailed study on the textural and geochemical characteristics of the proglacial sediments near the edge of modem Nelson Ice Cap, Antarctica. The grain size distributions of the proglacial sediments are characteristic of glacigenic deposits, but very different from those of aeolian and lacustrine sediments. Moreover, the grain size distributions of the proglacial sediments are fractal with a dimension of about 2.9, and the fractal dimensions can be used as another summary statistical parameter for quantifying the relative amounts of coarse and fine materials.Correlations between the absolute element abundances of the proglacial sediments are very weak due to mineral partitioning and other effects of glacial processes, but correlations between the element/Rb ratios are statistically significant. This finding indicates that element/Rb ratios can be used to reduce or eliminate the effects of glacial processes,evaluate geochemical data and determine the sediment provenance in the foreland of Antarctic glacier. Comparisons on the element concentrations among different environments suggest that the proglaciai sediments are derived predominantly from local bedrocks and appear to be natural in origin. Thus these natural sediments can be used to study chemical weathering in the progiacial foreland of modern glacier.

  15. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu


    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  16. Seismic reflection characteristics of glacial and glacimarine sediment in the Gulf of Alaska and adjacent fjords

    Carlson, P.R.


    Glaciation together with tectonism have been dominant factors affecting sedimentation in the Gulf of Alaska area from at least the late Miocene throughout the Quaternary. The effects of tectonism are apparent in high mountains that border the gulf, raised terraces of Middleton Island and the eastern gulf coastal zone, and numerous active faults and related earthquakes. Glacial evidence includes magnificent glaciers and their onshore deposits, spectacular fjords, large sea valleys incised in the continental shelf, submarine morainal ridges at mouths of bays and sea valleys, and thick glacimarine sedimentary sequences (diamicts) that are exposed onshore and at the sea floor along the outer shelf. Seismic-reflection profiling and sampling of the uppermost marine sedimentary sequences in the Gulf of Alaska and adjacent fjords and bays have allowed identification of three discrete glacially related stratigraphic units. These units were delineated on the basis of seismic signature, geometry, physiographic location, stratigraphic position, and sedimentologic characteristics. The oldest unit, a Quaternary diamict, is portrayed on seismic profiles by irregular, discontinuous reflections. This unit probably includes till, outwash and glacimarine sediment. A geographically restricted unit, one incorporating Holocene end moraines at bay mouths and associated with some sea valleys, consists of jumbled masses of discontinuous reflections and very irregular surface morphology. The youngest unit, a blanket of Holocene sand to clayey silt prograding as a sediment wedge across the shelf, contains nearly horizontal, parallel reflections except where disrupted by mass movement. Although seismic-reflection data alone cannot provide definitive proof of the presence of glacial sediment, when combined with sea-floor sampling, seismic profiling is a powerful tool for determining the continuity of marine sedimentary units and relationships to past and modern glaciers. ?? 1989.

  17. Dependence of the sediment delivery ratio on scale and its fractal characteristics

    Xiaoming Zhang; Sihong Wu; Wenhong Cao; Jianchao Guan; Zhaoyan Wang


    The sediment delivery ratio (SDR) is an indicator used to determine the capacity for eroded sediment to be delivered to the outlet of a particular basin. Based on systematic reviews of SDR studies in China and abroad during the last 50 years, this study analyzes whether the SDR has scale-dependent characteristics and discusses the fractal characteristics of the SDR. In addition, the SDR in various watersheds in China and abroad showed correlations with temporal and spatial scales, which means that the SDR depends on watershed scale. Moreover, the SDR can be quantitatively expressed and scaled using fractal dimension under certain temporal and spatial scales. Within a nested watershed, a proposed SDR scale transfer model was constructed using the SDR at a typical watershed unit scale with an area of approximately 1 km2 (SDR0) and a fractal dimension of the SDR at a nested watershed scale (D). This research also points out that the study and calculation of the SDR cannot be correct without considering its scale dependence. It is a valid and useful approach to construct SDR scaling models by using fractal dimension, which could be an interesting research topic regarding SDR scaling in the future.

  18. Seasonal and spatial characteristics of seawater and sediment at Youngil Bay, southeast coast of Korea.

    Lee, Mikyung; Bae, Wookeun; Chung, Jinwook; Jung, Hoi-Soo; Shim, Hojae


    The seasonal geochemical characteristics of the seawater and sediments and the major factors causing heavy metal contamination were investigated at the Youngil bay and the Hyungsan river estuary in the Southeast Coast of Korea, where a world-scale steel-industry complex (Pohang iron and steel industrial complex, POSCO) is located. The seasonal and spatial distribution characteristics of temperature, dissolved oxygen (DO), pH, and nutrients of the seawater were studied at 45 fixed stations, especially focusing on the river mouth area. Sediments at 27 stations were examined during winter and summer to determine the major controlling factors for the distribution of metals, using correlation matrix and R-mode factor analyses, and to evaluate the pollution status, using the modified geoaccumulation (I(geo)(')) index. Temperatures for the effluent from the POSCO located at the Hyungsan river mouth were 2-3 degrees C higher compared to other sampling areas, due to the thermal discharge from the POSCO. The DO concentration of the surface water at the Pohang old port was as low as 2-4 mg/L. In spring, the DO value at the Hyungsan river mouth was higher than 12 mg/L, by the mass multiplication of phytoplanktons at the river mouth where seawater temperature and nutrients concentrations were relatively high, resulting in the pH value of higher than 8.3. The nitrogen to phosphorus (N/P) ratios at the river mouth were 20-150 times higher compared to other areas, implying that the nitrogen loading into this semi-enclosed bay is significantly higher than phosphorus and the major nitrogen sources are not only the domestic sewage from the city but the industrial wastewater from the POSCO and other steel factories nearby. The phosphorus concentrations at the Pohang old port were shown 3-10 times higher than those at other stations, due to the inflow of pollutants generated from the nearby ships anchoring and the release of phosphate from the bottom sediment. Results from the sediment

  19. Transport of Escherichia coli bacteria through laboratory columns of glacial-outwash sediments: estimating model parameter values based on sediment characteristics.

    Levy, J; Sun, K; Findlay, R H; Farruggia, F T; Porter, J; Mumy, K L; Tomaras, J; Tomaras, A


    Bacterial transport through cores of intact, glacial-outwash aquifer sediment was investigated with the overall goal of better understanding bacterial transport and developing a predictive capability based on the sediment characteristics. Variability was great among the cores. Normalized maximum bacterial-effluent concentrations ranged from 5.4x10(-7) to 0.36 and effluent recovery ranged from 2.9x10(-4) to 59%. Bacterial breakthrough was generally rapid with a sharp peak occurring nearly twice as early as the bromide peak. Bacterial breakthrough exhibited a long tail of relatively constant concentration averaging three orders of magnitude less than the peak concentration for up to 32 pore volumes. The tails were consistent with non-equilibrium detachment, corroborated by the results of flow interruption experiments. Bacterial breakthrough was accurately simulated with a transport model incorporating advection, dispersion and first-order non-equilibrium attachment/detachment. Relationships among bacterial transport and sediment characteristics were explored with multiple regression analyses. These analyses indicated that for these cores and experimental conditions, easily-measurable sediment characteristics--median grain size, degree of sorting, organic-matter content and hydraulic conductivity--accounted for 66%, 61% and 89% of the core-to-core variability in the bacterial effective porosity, dispersivity and attachment-rate coefficient, respectively. In addition, the bacterial effective porosity, median grain size and organic-matter content accounted for 76% of the inter-core variability in the detachment-rate coefficient. The resulting regression equations allow prediction of bacterial transport based on sediment characteristics and are a possible alternative to using colloid-filtration theory. Colloid-filtration theory, used without the benefit of running bacterial transport experiments, did not as accurately replicate the observed variability in the attachment


    N. Starkо


    Full Text Available Purpose. Establishing change the basic structural and functional characteristics of the sediments under the influence of waste going fish farming in tanks. Methodology. Bottom sediment samples were collected using a 1 m of dirt tube (SOI-1, according to the standard requirements. Water-physical properties of sediments were investigated in accordance the recommendations of B. Novikov (1985 and A. Denisova et al. (1987. Determination of the gross content of organic matter carried by loss after calcining. Oxygen consumption in sediments was studied by the method V. І. Romanenko and V. A. Romanenko (1969. Determination of the amount of sediments, which are formed from waste fish farming, carried out in two different ways: by calculating the income from tanks suspended solids and by direct determination of the sediment under the tanks. Findings. Was established that intensive fish farming waste flow predetermines a significant (up to 4 increase the organic matter content. Thus, even 2 years after the reduction of volumes of fish farming tanks and even remove volumetric mass of the skeleton to the initial values of deposits are not refundable. The concentration of organic substances in the zone of the tanks lines causes increased intake of dissolved oxygen, which leads to deterioration in gas mode, especially in the bottom layers of water and may cause suffocation situations. According to our research, the role of tanks lines in shaping total volume of sediment rather low (up to 2%, but their effect on the structural characteristics of sediments allows to evaluate the role of this activity in the overall balance of production-destruction processes as significant. Originality. Was first quantified the role of fish farming in tanks on the quantitative and qualitative characteristics of sediments cooling ponds Zmievsk TPР and Kursk NPP. Practical value. The results will be used in the development of water conservation measures in the integrated use of

  1. Sedimentological characteristics of lake sediment of the Lake Jelonek (North Poland)

    Kramkowski, Mateusz; Filbrandt-Czaja, Anna; Ott, Florian; Słowiński, Michał; Tjallingii, Rik; Błaszkiewicz, Mirosław; Brauer, Achim


    Lake Jelonek is located in Northern Poland (53°45'58N, 18°23'30E). The lake is surrounded by forest, covers an area of 19,9 ha and has a maximum depth of 13,8 m. In 2013 and 2014 three overlapping and parallel series of long sediment cores JEL14-A-(1445 cm), JEL14-B-(1430 cm), JEL14-C-(1435 cm) and seven short gravity cores JEL13 (K1-K7) have been recovered from the deepest part of the lake. A continuous composite profile JEL14 covering 1426 cm has been established by correlation based on 28 distinct macroscopic marker layers. The sediment sequence can be divided into 15 (I-XV) lithological units. These units comprise biochemical calcite varves, homogeneous calcite-rich gyttja, homogeneous organic-diatomaceous gyttja, and sandy layers. The chronology established so far is based on 14 AMS 14C dates from terrestrial plant remains and tephrochronology (Askja AD-1875) and covers the interval from the Younger Dryas to present times. Based on the chronology and sedimentological characteristics the composite profile has been correlated to a previous core from which a detailed pollen diagram had been established (Filbrandt-Czaja 2009). Here we present initial results from thin section analyses for two intervals from the new composite record JEL14, (I) the uppermost 0-256 cm and (II) the interval from 768-1296 cm. Intercalated between these two varved interval is a thick section (512 cm) of homogeneous organic-ditomaceous sediments. We present varve micro-facies data in combination with μ-XRF element scanning for comprehensive reconstruction of the sedimentation processes in Lake Jelonek. Preliminary varve counting reveals that the uppermost 256 cm varved sediments comprise ca 925 years (2008-1083 AD), while the lower floating varve interval covers the time period from 1850 - 10500 cal a BP. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415. References

  2. Rapid identification of transience in streambed conductance by inversion of floodwave responses

    Gianni, Guillaume; Richon, Julien; Perrochet, Pierre; Vogel, Alexandre; Brunner, Philip


    Streambed conductance controls the interaction between surface and groundwater. However, the streambed conductance is often subject to transience. Directly measuring hydraulic properties in a river yields only point values, is time-consuming and therefore not suited to detect transience of physical properties. Here, we present a method to continuously monitor transience in streambed conductance. Input data are time series of stream stage and near stream hydraulic head. The method is based on the inversion of floodwave responses. The analytical model consists of three parameters: x, the distance between streambank and an observation well, α, the aquifer diffusivity, and a the retardation coefficient that is inversely proportional to the streambed conductance. Estimation of a is carried out over successive time steps in order to identify transience in streambed conductance. The method is tested using synthetic data and is applied to field data from the Rhône River and its alluvial aquifer (Switzerland). The synthetic method demonstrated the robustness of the proposed methodology. Application of the method to the field data allowed identifying transience in streambed properties, following flood events in the Rhône. This method requires transience in the surface water, and the river should not change its width significantly with a rising water level. If these conditions are fulfilled, this method allows for a rapid and effective identification of transience in streambed conductance.

  3. Interactions Between Channel Topography and Hydrokinetic Turbines: Sediment Transport, Turbine Performance, and Wake Characteristics

    Hill, Craig Steven

    Accelerating marine hydrokinetic (MHK) renewable energy development towards commercial viability requires investigating interactions between the engineered environment and its surrounding physical and biological environments. Complex and energetic hydrodynamic and morphodynamic environments desired for such energy conversion installations present difficulties for designing efficient yet robust sustainable devices, while permitting agency uncertainties regarding MHK device environmental interactions result in lengthy and costly processes prior to installing and demonstrating emerging technologies. A research program at St. Anthony Falls Laboratory (SAFL), University of Minnesota, utilized multi-scale physical experiments to study the interactions between axial-flow hydrokinetic turbines, turbulent open channel flow, sediment transport, turbulent turbine wakes, and complex hydro-morphodynamic processes in channels. Model axial-flow current-driven three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. Device-induced local scour was monitored over several hydraulic conditions and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. Complimentary experiments were performed in a realistic meandering outdoor research channel with active sediment transport to investigate device interactions with bedform migration and secondary turbulent flow patterns in asymmetric channel environments. The suite of experiments undertaken during this research program at SAFL in multiple channels with stationary and mobile substrates under a variety of turbine configurations provides an in-depth investigation into how axial-flow hydrokinetic devices respond to turbulent channel flow and topographic complexity, and how they impact local and far-field sediment transport characteristics

  4. Trace metals in surface sediments of the Taiwan Strait: geochemical characteristics and environmental indication.

    Gao, Xuelu; Zhou, Fengxia; Lui, Hon-Kit; Lou, Jiann-Yuh; Chen, Chen-Tung Arthur; Zhuang, Wen


    The concentration and geochemical fractionation of six trace metals related with environmental quality assessment, namely Cd, Cr, Cu, Ni, Pb, and Zn, in 30 surface sediments from both inshore and offshore areas of the Taiwan Strait were measured to investigate their distribution characteristics, evaluate their potential mobility, and assess their pollution status. The geoaccumulation index results indicated that, on average, the studied metals presented an order of Cd > Pb > Ni > Zn > Cu > Cr and were practically in uncontaminated status except Cd. The results of the sequential extraction analysis indicated that, on average, the studied metals were mostly accumulated in residual fraction except Cd whose concentration was the highest in the acid soluble fraction presenting a high risk to the environment, and their mobility decreased in the sequence of Cd > Pb > Ni > Cu > Zn > Cr. Based on the mean probable effect level quotients, the combination of the studied metals had an 8 % probability of being toxic at two sampling sites and had a 21 % probability of being toxic at the rest of sites. The spatial distribution of the studied metals in total concentrations and different geochemical fractions corroborated the previous findings about the possible sediment transportation routes in and around the Taiwan Strait.

  5. Denitrification in sediments as a major nitrogen sink in the Baltic Sea: an extrapolation using sediment characteristics

    B. Deutsch


    Full Text Available Rates of denitrification in sediments were measured with the isotope pairing technique at different sites in the southern and central Baltic Sea. They varied between 0.5 μmol m−2 h−1 in sands and 28.7 μmol m−2 h−1 in muddy sediments and showed a good correlation to the organic carbon contents of the surface sediments. N-removal rates via sedimentary denitrification were estimated for the entire Baltic Sea calculating sediment specific denitrification rates and interpolating them to the whole Baltic Sea area. Another approach was carried out by using the relationship between the organic carbon content and the rate of denitrification. For the entire Baltic Sea the N-removal by denitrification in sediments varied between 426–652 kt N a−1, which is around 48–73% of the external N inputs delivered via rivers, coastal point sources and atmospheric deposition. Moreover, an expansion of the anoxic bottom areas was considered under the assumption of a rising oxycline from 100 to 80 m water depth. This leads to an increase of the area with anoxic conditions and an overall decrease in sedimentary denitrification by 14%. Overall we can show here that this type of data extrapolation is a powerful tool to estimate the nitrogen losses for a whole coastal sea and may be applicable to other coastal regions and enclosed seas, too.

  6. Distribution and composition characteristics of heavy minerals in surficial sediment of Minjiang Estuary

    XU Maoquan; XU Wenbin; SUN Meiqin


    Heavy minerals with a size range of 0.125~0.250 mm in the surficial sediment of Minjiang Estuary are studied. Thirty-four heavy minerals have been identified, with an average content of 1.92%. Major minerals include magnetite, epidote, hematite, hornblende, ilmenite, and zircon mica. These types are the same as those in the 0.063~0.125 mm range; however, the average content is lower, which reveals that the heavy minerals in Minjiang Estuary are mainly enriched in the very-fine sand fraction. According to the content and distribution characteristics of the major heavy minerals, Minjiang Estuary can be divided into 4 mineral assemblage zones. In each zone the assemblage of heavy minerals is greatly affected by the hydrodynamic condition and the sedimentary environment. Heavy mineral types also show that detrital matters in Minjiang Estuary are originated from the weathering and erosion of the bedrock in the Minjiang River drainage area.

  7. Vegetation and sediment characteristics in an expanding mangrove forest in New Zealand

    Yang, Juan; Gao, Jay; Cheung, Alan; Liu, Baolin; Schwendenmann, Luitgard; Costello, Mark John


    Mangrove expansion in inlets has been widely observed in the North Island of New Zealand over recent decades. There is just one mangrove species in New Zealand, Avicennia marina var. resinifera. Our main objective was to investigate the response of mangroves to sedimentary patterns. Remote sensing and GIS was used to quantify the change in mangrove area. Vegetation and sediment characteristics were studied across seasons from December 2009 to August 2010. Comparison of digital images in 1940 and 2003 revealed that the mangrove area in our study inlet had increased by 21%. The mangroves created a rim of high fringe mangroves surrounding high-density but low height trees in the interior. The relatively low pH level and seasonally fluctuating pore water total dissolved salt (TDS) concentration reveal potentially stressful conditions in the interior mangrove zone, which may influence the forest structure in the interior.

  8. Seasonality in vegetation biometrics and its effects on sediment characteristics and meiofauna in Baltic seagrass meadows

    Jankowska, Emilia; Włodarska-Kowalczuk, Maria; Kotwicki, Lech; Balazy, Piotr; Kuliński, Karol


    Seagrass meadows can act as ecosystem engineers, i.e., organisms that modify the availability of resources to other organisms. However, their possible positive impacts depend on the characteristics of the vegetation, and these can vary strongly seasonally. This study assesses seasonal variability in macrophyte taxonomic composition and seagrass biometrics in the temperate Baltic Sea eelgrass meadows. We hypothesize that the anticipated strong seasonality in vegetation cover induces parallel seasonal changes in seagrass engineering effects as indicated by changes in sediment characteristics and meiozoobenthic abundance, composition and diversity. Macrophytes, sediments, and fauna were sampled at two locations in the Puck Bay from vegetated bottoms and bare sands five times in one year. Zostera marina vegetation occurred throughout the year and showed strong seasonality with the highest values of shoot density, leaf length, and biomass in July (202.3 ± 30.0 95% CI shoots m-2) and the lowest in March (55.4 ± 15.0 shoots m-2). POC was significantly higher in vegetated sands, and these effects were evident throughout the study period regardless of variability in macrophyte vegetation. The density and diversity of meiofauna did not differ between the seagrass beds and bare sands even in summer months when vegetation was best developed. The lack of an effect of the seagrass meadows on the meiofauna can be explained by the relatively low shoot density and biomass of the studied seagrass meadows and/or higher macrobenthic predation on the vegetated bottom compared to bare sands. However, both the canopies of macrophytes and the effects of the vegetation on benthic systems could increase substantially over the course of the gradual, natural restoration of the seagrass meadows.

  9. 14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments

    Feng, Xiaojuan; Benitez-Nelson, Bryan C.; Montluçon, Daniel B.; Prahl, Fredrick G.; McNichol, Ann P.; Xu, Li; Repeta, Daniel J.; Eglinton, Timothy I.


    Plant wax lipids and lignin phenols are the two most common classes of molecular markers that are used to trace vascular plant-derived OM in the marine environment. However, their 13C and 14C compositions have not been directly compared, which can be used to constrain the flux and attenuation of terrestrial carbon in marine environment. In this study, we describe a revised method of isolating individual lignin phenols from complex sedimentary matrices for 14C analysis using high pressure liquid chromatography (HPLC) and compare this approach to a method utilizing preparative capillary gas chromatography (PCGC). We then examine in detail the 13C and 14C compositions of plant wax lipids and lignin phenols in sediments from the inner and mid shelf of the Washington margin that are influenced by discharge of the Columbia River. Plant wax lipids (including n-alkanes, n-alkanoic (fatty) acids, n-alkanols, and n-aldehydes) displayed significant variability in both δ13C (-28.3‰ to -37.5‰) and Δ14C values (-204‰ to +2‰), suggesting varied inputs and/or continental storage and transport histories. In contrast, lignin phenols exhibited similar δ13C values (between -30‰ and -34‰) and a relatively narrow range of Δ14C values (-45‰ to -150‰; HPLC-based measurement) that were similar to, or younger than, bulk OM (-195‰ to -137‰). Moreover, lignin phenol 14C age correlated with the degradation characteristics of this terrestrial biopolymer in that vanillyl phenols were on average ˜500 years older than syringyl and cinnamyl phenols that degrade faster in soils and sediments. The isotopic characteristics, abundance, and distribution of lignin phenols in sediments suggest that they serve as promising tracers of recently biosynthesized terrestrial OM during supply to, and dispersal within the marine environment. Lignin phenol 14C measurements may also provide useful constraints on the vascular plant end member in isotopic mixing models for carbon source

  10. Textural characteristics of foreshore sediments along Karnataka shoreline, west coast of India

    Dora, G.U.; SanilKumar, V.; Philip, C.S.; Johnson, G.; Vinayaraj, P.; Gowthaman, R.

    Grain character analysis of beach sediments along three selected beaches (Pavinkurve, Kundapura and Padukare) of Karnataka coast, west coast of India is carried out to identify the textural behavior of beach sediments during an annual cycle from...

  11. Contamination characteristics, ecological risk and source identification of trace metals in sediments of the Le'an River (China).

    Chen, Haiyang; Chen, Ruihui; Teng, Yanguo; Wu, Jin


    Recognizing the pollution characteristics of trace metals in river sediments and targeting their potential sources are of key importance for proposing effective strategies to protect watershed ecosystem health. In this study, a comprehensive investigation was conducted to identify the contamination and risk characteristics of trace metals in sediments of Le'an River which is a main tributary of the largest freshwater lake in China, Poyang Lake. To attain this objective, several tools and models were considered. Geoaccumulation index and enrichment factor were used to understand the general pollution characteristic of trace metals in sediments. Discriminant analysis was applied to identify the spatial variability of sediment metals. Sediment quality guidelines and potential ecological risk index were employed for ecological risk evaluation. Multivariate curve resolution-alternating least square was proposed to extract potential pollution sources, as well as the application of Monte-Carlo simulation for uncertainty analysis of source identification. Results suggested that the sediments in Le'an River were considerably polluted by the investigated trace metals (Cd, Cr, As, Hg, Pb, Cu, Zn and Ni). Sediment concentrations of these metals showed significant spatial variations. The potential ecological risk lay in high level. Comparatively speaking, the metals of Cd, Cu and Hg were likely to result in more harmful effects. Mining activities and the application of fertilizers and agrochemicals were identified as the main anthropogenic sources. To protect the ecological system of Le'an River and Poyang Lake watershed, industrial mining and agricultural activities in this area should to be strictly regulated. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Geomechanical, Hydraulic and Thermal Characteristics of Deep Oceanic Sandy Sediments Recovered during the Second Ulleung Basin Gas Hydrate Expedition

    Yohan Cha


    Full Text Available This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments contained silt, clay and sand fractions of 21%, 1.3% and 77.7%, respectively, as well as diatomaceous minerals with internal pores. The peak friction angle and critical state (or residual state friction angle under drained conditions were ~26° and ~22°, respectively. There was minimal or no apparent cohesion intercept. Stress- and strain-dependent elastic moduli, such as tangential modulus and secant modulus, were identified. The sediment stiffness increased with increasing confining stress, but degraded with increasing strain regime. Variations in water permeability with water saturation were obtained by fitting experimental matric suction-water saturation data to the Maulem-van Genuchen model. A significant reduction in thermal conductivity (from ~1.4–1.6 to ~0.5–0.7 W·m−1·K−1 was observed when water saturation decreased from 100% to ~10%–20%. In addition, the electrical resistance increased quasi-linearly with decreasing water saturation. The geomechanical, hydraulic and thermal properties of the hydrate-free sediments reported herein can be used as the baseline when predicting properties and behavior of the sediments containing hydrates, and when the hydrates dissociate during gas production. The variations in thermal and hydraulic properties with changing water and gas saturation can be used to assess gas production rates from hydrate-bearing deposits. In addition, while depressurization of hydrate-bearing sediments inevitably causes deformation of sediments under drained conditions, the obtained strength and stiffness properties and stress-strain responses of the sedimentary formation under drained loading conditions

  13. ‘Sticky business’: The influence of streambed periphyton on particle deposition and infiltration

    Salant, Nira L.


    Strong feedbacks exist between physical and ecological components of aquatic systems. Aquatic plants can alter flow and sedimentation patterns, in turn influencing habitat condition and organism responses. In this study, I investigate the interactions between streambed periphyton, particle deposition and infiltration, and flow hydraulics to determine the influence of these organisms on the local environment. In a series of flume experiments, I measured the effects of two contrasting forms of periphyton at several densities and growth stages on near-bed hydraulics, particle loss from the water column, surface deposition, and subsurface infiltration. Data show that periphyton assemblages altered the rate and quantity of particle deposition via several mechanisms, including shear stress modification, surface adhesion, and bed clogging. Although trends varied for different size classes within a suspension of fine sediment, diatoms and algae had distinctly different effects on hydraulics, deposition, and infiltration. In general, diatoms increased the rate of decline in suspended particle concentrations relative to non-periphyton surfaces by reducing shear stresses and enhancing surface deposition via adhesion. Increases in diatom biomass, however, reduced the quantity and depth of particle infiltration, presumably by clogging interstitial pore spaces, in turn lowering rates of concentration decline. In contrast, all algal growth stages had slower or similar rates of concentration decline compared to non-periphyton conditions, due to partial clogging by high biomass and a lack of adhesion at the bed surface. Clogging effects were counteracted at later growth stages, however, as late-stage algal structures increased shear stresses and downward advection, in turn increasing amounts of infiltration. Compiled data from several field studies and experiments demonstrate a positive relation between periphyton biomass and inorganic mass, but also show a wide range in the

  14. Morphology, seismic characteristics and development of the sediment dispersal system along the Taiwan-Luzon convergent margin

    Hsiung, Kan-Hsi; Su, Chih-Chieh; Yu, Ho-Shing; Chang, Jih-Hsin


    The sediment dispersal system along the convergent margin between Taiwan and Luzon links the terrestrial and shallow marine sediments from the source areas nearby Taiwan orogen to the ultimate sink in the northern Manila Trench. Using seismic reflection profiles and bathymetry mapping we determine three distinct morpho-tectonic features of the Penghu Submarine Canyon, deep-sea Penghu Channel and oceanic Manila Trench which are linearly interconnected to form a longitudinal sediment route. Seismic profiles show characteristic features of truncated strata along canyon walls and cut-and-fills in canyon bottom. Deformed and uplifted bathymetric ridges and troughs and volcanic intrusions with unstratified and chaotic seismic facies are associated with the Penghu Channel. The seismic facies of the trench wedge are characterized by sub-horizontal and conformable layers of sediment stacking upwards to the trench floor. The sediment wedge adjacent to the inner lower slope is deformed to blind folds and thrust faults as precursors of the accretionary prism. The most prominent seismic characteristics is wide-spread undulating reflectors on the seafloor along the west edge of the sediment dispersal system and the toe of the South China Sea Basin floor, suggesting a large sediment wave field with a turbidity currents origin. The location, orientation and geometry of this sediment routing system are mainly controlled by underlying tectonics in progressive changes from arc-continental collision in transition to subduction. The deep-sea Penghu Channel is formed by compression in transitional zone of the North Luzon Ridge region, neither subduction nor channel erosion. The sediments in northern Manila Trench are mainly transported by turbidity currents via the upslope deep-sea Penghu Channel and Penghu Canyon and trench axis is filled up to a flat-floor trench wedge without sediment ponding. A four-stage development of sediment dispersal system in Taiwan-Luzon convergent margin

  15. Short-term impact of deep sand extraction and ecosystem-based landscaping on macrozoobenthos and sediment characteristics

    Jong, de M.F.; Baptist, Martin; Lindeboom, H.J.; Hoekstra, P.


    We studied short-term changes in macrozoobenthos in a 20 m deep borrow pit. A boxcorer was used to sample macrobenthic infauna and a bottom sledge was used to sample macrobenthic epifauna. Sediment characteristics were determined from the boxcore samples, bed shear stress and near-bed salinity were

  16. [Sediment content and nitrogen and phosphorus load characteristics of surface runoff on bamboo forest slopes: a simulation test].

    Zhang, Li-Ping; Fu, Xing-Tao; Wu, Xi-Yuan


    To understand the load characteristics and related mechanisms of surface runoff on two management types of bamboo forests (bamboo timber forest and bamboo shoot forest) slopes (gradient 20 degrees) in Zhejiang Province, this study measured the runoff volume, sediment yield, its total nitrogen (TN) and total phosphorus (TP) concentrations of runoff under six artificial simulated rainfall intensity (31.8-114.0 mm x h(-1)). In bamboo timber forest, the total runoff volume and runoff coefficient were higher, but the runoff sediment content and the total sediment yield were far lower, as compared with those in bamboo shoot forest. The runoff TN concentration in bamboo shoot forest decreased with increasing rainfall intensity. Under the same rainfall intensity, the runoff TN concentration in bamboo shoot forest was 5-6 times of that in bamboo timber forest. The runoff TP concentration was higher in bamboo timber forest than in bamboo shoot forest, but the TP loss from the sediment runoff in bamboo shoot forest was hundreds times of that in bamboo timber forest. During the processes of the TN and TP losses from the sediment runoff, the TN and TP concentrations at the prophase of runoff yield played a cardinal role, while the runoff volume and sediment yield at the anaphase played a decisive role.

  17. Distribution and characteristics of methylmercury in surface sediment in Minamata Bay.

    Matsuyama, Akito; Yano, Shinichiro; Hisano, Akihiro; Kindaichi, Michiaki; Sonoda, Ikuko; Tada, Akihide; Akagi, Hirokatsu


    This study was carried out to evaluate the present-day chemical properties of methylmercury in surface sediment in Minamata Bay where a dredging project was completed 28years ago. Present-day sediment from Minamata Bay consists of sandy silt, and the average loss-on-ignition in surface sediment was 7.0±2.3%. The average methylmercury concentrations in the upper sediment layers were significantly higher than those in the lower sediment layers. Currently, the concentrations in sediments in Minamata Bay do not exceed the Japanese regulatory standard value for mercury. The average concentration of methylmercury in Minamata Bay surface sediment was 1.74±1.0ng/g on a dry weight basis (n=107). The methylmercury concentration in Minamata Bay surface sediment was almost 16 times higher than that in surface sediment from Isahaya Bay surface sediment, which was 0.11±0.045ng/g on a dry weight basis (n=5).

  18. Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments

    Mouri, Goro; Ros, Faizah Che; Chalov, Sergey


    To better understand instream suspended sediment delivery and transformation processes, we conducted field measurements and laboratory experiments to study the natural function of spatial and temporal variation, sediment particles, stable isotopes, particle size, and aspect ratio from tributary to mainstream flows of the Sukhaya Elizovskaya River catchment at the beginning of and during snowmelt. The Sukhaya Elizovskaya River is located in the Kamchatka Peninsula of Russia and is surrounded by active volcanic territory. The study area has a range of hydrological features that determine the extreme amounts of washed sediments. Sediment transported to the river channels in volcanic mountainous terrain is believed to be strongly influenced by climate conditions, particularly when heavy precipitation and warmer climate trigger mudflows in association with the melting snow. The high porosity of the channel bottom material also leads to interactions with the surface water, causing temporal variability in the daily fluctuations in water and sediment flow. Field measurements revealed that suspended sediment behaviour and fluxes decreased along the mainstream Sukhaya Elizovskaya River from inflows from a tributary catchment located in the volcanic mountain range. In laboratory experiments, water samples collected from tributaries were mixed with those from the mainstream flow of the Sukhaya Elizovskaya River to examine the cause of debris flow and characteristics of suspended sediment in the mainstream. These findings and the geological conditions of the tributary catchments studied led us to conclude that halloysite minerals likely comprise the majority of suspended sediments and play a significant role in phosphate adsorption. The experimental results were upscaled and verified using field measurements. Our results indicate that the characteristics of suspended sediment and river discharge in the Sukhaya Elizovskaya River can be attributed primarily to the beginning of

  19. Environmental Characteristics of Polybrominated Diphenyl Ethers in Marine System, with Emphasis on Marine Organisms and Sediments

    Ying Zhang


    Full Text Available Polybrominated diphenyl ethers (PBDEs, due to their widespread usage as flame retardants and their lipophilicity and persistence, have become ubiquitous in the environment. It is urgent to understand the environmental characteristics of PBDEs in marine system, but they have attracted little attention. We summarize the available data and analyze the regional distributions, controlling factors, and congener patterns of PBDEs in marine and associated environmental matrixes worldwide. Based on meta-analysis, after separating the estuarial sites from the marine sites, ignoring the extraordinary sample sites such as those located just near the point source, the PBDE concentration levels are still in the same order of magnitude from global scale. Despite Principal Component Analysis, the congener patterns of sediments are predominant with the heavy brominated congeners (BDE-209 contributing over 75% to the total load while the biota abound with the light ones (BDE-47, BDE-99, and BDE-100 taking about 80%. The ratio between BDE-99 and BDE-100 for the lower trophic-level species often turns to be greater than 1, while for those higher species the ratio may be below 1, and some species feed mainly on the crustaceans and zooplankton seems to have a higher ratio value. The data of the PBDEs in marine system are currently limited; thus, data gaps are identified as well.

  20. Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Thompson, R.


    Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora mangle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha-1 in dwarf forests to 194.3 Mg ha-1 in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes. Copyright 2005 College of Arts and Sciences.

  1. The relationship between carbon and oxygen isotopic composition characteristics of carbonates in loess sediments and paleoclimate

    李春园; 王先彬; 文启彬; 邵波


    Based on the carbon and oxygen isotopic compositions of carbonates in loess sediments meas-ured by the methods of stepwise heating and phosphoric acid decomposition from five pieces of samples ofpaleosol,loess and eolian sand,respectively,the distributive characteristics in different temperature steps andthe fractionation mechanisms of carbon and oxygen isotope and their relation to the paleoclirnate are discussed.The preliminary results show that,by means of stepwise heating,different carbon and oxygen isotopiccompositions are obtained in different temperature steps and carbon and oxygen isotopic compositions ofpaleosol,loess and eolian sand are in a different distributive pattern in the range of studied temperaturesteps.The results also show that the δ13C ratios in 700-800℃ are more sensitive tracers of paleoclimatethan those measured by the method of phosphoric acid decomposition.The susceptibility to climatic changesof δ18O ratios analysed by the method of phosphoric acid decomposition is higher than those analysed by themethod of stepwise heating,but the δ18O ratios measured by these two methods do not effectively reflect cli-matic changes.

  2. Using heat to characterize streambed water flux variability in four stream reaches

    Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.


    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. Characteristics of water, sediment, and benthic communities of the Wolf River, Menominee Indian Reservation, Wisconsin, water years 1986-98

    Garn, Herbert S.; Scudder, Barbara C.; Richards, Kevin D.; Sullivan, Daniel J.


    Analyses and interpretation of water quality, sediment, and biological data from water years 1986 through 1998 indicated that land use and other human activities have had only minimal effects on water quality in the Wolf River upstream from and within the Menominee Indian Reservation in northeastern Wisconsin. Relatively high concentrations of calcium and magnesium (natural hardness), iron, manganese, and aluminum were measured in Wolf River water samples during water years 1986?98 from the three sampled sites and attributed to presence of highly mineralized geologic materials in the basin. Average calcium and magnesium concentrations varied from 22?26 milligrams per liter (mg/L) and 11?13 mg/L, respectively. Average iron concentrations ranged from 290?380 micrograms per liter (?g/L); average manganese concentrations ranged from 53?56 mg/L. Average aluminum concentrations ranged from 63?67 ?g/L. Mercury was present in water samples but concentrations were not at levels of concern. Levels of Kjeldahl nitrogen, ammonia, nitrite plus nitrate, total phosphorus, and orthophosphorus in water samples were often low or below detection limits (0.01? 0.10 mg/L). Trace amounts of atrazine (maximum concentration of 0.031 ?g/L), deethylatrazine (maximum 0.032 ?g/L), and alachlor (maximum of 0.002 ?g/L) were detected. Low concentrations of most trace elements were found in streambed sediment. Tissues of fish and aquatic invertebrates collected once each year from 1995 through 1998 at the Langlade and Keshena sites, near the northern and southern boundaries of the Reservation, respectively, were low in concentrations of most trace elements. Arsenic and silver in fish livers from both sites were less than or equal to 2 ?g/g arsenic and less than 1 ?g/g silver for dry weight analysis, and concentrations of antimony, beryllium, cadmium, cobalt, lead, nickel, and uranium were all below detection limits (less than 1 ?g/g dry weight). Concentrations of most other trace elements in fish

  4. Sediment delivery modeling in practice: Comparing the effects of watershed characteristics and data resolution across hydroclimatic regions.

    Hamel, Perrine; Falinski, Kim; Sharp, Richard; Auerbach, Daniel A; Sánchez-Canales, María; Dennedy-Frank, P James


    Geospatial models are commonly used to quantify sediment contributions at the watershed scale. However, the sensitivity of these models to variation in hydrological and geomorphological features, in particular to land use and topography data, remains uncertain. Here, we assessed the performance of one such model, the InVEST sediment delivery model, for six sites comprising a total of 28 watersheds varying in area (6-13,500km(2)), climate (tropical, subtropical, mediterranean), topography, and land use/land cover. For each site, we compared uncalibrated and calibrated model predictions with observations and alternative models. We then performed correlation analyses between model outputs and watershed characteristics, followed by sensitivity analyses on the digital elevation model (DEM) resolution. Model performance varied across sites (overall r(2)=0.47), but estimates of the magnitude of specific sediment export were as or more accurate than global models. We found significant correlations between metrics of sediment delivery and watershed characteristics, including erosivity, suggesting that empirical relationships may ultimately be developed for ungauged watersheds. Model sensitivity to DEM resolution varied across and within sites, but did not correlate with other observed watershed variables. These results were corroborated by sensitivity analyses performed on synthetic watersheds ranging in mean slope and DEM resolution. Our study provides modelers using InVEST or similar geospatial sediment models with practical insights into model behavior and structural uncertainty: first, comparison of model predictions across regions is possible when environmental conditions differ significantly; second, local knowledge on the sediment budget is needed for calibration; and third, model outputs often show significant sensitivity to DEM resolution.

  5. How do Watershed Characteristics and Precipitation Influence Post-Wildfire Valley Sediment Storage and Delivery Over Time?

    Brogan, D. J.; Nelson, P. A.; MacDonald, L. H.


    Considerable advances have been made in understanding post-wildfire runoff, erosion, and mass wasting at the hillslope and small watershed scale, but the larger-scale effects on flooding, water quality, and sedimentation are often the most significant impacts. The problem is that we have virtually no watershed-specific tools to quantify the proportion of eroded sediment that is stored or delivered from watersheds larger than about 2-5 km2. In this study we are quantifying how channel and valley bottom characteristics affect post-wildfire sediment storage and delivery. Our research is based on intensive monitoring of sediment storage over time in two 15 km2 watersheds (Skin Gulch and Hill Gulch) burned in the 2012 High Park Fire using repeated cross section and longitudinal surveys from fall 2012 through summer 2016, five airborne laser scanning (ALS) datasets from fall 2012 through summer 2015, and both radar and ground-based precipitation measurements. We have computed changes in sediment storage by differencing successive cross sections, and computed spatially explicit changes in successive ALS point clouds using the multiscale model to model cloud comparison (M3C2) algorithm. These channel changes are being related to potential morphometric controls, including valley width, valley slope, confinement, contributing area, valley expansion or contraction, topographic curvature (planform and profile), and estimated sediment inputs. We hypothesize that maximum rainfall intensity and lateral confinement will be the primary independent variables that describe observed patterns of erosion and deposition, and that the results can help predict post-wildfire sediment delivery and identify high priority areas for restoration.

  6. Sediment characteristics at intertidal regions across Yarada beach, East coast of India

    Yadhunath, E.M.; Raju, N.S.N.; Ganesan, P.; Gowthaman, R.; JayaKumar, S.

    Sediment samples were collected once a month at five different inter-tidal zones across Yarada beach during May-2009 to May-2010 These sediments are characterized by bimodal and unimodal behaviour and most of them are sorted as moderately as well...

  7. Estimation of sediment yield during storms based on soil and watershed geomorphology characteristics

    Lee, Kwan Tun; Yang, Chi-Cheng


    SummaryConcentrated rainfall usually results in serious soil erosion on steep hillslopes. Since the itinerary of the eroded sediment is complicated, estimating watershed erosion during storms is practically difficult. A physically-based approach for sediment yield estimation during storms was proposed in this study. By using soil and watershed geomorphologic information, analytical solutions for sediment travel time in different orders of overland areas and channels were derived to develop a geomorphologic instantaneous unit sedimentgraph (GIUS) which showed the temporal distribution of sediment discharge resulting from an instantaneous rainfall excess input. The resultant GIUS was a function of the rainfall excess intensity and sediment delivery ratio. The linearity restriction of the unit hydrograph theory was relaxed. Sediment yields during storm events were calculated by convoluting rainfall intensities with the proposed GIUS, which had been verified by using data from the Goodwin Creek Experimental Watershed in Mississippi, the United States. The simulated and the measured sediment yields were in good agreement for the test storms. Sensitivity of the sedimentgraph to the model parameters was also investigated. The proposed model was considered a promising application for sediment yield estimation in the field of water resources design.

  8. Estimating for Sediment Yield During Storm Based on Soil and Watershed Geomorphology Characteristics

    Lee, K.; Yang, C.


    Concentrated rainfall usually results in serious soil erosion on steep hillslopes. Since the itinerary of the eroded sediment is complicated and measure for temporal sediment concentration is a laborious work, estimating for watershed erosion during storm is considered as difficulty in practice. In this study, a simple method for estimating sediment yield during storm was derived. By using soil data and watershed geomorphologic information, analytical solutions for sediment travel times and delivery ratios for different orders of overland areas and channels were derived to form an instantaneous unit sedimentgraph. Consequently, sediment yield during storm can be estimated by convoluting the rainfall intensities with the proposed instantaneous unit sedimentgraph. In this study, the proposed model has been verified using the data from Goodwin Experimental Watershed located in Mississippi of the United States. A digital elevation model was adopted to obtain the watershed geomorphologic factors for subsequent runoff routing and sediment concentration estimations. The simulated and the measured sediment yields were in good agreement for the test storms. It is therefore promising for the proposed model to be used for sediment yield estimation in gauged and ungauged watersheds for water resources design work.

  9. Geochemical characteristics of hydrothermal sediments from Iheya North Knoll in the Okinawa Trough

    Hu, Qiannan; Zhang, Xin; Jiang, Fuqing; Wang, Bing; Luan, Zhendong; Chen, Chang'an; Yan, Jun


    Thirty sediment subsamples were recovered from the Iheya North hydrothermal field (with an average of 38 m away from the hydrothermal vent) in the middle Okinawa Trough. Samples were obtained by the ROV (Remote Operated Vehicle) Faxian during the virgin cruise of the R/V Kexue in 2014 with the application of push cores. The chemical compositions of the sediments show that the hydrothermal sediments near the hydrothermal vent are mainly composed of SO3, ZnO and Fe2O3. Moreover, the hydrothermal sediments are also highly enriched in Pb, As, Sb, Hg, Se, Ag, Ba, Mo and Cd comparing with previous analysis results. On the other hand, the concentrations of Sr, Hg and Ag in studied sediments are strongly and positively correlated, these elements can be used as an hydrothermal indicator. In addition, a factor analysis of the sediments suggested that the sediments were mainly influenced by hydrothermal origin, and terrestrial and biogenic input are limited in studied area. It is also suggested that different stages of crystallization were involved in the formation of hydrothermal chimney from factor analysis.

  10. Phosphorus release potential and pollution characteristics of sediment in downstream Nansi Lake, China

    Zhijian LI; Qinyan YUE; Baoyu GAO; Yanwen WANG; Qing LIU


    The research aimed to evaluate present and potential phosphorous pollution due to high sedimentary phosphorus load and release from sediment, when external phosphorus was reduced in downstream Nansi Lake. Pollution load of the sediment and overlying water was investigated. Kinetics and isotherms of adsorption/release of sedimentary phosphorus were studied to determine equilibrium phosphate concentration (EPCo) and release potential. Kinetics of phosphorus adsorption on sediment and release from sediment were well described by both the pseudo-first-order rate equation and the pseudo-second- order rate equation, but more appropriate to the pseudo- second-order rate equation with the adsorption/release capacity more close to the measured values, suggesting that the processes were chemically rate controlled and dependent on adsorption capacity. Soluble reactive phosphorus (SRP) sorption isotherms on sediment were best fitted by the modified Langmuir model indicating a monolayer adsorption. By comparing EPC0 and SRP of water, the status (adsorption, releasing or in equilibrium) of sediment phosphorus could be determined. The sediments at site S l, S3, S4, S5, and S7 where the EPC0s were greater than the SRPs, had a potential to release phosphorus into the water column. However, those sediments at S9, S10, and S 12, where the EPC0s were approximately equal to the SRPs, were in impermanent equilibrium with overlying water in status of phosphorus, the sediments can be likely to release phosphorus to the water column once the equilibrium was broken. Therefore, sedimentary phos- phorus can be a secondary pollution source in downstream Nansi Lake.

  11. Response of Vallisneria natans to Increasing Nitrogen Loading Depends on Sediment Nutrient Characteristics

    Jiao Gu


    Full Text Available High nitrogen (N loading may contribute to recession of submerged macrophytes in shallow lakes; yet, its influences vary depending on environmental conditions. In August 2013, we conducted a 28-day factorial-designed field mesocosm experiment in Lake Taihu at the Taihu Laboratory for Lake Ecosystem Research (TLLER to examine the effects of high N loading on the growth of Vallisneria natans in systems with contrasting sediment types. We ran the experiments with two levels of nutrient loading—present-day external nutrient loading (average P: 5 μg·L−1·day−1, N: 130 μg·L−1·day−1 and P: 5 μg·L−1·day−1, and with three times higher N loading (N: 390 μg·L−1·day−1 and used sediment with two contrasting nutrient levels. V. natans growth decreased significantly with increasing N loading, the effect being dependent, however, on the nutrient status of the sediment. In low nutrient sediment, relative growth rates, leaf biomass and root biomass decreased by 11.9%, 18.2% and 23.3%, respectively, at high rather than low N loading, while the decline was larger (44.0%, 32.7% and 41.8%, respectively when using high nutrient sediment. The larger effect in the nutrient-rich sediment may reflect an observed higher shading of phytoplankton and excess nutrient accumulation in plant tissue, though potential toxic effects of the high-nutrient sediment may also have contributed. Our study confirms the occurrence of a negative effect of increasing N loading on submerged plant growth in shallow nutrient-enriched lakes and further shows that this effect is augmented when the plants grow in nutrient-rich sediment. External N control may, therefore, help to protect or restore submerged macrophytes, especially when the sediment is enriched with nutrients and organic matter.

  12. Sediment Quality and Comparison to Historical Water Quality, Little Arkansas River Basin, South-Central Kansas, 2007

    Juracek, Kyle E.; Rasmussen, Patrick P.


    The spatial and temporal variability in streambed-sediment quality and its relation to historical water quality was assessed to provide guidance for the development of total maximum daily loads and the implementation of best-management practices in the Little Arkansas River Basin, south-central Kansas. Streambed-sediment samples were collected at 26 sites in 2007, sieved to isolate the less than 63-micron fraction (that is, the silt and clay), and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclides beryllium-7, cesium-137, lead-210, and radium-226. At eight sites, streambed-sediment samples also were collected and analyzed for bacteria. Particulate nitrogen, phosphorus, and organic carbon concentrations in the streambed sediment varied substantially spatially and temporally, and positive correlations among the three constituents were statistically significant. Along the main-stem Little Arkansas River, streambed-sediment concentrations of particulate nitrogen and phosphorus generally were larger at and downstream from Alta Mills, Kansas. The largest particulate nitrogen concentrations were measured in samples collected in the Emma Creek subbasin and may be related to livestock and poultry production. The largest particulate phosphorus concentrations in the basin were measured in samples collected along the main-stem Little Arkansas River downstream from Alta Mills, Kansas. Particulate nitrogen, phosphorus, and organic carbon content in the water and streambed-sediment samples typically decreased as streamflow increased. This inverse relation may be caused by an increased contribution of sediment from channel-bank sources during high flows and (or) increased particle sizes transported by the high flows. Trace element concentrations in the streambed sediment varied from site to site and typically were less than threshold-effects guidelines for possible adverse biological effects

  13. Streambed Structure, Stream Power, and Bedload Transport: A Unified Outlook for Gravel-bed and Bedrock Streams

    Chatanantavet, P.; Diplas, P.; Almedeij, J.


    Interactions among streambed structure, stream power, and sediment transport in rivers have been widely observed and documented. Perennial gravel-bed streams typically possess a surface bed layer that is coarser than the subsurface material. This coarser surface layer is, however, absent from some ephemeral gravel-bed streams and in some cases the reverse phenomenon occurs. Ephemeral streams also exhibit considerably higher efficiency in transporting sediment. In steep bedrock rivers, the hydraulic-rock interactive mechanism often self-creates step-pool or cascade bed configurations as forms of energy dissipation to control the transport efficiency of sediment. Here we aim to characterize bed structures and sediment transport in gravel-bed rivers and bedrock streams by using the concept of dimensionless stream power. We analyzed existing bed load data collected from field and experimental settings in an attempt to reach a unified outlook for both stream types and various channel bed features. We found that the mechanisms responsible for the features perceived to distinguish surface fining and surface coarsening are interrelated and triggered by different values of dimensionless stream power. The surface fining case has been attributed to fluidization of the entire bed material as demonstrated here in detail. The results also suggest that in bedrock rivers with large bedforms, such as stabled step-pool and immobile rock cascade, relatively medium-large values of stream power (i.e., floods of less than 30-year return period) do not equate with large bed load transport rates due to a portion of flow energy dissipating through local hydraulic jumps, leaving less energy to transport the bed load. Plot of transport efficiency values for each bed type and flood magnitude in bedrock rivers also helps us estimate how much fraction of flow energy is delivered to do bedrock erosive work by saltating bed load; hence, the implication for studies of landscape evolution.

  14. Textural and geochemical characteristics of marine sediments in the SW Gulf of Mexico: implications for source and seasonal change.

    Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Martinez-Serrano, Raymundo G; Alatorre, Miguel Angel; Armstrong-Altrin, John S


    Two oceanographic cruises were taken during the winter (SAV I, November and December 2007) and summer (SAV II, July and August 2008) across the mouth of the Papaloapan River in the Gulf of Mexico. Surficial sediment samples were collected from shallow (16-30 m), intermediate (30 to 80 m), and deeper areas (≥300 m). Shallow water sediments are coarser, better-sorted, and primarily composed of sands during the winter, while those found in the summer are finer. At depths greater than 30 m, sediments are primarily fine-grained no matter the season. Major element analysis from shallow areas indicates higher SiO2 concentrations during the windy season with negative correlation against Al2O3 during both seasons, following the respective abundances of sand and muds. High organic carbon content was observed in shallow areas during the summer. Trace metals V, Ni, Cu, Zn, Pb, Li, Cr, Co, and Ba were evaluated. The first six metals showed higher average concentration in the deeper areas, although the highest values at some individual sampling sites for Cr, Co, Cu, and Ba were observed in the coastal area. Factor and cluster analysis were used to explain the sediment distribution pattern and the factors that determine the sediment characteristics within the study area. In shallow areas, four clusters were observed during the winter and five during the summer. The geochemical characteristics of the samples in each cluster suggest association with fluvial sediment input, textural characteristics, heavy minerals, and Cu and Ba concentration. To evaluate the variations in heavy metal concentration, metal enrichment factors (EFs) were calculated. Enrichment in V, Cr, Co, Zn, Ba, and Pb was detected at certain sites, whereas Cu behaved differently. The distribution of Cu enrichment suggests that it may be of natural origin, associated with the lithology of the volcanic continental area. The minor enrichment observed for other elements may be associated with river discharge

  15. Binding characteristics of Cu(2+) to natural humic acid fractions sequentially extracted from the lake sediments.

    He, En; Lü, Changwei; He, Jiang; Zhao, Boyi; Wang, Jinghua; Zhang, Ruiqing; Ding, Tao


    Humic acids (HAs) determine the distribution, toxicity, bioavailability, and ultimate fate of heavy metals in the environment. In this work, ten HA fractions (F1-F10) were used as adsorbent, which were sequentially extracted from natural sediments of Lake Wuliangsuhai, to investigate the binding characteristics of Cu(2+) to HA. On the basis of the characterization results, differences were found between the ten extracted HA fractions responding to their elemental compositions and acidic functional groups. The characterization results reveal that the responses of ten extracted HA fractions to their elemental compositions and acidic functional groups were different. The O/C and (O + N)/C ratio of F1-F8 approximately ranged from 0.66 to 0.53 and from 0.72 to 0.61, respectively; the measured results showed that the contents of phenolic groups and carboxyl groups decreased from 4.46 to 2.60 mmol/g and 1.60 to 0.58 mmol/g, respectively. The binding characteristics of Cu(2+) to the ten HA fractions were well modeled by the bi-Langmuir model; the binding behavior of Cu(2+) to all the ten HA fractions were strongly impacted by pH and ionic strength. The FTIR and SEM-EDX image of HA fractions (pre- and post-adsorption) revealed that carboxyl and phenolic groups were responsible for the Cu(2+) sorption on the ten sequentially extracted HA fractions process, which is the same with the analysis of the ligand binding and bi-Langmuir models Accordingly, the adsorption capacity of the former HA fractions on Cu(2+) were higher than the latter ones, which may be attributed to the difference of carboxyl and phenolic group contents between the former and latter extracted HA fractions. Additionally, the functional groups with N and S should not be neglected. This work is hopeful to understand the environmental effect of humic substances, environmental geochemical behavior, and bioavailability of heavy metals in lakes.

  16. A seasonal comparison of surface sediment characteristics in Chincoteague Bay, Maryland and Virginia, USA

    Ellis, Alisha M.; Marot, Marci E.; Wheaton, Cathryn J.; Bernier, Julie C.; Smith, Christopher G.


    Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a seasonal collection of surficial sediments from Chincoteague Bay and Tom's Cove, between Assateague Island and the Delmarva Peninsula in late March/early April 2014 and October 2014. The sampling efforts were part of a larger U.S. Geological Survey study to assess the effects of storm events on sediment distribution in back-barrier environments of the United States. By sampling during the spring and fall, a more complete understanding of seasonal variability in the area can help determine baseline conditions. The objective of this study was to characterize the sediments of Chincoteague Bay in order to create baseline conditions to incorporate with the hydrodynamic and sediment transport models used to evaluate pre- and post-storm change and compare with future field measurements.

  17. Sedimentation in mountain streams: A review of methods of measurement

    Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart; Lin, Lian-Shin


    The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.


    Jueyi SUI; Peter JACKSON; Cheng LIU; Daxian FANG; Jun WANG


    Based on long-term measurements at three gauging stations, Toudaoguai, Fugu and Hequ, and one meteorological station, this article discusses the features of discharge (Q) and sediment concentration (CS) of a river reach of the Yellow River with a reservoir located in the Loess Plateau. The impacts of the local sub-watershed between Toudaoguai and Fugu gauging stations on sediment budget to the Yellow River have been analyzed. In addition, the deposition processes in the Tianqiao Reservoir have been investigated. Results show over 80% of the precipitation that falls in the local sub-watershed is unable to contribute to the Yellow River runoff process. It is found that the annual maximum sediment concentration is usually less than 30 kg/m3 during flood seasons at Toudaoguai Gauging Station, but the sediment concentration varies dramatically at Fugu Gauging Station. About 35% of the sediment eroded in the sub-watersheds between Toudaoguai and Fugu gauging stations was produced from the Huangfuchuan sub-watershed which has a drainage area accounting only for 10% of the drainage area between Toudaoguai and Fugu gauging stations. The Tianqiao Reservoir generally has deposition during the summer flood season, and scouring during the non-flood season. On average, over 85% of deposited sediment in the reservoir occurs in the 12 km long lower reservoir reach. The volume of annual deposition in the reservoir mainly depends on the volume of water from the local region between Hequ and Fugu gauging stations.

  19. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.


    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  20. [Phosphate sorption characteristics onto sediments in the middle and lower reaches of the Yellow River].

    Wang, Xiao-li; Pan, Gang; Bao, Hua-ying; Zhang, Xian-wei; Chen, Hao; Guo, Bo-shu


    The equilibrium phosphate concentration (EPC0) of the Yellow River bed sediments has been measured, which was used to predict whether bed sediments are acting as a source or sink of soluble reactive phosphate (SRP). The modified Langmuir isotherm equation was used to describe phosphate (P) sorption on the Yellow River sediments. The maximum P sorption capacity (PAC) and P-binding energy constant (k) were obtained by the modified Langmuir isotherm model. Native adsorbed exchangeable phosphorus (NAP), the EPC0, and partitioning coefficients (Kp) were subsequently calculated by the corresponding formulae. The influence of pH values and ion strength were evaluated. All the EPC0 s are higher than the P concentration in the overlying water, indicating a potential source of phosphate from the sediments. PAC is linearly related to the contents of TOC of the sediment. The sorption capacity of P increased rapidly with pH below 6.0, and then reached a plateau between pH 6.0 to 9.7, and finally maintained at a slightly higher level from pH 9.7 to 12.0.The adsorption of P by the sediment decreased with the increase in Ca2+ ionic strength.

  1. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.


    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  2. Particle size distribution and characteristics of heavy metals in road-deposited sediments from Beijing Olympic Park.

    Li, Haiyan; Shi, Anbang; Zhang, Xiaoran


    Due to rapid urbanization and industrialization, heavy metals in road-deposited sediments (RDSs) of parks are emitted into the terrestrial, atmospheric, and water environment, and have a severe impact on residents' and tourists' health. To identify the distribution and characteristic of heavy metals in RDS and to assess the road environmental quality in Chinese parks, samples were collected from Beijing Olympic Park in the present study. The results indicated that particles with small grain size (heavy metal (i.e., Cu, Zn, Pb and Cd) content was the largest in particles with small size (Heavy metals adsorbed in sediments may mainly be contributed by road traffic emissions. The contamination levels of Pb and Cd were higher than Cu and Zn on the basis of the mean heavy metal contents. Specifically, the geoaccumulation index (Igeo) decreased in the order: Cd>Pb>Cu>Zn. This study analyzed the mobility of heavy metals in sediments using partial sequential extraction with the Tessier procedure. The results revealed that the apparent mobility and potential metal bioavailability of heavy metals in the sediments, based on the exchangeable and carbonate fractions, decreased in the order: Cd>Zn≈Pb>Cu. Copyright © 2015. Published by Elsevier B.V.

  3. Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir Area, China

    Qian Feng


    Full Text Available Hydrological processes play important roles in soil erosion processes of the hillslopes. This study was conducted to investigate the hydrological processes and the associated erosional responses on the purple soil slope. Based on a comprehensive survey of the Wangjiaqiao watershed in the Three Gorges Reservoir, four typical slope gradients (5°, 10°, 15°and 20° were applied to five rainfall intensities (0.6, 1.1, 1.61, 2.12 and 2.54 mm·min-1. The results showed that both surface and subsurface runoff varied greatly depending on the rainfall intensity and slope gradient. Surface runoff volume was 48.1 to 280.1 times of that for subsurface runoff. The critical slope gradient was about 10°. The sediment yield rate increased with increases in both rainfall intensity and slope gradient, while the effect of rainfall intensity on the sediment yield rate was greater than slope gradient. There was a good linear relationship between sediment yield rate and Reynolds numbers, flow velocity and stream power, while Froude numbers, Darcy-Weisbach and Manning friction coefficients were not good hydraulic indicators of the sediment yield rate of purple soil erosion. Among the three good indicators (Re, v and w, stream power was the best predictor of sediment yield rate (R2 = 0.884. Finally, based on the power regression relationship between sediment yield rate, runoff rate, slope gradient and rainfall intensity, an erosion model was proposed to predict the purple soil erosion (R2 = 0.897. The results can help us to understand the relationship between flow hydraulics and sediment generation of slope erosion and offer useful data for the building of erosion model in purple soil.

  4. Characteristics of nitrogen forms in the southern Huanghai Sea surface sediments

    LüXiaoxia; SONGJinming; LIXuegang; YUANHuamao; ZHANTianrong; LINing; GAOXuelu


    The distributions of different forms of nitrogen in the surface sediments of the southern Huanghai Sea are different and affected by various factors. The contents of IEF-N, SOEF-N and TN gradually decrease eastward, and those of SAEF-N northward, while those of WAEF-N westward. Around the seaport of the old Huanghe (Yellow) River, the contents of both SOEF-N and TN are the highest. Among all the factors, the content of fine sediment is the predominant factor to affect the distributions of different forms of nitrogen. The contents of IEF-N, SOEF-N, and TN have visibly positive correlation with the content of f'me sediments, and the correlative coefficient is 0.68, 0.58 and 0.71 respectively, showing that the contents of the three forms of nitrogen increase with those of f-me sediments. The content of WAEF-N is related to that of fine sediments to a certain extent, with a correlative coefficient of 0.35; while the content of SAEF-N is not related to that of fine sediments, showing that the content of SAEF-N is not controlled by fine grain-size fractions of sediments. In addition, the distributions of different forms of nitrogen are also interacted one another, and the contents of IEF-N and SOEF-N are obviously affected by TN, while those of inorganic nitrogen (WAEF-N, SAEF-N and IEF-N) are not affected by SOEF-N and TN obviously, although they are interacted each other.

  5. Biogeochemical and microbiological characteristic of the pockmark sediments, the Gdansk Deep, The Baltic Sea

    Pimenov, Nikolay; Kanapatskiy, Timur; Sivkov, Vadim; Toshchakov, Stepan; Korzhenkov, Aleksei; Ulyanova, Marina


    Comparison of the biogeochemical and microbial features was done for the gas-bearing and background sediments as well as near-bottom water of the Gdansk Deep, The Baltic Sea. Data were received in October, 2015 during 64th cruise of the R/V Akademik Mstislav Keldysh. Gas-bearing sediments were sampled within the known pockmark (Gas-Point, depth 94 m). Background sediments area (BG-Point, depth 86 m) was located several km off the pockmark area. The sulphate concentration in the pore water of the surface sediment layer (0-5 cm) of Gas-Point was 9,7 mmol/l, and sharply decreased with depth (did not exceed 1 mmol/l deeper than 50 cm). The sulphate concentration decrease at BG-Point also took place but was not so considerable. Sulphate concentration decrease is typical for the organic rich sediments of the high productive areas, both as for the methane seep areas. Fast sulphate depletion occurs due to active processes of its microbial reduction by consortium of the sulphate-reduction bacteria, which may use low-molecular organic compounds or hydrogen, formed at the different stages of the organic matter destruction; as well as within the process of the anaerobic methane oxidation by consortium of the methane-trophic archaea and sulphate-reduction bacteria. Together with sulphate concentration decrease the methane content increase, typical for the marine sediments, occurred. At the Gas-Point the methane concentration varied within 10 μmol/dm3 in the surface layer till its maximum at sediment horizon of 65 cm (5 mmol/dm3), and decreased to 1.5 mmol/dm3 at depth of 300 cm. The BG-Point maximum values were defined at sediment horizon 6 cm (2,6 μmol/dm3). Methane sulfate transition zone at the Gas-Point sediments was at 25-35 cm depth; whereas it was not defined at the BG-Point mud. High methane concentration in the gas-bearing sediments results in the formation of the methane seep from the sediments to the near-bottom water. So the Gas-Point near-bottom waters were

  6. Environmental magnetic and geochemical characteristics of Chennai coastal sediments, Bay of Bengal, India

    R Venkatachalapathy; S Veerasingam; N Basavaiah; T Ramkumar; K Deenadayalan


    In this study, environmental magnetic, heavy metal and statistical analyses were conducted on 21 surface sediments collected from Chennai coast, India, to examine the feasibility of heavy metal pollution using magnetic susceptibility. The Chennai coastal sediment samples are dominated by ferrimagnetic minerals corresponding to magnetite-like minerals. The percentage of frequency dependent magnetic susceptibility reflects the presence of super-paramagnetic/single domain magnetic minerals in Chennai harbour, Cooum and Adayar rivers sediments. High pollution load index in sample E1, E2, CH7, C11, C12 and A16 is mainly due to anthropogenic activities such as, harbour activities, Cooum and Adayar rivers input and industrial effluent. Factor analysis shows that the magnetic concentration dependent parameters (, ARM and SIRM) covary with the heavy metal concentrations, suggesting that the input of magnetic minerals and heavy metals in Chennai coastal sediments are derived from the same anthropogenic sources. Strong correlation obtained between pollution load index (PLI) and concentration dependent parameters (, ARM and SIRM) for the polluted samples with magnetic susceptibility excess of 50 × 10−8 m3kg−1. Significant correlations between heavy metals and magnetic susceptibility point out the potential of magnetic screening/monitoring for simple and rapid proxy indicator of heavy metal pollution in marine sediments.

  7. Community characteristics of macrobenthos in the Huanghe (Yellow River) Estuary during water and sediment discharge regulation

    REN Zhonghua; LI Fan; WEI Jiali; LI Shaowen; LV Zhenbo; GAO Yanjie; CONG Xuri


    The community characteristics of macrobenthos in the Huanghe (Yellow River) Estuary is influenced by a combination of natural and anthropogenic factors. Here, we investigated short-term changes (1-month) in macrobenthic community structure in response to water and sediment discharge regulation (WSDR) in 2011. Specifically, we sampled the macrobenthos at 18 sampling stations situated at four distances (5, 10, 20, and 40 km) from the mouth of the Huanghe Estuary before (mid-June), during (early-July), and after (mid-July) WSDR. The results showed that a total of 73, 72, and 85 species were collected before, during, and after WSDR, respectively. Then, 13, 1, and 16 dominant species were detected at this three periods. Four phyla were primarily detected at all three periods (Annelida, Mollusca, Arthropoda, and Echinodermata). However, while Mollusca and Annelida were the most important phyla in our study, Echinodermata and Annelida were the most important phyla in 1982, demonstrating major changes to community structure over a 3-decadal period. All stations were of high quality BOPA index before WSDR, whereas two and three stations were of reduced quality BOPA index during and after WSDR, respectively. The results of ABC curves showed that had incurred disturbed conditions after human activities WSDR. Most important of all, multivariate analyses and RDA analysis indicated that the structure of the macrobenthic community was closely linked to environment factors, including that organic content factor caused the distribution of macrobenthic community mostly during WSDR, while water depth after WSDR affected the macro benthos community structure seriously, and during WSDR, the environment factor influencing it was not single, including organic content, sulfide content, Hg and As. These differences may have been due to changes in water transparency negatively impacting the growth and development of macrobenthos, due to specific life-history requirements. Our results

  8. Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series

    Charles H. Luce; Daniele Tonina; Frank Gariglio; Ralph Applebee


    Work over the last decade has documented methods for estimating fluxes between streams and streambeds from time series of temperature at two depths in the streambed. We present substantial extension to the existing theory and practice of using temperature time series to estimate streambed water fluxes and thermal properties, including (1) a new explicit analytical...

  9. Spectral Fingerprinting: The potential of VNIR-SWIR spectral characteristics for tracing sediment sources in a Spanish mesoscale catchment

    Brosinsky, Arlena; Foerster, Saskia; Segl, Karl; Bronstert, Axel; Kaufmann, Hermann; Lopéz-Tarazón, José-Andrés


    Knowledge on the origin of suspended sediment can greatly facilitate erosion prevention and thus sustainable watershed management. One approach providing information on the origin of suspended sediments is the fingerprinting technique. It is based on the assumption that potential sediment sources can be discriminated and that the contribution of these sources to the sediment can be determined on the basis of distinctive characteristics (fingerprints). Recent studies indicate that VNIR-SWIR reflectance characteristics of soil may be a rapid, inexpensive alternative to traditional fingerprinting properties such as e.g. geochemical composition. In this study, we aim at further assessing the potential of this innovative sediment tracing technique, specifically whether (a) potential sediment sources can be reliably identified based on spectral features, (b) field derived source information (more rapid) is sufficient for spectral fingerprinting, (c) spectral fingerprints permit the quantification of source contribution, and (d) to examine changes in the relative contributions from different sources both, between and within individual storm events. Therefore, samples were collected in the Isábena catchment (445 km²) in the central Spanish Pyrenees: 1) soil samples from the main potential source areas and 2) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet and at several subcatchment outlets. In addition, 3) artificial mixtures of known proportions were produced from soil samples for testing of key assumptions in a controlled environment. Soil samples (1) were spectrally measured in the field using an ASD spectrometer and subsequently all samples (1-3) were dried and spectrally measured in the laboratory using the same equipment. Colour parameters and physically based features with relation to organic carbon, iron oxide and clay content were calculated from field- and laboratory spectra. Principal component

  10. Pollution characteristics and ecological risk assessment of heavy metals in the surface sediments from a source water reservoir

    Changming Yang


    Full Text Available Surface sediment samples were collected from a source water reservoir in Zhejiang Province, East of China to investigate pollution characteristics and potential ecological risk of heavy metals. The BCR sequential extraction method was used to determine the four chemical fractions of heavy metals such as acid soluble, easily reducible, easily oxidizable and residual fractions. The heavy metals pollution and potential ecological risk were evaluated systematically using geoaccumulation index (Igeo and Hakanson potential ecological risk index (H′. The results showed that the sampling sites from the estuaries of tributary flowing through downtowns and heavy industrial parks showed significantly (p < 0.05 higher average concentrations of heavy metals in the surface sediments, as compared to the other sampling sites. Chemical fractionation showed that Mn existed mainly in acid extractable fraction, Cu and Pb were mainly in reducible fraction, and As existed mainly in residual fraction in the surface sediments despite sampling sites. The sampling sites from the estuary of tributary flowing through downtown showed significantly (p < 0.05 higher proportions of acid extractable and reducible fractions than the other sampling sites, which would pose a potential toxic risk to aquatic organisms as well as a potential threat to drinking water safety. As, Pb, Ni and Cu were at relatively high potential ecological risk with high Igeo values for some sampling locations. Hakanson potential ecological risk index (H′ showed the surface sediments from the tributary estuaries with high population density and rapid industrial development showed significantly (p < 0.05 higher heavy metal pollution levels and potential ecological risk in the surface sediments, as compared to the other sampling sites.

  11. [Pollution Characteristics and Ecological Risk of PBDEs in Water and Sediment from an Electronic Waste Dismantling Area in Taizhou].

    Chen, Xiang-ping; Peng, Bao-qi; Lü, Su-ping; Chen, Qiang; Zhang, Yong; Huang, Chang-jiang; Dong, Qiao-xiang


    An e-waste dismantling industrial park of Taizhou was selected as the sampling center, within a radius of 16 km, and a total of 30 sampling sites were designed in three circles as follows: C (3 km), S (5-10 km) and R (10-16 km). Pollution characteristics and ecological risk of polybrominated diphenyl ethers (PBDEs) in water and sediments were investigated. The concentrations of PBDEs in water ranged from 9.4 to 57.2 ng · L⁻¹, with a mean value of 25.9 ng · L⁻¹; and 3.7 to 38,775 ng · g⁻¹, with an average of 2 779 ng · g⁻¹ in sediments. BDE-209 was the predominant congener. The spatial distribution patterns of PBDE levels in water and sediment were both in the following order: C > S > R. Furthermore, the concentrations of PBDEs in sediments showed significant negative correlation against the distance from the industrial park (P waste dismantling activity was one of the significant sources for PBDEs pollution. It was estimated that a total of 30. 7 t PBDEs (including 28. 9 t BDE- 209) was discharged into surrounding environment as a result of dismantling industrial activities in last 40 years. A preliminary ecological risk assessment for PBDEs in water and sediments was conducted by hazard quotient method. The results demonstrated that the Penta-BDEs in the center of e-waste dismantling area ( a radius of 1.5 km) was at particularly high risk level and could cause serious influence on the ecological safety and human health.

  12. Comparison of sediment and nutrient export and runoff characteristics from watersheds with centralized versus distributed stormwater management.

    Hopkins, Kristina G; Loperfido, J V; Craig, Laura S; Noe, Gregory B; Hogan, Dianna M


    Stormwater control measures (SCMs) are used to retain stormwater and pollutants. SCMs have traditionally been installed in a centralized manner using detention to mitigate peak flows. Recently, distributed SCM networks that treat runoff near the source have been increasingly utilized. The aim of this study was to evaluate differences among watersheds that vary in SCM arrangement by assessing differences in baseflow nutrient (NOx-N and PO4(-)) concentrations and fluxes, stormflow export of suspended sediments and particulate phosphorus (PP), and runoff characteristics. A paired watershed approach was used to compare export between 2004 and 2016 from one forested watershed (For-MD), one suburban watershed with centralized SCMs (Cent-MD), and one suburban watershed with distributed SCMs (Dist-MD). Results indicated baseflow nitrate (NOx-N) concentrations typically exceeded 1 mg-N/L in all watersheds and were highest in Dist-MD. Over the last 10 years in Dist-MD, nitrate concentrations in both stream baseflow and in a groundwater well declined as land use shifted from agriculture to suburban. Baseflow nitrate export temporarily increased during the construction phase of SCM development in Dist-MD. This temporary pulse of nitrate may be attributed to the conversion of sediment control facilities to SCMs and increased subsurface flushing as infiltration SCMs came on line. During storm flow, Dist-MD tended to have less runoff and lower maximum specific discharge than Cent-MD for small events (1.3 cm). Mass export estimated during paired storm events indicated Dist-MD exported 30% less sediment and 31% more PP than Cent-MD. For large precipitation events, export of sediment and PP was similar among all three watersheds. Results suggest that distributed SCMs can reduce runoff and sediment loads during small rain events compared to centralized SCMs, but these differences become less evident for large events when peak discharge likely leads to substantial bank erosion

  13. Comparison of sediment and nutrient export and runoff characteristics from watersheds with centralized versus distributed stormwater management

    Hopkins, Kristina; Loperfido, J.V.; Craig, Laura S.; Noe, Gregory; Hogan, Dianna


    Stormwater control measures (SCMs) are used to retain stormwater and pollutants. SCMs have traditionally been installed in a centralized manner using detention to mitigate peak flows. Recently, distributed SCM networks that treat runoff near the source have been increasingly utilized. The aim of this study was to evaluate differences among watersheds that vary in SCM arrangement by assessing differences in baseflow nutrient (NOx-N and PO4−) concentrations and fluxes, stormflow export of suspended sediments and particulate phosphorus (PP), and runoff characteristics. A paired watershed approach was used to compare export between 2004 and 2016 from one forested watershed (For-MD), one suburban watershed with centralized SCMs (Cent-MD), and one suburban watershed with distributed SCMs (Dist-MD). Results indicated baseflow nitrate (NOx-N) concentrations typically exceeded 1 mg-N/L in all watersheds and were highest in Dist-MD. Over the last 10 years in Dist-MD, nitrate concentrations in both stream baseflow and in a groundwater well declined as land use shifted from agriculture to suburban. Baseflow nitrate export temporarily increased during the construction phase of SCM development in Dist-MD. This temporary pulse of nitrate may be attributed to the conversion of sediment control facilities to SCMs and increased subsurface flushing as infiltration SCMs came on line. During storm flow, Dist-MD tended to have less runoff and lower maximum specific discharge than Cent-MD for small events (1.3 cm). Mass export estimated during paired storm events indicated Dist-MD exported 30% less sediment and 31% more PP than Cent-MD. For large precipitation events, export of sediment and PP was similar among all three watersheds. Results suggest that distributed SCMs can reduce runoff and sediment loads during small rain events compared to centralized SCMs, but these differences become less evident for large events when peak discharge likely leads to substantial bank erosion.

  14. Effects of controlled burning of chaparral on streamflow and sediment characteristics, East Fork Sycamore Creek, central Arizona

    Baldys, Stanley; Hjalmarson, H.W.


    The effects of controlled burning of part of a chaparral-covered drainage basin on streamflow and sediment characteristics were studied in the upper reaches of the Sycamore Creek basin in central Arizona. A paired-watershed method was used to analyze data collected in two phases separated by the controlled burning of 45 percent of the East Fork Sycamore Creek drainage basin by the U.S. Forest Service on October 31, 1981. Statistically significant increases in streamflow in East Fork occurred from October 26, 1982, through August 25, 1984. Streamflow for August 26, 1984, through the end of data collection for the study on May 31, 1986, was generally at or less than preburn levels. An increase in the percentage of time that flow occurred in East Fork was noted for water years 1983 and 1984. No increase in the magnitude of instantaneous peak flows as a result of the burn was discernable at statistically significant levels. Suspended-sediment yields computed for data collected during water year 1983 were significantly greater in the East Fork drainage basin, 546 tons per square mile, than in the West Fork drainage basin, 22.6 tons per square mile. Suspended-sediment yields computed for East Fork and West Fork for water year 1985, 38.3 and 13.3 tons per square mile, respectively, were much closer in yield. These more uniform yields indicate a possible return to preburn conditions. Data collection did not begin until 11 months after the burn; therefore, the largest increases in streamflow and sediment yields, which commonly occur during the year after a burn, may not have been measured. During the second through fourth years after the burn, smaller increases in stream- flow and sediment yields were found in this study than were found in similar studies in this region.

  15. River sediment and flow characteristics near a bank filtration water supply: Implications for riverbed clogging

    Goldschneider, Alexandra A.; Haralampides, Katy A.; MacQuarrie, Kerry T. B.


    SummaryRiverbed clogging is an important issue related to the sustainable exploitation of riverbank filtration well fields. In this research, several complementary field techniques are employed to assess the current state and possible evolution of riverbed clogging at a site in the Saint John River, New Brunswick. The study is conducted in regions of the riverbed that have previously been identified as allowing recharge to the semi-confined aquifer that has been used since 1955 to supply water to the City of Fredericton. Flow velocity measurements, video imaging, and suspended sediment and bed sediment analyses conducted during the low flow (summer) period indicate that part of the recharge area closest to the well field, about 20% of the total area, is affected by bed armoring with cobbles and boulders. Consistent with previous studies, with increasing distance from the riverbank the sediment size decreases and the armor layer disappears. Previous research indicates that turbulent impacting of fine particles into the voids between the cobbles and boulders of the armor layer may reduce infiltration by up to 95%; however, the suspended sediment load in the river is mainly composed of organic matter, and the measured concentrations of suspended sediment (up to 3 mg/L) are not considered high enough to create such large reductions in infiltration. Additionally, the mineral fraction of the suspended sediment would not be expected to settle under the calculated average shear velocity of 0.012 m/s. Other sources of particulate matter, such as the degradation of aquatic vegetation on the riverbed, may be more significant with respect to riverbed clogging; however, annual peak flows may also create bed shear stresses that serve to limit long-term clogging effects.

  16. Interactions between the accumulation of sediment storage and debris flow characteristics in a debris-flow initiation zone, Ohya landslide body, Japan

    Imaizumi, Fumitoshi; Hayakawa, Yuichi S.; Hotta, Norifumi; Tsunetaka, Haruka; Ohsaka, Okihiro; Tsuchiya, Satoshi


    Debris flows often occur in steep mountain channels, and can be extremely hazardous as a result of their destructive power, long travel distance, and high velocity. However, their characteristics in the initiation zones, which could possibly be affected by temporal changes in the channel topography associated with sediment supply from hillslopes and the evacuation of sediment by debris flows, are poorly understood. Thus, we studied the interaction between the flow characteristics and the topo...

  17. Elemental composition and mineralogical characteristics of coastal marine sediments of Tutuila, American Samoa.

    Morrison, R J; Peshut, P J; Lasorsa, Brenda K


    Surface sediment samples were collected from 5 pristine coastal areas and 1 potentially contaminated coastal site on Tutuila, the main island of American Samoa, an isolated island group in the South Pacific Ocean. Samples were analysed for total element analysis (15 elements) and mineralogy. The results indicated no evidence of trace element contamination at any site, including Pago Pago Harbour. Inter-site variations could be explained assuming the sediments consisted predominantly of coralline sand and rubble with varying quantities of basaltic materials derived from local catchments.

  18. Laboratory measurements of physical, chemical, and optical characteristics of Lake Chicot sediment waters

    Witte, W. G.; Whitlock, C. H.; Usry, J. W.; Morris, W. D.; Gurganus, E. A.


    Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude.

  19. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea

    Keskitalo, K.; Tesi, T.; Bröder, L.


    Thawing of permafrost carbon (PF-C) due to climate warming can remobilise considerable amounts of terrestrial carbon from its long term storage to the marine environment. PF-C can be then buried in sediments or remineralised to CO2 with implications for the carbon-climate feedback. Studying histo...

  20. Characteristics of biomarkers in the Recent sediment from Qinghai Lake, northwest China

    Pu, Fan; Yaorong, Qian; Baisheng, Zhang

    The occurrence of biomarker hydrocarbons in the Recent sediment of Qinghai Lake was investigated. It was found that the distribution of these biomarkers in Qinghai Lake, a semi-saline water lake, is unusual. The distribution of n-alkanes is predominated by high carbon-numbered alkanes with a high OEP (CPI) value. Two series of bicyclic sesquiterpanes derived from micro-organisms, e.g. algae or bacteria, were detected. The occurrence of tricyclic and tetracyclic terpenoids is characterized by the input of the organic matter from aquatic organisms. The conversion from hopenes existing in bacteria and blue-green algae into hopanes is put forward in this paper. C 27C 29 regular steranes, 4-methylsteroids, diasteranes, pregnanes, norsteroids and secosteranes were found in abundance in the sedimentary samples. Another important contribution of this paper is towards the geochemistry of amino acids in the Recent sediment of Qinghai Lake. The composition, distribution and evolution of the amino acids in the lacustrine sediments will be discussed in detail. It was found that several ratios of different amino acids have a clear diagenesis trend in the two cores studied. The racemization reaction of amino acids and their application in the geochemistry will also be discussed. The racemization of alanine and leucine were employed in this study to calculate the age of the sediment samples, with satisfactory result.

  1. Impact of bottom trawling on sediment characteristics - A study along inshore waters off Veraval coast, India

    Bhagirathan, U.; Meenakumari, B.; Jayalakshmy, K.V.; Panda, S.K.; Madhu, V.R.; Vaghela, D

    of water depths 15-20 m, 21-25 m, 26-30 m, 31-35 m and 36-40 m in commercial trawling grounds. Trawling was conducted for 12 months in a span of 15 months (September 2005-November 2006) excluding the trawl ban period (June to August). The sediment texture...

  2. Characteristics of sediment transport at selected sites along the Missouri River, 2011–12

    Rus, David L.; Galloway, Joel M.; Alexander, Jason S.


    Extreme flooding in the Missouri River in 2011, followed by a year of more typical streamflows in 2012, allowed the sediment-transport regime to be compared between the unprecedented conditions of 2011 and the year immediately following the flooding. As part of a cooperative effort between the U.S. Geological Survey and the U.S. Army Corps of Engineers, this report follows up U.S. Geological Survey Scientific Investigations Report 2013–5006 by comparing sediment transport between years and among sampling sites spanning the Garrison Segment in North Dakota, the Gavins Point Segment downstream from Lewis and Clark Lake, and a part of the Channelized Segment along the Nebraska-Iowa border. Suspended sediment, bed material, bedload, and streamflow data from June 2011 through November 2012 were designated as “measured” total loads, wash loads, and bed-material loads; and, alternatively, were applied to the Modified-Einstein Procedure to compute sediment loads that were designated as “estimated” total loads.

  3. Characteristics of nitrogen forms in the surface sediments of southwestern Nansha Trough, South China Sea


    The area of the southwestern Nansha Trough is one of the most productive areas of the southern South China Sea. It is a typical semi-deep sea area of transition from shoal to abyssal zone. To understand distributions and roles of nitrogen forms involved in biogeochemical cycling in this area, contents of nitrogen in four extractable forms: nitrogen in ion exchangeable form (IEF-N), nitrogen in weak acid extractable form (WAEF-N), nitrogen in strong alkali extractable form (SAEF-N) and nitrogen in strong oxidation extractable form (SOEF-N), as well as in total nitrogen content (TN) in surface sediments were determined from samples collected from the cruise in April - May 1999. The study area was divided into three regions (A, B and C) in terms of clay sediment (60%, respectively. Generally, region C was the richest in the nitrogen of all forms and region A the poorest, indicating that the finer the grain size is, the richer the contents of various nitrogen are. The burial efficiency of total nitrogen in surface sediments was 28.79%, indicating that more than 70% of nitrogen had been released and participated in biogeochemical recycling through sediment-water interface.

  4. Sedimentary characteristics, dispersal patterns and pathways of sediments in the eastern Red Sea

    Rasul, Najeeb; Ligi, Marco; Mitchell, Neil; Bonatti, Enrico; Alnomani, Salem


    Fluvial sediments from wadis (seasonal streams) located in the northern and southern sections of the eastern Red Sea coast are transported occasionally along the coast and offshore areas. However, aeolian quartz and biogenic inputs are also important components of the surficial sediments of Holocene age. In one core collected immediately northeast of Thetis Deep in 700 m of water, at approximately 50 cm sediment depth, a boundary between the Holocene and Pleistocene is marked by iron pans approximately 2-3 cm in thickness. This core and dredged samples contain carbonate crusts believed to have formed during high temperature and hyper-saline conditions prevalent during the time of formation. The presence of mica in littoral areas in the north and in the deeper waters towards the south in the vicinity of Thetis Deep suggests dispersal towards the south-southeast, which can be explained by wind-driven currents with a northwesterly dominant wind direction. The Tertiary mountains covered by the red soils near the eastern Red Sea coast are the source of kaolinite in the Red Sea. Floccules rich in kaolinite associated with fine-grained sediments and medium sand-sized mica indicate a low energy environment. They are common in some lagoons and deeper waters of the Red Sea. Some channels apparent in multibeam sonar data leading to the deeps may not necessarily have been created by sedimentary flows here as most fine particle transport appears to be occurring in suspension. Wadis are more active in the south compared to the north because of relatively higher rainfall. Since the detrital input from land is limited by the absence of rivers draining into the Red Sea the sedimentation rate of terrigenous particles is low, aeolian quartz is prominent, authigenic pyrite formation is common and biogenic material is abundant in the form of calcium carbonate.

  5. Salt marsh sediment characteristics as key regulators on the efficiency of hydrocarbons bioremediation by Juncus maritimus rhizospheric bacterial community.

    Ribeiro, Hugo; Almeida, C Marisa R; Magalhães, Catarina; Bordalo, Adriano A; Mucha, Ana P


    Mitigation of petroleum hydrocarbons was investigated during a 5-month greenhouse experiment, to assess the rhizoremediation (RR) potential in sediments with different characteristics colonized by Juncus maritimus, a salt marsh plant commonly found in temperate estuaries. Furthermore, the efficiency of two bioremediation treatments namely biostimulation (BS) by the addition of nutrients, and bioaugmentation (BA) by addition of indigenous microorganisms, was tested in combination with RR. The effect of the distinct treatments on hydrocarbon degradation, root biomass weight, and bacterial community structure was assessed. Our result showed higher potential for hydrocarbon degradation (evaluated by total petroleum hydrocarbon analysis) in coarse rhizosediments with low organic matter (OM), than rhizosediments with high OM, and small size particles. Moreover, the bacterial community structure was shaped according to the rhizosediment characteristics, highlighting the importance of specific microbe-particle associations to define the structure of rhizospheric bacterial communities, rather than external factors, such as hydrocarbon contamination or the applied treatments. The potential for hydrocarbon RR seems to depend on root system development and bacterial diversity, since biodegradation efficiencies were positively related with these two parameters. Treatments with higher root biomass, and concomitantly with higher bacterial diversity yielded higher hydrocarbon degradation. Moreover, BS and BA did not enhance hydrocarbons RR. In fact, it was observed that higher nutrient availability might interfere with root growth and negatively influence hydrocarbon degradation performance. Therefore, our results suggested that to conduct appropriate hydrocarbon bioremediation strategies, the effect of sediment characteristics on root growth/exploration should be taken into consideration, a feature not explored in previous studies. Furthermore, strategies aiming for the recovery

  6. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    Hongzhong Li


    Full Text Available Marine siliceous rocks are widely distributed in the central orogenic belt (COB of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%, Ba (42.45–503.0 ppm, and ΣREE (3.28–19.75 ppm suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn, Sc/Th, (La/YbN, and (La/CeN ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  7. Effects of Sediment Characteristics on the Accumulation and Transfer Rate of Heavy Metals in Mangrove Trees (Case Study: Nayband Bay and Qeshm Island

    H. Moradi


    Full Text Available In this paper, the accumulation of heavy metals of Nickel (Ni and Vanadium (V was measured in habitat sediments, mangrove roots and leaves (Avicennia marina. Besides, the transfer of Ni and V from the sediment to root and to the leaves in Nayband Bay and Qeshm Island were studied. The samples were gathered by Systematic-random Sampling using selective transects at 16 stations at the end of mangrove cover in both sides of land and sea in two habitats with three replicates of sediment, root and leave samples. The bed characteristics including sediment texture, pH, EC and organic matters were determined. The concentration of Ni and V was measured by atomic absorption spectroscopy (AAS, and then the metal transfer factor from sediment to root and root to leave was calculated. The correlation of the metal transfer factor and sediment characteristics was analyzed using the SPSS software (version 19. In the sample of sediments, roots and leaves respectively, the most concentrations of nickel and vanadium were measured. About transfer of Ni and V, transfer rate from sediment to root was much higher than from root to leave. In addition, the highest transfer factor from sediment to root and from root to leave was obtained for V in Qeshm habitat (0.502 and for Ni (0.749 in Nayband Bay. It seems that the difference between sediment textures in the two habitats and widespread oil and gas activities in Nayband Bay might be the notable reasons for the difference in transfer rates in two the habitats. Therefore, we conclude that the finer texture of Qeshm habitat increased transfer of V from sediment to root, and the coarser texture associated with increasing air pollution in Nayband Bay caused more Ni to accumulate in the leaves.

  8. [Characteristics and Risk Assessment of Heavy Metals in Core Sediments from Lakes of Tibet].

    Guo, Bi-xi; Liu, Yong-qin; Zhang, Fan; Hou, Ju-zhi; Zhang, Hong-bo


    To explore the source of heavy metals in lake sediments and their hazard to environment on Tibetan Plateau, China, heavy metal (Cu, Zn, Cd, Pb, Cr, Co, Ni and As) levels in surface sediments of 18 lakes were investigated. Inductively Coupled Plasma Mass Spectrometry (ICP-MS, X-7 series) was used to determine the contents of heavy metals and the concentrations of carbon and nitrogen in sediment samples were analyzed by element analyzer (Vario Max CN, Elementar, Germany). The average concentrations for Cu, Zn, Cd, Pb, Cr, Co, Ni and As were 24.61 mg x kg(-1), 70.14 mg x kg(-1), 0.26 mg x kg(-1), 25.43 mg x kg(-1), 74.12 mg x kg(-1), 7.93 mg x kg(-1), 33.85 mg x kg(-1), 77.69 mg x kg(-1). It was found that heavy-metal concentrations in Tibet sediments were higher than those in Antarctic, but lower than those in the regions affected by anthropogenic activities. The contents of Cu, Zn, Pb, Cr and Co in the samples were lower than the background values of Tibet. Correlation analysis and principal components analysis (PCA) were used to analyze the origins of heavy metals. The result showed that Cu, Zn, Cd, Pb, Co, Ni and As came from soil in drainage basin and atmospheric deposition. Cr was mainly affected by human activities. Assessment on ecological risk of heavy metals was carried out using Hakanson's method and cluster analysis (CA). Assessment on ecological risk indicated that Pumoyum Co, Longmo Co and Bangong Co were at low risks, Bieruoze Co was at high ecological risk level and the other lakes were at different risk levels.

  9. Hydrogeochemistry of Groundwater and Arsenic Adsorption Characteristics of Subsurface Sediments in an Alluvial Plain, SW Taiwan

    Libing Liao


    Full Text Available Many studies were conducted to investigate arsenic mobilization in different alluvial plains worldwide. However, due to the unique endemic disease associated with arsenic (As contamination in Taiwan, a recent research was re-initiated to understand the transport behavior of arsenic in a localized alluvial plain. A comprehensive approach towards arsenic mobility, binding, and chemical speciation was applied to correlate groundwater hydrogeochemistry with parameters of the sediments that affected the As fate and transport. The groundwater belongs to a Na-Ca-HCO3 type with moderate reducing to oxidizing conditions (redox potential = −192 to 8 mV. Groundwater As concentration in the region ranged from 8.89 to 1131 μg/L with a mean of 343 ± 297 μg/L, while the As content in the core sediments varied from 0.80 to 22.8 mg/kg with a mean of 9.9 ± 6.2 mg/kg. A significant correlation was found between As and Fe, Mn, or organic matter, as well as other elements such as Ni, Cu, Zn, and Co in the core sediments. Sequential extraction analysis indicated that the organic matter and Fe/Mn oxyhydroxides were the major binding pools of As. Batch adsorption experiments showed that the sediments had slightly higher affinity for As(III than for As(V under near neutral pH conditions and the As adsorption capacity increased as the contents of Fe oxyhydroxides as well as the organic matter increased.

  10. Characteristics of suspended sediment and turbulence in a tidal boundary layer

    Kawanisi, Kiyosi; Yokosi, Shoitiro


    High-resolution measurements of three velocity components and the concentration of suspended sediment (SS) have been performed in the Ota diversion channel through a tidal cycle. Data are collected with an acoustic Doppler velocimeter at various distances from the bottom. Turbulence measurements are extended to the immediate vicinity of the bottom. Turbulent fluxes of SS concentration are directly estimated from the fluctuations of concentration and velocity. Both the mean concentration and the vertical turbulent flux increase with the Reynolds shear-stress, though the mean concentration lags the shear stress. The frequency range in which the fluctuations mainly contribute to the vertical turbulent fluxes of SS concentration is higher than that of the Reynolds shear-stress ρ u*2 near the bottom. The settling velocities of SS, ws, are estimated from the transport equation of suspended sediment. The values of ws decrease during the large shear velocity. The vertical profiles of vertical eddy diffusivity are shown. The ratio of the momentum and sediment diffusivity coefficients, β = Nz/ Kz, decreases with increasing values of u*/ ws and the SS concentration. 1997 Elsevier Science Ltd

  11. Pollution characteristics of the recent sediments in the Hangzhou section of the Grand Canal, China

    CHEN Ying-xu; LIU He; ZHU Guang-wei; CHEN Hua-lin; TIAN Guang-min


    Spatial distribution of heavy metals, arsenic and organic matter in recent sediments in the Hangzhou section of the Grand Canal and their relationships were analyzed. The results showed that the concentrations of heavy metals and organic matters varied widely along the canal, and the average geological accumulation factors decreased in the following orders: organic carbon(2.6), zinc(2.1 ), cadmium (2.0), copper(1.5), 1ead(1.1), nitrogen(0.9), mercury (0.8), phosphorus(0.4), arsenic(0.2) and chromium(0). Content of heavy metals and organic carbon in the top t0 cm layer were lower than that of lower layers, except for mercury and organic carbon in the S9section. Contents of organic carbon in the top 50 cm layer of the mud sediments are significantly higher than those undemeath. In the bottom mud layer, there is a concentration peak of the pollutants. In the mud sediments of the canal, cadmium mainly occurred in the Fe and Mn oxide fraction, copper in the organic fraction, lead in the Fe and Mn oxide fraction, and zinc in the carbonate and the Fe and Mn oxide fraction.

  12. Unsteady Mass transfer Across the Sediment-Water Interface

    McCluskey, Alexander; Grant, Stanley; Stewardson, Michael


    Fluxes across the sediment-water interface (SWI) are of high ecological significance, as they promote biogeochemical processes that support benthic ecosystems within the hyporheic zone. The SWI marks a boundary between the turbulent water column (typically modelled by Navier Stokes equations) and the interstitial pore fluids in the sediment column, which are typically laminar (and modelled by Darcy's law). Although models of these two flow regimes are generally not coupled, flow in the turbulent boundary layer is affected by the sediment permeability and a slip velocity at the SWI, which decays exponentially into the streambed across a characteristic mixing length. Momentum is transferred across this region (known as the Brinkman layer) through the penetration of coherent structures and turbulent mixing, however, these turbulent structures also promote turbulent mass transfer. Mass transfer within the hyporheic zone can be conceptualised in terms of: (1) the downwelling of solutes from the stream; (2) retention of solutes in the sediment; and (3) the upwelling of solutes back into the stream. Recent work by the authors has shown that a mass transfer coefficient can be defined where a downwelling-upwelling unit cell exists across a concentration gradient. Such unit cells are generated at the SWI by pressure variation from: (1) steady-state influences, such as stream geometry and velocity variation; and (2) unsteady pressure waves produced by coherent turbulent structures. With this definition, mass transfer coefficients can be defined for: steady exchange, by adopting the Elliott and Brooks [1997] advective pumping model; and unsteady exchange, induced by streamwise propagation of upwelling-downwelling unit cells migrating downstream with a characteristic celerity associated with turbulent eddies. We hypothesize that beneath the Brinkman layer (where Laplace equation applies) these mass transfer coefficients can be summed to yield the total mass flux. Although, it

  13. Geoacoustic characteristics at the DH-2 long-core sediments in the Korean continental margin of the East Sea

    Ryang, Woo Hun; Kim, Seong Pil; Hahn, Jooyoung


    A long core of 27.2 m was acquired at the DH-2 site (37°34.355'N and 129°19.516'E) in the Korean continental margin of the western East Sea. The core site is located near the Donghae City and the water depth is 316.6 m deep. The long-core sediment was recovered using the Portable Remotely Operated Drill (PROD), a fully contained drilling system, remotely operated at the seafloor. The recovered core sediments were analyzed for physical, sedimentological, and geoacoustic properties mostly at 10~30 cm intervals. Based on the long-core data with subbottom and air-gun profiles at the DH-2 core site, geoacoustic characteristics of the deeper sedimentary successions were firstly investigated in the Korean continental margin of the western East Sea. The geoacoustic measurements comprise 86 P-wave velocities and 76 attenuation values. These geoacoustic characteristics of the DH-2 long core probably contribute for reconstruction of geoacoustic models reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: long core, geoacoustic, East Sea, continental margin, P-wave speed Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0025733) and by the Agency of Defense Development (UD140003DD).

  14. Barrier island morphology and sediment characteristics affect the recovery of dune building grasses following storm-induced overwash.

    Brantley, Steven T; Bissett, Spencer N; Young, Donald R; Wolner, Catherine W V; Moore, Laura J


    Barrier islands are complex and dynamic systems that provide critical ecosystem services to coastal populations. Stability of these systems is threatened by rising sea level and the potential for coastal storms to increase in frequency and intensity. Recovery of dune-building grasses following storms is an important process that promotes topographic heterogeneity and long-term stability of barrier islands, yet factors that drive dune recovery are poorly understood. We examined vegetation recovery in overwash zones on two geomorphically distinct (undisturbed vs. frequently overwashed) barrier islands on the Virginia coast, USA. We hypothesized that vegetation recovery in overwash zones would be driven primarily by environmental characteristics, especially elevation and beach width. We sampled species composition and environmental characteristics along a continuum of disturbance from active overwash zones to relict overwash zones and in adjacent undisturbed environments. We compared species assemblages along the disturbance chronosequence and between islands and we analyzed species composition data and environmental measurements with Canonical Correspondence Analysis to link community composition with environmental characteristics. Recovering and geomorphically stable dunes were dominated by Ammophila breviligulata Fernaud (Poaceae) on both islands while active overwash zones were dominated by Spartina patens (Aiton) Muhl. (Poaceae) on the frequently disturbed island and bare sand on the less disturbed island. Species composition was associated with environmental characteristics only on the frequently disturbed island (p = 0.005) where A. breviligulata was associated with higher elevation and greater beach width. Spartina patens, the second most abundant species, was associated with larger sediment grain size and greater sediment size distribution. On the less frequently disturbed island, time since disturbance was the only factor that affected community

  15. Barrier island morphology and sediment characteristics affect the recovery of dune building grasses following storm-induced overwash.

    Steven T Brantley

    Full Text Available Barrier islands are complex and dynamic systems that provide critical ecosystem services to coastal populations. Stability of these systems is threatened by rising sea level and the potential for coastal storms to increase in frequency and intensity. Recovery of dune-building grasses following storms is an important process that promotes topographic heterogeneity and long-term stability of barrier islands, yet factors that drive dune recovery are poorly understood. We examined vegetation recovery in overwash zones on two geomorphically distinct (undisturbed vs. frequently overwashed barrier islands on the Virginia coast, USA. We hypothesized that vegetation recovery in overwash zones would be driven primarily by environmental characteristics, especially elevation and beach width. We sampled species composition and environmental characteristics along a continuum of disturbance from active overwash zones to relict overwash zones and in adjacent undisturbed environments. We compared species assemblages along the disturbance chronosequence and between islands and we analyzed species composition data and environmental measurements with Canonical Correspondence Analysis to link community composition with environmental characteristics. Recovering and geomorphically stable dunes were dominated by Ammophila breviligulata Fernaud (Poaceae on both islands while active overwash zones were dominated by Spartina patens (Aiton Muhl. (Poaceae on the frequently disturbed island and bare sand on the less disturbed island. Species composition was associated with environmental characteristics only on the frequently disturbed island (p = 0.005 where A. breviligulata was associated with higher elevation and greater beach width. Spartina patens, the second most abundant species, was associated with larger sediment grain size and greater sediment size distribution. On the less frequently disturbed island, time since disturbance was the only factor that affected

  16. Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage:A case study in Dabaoshan Mine, China

    Huarong Zhao; Beicheng Xia; Jianqiao Qin; Jiaying Zhang


    Dabaoshan Mine,the largest mine in south China,has been developed since the 1970s.Acid mine drainage (AMD) discharged from the mine has caused severe environmental pollution and human health problems.In this article,chemical characteristics,mineralogy of ocher precipitations and heavy metal attenuation in the AMD are discussed based on physicochemical analysis,mineral analysis,sequential extraction experiments and hydrogeochemistry.The AMD chemical characteristics were determined from the initial water composition,water-rock interactions and dissolved sulfide minerals in the mine tailings.The waters,affected and unaffected by AMD,were Ca-SO4 and Ca-HCO3 types,respectively.The affected water had a low pH,high SO42- and high heavy metal content and oxidation as determined by the Fe2+/Fe3+ couple.Heavy metal and SO42- contents of Hengshi River water decreased,while pH increased,downstream.Schwertmannite was the major mineral at the waste dump,while goethite and quartz were dominant at the tailings dam and streambed.Schwertmannite was transformed into goethite at the tailings dam and streambed.The sulfate ions of the secondary minerals changed from bidentate- to monodentate-complexes downstream.Fe-Mn oxide phases of Zn,Cd and Pb in sediments increased downstream.However,organic matter complexes of Cu in sediments increased further away from the tailings.Fe3+ mineral precipitates and transformations controlled the AMD water chemistry.

  17. The Sediment and Hydrographic Characteristics of Three Horseshoe Crab Nursery Beaches in Hong Kong

    Helen M.C. Chiu; Brian Morton


    Horseshoe crab juveniles have been recorded from sand and sandy-mud nursery beaches at Pak Nai (western New Territories ), San Tau and Shui Hau (Lantau Island), Hong Kong. In order to provide a better understanding of these beaches and to identify those plausible factors which have made them preferred by spawning horseshoe crabs, environmental parameters, including temperature, salinity, pH and dissolved oxygen content of the water, and particle size distribution and organic matter content of the sediments at the three sites, were determined and compared. The hydrographic and sediment data obtained for the three study sites have revealed some common environmental features. The three nursery beaches are relatively remote, and far (in Hong Kong terms) from urbanized and densely populated areas. The beaches are generally well sheltered from strong wave action and inundated regularly by estuarine waters. Horseshoe crab adults tend to select these beaches for spawning as their protected features ensures the laid eggs are less likely to be washed out of the sand, and hatched juveniles can feed on the meiofauna and grow. Sediments of the three beaches largely comprise medium-sized sand particles and are moderately sorted, suggesting medium porosity and good water permeability. Such a sand type, with the generally high oxygen levels in incursing waters, may help create a well-oxygenated micro-environment for the normal development of horseshoe crab eggs, larvae and juveniles. Lantau Island beaches at San Tau and Shui Hau are relatively free from organic pollution, as reflected in generally high dissolved oxygen level, and low BOD5 and ammonia nitrogen values. Pak Nai is, however, more polluted.

  18. The sediment and hydrographic characteristics of three horseshoe crab nursery beaches in hong kong

    Chiu, Helen M. C.; Morton, Brian


    Horseshoe crab juveniles have been recorded from sand and sandy-mud nursery beaches at Pak Nai (western New Territories), San Tau and Shui Hau (Lantau Island), Hong Kong. In order to provide a better understanding of these beaches and to identify those plausible factors which have made them preferred by spawning horseshoe crabs, environmental parameters, including temperature, salinity, pH and dissolved oxygen content of the water, and particle size distribution and organic matter content of the sediments at the three sites, were determined and compared. The hydrographic, and sediment data obtained for the three study sites have revealed some common environmental features. The three nursery beaches are relatively remote, and far (in Hong Kong terms) from urbanized and densely populated areas. The beaches are generally well sheltered from strong wave action and inundated regularly by estuarine waters. Horseshoe crab adults tend to select these beaches for spawning as their protected features ensures the laid eggs are less likely to be washed out of the sand, and hatched juveniles can feed on the meiofauna and grow. Sediments of the three beaches largely comprise medium-sized sand particles and are moderately sorted, suggesting medium porosity and good water permeability. Such a sand type, with the generally high oxygen levels in incursing waters, may help create a well-oxygenated micro-environment for the normal development of horseshoe crab eggs, larvae and juveniles. Lantau Island beaches at San Tau and Shui Hau are relatively free from organic pollution, as reflected in generally high dissolved oxygen level, and low BOD5 and ammonia nitrogen values. Pak Nai is, however, more polluted.

  19. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    Choi, Hyeok, E-mail: [Department of Civil Engineering, The University of Texas at Arlington, 416 Yates Street, Arlington, TX 76019-0308 (United States); Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Lawal, Wasiu [Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268 (United States)


    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls.

  20. Geochemical characteristics of late Quaternary sediments from the southern Aegean Sea (Eastern Mediterranean)



    Ten cores from the southern Aegean Sea have been logged for their lithological composition and seventy-three sub-samples were analysed for the determination of major and trace elements concentrations. Four lithological units were identified, namely, mud, volcanic, turbidite and sapropel. On the basis of the “Z-2” Minoan ash layer radiocarbon age sedimentation rates for the southern Aegean Sea were estimated at 3.26 to 4.15 cm kyr -1. Simple correlation analysis revealed three groups of elemen...

  1. Impact of Ibrahim River on the spatial variation of coastal marine sediment characteristics

    Ghsoub, Myriam; Fakhri, Milad; Courp, Thierry; Khalaf, Gaby; Buscail, Roselyne; Ludwig, Wolfgang


    In the aim to evaluate the impact of Ibrahim River on the environmental status of its coastal marine zone, sedimentological (grain size composition), geochemical (organic carbon, total nitrogen, total carbon, organic matter, calcium carbonate, organic and inorganic phosphate) biochemical (chlorophyll-a, pheopigments) and biological parameters (macro-invertebrates) of the sediment were analyzed and interpreted. Three sampling campaigns were executed using the scientific vessel CANA-CNRS on 26-4-2016, 20-6-2016 and 29-7-2016 successively. The samples were collected according to a middle horizontal transectat three different depths (10, 20, and 30 m).The grain size composition of the sediment was mainly composed of fine sand. The obtained values of organic matter ranged between 32 and 54 mg/g. The total nitrogen was between 0.006 and 0.014%. The percentage of calcium carbonate fluctuated between 20 and 30%. This situation may be attributed to the decomposition and the sinking of the shells and some aquatic organism such as Coccolithophores, foraminifers, gastropods and bivalves. Calcium carbonate may also have terrestrial origin related to the carbonated adjacent land and may be exported to the coastal area with the river inputs. The sediment of the studied area was richer in pheopigments (between 0.8 and 3 μg/g) than in chlorophyll-a (less than 0.4 μg/g) witnessing the presence of degraded material due to the high hydrodynamic conditions. Furthermore, the low values of chlorophyll-a witnessed the oligotrophy of the zone. The concentrations of total phosphate ranged between 97 and 148 μg/g. The dominance of the inorganic phosphate at all sampling points indicates that phosphorus is available for the producers, and that the studied area is less contaminated with anthropogenic discharges. This research project reveals the presence of gastropods, crustaceans and some polychaetes along the five studied stations. These groups are generally found in sandy bottoms

  2. Geochemical characteristics of late Quaternary sediments from the southern Aegean Sea (Eastern Mediterranean



    Full Text Available Ten cores from the southern Aegean Sea have been logged for their lithological composition and seventy-three sub-samples were analysed for the determination of major and trace elements concentrations. Four lithological units were identified, namely, mud, volcanic, turbidite and sapropel. On the basis of the “Z-2” Minoan ash layer radiocarbon age sedimentation rates for the southern Aegean Sea were estimated at 3.26 to 4.15 cm kyr -1. Simple correlation analysis revealed three groups of elements associated with: (1 biogenic carbonates; (2 terrigenous alumino-silicates and (3 sapropelic layers. R-mode factor analysis applied on the carbonate-free corrected data-set defined four significant factors: (1 the “detrital alumino-silicate factor” represented by Si, Al, Na, K, Rb, Zr, Pb and inversely related to Ca, Mg, and Sr; (2 a “hydrothermal factor” loaded with Cr, Ni, Co, Cu, Fe; (3 the “volcanic ash factor” with high loadings for Ti, Al, Fe, Na and (4 a “sapropel factor” represented by Ba, Mo, and Zn. High factor scores for the “hydrothermal factor” were observed in sediment samples proximal to Nisyros Isl., suggesting a potential hydrothermal influence. Red-brown oxides and crusts dredged from this area support further this possibility. The use of factor analysis enabled for a better understanding of the chemical elements associations that remained obscured by correlation analysis.

  3. Geochemical characteristics of late Quaternary sediments from the southern Aegean Sea (Eastern Mediterranean



    Full Text Available Ten cores from the southern Aegean Sea have been logged for their lithological composition and seventy-three sub-samples were analysed for the determination of major and trace elements concentrations. Four lithological units were identified, namely, mud, volcanic, turbidite and sapropel. On the basis of the “Z-2” Minoan ash layer radiocarbon age sedimentation rates for the southern Aegean Sea were estimated at 3.26 to 4.15 cm kyr -1. Simple correlation analysis revealed three groups of elements associated with: (1 biogenic carbonates; (2 terrigenous alumino-silicates and (3 sapropelic layers. R-mode factor analysis applied on the carbonate-free corrected data-set defined four significant factors: (1 the “detrital alumino-silicate factor” represented by Si, Al, Na, K, Rb, Zr, Pb and inversely related to Ca, Mg, and Sr; (2 a “hydrothermal factor” loaded with Cr, Ni, Co, Cu, Fe; (3 the “volcanic ash factor” with high loadings for Ti, Al, Fe, Na and (4 a “sapropel factor” represented by Ba, Mo, and Zn. High factor scores for the “hydrothermal factor” were observed in sediment samples proximal to Nisyros Isl., suggesting a potential hydrothermal influence. Red-brown oxides and crusts dredged from this area support further this possibility. The use of factor analysis enabled for a better understanding of the chemical elements associations that remained obscured by correlation analysis.

  4. Proglacial hydrochemistry and sediment characteristics observed across a spectrum of glacier dynamic regimes

    Crompton, J. W.; Flowers, G. E.


    The broad influence of bedrock geology on glacier dynamics has received comparatively little attention in the alpine glacier literature. Geological influences vary widely from subglacial hydrochemistry to deformable till rheology, which may be governed by the mineralogy and grain size distribution within the till. In an investigation of borehole and proglacial water at an unnamed glacier in the Donjek Range of the St. Elias Mountains, Yukon, Canada, we find that subglacial mineral precipitation exerts a significant control on the proglacial hydrochemistry and suspended sediment flux. To understand if this process is common to glaciers across the range, we collected proglacial water samples from 20 glaciers in and around the Donjek Range. From each sample, we analyzed the hydrochemistry, measured the grain size distribution (GSD) using a Mastersizer laser diffraction particle size analyzer, and analyzed the mineralogy of the suspended sediments using X-ray diffraction. We also analyzed thin sections from bedrock samples collected at the glacier margins to constrain the mineralogical input to the system. This suite of measurements permits us to investigate the discrepancies between the secondary minerals predicted by the proglacial hydrochemistry and the observed mineralogy. Given that glaciers in the sample set exhibit a range of dynamic behaviour (including surging), we investigate how the mineralogy, GSDs, and hydrochemistry vary as a function of glacier dynamics. Where we have identified correlations between surging glaciers and proglacial GSDs, we investigate the possible controls of hydrochemistry and/or mineralogy on the GSDs and thus on subglacial dynamics.

  5. The dominating impact of small-scale streambed structural heterogeneity on hyporheic exchange and biogeochemical hotspots in lowland rivers

    Krause, S.; Gomez, J. D.; Blume, T.; Weatherill, J.; Angermann, L.; Munz, M.; Tecklenburg, C.; Cassidy, N. J.; Wilson, J. L.


    Exchange fluxes and residence times of groundwater and surface water at aquifer-river interfaces are driven by hydrodynamic and hydrostatic forcing. While previous research, with a predominantly surface water perspective, has mainly focussed on the impact of bedform controlled advective pumping on hyporheic zone extent and residence times, little attention has been paid to the impact of streambed structural controls on groundwater up-welling patterns and its implications for hyporheic exchange. Following a combined experimental and model-based approach, this paper highlights the impact of small-scale streambed structural variability on spatial patterns of hyporheic exchange flow, residence time distribution and the development of hotspots of biogeochemical cycling in the hyporheic zone of a lowland river. Combining Fibre-optic DTS and active Heat Pulse Sensing, this study identified distinct low conductivities peat and clay structures in the streambed to determine patterns, quantity and temporal dynamics of groundwater up-welling. Model simulations confirmed that streambed structure controlled patterns of groundwater up-welling exceeded the impact of bedform driven fluxes on aquifer-river exchange flow patterns. In addition, enhanced residence times of up-welling groundwater in and around these organic rich structures lead to an increase in dissolved oxygen consumption and the development of anaerobic denitrification hotspots. The resulting increases in streambed nitrate attenuation as well as enhanced production of CO2, CH4 and N2O as respiration end products highlight the importance of biogeochemical hotspots at aquifer-river interfaces under the dominant impact of streambed structural heterogeneity. Conceptual model of streambed hydrofacies controlling groundwater up-welling in a typical lowland river including their effect on heat transport at the aquifer-river interface (the star indicates the temperature of the surface water). B: core logs of exemplary

  6. Understanding water column and streambed thermal refugia for endangered mussels in the Delaware River.

    Briggs, Martin A; Voytek, Emily B; Day-Lewis, Frederick D; Rosenberry, Donald O; Lane, John W


    Groundwater discharge locations along the upper Delaware River, both discrete bank seeps and diffuse streambed upwelling, may create thermal niche environments that benefit the endangered dwarf wedgemussel (Alasmidonta heterodon). We seek to identify whether discrete or diffuse groundwater inflow is the dominant control on refugia. Numerous springs and seeps were identified at all locations where dwarf wedgemussels still can be found. Infrared imagery and custom high spatial resolution fiber-optic distributed temperature sensors reveal complex thermal dynamics at one of the seeps with a relatively stable, cold groundwater plume extending along the streambed/water-column interface during midsummer. This plume, primarily fed by a discrete bank seep, was shown through analytical and numerical heat-transport modeling to dominate temperature dynamics in the region of potential habitation by the adult dwarf wedgemussel.

  7. Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au-Ag mine tailings.

    Kwon, Man Jae; Yang, Jung-Seok; Lee, Seunghak; Lee, Giehyeon; Ham, Baknoon; Boyanov, Maxim I; Kemner, Kenneth M; O'Loughlin, Edward J


    The effects of extreme geochemical conditions on microbial community composition were investigated for two distinct sets of sediment samples collected near weathered mine tailings. One set (SCH) showed extraordinary geochemical characteristics: As (6.7-11.5%), Pb (1.5-2.1%), Zn (0.1-0.2%), and pH (3.1-3.5). The other set (SCL) had As (0.3-1.2%), Pb (0.02-0.22%), and Zn (0.01-0.02%) at pH 2.5-3.1. The bacterial communities in SCL were clearly different from those in SCH, suggesting that extreme geochemical conditions affected microbial community distribution even on a small spatial scale. The clones identified in SCL were closely related to acidophilic bacteria in the taxa Acidobacterium (18%), Acidomicrobineae (14%), and Leptospirillum (10%). Most clones in SCH were closely related to Methylobacterium (79%) and Ralstonia (19%), both well-known metal-resistant bacteria. Although total As was extremely high, over 95% was in the form of scorodite (FeAsO4·2H2O). Acid-extractable As was only ∼118 and ∼14 mg kg(-1) in SCH and SCL, respectively, below the level known to be toxic to bacteria. Meanwhile, acid-extractable Pb and Zn in SCH were above toxic concentrations. Because As was present in an oxidized, stable form, release of Pb and/or Zn (or a combination of toxic metals in the sediment) from the sediment likely accounts for the differences in microbial community structure. The results also suggest that care should be taken when investigating mine tailings, because large differences in chemical/biological properties can occur over small spatial scales.

  8. The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds

    Fox, A.; Laube, G.; Schmidt, C.; Fleckenstein, J. H.; Arnon, S.


    Bed form-induced hyporheic exchange flux (qH) is increasingly viewed as a key process controlling water fluxes and biogeochemical processes in river networks. Despite the fact that streambeds are inherently heterogeneous, the majority of bed form flume-scale studies were done on homogeneous systems. We conducted salt and dye tracer experiments to study the effects of losing and gaining flow conditions on qH using a laboratory recirculating flume system packed with a heterogeneous streambed, and equipped with a drainage system that enabled us to apply losing or gaining fluxes. We found that when either losing or gaining fluxes increased (regardless of whether the flux was upward or downward), qH followed an exponential decline, the volume of the hyporheic flow cell drastically reduced, and the mean residence times declined moderately. A numerical flow model for the heterogeneous streambed was set up and fitted against the experimental data in order to test whether an equivalent homogeneous case exists. The measured qH were accurately predicted with the heterogeneous model, while it was underestimated using a homogeneous model characterized by the geometric mean of the hydraulic conductivity. It was also shown that in order to produce the results of the heterogeneous model with an equivalent hydraulic conductivity, the latter had to be increased as the losing or gaining fluxes increase. The results strongly suggest that it is critical to adequately account for the heterogeneous streambed structure in order to accurately predict the effect of vertical exchange fluxes between the stream and groundwater on hyporheic exchange.

  9. Streambed and water profile response to in-channel restoration structures in a laboratory meandering stream

    Han, Bangshuai; Chu, Hong-Hanh; Endreny, Theodore A.


    In-channel structures are often installed in alluvial rivers during restoration to steer currents, but they also modify the streambed morphology and water surface profile, and alter hydraulic gradients driving ecologically important hyporheic exchange. Although river features before and after restoration need to be compared, few studies have collected detailed observations to facilitate this comparison. We created a laboratory mobile-bed alluvial meandering river and collected detailed measurements in the highly sinuous meander before and after installation of in-channel structures, which included one cross vane and six J-hooks situated along 1 bar unit. Measurements of streambed and water surface elevation with submillimeter vertical accuracy and horizontal resolution were obtained using close-range photogrammetry. Compared to the smooth gradually varied water surface profile for control runs without structures, the structures created rapidly varied flow with subcritical to supercritical flow transitions, as well as backwater and forced-morphology pools, which increased volumetric storage by 74% in the entire stream reach. The J-hooks, located along the outer bank of the meander bend and downstream of the cross vane, created stepwise patterns in the streambed and water surface longitudinal profiles. The pooling of water behind the cross vane increased the hydraulic gradient across the meander neck by 1% and increased local groundwater gradients by 4%, with smaller increases across other transects through the intrameander zone. Scour pools developed downstream of the cross vane and around the J-hooks situated near the meander apex. In-channel structures significantly changed meander bend hydraulic gradients, and the detailed streambed and water surface 3-D maps provide valuable data for computational modeling of changes to hyporheic exchange.

  10. Influences of Sediment Viscosity and Bed Slope on Transport and Deposition Characteristics of Debris flow in Flume Experiments

    Eu, Song; Li, Qiwen; Lee, Eunjai; Im, Sangjun


    Debris flow is a rapid flow of soil-water mixture along a confined channel. Implementing mitigation structures against debris flow, such as debris flow barrier or flexible net, is the widely used mitigation strategy to prevent the debris flow hazard. To design those structures enough to endure debris flow events, accurate estimation of flow behavior and hazardous area of debris flow is necessary. In this study, we conducted the small-scale flume experiments to analyze flow behavior and corresponding deposit characteristics according to the slope conditions of flume and viscosity of sediment mixture. In terms of flow characteristics of debris mixtures, there was a positive correlation between flow velocity and flume inclination while slower velocity was observed in higher viscosity of mixture. Results of flow depth, however, showed no significant difference along variation of flume angles and mixture viscosity. The deposit characteristics, including runout length and spreading width, showed a positive correlation with approaching flow velocity. The larger runout length and deposit width were observed in higher flow velocity, and runout length was more sensitive to the change of flow velocity compared to spreading width. (This study was carried out with the support of ´R&D Program for Forestry Technology (Project No. S211316L020110)´ provided by Korea Forest Service.)

  11. Interactions between accumulation conditions of sediment storage and debris flow characteristics in a debris-flow initiation zone in Ohya landslide, Japan

    Imaizumi, Fumitoshi; Hayakawa, Yuichi S.; Hotta, Norifumi; Tsunetaka, Haruka; Tsuchiya, Satoshi; Ohsaka, Okihiro


    It is important to understand the behavior of debris flow in the initiation zone for the development of mitigative measures, such as warning systems and structures. Volume and surface topography of sediment storage in the initiation zones change with time affected by the sediment supply from hillslopes as well as the evacuation of sediment by occurrence of debris flows. However, influences of such changes on the characteristics of the debris flow are not well understood because of a lack of field data. To clarify interactions between accumulation conditions of sediment storage and debris flow characteristics in the initiation zone, we conducted field observations in the Ohya landslide, central Japan. Flows that monitored by our video-camera system could be classified as either flows comprising mainly muddy water, or flows comprising mainly cobbles and boulders. Flows comprising mainly muddy water are turbulent and are characterized by black surfaces due to high concentrations of silty shale, whereas muddy water is almost absent at the surface of flows comprising mainly cobbles and boulders. Changes in the topography in the initiation zones were periodically measured by the airbone LiDAR scanning and terrestrial laser scanning. Slope gradient in most parts of the sediment storage was steeper than 20˚ when the volume of sediment storage was large. In such cases, debris flows were usually dominated by flows comprising mainly cobbles and boulders, and topography formed by occurrence of the debris flows was also steeper than 20˚. Simple analysis on the shear stress and the shear strength elucidates that such steep topography can be formed by movement of unsaturated or nearly saturated sediments. In contrast, slope gradient in some parts of the sediment storage was gentler than 20˚ when only small volume of sediment existed in the initiation zone. Occurrence of debris flows comprising manly muddy water, which was usually monitored when the volume of sediment storage

  12. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.


    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>-1.5 m d-1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ˜0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8-9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  13. Manganese minerals and associated fine particulates in the streambed of Pinal Creek, Arizona, U.S.A.: a mining-related acid drainage problem

    Lind, Carol J.; Hem, J.D.


    The Pinal creek drainage basin in Arizona is a good example of the principal non-coal source of mining-related acid drainage in the U.S.A., namely copper mining. Infiltration of drainage waters from mining and ore refining has created an acid groundwater plume that has reacted with calcite during passage through the alluvium, thereby becoming less acid. Where O2 is present and the water is partially neutralized, iron oxides have precipitated and, farther downstream where the pH of the stream water is near neutral, high-Mn crusts have developed. Trace metal composition of several phases in the Pinal Creek drainage basin illustrates the changes caused by mining activities and the significant control Mn-crusts and iron oxide deposits exert on the distribution and concentration of trace metals. The phases and locales considered are the dissolved phase of Webster Lake, a former acid waste disposal pond; selected sections of cores drilled in the alluvium within the intermittent reach of Pinal Creek; and the dissolved phase, suspended sediments, and streambed deposits at specified locales along the perennial reach of Pinal creek. In the perennial reach of Pinal Creek, manganese oxides precipitate from the streamflow as non-cemented particulates and coatings of streambed material and as cemented black crusts. Chemical and X-ray diffraction analyses indicate that the non-cemented manganese oxides precipitate in the reaction sequence observed in previous laboratory experiments using simpler solution composition, Mn3O4 to MnOOH to an oxide of higher oxidation number usually silicates. ?? 1992.

  14. Spatial variability of surface-sediment porewater pH and related water-column characteristics in deep waters of the northern South China Sea

    Shao, Changgao; Sui, Yi; Tang, Danling; Legendre, Louis


    This study analyzes the pH of surface-sediment porewater (i.e. 2-3 cm below the water-sediment interface), and concentrations of CaCO3 and organic carbon (OC) in 1192 sediment cores from the northern South China Sea, in water depths ranging from 137 to 3702 m. This is the first study in the literature to analyze the large-scale spatial variability of deep-water surface-sediment pH over a large ocean basin. The data showed strong spatial variations in pH. The lowest pH values (Pearl and Red Rivers. Moderately low pH values (generally 7.3-7.5) occurred in two other areas: a submarine canyon, where sediments originated partly from the Pearl River and correspond to a paleo-delta front during the last glacial period; and southwest of Taiwan Island, where waters are affected by the northern branch of the Kuroshio intrusion current (KIC) and runoff from Taiwan rivers. The surface sediments with the highest pH (⩾7.5, and up to 8.3) were located in a fourth area, which corresponded to the western branch of the KIC where sediments have been intensively eroded by bottom currents. The pH of surface-sediment porewater was significantly linearly related to water depth, bottom-water temperature, and CaCO3 concentration (p < 0.05 for the whole sampling area). This study shows that the pH of surface-sediment porewater can be sensitive to characteristics of the overlying water column, and suggests that it will respond to global warming as changes in surface-ocean temperature and pH progressively reach deeper waters.

  15. Soft–bottom sipunculans from San Pedro del Pinatar (Western Mediterranean: influence of anthropogenic impacts and sediment characteristics on their distribution

    Ferrero–Vicente, L. M.


    Full Text Available We analysed the distribution of soft bottom sipunculansfrom San Pedro del Pinatar (Western Mediterranean. This study was carried out from December 2005 to June 2010, sampling with biannual periodicity (June and December. Physical and chemical parameters of the sediment were analysed (granulometry, organic matter content, pH, bottom salinity and shelter availability. Nine different species and subspecies were identified, belonging to five families. Aspidosiphon muelleri muelleri was the dominant species, accumulating 89.06% of the total abundance of sipunculans. Higher sipunculan abundances were correlated with stations of higher percentage of coarse sand, empty mollusc shells and empty tubes of the serpulid polychaete Ditrupa arietina, where some of the recorded species live. Sediment characteristics played the main role controlling the sipunculans distribution. Anthropogenic impacts could be indirectly affecting their distribution, changing the sediment characteristics.

  16. Geochemical characteristics of organic matter in the Andaman Sea sediments: Implications for source, paleovegetation and paleoclimate changes

    Hossain, H. M. Z.; Sampei, Y.; Kawahata, H.


    The distribution, source, and redox variation of sedimentary organic matter in the Andaman Sea is significant for understanding its biogeochemical cycle, which we determined the total organic carbon (TOC), total nitrogen (TN), and n-alkanes contents. TOC and TN concentrations varied from 0.61 to 1.18 wt.% (average 0.87 wt.%) and 0.07 to 0.17 wt.% (average 0.13 wt.%), respectively with high TOC in the clay-rich sediments indicate hydrodynamic sorting readily controlled TOC abundances. Bulk C/N ratio (5.51 to 11.92, average 7.89) is attributed to the high inputs of organic matter from planktonic sources and an appreciable amounts of terrestrial derived organic matter. n-Alkane distributions from the Andaman Sea sediment cores are characterized mainly by C17 to C35, with odd-over-even predominance suggest a diverse origin of organic matter. High relative abundances of mid-chain n-alkanes of C23 and C25 recorded in the samples that are characteristically derived from submerges/floating aquatic macrophytes. However, odd long-chain n-alkanes from C27 to C33 with high peaks at C29 and C31 were detected in the samples reflecting a terrigenous origin of organic matter. The average chain length (ACL), carbon preference index (CPI), Paq and Pwax ratio values further suggested that major influence of organic matter from non-emergent aquatic macrophytes together significant proportions of grasses and herbs. Low Pr/Ph and Tm/Ts ratios in most section implying a more reducing to suboxic conditions prevailed during organic matter preservation in the oceanic event. However, high ACL values and low Paq values in the down-core variation could suggest initially cold and dry climates and gradually shifted to warm and humid conditions.

  17. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China

    Pan, Ying; Zhang, Hao; Li, Xu; Xie, Yonghong


    Sedimentation is recognized as a major factor determining the ecosystem processes of lake beaches; however, the underlying mechanisms, especially in freshwater sand dunes, have been insufficiently studied. To this end, nine belt transects from nine freshwater sand dunes, classified into low (28.1 m) based on their elevations in 1972, were sampled to investigate differences in sedimentation rate and soil and vegetation characteristics in Southern Dongting Lake, China. Sedimentation rate, soil sand content, and soil pH increased, whereas soil clay, fine silt, moisture (MC), organic matter (OM), total N, and total K content, in addition to the growth and biodiversity of sand dune plants generally decreased with decreasing belt transect elevation. Regression analyses revealed that the negative effects of sedimentation on the ecosystem functions of sand dunes could be attributed to higher fine sand content in deposited sediments and stronger inhibition of plant growth. These results are consistent with previous studies performed in coastal sand dunes, which highlights the importance of sedimentation in determining ecological processes.



    The flow in funnel chamber is typical three-di-mensional flow. The experimental results of clear water flowfield and muddy water flow field show that the flow character-istics in the funnel chamber are favorable to the separation ofwater and sand. Tangential velocity sustains the vortexstrength of the funnel chamber, axial velocity is benefit to thesediment sinking, and radial velocity is benefit to sedimentmoving to desilting hole. So the sand funnel is successful insediment disposal. The sand funnel projection has also gooddesilting effectiveness in practice. Its average flushing dis-charge is 3% of inlet canal discharge, the sand disposal rate is100% for the sand with grain diameter of more than 0. 5mm,and is more than 90% for the sand with grain diameter of lessthan 0. 5mm.

  19. Sedimentological characteristics and depositional processes of sediment gravity flows in rift basins: The Palaeogene Dongying and Shahejie formations, Bohai Bay Basin, China

    Liu, Lei; Chen, Hongde; Zhong, Yijiang; Wang, Jun; Xu, Changgui; Chen, Anqing; Du, Xiaofeng


    Sediment gravity flow deposits are common, particularly in sandy formations, but their origin has been a matter of debate and there is no consensus about the classification of such deposits. However, sediment gravity flow sandstones are economically important and have the potential to meet a growing demand in oil and gas exploration, so there is a drive to better understand them. This study focuses on sediment gravity flow deposits identified from well cores in Palaeogene deposits from the Liaodong Bay Depression in Bohai Bay Basin, China. We classify the sediment gravity flow deposits into eight lithofacies using lithological characteristics, grain size, and sedimentary structures, and interpret the associated depositional processes. Based on the scale, spatial distribution, and contact relationships of sediment gravity flow deposits, we defined six types of lithofacies associations (LAs) that reflect transformation processes and depositional morphology: LA1 (unconfined proximal breccia deposits), LA2 (confined channel deposits), LA3 (braided-channel lobe deposits), LA4 (unconfined lobe deposits), LA5 (distal sheet deposits), and LA6 (non-channelized sheet deposits). Finally, we established three depositional models that reflect the sedimentological characteristics and depositional processes of sediment gravity flow deposits: (1) slope-apron gravel-rich depositional model, which involves cohesive debris flows deposited as LA1 and dilute turbidity currents deposited as LA5; (2) non-channelized surge-like turbidity current depositional model, which mainly comprises sandy slumping, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA5 and LA6; and (3) channelized subaqueous-fan depositional model, which consists of non-cohesive bedload dominated turbidity currents, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA2-LA5, originating from sustained extrabasinal turbidity currents

  20. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada.

    Alberto, Ashley; St-Hilaire, Andre; Courtenay, Simon C; van den Heuvel, Michael R


    Increased agricultural land use leads to accelerated erosion and deposition of fine sediment in surface water. Monitoring of suspended sediment yields has proven challenging due to the spatial and temporal variability of sediment loading. Reliable sediment yield calculations depend on accurate monitoring of these highly episodic sediment loading events. This study aims to quantify precipitation-induced loading of suspended sediments on Prince Edward Island, Canada. Turbidity is considered to be a reasonably accurate proxy for suspended sediment data. In this study, turbidity was used to monitor suspended sediment concentration (SSC) and was measured for 2 years (December 2012-2014) in three subwatersheds with varying degrees of agricultural land use ranging from 10 to 69 %. Comparison of three turbidity meter calibration methods, two using suspended streambed sediment and one using automated sampling during rainfall events, revealed that the use of SSC samples constructed from streambed sediment was not an accurate replacement for water column sampling during rainfall events for calibration. Different particle size distributions in the three rivers produced significant impacts on the calibration methods demonstrating the need for river-specific calibration. Rainfall-induced sediment loading was significantly greater in the most agriculturally impacted site only when the load per rainfall event was corrected for runoff volume (total flow minus baseflow), flow increase intensity (the slope between the start of a runoff event and the peak of the hydrograph), and season. Monitoring turbidity, in combination with sediment modeling, may offer the best option for management purposes.

  1. The Southern Brazilian shelf: general characteristics, quaternary evolution and sediment distribution

    Michel Michaelovitch de Mahiques


    Full Text Available Extending from latitude 34ºS to 22ºS the Southern Brazilian shelf constitutes the only part of the Brazilian shelf with a subtropical to temperate environment. The studies on the different geological aspects of the area began in the 1960's and have recently been reassessed after studies related to the determination of the Economic Exclusive Zone. In terms of morphology, the Southern Brazilian shelf may be divided into three sectors, the São Paulo Bight, the Florianópolis-Mostardas Sector and the Rio Grande Cone, characterized by conspicuous differences in terms of geological determining factors, bathymetry, declivities and the presence of canyons and channels. Despite the existence of hundreds of radiocarbon datings the sea level changes curve of southern Brazil during the Last Glacial Cycle is still a matter of debate. A recent controversy on the Middle and late Holocene sea level changes curve raised the question of the amplitude of the oscillations which occurred in the period. Also, a few but relatively consistent radiocarbon datings suggest the occurrence of a high sea level during Isotope Stage 3. In terms of sedimentary cover the Southern Brazilian shelf exhibits a very strong hydrodynamic control, both latitudinal and bathymetrical. The sector southward from 25ºS is characterized by the influence of the plume of water carrying sediments originating from the Río de La Plata. Actually its presence is conspicuous up to 28ºS, with the area between this latitude and 25ºS constituting a transitional zone. In terms of bathymetry the outer shelf is marked by the "floor-polisher" effect of the Brazil Current, which is responsible for the maintenance of a relict facies in areas deeper than 100 meters.Estendendo-se entre as latitudes 34ºS e 22ºS, a plataforma continental sul-brasileira constitui o único setor que corresponde a um ambiente subtropical a temperado. Os estudos dos diferentes aspectos geológicos da área iniciaram-se na d

  2. Sediment transport dynamics in steep, tropical volcanic catchments

    Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie


    How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of material (> 100m3 per year) to the stream network, (ii) rainfall events that exceed a threshold of around 30mm/h rain intensity activate superficial flow pathways with associated mobilization of sediments (laminar erosion). However, the erosion processes are spatially very heterogeneous and mostly linked to finer material properties of the soils that mostly developed on more highly weathered bedrock. (iii) extreme events (return period > 50 years) mainly erode the streambed and banks cutting deeper into the bedrock and re-distribute massive amounts of material in the form of removed old alluvial deposits and new deposits created elsewhere, (iv) recovery after such extreme events in the form of fine material transport even during low intensity rainfall towards pre

  3. Water and streambed-material data, Eagle Creek watershed, Indiana, August 1980-December 1982

    Wangsness, David J.


    Water quality studies within the Eagle Creek watershed, Indiana, were done by the U.S. Geological Survey in August 1980, October 1982, and December 1982 in cooperation with the city of Indianapolis, Department of Public Works. Streambed-material and water samples were collected from Finley and Eagle Creeks at various flow rates and were analyzed for selected metals, non-metals, insecticides, and acid-extractable and base-neutral-extractable compounds. Water samples also were analyzed for volatile organics. This report lists all the data collected and analyzed by the U.S. Geological Survey during the 1980 and 1982 surveys but does not interpret the data. (Author 's abstract)

  4. Characteristics of Heavy Metals and Pb Isotopic Composition in Sediments Collected from the Tributaries in Three Gorges Reservoir, China

    Bo Gao


    Full Text Available The concentrations, distribution, accumulation, and potential ecological risk of heavy metals (Cr, Cu, Zn, Ni, As, Pb, Cd, and Hg in sediments from the Three Gorges Reservoir (TGR tributaries were determined and studied. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of heavy metals in sediment of TGR tributaries were higher than the local background values of soils and sediments in China. The assessment by Geoaccumulation Index indicated that Cu, Ni, and Hg were at the “slightly polluted” level and Cd was ranked as the “moderately polluted” level in tributary sediments of TGR. The assessment by Potential Ecological Risk Index showed that Hg and Cd were the predominant elements in tributary sediments in TGR. The Pb isotopic ratios in sediments varied from 1.171 to 1.202 for 206Pb/207Pb and from 2.459 to 2.482 for 208Pb/207Pb in TGR. All Pb isotopic ratios in sediments were similar to those from coal combustion, lead ores (the mining activities and smelting process, and cement material, indicating that these anthropogenic inputs may be the main sources for Pb pollution in sediments of TGR tributaries.

  5. Assessment of Physical-Chemical Characteristics of Water and Sediments from a Brazilian Tropical Estuary: Status and Environmental Implications

    Madson de G. Pereira


    northeastern Brazil was assessed during 2007 and 2008. In water, concentrations (mg L−1 of NO2- (<0.004 to 0.016, NO3- (0.01 to 0.33, soluble PO43- (<0.02 to 0.22, dissolved oxygen (3.9 to 9.6, total contents (mg L−1 of Cd (<0.001, Cu (<0.01, Pb (<0.01, and Zn (<0.1, pH (5.60 to 8.00, and electrical conductivity (0.12 to 48.60 mS cm−1 agreed with environmental standards. In sediments, clay and total organic matter (%, m/m varied, respectively, from 8.8 to 12.0 and from 1.1 to 8.8, while infrared, thermogravimetric profile, electronic micrograph, as well as X-Ray analyses showed desirable adsorptive characteristics. However, maximum exchangeable levels (mg kg−1 of Cd (1.3, Cu (44.6, Pb (35.7, and Zn (43.7 and their respective maximum pseudototal concentrations (mg kg−1: 19.4, 95.1, 68.2, and 30.3 were below the recommended limits. In this sense, it was possible to demonstrate good environmental preservation even with the growing number of industries and touristic activities in the evaluated estuarine area.

  6. Paleosandstorm characteristics and lake evolution history deduced from investigation on lacustrine sediments--The case of Hongjiannao Lake, Shaanxi Province

    SHEN Ji; WANG Yong; YANG Xiangdong; ZHANG Enlou; YANG Bao; JI Junfeng


    Sediment cores from desert lakes serve as good records of the frequency and intensity of sandstorms in history. By multi-proxy analysis of grain-size, magnetic susceptibility, TOC and Rb/Sr ratio, the paleosandstorm characteristics and lake evolution history in Yulin Area for the past 80 years. are discussed in this article. It is revealed that Hongjiannao Lake formed in about 1928 A.D. and in its initial stage sandstorms were prevalent with three extremes taking place in 1936 A.D., 1939 A.D. and 1941 A.D.. During the expansion period of 1952―1960 A.D., inflow waters to the lake increased sharply and a lot more weathered materials were carried into the lake. The frequency and intensity of sandstorms have reduced a lot since 1960s and the "double peaks" feature of the grain-size frequency curve has changed into the "single peak" feature. Study on the catchment ecology of the lake shows that the occurrence of sandstorms has been effectively restrained by the forest plantation and water and soil conservation.

  7. Characteristics of the cultivable bacteria from sediments associated with two deep-sea hydrothermal vents in Okinawa Trough.

    Sun, Qing-lei; Wang, Ming-qing; Sun, Li


    In this study, different culture-dependent methods were used to examine the cultivable heterotrophic bacteria in the sediments associated with two deep-sea hydrothermal vents (named HV1 and HV2) located at Iheya Ridge and Iheya North in Okinawa Trough. The two vents differed in morphology, with HV1 exhibiting diffuse flows while HV2 being a black smoker with a chimney-like structure. A total of 213 isolates were identified by near full-length 16S rRNA gene sequence analysis. Of these isolates, 128 were from HV1 and 85 were from HV2. The bacterial community structures were, in large parts, similar between HV1 and HV2. Nevertheless, differences between HV1 and HV2 were observed in one phylum, one class, 4 orders, 10 families, and 20 genera. Bioactivity analysis revealed that 25 isolates belonging to 9 different genera exhibited extracellular protease activities, 21 isolates from 11 genera exhibited extracellular lipase activities, and 13 isolates of 8 genera displayed antimicrobial activities. This is the first observation of a large population of bacteria with extracellular bioactivities existing in deep-sea hydrothermal vents. Taken together, the results of this study provide new insights into the characteristics of the cultivable heterotrophic bacteria in deep-sea hydrothermal ecosystems.

  8. Sediment transport characteristics in cannal irrigation district%泾惠渠灌区浑水泥沙输移特征

    张小帅; 张耀哲; 党永仁; 王博; 张芳芳


    通过对泾惠渠灌区2013年夏秋灌期干支斗渠浑水资料的实时取样分析,探究渠灌区渠系挟沙水流含沙量及泥沙级配的时空变化规律,量化描述不同粒径悬移质泥沙颗粒的输移特征,旨在获得灌渠渠系内挟沙水流历经冲淤过程不同粒径悬沙沿程的垂向分布与输移规律,为渠灌区的运行及泥沙问题的处理提供理论基础。灌区内进行的原型取样测流工作在选定的具有代表性的干-支-斗渠线路上进行,观测分析了灌区渠系含沙量及不同粒径泥沙颗粒沿垂线分布的特征,验证分析了挟沙水流历经淤积过程含沙量分布的变化规律。通过对典型渠系线路不同粒径悬移质泥沙的沿程调整计算分析,表明不同粒径泥沙沿程的输移特征不同,各分组沙的冲淤特征并不都和全沙平均计算结果一致,其中级配曲线左端一定粒径范围(约>0.015 mm)的粗沙与全沙具有同冲同淤的规律。该研究可为泾惠渠灌区泥沙处理利用以及渠灌区浑水调控理论与技术的进一步研究提供依据。%Due to non-uniformity of precipitation distribution, irrigation plays an irreplaceable role in agriculture, and diversion channel is the main form in irrigation district. Water and sediment is always indivisible, so it’s always inevitable to divert water at the same time not to divert sediment into the irrigation system. In this paper, the transport characteristics of the suspended sediment in the irrigation canals in the irrigation system are mainly studied. Based on the field data sampled in Jinghuiqu irrigation district during the summer and autumn irrigation period in 2013, the temporal and spatial variation laws of sediment concentration and gradation of the suspended load will be researched and the transport characteristics of the suspended load of different size will be described quantitatively in order to provide basis for sediment treatment and

  9. Changes in water budgets and sediment yields from a hypothetical agricultural field as a function of landscape and management characteristics--A unit field modeling approach

    Roth, Jason L.; Capel, Paul D.


    Crop agriculture occupies 13 percent of the conterminous United States. Agricultural management practices, such as crop and tillage types, affect the hydrologic flow paths through the landscape. Some agricultural practices, such as drainage and irrigation, create entirely new hydrologic flow paths upon the landscapes where they are implemented. These hydrologic changes can affect the magnitude and partitioning of water budgets and sediment erosion. Given the wide degree of variability amongst agricultural settings, changes in the magnitudes of hydrologic flow paths and sediment erosion induced by agricultural management practices commonly are difficult to characterize, quantify, and compare using only field observations. The Water Erosion Prediction Project (WEPP) model was used to simulate two landscape characteristics (slope and soil texture) and three agricultural management practices (land cover/crop type, tillage type, and selected agricultural land management practices) to evaluate their effects on the water budgets of and sediment yield from agricultural lands. An array of sixty-eight 60-year simulations were run, each representing a distinct natural or agricultural scenario with various slopes, soil textures, crop or land cover types, tillage types, and select agricultural management practices on an isolated 16.2-hectare field. Simulations were made to represent two common agricultural climate regimes: arid with sprinkler irrigation and humid. These climate regimes were constructed with actual climate and irrigation data. The results of these simulations demonstrate the magnitudes of potential changes in water budgets and sediment yields from lands as a result of landscape characteristics and agricultural practices adopted on them. These simulations showed that variations in landscape characteristics, such as slope and soil type, had appreciable effects on water budgets and sediment yields. As slopes increased, sediment yields increased in both the arid and

  10. Long-Term Impacts of Bacteria-Sediment Interactions in Watershed-Scale Microbial Fate and Transport Modeling.

    Liao, Hehuan; Krometis, Leigh-Anne H; Kline, Karen; Hession, W C


    Elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments in the United States. Under the Clean Water Act, basin-specific total maximum daily load (TMDL) restoration plans are responsible for bringing identified water impairments in compliance with applicable standards. Watershed-scale model predictions of FIB concentrations that facilitate the development of TMDLs are associated with considerable uncertainty. An increasingly cited criticism of existing modeling practice is the common strategy that assumes bacteria behave similarly to "free-phase" contaminants, although many field evidence indicates a nontrivial number of cells preferentially associate with particulates. Few attempts have been made to evaluate the impacts of sediment on the predictions of in-stream FIB concentrations at the watershed scale, with limited observational data available for model development, calibration, and validation. This study evaluates the impacts of bacteria-sediment interactions in a continuous, watershed-scale model widely used in TMDL development. In addition to observed FIB concentrations in the water column, streambed sediment-associated FIB concentrations were available for model calibration. While improved model performance was achieved compared with previous studies, model performance under a "sediment-attached" scenario was essentially equivalent to the simpler "free-phase" scenario. Watershed-specific characteristics (e.g., steep slope, high imperviousness) likely contributed to the dominance of wet-weather pollutant loading in the water column, which may have obscured sediment impacts. As adding a module accounting for bacteria-sediment interactions would increase the model complexity considerably, site evaluation preceding modeling efforts is needed to determine whether the additional model complexity and effort associated with partitioning phases of FIB is sufficiently offset by gains in predictive capacity.

  11. Chemical and Physical Characteristics of Sediments from Prevalent Dust Sources in the Central Chihuahuan Desert, Chihuahua, Mexico

    Dominguez Acosta, M.; Gill, T. E.; Peinado, P.


    The Chihuahuan Desert has been recognized as an important contributor of mineral aerosols emplaced into the atmosphere in the Western Hemisphere. Along with the production of these aerosols, growing concern has been stated relating the downwind transport of atmospheric dust particles to increases in human health related impacts such as asthma and bronchitis in the Binational Paso Del Norte, the largest urban area in the region. Efforts have been made to describe the source types (land use/cover) and frequency of emission from the "dust hotspots" or prevalent sources within the region. These studies have outlined specific areas and their related sedimentological environments responsible for the regular dust production. Ephemeral lakes, fluvial and alluvial related environments form the main natural dust producing landforms in the region, modulated by short-term climatic variability and anthropogenic disturbance. Analysis of remote sensing imagery shows that the margins between natural areas and agricultural lands form the main anthropogenic related source areas. Most of the previously published studies focus on these remotely sensed descriptions of the dust sources, while only a few deal with in situ or field characteristics of these sources. A formal and detailed description of the physicochemical properties of many of these areas is presented, providing key data on this component of the overall dust production cycle. Elemental and mineralogical compositions of dust source sediments, soil textural compositions (grain size distributions) and field sedimentological descriptions are presented as an effort to attain a detailed in situ description of the prevalent dust sources in the central part of the Chihuahuan Desert.

  12. 基于Delft3D模型的挟沙水流泥沙输运特征分析%Sediment Laden Flow and Sediment Transport Characteristics Analysis Based on Delft3 D Model



    灌渠在农业生产中具有重要作用,渠道引水灌溉是我国主要灌溉形式,引水过程势必会伴随引沙。以塔河灌区输水渠道为研究对象,分析灌渠挟沙水流泥沙输特性。利用Delft3 D模型建立二维渠道泥沙输运数学模型,对渠道不同水位、流速、流量下的含沙量进行研究。计算结果表明,塔河灌区输水渠道涨落急流速平均误差小于0.14 m/s,流量峰值误差小于75 m3/s;灌渠流态合理,含沙量计算误差小于0.02 kg/m3;渠床冲淤误差为0.023 m,与测量值相差23%,该数学模型可以较好地反映灌渠挟沙水流泥沙输运情况。%Irrigation plays an important role in agricultural production, water diversion canal irriga-tion is the main form of irrigation, water diversion process will inevitably accompanied by sediment diversion. Using Tahe irrigation water channel as the research object, irrigation water sediment char-acteristics was analyzed. The Delft3 D model was used to establish a two-dimensional channel sedi-ment transport mathematical model. Under the different channels of water level, flow velocity and flow sediment were studied. Calculation results show that:in Tahe irrigation area water channel fluc-tuation and flow rate of urgency with an average error of less than 0. 14m/s, peak flow error is less than 75m3/s;reasonable irrigation regime, sediment calculation error is less than 0. 02kg/m3;canal bed scouring and silting error 0. 023m, and measured values differed by 23%. The mathematical model can be to better reflect the irrigation ditch sediment sand flow and sediment transport.


    罗振东; 朱江; 曾庆存; 谢正辉


    The mixed finite element (MFE) methods for a shallow water equation system consisting of water dynamics equations, silt transport equation, and the equation of bottom topography change were derived. A fully discrete MFE scheme for the discrete-time along characteristics is presented and error estimates are established. The existence and convergence of MFE solution of the discrete current velocity, elevation of the bottom topography, thickness of fluid column, and mass rate of sediment is demonstrated.

  14. LPMLE3: A novel 1-D approach to study water flow in streambeds using heat as a tracer

    Schneidewind, U.; Berkel, van M.; Anibas, C.; van der Steen, G.; Schmidt, C.; Joris, I.; Seuntjens, P.; Batelaan, O.; Zwart, Heiko J.

    We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it

  15. Magnetic characteristics of sediment grains concurrently contaminated with TBT and metals near a shipyard in Busan, Korea.

    Choi, Jin Young; Hong, Gi Hoon; Ra, Kongtae; Kim, Kyung-Tae; Kim, Kyoungrean


    Bottom sediments near shipyards are often susceptible to receiving accidental spills of TBT and metals or their degradation products from hull scraping of antifouling system paints applied prior to 2008, when the AFS Convention 2001 was not in force. We investigated TBT and metal contamination of sediments near the shipyards of a small marina located in Busan, Korea and found that they were highly contaminated with TBT, Cu, and Zn. To better understand the environmental impacts and to make an optimal remediation plan, we characterized individual antifouling fragments in terms of metal and TBT contents, magnetic properties, and grain-size. Coarse-sized individual antifouling fragments exhibited simultaneously high levels of TBT, metals and high magnetic susceptibility, and appeared to be a major source of pollution in the sediment. Therefore, magnetic separation in combination with size-separation appears to be a cost-effective remediation method to remove the TBT and metals from contaminated shipyard sediments.

  16. Effect of benthic disturbance on geotechnical characteristics of sediments from nodule mining area in the Central Indian Basin

    Khadge, N.H.

    Benthic disturbance is carried out in the Central Indian Basin for environmental impact assessment studies. Geotechnical measurements were made on sediments collected before and after disturbing the top 10-15 cm of the seafloor. Results indicate...

  17. Colonization dynamics of ciliate morphotypes modified by shifting sandy sediments.

    Risse-Buhl, Ute; Felsmann, Katja; Mutz, Michael


    Sandy stream-bed sediments colonized by a diverse ciliate community are subject to various disturbance regimes. In microcosms, we investigated the effect of sediment shifting on the colonization dynamics of 3 ciliate morphotypes differing in morphology, behavior and feeding strategy. The dynamics of the ciliate morphotypes inhabiting sediment pore water and overlying water were observed at 3 sediment shifting frequencies: (1) stable sediments, (2) periodically shifting sediments such as migrating ripples, and (3) continuously shifting sediments as occurring during scour events of the uppermost sediment. Sediment shifting significantly affected the abundance and growth rate of the ciliate morphotypes. The free-swimming filter feeder Dexiostoma campylum was vulnerable to washout by sediment shifting since significantly higher numbers occurred in the overlying water than in pore water. Abundance of D. campylum only increased in pore water of stable sediments. On the contrary, the vagile grasper feeder Chilodonella uncinata and the sessile filter feeder Vorticella convallaria had positive growth rates and successfully colonized sediments that shifted periodically and continuously. Thus, the spatio-temporal pattern of sediment dynamics acts as an essential factor of impact on the structure, distribution and function of ciliate communities in sand-bed streams.

  18. Variation characteristics of heavy metals and nutrients in the core sediments of Taihu Lake and their pollution history


    The sedimentary environment change, trophic evolution and heavy metals pollution history of the northern Taihu Lake in the last 100 years are studied according to the sedimentary geochemical proxies of the core sediments, such as grain size, nutrients, heavy metals, diatom, etc. The nutrients in the sediments depended mainly on the lake internal circulation and the heavy metals were from natural geogenic sources before the 1920s, which were not influenced by human activities generally, and grain size was one of the key factors influencing heavy metals content in the sediments.The alternation of manner and strength of human activities in Taihu Lake catchment before and after the 1920s made the lake sediments coarser, and hence heavy metals and TP content decreased contrasted with that before the 1920s. TP content in sediments and water increased from the 1950s to late 1970s due to anthropogenic pollutants discharge, and the lake belonging to mesotrophic state.TN and TOC content and C/N ratio increased due to the increasing external pollutants into Taihu Lake by human activities, TP content also increased obviously in water and sediments, and the diatom association was dominated by eutrophic species since the late 1970s, indicating the eutrophication state of Taihu Lake in this period. Meanwhile the increasing in heavy metals content, such as Cu, Mn,Ni, Pb and Zn, and their proportion of valid fractions in the sediments indicates that they all result from human pollutants since the late 1970s. The heavy metals in the surface sediments have certain potential biological toxicity due to the higher SEM/AVS ratio.

  19. Characteristics of runoff and sediment generation of forest vegetation on a hill slope by use of artificial rainfall apparatus

    LI Xiang; NIU Jian-zhi; LI Jiao; XIE Bao-yuan; HAN Yi-ni; TAN Jing-ping; ZHANG Ying-hu


    We studied the impact of forest vegetation on soil erosion,surface runoff,and sediment generation by using field simulated rainfall apparatus.We measured runoff and sediment generation of five 4.5 × 2.1m runoff plots (a bare soil as a control; two Pinus tabulaeformis forest plots and two Platycladus orientalis forest with row spacing of 1m × 1m and 1.5 m × 1.5 m,respectively) in Beijing Jiu Feng National Forest Park under three rainfall intensities (0.42,0.83,1.26 mm per minute).Forest vegetation significantly reduced soil erosion and sediment yield.Mean total runoff volume in the four tree stand plots was 93% of that in the control plot,demonstrating the limited effectiveness of forest vegetation in runoff control.With increasing rainfall intensity,runoff reduction in forest plots declined from 28.32% to 2.1%.Similar trends in runoff coefficient and the relationship between runoffvolume and rainfall duration was observed.Mean total sediment yield and mean sediment yield reduction rate under different treatments was 55.05% and 43.17% of those in the bare soil control plot,respectively.Rainfall intensity played an important role in runoffand sediment generation processes,and had a greater impact on runoff than on soil erosion and sediment generation.When considering several factors in runoff and sediment transport processes,the P.tabulaeform plot with row spacing at 1 × 1 m had a greater effect on soil and water conservation than did other forested plots.

  20. Mercury Concentrations in Fish and Sediment within Streams are Influenced by Watershed and Landscape Variables including Historical Gold Mining in the Sierra Nevada, California

    Alpers, C. N.; Yee, J. L.; Ackerman, J. T.; Orlando, J. L.; Slotton, D. G.; Marvin-DiPasquale, M. C.


    We compiled available data on total mercury (THg) and methylmercury (MeHg) concentrations in fish tissue and streambed sediment from stream sites in the Sierra Nevada, California, to assess whether spatial data, including information on historical mining, can be used to make robust predictions of fish fillet tissue THg concentrations. A total of 1,271 fish from five species collected at 103 sites during 1980-2012 were used for the modeling effort: 210 brown trout, 710 rainbow trout, 79 Sacramento pikeminnow, 93 Sacramento sucker, and 179 smallmouth bass. Sediment data were used from 73 sites, including 106 analyses of THg and 77 analyses of MeHg. The dataset included 391 fish (mostly rainbow trout) and 28 sediment samples collected explicitly for this study during 2011-12. Spatial data on historical mining included the USGS Mineral Resources Data System and publicly available maps and satellite photos showing the areas of hydraulic mine pits and other placer mines. Modeling was done using multivariate linear regression and multi-model inference using Akaike Information Criteria. Results indicate that fish THg, accounting for species and length, can be predicted using geospatial data on mining history together with other landscape characteristics including land use/land cover. A model requiring only geospatial data, with an R2 value of 0.61, predicted fish THg correctly with respect to over-or-under 0.2 μg/g wet weight (a California regulatory threshold) for 108 of 121 (89 %) size-species combinations tested. Data for THg in streambed sediment did not improve the geospatial-only model. However, data for sediment MeHg, loss on ignition (organic content), and percent of sediment less than 0.063 mm resulted in a slightly improved model, with an R2 value of 0.63. It is anticipated that these models will be useful to the State of California and others to predict areas where mercury concentrations in fish are likely to exceed regulatory criteria.

  1. Distribution and characteristics of polycyclic aromatic hydrocarbons (PAHs) in sediments of Hadhramout coastal area, Gulf of Aden, Yemen

    Mostafa, Alaa R.; Wade, Terry L.; Sweet, Stephen T.; Al-Alimi, Abdel Kawi A.; Barakat, Assem O.


    To assess the status of polycyclic aromatic hydrocarbon (PAH) contamination in sediments of Hadhramout coastal area, Gulf of Aden, Yemen, 17 surface sediment samples were collected in March-April 2005 and analyzed for PAHs with 2-6 benzene rings by gas chromatography-mass spectrometry (GC-MS). The concentrations of PAHs in surface sediments were in the range of 2.2-604 ng g - 1 (average value: 82.4 ng g - 1 ). PAHs contamination is highest in proximity to harbour activities, near Al-Dhabah petroleum terminal and urban areas. Comparison of the concentration range with a worldwide survey of sedimentary PAH concentrations ranked PAH contamination in Hadhramout coastal sediments as low to moderate. Assessment of PAH sources in Hadhramout coastal sediments suggested that they originated largely from petrogenic sources. PAHs of pyrolytic origin were found in sediments from urbanized areas. Adverse effects on benthic communities are not expected at the levels of PAHs contamination observed from harbour and industrial areas.

  2. Turbulent Hyporheic Exchange in Permeable Sediments

    Roche, K. R.; Aubeneau, A. F.; Li, A.; Packman, A. I.


    Solute delivery from the water column into a streambed strongly influences metabolism in rivers. Current hydrological models simplify surface-subsurface (hyporheic) exchange by treating each domain separately, constraining turbulent flows to the water column. Studies have shown, however, that turbulence penetrates into permeable sediments. Evidence is lacking for how this highly coupled flow regime influences hyporheic exchange. We characterized the dynamics of turbulent exchange between surface and porewaters in a 2.5 m recirculating flume. The channel was packed with 3.8 cm PVC spheres to form a coarse gravel bed, with a total depth of 21 cm. We implanted microsensors onto an array of spheres to measure in situsalt concentrations within the streambed. Water was recirculated in the channel, and concentrated salt solution was continuously injected upstream of the sensor array. We observed solute exchange increased with free-stream Reynolds number and decreased with depth in the sediment bed. Mass of injected solute remaining in the bed decreased rapidly in all cases, with only 10-30% of mass recovered 50 cm downstream of the injection point at Re = 25,000. We observed high-frequency (1-10 Hz) concentration fluctuations at bed depths of at least 4.75 cm, and sporadic low-frequency fluctuations at depths of 12.5 cm. Spectral analysis revealed increased filtering of high frequencies with depth. We used particle-tracking simulations to fit depth-dependent turbulent diffusion profiles to experimental results. These results demonstrate that free-stream turbulence impacts hyporheic mixing deep into permeable streambeds, and mixing is strongly influenced by the coupled surface-subsurface flow field.

  3. Use of Ground-water Temperature Patterns to Determine the Hydraulic Conductance of the Streambed Along the Middle Reaches of the Russian River, CA

    Su, G. W.; Constantz, J.; Jasperse, J.; Seymour, D.


    Along the Russian River in Sonoma County, the alluvial aquifer is the preferred source of drinking water because sediments and other constituents in the river water would require additional treatment. From late spring to early winter, an inflatable dam is erected to raise the river stage and passively recharge the alluvial aquifer. The raised stage also permits diversion of river water to a series of recharge ponds located near the dam along the river. Improved understanding of stream exchanges with ground water is needed to better manage available water resources. Heat is used as a tracer of shallow ground-water movement for detailed hydraulic parameter estimation along the middle reaches of the river. Water-levels and ground-water temperatures were measured in a series of observations wells and compared to the river stage and surface-water temperatures. Hydraulic conductivities were predicted by optimizing simulated ground-water temperatures using VS2DHI, a heat and water transport model, to observed temperatures in the aquifer. These conductivity values will be used in a stream/ground-water model of this region being developed using MODFLOW. Temperature-based estimates of streambed conductance will be inserted in the STREAM package of the model to constrain this parameter. Although temperature-based predictions of hydraulic conductivity vary significantly along the reach, the results generally suggest that an anisotropy of 5 to 1 (horizontal to vertical) provides the best hydraulic conductivity matches for predicted versus observed ground-water temperatures.

  4. Impact of mangrove vegetation on seasonal carbon burial and other se-diment characteristics in the Vellar-Coleroon estuary, India

    Kandasamy Kathiresan; Venugopal Gomathi; Raj Anburaj; Kandasamy Saravanakumar


    This work quantified the total carbon and 12 other sediment characteristics at 10 soil depths, in planted and or natural mangrove forests in comparison with non-vegetated soil for four seasons of the year 2009-2010 in the Vellar-Coleroon estuarine complex, India. The sedi-ment characteristics varied significantly between mangrove-vegetated and non-vegetated habitats or seasons of analysis, but not between soil depths. The mangrove sediments were rich in total carbon and total or-ganic carbon as compared to non-mangrove sediments (p<0.01). Total carbon was 98.2% higher in mature mangroves and 41.8% in planted mangroves than that in non-mangrove soil. Total organic carbon was as much as 2.5 times greater in mature mangroves and 2 times greater in planted mangroves than that in unvegetated soil. Carbon contents also varied many fold by season. Total carbon content was 8.6 times greater during pre-monsoon, 4.1 times greater during post-monsoon and 2.5 times greater during monsoon than during summer (p<0.01 in all cases). Similarly, total organic carbon was 5.9 times greater during pre-monsoon, 3.1 times greater during post-monsoon and 69%greater during monsoon than during summer. In general, higher levels of sediment carbon were recorded during pre and post-monsoon seasons than during other seasons. Total carbon concentration was correlated negatively to temperature, sand and phosphorus (p<0.01);positively correlated with redox potential, silt, clay, C/N ratio, potassium (p<0.01) and nitrogen (p<0.05);but not correlated with soil depth, pH or salinity. This work revealed that the carbon burial was rapid at the annual rate of 2.8%for total carbon, and 6.7%for total organic carbon in mangrove-planted sediment. Clearing of mangroves can result in significantly and rapidly reduced carbon stores. Our study highlights the importance of natural and plantation mangrove stands for conserving sediment carbon in the tropical coastal domain.

  5. [Sediment transport characteristics at different erosion stages for non-hardened roads of the Shenfu Coalfield, west China].

    Guo, Ming-ming; Wang, Wen-long; Li, Jian-ming; Huang, Peng-fei; Zhu, Bao-cai; Wang, Zhen; Luo, Ting


    Non-hardened roads formed in the production of the Shenfu Coalfield have a unique condition of underlying surface. The road surface is composed of a regolith layer with a certain thickness resulted from long-term rolling and thus, is characterized by weakened anti-scourabilty and anti-erodibility. In contrast, soil layer below the regolith has a higher bulk density and anti-erodibility. The processes of soil erosion on the non-hardened roads exhibit some differences under rainfall condition. The process of sediment transport and the relationship between sediment transport rate and erosion factors at different erosion stages were studied on non-hardened roads with slope degrees ranging from 3° to 12° (3°, 6°, 9°, 12°) by a field experiment under artificial rainfall. Results showed that the first peak of sediment transport on the regolith surface was observed at the sheet erosion stage. Sheet erosion occurred only at 3° slope degree, with an average variation coefficient of 0.07 for sediment transport rate. Rills in every testing began to develop at slope degrees of 6° to 12° about 15 min after runoff initiation. At the sheet erosion stage, the process of sediment transport fluctuated considerably at rainfall intensities of > 1.5 mm · min(-1), but the differences in its variation were little at the three slope degrees, with average variation coefficients of 0.20, 0.19 and 0.16, respectively. Rainfall intensity had a more significant impact on sediment transport rate than slope degree. The process of sediment transport at the rill erosion stage fluctuated, but the fluctuation was obviously smaller than that at the sheet erosion stage, with average variation coefficients of 0.05, 0.09 and 0.10 at the three slope degrees. Many wide and shallow rills evolved at the rill erosion stage. The sediment transport rate could be well predicted by a power function of rainfall intensity and slope degree at the sheet and rill erosion stages. The stable sediment transport

  6. Distribution Characteristics of TOC, TN and TP in the Wetland Sediments of Longbao Lake in the San-Jiang Head Waters

    Lu, Sujin; Si, Jianhua; Qi, Yue; Wang, Zhanqing; Wu, Xiaocui; Hou, Chuanying


    The study deals with the distribution of nutrients in wetland sediments, which provide the basis for revealing the wetland eutrophication processes and mechanisms of internal pollution sources. The total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) contents and distribution characteristics of sediment samples were examined. The results showed that the TOC concentration ranged from 3.81 to 15.6 g/kg, the TN concentration ranged from 0.21 to 1.18 g/kg with a mean concentration of 0.66 g/kg, and the TP concentration ranged from 0.16 to 0.35 g/kg with a mean of 0.23 g/kg. Statistical analysis showed close correlations between TOC and TN (R2 = 0.96), and TN and TP (R2 = 0.97), which indicated that the TN and TP in the sediments were from similar sources. The concentrations of TOC, TN, and TP in Long-bao Lake wetland sediments were too low for eutrophication to occur. Our investigation indicated that Longbao Lake undergoes natural evolution rather than anthropogenic activities.

  7. Redox Processes and Arsenic Release in the Streambed of a Semi-arid Losing Stream

    Andersen, M. S.; Rau, G. C.; McCallum, A. M.; Acworth, I.


    The water quality of groundwater recharge is a function of rainfall chemistry, soil processes and land use. It is less obvious that the mechanism of groundwater recharge itself can influence the resulting groundwater quality, but it has been shown that slow infiltration into thick unsaturated zones generally lead to oxic groundwater (Appelo and Postma, 2005). This is due to the relatively long residence time in the unsaturated zone where reactive organic matter from the soil can be exhausted in the presence of excess atmospheric oxygen. On the other hand, in shallow unsaturated zones some of the reactive organic matter tends to survive the short residence time in the unsaturated zone. Upon reaching the saturated zone this organic matter will reduce the limited amount of dissolved oxygen and start reducing other dissolved or solid electron acceptors (e.g. NO3-, SO42-, Fe(OH)3(s)). Consequently, it is to be expected that recharge from streams, where no unsaturated zone is present, in general should lead to anoxic groundwater. This could be beneficial for attenuating nitrate, but could lead to problems with high levels of dissolved iron or mobility of problematic trace elements such as arsenic. To explore these processes a field investigation was done in the ephemeral Maules Creek in NSW, Australia. A transect of groundwater and streambed piezometers were installed adjacent to a losing section of the creek. Water samples were collected from surface water, streambed pore waters and groundwater piezometers and analysed for water quality parameters (DO, pH, EC), major ions, trace elements, redox sensitive species (NO3-, Fe2+, Mn2+ and H2S) and dissolved organic carbon (DOC). The distribution of radioisotopes and dissolved species below the stream channel delineates a zone of the streambed-aquifer continuum containing water of a recent surface water origin. Measurable concentrations of reduced species (Fe2+, Mn2+ and NH4+), elevated levels of DOC and the lack of oxygen

  8. [Characteristics of sediment heavy metal pollution in three water supply reservoirs in Huizhou, Guangdong Province of South China].

    Chen, Xiu-Kang; Zhang, Hua-Jun; Gu, Ji-Guang; Hu, Ren; Yang, Hao-Wen; Chen, Jing-An


    To understand the present status of the heavy metal (Cr, Cu, Zn, Cd, Pb and Hg) pollution of the sediments in water supply reservoirs in Huizhou, sediment cores were sampled from three representative reservoirs. The heavy metal concentrations were analyzed by ICP-MS, and the pollution status was assessed by geo-accumulation index (Igeo) and potential ecological risk index (RI). In the meantime, the possible sources of the heavy metals were analyzed by the principal component analysis (PCA). In the sediments of the three reservoirs, the test heavy metals had different vertical distribution, some had less change, the others decreased or increased with depth, and the distribution patterns differed with the reservoirs. According to the Igeo, the sediments in the reservoirs were seriously polluted by Zn and Pb (Zn: 49.98-640.29 mg x kg(-1); Pb: 21.94-300.66 mg x kg(-1)), reaching slight to high pollution, and the middle or bottom part of the sediments was slightly polluted by Cu (16.85-45.46 mg x kg(-1)). On the whole, the sediments were not polluted by Cr, Cd and Hg. According to the RI and the potential ecological risk coefficient [Er(i)], the sediments in the three reservoirs were under low potential ecological risk. Based on the PCA and relevant information, the human activities such as mining and smelting, urbanization, and agriculture and forestry had great contribution to the heavy metal pollution. The Zn and Pb pollution mainly originated from mining and smelting, Pb pollution also came from motor vehicle exhaust emission and domestic wastes, and Cu pollution mainly derived from agriculture and forestry.

  9. Adsorption characteristics of multiple microcystins and cylindrospermopsin on sediment: Implications for toxin monitoring and drinking water treatment.

    Maghsoudi, Ehsan; Prévost, Michèle; Vo Duy, Sung; Sauvé, Sébastien; Dorner, Sarah


    Adsorption of mixtures of cyanotoxins onto sediment as a dominant mechanism in the elimination of cyanotoxins from the aqueous phase has not been extensively investigated. The aim of this study was to investigate adsorption and desorption behavior of six microcystins including microcystin (MC)-LR, RR, YR, LY, LW and LF and cylindrospermopsin (CYN) on natural sediment. Freundlich and Langmuir isotherms could be fitted for MC-LR, RR, YR and CYN. Sorption kinetics showed immediate rapid adsorption for all cyanotoxins: CYN, MCLW and MCLF were adsorbed 72.6%, 56.7% and 55.3% respectively within 2 h. Results of desorption experiments demonstrated that less than 9% of cyanotoxins desorbed from sediment within 96 h. Adsorption of cyanotoxins onto three fractionated sediments particles, clay-silt (<75 μm), find sand (75-315 μm) and coarse sand (315-2000 μm) demonstrated that adsorption capacity of coarse sand fraction for all the tested cyanotoxins was less than 4% of the clay-silt fraction. Results of this study revealed that there is a potential for cyanotoxins to accumulate in the sediments of lakes, as well as in drinking water treatment plants. Monitoring programs must consider cyanotoxins in the particulate phase to avoid largely underestimating toxin concentrations following their release from blooms.

  10. Sequence Stratigraphic Analysis for Delineating the Sedimentation Characteristic and Modeling of Nidoco Area, Off-Shore Nile Delta, Egypt

    Nasr El Deen, Ahmed; Abu El-Ata, Ahmed; El-Gendy, Nader


    The Egyptian Nile Delta has recognized over the different human civilizations, as the source of life/ basket of wheat. In the recent time, the Nile Delta revealed another hidden treasure that hidden below the Mediterranean Sea within its sediments. This treasure reflects a number of giant gas reservoirs that require only the suitable technology and the assured ideas to commence injecting gas into the industrial veins of the growing Egyptian economy. The current study is aiming to discuss the Messinian Prospectivity of the concerned area, which is located in the offshore of the Nile Delta, about 25 Km from the Mediterranean Sea shoreline. An integrated exploration approach applied for a selected area, using a variety of subsurface borehole geologic and log data of the selected wells distributed in the study area, as well as biostratigraphic data. The well data comprise well markers, and electric logs (e.g. gamma ray, density, neutron and sonic logs), where the geological data represented by litho-stratigraphic information, as well as ditch samples analysis of the studied interval. Biostratigraphic data include biozones, benthonic to planktonic ratios, nannofossils and foraminiferal data. Different methods and techniques were applied by using different softwares such as Petrel and Interactive petrophysical software. Four missing times were identified intra-Pleistocene, Late Pliocene, Late Pliocene-Early Pliocene and Messinian. It has concluded that, the depositional environments ranged from shallow marine to middle nerritic and may reach upper bathyal toward the northern part of the study area. The top of Abu Madi Formation dated with the calcareous nannofossils zone NN12a, while the base dated with NN11c, and its age varied from 5.2 Ma to 5.7 Ma. The maximum flooding surface is dated with the calcareous nannofossils zone NN13 and the planktonic foraminiferal zone SN18 at 5 Ma (the acme presence of the Sphaeroidinellopsis sp.). From the utility of wireline logs for

  11. Assessment of pathogen levels in stream water column and bed sediment of Merced River Watershed in California

    Vaddella, V. K.; Pandey, P.; Biswas, S.; Lewis, D. J.


    Mitigating pathogen levels in surface water is crucial for protecting public health. According to the U.S. Environmental Protection Agency (US EPA), approximately 480,000 km of rivers/streams are contaminated in the U.S., and a major cause of contamination is elevated levels of pathogen/pathogen indicator. Many of past studies showed considerably higher pathogen levels in sediment bed than that of the stream water column in rivers. In order to improve the understanding of pathogen levels in rivers in California, we carried out an extensive pathogen monitoring study in four different watersheds (Bear Creek, Ingalsbe, Maxwell, and Yosemite watersheds) of Merced River. Stream water and streambed sediment samples were collected from 17 locations. Pathogen levels (E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were enumerated in streambed sediment and water column. In addition, the impacts of heat stress on pathogen survival were assessed by inoculating pathogens into the water and sediment samples for understanding the pathogen survival in stream water column and streambed sediment. The pathogen enumeration (in water column and sediment bed) results indicated that the E. coli O157:H7, Salmonella spp. and Listeria monocytogenes levels were non-detectable in the water column and streambed sediment. The results of heat stress (50◦ C for 180 minutes) test indicated a pathogen decay at one order of magnitude (108 cfu/ml to 107 cfu/ml). Nonetheless, higher pathogen levels (1.13 × 107 cfu/ml) after the heat stress study showed potential pathogen survival at higher temperature. Preliminary results of this study would help in understanding the impacts of elevated temperature on pathogen in stream environment. Further studies are required to test the long-term heat-stress impacts on pathogen survival.

  12. Some characteristics of the sediments of healthy and degraded reed stands at Lake Fertő/Neusiedler See

    Dinka, M.


    Full Text Available Changes in the electric conductivity, pH, redox potential, temperature, PO43-, NH4+, NO3-, SO42-, S2-, Cl-, Na+, K+, Mg2+, Ca2+, total carbon (TC, total organic carbon (TOC and total nitrogen (TN concentrations of the sediment interstitial water and in the electron transport system activity (ETS, litter associated fungal biomass (as ergosterol, organic matter content (LOI of the sediment were studied in healthy and degraded reed stands at the Hungarian part of Lake-Fertõ /Neusiedler See. Based on the results of the multivariate statistical analyses, significant differences have been found between the healthy and die-back sites.

  13. Modern and subrecent spatial distribution and characteristics of sediment infill controlled by internal depositional dynamics, Laguna Potrok Aike (southern Patagonia, Argentina)

    Kastner, S.; Ohlendorf, C.; Haberzettl, T.; Lücke, A.; Maidana, N. I.; Mayr, C.; Schäbitz, F.; Zolitschka, B.


    Situated in the dry steppe environment of south-eastern Patagonia the 100 m deep and max. 770 ka old maar lake Laguna Potrok Aike (51°58'S, 70°23'W) has a high potential as a palaeolimnological key site for the reconstruction of terrestrial palaeoclimate conditions. As this area is sensitive to variations in southern hemispheric wind and pressure systems the lake holds a unique lacustrine record of palaeoclimatic and palaeoecological variability. Depositional changes inferred from the lacustrine sediment sequence as well as subaerial and subaquatic lake level terraces provide detailed information about the water budget of the lake related to the variability of the Southern Hemispheric Westerlies. For this reason the lake was chosen as an ICDP drilling site in 2008 within the "Potrok Aike maar lake sediment archive drilling project" (PASADO). Based on high resolution multi-proxy investigations of the last 16,000 years carried out on a 18.9 m long sediment record (Haberzettl et al., 2007; Mayr et al., 2009; Wille et al., 2007) this study focuses on the understanding of internal depositional dynamics which control the characteristics and spatial distribution of the sediment infill of this lake. Furthermore, it provides information improving the accuracy of the interpretation of the long sediment record recovered within the PASADO project. A survey of the spatial sediment distribution was carried out in 2005 using 46 gravity cores of up to 49 cm length covering a range of water depths from 9 to 100 m. All 46 cores were scanned with X-ray fluorescence technique and for magnetic susceptibility with up to 1 mm spatial resolution. Using Ca and Ti as well as magnetic susceptibility data the cores were correlated and linked to the established age model (Haberzettl et al., 2005). As these parameters vary considerably and not consistently within the suite of littoral cores, a correlation prior to the 2005 sediment surface is solely based on cores from water depths exceeding

  14. Does sediment resuspension by storms affect the fate of polychlorobiphenyls (PCBs) in the benthic food chain? Interactions between changes in POM characteristics, adsorption and absorption by the mussel Mytilus galloprovincialis

    Charles, François; Lopez-Legentil, Susanna; Grémare, Antoine; Michel Amouroux, Jean; Desmalades, Martin; Vétion, Gilles; Escoubeyrou, Karine


    Environmental parameters and gross sedimentation rates (GSR) were monitored at a fixed site located in the Bay of Banyuls-sur-Mer (NW Mediterranean), between March 1997 and April 1998, together with the main biochemical characteristics of both sedimenting and sedimented particulate organic matter (POM). Three storms which occurred during this time period resulted in natural sediment resuspension. This is indicated by the corresponding increase in GSR and a decrease in the enzymatically hydrolysable amino acids/totally hydrolysable amino acids ratio (EHAA/THAA), within the sedimenting POM. Only the strongest storm resulted in (1) a transitory increase in fine-grained particles, (2) concomitant increases in organic carbon, carbohydrates, lipids and THAA, and (3) a decrease in the EHAA/THAA ratio in surficial sediments. For most of the assayed parameters, the values recorded after the December 1997 storm corresponded to extremes for the whole period under study. This emphasises the role of storms in controlling the characteristics of sedimented and sedimenting POM. Ten sediment types, with contrasting biochemical characteristics, were selected for experiments; these were based on the results of the monitoring survey and were used during adsorption and absorption experiments involving 14C tetrachlorobiphenyl (TCB). Adsorption rates differed significantly between the sediment types, but did not correlate with any of the assayed biochemical parameters. Absorption efficiency by the mussel Mytilus galloprovincialis also differed between the sediment types; it correlated positively with all the assayed biochemical parameters, except lipids. Comparison between the magnitudes of the increase in GSR, together with the decrease in absorption efficiency during resuspension events, suggests that resuspension tends to enhance the transfer of organic pollutants in the benthic food chain.

  15. Geochemical-mineralogical characteristics of spring sediment of the iron-sulfate mineral water Ljepotica near Srebrenica, RS

    Dangić Adam V.


    Full Text Available The Srebrenica area in Eastern Bosnia (Republika Srpska is characterized by numerous Pb-Zn sulfide ore bodies and several iron-sulfate mineral water springs. The spring Ljepotica appears in the central part of the area and has similar water composition and spring sediment "limonite" mass like nearby the famous medical iron-arsenic water spring Crni Guber. The sequential chemical analysis of iron and XRD-studies of the relative shortly aged spring sediment showed that it is composed by ferrihydrite, jarosite and some goethite. The ratio Fedit/Fetot of 0.76 indicates that jarosite appears as a main constituent, in contrast to the Crni Guber spring sediment in which occurs irregularly and in traces. Trace elements pattern is characterized by appearance of As, Pb, Sb, and Sr as the most abundant (>5000 and up to 1450, 780, and 210 ppm, respectively, small contents of Cr, Cu, Ti, V, and Zn (up to 60 ppm, and traces of Mn, Ni and Sc (below 10 ppm. Chemical analysis of the sediment indicates that jarosite is of the jarosite-hydronium jarosite type.

  16. Sources and characteristics of organochlorine pesticides in the soil and sediment along the Kaidu-Peacock River, Northwest of China

    Chen, Wei; Qi, Shihua; Peng, Fei; Qu, Chengkai; Zhang, Yuan; Xing, Xinli; Zhang, Jiaquan


    Organochlorine pesticides (OCPs) are a sub-group of persistent organic pollutants (POPs), which have raised the concerns from researchers all around the world for several decades. But very little research has been conducted on POPs in the arid zone of Northwest China. More than 100 soil and sediment samples were collected from Kaidu-Peacock River of Xinjiang, Northwest of China, to investigate the organochlorine pesticides (OCPs) in this region analysed by the gas chromatograph equipped with a mass selective detector (GC-MSD). Our pre-study in 2006 (Chen et al. 2011) in the same region, showed that OCPs except o,p'-DDT were detected in sediments from the Peacock River. Similar results were found in the whole river catchment in this investigation. DDTs, HCHs, chlordanes and endosulfans were the dominant OCPs residual in the soil and sediments. This study confirmed that POPs, such as OCPs in this region were contributed to by both local emissions and long-term atmospheric transport and may pose risks to human health and the ecosystem. Chen, W., Jing, M., Bu, J., Ellis Burnet, J., Qi, S., Song, Q., Ke, Y., Miao, J., Liu, M. & Yang, C. (2011) Organochlorine pesticides in the surface water and sediments from the Peacock River Drainage Basin in Xinjiang, China: a study of an arid zone in Central Asia. Environmental Monitoring and Assessment, 177, 1-21.

  17. Phylogenetic diversity of culturable fungi from the deep-sea sediments of the central Indian Basin and their growth characteristics

    Singh, P.; Raghukumar, C.; Verma, P.; Shouche, Y.

    to simulate low nutrient conditions of deep-sea sediments. They were prepared in seawater and supplemented with Penicillin (40,000 units in 100 mL medium) and streptomycin (0.1 g in 100 mL medium) to inhibit bacterial growth. Isolation of fungi from...

  18. Commercial Manila clam ( Tapes philippinarum) culture in British Columbia, Canada: The effects of predator netting on intertidal sediment characteristics

    Munroe, Daphne; McKinley, R. Scott


    Quantifying risks posed by aquaculture to adjacent coastal ecosystems is necessary to ensure long term stability of coastal systems and the sustainability of industries that exist therein. Research has demonstrated that the use of predator netting in shellfish aquaculture increases sedimentation rates and productivity; here we examine the influence of netting on the west coast of Canada. Changes in percent silt (sediment particles gravel (sediment particles >2 mm), organic and inorganic carbon levels and temperature, and differences in clam populations were monitored on paired netted and non-netted Manila clam ( Tapes philippinarum) plots on four farmed beaches at Baynes Sound, British Columbia in 2003 and 2004. There were no significant differences in the levels of silt ( p = 0.129, n = 8), gravel ( p = 0.723, n = 8), or inorganic carbon ( p = 0.070, n = 8) between netted and non-netted plots. However, the level of organic carbon was significantly higher on netted plots ( p = 0.014, n = 8) and a slight temperature buffering effect of the netting during low-tide events over the period of study. There were significantly more T. philippinarum on netted plots compared to non-netted plots ( p = 0.001, n = 8) and the length frequency distribution of the populations also differed ( p Sound British Columbia, has limited effect on the sediment.

  19. Methymercury Formation in Marine and Freshwater Systems: Sediment Characteristics, Microbial Activity and SRB Phylogeny Control Formation Rates and Food-Chain Exposure

    King, J. K.; Saunders, F. M.


    Mercury research in freshwater and marine systems suggests that sediment characteristics such as organic substrate, mercury speciation, and sulfate/sulfide concentrations influence availability of inorganic mercury for methylation. Similarly, sediment characteristics also influence sulfate-reducing bacterial (SRB) respiration as well as the presence/distribution of phylogenetic groups responsible for mercury methylation. Our work illustrates that the process of methylmercury formation in freshwater and marine systems are not dissimilar. Rather, the same geochemical parameters and SRB phylogenetic groups determine the propensity for methylmercury formation and are applicable in both fresh- and marine-water systems. The presentation will include our integration of sediment geochemical and microbial parameters affecting mercury methylation in specific freshwater and marine systems. Constructed wetlands planted with Schoenoplectus californicus and amended with gypsum (CaSO4) have demonstrated a capacity to remove inorganic mercury from industrial outfalls. However, bioaccumulation studies of periphyton, eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta) were conducted in order to ascertain the availability of wetland-generated methylmercury to biota. Total mercury concentrations in mosquitofish from non-sulfate treated controls and the reference location were significantly lower than those from the low and high sulfate treatments while mean total mercury concentrations in lake chubsuckers were also significantly elevated in the high sulfate treatment compared to the low sulfate, control and reference populations. Methylmercury concentrations in periphyton also corresponded with mercury levels found in the tissue of the lake chubsuckers, and these findings fit well given the trophic levels identified for both species of fish. Overall, data from this study suggest that the initial use of gypsum to accelerate the maturity of a constructed

  20. Initial study of sediment antagonism and characteristics of silver nanoparticle-coated biliary stents in an experimental animal model

    Tian Y


    Full Text Available Yigeng Tian,1,* Mingfeng Xia,2,* Shuai Zhang,3 Zhen Fu,4 Qingbin Wen,2 Feng Liu,4 Zongzhen Xu,4 Tao Li,4 Hu Tian4 1Department of Physics, School of Physics and Technology, University of Jinan, Jinan, Shandong, People’s Republic of China; 2Department of Surgery, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China; 3Department of General Surgery, Sixth People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China; 4Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People’s Republic of China *These authors contributed equally to this work Objective: Plastic biliary stents used to relieve obstructive jaundice are frequently blocked by sediment, resulting in loss of drainage. We prepared stents coated with silver nanoparticles (AgNPs and compared their ability to resist sedimentation with Teflon stents in a beagle model of obstructive jaundice.Methods: AgNP-coated Teflon biliary stents were prepared by chemical oxidation–reduction and evaluated in an obstructive jaundice model that was produced by ligation of common bile duct (CBD; animals were randomized to two equal groups for placement of AgNP-coated or Teflon control stents. Liver function and inflammatory index were found to be similar in the two groups, and the obstruction was relieved. Stents were removed 21 days after insertion and observed by scanning and transmission electron microscopy. The AgNP coating was analyzed by energy dispersive X-ray analysis (EDXA, and the composition of sediment was assayed by Fourier-transform infrared (FTIR spectroscopy.Results: Electron microscopy revealed a black, closely adherent AgNP stent coating, with thicknesses of 1.5–6 µm. Sediment thickness and density were greater on Teflon than on AgNP-coated stents. EDXA confirmed the stability and integrity of the AgNP coating before and after in vivo animal experimentation. FTIR

  1. Geochemical characteristics of water and sediment from the Dal Lake, Kashmir Himalaya: constraints on weathering and anthropogenic activity

    Jeelani, G.; Shah, A. Q.


    Two hundred and forty water samples (in four seasons) and seventeen sediment samples have been analyzed to monitor the natural and anthropogenic influences on the water and sediment chemistry of the Dal Lake, Kashmir Himalaya. The scatter diagrams [(Ca+Mg)/total cations (TZ+), (Ca+Mg)/HCO3, (Ca+Mg)/(HCO3+SO4), (Na+K)/TZ+; (Ca+Mg)/(Na+K)] and the geological map of the study area suggest predominance of carbonate and silicate weathering. Lower pH and high total dissolved solids, electrical conductivity and {text{NO}}^{ - }_{{text{3}}} values in the Gagribal basin and in some patches of other basins reflect anthropogenic inputs in the form of sewage from surrounding population, houseboats, hotels, etc. The Dal Lake is characterized by high chemical index of alteration (CIA: 87-95), reflecting extreme weathering of the catchment area. Relative to the average carbonates, the lakebed sediments are enriched in Al, Ti, Zn, Cu and Co and depleted in Ni and Mn. Compared to the post-Archean Shale the sediments have higher Al, Zn and Cu contents and lower Ni and Co. There are distinct positive anomalies of Al, Mn, Zn and Cu and negative anomalies of Ni and Pb with respect to the upper continental crust. Geoaccumulation index ( I geo) and the US Environmental Protection Agency sediment quality standards indicate that the Gagribal basin and some patches of the Nagin basin are polluted with respect to Zn, Cu and Pb. These data suggest that the Dal Lake is characterized by differential natural and anthropogenic influences.

  2. From streets to streams: assessing the toxicity potential of urban sediment by particle size

    Corsi, Steven R.; Selbig, William R.; Roger T. Bannerman,; ,


    Urban sediment can act as a transport mechanism for a variety of pollutants to move towards a receiving water body. The concentrations of these pollutants oftentimes exceed levels that are toxic to aquatic organisms. Many treatment structures are designed to capture coarse sediment but do not work well to similarly capture the fines. This study measured concentrations of select trace metals and PAHs in both the silt and sand fractions of urban sediment from four sources: stormwater bed, stormwater suspended, street dirt, and streambed. Concentrations were used to assess the toxic potential of sediment based on published sediment quality guidelines. All sources of sediment showed some level of toxic potential with stormwater bed sediment the highest followed by stormwater suspended, street dirt, and streambed. Both metal and PAH concentration distributions were highly correlated between the four sampling locations suggesting the presence of one or perhaps only a few sources of these pollutants which remain persistent as sediment is transported from street to stream. Comparison to other forms of combustion- and vehicle-related sources of PAHs revealed coal tar sealants to have the strongest correlation, in both the silt and sand fractions, at all four sampling sites. This information is important for environmental managers when selecting the most appropriate Best Management Practice (BMP) as a way to mitigate pollution conveyed in urban stormwater from source to sink.

  3. Characteristics of Radium Desorption from Sediments in the Salt Water Environment%咸水环境下沉积物中镭的解吸特点

    袁晓婕; 郭占荣; 刘洁; 马志勇; 王博


    海底沉积物向上覆水体扩散的镭是海洋水体中镭同位素的重要来源之一。为了研究沉积物中镭同位素的解吸和扩散特点,进行了不同盐度和不同粒度条件下224Ra 和226Ra解吸的模拟实验,并通过多个时间段的沉积物培养实验获取224Ra和226Ra的扩散通量。实验结果表明:随着水体盐度增大,沉积物中224Ra、226Ra的解吸量随之增加,在盐度为25时,解吸量基本达到最大值;在同一咸水环境条件下,4个粒级(2000~1000μm、1000~500μm、500~250μm、250~125μm)的沉积物的224Ra、226Ra解吸量比较接近,粒级>2000μm的224Ra、226Ra解吸量略高于上述4个粒级,而粒级<125μm的224Ra、226Ra解吸量远大于上述5个粒级;胶州湾沉积物中224Ra和226Ra的平均扩散通量分别为0.85 Bq•m-2•d-1和0.022 Bq•m-2•d-1。%Radium diffusion from sediments to overlying water is one of the important sources of radium isotopes in ocean water. A series of laboratory desorption/diffusion experiments were conducted to help elucidate the characteristics of sediments on224Ra and226Ra desorption and diffusion, which included 1)224Ra and226Ra desorption from sediments in water of different salinities, 2)224Ra and226Ra desorption from sediments of different grain sizes in water of the same salinity, 3)224Ra and226Ra diffusive fluxes by observing Ra enrichment with time in the overlying water of incubated sediments. The experimental results show that there is an increase in the amount of 224Ra and226Ra with the increase of salinity from 5 to 30, and Ra desorption is strongest at the salinity of 25. Under the same salt water condition,224Ra and226Ra desorption activities of the four grain sizes (2000~1000μm, 1000~500μm, 500~250μm and 250~125μm) of sediments are very close to each other. When the grain sizes of sediments are larger than 2000μm, the224Ra and226Ra desorption activities are slightly higher than those of the sediments of the above

  4. Mining-related sediment and soil contamination in a large Superfund site: Characterization, habitat implications, and remediation

    Juracek, Kyle E.; Drake, K. D.


    Historical mining activity (1850–1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  5. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation.

    Juracek, K E; Drake, K D


    Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  6. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation

    Juracek, K. E.; Drake, K. D.


    Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  7. Application of Distributed Temperature Sensing for coupled mapping of sedimentation processes and spatio-temporal variability of groundwater discharge in soft-bedded streams

    Sebök, Éva; Calvache, Carlos Duque; Engesgaard, Peter Knudegaard;


    -induced temperature anomalies resemble the signal of groundwater discharge while scouring will cause the cable to float in the water column and measure stream water temperatures. DTS applied in a looped layout with nine fibre optic cable rows in a 70 × 5 m section of a soft-bedded stream made it possible to detect......The delineation of groundwater discharge areas based on Distributed Temperature Sensing (DTS) data of the streambed can be difficult in soft-bedded streams where sedimentation and scouring processes constantly change the position of the fibre optic cable relative to the streambed. Deposition...... on the simultaneous interpretation of streambed temperature and elevation data, a method is proposed to delineate potential high-groundwater discharge areas and identify deposition-induced temperature anomalies in soft-bedded streams. Potential high-discharge sites were detected using as metrics the daily minimum...

  8. [Study on the variation of arsenic concentration in groundwater and chemical characteristics of arsenic in sediment cores at the areas with endemic arsenic poison disease in Jianghan Plain].

    Zhou, Suhua; Ye, Hengpeng; Li, Mingjian; Xiong, Peisheng; Du, Dongyun; Wang, Jingwen


    To understand the variation of arsenic concentration in underground water at the endemic arsenic poison disease area of Jianghan Plain so as to better understand the spatial distribution of high arsenic groundwater, hydro-chemical evolution and source of arsenic in this region. Thirty underground water samples were collected respectively around 3 km radius of the two houses where arsenic poisoning patients lived, in Xiantao and Honghu. Sediment cores of three drillings were collected as well. Both paired t-test or paired Wilcoxon Signed Ranking Test were used to compare the arsenic concentration of water. The arsenic concentration in 2011-2012 appeared lower than that in 2006-2007 at the Nanhong village of Xiantao (t = 4.645 3, P arsenic concentration and Cl, HCO3(-), Fe, Mn. However, negative correlations were found between As and SO4(2-), NO3(-). The range of arsenic content in the sediment was 1.500 mg/kg to 17.289 mg/kg. The maximum arsenic content existed in the soil layer, while the minimum arsenic content existed in the sand layer. The concentration of arsenic varied widely with time and space at endemic arsenic poison disease area of Jianghan Plain. Characteristics of these water chemicals showed significant differences, when compared to the groundwater from Datong Basin, Shanxi Shanyin and Hetao Plain of Inner Mongolia, which presented a typical environment with high arsenic contents in the groundwater. The arsenic content in the sediment samples seemed related to the lithologic structure.

  9. Influence of the contaminated wastes/soils on the geochemical characteristics of the Bodelhão stream waters and sediments from Panasqueira mine area, Portugal

    Abreu, Maria Manuela; Godinho, Berta; Magalhães, Maria Clara F.; Anjos, Carla; Santos, Erika


    Panasqueira is a famous Portuguese tin-tungsten mine operating more or less continuously since the end of the nineteenth century. This mine is located in the Central Iberian Zone, northwest of Castelo Branco, about 35 km from Fundão, being the greatest producer of tungsten in Europe. Panasqueira mine also produces copper and tin. The ore exploitation has caused huge local visual and chemical impact from the large waste tailings, together with water drainage from mine galleries, seepage and effluents from water plant treatment. The objective of this work was to evaluate the influence of the contaminated wastes and soils on the water and sediments characteristics of the Bodelhão stream. This stream crosses the mine area at the bottom of the main tailings, receiving sediments, seepage and drainage waters from wastes and/or soils developed on the waste materials which cover the host rocks (schists), and also from the water treatment plant. Waste materials contain different levels of hazardous chemical elements depending on their age and degree of weathering (mg/kg - As: 466-632; Cd: 2.6-4.2; Cu: 264-457; Zn: 340-456; W: 40-1310). Soils developed on old wastes (60-80 years old) are mainly silty loam, acidic (except one soil (pH 8.2) developed on waste materials covered by leakage mud from a pipe conducting effluent to a pond), with relatively high concentration of organic carbon (median 48.6 g/kg). The majority of soils are heavily contaminated in As (158-7790 mg/kg), Cd (0.6-138 mg/kg), Cu (51-4081 mg/kg), W (19-1450 mg/kg), and Zn (142-12300 mg/kg). The fraction of these elements extracted with DTPA solution, relatively to total concentration, varies from low to As (bank sediments (g/kg, As: 5.56-44.0; Cu: 1.99- >10; Zn: 1.29-14.1; S: 7.2-66.9; W: 1.04-6.32, and Cd: 11.4-138 mg/kg) when compared with the same elements in soils, indicate high dispersion of the chemical elements through waters both in solution and particulate material. Bed and river banks are

  10. Revised magnetostratigraphy and characteristics of the fluviolacustrine sedimentation of the Kashmir basin, India, during Pliocene-Pleistocene

    Basavaiah, N.; Appel, E.; Lakshmi, B. V.; Deenadayalan, K.; Satyanarayana, K. V. V.; Misra, Saumitra; Juyal, N.; Malik, M. A.


    The Pliocene-Pleistocene Karewa Group sediments of the Kashmir basin, India, provide an important continental archive for past climatic reconstruction. The present study reevaluates the magnetic polarity stratigraphy and the nature of the depositional environment at a 440-m-thick section along Romushi river near Pakharpur (33°48'50″N, 74°45'54″E). Magnetic remanences are predominantly carried by Ti-rich titanomagnetite and magnetite. We identified eight normal and eight reversed-polarity magnetozones in this succession, ranging between 4.40 and 0.77 Ma. The polarity sequence includes the new identification of the Cochiti and the Mammoth and their preceding and succeeding reversed/normal as well as the Jaramillo subchrons. Anisotropy of magnetic susceptibility data suggest the existence of northeast- and northwest-flowing fluvial system before 4.18 Ma, indicating the Pir Panjal range at the southwest as the sediment source area. Following this, the valley was under the influence of fluviolacustrine environment between 4.18 and 0.77 Ma. Our results suggest relatively strong flow velocity toward the northeast during the upper Gilbert, Gauss, and lower and middle Matuyama chrons (4.18-1.07 Ma). In the upper Matuyama chron (<1.07 Ma), the prevailing paleocurrent direction in the basin changed toward the northwest with a reduced flow velocity, indicating the emergence of the ancestral Jhelum river. On the basis of the magnetic polarity chronology, the sediment accumulation rate indicates a very low value of ˜4.6 cm kyr-1 before 1.95 Ma to ˜33 cm kyr-1 between 1.95 and 1.77 Ma and 23 cm kyr-1 after 1.77 Ma. We attribute temporal changes in sedimentation rate to the interplay between climate (predominantly westerlies) and tectonics (pulsating Pir Panjal uplift).

  11. Geochemical and Mineralogical Characteristics of Pleistocene Lignites and Associated Sediments of Marathousa Coal Field,Central Peloponnese,Greece



    The mineralogy and geochemistry data are presented for thirty-seven shales,four concretions,two carbonate sediments and seven lignites from the Marathousa coal field of the Megalopolis Basin in Greece.The argillaceous rocks consist of chlorite,illite,kaolinte,albite,quartz.opal-A,calcite and dolomite;the concretions of aragonite,gypsum and pyrite;and the carbonate rocks of calcite,quartz and illite.The mineral matter in the lignites consists of gypsum,quartz,albite,chlorite,illite,opal-A,dolomite,pyrite,and rarely calcite and kaolinite Athree-factor model explains the total variaition of major and trace elements in the argillaceous sediments.The first factor is an aluminosilicate factor and involves the following elements:Al,Si,Mg,Na,K,Ti,Mn,Nb,Y,Rb,Zn,Cu,Ni,Cr,Nband V,associated with chlorite,albite and illite.The second factor involves the elements Ca,Sr,Ba,Znand Sc and is related to carbonate lithology and mainly the carbonate concretions with gypsum.The third factor involves Fe and Ce with a weak association with Mn.The diagenesis of the Marathousa sediments and lignites was not very advanced as indicated by (a) the total thickness of the sequence (500m),(b) the presence of biogenic silica(opal-A) and (c) the age of the deposit(Pleistocene).FOr these reasons the rpresence of chlorite,illite and kaolinite in the sediments and lignite is due not to diagenetic reactions but to weathering of the flysch and metamorphic rocks at the edges of the Megalopolis Basin and transport of the weathering products(illite,chlorite,kaolinite)into the basin of deposition.The diagenetic minerals of the Marathousa sequence include pyrite,gypsum,dolomite and aragonite.

  12. Nd isotopic characteristics of post-Archean sediments from the Eastern Nanling Range: Evidence for crustal evolution

    SHEN Weizhou; YU Jinhai; ZHAO Lei; CHEN Zelin; LIN Hengcai


    A systematic Sm-Nd isotopic study was carried out for sediments and metasediments of different ages from Mesoproterozoic to early Mesozoic era in southwestern Fujian, Eastern Nanling Range. The results show that Nd model age (tDM) and εNd(t) value of most sediments are closely similar to those of Paleoproterozoic Mayuan Group, indicating that they may mainly be the recycling product of Paleoproterozoic crustal materials. However, the Nd model age significantly decreases with a corresponding increase in the εNd(t) value at Neoproterozoic (ca. 0.8-0.7 Ga) and Late Paleozoic (ca. 0.25 Ga), respectively. This is manifested by prominent vales and apexes on the diagrams of tDM vs. tStr. (stratum age) and εNd(t) vs. tStr.. The decrease in tDM and the increase in εNd(t) are explained as a result of the significant incorporation of juvenile crustal materials that originated from depleted mantle due to strong lithospheric extension during both periods. It appears that tectonic magmatism in the Neoproterozoic and the Late Paleozoic is of prominent importance in affecting the geochemical nature of sediments in South China.

  13. Heavy metal pollution characteristics of surface sediments in different aquatic ecosystems in eastern China: a comprehensive understanding.

    Wenzhong Tang

    Full Text Available Aquatic ecosystems in eastern China are suffering threats from heavy metal pollution because of rapid economic development and urbanization. Heavy metals in surface sediments were determined in five different aquatic ecosystems (river, reservoir, estuary, lake, and wetland ecosystems. The average Cd, Cr, Cu, Ni, Pb, and Zn concentrations were 0.716, 118, 37.3, 32.7, 56.6, and 204 mg/kg, respectively, and the higher concentrations were mainly found in sediment samples from river ecosystems. Cd was the most anthropogenically enriched pollutant, followed by Zn and Pb, indicated by enrichment factors >1.5. According to consensus-based sediment quality guidelines, potential ecological risk indices, and risk assessment codes, all five types of aquatic ecosystems were found to be polluted with heavy metals, and the most polluted ecosystems were mainly rivers. Cd was the most serious pollutant in all five aquatic ecosystems, and it was mainly found in the exchangeable fraction (about 30% of the total Cd concentration, on average. The results indicate that heavy metal contamination, especially of Cd, in aquatic ecosystems in eastern China should be taken into account in the development of management strategies for protecting the aquatic environment.

  14. Habitat, biota, and sediment characteristics at selected stations in the lower Illinois River Basin, Illinois, 1996-98

    Adolphson, Debbie L.; Fazio, David J.; Harris, Mitchell A.


    Data collection for the lower Illinois River Basin (LIRB) National Water-Quality Assessment (NAWQA) program began in 1996. Data on habitat, fish, benthic macroinvertebrates, and sediment were collected at eight stations on six streams in the basin--Illinois River, Panther Creek, Mackinaw River, Indian Creek, Sangamon River, and La Moine River. These streams typically flow through agricultural lands with very low gradients. Substrates typically are clay to gravel with areas of cobble. Banks are high, steep, and sparsely vegetated. Topographic surveys provide illustrations of the geometry that promote understanding of channel geometry and a data set that, in the future, can be used by others to assess stream changes. Suspended-sediment particle size, woody debris, and stream velocity are important to fish and benthic macroinvertebrate communities. Fine particles (silts and clays) were abundant in suspended sediment and stream banks, and fish insectivorous cyprinid community composition increased with decreases in the concentration of these suspended fines. Suckers were prevalent in stream reaches with abundant woody-snag cover, whereas sunfish communities were most abundant in areas with slow water velocities. Hydropsychidae, Chironomidae, and Baetidae were the most abundant benthic macroinvertebrate families collected throughout the region, but stream size and water velocity were important to benthic macroinvertebrate community composition. Tricorythodes mayflies and Elmidae had higher relative abundance at sites in small- and moderate-size drainage basins, and Baetidae density was greatest in reaches with highest water velocity.

  15. The enrichment characteristics of mercury in the sediments of Dongjiu and Xijiu, Taihu Lake catchment, in the past century


    The concentration and the enrichment factors of mercury (Hg) in the sediment cores of Dongjiu and Xijiu, Taihu Lake catchment, were studied. The accumulation fluxes, anthropogenic input concentration and anthropogenic accumulation fluxes of Hg in recent 100 years were also analyzed based on the 210Pb dating. The results indicate that the increasing concentrations of Hg in the sediments are influ-enced by natural factors and anthropogenic input simultaneously. Generally, about 2/3 of the Hg in the sediment was from anthropogenic sources. In the early 20th century, the anthropogenic input was owing to the urban development and fossil fuel consumptions surrounding the Taihu Lake and the worldwide atmospheric deposition of Hg since the industrial revolution. The concentration and an-thropogenic fluxes of Hg increased with the industrial development in the catchment since the 1930s. It reached the maximum during the middle 1970s and middle 1990s, and decreased since the middle 1990s with constraints on high pollution industries.

  16. The enrichment characteristics of mercury in the sediments of Dongjiu and Xijiu, Taihu Lake catchment, in the past century

    WU YanHong; JIANG XueZhong; LIU EnFeng; YAO ShuChun; ZHU YuXin; SUN ZhaoBin


    The concentration and the enrichment factors of mercury (Hg) in the sediment cores of Dongjiu and Xijiu, Taihu Lake catchment, were studied. The accumulation fluxes, anthropogenie input concentration and anthropogenie accumulation fluxes of Hg in recent 100 years were also analyzed based on the 210Pb dating. The results indicate that the increasing concentrations of Hg in the sediments are influ-enced by natural factors and anthropogenie input simultaneously. Generally, about 2/3 of the Hg in the sediment was from anthropogenie sources. In the early 20th century, the anthropogenie input was owing to the urban development and fossil fuel consumptions surrounding the Taihu Lake and the worldwide atmospheric deposition of Hg since the industrial revolution. The concentration and an-thropogenic fluxes of Hg increased with the industrial development in the catchment since the 1930s. It reached the maximum during the middle 1970s and middle 19908, and decreased since the middle 1990s with constraints on high pollution industries.


    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Validation of Urinary Glycosaminoglycans in Iranian patients with Mucopolysaccharidase type I: The effect of urine sedimentation characteristics

    Mohammad ABDI


    Full Text Available How to Cite This Article:Abdi M, Khatami Sh, Hakhamaneshi MS, Alaei MR, Azadi NA, Zamanfar D, Taghikhani M.Validation of Urinary Glycosaminiglycans in Iranian Patients with Mucopolysaccharidose Type I: The Effect of Urine Sedimentation Characteristics. Iran J Child Neurol. 2014; 8(4:39-45. AbstractObjectiveThe first line-screening test for mucopolysaccharidosis is based on measurement of urinary glycosaminoglycans. The most reliable test for measurement of urine glycosaminoglycans is the 1,9-dimethyleneblue colorimetric assay. Biological markers are affected by ethnical factors, for this reason, the World Health Organization recommends that the diagnostic test characteristics should be used to determine results for different populations. This study determines the diagnostic value of 1,9-dimethyleneblue tests for diagnosis of mucopolysaccharidosis type I patients in Iran.Materials & Methods In addition to routine urine analysis, the qualitative and quantitative measurements of urine glucosaminoglycans were performed with the Berry spot test and 1,9-dimethyleneblue assay. Diagnostic values of the tests were determined using the ROC curve.ResultsUrine total glycosaminoglycans were significantly higher in male subjects than in female subjects. Glycosaminoglycan concentration was markedly decreased in specimens with elevated white blood cell and epithelial cells count. Using a cut-off level of 10.37 mg/g creatinine, sensitivity, and specificity were 100% and 97.22%, respectively, for a 1,9-dimethyleneblue colorimetric assay.ConclusionUrine glycosaminoglycans concentration significantly differs in our studied population. In addition to determine diagnostic validity of the 1,9-dimethyleneblue test, our results demonstrate the usefulness of measuring glycosaminoglycans for early screening of mucopolysaccharidosis type I Iran. ReferencesJackson RL, Busch SJ, Cardin AD. Glycosaminoglycans: molecular properties, protein interactions, and role in

  19. Improved vertical streambed flux estimation using multiple diurnal temperature methods in series

    Irvine, Dylan; Briggs, Martin; Cartwright, Ian; Scruggs, Courtney; Lautz, Laura K.


    Analytical solutions that use diurnal temperature signals to estimate vertical fluxes between groundwater and surface water based on either amplitude ratios (Ar) or phase shifts (Δϕ) produce results that rarely agree. Analytical solutions that simultaneously utilize Ar and Δϕ within a single solution have more recently been derived, decreasing uncertainty in flux estimates in some applications. Benefits of combined (ArΔϕ) methods also include that thermal diffusivity and sensor spacing can be calculated. However, poor identification of either Ar or Δϕ from raw temperature signals can lead to erratic parameter estimates from ArΔϕ methods. An add-on program for VFLUX 2 is presented to address this issue. Using thermal diffusivity selected from an ArΔϕ method during a reliable time period, fluxes are recalculated using an Ar method. This approach maximizes the benefits of the Ar and ArΔϕ methods. Additionally, sensor spacing calculations can be used to identify periods with unreliable flux estimates, or to assess streambed scour. Using synthetic and field examples, the use of these solutions in series was particularly useful for gaining conditions where fluxes exceeded 1 m/d.

  20. Erosion rates, sediment transport and characteristic discharge in a transient landscape in the Entle catchment (northern border of the Central Alps, Switzerland)

    van den Berg, Fabien; Schlunegger, Fritz; Norton, Kevin


    The 65 km2-large Entle catchment is located at the northern border of the Central Alps of Switzerland and is underlain by various lithologies including Flysch, carbonate sequences, Molasse deposits and glacial till. It has been subjected to headward knickpoint migration since the termination of the LGM (16 ± 3 ka), due to a base level fall upon glacial retreat. The incised portions of the catchment were delineated within a GIS environment in an effort to calculate volumetric differences between the glacial surface and the modern topography. The sediment budget estimates yield an average erosion rate of 1.93 ± 0.36 mm.yr-1 in the incised reaches, and a maximum local erosion rate of 11.47 ± 2.15 mm.yr-1. Assuming that there has been no erosion elsewhere, the basin-wide averaged erosion rate is estimated at 0.31 ± 0.06 mm.yr-1. This is consistent with 10Be-based denudation rates measured in adjacent catchments. Although constant erosion rates are generally assumed for studies involving 10Be analysis, field evidence indicate that headward knickzone migration through bedrock and unconsolidated glacial till has destabilized the surrounding hillslopes, resulting in supply of large volumes of sediment to the trunk channel by landsliding and/or debris flows downstream the knickzone. This additional influx of sediments may raise the local base level within the incised reach, thus perturbing the migration of the knickzone for a limited time interval. This time span critically depends on the relative importance between the probability density function (PDF) of the sediment particle size supplied by mass failure processes and debris flows, and the characteristic water discharge magnitude to remove that material. Measurements of the PDFs of the sediment particles along the incised Entle reach together with the application a simple long profile stream-power model for the entrainment and transport of sediment allow the identification of characteristic bed-forming discharge

  1. Characteristics of hydrothermal sedimentation process in the Yanchang Formation, south Ordos Basin, China: Evidence from element geochemistry

    He, Cong; Ji, Liming; Wu, Yuandong; Su, Ao; Zhang, Mingzhen


    Hydrothermal sedimentation occurred in the Triassic Yanchang Formation, Ordos Basin, China. However, their macroscopic features at the scale of the stratum and hydrothermal sources still lack correlational research. This paper performed element geochemical study on a large number of core samples collected from the Yanchang Formation of a new drilling well located in the south Ordos Basin. The SiO2/(K2O + Na2O) vs. MnO/TiO2 crossplot and Fe vs. Mn vs. (Cu + Co + Ni) × 10 ternary diagram demonstrate that the Yanchang stratum in the study area has, in general, hydrothermal components. The Al/(Al + Fe + Mn) and (Fe + Mn)/Ti ratios of the core samples range from 0.34 to 0.84 and 4.81 to 50.54, averaging 0.66 and 10.67, respectively, indicating that the stratum is a set of atypical hydrothermal sedimentation with much terrigenous input. Data analysis shows that the hydrothermal source in the study area was from the deep North Qinling Orogen around the south margin of the basin, where some active tectonic and volcanic activities took place, rather than from the relatively stable internal basin. Early Indosinian movement and volcanic activities activated basement faults around the southern margin of the basin, providing vents for the deep hydrothermal fluid upwelling. The hydrothermal indicators suggest that the study area experienced 4 episodes of relatively stronger hydrothermal activity, namely during the Chang 10, Chang 9-1, Chang 7-3 and Chang 6-2 periods. We also propose a new hydrothermal sedimentation model of hydrothermal fluids overflowing from basin margin faults, for the Yanchang Formation, which is reported here for the first time.

  2. Reconnaissance for determining effects of land use and surficial geology on concentrations of selected elements on streambed materials from the coal-mining region, southwestern Indiana, October 1979 to March 1980

    Wilber, W.G.; Boje, Rita R.


    Streambed materials were collected in October 1979 from 69 watersheds in Southwest Indiana having predominantly forested, agricultural, reclaimed, and unreclaimed mined land use to determine whether concentrations of sorbed and acid-soluble metals and trace elements were affected by land use and surficial geology. Analysis of variance indicated that 10% or more of the total variation in aluminum, arsenic, cobalt, iron, nickel, selenium, and zinc concentrations on streambed materials was accounted for by differences in land use. Concentrations of aluminum, cobalt, iron, nickel, selenium, and zinc on streambed materials smaller than 0.062-millimeter from mined watersheds were significantly greater than the concentrations of these elements on streambed materials from agricultural and forested watersheds. The greater concentrations of these elements on streambed materials are due to (1) their concentrations in mine drainage and their subsequent absorption and (or) copecipitation with the oxides and hydroxides of aluminum and iron and (2) their concentrations in coal and pyritic material in streambed materials. (USGS)

  3. 湟水流域输沙特征分析%Analysis of Sediment Transport Characteristics in Huangshui Watershed



    With water collection area of 15 432 km2 within Qinghai province,Huangshui watershed is one of the main sediment yield region in the upper and middle Yellow River, from which 20.4 million tons of sediment is delivered into the Yellow River every year. Runoff is produced largely in the period of June to September each year in the watershed that makes up 53% of annual runoff yield; the area in the lower reach of the river makes up 41.1% of the total watershed,producing 42.4% of the annual runoff in total watershed.The area in the upper reach of the river accounts for 58.8% of the total watershed,but with only 21.6% of annual sediment yield of the watershed total.The sediment from the area of lower reach each year is 16 million tons,accounting for 78.4% of annual watershed total. There are frequent disastrous phenomenon in the watershed, rainfall and heat resources distribution not suitable for plant growth,which leads to degradation of vegetation in large areas.Beside natural disaster,frquent human economic activities are main reasons for severe soil and water loss in the lower reach areas.%湟水青海省境内面积15 342km2,是黄河中上游地区主要产沙区之一,年输入黄河泥沙2040万t。流域径流主要产生于6~9月,占年径流总量的53%;下游地区面积占流域总面积的41.2%,年径流量占流域年径流总量的42.4%。上游地区面积占全流域面积的58.8%,年输沙量仅占全流域年输沙量的21.6%;下游地区年输沙量1 600万t,占流域年输沙总量的78.4%。流域内灾害性天气频繁,水热配置不利于植物生长,大面积植被退化,人类经济活动频繁等,是导致下游地区水土流失严重的主要原因。

  4. Sorption and transformation of the reactive tracers resazurin and resorufin in natural river sediments

    Lemke, D.; González-Pinzón, R.; Liao, Z.; Wöhling, T.; Osenbrück, K.; Haggerty, R.; Cirpka, O. A.


    Resazurin (Raz) and its reaction product resorufin (Rru) have increasingly been used as reactive tracers to quantify metabolic activity and hyporheic exchange in streams. Previous work has indicated that these compounds undergo sorption in stream sediments. We present laboratory experiments on Raz and Rru transport, sorption, and transformation, consisting of 4 column and 72 batch tests using 2 sediments with different physicochemical properties under neutral (pH = 7) and alkaline (pH = 9) conditions. The study aimed at identifying the key processes of reactive transport of Raz and Rru in streambed sediments and the experimental setup best suited for their determination. Data from column experiments were simulated by a travel-time-based model accounting for physical transport, equilibrium and kinetic sorption, and three first-order reactions. We derived the travel-time distributions directly from the breakthrough curve (BTC) of the conservative tracer, fluorescein, rather than from fitting an advective-dispersive transport model, and inferred from those distributions the transfer functions of Raz and Rru, which provided conclusive approximations of the measured BTCs. The most likely reactive transport parameters and their uncertainty were determined by a Markov chain-Monte Carlo approach. Sorption isotherms of both compounds were obtained from batch experiments. We found that kinetic sorption dominates sorption of both Raz and Rru, with characteristic timescales of sorption in the order of 12 to 298 min. Linear sorption models for both Raz and Rru appeared adequate for concentrations that are typically applied in field tracer tests. The proposed two-site sorption model helps to interpret transient tracer tests using the Raz-Rru system.

  5. [Pollution characteristics and ecological risk of polybrominated diphenyl ethers (PBDEs) in river sediments from an electrical equipment dismantling area].

    Chen, Xuan-Yu; Xue, Nan-Dong; Zhang, Shi-Lei; Li, Fa-Sheng; Gong, Dao-Xin; Liu, Bo; Meng, Lei


    Polybrominated diphenyl ethers (PBDEs) were determined in sediments collected from a river which through an electrical equipment dismantling area. The results showed that concentrations of PBDEs ranged from 101 to 20,400 ng · g(-1) with an average of 3,700 ng · g(-1), and BDE209 was the most dominant homologue accounted for more than 94% of all detected homologues. The concentration of PBDEs was higher in the middle of river than that in upstream and downstream and the average concentration in downstream was higher than the upstream, with a peak of concentration in the area near by dismantling industrial park. PBDEs pollution in this region is relatively serious compared with other regions. It was estimated that 0.39 t PBDEs (including 0.36 t BDE209) was discharged into the river as a result of dismantling industrial activities in last 40 years. A preliminary ecological risk assessment for PBDEs in sediments was conducted by hazard quotient method, the results showed that the OctaBDEs and DecaBDEs were in a low ecological risk, while the PentaBDEs was in a particularly high risk and could cause great harm to the environment.

  6. Pollution characteristics and ecological risk assessment of HCHs and DDTs in estuary wetland sediments from the Bohai Bay, North China.

    Liu, Qing; Tian, Shengyan; Jia, Rui; Liu, Xianbin


    Hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) tend to persist in the environment for long periods of time. The concentration and distribution of HCHs and DDTs were investigated in surface sediments of Yongdingxinhe wetland and Binhai wetland by gas chromatography-mass spectrometer (GC-MS). All isomers of HCHs and DDTs were detected in all of the samples. The concentrations of total HCHs (ΣHCHs) in two wetland sediments ranged from 69.81 to 379.28 ng · g (-1), with a mean value of 224.55 ng · g (-1). The concentrations of total DDTs (ΣDDTs) ranged from 98.32 to 129.10 ng · g (-1), with a mean value of 113.71 ng · g (-1). The results of an ecological risk assessment demonstrated that there was high-risk ecological effect of organochlorine pesticides (OCPs) on the estuary wetlands. Lindane and technical DDTs were found to be the main sources of OCPs.

  7. Selected Hydrologic, Water-Quality, Biological, and Sedimentation Characteristics of Laguna Grande, Fajardo, Puerto Rico, March 2007-February 2009

    Soler-López, Luis R.; Santos, Carlos R.


    Laguna Grande is a 50-hectare lagoon in the municipio of Fajardo, located in the northeasternmost part of Puerto Rico. Hydrologic, water-quality, and biological data were collected in the lagoon between March 2007 and February 2009 to establish baseline conditions and determine the health of Laguna Grande on the basis of preestablished standards. In addition, a core of bottom material was obtained at one site within the lagoon to establish sediment depositional rates. Water-quality properties measured onsite (temperature, pH, dissolved oxygen, specific conductance, and water transparency) varied temporally rather than areally. All physical properties were in compliance with current regulatory standards established for Puerto Rico. Nutrient concentrations were very low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 0.28 milligram per liter, and the average total phosphorus concentration was 0.02 milligram per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll-a concentration was 6.2 micrograms per liter. Bottom sediment accumulation rates were determined in sediment cores by modeling the downcore activities of lead-210 and cesium-137. Results indicated a sediment depositional rate of about 0.44 centimeter per year. At this rate of sediment accretion, the lagoon may become a marshland in about 700 to 900 years. About 86 percent of the community primary productivity in Laguna Grande was generated by periphyton, primarily algal mats and seagrasses, and the remaining 14 percent was generated by phytoplankton in the water column. Based on the diel studies the total average net community productivity equaled 5.7 grams of oxygen per cubic meter per day (2.1 grams of carbon per cubic meter per day). Most of this productivity was ascribed to periphyton and macrophytes

  8. Environmental characteristics of Mid-Holocene recorded by lacustrine sediments from Lake Daihai, north environment sensitive zone, China

    SUN Qianli; ZHOU Jie; SHEN Ji; CHEN Peng; WU Feng; XIE Xiuping


    Climate proxies, such as total organic carbon and nitrogen (TOC, TN), carbonate content (CaCO3), grain-size and pollen of the sediment core retrieved from enclosed Lake Daihai which lies in the north China environment sensitive zone are analyzed to reconstruct the environment evolution of the area based on high-resolution radiocarbon chronology. The results reveal that the TOC and TN contents of the sediments correlate well with pollen percentage and pollen flux variations during the Holocene, and both reach their peak values simultaneously at 6.7-3.5 ka BP (calendar age, 7.6-3.6ka BP). Since 6.7 ka BP, both the CaCO3 and organic matter contents of the core have simultaneous variations, and their high values also occur during 6.7-3.5 ka BP. While during 9.0-6.7 ka BP (calendar age, 10-7.6 ka BP) relatively lower level of organic matter content and pollen flux correspond to the higher level of carbonate content. The above relations suggest that during 6.7-3.5 ka BP, the productivity and effective precipitation were greatly improved in the lake drainage area, and this would probably strengthen the hydrodynamic conditions, enhancing organic matter, pollen and carbonate inputs from terrestrial sources. Such processes would account for the enrichment of both organic matter and carbonate in the sediments. While during 9.0-6.7 ka BP, the lower level of organic matter, pollen flux but high carbonate content show depressed productivity and declined vegetation coverage. The higher carbonate content at this stage would have probably resulted from the higher evaporation ratio of the lake water under relatively drier climate conditions. Therefore, it is inferred that during 6.7-3.5 ka BP, the climate was more humid with abundant rainfalls and vegetation was more flourishing in the Lake Daihai area. This can be seen as Holocene Climate Optimum (HCO).As a result, this has evident discrepancies with the traditional notion that the HCO occurs at Early Holocene or early Mid-Holocene.

  9. Study of High Turbidity Water Static Sedimentation Characteristics%高浊度水体静沉降特征研究

    许志波; 牛二超; 张布伟; 任东华


    运用重复深度吸管法测量了水质自动监测站内沉砂池不同时间点的浊度,探析了浊度随时间的变化规律以及高浊度水体的静沉降特征。结果表明:在静沉降过程中,浊度随时间的变化符合指数函数曲线,浊度与沉降速率符合logistic函数关系。当浊度较低时(浊度<50NTU),沉降速率随浊度升高而增大,且增加幅度明显;当浊度较高时(浊度>50NTU),虽然沉降速率依然是增加的趋势,但是增加幅度趋于平缓。%In order to study variation of turbidity with time and static sedimentation characteristics of high turbidity water .the turbidity is measured in grit chamber of water quality automatic monitoring stations at different time points by McLaughlin method .The experimental results show that :in the static settlement process ,the turbidity changes over time in line with the exponential function curve , and the relationship between turbidity and sedimentation rate is in line with logistic function .When turbidity is low (turbidity 50 NTU) ,though sedimentation rate is an increasing trend ,the rate of increase flatten out .

  10. Effects of clam size, food type, sediment characteristic, and seawater carbonate chemistry on grazing capacity of Venus clam Cyclina sinensis (Gmelin, 1791)

    Lin, Tingting; Zhou, Kai; Liu, Xin; Lai, Qifang; Zhang, Dong; Shi, Liyan


    Aquaculture in saline-alkaline water has a major problem: microalgal blooming causes the pH of water to increase dramatically, thereby causing damage to the reared organisms. To solve this problem, we set out to find a candidate filter-feeding bivalve species suitable for saline-alkaline water to graze on microalgae and to control the pH. In the current study, we investigated the effect of carbonate alkalinity (CA, 2.5, 10.0, and 20.0 meq/L) and pH (8.0, 8.5, and 9.0) on the grazing capacity (GC) of the clam Cyclina sinensis. Additionally, the effect of clam size (small, medium, and large) and microalgae species ( Nannochloropsis oculata, Chaetoceros müelleri, and Isochrysis galbana), and the effect of bottom sediment characteristic (mud, sandy mud, and muddy sand) and thickness (3 and 6 cm) were analyzed as well. The results show that the GC on I. galbana was the highest and small size had the maximum GC/ W ( W: wet weight including body and shells). No significant differences were observed between sediment type and thickness. Regarding CA and pH, a significant decrease in GC by the pH or by their interaction was found. The GC of C. sinensis was not greatly reduced in the treatments of pH≤8.5 and CA≤20.0, and also not affected by bottom sediment type, indicating that this clam is capable to manage microalgal concentrations and might be a candidate species for pH reduction in saline-alkaline water ponds.

  11. Effects of clam size, food type, sediment characteristic, and seawater carbonate chemistry on grazing capacity of Venus clam Cyclina sinensis (Gmelin, 1791)

    Lin, Tingting; Zhou, Kai; Liu, Xin; Lai, Qifang; Zhang, Dong; Shi, Liyan


    Aquaculture in saline-alkaline water has a major problem: microalgal blooming causes the pH of water to increase dramatically, thereby causing damage to the reared organisms. To solve this problem, we set out to find a candidate filter-feeding bivalve species suitable for saline-alkaline water to graze on microalgae and to control the pH. In the current study, we investigated the effect of carbonate alkalinity (CA, 2.5, 10.0, and 20.0 meq/L) and pH (8.0, 8.5, and 9.0) on the grazing capacity (GC) of the clam Cyclina sinensis. Additionally, the effect of clam size (small, medium, and large) and microalgae species (Nannochloropsis oculata, Chaetoceros müelleri, and Isochrysis galbana), and the effect of bottom sediment characteristic (mud, sandy mud, and muddy sand) and thickness (3 and 6 cm) were analyzed as well. The results show that the GC on I. galbana was the highest and small size had the maximum GC/W (W: wet weight including body and shells). No significant differences were observed between sediment type and thickness. Regarding CA and pH, a significant decrease in GC by the pH or by their interaction was found. The GC of C. sinensis was not greatly reduced in the treatments of pH≤8.5 and CA≤20.0, and also not affected by bottom sediment type, indicating that this clam is capable to manage microalgal concentrations and might be a candidate species for pH reduction in saline-alkaline water ponds.

  12. Can the hemoglobin characteristics of vesicomyid clam species influence their distribution in deep-sea sulfide-rich sediments? A case study in the Angola Basin

    Decker, C.; Zorn, N.; Le Bruchec, J.; Caprais, J. C.; Potier, N.; Leize-Wagner, E.; Lallier, F. H.; Olu, K.; Andersen, A. C.


    Vesicomyids live in endosymbiosis with sulfur-oxidizing bacteria and therefore need hydrogen sulfide to survive. They can nevertheless live in a wide range of sulfide and oxygen levels and depths, which may explain the exceptional diversity of this clam family in deep-sea habitats. In the Gulf of Guinea, nine species of vesicomyid clams are known to live in cold-seep areas with pockmarks from 600 to 3200 m deep, as well as in the organic-rich sediments of the Congo deep-sea fan at 5000 m deep. Our previous study showed that two species living in a giant pockmark have different oxygen carriers, suggesting different adaptations to hypoxia. Here, we studied the hemoglobin structure and oxygen affinity in three other species, Calyptogena valdiviae, Elenaconcha guiness and Abyssogena southwardae to determine whether the characteristics of their oxygen carriers contribute to their distribution in sulfide-rich sediments at a regional scale. Documenting pairwise species associations in various proportions, we give a semi-quantitative account of their local distribution and oxygen and sulfide measurements at seven sites. Mass spectrometry showed that each vesicomyid species has four intracellular monomeric hemoglobin molecules of 15-16 kDa, all differing in their molecular mass. As expected, the monomers showed no cooperativity in oxygen binding. Their oxygen affinities were very high (below 1 Torr), but differed significantly. C. valdiviae had the highest affinity and was dominant in the Harp pockmark, the site with the lowest oxygen content (half the value of fully oxygenated water). A. southwardae dominated in the Congo Lobe area, the site with the deepest sulfides. We discuss how hemoglobin may favor an active, vertical distribution of vesicomyids in sulfide-rich sediments.

  13. Carbon isotopic characteristics and their genetic relationships for individual lipids in plants and sediments from a marsh sedimentary environment

    DUAN Yi; ZHANG Hui; ZHENG Chaoyang; WU Baoxiang; ZHENG Guodong


    The carbon isotopes of individual lipids in herbaceous plants and tree leaves in Ruoergai marsh were measured by the GC-IRMS analytical technique in order to understand the inherent relationships of carbon isotopes between sedimentary and plant lipids from typical marsh environment. The analytical results show that the carbon isotopic compositions of n-alkanes in different kinds of plants differ significantly. Mean δ13C values of n-alkanes in herbaceous plants (-32.2‰―-36.9‰) are 3.3‰ lower than those in woody plant (-27.2‰― -35.0‰). The carbon isotopic compositions of fatty acids in organisms (-30.3‰― -36.2‰) are very similar to those of n-alkanes and the δ13C values for unsaturated fatty acids are within the range of those for saturated fatty acids. The differences in δ13C values between plant lipids are obvious and range from 2.4‰ to 7.8‰. It is observed that the carbon isotopic compositions of sedimentary lipids are closely related to those of plant lipids. The carbon isotopic compositions (-27.0‰―-36.9‰) of n-alkanes, ≥C16 fatty acids, n-alkanols, sterols and n-alkanones in the sediments are similar to those of plant lipids and the carbon isotopic compositions of short-chain sedimentary lipids are similar to those of long-chain sedimentary homologues. These indicate that the sedimentary lipids are derived from high plants. However, the δ13C values of C14:0 and C15:0 fatty acids in the sediments are lighter than those of the same carbon number saturated homologues in plants, reflecting the genetic features partially derived from bacteria. These data provide scientific evidence for carbon isotope-applied research of individual lipids.

  14. [Space distribution characteristics and diversity analysis of phosphorus from overlying water and surface sediments in Taihu Lake].

    Yuan, He-zhong; Shen, Ji; Liu, En-feng; Wang, Jian-jun; Meng, Xiang-hua


    The physi-chemical indexes in the overlying water and surface sediments of Taihu Lake, an eutrophic shallow lake, were determined. Then, the isopleth maps of spatial distribution of each parameter were illustrated. The results show that the concentrations of SRP, TP and TN in the overlying water and TOC, TN and TP as well as phosphorus fractions in surface sediments exhibit distinct diversity in spatially. The lowest values of TP and TN were 0.05, 0.88 mg x L(-1), respectively. The concentrations of Fe-P ranged from 29.13 to 258.31 mg x kg(-1). Besides, the northwest lake regions, high-load Ca-P was surveyed in the South Taihu Lake and East Taihu Lake with the highest value of 357.68 mg x kg(-1). The highest concentration of OP, 371.91 mg x kg(-1) was detected in the northwest region of the lake. IP takes up a greater proportion of TP than OP, and the highest value is approximately 50% higher than the lowest value. Fe-P has higher percentage in IP compared with Ca-P. Significant correlation between Fe-P, SRP and TP showed that Fe-P was the important phosphorus source of the overlying water (R: 0.49, 0.64). Furthermore, high correlation coefficients between TOC, TOC, C/N, TN, TP and phosphorus fractions suggest that higher concentration of organics was favor to the accumulation and burial of nutrients. The high-load contaminants exist principally in the Zhushan Bay, Wulihu Lake, Meiliang Bay and the northwest region of Taihu Lake. Significant heterogeneity of nutrients distribution in space of Taihu Lake connects with direct action of emission load of sewage. Simultaneously, different biogeochemical behaviors of each parameter play an important role.

  15. Macro- and microscale investigation of selenium speciation in Blackfoot river, Idaho sediments.

    Oram, Libbie L; Strawn, Daniel G; Marcus, Matthew A; Fakra, Sirine C; Möller, Gregory


    The transport and bioavailability of selenium in the environment is controlled by its chemical speciation. However, knowledge of the biogeochemistry and speciation of Se in streambed sediment is limited. We investigated the speciation of Se in sediment cores from the Blackfoot River (BFR), Idaho using sequential extractions and synchrotron-based micro-X-ray fluorescence (micro-SXRF). We collected micro-SXRF oxidation state maps of Se in sediments, which had not been done on natural sediment samples. Selective extractions showed that most Se in the sediments is present as either (1) nonextractable Se or (2) base extractable Se. Results from micro-SXRF showed three defined species of Se were present in all four samples: Se(-II,O), Se(IV), and Se(VI). Se(-II,O) was the predominant species in samples from one location, and Se(IV) was the predominant species in samples from a second location. Results from both techniques were consistent, and suggested that the predominant species were Se(-II) species associated with recalcitrant organic matter, and Se(IV) species tightly bound to organic materials. This information can be used to predict the biogeochemical cycling and bioavailability of Se in streambed sediment environments.

  16. Chemical and morphological characteristics of solid metal-bearing phases deposited in snow and stream sediment as indicators of their origin.

    Miler, Miloš; Gosar, Mateja


    Detailed scanning electron microscopy/energy dispersive spectroscopy of metal-bearing particles in snow deposits and stream sediment from a steelworks area was performed. Identified metal-bearing phases were apportioned according to their chemical and morphological characteristics to anthropogenic phases and secondary weathering products. Anthropogenic metal-bearing phases are the most abundant in both media and are represented by various irregular ferrous oxides, ferrous alloys, spherical ferrous oxides, and ferrous silicates with variable contents of Cr, Mn, Ni, V, W, and Mo. Secondary weathering products are Al silicates, Fe oxy-hydroxides, and Fe oxy-hydroxy sulfates with minor contents of transition metals, resulting from weathering of anthropogenic phases and Pb-Zn ore minerals from a closed Pb-Zn mine located upstream from the study area. Comparison of anthropogenic metal-bearing phases in both media showed agreement in their compositions and morphologies and indicated their sources are high-temperature processes in steel production. It also showed that spherical metal-bearing phases were transported by the same transport medium, which is the atmosphere, while other phases were transported into stream sediment mostly by other pathways, such as precipitation runoff over contaminated surfaces.

  17. Grain-size distribution characteristics of red sandy sediments in Dongjiang River valley, southern Nanling Mountains,during the MIS2 stage

    ShuHuan Du; BaoSheng Li; DongFeng Niu; XiaoHao Wen; FengNian Wang; XianJiao Ou; Yi Yang; YueJun Si; XinNan Zhao


    Layer LJ3 of Linjiang sttrigraphic section in Dongjiang River valley in the south of the Nanling Mountains is a set of red sandy sediments.Measured by thermoluminescence (TL) dating, it was found to be formed in MIS2-9,500±800 yr to 19,600±1,800 yr B.P. After analysis of the grain sizes of the 16 samples (LJ3-100 to LJ3-85) in this layer, it was discovered that (1) The contents of each grain group in different samples are similar. (2) The values of Md, Mz,σ,Sk and Kg vary from LJ3-100 to LJ3-85 in a narrow range. (3) The segments of each sample in the accumulative curves extend parallel with similar slopes. All the three aspects reveal the Aeolian characteristics of Layer LJ3.Therefore, it is thought that Layer LJ3 consists of red sandy sediments formed in MIS2 in the south of Nanling Mountain, which reflects the arid climate at that time.

  18. Pollution characteristics and potential health risk of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in soil/sediment from Baiyin City, North West, China.

    Hu, Xibang; Xu, Zhencheng; Peng, Xiaochun; Ren, Mingzhong; Zhang, Sukun; Liu, Xiaoping; Wang, Junneng


    In order to better understand the environmental behaviors of persistent organic pollutants, the characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were investigated in twenty-three soil/sediment samples from Baiying City, Northwest China, in 2008. The possible sources and potential health risk of PCDD/Fs were also discussed. The concentrations of PCDD/Fs in nineteen soil samples varied between 20.13 and 496.26 pg/g dry weight (dw.), with an average value of 125.59 pg/g dw. The highest International Toxic Equivalent (I-TEQ) of PCDD/Fs (8.34 pg/g dw.) in soil was found at sample S1 collected from proximity to a copper metallurgy plant. The concentrations of PCDD/Fs in four sediment samples ranged from 37.69 to 491.49 pg/g dw., with an average value of 169.95 pg/g dw. The highest I-TEQ of PCDD/Fs (8.56 pg/g dw.) in sediment was found at sample S12 collected from the East big ditch with waste water discharged into the Yellow River. The results indicated that PCDD/Fs contamination of soil/sediment is originated from three sources: chlorine-containing chemicals, non-ferrous metal industrial PCDD/Fs emission and coal burning. The health risk exposure to PCDD/Fs through soil, dust ingestion and dermal absorption ranged from 0.0006 to 0.0134 pg/kg/day Word Health Organization's toxic equivalent in 1998 (WHO1998-TEQ) with mean values 0.0032 pg WHO1998-TEQ for adults and varied between 0.0012 and 0.0256 pg/kg/day WHO1998-TEQ with mean values 0.006 pg/kg/day WHO1998-TEQ for children, respectively. These results indicated that health risk of PCDD/Fs for children should be paid more attention.

  19. [Distribution Characteristics, Sources and Pollution Assessment of Trace Elements in Surficial Sediments of the Coastal Wetlands, Northeastern Hainan Island].

    Zhang, Wei-kun; Gan, Hua-yang; Bi, Xiang-yang; Wang, Jia-sheng


    Totally 128 surficial sediments samples were collected from the coastal wetlands, northeastern Hainan Island and analyzed for their concentrations of 14 elements including Al2O3, Fe2O3, MnO, Cu, Ni, Sr, Zn, V, Pb, Cr, Zr, As, Cd and Hg, TOC and grain sizes. The mean concentrations of trace metals V, Cr, Ni, Cu, Zn, As, Pb, Cd and Hg were (40.13 +/- 32.65), (35.92 +/- 26.90), (13.03 +/- 11.46), (11.56 +/- 10.27)-, (48.75 +/- 27.00), (5.48 +/- 1.60), ( 18.70 +/- 8.66), (0.054 +/- 0.045 ), (0.050 +/- 0.050) microg x g(-1), respectively, which were much lower than those in Pearl River Estuary, Yangzi River Estuary, Bohai Bay, upper crust and average shale. The average concentrations of Sr and Zr were much higher, reaching up to (1253.60 +/- 1649.58) microg x g(-1) and (372.40 +/- 516.49) microg x g(-1), respectively. The spatial distribution patterns of Al2O3, Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr, Cd and Hg concentrations were the same as each other except for those of As, Sr and Zr. Generally, relatively high concentrations of these elements only appeared in the Haikou Bay, Nandu estuary, Dongzhai Harbor, Qinglan Harbor and Xiaohai in study area. The factor analysis revealed that the trace elements Al2O3 Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr and part of Hg were mainly originated from the rock material by natural weathering processes, while the Cd and a part of Hg were from the biological source controlled by TOC. As and part of MnO were influenced by anthropogenic source, especially by aquacultures. Zr and some MnO were derived from heavy minerals dominated by the coarse grain of sediments. In contrast to the ERL, ERM and the results of enrichment factors (EF) , the environment of study area was good in general and the degree of contamination by trace elements was low on the whole. However, there are still some places where anthropogenic input have caused serious enrichments of trace elements and the occasional adverse effect on benthic organism induced by Ni could probably

  20. Microbial transformations of arsenic: Mobilization from glauconitic sediments to water

    Mumford, Adam C.; Barringer, Julia L.; Benzel, William M.; Reilly, Pamela A.; Young, L.Y.


    In the Inner Coastal Plain of New Jersey, arsenic (As) is released from glauconitic sediment to carbon- and nutrient-rich shallow groundwater. This As-rich groundwater discharges to a major area stream. We hypothesize that microbes play an active role in the mobilization of As from glauconitic subsurface sediments into groundwater in the Inner Coastal Plain of New Jersey. We have examined the potential impact of microbial activity on the mobilization of arsenic from subsurface sediments into the groundwater at a site on Crosswicks Creek in southern New Jersey. The As contents of sediments 33–90 cm below the streambed were found to range from 15 to 26.4 mg/kg, with siderite forming at depth. Groundwater beneath the streambed contains As at concentrations up to 89 μg/L. Microcosms developed from site sediments released 23 μg/L of As, and active microbial reduction of As(V) was observed in microcosms developed from site groundwater. DNA extracted from site sediments was amplified with primers for the 16S rRNA gene and the arsenate respiratory reductase gene, arrA, and indicated the presence of a diverse anaerobic microbial community, as well as the presence of potential arsenic-reducing bacteria. In addition, high iron (Fe) concentrations in groundwater and the presence of iron-reducing microbial genera suggests that Fe reduction in minerals may provide an additional mechanism for release of associated As, while arsenic-reducing microorganisms may serve to enhance the mobility of As in groundwater at this site.

  1. Sediment characteristics and microbiological contamination of beach sand - A case-study in the archipelago of Madeira.

    Abreu, Roberto; Figueira, Celso; Romão, Daniela; Brandão, João; Freitas, M Conceição; Andrade, César; Calado, Graça; Ferreira, Carmen; Campos, Ana; Prada, Susana


    Beach sand can harbour pathogenic and opportunistic microorganisms, as well as faecal indicator bacteria that influence directly the bathing water quality. Pathogenic and opportunistic microorganisms often raise concern of exposure during beach related recreational activities. In this work, three different types of sandy beaches (natural basaltic, natural calcareous and artificial calcareous) of the Archipelago of Madeira (Portugal) were sampled for bacterial and fungal contaminants and grain size distribution, during four years (2010-2013). Following an extreme weather event in 2010, the faecal indicator bacteria levels spiked, returning to base levels shortly thereafter. The same phenomenon occurred with fungi, where potentially pathogenic fungi were the dominant group. Yeast-like fungi and dermatophytes were, however, mainly associated to months of higher usage by recreational users. Statistical analysis showed higher contamination of sediment in artificial beaches compared to natural beaches and granulometry and chemical composition of sand did not influence in the microbial loads. Instead, bather density and the influence of coastal protection structures needed to maintain the volume of artificial beach sand regarding the removal potential of wave induced currents are obvious influencing factors. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Water and streambed-material data, Eagle Creek watershed, Indiana, August 1980 and October and December 1982

    Wangsness, D.J.


    Water quality studies within the Eagle Creek watershed, Indiana, were done by the US Geological Survey in august 1980, October 1982, and December 1982 in cooperation with the city of Indianapolis, Department of Public Works. Streambed-material and water samples were collected from Finley and Eagle Creeks at various flow rates and were analyzed for volatile organics. This report lists all the data collected and analyzed by the US Geological Survey during the 1980 and 1982 surveys but does not interpret the data. 4 refs., 2 figs. 19 tabs.

  3. Toxicity and Geochemistry of Missouri Cave Stream Sediments

    Lawler, C. A.; Besser, J.; Wicks, C. M.


    Water and sediment quality are among the most important variables affecting the survival of stygobites. In Tumbling Creek Cave, Taney County Missouri the population of the endangered cave snail, Antrobia culveri, has declined significantly over the past decade. The cause of the population decline is unknown but could be related to the quality of streambed sediment in which the cave snail lives. The objective of this study was to determine the toxicity and concentrations of heavy metals in the sediment of Tumbling Creek Cave and five other caves in Missouri. These sediments were analyzed to assess possible point sources from within the recharge areas of the caves and to provide baseline geochemical data to which Tumbling Creek Cave sediments could be compared. Standard sediment toxicity tests and ICP-MS analysis for heavy metals were conducted. Survival and reproduction of the amphipod, Hyalella azteca, did not differ significantly between cave sediments and a control sediment. However the growth of amphipods differed significantly among sites and was significantly reduced in sediments from Tumbling Creek Cave relative to controls. Concentrations of several metals in sediments differed substantially among locations, with elevated levels of zinc and copper occurring in Tumbling Creek Cave. However, none of the measured metal concentrations exceeded sediment quality guidelines derived to predict probable effects on benthic organisms and correlations between sediment metal concentrations and toxicity endpoints were generally weak. While elevated metal levels may play a part in the cave snail's decline, other factors may be of equal or greater importance. Ongoing analyses of persistent organic contaminants and total organic carbon in cave sediments, along with continued water quality monitoring, may provide data that will allow us to better understand this complicated problem.

  4. Characterizing spatial structure of sediment E. coli populations to inform sampling design.

    Piorkowski, Gregory S; Jamieson, Rob C; Hansen, Lisbeth Truelstrup; Bezanson, Greg S; Yost, Chris K


    Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p = 0.002) among monitoring sites during baseflow, and significant interactive effects (p = 0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.


    胡启军; 张宇浩; 何乐平; 黄超; 巨鑫


    The bearing capacity of a bored pile is unavoidably decreased for the existence of bottom sediment. Combined with formation characteristics of bottom sediment, the impact of concrete on bottom sediment was well simulated by conducting the experiment of water-rock interaction to study the formation characteristics of sediment in different conditions.At the same time, considering the impact of concrete on sediment, the variation law of sediment characteristics with different influencing factors was obtained.The results showed that sediment was small particle with natural moisture content when the bottom of hole was dry, whereas bottom sediment was saturated swelled mudstone or fine particle when the bottom of hole was wet.Basically, the sediment at hole bottom could not be flushed in dry hole under the impact of concrete.In contrast, the impact of concrete in wet hole was so significant that some sediment had been flushed by concrete and also the pile shrinkage might be caused.%桩底沉渣的存在不可避免会降低灌注桩的承载力。结合孔底沉渣形成特征,研究混凝土对桩底沉渣的冲击作用,通过室内水-岩相互作用研究红层泥岩地区孔底沉渣在不同条件下的形成特征,同时利用室内冲击试验和现场冲击试验,研究混凝土对沉渣的冲击作用在不同影响因素下沉渣性质的变化规律。试验结果表明:孔底为干孔时,孔底沉渣是小颗粒天然含水率沉渣;若孔底为湿孔,孔底沉渣为饱和泥化物或细颗粒沉渣;在混凝土冲击作用下,干孔中沉渣基本无变化,湿孔中沉渣反孔顶明显,可能导致桩底缩径。

  6. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.


    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  7. Characteristics of Organic Carbon Distribution in the Sediment of Hulunhu Lake, China%呼伦湖沉积物有机碳的分布特征

    宋文杰; 何江; 高际玫; 吕昌伟; 王维; 樊明德; 张家震


    The total organic carbon(TOC) plays an important role in carbon cycles. TOC can be divided into light-fraction organic carbon (LFOC) and heavy-fraction organic carbon (HFOC) using the density fraetionation technique recently, LFOC consists of visible partly decomposed plant material at various stage of decomposition, includes spore, seed, animal and microbial debris and some soil minerals particle associated with plant debris. It is a good indicator for labile organic carbon. And H FOC consists of humus, existing as stable carbon pool. This study was carried out about the characteristics organic carbon distributions in the sediment of Hulunhu lake, which is the shallow lake in arid areas within the Mongolian Plateau. The results indicated that the content of TOC ranged from 9.18 to 61.68 g·kg-1, with the average of 34.64 g·kg-1; the content of HFOC ranged from 9.02 to 61.47 g·kg-1, with the average of 34.32 g·kg-1; and the content of LFOC ranged from 0.02 to 0.86 g·kg-1, with the average of 0.32 g·kg-1. The content of TOC showed a decreasing trend from northwest to southeast in spatial distribution. The mean C/N ratio of the sediment was 20.35 in the surface sediments of Hulunhu lake, Which meant that the source of organic matter was diverse.%以内蒙古高原湖泊呼伦湖为对象,开展了湖泊沉积物有机碳的分布特征研究.结果表明:呼伦湖沉积物中总有机碳(TOC)含量范围为9.18~61.68 g·kg-1,平均34.64 g·kg-1;重组碳(HFOC)含量范围为9.02~61.47 g·kg-1,平均34.32 g·kg-1;轻组碳(LFOC)含量范围为0.02~0.86 g·kg-1,平均0.32 g·kg-1.TOC在空间分布上呈现从北西向南东逐渐递减的趋势.表层沉积物中C/N的平均值为20.35,表明呼伦湖中有机质的多源性.

  8. Grain-size Characteristics of Sediments Formed Since 8600 yr B.P. in Middle Reaches of Yarlung Zangbo River in Tibet and Their Paleoenvironmental Significance

    ZHENG Yinghua; WU Yongqiu; LI Sen; TAN Lihua; GOU Shiwei; ZHANG Hongyan


    Widespread aeolian sediments have been found in the middle reaches of the Yarlung Zangbo River, China. The grain-size characteristics of sediments from Cha'er Section in the area were analyzed. The results show that the section include one stratum of paleo-mobile dunes, four strata of paleo-semi-fixed dunes, two strata of paleo-fixed dunes, one stratum of sandy immature soils. The paleo-mobile and paleo-somi-fixed dune sand in this section are similar to modern aeolian sand in either grain-size composition or Mz and σ distribution. Compared the above types of dunes each other, the content of sand substance decreases, while the content of silt and clay increases for palco-fixed dunes and sandy immature soils. Combined with age data for each stratum, the analysis shows that these strata are the products of climate changes and the evolution of aeolian landforms. The evolutionary sequence of the paleoclimate and of acolian activities in the valley since 8600 yr B.P. reveals four stages: 8600-5700 yr B.P., when the paleoclimate was cold and dry, with strong winds, thereby activating dunes; 5700-3600 yr B.P., when it was warm and wet, with weak winds, causing dunes to undergo soil-forming processes; 3600-1900 yr B.P., when climate shifted from cold-dry with strong winds to warm-wet with weak winds, and activated dunes were fixed again; and 1900 yr B.P. -present, when the climate became fine, with weak winds, fixing dunes again.

  9. Variability of PAHs and trace metals in the sediments in relation to environmental characteristics of the bottom layer in the middle Adriatic Sea

    Grilli, Federica; Frapiccini, Emanuela; Campanelli, Alessandra; Guicciardi, Stefano; Marini, Mauro; Marasovic, Ivona; Grbec, Branka; Skejić, Sanda; Ujević, Ivana; Lušić, Jelena


    In the framework of the project PERSEUS (Policy-oriented marine Environmental Research in the Southern EUropean Seas), two interdisciplinary surveys were carried out in April 2013 and April 2014 in the middle Adriatic Sea along the Pescara-Sibenik transect (Jabuka Pits area) and Vieste-Split transect (Palagruza Sill area) with Croatian research vessel "Bios II" and the Italian research vessel "G. Dallaporta", respectively. The main objective of these research cruises was the implementation of the Marine Strategy Framework Directive (MSFD) in the Adriatic region for collecting physical, chemical and biological data in order to get a better understanding of whole Adriatic ecosystem. The two transects are already recognised as a key areas for the interception and the study of dense water modification (Zore-Armanda, 1963; Marini et al., 2006; Grilli et al., 2013). Due to seasonal circulation patterns, they are characterized by high temporal variability of the thermohaline structure (Grbec and Morović, 1997; Vilibić, et al., 2004) and other oceanographic parameters. Long term oceanographic records from the Middle Adriatic enable better understanding of the ecosystem response to changes of atmospheric and sea conditions through physical, chemical and biological processes (Marasović et al., 1995). Several oceanographic parameters relevant and useful for the ecosystem assessment of the two areas (temperature, salinity, density, fluorescence, oxygen, nutrients, chlorophyll, phyto- and zoo-plankton as well as selected pollutants , trace metals and Polycyclic Aromatic Hydrocarbons-PAHs in sediments) were collected. In the present work, the variations of PAHs and trace metals concentration in the marine sediments are presented in relation to the physical and chemical characteristics of the bottom layer. A constant influx of metal induces more intense accumulation of anthropogenic metals, especially Cd, in sediment from Jabuka Pit, and the metal content slightly increases

  10. Sediment-quality and water-toxicity data from 10 sites on the Westside Creeks and San Antonio River, San Antonio, Texas, 2014

    Crow, Cassi L.; Wilson, Jennifer T.; Kunz, James L.


    Sediment samples and samples for water-toxicity testing were collected during 2014 from several streams in San Antonio, Texas known locally as the Westside creeks (Alazán, Apache, Martínez, and San Pedro Creeks) and from the San Antonio River. Samples were collected once during base-flow and again after periods of storm-water runoff (post-storm conditions) to determine baseline sediment- and water-quality conditions. Streambed-sediment samples were analyzed for selected constituents, including trace elements and organic contaminants such as pesticides, polychlorinated biphenyls (PCBs), brominated flame retardants, and polycyclic aromatic hydrocarbons (PAHs).

  11. Experimental assessment of the influence of bedforms and sediment size on coupled hyporheic flow and heat transport

    Norman, F.; Cardenas, M. B.


    Hyporheic flow influences both biogeochemical cycling in streambeds as well as streambed ecology. Biogeochemical processes may be temperature dependent, whereas heat transport may also be controlled by hyporheic flow, thereby providing feedback. We separately and experimentally assess the effects of hyporheic flow due to bed topography on thermal dynamics in the sediment using a custom flume with temperature controls. Diel temperature cycles of 6° C were imposed in the flume and propagation of temperature signals into the sediment were examined for different bed morphology (plane bed, pool-riffle-pool, and rippled bed), channel flow rates, and sediment grain size. Temperature fields in the sediment were monitored using an array of embedded thermistors, and this data was used to identify zones of upwelling and downwelling within the hyporheic zone. Results suggest that bedforms induce substantially deeper downwelling upstream and downstream of the bedforms, with upwelling near the crest. This in turn leads to substantial advective heat transport and distinct thermal patterns in the sediment. These results corroborate existing theoretical models of coupled hyporheic exchange and heat transport under bedforms. Hyporheic flow therefore affects thermal patchiness in sediment, which may in turn exert a control on biogeochemical reaction rates, and form thermal refugia for fauna.

  12. Characteristics of thermally transferred optically stimulated luminescence (TT-OSL) in quartz and its potential for dating sediments

    Tsukamoto, Sumiko [Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB (United Kingdom); Duller, Geoff A.T. [Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB (United Kingdom)], E-mail:; Wintle, Ann G. [Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB (United Kingdom)


    The temperature dependence, dose response and bleaching characteristics of the thermally transferred optically stimulated luminescence (TT-OSL) of sedimentary quartz were studied, in order to assess the potential of the TT-OSL signal for dating. The TT-OSL was separated into two components; recuperated OSL (ReOSL) and basic transfer (BT-OSL) by annealing samples at 300 deg. C for 10 s as suggested in an earlier study. Four quartz extracts were studied, two from loess from China and two from coastal sands from South Africa. The equivalent doses of the two recent samples (one sand and one loess) were {approx}15Gy and this suggests that the signal can be bleached by sunlight but may not be totally zeroed. The sensitivity-corrected ReOSL from the older samples did not reach zero and gave doses of 14 and 52 Gy, respectively, after 7 days bleaching with a solar simulator. A single aliquot regenerative dose (SAR) protocol using ReOSL was proposed and tested. In this protocol, a blue light stimulation at 280 deg. C for 100 s at the end of each cycle resulted in the recovery of identical sensitivity-corrected ReOSL values, in spite of {approx}20 -30% loss in sensitivity for the four samples that were tested. Two dose response curves were constructed using the sensitivity-corrected ReOSL, one for the initial 2 s signal and the other for the fast component obtained by curve fitting. Using the additional high temperature bleach and the separated fast component of the ReOSL, it was possible to recover given doses within 10%, up to {approx}1000Gy for the loess and {approx}2000Gy for the coarse grained quartz. However, the natural dose obtained for the older sand was twice that obtained using the conventional SAR OSL method.

  13. Coupled penetrometer, MBES and ADCP assessments of tidal variations in surface sediment layer characteristics along active subaqueous dunes, Danish Wadden Sea

    Stark, Nina; Hanff, Hendrik; Svenson, Christian; Ernstsen, Verner B.; Lefebvre, Alice; Winter, Christian; Kopf, Achim


    In-situ geotechnical measurements of surface sediments were carried out along large subaqueous dunes in the Knudedyb tidal inlet channel in the Danish Wadden Sea using a small free-falling penetrometer. Vertical profiles showed a typical stratification pattern with a resolution of ˜1 cm depicting a thin surface layer of low sediment strength and a stiffer substratum below (quasi-static bearing capacity equivalent: 1-3 kPa in the top layer, 20-140 kPa in the underlying sediment; thickness of the top layer ca. 5-8 cm). Observed variations in the thickness and strength of the surface layer during a tidal cycle were compared to mean current velocities (measured using an acoustic Doppler current profiler, ADCP), high-resolution bathymetry (based on multibeam echo sounding, MBES) and qualitative estimates of suspended sediment distributions in the water column (estimated from ADCP backscatter intensity). The results revealed an ebb dominance in sediment remobilization, and a general accretion of the bed towards low water. A loose top layer occurred throughout the tidal cycle, likely influenced by bedload transport and small events of suspended sediment resettlement (thickness: 6 ± 2 cm). Furthermore, this layer showed a significant increase in thickness (e.g. from 8 cm to 16 cm) related to periods of overall deposition. These findings imply that dynamic penetrometers can conveniently serve to (1) quantify potentially mobile sediments by determining the thickness of a loose sediment surface layer, (2) unravel sediment strength development in potentially mobile sediments and (3) identify sediment accumulation. Such data are an important complement and add a new geotechnical perspective during investigations of sediment remobilization processes in highly dynamic coastal environments.

  14. Simulations of flow and prediction of sediment movement in Wymans Run, Cochranton Borough, Crawford County, Pennsylvania

    Hittle, Elizabeth


    In small watersheds, runoff entering local waterways from large storms can cause rapid and profound changes in the streambed that can contribute to flooding. Wymans Run, a small stream in Cochranton Borough, Crawford County, experienced a large rain event in June 2008 that caused sediment to be deposited at a bridge. A hydrodynamic model, Flow and Sediment Transport and Morphological Evolution of Channels (FaSTMECH), which is incorporated into the U.S. Geological Survey Multi-Dimensional Surface-Water Modeling System (MD_SWMS) was constructed to predict boundary shear stress and velocity in Wymans Run using data from the June 2008 event. Shear stress and velocity values can be used to indicate areas of a stream where sediment, transported downstream, can be deposited on the streambed. Because of the short duration of the June 2008 rain event, streamflow was not directly measured but was estimated using U.S. Army Corps of Engineers one-dimensional Hydrologic Engineering Centers River Analysis System (HEC-RAS). Scenarios to examine possible engineering solutions to decrease the amount of sediment at the bridge, including bridge expansion, channel expansion, and dredging upstream from the bridge, were simulated using the FaSTMECH model. Each scenario was evaluated for potential effects on water-surface elevation, boundary shear stress, and velocity.

  15. Toxicity of contaminated sediments in dilution series with control sediments

    Nelson, M.K.; Landrum, P.F.; Burton, G.A.; Klaine, S.J.; Crecelius, E.A.; Byl, T.D.; Gossiaux, Duane C.; Tsymbal, V.N.; Cleveland, L.; Ingersoll, Christopher G.; Sasson-Brickson, G.


    The use of dilutions has been the foundation of our approach for assessing contaminated water, and accordingly, it may be important to establish similar or parallel approaches for sediment dilutions. Test organism responses to dilution gradients can identify the degree of necessary sediment alteration to reduce the toxicity. Using whole sediment dilutions to represent the complex interactions of in situ sediments can identify the toxicity, but the selection of the appropriate diluent for the contaminated sediment may affect the results and conclusions drawn. Contaminated whole sediments were examined to evaluate the toxicity of dilutions of sediments with a diversity of test organisms. Dilutions of the contaminated sediments were prepared with differing diluents that varied in organic carbon content, particle size distribution, and volatile solids. Studies were conducted using four macroinvertebrates and a vascular, rooted plant. Responses by some test organisms followed a sigmoidal dose-response curve, but others followed a U-shaped curve. Initial dilutions reduced toxicity as expected, but further dilution resulted in an increase in toxicity. The type of diluent used was an important factor in assessing the sediment toxicity, because the control soil reduced toxicity more effectively than sand as a diluent of the same sediment. Using sediment chemical and physical characteristics as an indicator of sediment dilution may not be as useful as chemical analysis of contaminants, but warrants further investigation.

  16. Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish pyrenees

    Seeger, M.; Beguería, S.; Errea, M.P.; Arnáez, J.; Martí, C.; García-Ruiz, J.M.


    The concentration of suspended sediment and discharge generated during flood events are not normally homogenous, and the curve representing sediment concentration vs. discharge through time is often a hysteretic loop. Three types of hysteretic loops were found at Arnás, a Mediterranean headwater

  17. Spatial characteristics of sediment trace metals in an eastern boundary upwelling retention area (St. Helena Bay, South Africa): A hydrodynamic-biological pump hypothesis

    Monteiro, PMS


    Full Text Available fluxes from bottom sediments defined by a high sedimentation rate of organic matter. It is proposed that trace metals may play an important role in alleviating part of the ecological stress by forming sulfide complexes in such systems. A spatially...

  18. Trait-based structure of invertebrates along a gradient of sediment colmation: benthos versus hyporheos responses.

    Descloux, S; Datry, T; Usseglio-Polatera, P


    Streambed colmation by fine sediment, e.g. the deposition, accumulation and storage of fines in the substrate, is known to have severe effects on invertebrate assemblages in both the benthic and hyporheic zones but the changes in biological attributes of invertebrate assemblages related to colmation have never been considered simultaneously for these two zones. We studied the effects of colmation on the invertebrate assemblages of three rivers, testing a priori hypotheses on the biological attributes that should be more selected in communities subjected to different levels of colmation in both zones. Only the proportion of organisms with high fecundity increased and the proportion of small-sized organisms decreased along the colmation gradient in both zones simultaneously. As expected, a higher number of traits were significantly modified with colmation in the benthic vs. hyporheic assemblages. Most of the biological attributes impaired were different in the two zones. In the benthic zone, colmation mainly selected particular physiological or trophic characteristics of species and features related to their resistance or resilience capacities. In contrast, the morphological attributes of species were much more impaired by colmation in the hyporheic zone than in the benthic zone. In clogged benthic habitats, traits seemed to be more impaired by an increase in physico-chemical constraints (e.g. the reduction of oxygen availability) and a reduction of potential exchanges (including exchanges of food resources) due to a decline in stream bed conductivity. The morphological attributes of the hyporheic species were probably more influenced by changes in interstitial space characteristics. A potential indicator of the effects of colmation on river health may be based on the functional traits of benthic communities because they (i) satisfy the WFD recommendations, (ii) respond consistently along a colmation gradient and (iii) are comparable among assemblages even across

  19. Distributions, Early Diagenesis, and Spatial Characteristics of Amino Acids in Sediments of Multi-Polluted Rivers: A Case Study in the Haihe River Basin, China.

    Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong; Rong, Nan; Ding, Yuekui


    The Haihe River Basin, which is one of the most water-scarce and polluted river basins in China, has abnormally high nitrogen levels. In this study, total hydrolyzable amino acids (THAAs) were measured in surface sediment and sediment core samples in the Haihe River Basin to determine if amino acids were potential sources of ammonium, organic nitrogen, and organic carbon. The rivers were found to be in a state of hypoxia and contain abnormally high levels of ammonium and organic nitrogen. Additionally, NH₃-N was the predominant form of inorganic nitrogen in the surface sediments, while organic nitrogen accounted for 92.53% of sedimentary nitrogen. THAAs-C accounted for 14.92% of the total organic carbon, while THAAs-N accounted for more than 49.59% of organic nitrogen and 45.68% of total nitrogen. The major fraction of THAAs were protein amino acids. Three sediment cores of the most heavily polluted rivers also showed high levels of THAAs. Evaluation of the degradation index (DI) of sedimentary organic matter in sediments evaluated based on the THAAs revealed that most positive DI values were found in the downstream portion of the Ziya River Watershed. Additionally, the DI of surface sediment was correlated with THAAs (r² = 0.763, p amino acids in sediments were found to be an important potential source of ammonium, organic nitrogen, and organic carbon.

  20. Distribution characteristics of sterols in surface sediment of Dalian Bay%大连湾表层沉积物中甾醇的分布特征

    冀平; 赵元凤; 徐恒振; 王洪艳; 姚子伟; 马新东


    11 sterols in the surface sediment samples in Dalian Bay were determined by GC/MS,and the distribution characteristics at 17 stations in this area were discussed.The results show that the total concentration range was (0 ~ 6.833) × 10-6,the sterols range was (1.627 ~34.617) × 10-6.The distribution appeared that the concentration of total sterols around the sewage ouffall was higher than that far away from the outfall.The main kinds of sterols were C27 sterols and C29 sterols and the source of sterols was a large number of domestic sewage.%采用气相色谱/质谱对大连湾表层沉积物中11种甾醇进行了监测,探讨了大连湾17个站位的表层沉积物中甾醇的分布特征.结果表明,大连湾17个站位的表层沉积物中11种甾醇的含量范围为1.627×10-6~34.617×10-6;甾醇分布呈现出近岸区高于离岸海区,近排污口区高于远排污口区的态势;甾醇种类主要为C27甾醇和C29甾醇;其来源主要是大量生活污水的输入.

  1. Predicted effectiveness of in-situ activated carbon amendment for field sediment sites with variable site- and compound-specific characteristics

    Choi, Yongju, E-mail: [Department of Civil and Environmental Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Cho, Yeo-Myoung; Luthy, Richard G. [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020 (United States); Werner, David [School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)


    Highlights: • The model accounts for the heterogeneity of AC distribution in field applications. • AC amendment effectiveness is predicted for ten sediment sites. • An HOC mass transfer model and calibrated parameters provide reliable predictions. • AC amendment is predicted to be effective for most sites. • K{sub ow}, K{sub d}, and equilibrium-based calculations are useful indicators. - Abstract: A growing body of evidence shows that the effectiveness of in-situ activated carbon (AC) amendment to treat hydrophobic organic contaminants (HOCs) in sediments can be reliably predicted using a mass transfer modeling approach. This study analyzes available field data for characterizing AC-sediment distribution after mechanical mixing of AC into sediment. Those distributions are used to develop an HOC mass transfer model that accounts for plausible heterogeneities resulting from mixing of AC into sediment. The model is applied to ten field sites in the U.S. and Europe with 2–3 representative HOCs from each site using site- and HOC-specific model parameters collected from the literature. The model predicts that the AC amendment reduces the pore-water HOC concentrations by more than 95% fifteen years after AC deployment for 18 of the 25 total simulated cases when the AC is applied at doses of 1.5 times sediment total organic carbon content with an upper limit of 5 dry wt%. The predicted effectiveness shows negative correlation with the HOC octanol–water partitioning coefficients and the sediment-water distribution coefficients, and positive correlation with the effectiveness calculated based on equilibrium coefficients of sediment and AC, suggesting the possibility for use of the values for screening-level assessments.

  2. Distributing Characteristics of Heavy Metal Elements in A Tributary of Zhedong River in Laowangzhai Gold Deposit, Yunnan (China): An Implication to Environmentology from Sediments

    Yang, Shuran; Danĕk, Tomáš; Yang, Xiaofeng; Cheng, Xianfeng


    Five heavy metal contents from five sediments and seven sediment profiles in an upstream reach of Zhedong river in Laowangzhai gold deposit were investigated in this research, along with analysis of the horizontal distribution, the surface distribution, the vertical distribution and the interlayer distribution of five heavy metal contents: arsenic (As), mercury (Hg), copper (Cu), lead (Pb) and zinc (Zn). The potential ecological risk of five heavy metals was evaluated to help understanding pollution control of Laowangzhai deposit.

  3. Relation of urbanization to stream habitat and geomorphic characteristics in nine metropolitan areas of the United States

    Fitzpatrick, Faith A.; Peppler, Marie C.


    environmental settings. The relations between watershed-scale indicators of urbanization and stream habitat depended on physiography and climate, hydrology, pre-urban channel alterations, reach-scale slope and presence of bedrock, and amount of bank stabilization and grade control. Channels increased in size with increasing percentages of impervious surfaces in southeastern and midwestern metropolitan areas regardless of whether the pre-existing land use was forest or agriculture. The amount of enlargement depended on annual precipitation and frequency of high-flow events. The lack of a relation between channel enlargement and increasing impervious surfaces in other metropolitan areas was thought to be confounded by pre-urbanization hydrologic and channel alterations. Direct relations of channel shape and streambed substrate to urbanization were variable or lacking, probably because the type, amount, and source of sediment are dependent on the phase of urbanization. Reach-scale slope also was important for determining variations in streambed substrate and habitat complexity (percentage of riffles and runs). Urbanization-associated changes in reach-scale riparian vegetation varied geographically, partially depending on pre-existing riparian vegetation characteristics. Bank erosion increased in Milwaukee?Green Bay and Boston urban streams, and bank erosion also increased with an increase in a streamflow flashiness index. However, potential relations likely were confounded by the frequent use of channel stabilization and bank protection in urban settings. Low-flow reach volume did not decrease with increasing urbanization, but instead was related to natural landscape characteristics and possibly other unmeasured factors. The presence of intermittent bedrock in some sampled reaches likely limited some geomorphic responses to urbanization, such as channel bed erosion. Results from this study emphasize the importance of including a wide range of landscape variables at m

  4. Streambed temperature data for the manuscript: Heat as a hydrologic tracer in shallow and deep heterogeneous media: analytical solution, spreadsheet tool, and field applications: U.S. Geological Survey data release

    U.S. Geological Survey, Department of the Interior — This Data Release includes temperature measurements collected using a wrapped fiber-optic tool in a Cape Cod, MA streambed on 06/06/2016 to demonstrate the...

  5. 渤海湾西部表层沉积物粒度及黏土矿物特征分析%The sediment grain size characteristics and analysis of sources in the western Bohai Bay

    冯秀丽; 魏飞; 刘杰; 刘潇; 徐芳


    对渤海湾西部海域和西岸入海河流中76个表层沉积物样品进行粒度及黏土矿物分析,研究表明该区有3种沉积物类型,黏土质粉砂分布于整个研究区,约占表层样的90%,是研究区最主要的沉积物类型;研究区黏土矿物以伊利石为主,黏土矿物组合为伊利石-高岭石-绿泥石-蒙皂石;渤海湾西部表层沉积物主要来源于海河等渤海湾西岸入海河流中的陆源碎屑物,滦河对研究区基本没有影响,黄河对研究区的影响变得比较小。对于研究渤海湾西岸的沉积特征及沉积物物源、了解陆地河流对于研究区海洋沉积环境的影响有着一定的科学意义。%This paper shows that there are 3 types of sediments in the study area according to analysis of 76 surface samples which were sampled from the western Bohai Bay waters and rivers that flow into the sea from the west coast. Clayey silt distributes throughout the study area, and is the most important type of sediments in the study area, accounting for about 90% of the surface samples. The sediment dynamic environmental characteristics of the sur-face sediments in the area were studied using the Flemming triangle graphic method and the results indicate that the sedimentary dynamics in the study area was relatively weak. The clay mineral analysis of 60 surface samples shows that the illite is the main clay mineral, and the clay mineral assemblage in the study area is illite - kaolinite - chlorite - smectite stone. The exploration of sediment source based on grain size and clay minerals shows that the surface sediments of the western Bohai Bay were mainly from the terrigenous detritus, which were carried by the rivers flowing into the sea in the western Bohai coast, such as the Haihe River, while the Luanhe River had nearly no effect on the surface sediments in the study. The influence of the Yellow River on the sea surface sediments was weak.

  6. Turbid water desilting characteristics of circular-ring desilting and sediment ejection basin%“圆中环”沉沙排沙池浑水沉沙特性

    张军; 侍克斌; 高亚平; 王进


    Circular rings desilting and sediment ejection basin are new secondary sediment treatment facilities, which was first applied in Xinjiang Hutubi Aweitan canal head. Agricultural water was solved emphatically in the Aweitan irrigated area. “Circular rings” have worked satisfactorily since 2006. Taking Xinjiang Hutubi Aweitan “circular rings” as a prototype, the experimental model on turbid water movement characteristics has been studied. Sediment concentration distribution was tested by the computer aided sediment meter of CYS-Ⅲ-Type. The sediment particle diameter was measured in the outflow channel and different radius range of“circular rings. Meanwhile, the desilting rate and water consumption were calculated, as well as the maximum particle diameter in the outflow channel. The research showed that the distribution of sediment concentration, desilting range, desilting diameter and desilting production are non-uniform in the ring direction of “circular rings”. However, sediment concentration distribution and particle diameter size are inversely proportional to the radius in the radial direction. Sediment concentration is inversely proportional to water depth in the vertical direction, vertically non-uniform within 1/2 radius. Meanwhile, sediment grain size is crude. In other ranges, vertical distribution is more uniform and sediment grain size is smaller. Distribution of sediment concentration, desilting diameter and desilting production are larger in the range of 135°-225° in “circular rings”. Under the design discharge and sediment concentration conditions, the desilting rate is 90.9 percent of "Circular rings". The maximum particle-size is 0.935mm in the outflow channel. The desilting rate for grain which diameter is more than 1 mm is 100 percent, while the water consumption is only 6.6 percent. When considering the annual flow and sediment concentration conditions, the water consumption well is reduced, but the amplitude reduction should

  7. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the North.

    Guy, A C; Desutter, T M; Casey, F X M; Kolka, R; Hakk, H


    Spring flooding of the Red River of the North (RR) is common, but little information exits on how these flood events affect water and overbank sediment quality within an urban area. With the threat of the spring 2009 flood in the RR predicted to be the largest in recorded history and the concerns about the flooding of farmsteads, outbuildings, garages, and basements, the objectives of this study, which focused on Fargo, ND, and Moorhead, MN, were to assess floodwater quality and to determine the quantity and quality of overbank sediment deposited after floodwaters recede and the quality of soil underlying sediment deposits. 17β-Estradiol was detected in 9 of 24 water samples, with an average concentration of 0.61 ng L. Diesel-range organics were detected in 8 of 24 samples, with an average concentration of 80.0 μg L. The deposition of sediment across locations and transects ranged from 2 to 10 kg m, and the greatest mass deposition of chemicals was closest to the river channel. No gasoline-range organics were detected, but diesel-range organics were detected in 26 of the 27 overbank sediment samples (maximum concentration, 49.2 mg kg). All trace elements detected in the overbank sediments were within ranges for noncontaminated sites. Although flooding has economic, social, and environmental impacts, based on the results of this study, it does not appear that flooding in the RR in F-M led to decreased quality of water, sediment, or soil compared with normal river flows or resident soil.

  8. Textural and geochemical characteristics of off shore sediment of North Bay of Bengal:A statistical approach for marine metal pollution

    Sanghamitra Palleyi; Sabnam Banoo; Rabi Narayan Kar; Chitta Ranjan Panda


    abstract Metal pollution study on sediments of North Bay of Bengal sediments presented in this paper is based on existing Lithostratigraphy of upstream, mineralogy and geochemical analysis of 42 sediment samples. The statistical analysis identifies the metal pollution as well as its apparent source in the off shore regions. Samples were analyzed for grain size, organic content and heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Cd, Zn and Co) using the sequential extraction method to evaluate geochemical processes and pollution load. In an effort to surmise anthropogenic input, several approaches including classification by quantitative indexes such as enrichment factor, contamination factor, degree of pollution, pollution load index and geo accumulation index, were attempted. Metal speciation results indicate high%of Cd in exchangeable fraction of Mahanadi transect sediments where as a considerable amount of oxidizable fraction of Cr was detected at Dhamra. Quantitative indexes place North Bay of Bengal under moderately polluted zone due to high level of Cd. Normalization of metals to Fe indicated relatively high enrichment factors for Cd and Cr. Factor analysis identified seven possible types of geochemical associations where sediment pH plays a major role for the heavy metal mobility. The higher Cd concentration in exchangeable fraction as well as the higher EF for Cd and Cr present in sediment may pose a risk of secondary water pollution under slightest disturbance in the geo-chemistry of sediments. Comparison study with available data of near costal zones and upstream stratigraphy revealed that open cast mining, overburden dumping, mineral based industrial effluents were the major source of pollution for catchment area contamination. Bay of Bengal is likely to face a serious threat of metal pollution with the present deposition rates unless rigorous pollution control norms are applied.

  9. A regression approach to the mapping of bio-physical characteristics of surface sediment using in situ and airborne hyperspectral acquisitions

    Ibrahim, Elsy; Kim, Wonkook; Crawford, Melba; Monbaliu, Jaak


    Remote sensing has been successfully utilized to distinguish and quantify sediment properties in the intertidal environment. Classification approaches of imagery are popular and powerful yet can lead to site- and case-specific results. Such specificity creates challenges for temporal studies. Thus, this paper investigates the use of regression models to quantify sediment properties instead of classifying them. Two regression approaches, namely multiple regression (MR) and support vector regression (SVR), are used in this study for the retrieval of bio-physical variables of intertidal surface sediment of the IJzermonding, a Belgian nature reserve. In the regression analysis, mud content, chlorophyll a concentration, organic matter content, and soil moisture are estimated using radiometric variables of two airborne sensors, namely airborne hyperspectral sensor (AHS) and airborne prism experiment (APEX) and and using field hyperspectral acquisitions by analytical spectral device (ASD). The performance of the two regression approaches is best for the estimation of moisture content. SVR attains the highest accuracy without feature reduction while MR achieves good results when feature reduction is carried out. Sediment property maps are successfully obtained using the models and hyperspectral imagery where SVR used with all bands achieves the best performance. The study also involves the extraction of weights identifying the contribution of each band of the images in the quantification of each sediment property when MR and principal component analysis are used.

  10. A regression approach to the mapping of bio-physical characteristics of surface sediment using in situ and airborne hyperspectral acquisitions

    Ibrahim, Elsy; Kim, Wonkook; Crawford, Melba; Monbaliu, Jaak


    Remote sensing has been successfully utilized to distinguish and quantify sediment properties in the intertidal environment. Classification approaches of imagery are popular and powerful yet can lead to site- and case-specific results. Such specificity creates challenges for temporal studies. Thus, this paper investigates the use of regression models to quantify sediment properties instead of classifying them. Two regression approaches, namely multiple regression (MR) and support vector regression (SVR), are used in this study for the retrieval of bio-physical variables of intertidal surface sediment of the IJzermonding, a Belgian nature reserve. In the regression analysis, mud content, chlorophyll a concentration, organic matter content, and soil moisture are estimated using radiometric variables of two airborne sensors, namely airborne hyperspectral sensor (AHS) and airborne prism experiment (APEX) and and using field hyperspectral acquisitions by analytical spectral device (ASD). The performance of the two regression approaches is best for the estimation of moisture content. SVR attains the highest accuracy without feature reduction while MR achieves good results when feature reduction is carried out. Sediment property maps are successfully obtained using the models and hyperspectral imagery where SVR used with all bands achieves the best performance. The study also involves the extraction of weights identifying the contribution of each band of the images in the quantification of each sediment property when MR and principal component analysis are used.

  11. Sediment Transport

    Liu, Zhou

    Flow and sediment transport are important in relation to several engineering topics, e.g. erosion around structures, backfilling of dredged channels and nearshore morphological change. The purpose of the present book is to describe both the basic hydrodynamics and the basic sediment transport...... mechanics. Chapter 1 deals with fundamentals in fluid mechanics with emphasis on bed shear stress by currents, while chapter 3 discusses wave boundary layer theory. They are both written with a view to sediment transport. Sediment transport in rivers, cross-shore and longshore are dealt with in chapters 2......, 4 and 5, respectively. It is not the intention of the book to give a broad review of the literature on this very wide topic. The book tries to pick up information which is of engineering importance. An obstacle to the study of sedimentation is the scale effect in model tests. Whenever small...

  12. Prediction of fish and sediment mercury in streams using landscape variables and historical mining

    Alpers, Charles N.; Yee, Julie L.; Ackerman, Josh; Orlando, James; Slotton, Darrell G.; Marvin-DiPasquale, Mark C.


    Widespread mercury (Hg) contamination of aquatic systems in the Sierra Nevada of California, U.S., is associated with historical use to enhance gold (Au) recovery by amalgamation. In areas affected by historical Au mining operations, including the western slope of the Sierra Nevada and downstream areas in northern California, such as San Francisco Bay and the Sacramento River–San Joaquin River Delta, microbial conversion of Hg to methylmercury (MeHg) leads to bioaccumulation of MeHg in food webs, and increased risks to humans and wildlife. This study focused on developing a predictive model for THg in stream fish tissue based on geospatial data, including land use/land cover data, and the distribution of legacy Au mines. Data on total mercury (THg) and MeHg concentrations in fish tissue and streambed sediment collected during 1980–2012 from stream sites in the Sierra Nevada, California were combined with geospatial data to estimate fish THg concentrations across the landscape. THg concentrations of five fish species (Brown Trout, Rainbow Trout, Sacramento Pikeminnow, Sacramento Sucker, and Smallmouth Bass) within stream sections were predicted using multi-model inference based on Akaike Information Criteria, using geospatial data for mining history and landscape characteristics as well as fish species and length (r2 = 0.61, p size resulted in an improved fit (r2 = 0.63, p < 0.001). These models can be used to estimate THg concentrations in stream fish based on landscape variables in the Sierra Nevada in areas where direct measurements of THg concentration in fish are unavailable.

  13. Temperature, productivity and sediment characteristics as drivers of seasonal and spatial variations of dissolved methane in the near-shore coastal areas (Belgian coastal zone, North Sea)

    Borges, Alberto V.; Speeckaert, Gaëlle; Champenois, Willy; Scranton, Mary I.; Gypens, Nathalie


    The open ocean is a modest source of CH4 to the atmosphere compared to other natural and anthropogenic CH4 emissions. Coastal regions are more intense sources of CH4 to the atmosphere than open oceanic waters, in particular estuarine zones. The CH4 emission to the atmosphere from coastal areas is sustained by riverine inputs and methanogenesis in the sediments due to high organic matter (OM) deposition. Additionally, natural gas seeps are sources of CH4 to bottom waters leading to high dissolved CH4 concentrations in bottom waters (from tenths of nmol L-1 up to several µmol L-1). We report a data set of dissolved CH4 concentrations obtained at nine fixed stations in the Belgian coastal zone (Southern North Sea), during one yearly cycle, with a bi-monthly frequency in spring, and a monthly frequency during the rest of the year. This is a coastal area with multiple possible sources of CH4 such as from rivers and gassy sediments, and where intense phytoplankton blooms are dominated by the high dimethylsulfoniopropionate (DMSP) producing micro-algae Phaeocystis globosa, leading to DMSP and dimethylsulfide (DMS) concentrations. Furthermore, the BCZ is a site of important OM sedimentation and accumulation unlike the rest of the North Sea. Spatial variations of dissolved CH4 concentrations were very marked with a minimum yearly average of 9 nmol L-1 in one of the most off-shore stations and maximum yearly average of 139 nmol L-1 at one of the most near-shore stations. The spatial variations of dissolved CH4 concentrations were related to the organic matter (OM) content of sediments, although the highest concentrations seemed to also be related to inputs of CH4 from gassy sediments associated to submerged peat. In the near-shore stations with fine sand or muddy sediments with a high OM content, the seasonal cycle of dissolved CH4 concentration closely followed the seasonal cycle of water temperature, suggesting the control of methanogenesis by temperature in these OM

  14. Water-quality characteristics, trends, and nutrient and sediment loads of streams in the Treyburn development area, North Carolina, 1988–2009

    Fine, Jason M.; Harned, Douglas A.; Oblinger, Carolyn J.


    Streamflow and water-quality data, including concentrations of nutrients, metals, and pesticides, were collected from October 1988 through September 2009 at six sites in the Treyburn development study area. A review of water-quality data for streams in and near a 5,400-acre planned, mixed-use development in the Falls Lake watershed in the upper Neuse River Basin of North Carolina indicated only small-scale changes in water quality since the previous assessment of data collected from 1988 to 1998. Loads and yields were estimated for sediment and nutrients, and temporal trends were assessed for specific conductance, pH, and concentrations of dissolved oxygen, suspended sediment, and nutrients. Water-quality conditions for the Little River tributary and Mountain Creek may reflect development within these basins. The nitrogen and phosphorus concentrations at the Treyburn sites are low compared to sites nationally. The herbicides atrazine, metolachlor, prometon, and simazine were detected frequently at Mountain Creek and Little River tributary but concentrations are low compared to sites nationally. Little River tributary had the lowest median suspended-sediment yield over the 1988–2009 study period, whereas Flat River tributary had the largest median yield. The yields estimated for suspended sediment and nutrients were low compared to yields estimated for other basins in the Southeastern United States. Recent increasing trends were detected in total nitrogen concentration and suspended-sediment concentrations for Mountain Creek, and an increasing trend was detected in specific conductance for Little River tributary. Decreasing trends were detected in dissolved nitrite plus nitrate nitrogen, total ammonia plus organic nitrogen, sediment, and specific conductance for Flat River tributary. Water chemical concentrations, loads, yields, and trends for the Treyburn study sites reflect some effects of upstream development. These measures of water quality are generally low

  15. Methodology to assess the mobility of trace elements between water and contaminated estuarine sediments as a function of the site physico-chemical characteristics.

    Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; de Diego, Alberto; Arana, Gorka; Madariaga, Juan Manuel


    This work presents an innovative methodology to have a rapid diagnosis about the mobility of selected trace elements of known toxicity and biological risk (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn and Zn) present in contaminated sediments. The novel strategy presented in this work uses, therefore, the own estuarine water in contact with sediments as the extracting agent to perform the mobility tests, simulating the real situation of the estuary. This water suffers from different physico-chemical conditions (low and high tides) and gives consequently, rather better information than the one obtained by the routine sequential extraction procedures. The final step of this methodology was the use of spatial modelling by kriging method and multivariate chemometric analysis, both for a better interpretation of the results. To achieve this goal, sediment and water samples were strategically collected at eight different points (four in tributary rivers, one in a closed dock, two in the main channel and another one in the mouth) along the Nerbioi-Ibaizabal River estuary (Metropolitan Bilbao, Basque Country) approximately every three months (summer, autumn, winter and spring) during a whole year. Physico-chemical changes, such as pH, carbonate content and organic matter of the sediments, together with variations in water salinity appear to be responsible for metal mobility from the sediment to the water layer. The influence of these variables was higher in the sites located close to the sea. Moreover, the mobility of trace elements was even higher at high tide in sediments with lower metal content. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the north

    A.C. Guy; T.M. DeSutter; F.X.M. Casey; R. Kolka; H. Hakk


    Spring flooding of the Red River of the North (RR) is common, but little information exits on how these flood events affect water and overbank sediment quality within an urban area. With the threat of the spring 2009 flood in the RR predicted to be the largest in recorded history and the concerns about the flooding of farmsteads, outbuildings, garages, and basements,...

  17. Effects of Different Water Seasons on the Residual Characteristics and Ecological Risk of Polycyclic Aromatic Hydrocarbons in Sediments from Changdang Lake, China

    Javid Hussain


    Full Text Available The sediments’ samples were collected from Changdang Lake for the concentration of fourteen polycyclic aromatic hydrocarbons in March (dry season, June (wet season, and September (temperate season 2013. The highest average value of ∑PAHs was detected as 295.28 ng/g dw in March, followed by 240.91 ng/g dw in June and 165.81 ng/g dw in September. Source characterization studies based on the analysis of diagnostic ratio (triangular plot method suggested that the PAHs in sediments from Changdang Lake were mainly from the mixed combustion source of biomass and petroleum, and the origins of PAHs in different sampling sites have a great deal of temporal and spatial variability during different water seasons. Redundancy analysis was applied to identify the impact factors and the possible relationship between PAHs and environmental parameters. The predicted results showed that the main factors impacting PAHs temporal distribution were temperature, dissolved oxygen, pH, and oxidation-reduction potential, while conductivity showed secondary impacts on the PAHs distribution. Risk assessment of PAHs in sediments was carried out based on the US Sediments Quality Guidelines (SQGs. By comparing the present study results with SQGs standard values results showed that the adverse effects are not expected at the present levels of PAHs contamination observed in the sediments from Changdang Lake.

  18. Hydrogeomorphology of the hyporheic zone: stream solute and fine particle interactions with a dynamic streambed

    Harvey, J.W.; Drummond, J.D.; Martin, R.L.; McPhillips, L.E.; Packman, A.I.; Jerolmack, D.J.; Stonedahl, S.H.; Aubeneau, A.F.; Sawyer, A.H.; Larsen, L.G.; Tobias, C.R.


    Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 μm latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and

  19. Channel Morphology and Bed Sediment Characteristics Before and After Habitat Enhancement Activities in the Uridil Property, Platte River, Nebraska, Water Years 2005-2008

    Kinzel, Paul J.


    Fluvial geomorphic data were collected by the United States Geological Survey from July 2005 to June 2008 (a time period within water years 2005 to 2008) to monitor the effects of habitat enhancement activities conducted in the Platte River Whooping Crane Maintenance Trust's Uridil Property, located along the Platte River, Nebraska. The activities involved the removal of vegetation and sand from the tops of high permanent islands and the placement of the sand into the active river channel. This strategy was intended to enhance habitat for migratory water birds by lowering the elevations of the high islands, thereby eliminating a visual obstruction for roosting birds. It was also thought that the bare sand on the lowered island surfaces could serve as potential habitat for nesting water birds. Lastly, the project supplied a local source of sediment to the river to test the hypothesis that this material could contribute to the formation of lower sandbars and potential nesting sites downstream. Topographic surveys on the islands and along river transects were used to quantify the volume of removed sand and track the storage and movement of the introduced sand downstream. Sediment samples were also collected to map the spatial distribution of river bed sediment sizes before and after the management activities. While the project lowered the elevation of high islands, observations of the sand addition indicated the relatively fine-grained sand that was placed in the active river channel was rapidly transported by the flowing water. Topographic measurements made 3 months after the sand addition along transects in the area of sediment addition showed net aggradation over measurements made in 2005. In the year following the sand addition, 2007, elevated river flows from local rain events generally were accompanied by net degradation along transects within the area of sediment addition. In the spring of 2008, a large magnitude flow event of approximately 360 cubic meters per

  20. An application of excess lead-210 analysis for the study of fine sediment connectivity in a Mediterranean mountain basin with badlands, the Vallcebre research catchments

    Moreno de las Heras, Mariano; Gallart, Francesc; Latron, Jérôme; Martínez-Carreras, Núria; Ferrer, Laura; Estrany, Joan


    Analysis of sediment dynamics in Mediterranean environments is fundamental to basin management, particularly for mountain catchments with badlands, which affect water bodies and freshwater ecosystems. Connectivity has emerged in Environmental and Earth Sciences as an evolution of the sediment delivery concept, providing a useful framework for understanding how sediments are transferred between geomorphic zones of the catchment. This study explores the feasibility of excess lead-210 (210Pbex) to analyse sediment connectivity in a 4-km2 Mediterranean mountain basin with badlands (the Vallcebre research catchments, Eastern Pyrenees) by applying simple 210Pbex mass-balance models for hypothesis generation and experimental testing in the field. Badland surfaces in the basin are weathered by freezing during the winter and are further eroded in summer by the effect of high-intensity storms. The eroded sediments may remain deposited within the catchment streams from months to years. Application of 210Pbex balance models in our basin proposes: (i) a saw-tooth seasonal pattern of badland surface 210Pbex activities (increasing from October to May, and depleted in summer) and (ii) a downstream increase in sediment activity due to fallout lead-210 accumulation in streambed sediment deposits. Both deposited and suspended sediments collected at the Vallcebre catchments showed, in general, low sediment 210Pbex concentrations, illustrating their fresh-rock origin at the badland sites, but also hampering the understanding of sediment 210Pbex patterns due to high measurement uncertainty (particularly for sediments with d50>20µm) and to strong dependence on sediment sampling methodology. Suspended sediment 210Pbex activity reproduced the simulated seasonal activity patterns for the badland surfaces. Contrary to the in-stream transit increases of sediment 210Pbex activity that were predicted by our model simulations, fallout lead-210 concentrations in the suspended sediments decreased

  1. 洱海表层沉积物吸附磷特征%Phosphate Adsorption Characteristics on the Surface Sediments of Erhai Lake

    何宗健; 刘文斌; 王圣瑞; 焦立新; 赵海超


    Adsorption kinetics and isotherms of phosphate on the surface sediments from Erhai Lake were determined through batch experiments, and the effect of total organic matter (TOM) and total calcium content in the sediments on the phosphate adsorption parameters were discussed. The results indicated that; 1) The process of phosphate adsorption kinetics of the surface sediments from Erhai Lake was divided into the rapid adsorption stage and the slow adsorption stage, which mainly occurred in the first 0. 5 h and from 0.5-5 h, respectively. The phosphate adsorption of all the sediments reached equilibrium within 5 h. 2) Qmax( The phosphate maximum adsorption capacity, 904.60-1420. 34 mg/kg) and MBC (maximum buffer capacity, 477. 33-2300. 95 L/kg) of the sediments in different sites of the west bank were significantly higher than those in the east bank, although EPC0 ( adsorption-desorption equilibrium concentrations, 0.015-0. 068 mg/L) in different sites showed the opposite trend. 3) The total calcium and total organic matter contents of the sediments were significantly positively correlated with Qmax and Vmax (maximum adsorption rate) , but were significantly negatively correlated with EPC0. 4) The phosphate adsorption parameters Qmax and Vmax of the surfacesediments from Erhai Lake were significantly higher, while EPC0 was lower, than the corresponding parameters of the shallow lakes in the middle and lower reaches of the Yangtze River catchment. Therefore, the high contents of total calcium and total organic matter in the sediments might account for high risk, but low amount of phosphate release in the sediments of Erhai Lake.%试验研究了洱海表层沉积物吸附礴动力学与等温吸附过程,探讨了总有机质与总钙对沉积物吸附磷参数的影响.结果表明:①洱海表层沉积物对磷的吸附动力学过程均可分为2个阶段,即快速吸附阶段和慢速吸附阶段.快速吸附阶段主要发生在0~0.5 h内,而慢

  2. Colloidal activated carbon for in-situ groundwater remediation--Transport characteristics and adsorption of organic compounds in water-saturated sediment columns.

    Georgi, Anett; Schierz, Ariette; Mackenzie, Katrin; Kopinke, Frank-Dieter


    Colloidal activated carbon can be considered as a versatile adsorbent and carrier material for in-situ groundwater remediation. In analogy to other nanoremediation approaches, activated carbon colloids (ACC) can be injected into the subsurface as aqueous suspensions. Deposition of ACC on the sediment creates a sorption barrier against further spreading of hydrophobic pollutants. This study deals with the optimization of ACC and their suspensions with a focus on suspension stability, ACC mobility in saturated porous media and sorption efficiency towards organic contaminants. ACC with an appropriate particle size range (d50=0.8μm) were obtained from a commercial powdered activated carbon product by means of wet-grinding. Among the various methods tested for stabilization of ACC suspensions, addition of humic acid (HA) and carboxymethyl cellulose (CMC) showed the best results. Due to electrosteric stabilization by adsorption of CMC, suspensions remained stable even at high ACC concentrations (11gL(-1)) and conditions typical of very hard water (5mM divalent cations). Furthermore, CMC-stabilized ACC showed high mobility in a water-saturated sandy sediment column (filter coefficient λ=0.2m(-1)). Such mobility is a pre-requisite for in-situ installation of sorption or reaction barriers by simple injection-well or direct-push application of ACC suspensions. Column experiments with organic model compounds proved the efficacy of ACC deposits on sediment for contaminant adsorption and retardation under flow-through conditions.

  3. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].

    Jian, Min-Fei; Li, Ling-Yu; Xu, Peng-Fei; Chen, Pu-Qing; Xiong, Jian-Qiu; Zhou, Xue-Ling


    Overlying water, sediments, surface soils in the typical wetland areas of Lean River and Poyang Lake which were rich in non-ferrous metal mineral resources on both sides of the river, were chosen for monitoring heavy metals including copper, lead and cadmium of base flow in average season, flood season, and dry season in 2012. Statistical analysis methods were coupled to characterize the spatiotemporal variation of heavy metals pollution and identify the main sources. The results indicated that the concentrations of copper were the highest in all samples of each sampling sites in the Lean River-Poyang Lake wetland. And the content values of copper, lead and cadmium in different samples of different sampling sites also showed that the content values of copper were higher than those of lead, and the content values of lead were also higher than those of cadmium. The results also showed that the heavy metals pollution of copper, lead and cadmium in flood season was the heaviest whereas the heavy metals pollution in dry season was comparatively light. The results of the contents of the three kinds of heavy metals elements in different sampling sites of the watersheds of lean River showed that the contents of copper in the samples from the upstream sampling sites of Lean River were higher than those of other samples from other sites. And the contents of lead in the samples from the downstream sampling sites of Lean River were higher than those of other samples from other sampling sites. The contents of cadmium in the samples from the midstream sampling sites of Lean River were higher than those of other samples from other sites. The first principal component representing copper pollution explained 36. 99% of the total variance of water quality. The second principal component concerning representing lead pollution explained 30. 12% of the total variance. The correlation analysis results showed that there were significant positive correlations among the contents of copper

  4. A study of the characteristics of sedimentation in the Lower Yellow River during overbank floods%黄河下游漫滩洪水冲淤规律

    张敏; 黄河清; 张晓华


    The stratigraphic structure of floodplains records the character of overbank floods occurred in the past, typ-ically their magnitude, frequency and duration. For estimating and forecasting sediment load carried by overbank floods and for preventing from flood disasters and protecting wetland ecosystems, this study investigates the relationship between sedimentation and overbank floods in the lower Yellow River. Using the data from the Hydrological Yearbook of the Yellow River, our detailed analysis shows that during very large floods the channel of the river flow is erosional while the floodplain appears aggradational when S/Q ( S is the sediment concentration and Q is the flow discharge) is smaller than 0. 03. When S/Q is larger than 0. 03, however, both channel and floodplain accumulate sediment. The a-mount of sedimentation in the floodplain is determined by the ratio of Qmax/Qp( Qmax is the peak flow discharge and Qp is the bankfull flow discharge) , the water volume over the floodplain and S. In contrast, the erosion in the channel is related not only to the water volume and sediment load of the floods but also to the sedimentation in the floodplain. During the normal overbank floods, both channel and floodplain accumulate sediment when S/Q is larger than 0. 023, but when S/Q is smaller than 0. 023, the channel is erosion while the floodplain appears aggradational. The channel e-rosion is related to S/Q and water volume of the floods while the sedimentation in the floodplain is mainly related to sediment concentration. Along the whole length of the lower Yellow River, the erosion in the channel and the sedimen-tation in the floodplain are concentrated mainly in the upstream reach of Sunkou, while the downstream reach of Sunk-ou experiences only slight erosion or minor aggradationt.%滩地的淤积层分布记录着以往漫滩洪水的特征,即反映漫滩洪水的量级、频率和持续时间等,同时河漫滩也是预估河流泥沙、洪水灾害防

  5. Inorganic nitrogen transformations in the bed of the Shingobee River, Minnesota: Integrating hydrologic and biological processes using sediment perfusion cores

    Sheibley, R.W.; Duff, J.H.; Jackman, A.P.; Triska, F.J.


    Inorganic N transformations were examined in streambed sediments from the Shingobee River using sediment perfusion cores. The experimental design simulated groundwater-stream water mixing within sediment cores, which provided a well-defined one-dimensional representation of in situ hydrologic conditions. Two distinct hydrologic and chemical settings were preserved in the sediment cores: the lowermost sediments, perfused with groundwater, remained anaerobic during the incubations, whereas the uppermost sediments, perfused with oxic water pumped from the overlying water column, simulated stream water penetration into the bed. The maintenance of oxic and anoxic zones formed a biologically active aerobic-anaerobic interface. Ammonium (NH4+) dissolved in groundwater was transported conservatively through the lower core zone but was removed as it mixed with aerated recycle water. Concurrently, a small quantity of nitrate (NO3-) equaling ???25% of the NH4+ loss was produced in the upper sediments. The NH4+ and NO3- profiles in the uppermost sediments resulted from coupled nitrification-denitrification, because assimilation and sorption were negligible. We hypothesize that anaerobic microsites within the aerated upper sediments supported denitrification. Rates of nitrification and denitrification in the perfusion cores ranged 42-209 and 53-160 mg N m-2 day-1, respectively. The use of modified perfusion cores permitted the identification and quantification of N transformations and verified process control by surface water exchange into the shallow hyporheic zone of the Shingobee River.

  6. 海南岛西南部砂质岸滩沉积特征%Sediment characteristics of southwest beach of Hainan Island

    王敏京; 徐军; 冉娟; 刘芳百惠


    对海南岛西南部龙沐湾70个海滩表层沉积样品与12个近岸水下沉积样品进行粒度分析,结果表明,龙沐湾海滩沉积物以砂为主,平均粒径大都在0~2φ,为粗、中砂.近岸海底沉积物总体分布较细,平均粒径大都在2~6φ,为砂-粉砂-黏土的组合.沉积物粒径呈现由岸向海逐渐变细以及沿岸线南粗北细的趋势,反映了波浪的横向分选作用,以及南来沿岸流的纵向分选作用.另外,经初步判断,龙沐湾岸滩摹本处于冲淤稳定的状态,仅白沙河口以南与丹村河口以南发育有侵蚀岸段.%Longmu Bay is located in the southwest coast of Hainan island, with sand beach along the coastline. 70 sediment samples of beach were sieved using sieve analysis method, and the grain size was analyzed using GRADISTAT software. The results indicate that sediments of beach were mostly composed of sand, and their mean grain size diameters are mainly between 0 ~ 2φ and in moderate or good sorting; 12 seafloor sediment samples near-shore were analyzed, and the result indicates that grain size diameters are mainly between 2 ~ 6φ and show a combination of sand-silt-clay. Sediment grain size is finer and finer from beach to near-shore and from south to north along the coast, which shows the sorting of wave and the influence of long-shore drift from south. Moreover, according to the simple estimation, Longmu Bay beach is relatively stable with a short part eroded in the south of Baisha estuary and south of Dancun estuary.

  7. Phenotypic and Genotypic Characteristics of Shiga Toxin-Producing Escherichia coli Isolated from Surface Waters and Sediments in a Canadian Urban-Agricultural Landscape.

    Nadya, Stephanie; Delaquis, Pascal; Chen, Jessica; Allen, Kevin; Johnson, Roger P; Ziebell, Kim; Laing, Chad; Gannon, Victor; Bach, Susan; Topp, Edward


    A hydrophobic grid membrane filtration-Shiga toxin immunoblot method was used to examine the prevalence of Shiga toxin-producing Escherichia coli (STEC) in four watersheds located in the Lower Mainland of British Columbia, Canada, a region characterized by rapid urbanization and intensive agricultural activity. STEC were recovered from 21.6, 23.2, 19.5, and 9.2% of surface water samples collected monthly from five sites in each watershed over a period of 1 year. Overall prevalence was subject to seasonal variation however, ranging between 13.3% during fall months and 34.3% during winter months. STEC were also recovered from 23.8% of sediment samples collected in one randomly selected site. One hundred distinct STEC isolates distributed among 29 definitive and 4 ambiguous or indeterminate serotypes were recovered from water and sediments, including isolates from Canadian "priority" serogroups O157 (3), O26 (4), O103 (5), and O111 (7). Forty seven isolates were further characterized by analysis of whole genome sequences to detect Shiga toxin gene (stx 1 and stx 2), intimin gene (eaeA) allelic variants and acquired virulence factors. These analyses collectively showed that surface waters from the region support highly diverse STEC populations that include strains with virulence factors commonly associated with human pathotypes. The present work served to characterize the microbiological hazard implied by STEC to support future assessments of risks to public health arising from non-agricultural and agricultural uses of surface water resources in the region.

  8. Targeting sediment management strategies using sediment quantification and fingerprinting methods

    Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.


    Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (account for particle size and organic matter selectivity processes. Contributions from potential sources type groups (channel - ditches and stream banks, roads - road verges and tracks, fields - grassland and arable topsoils) were

  9. Effects of Myriophyllum spicatum on Kinetic Characteristics of Alkaline Phosphatase in Water and Sediments%狐尾藻对水体和沉积物中碱性磷酸酶动力学特征的影响

    赵海超; 王圣瑞; 金相灿; 焦立新


    The enzyme mechanism of an inactivating eutrophic lake by submerged plants was determined by analyzing the kinetic parameter variations of alkaline phosphataae in the overlying water, interstitial water and sediments under indoor simulating conditions with the plant Myriophyllum spicatum. The results indicated that under the experimental condition Vmax of the alkaline phosphatase, the overlying water, the interstitial water and the sediments were all reduced by planting Myriophyllum spicatum. Myriophyllum spicatum inactivated the alkaline phosphatase in the overlying water and sediments obviously, and mainly inactivated the dissolved alkaline phosphatase Vmax in the interstitial water. The effect of Myriophyllum spicatum on alkaline phosphatase in the soil was higher than that in the sediment of same nutrition. The Vmax and Km of the alkaline phosphatase in the overlying water of the soil substrate were higher than those of the sediment substrate, and the Vmax and Km of the alkaline phosphatase in the soil were lower than those in the sediment. The Vmax of the alkaline phosphatase in the sediments ascended opposite to that in the overlying water. The alkaline phosphatase in the interstitial water had obvious seasonal variation and characteristics, and Vmax attained the highest value from July to August.%在室内模拟条件下栽培狐尾藻,通过对上覆水、间隙水和沉积物中碱性磷酸酶动力学参数变化的分析,揭示了沉水植物对湖泊富营养化影响的酶学机制.结果表明:在试验条件下,栽培狐尾藻使上覆水、间隙水和沉积物中的碱性磷酸酶的最大反应速率(Vmax)均有所降低;狐尾藻对上覆水和底质中碱性磷酸酶反应速率及亲和力的抑制作用比较明显,对间隙水主要是抑制溶解性碱性磷酸酶的Vmax;狐尾藻对土壤中碱性磷酸酶的影响比同一营养水平的沉积物大,与沉积物相比,土壤作底质时上覆水中碱性磷酸酶的Vmax和K(ms)(米氏

  10. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael


    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  11. Hydrogen isotopic characteristics and their genetic relationships for individual n-alkanes in plants and sediments from Zoigê marsh sedimentary environment


    To understand internal relations of their hydrogen isotopic compositions in typical marsh environment, we, using GC-IRMS analytical technique, measured the hydrogen isotopes of individual n-alkanes in the herbaceous plant, woody plant leaf, and sediments from Zoigê marsh in China. The results show significant differences in the hydrogen isotopic compositions of n-alkanes among the different kinds of plants and the different species in the same kind. δD values of n-alkanes in the herbaceous plants (from -254‰ to -184‰) are lighter than those in woody plant leaf ( from -195‰ to -142‰ ), and the hydrogen isotopic compositions of n-alkanes in K. tibetica P. are lighter than P. pratensis L. The mean δD values of n-alkanes in the sediments from Zoigê marsh reflect that they were derived from herbaceous plants, which is consistent with the peat samples being composed mainly of herbaceous plant remnants. The significant differences in hydrogen isotopic compositions of n-alkanes among the sedimentary samples are caused possibly by environment factors and the difference in input quantity of different herbaceous plants. A certain negative correlation exists between the δ13C and δD values of n-alkanes in the samples, and plant types can be distinguished using the cross plot of δD vs. δ13C values of n-alkanes in the plants. These data and recognitions provide scientific basis for hydrogen isotopic applied research of individual n-alkanes.

  12. Phenotypic and genotypic characteristics of Shiga toxin-producing Escherichia coli isolated from surface waters and sediments in a Canadian urban-agricultural landscape

    Stephanie eNadya


    Full Text Available A hydrophobic grid membrane filtration – Shiga toxin immunoblot method was used to examine the prevalence of Shiga toxin-producing Escherichia coli (STEC in four watersheds located in the Lower Mainland of British Columbia, Canada, a region characterized by rapid urbanization and intensive agricultural activity. STEC were recovered from 21.6, 23.2, 19.5 and 9.2 % of surface water samples collected monthly from five sites in each watershed over a period of one year. Overall prevalence was subject to seasonal variation however, ranging between 13.3 % during fall months and 34.3 % during winter months. STEC were also recovered from 23.8 % of sediment samples collected in one randomly selected site. One hundred distinct STEC isolates distributed among 29 definitive and 4 ambiguous or indeterminate serotypes were recovered from water and sediments, including isolates from Canadian priority serogroups O157 (3, O26 (4, O103 (5 and O111 (7. Forty seven isolates were further characterized by analysis of whole genome sequences to detect Shiga toxin gene (stx 1 and stx 2, intimin gene (eaeA allelic variants and acquired virulence factors. These analyses collectively showed that surface waters from the region support highly diverse STEC populations that include strains with virulence factors commonly associated with human pathotypes. The present work served to characterize the microbiological hazard implied by STEC to support future assessments of risks to public health arising from non-agricultural and agricultural uses of surface water resources in the region.

  13. Seafloor Topography and Surface Sediment Characteristics in the Western Sea Area of the Rizhao Port%日照港西部海域海底地形与表层沉积特征

    江飞; 李安龙; 庄振业


    The bathymetric and bottom sediment data are of great significance for port channels,anchorage planning and environmental assessment after the port construction. However,there is a lack of such data for the southward-expanded waters of the Rizhao Port.In order to provide helpful suggestions for the rational layout in the southward-ex-panded waters of the Rizhao Port,bathymetric survey and bottom sediment investiga-tion were carried out in the western 50 km2 waters of the southward-expanded sea area of the Rizhao Port by using single beam echo sounding and clam type sediment sampler. The results show that the western sea area of the Rizhao Port can be divided into four water depth zones,in which the seafloor topography and sediment characteristics can be described as the followings:1)the Channel Zone:the shallow channel zone is about 500 m wide and has a water depth deeper than 1 1 m.The isobathic lines there are parallel to the dock water front and four grades of stepped topography inclining southward are formed.In the dredging center of deep channel the water depth reaches to 24 m and a-round the dredging center the isobathic lines show a semielliptical shape with an opening to the south.At the entrance of the opening the water depth is 23 m.The bottom sedi-ments in this zone are dominated by medium sorted gravelly sand;2)In the Harbor Ba-sin Zone,which includes the nearshore area from the southern Rizhao Port to the ash dam of power plant and is highly concentrated with fishing harbors,the water depth is shallower than 6 m and increases gradually toward the south.The isobathic lines are parallel to the harbor shoreline.The seafloor is even,with a gradient ratio being 3‰. The bottom sediments are dominated by well sorted silt and sandy silt,with small a-mount of poor sorted muddy and sandy gravel occurring in the nearshore area;3)In the Estuary Zone from the Taoluo River to the Futuan River,underwater delta topography is evident.The isobathic lines shallower

  14. Numerical simulation of density current caused by temperature on the hydraulic characteristics in the radial flow sedimentation tank%辐流式沉淀池温差异重流特性的数值模拟

    刘玉玲; 张振; 魏文礼


    The paper employed computational fluid dynamics ( CFD) method to simulate the density cur-rent on the hydraulic characteristics in radial flow sedimentation tank .It used Realizable k -εmodel and set up full water in a sedimentation tank at initial time to simulate the property of density current by set -ting the different temperature between inflow water and water in tank in summer and winter .The results show that the density current with counterclockwise vortexes is generated on bottom in summer ,low-tem-perature water flows from bottom to surface ,and the maximum velocity appears near bottom of tank;the density current with clockwise vortexes is generated near top in winter;high-temperature water flows from surface to bottom and the maximum velocity appears near top of the tank .The temperature difference re-sult in density current and produced larger recirculation region in sedimentation tank and affected the wa -ter flow property and the efficiency of wastewater treatment in sedimentation tank .%用计算流体力学的方法对某辐流式沉淀池异重流现象进行数值模拟。选用Realizable k -ε湍流模型,设初始时刻沉淀池内充满水,通过设置池内水与进水的不同温度,对沉淀池冬夏季不同时刻各工况下异重流的演变规律进行二维数值模拟。结果表明:夏季产生逆时针的下异重流,低温水自底部向表面蔓延,池内最大流速在沉淀池底部附近;冬季产生顺时针的上异重流,高温水自表面向下部蔓延,池内最大流速在沉淀池表面附近。温差导致的异重流,使沉淀池内产生较大的回流区,影响了沉淀池的流态及污水处理效率。

  15. Distributional Patterns of Diatoms and Limnodrilus Oligochaetes in a Kenyan Dry Streambed Following the 1999-2000 Drought Conditions

    Mathooko, Jude M.; Mpawenayo, Balthazar; Kipkemboi, Julius K.; M'erimba, Charles M.


    Drought is a natural phenomenon experienced by many intermittent and also seasonal lotic systems. It has diverse effects on the structure and distribution of biological communities through habitat transition from wetted to terrestrial conditions. The Njoro River, a tropical stream, was drought-stressed between late 1999 and mid 2000, providing an opportunity to sample and describe the distributional patterns of diatoms and Limnodrilus oligochaetes in the vertical sediment profile. The dispersion of Limnodrilus oligochaetes with sediment depth profile varied from quasi-random (i.e. exponent k of the negative binomial distribution >2.0 or species contributing less than 1% of all the diatoms collected from the riverbed. Contagious dispersion was a common feature among the diatom species. The distribution of Fragilaria ulna was largely quasi-random in all sites, with Nitzschia amphibia and Cocconeis placentula demonstrating quasi-random distribution in the Kerma vertical sediment profile. Escape from stranding to deeper sediment strata as the drought progressed was not a universal response among the diatom species. Our results showed that drought-stress altered the structure of biological assemblages and also emphasized the need for the management of tropical lotic systems and their catchments for flow permanence.

  16. 多种环境因子交互作用对沉积物吸附阿特拉津的影响%Characteristics of Atrazine Adsorption onto Surficial Sediments Influenced by Interaction of Various Environmental Factors

    李鱼; 王志增; 王檬; 王倩


    采用自行研制的模拟自然水环境吸附解吸系统实验装置,运用24完全析因实验设计,研究4种环境因子(pH、离子强度、曝气强度和温度)共同作用对沉积物吸附阿特拉津的影响规律,并利用固定效应模型估算各环境因子主效应和高阶交互效应对沉积物吸附阿特拉津的贡献.结果表明:4种环境因子主效应对沉积物吸附阿特拉津的影响均较大(显著性水平0.05),其中曝气强度与离子强度促进沉积物吸附阿特拉津,温度与pH抑制沉积物吸附阿特拉津;4种环境因子的二阶交互效应对沉积物吸附阿特拉津的影响也较大(显著性水平0.05),效应估计值依次为温度×pH值=-73.53,曝气强度×pH值=-59.03,温度×离子强度=33.19,pH值×离子强度=27.55;在三阶交互作用中,仅有曝气强度×温度×pH值可促进沉积物吸附阿特拉津(显著性水平0.05).%In order to fully reveal the migration and transformation of the pesticide atrazine in natural water bodies we studied the characteristics of atrazine adsorption on the sediments influenced by a variety of environmental factors (such as pH, ionic strength, aeration rate, and temperature) via the simulation by means of self-designed natural water environment adsorption/desorption system experimental device based on 24 full factorial experimental design, and then employed the fixed effect model to analyze the contribution from the mathematical quantitative perspective about the main effects of various environmental factors and higher-order interaction effects to adsorption of atrazine on the sediments. It was found that the main effects of the four selected environmental factors (pH, ionic strength, aeration rate, and temperature) all have a significant impact (significance level of 0. 05) to atrazine adsorption on the sediments, in which the aeration rate and the ionic strength significantly promote atrazine adsorption on sediments, while the temperature and p


    SHEN Zhigang


    The hydrodynamic and the sediment transport patterns within the estuary of the Yangtze River are complex because of interaction of fluvial and the tidal forces, depending on freshwater discharge and tidal range. Based on the data measured in recent years, this paper discusses the characteristics of flow and sediment movement in the Yangtze River Estuary and their influences on the evolution of the estuary.

  18. The Chronology and Characteristics of Sediments Since Late Glacial in Huahai Lake, Hexi Corridor, NW China%河西走廊花海剖面晚冰期以来年代学及沉积特征研究

    王乃昂; 李卓仑; 李育; 朱金峰


    ; and the lower the temperature is good for the mineral crystallizing processes. The solubility curve of SO42- in Na2 SO4-NaCI-H2O indicated that, in low surrounding temperature, the concentration of SO42- was lower in saturation Na2 SO4, and simply increasing the lake level could not improve the ability of mirabilite solution, which was not powerful enough to break off the deposition. The main reason of the interruption for mirabilite deposition may be transient wanning events. Therefore, the rhythm deposition formation of mirabilite-silt-mirabilite indicated the periodic changes of temperature during the late glacial and the Younger Dryas. According to the characteristics of the sediments and lithology, we reconstructed the millennium-scale effective moisture conditions during the Holocene period. Before 10.47 cai ka BP, the sediments color appears dark brown, purple brown-based, indicating a typical oxidizing environment,and this oxidative environment can not appear in the deep lake environment. There are no obvious lacustrine depositions layers at the beginning of Holocene( beforel0.4 cai ka BP), 6.30 ~3.73 m, and instead the layers are formed mainly on alluvial and eolian depositions, while the eolian depositions layers sandwiched between two alluvial depositions layers. The chmate was relatively arid, and the alluvial and aeolian sediments prevailed during this period. Between 10.47 cai ka BP and 8.87 cai ka BP, the climate changed from arid to humid. During 8.87 ~ 5.5 cai ka BP the lake was relatively deep,and the climate was relatively humid. From 5.5 cai ka BP, there was little sediment in the section, showing that the lake became to dry up since then. This Holocene environmental change in millennium-scaie was different from the westerlies in the arid Central Asian areas, but it was not the same as the environmental change in the eastern part of China, which was controlled by Asian monsoon. So the Holocene environment of the Huahai Lake region was affected

  19. 城市地表颗粒物重金属分布特征及其影响因素分析%Distribution Characteristics and Their Influencing Factors of Heavy Metals in Urban Road Sediments

    李海燕; 石安邦


    As the important carrier of heavy metals, urban road sediments may threaten humans health and urban water systems, thus they have been the important research object in the field of environmental sciences. In this paper, the research significances of spatial, particle size and speciation distribution characteristics as well as their influencing factors on heavy metals in road sediments was reviewed and discussed. This study pointed out the distribution characteristics of heavy metals (i.e., Zn, Cu, Cd and Pb) based on the comparative analysis of heavy metal concentrations in different functional areas among domestic cities. The results showed that Cu and Pb concentration in urban road sediments decreased in the order of industrial area, commercial area, traffic area, residential area and leisure area;the content of Zn followed the order as industrial area>traffic area>commercial area>residential area>leisure area;Cd concentration decreased in the order of traffic area>industrial area>commercial area>residential area>leisure area, and the concentrations of Zn and Pb fluctuated obviously. In general, the heavy metal contamination of industrial, traffic and commercial areas were more serious than other functional zones in China. Moreover, compared with the corresponding heavy metals' background concentration in soil of China, Cd was found to be the most serious one among these four metals. The differences of heavy metal accumulation in road sediments between domestic and foreign cities were systematically investigated, and the results revealed that the mean concentrations of heavy metals in China were lower than the values in the developed cities in Europe and America, while the contents of these metals in large-scaled cities were higher than the mean concentration in China. Particle size distribution, chemical fraction and bioavailability of heavy metals in urban sediments were analyzed. The impact of traffic activities (i.e., traffic flow, vehicle speed, the

  20. 长潭水库沉积物磷分布特征及污染成因分析%Distribution characteristics and causes of pollution of phosphorus in sediments of Changtan Reservoir

    王沛芳; 陆海波; 王超; 常虹; 钱进; 侯俊


    The total phosphorus ( TP) and various forms of phosphorus in surface sediments were measured by the sediment phosphorus form analysis method of the standard measurement and test ( SMT ) during the period from October 2011 to July 2012 at five sampling sites in the Changtan Reservoir, in order to explore the distribution characteristics of phosphorus in the sediments of deep lakes and reservoirs. The results show that the sediments of the Changtan Reservoir were in restoration conditions, especially in the middle and lower reaches and in the summer. The water contents in the sediments and the TOC content were low in the upper reaches and high in the middle and lower reaches. The TOC content was high in the spring and summer. The average value of the TP content in the Changtan Reservoir ranged from 0.56 to 0.79 mg/g, with a spatial distribution of relatively higher levels in the middle reaches and lower levels in the upper and lower reaches. The content of Fe/Al-bound phosphorus ( Fe/Al-P) ranged from 27% to 48% of TP, with an average value of 41%. The content of Ca-bound phosphorus ( Ca-P) ranged from 16% to 25% of TP, with an average value of 19%. The content of organic phosphorus (OP) ranged from 35% to 52% of TP, with an average value of 40%. Fe/Al-P accounted for the highest content of all phosphorus forms, and it was available for algae in the water. The main source of phosphorus pollutants of the Changtan Reservoir was the settlement of overlying water.%为揭示深水湖库沉积物磷的分布特征,运用沉积物磷形态标准分析法SMT,于2011年10月至2012年7月对长潭水库库区5个采样点沉积物中的TP和各形态磷含量进行了分析。结果表明:长潭水库沉积物处于还原状态,有利于Fe/Al-P的还原溶解,其中中下游还原性比上游强,夏季还原性最强。沉积物含水率和TOC质量比上游较低,中下游较高;春季和夏季沉积物中TOC质量比较高。长潭水库TP质量比平均值在0


    Ellen WOHL; Sara RATHBURN


    Many reservoirs currently in operation trap most or all of the sediment entering the reservoir,creating sediment-depleted conditions downstream. This may cause channel adjustment in the form of bank erosion, bed erosion, substrate coarsening, and channel planform change. Channel adjustment may also result from episodic sediment releases during reservoir operation, or from sediment evacuation following dam removal. Channel adjustment to increased sediment influx depends on the magnitude, frequency, duration and grain-size distribution of the sediment releases, and on the downstream channel characteristics. Channel adjustment may occur as a change in substrate sizedistribution, filling of pools, general bed aggradation, lateral instability, change in channel planform,and/or floodplain aggradation. The increased sediment availability may alter aquatic and riparian habitat, reduce water quality, distribute adsorbed contaminants along the river corridor, and provide germination sites for exotic vegetation. Mitigation of these sedimentation hazards requires: (1)mapping grain-size distribution within the reservoir and estimating the grain-size distributions of sediment that will be mobilized through time; (2) mapping shear stress and sediment transport capacity as a function of discharge on the basis of channel units for the length of the river likely to be affected; (3) mapping potential depositional zones, and aquatic habitat and "acceptable losses," along the downstream channel, and comparing these volumes to the total sediment volume stored in the reservoir as a means of estimating total transport capacity required to mobilize reservoir sediment delivered to the channel; (4) designing discharge and sediment release regime (magnitude, frequency,duration) to minimize adverse downstream impacts; and (5) developing plans to remove, treat, contain,or track contaminants, and to restrict establishment of exotic vegetation. The North Fork Poudre River in Colorado is used to

  2. 沉积物不同有机矿质复合体对磷的吸附特征影响%Effect of organo-mineral complexes on adsorption characteristic of phosphorus on sediment

    王而力; 王嗣淇; 江明选


    采用平衡吸附法研究了西辽河沉积物不同有机矿质复合体对磷的吸附特征影响.结果表明,去除腐殖质后的沉积物对磷的吸附能力大大降低,其饱和吸附量(Γm)和吸附分配系数(k)分别只能达到原样的35.62%和9.93%,有机矿质复合体是影响磷在沉积物上吸附特征的主要因素;沉积物中的钙键有机矿质复合体对磷具有孔隙填充方式的吸附,其碳标化饱和吸附量为1157.05mg/kg,相当于原样的1.27倍;沉积物中的铁铝键有机矿质复合体在对磷吸附中发挥重要作用,其碳标化饱和吸附量可达1736.82mg/kg相当于原样的1.88倍.其吸附机制除孔隙填充方式外,还存在配位吸附;考查沉积物对磷的吸附能力不但要考虑腐殖质的含量,更要考虑腐殖质的复合形态,它也是影响沉积物对磷吸附特征的重要因素.以原样为基准,钙键有机矿质复合体、铁铝键有机矿质复合体携载的吸附态磷可分别按1.27和1.88倍进行估算.%Effect of organo-mineral complexes on adsorption characteristic of phosphorus on sediment was investigated by batch experiments of equilibrium adsorption. Results indicated that the sorption capacity on the sediment reduced dramatically after humus was removed, Normalized sorption capacity and partition coefficient only accounted for 35.62% and 9.93% of original sample, and organo-mineral complexes was a main factor in phosphorus sorption on sediment.The normalized carbon sorption capacity of Ca-bound humus was 1157.05mg/kg, which was 1.27 times of original sample, and adsorption mechanism was micro-hole function filling. The normalized carbon sorption capacity of Fe/Al-bound humus was 1736.82mg/kg, which was 1.88times of original sample, It plays an important role in phosphorus adsorption, and adsorption mechanism may be coordination adsorption apart from micro-hole function filling. Taking into account the adsorption capacity was not only organic matter

  3. Mineral magnetism and other characteristics of sediments from a sub-alpine lake (3080 m a.s.l.) in central east China and their implications on environmental changes for the last 5770 years

    Wang, Hongya; Song, Yaqiong; Cheng, Ying; Luo, Yao; Zhang, Cai'na; Gao, Yishen; Qiu, An'an; Deng, Lei; Liu, Hongyan


    A sediment sequence (SQC07) was recovered from Sanqing Chi, a small sub-alpine lake (3080 m a.s.l.) on Taibai (3767 m a.s.l.), the highest mountain in east mainland China (east of 105°). The Mountain is also the highest part and central massif of the Qinling Mountain Range functioning as the boundary between the warm temperate climate zone to the north and sub-tropical climate zone to the south in east China. Soils and debris were also sampled from the catchment of Sanqing Chi. SQC07 was AMS 14C dated. Mineral magnetism was measured for the sediment sequence and catchment samples. Particle-size, TOC and TN analysis were undertaken on SQC07, while pollen analysis was made for the sediment sequence and surface-soil samples. With the mineral magnetism of the catchment materials, the magnetic and other characteristics of SQC07 indicate the environmental changes occurring on the high altitudes of Taibai Mountain during the past 5770 years. Environments were still moderately warm and wet over 5770-5100 cal. yr BP around this sub-alpine lake. Then cold and dry conditions persisted in the period of 5100-4000 cal. yr BP. Local environments began to ameliorate from 4000 cal. yr BP onwards and were thus generally warm and wet over 4000-1200 cal. yr BP. The warmth and wetness culminated in 1200-800 cal. yr BP. During the period of 800-400 cal. yr BP, cold and arid conditions again predominated. Environments have subsequently become warm and humid since ∼400 cal. yr BP. The overall trend of the changes is coincident with what have been identified at several other sites in east mainland China and Taiwan. Presumably, the deterioration over 5100-4000 cal. yr BP marks the termination of the Holocene optimum, corresponds to or encompasses Holocene event 3, while the deterioration occurring in 800-400 cal. yr BP may correspond to LIA cooling. However, they appear to have commenced earlier than the aforementioned sites at relatively low altitudes in east mainland China or even

  4. Relationship between high-frequency sediment-level oscillations in the swash zone and inner surf zone wave characteristics under calm wave conditions

    Li Zhiqiang


    Full Text Available Swash zone topography rapidly responds to the surf zone waves. Understanding how sandy beaches respond to wave action is critical for beach erosion research, and plays a critical role in the design and maintenance of shore protection structures. The main objectives of this study were to detect the relationship between high-frequency beachface oscillations and surf zone wave characteristics under plunging breakers by using Canonical Correlation Analysis (CCA. The study site is located in Houjiangwan Bay, eastern Guangdong. Topography data were sampled at 6 min intervals. The wave characteristic parameters were calculated by spectrum method. During the field work, the beach showed a reflective state and plunging breakers controlled the surf zone. The beach cusp topography was destructed gradually. The analysis provides 4 canonical correlation processes between the beachface variations and surf zone waves, which explained 95.28% of the overall variation in the data. The result shows wave steepness, the irregularity factor and spectral broadness factor had strong impacts on the topography. The wave steepness was the most important factor for beach profile variations. The results of the present study indicate that data-driven statistical analysis, such as CCA, is useful for analyzing profile response to waves if there is strong correlation between the two variables (beach profiles and wave.

  5. Quantification of Gravel Rural Road Sediment Production

    Silliman, B. A.; Myers Toman, E.


    Unbound rural roads are thought to be one of the largest anthropogenic sources of sediment reaching stream channels in small watersheds. This sediment deposition can reduce water quality in the streams negatively impacting aquatic habitat as well as impacting municipal drinking water sources. These roads are thought to see an increase in construction and use in southeast Ohio due to the expansion of shale gas development in the region. This study set out to quantify the amount of sediment these rural roads are able to produce. A controlled rain event of 12.7 millimeters of rain over a half hour period was used to drive sediment production over a 0.03 kilometer section of gravel rural road. These 8 segments varied in many characteristics and produced from 2.0 to 8.4 kilograms of sediment per 0.03 kilometers of road with the average production over the 8 segments being 5.5 kilograms of sediment. Sediment production was not strongly correlated with road segment slope but traffic was found to increase sediment production from 1.1 to 3.9 times as much sediment after traffic use. These results will help inform watershed scale sediment budgeting, and inform best management practices for road maintenance and construction. This study also adds to the understanding of the impacts of rural road use and construction associated with the changing land use from agricultural to natural gas extraction.

  6. Pathways for arsenic from sediments to groundwater to streams: Biogeochemical processes in the Inner Coastal Plain, New Jersey, USA

    Barringer, Julia L.; Mumford, Adam; Young, Lily Y.; Reilly, Pamela A.; Bonin, Jennifer L.; Rosman, Robert


    The Cretaceous and Tertiary sediments that underlie the Inner Coastal Plain of New Jersey contain the arsenic-rich mineral glauconite. Streambed sediments in two Inner Coastal Plain streams (Crosswicks and Raccoon Creeks) that traverse these glauconitic deposits are enriched in arsenic (15–25 mg/kg), and groundwater discharging to the streams contains elevated levels of arsenic (>80 μg/L at a site on Crosswicks Creek) with arsenite generally the dominant species. Low dissolved oxygen, low or undetectable levels of nitrate and sulfate, detectable sulfide concentrations, and high concentrations of iron and dissolved organic carbon (DOC) in the groundwater indicate that reducing environments are present beneath the streambeds and that microbial activity, fueled by the DOC, is involved in releasing arsenic and iron from the geologic materials. In groundwater with the highest arsenic concentrations at Crosswicks Creek, arsenic respiratory reductase gene (arrA) indicated the presence of arsenic-reducing microbes. From extracted DNA, 16s rRNA gene sequences indicate the microbial community may include arsenic-reducing bacteria that have not yet been described. Once in the stream, iron is oxidized and precipitates as hydroxide coatings on the sediments. Arsenite also is oxidized and co-precipitates with or is sorbed to the iron hydroxides. Consequently, dissolved arsenic concentrations are lower in streamwater than in the groundwater, but the arsenic contributed by groundwater becomes part of the arsenic load in the stream when sediments are suspended during high flow. A strong positive relation between concentrations of arsenic and DOC in the groundwater samples indicates that any process—natural or anthropogenic—that increases the organic carbon concentration in the groundwater could stimulate microbial activity and thus increase the amount of arsenic that is released from the geologic materials.

  7. WAVECALC: an Excel-VBA spreadsheet to model the characteristics of fully developed waves and their influence on bottom sediments in different water depths

    Le Roux, Jacobus P.; Demirbilek, Zeki; Brodalka, Marysia; Flemming, Burghard W.


    The generation and growth of waves in deep water is controlled by winds blowing over the sea surface. In fully developed sea states, where winds and waves are in equilibrium, wave parameters may be calculated directly from the wind velocity. We provide an Excel spreadsheet to compute the wave period, length, height and celerity, as well as horizontal and vertical particle velocities for any water depth, bottom slope, and distance below the reference water level. The wave profile and propagation can also be visualized for any water depth, modeling the sea surface change from sinusoidal to trochoidal and finally cnoidal profiles into shallow water. Bedload entrainment is estimated under both the wave crest and the trough, using the horizontal water particle velocity at the top of the boundary layer. The calculations are programmed in an Excel file called WAVECALC, which is available online to authorized users. Although many of the recently published formulas are based on theoretical arguments, the values agree well with several existing theories and limited field and laboratory observations. WAVECALC is a user-friendly program intended for sedimentologists, coastal engineers and oceanographers, as well as marine ecologists and biologists. It provides a rapid means to calculate many wave characteristics required in coastal and shallow marine studies, and can also serve as an educational tool.

  8. Phosphorus Forms and Its Spatial Distribution Characteristics in Surface Sediments of Zhalong Wetland%扎龙湿地表层沉积物磷的赋存形态及空间分布特征

    叶华香; 臧淑英; 贾晓丹; 苏丹


    Different phosphorus forms have different geochemical behavior and bioavailability. Their contents and distributions contain much environmental geochemistry informatioa In this paper,total phosphorus (TP) ,organic phosphorus (OP) ,and different forms of inorganic phosphorus (IP) were analyzed by using the SMT (standards,measurements and testing harmonized protocol) method in the surface sediments of Zhalong Wetland. The spatial distribution characteristics of phosphorus forms in the surface sediments and its controlling factors were discussed. The results indicated that the contents of TP coincided with the heavy nutrition of Taihu and Chaohu Its spatial distribution lied in the core and northeast of Zhalong Wetland. TP contained IP and OP,and the content of IP was a little more than OP. In addition, their distributions were similar with the distribution of TP. The phosphorus associated with calcium (Ca-P) was the major part of IP, which was about 59. 2% of IP. Owing to high content of Ca in the north geology environmental background, the change of Ca-P spatial distribution was less than others. The grain size,organic matter,pH,dissolved oxygen (DO),etc. ,were the main controlling factors of phosphorus in sediments. From current data,it was shown that the pollutants which caused water eutrophication of Zhalong Wetland were mainly from outside. However,with the invasion of pollutants,the deterioration of ecology,and the decreasing of vegetation coverage,the P released by the sediments could be the major sources to cause water entrophication of Zhalong Wetland,especially for its core area. This research not only provides a theoretical evidence for forecasting the trophic status of the water in Zhalong Wetland,but also has great implications to the scientific management for local government%沉积物中不同形态的磷具有不同的地球化学行为和生物有效性,其含量和分布特征包含着许多环境地球化学信息.该文利用SMT法对扎龙湿地

  9. Accounting for Long Term Sediment Storage in a Watershed Scale Numerical Model for Suspended Sediment Routing

    Keeler, J. J.; Pizzuto, J. E.; Skalak, K.; Karwan, D. L.; Benthem, A.; Ackerman, T. R.


    Quantifying the delivery of suspended sediment from upland sources to downstream receiving waters is important for watershed management, but current routing models fail to accurately represent lag times in delivery resulting from sediment storage. In this study, we route suspended sediment tagged by a characteristic tracer using a 1-dimensional model that implicitly includes storage and remobilization processes and timescales. From an input location where tagged sediment is added, the model advects suspended sediment downstream at the velocity of the stream (adjusted for the intermittency of transport events). Deposition rates are specified by the fraction of the suspended load stored per kilometer of downstream transport (presumably available from a sediment budget). Tagged sediment leaving storage is evaluated from a convolution equation based on the probability distribution function (pdf) of sediment storage waiting times; this approach avoids the difficulty of accurately representing complex processes of sediment remobilization from floodplain and other deposits. To illustrate the role of storage on sediment delivery, we compare exponential and bounded power-law waiting time pdfs with identical means of 94 years. In both cases, the median travel time for sediment to reach the depocenter in fluvial systems less than 40km long is governed by in-channel transport and is unaffected by sediment storage. As the channel length increases, however, the median sediment travel time reflects storage rather than in-channel transport; travel times do not vary significantly between the two different waiting time functions. At distances of 50, 100, and 200 km, the median travel time for suspended sediment is 36, 136, and 325 years, orders of magnitude slower than travel times associated with in-channel transport. These computations demonstrate that storage can be neglected for short rivers, but for longer systems, storage controls the delivery of suspended sediment.

  10. Analysis of the transport of sediment by the Suncook River in Epsom, Pembroke, and Allenstown, New Hampshire, after the May 2006 flood

    Flynn, Robert H.


    During May 13-16, 2006, rainfall in excess of 8.8 inches flooded central and southern New Hampshire. On May 15, 2006, a breach in a bank of the Suncook River in Epsom, New Hampshire, caused the river to follow a new path. In order to assess and predict the effect of the sediment in, and the subsequent flooding on, the river and flood plain, a study by the U.S. Geological Survey (USGS) characterizing sediment transport in the Suncook River was undertaken in cooperation with the Federal Emergency Management Agency (FEMA) and the New Hampshire Department of Environmental Services (NHDES). The U.S. Army Corps of Engineers (USACE) Hydrologic Engineering Center-River Analysis System (HEC-RAS) model was used to simulate flow and the transport of noncohesive sediments in the Suncook River from the upstream corporate limit of Epsom to the river's confluence with the Merrimack River in the Village of Suncook (Allenstown and Pembroke, N.H.), a distance of approximately 16 miles. In addition to determining total sediment loads, analyses in this study reflect flooding potentials for selected recurrence intervals that are based on the Suncook River streamgage flow data (streamgage 01089500) and on streambed elevations predicted by HEC-RAS for the end of water year 2010 (September 30, 2010) in the communities of Epsom, Pembroke, and Allenstown. This report presents changes in streambed and water-surface elevations predicted by the HEC-RAS model using data through the end of water year 2010 for the 50-, 10-, 2-, 1-, 0.2-percent annual exceedence probabilities (2-, 10-, 50-, 100-, and 500-year recurrence-interval floods, respectively), calculated daily and annual total sediment loads, and a determination of aggrading and degrading stream reaches. The model was calibrated and evaluated for a 400-day span from May 8, 2008 through June 11, 2009; these two dates coincided with field collection of stream cross-sectional elevation data. Seven sediment-transport functions were evaluated

  11. Get In and Get Out: Assessing Stream Sediment Loading from Short Duration Forest Harvest Operations and Rapid Haul Road Decommissioning.

    Corrigan, A.; Silins, U.; Stone, M.


    Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.

  12. 长寿湖沉积物中磷形态的季节变化特征%Seasonal Variation Characteristics of Phosphorus Speciation in the Sediment of Changshou Lake

    郭海涛; 张进忠; 魏世强; 谢德体; 车建成


    To further know the seasonal variation characteristics of phosphorus species in lake sediment,the contents of different phosphorus species in the surface sediment sampling from Changshou Lake were determined by using the SMT sequential extraction method in July and November,2009,and March,2010.The contents of total phosphorus(TP) basically show an order of the low-water period,high-water period,and normal-water period from high to low,and the maximum appeared in Shoudao(2960.29 mg/kg) while the minimum in Guanjiakou(586.05 mg/kg).The mass fractions of phosphorus associated with hydrous ferric/aluminum oxides(Fe/Al-P) and organic phosphorus(OP) in TP at all sampling sits are in an order of the normal-water period,high-water period,and low-water period from high to low,and the maximum of Fe/Al-P appeared in Lewen(40.01%) while that of OP in the dam mouth(72.44%).The mass fraction of phosphorus bound to calcium salt(Ca-P) in TP is in an order of the low-water period,normal-water period,and high-water period,and the maximum appeared in Baibudang(15.52%).These results suggested that the phosphorus speciation in the sediment of Changshou Lake shows obviously temporal and spatial distribution characteristics,and Fe/Al-P is mainly influenced by pH of the overlying water,while OP is not apparently influenced by dissolved oxygen(DO).%为进一步了解湖泊沉积物中磷形态的季节变化特征,采用沉积物磷形态SMT提取法,在2009年7月(丰水期)和11月(平水期)、2010年3月(枯水期)监测了长寿湖表层沉积物样品中不同形态磷的含量.结果表明,长寿湖沉积物中总磷(TP)含量基本表现为丰水期〉枯水期〉平水期,枯水期寿岛TP含量最高(2 960.29 mg/kg),平水期关家河最低(586.05mg/kg);铁/铝结合态磷(Fe/Al-P)和有机磷(OP)占TP的质量分数均为平水期〉丰水期〉枯水期,2种形态的最大质量

  13. Effect of sediment particle size on polycyclic aromatic hydrocarbon biodegradation: importance of the sediment-water interface.

    Xia, Xinghui; Wang, Ran


    Mechanisms for the effects of sediment on the biodegradation of organic compounds in the aquatic environment are not clear. In this research, effects of sediment characteristics on biodegradation kinetics of chrysene and benzo[a]pyrene were studied by inoculating polycyclic aromatic hydrocarbon (PAH)-degrading bacteria. Because water and PAHs can pass a polytetrafluoroethylene membrane yet bacteria and sediment cannot, a membrane experiment was performed to compare the biodegradation rates of PAHs in water and at the sediment-water interface, providing direct evidence that the PAH biodegradation rate is enhanced by the presence of sediment. Biodegradation of PAHs in water-sediment systems was fitted to zero-order kinetics; the order of biodegradation rate in water-sediment systems with different sediment was fine silt > clay > coarse silt. Biodegradation of PAHs in water-sediment systems occurred mainly at the sediment-water interface. According to membrane experiment results, when the biodegradation kinetics was fit to a zero-order equation, the maximum specific growth rates of bacteria (1/d) at the sediment-water interface were approximately three- to fourfold those in the water phase. Furthermore, the associated mechanisms regarding the effect of sediment characteristics were analyzed by investigating the process of bacterial growth and the distribution of bacteria and PAHs between water and sediment phases.

  14. Microbial interactions with naturally occurring hydrophobic sediments: Influence on sediment and associated contaminant mobility.

    Droppo, I G; Krishnappan, B G; Lawrence, J R


    The erosion, transport and fate of sediments and associated contaminants are known to be influenced by both particle characteristics and the flow dynamics imparted onto the sediment. The influential role of bitumen containing hydrophobic sediments and the microbial community on sediment dynamics are however less understood. This study links an experimental evaluation of sediment erosion with measured sediment-associated contaminant concentrations and microbial community analysis to provide an estimate of the potential for sediment to control the erosion, transport and fate of contaminants. Specifically the paper addresses the unique behaviour of hydrophobic sediments and the role that the microbial community associated with hydrophobic sediment may play in the transport of contaminated sediment. Results demonstrate that the hydrophobic cohesive sediment demonstrates unique transport and particle characteristics (poor settling and small floc size). Biofilms were observed to increase with consolidation/biostabilization times and generated a unique microbial consortium relative to the eroded flocs. Natural oil associated with the flocs appeared to be preferentially associated with microbial derived extracellular polymeric substances. While PAHs and naphthenic acid increased with increasing shear (indicative of increasing loads), they tended to decrease with consolidation/biostabilization (CB) time at similar shears suggesting a chemical and/or biological degradation. PAH and napthenic acid degrading microbes decreased with time as well, which may suggest that there was a reduced pool of PAHs and naphthenic acids available resulting in their die off. This study emphasizes the importance that any management strategies and operational assessments for the protection of human and aquatic health incorporate the sediment (suspended and bed sediment) and biological (biofilm) compartments and the energy dynamics within the system in order to better predict contaminant

  15. Regional variation of sediment load of Asian rivers flowing into the ocean

    刘曙光; 丁坚; 华棣; 杨洪林; 李从先; 杨守业


    Study of Asian major rivers discharge to the ocean reveals variations of their water discharges and sediment loads, and local characteristic of river sediment concentrations. On the basis of this, the Asian rivers can be divided into three regions: Eurasia Arctic, East Asia, Southeast and South Asia Region. The Eurasia Arctic Region is characteristic of the lowest sediment concentration and load, while the East Asia Region is of the highest sediment concentration and higher sediment load, and the Southeast and South Asia Region yields higher sediment concentration and highest sediment load.

  16. Characteristics of sediment particle size and their response to storm surge in the Zhanjiang Mangrove Nature Reserve%湛江红树林保护区现代沉积物粒度特征及其对风暴事件的响应

    许艳; 王拓夫


    Mangrove forest sediment in different landforms reflects different hydrodynamic conditions because of the different sedimentary environments and different sediment particle size characteristics. Mangroves in different stages of development have different ability to resist the effects of waves; therefore, there are mangrove sedimentary records of storm surge. There has been little research on the particle size characteristics of mangrove sediment in coastal wetlands. In this work, surface sediment samples were collected in the Zhanjiang Mangrove National Nature Reserve in August, 2009, and then analyzed using a Mastersizer 2000 ( analysis range of 0.02 to 2 000 μm).The Zhanjiang Mangrove National Nature Reserve has a wide mangrove distribution; in this study, different geomorphic units of mangrove sediment particle size characteristics are analyzed. The mangrove sediment in the estuary is mainly composed of well-sorted silt and clay. The mangrove sediment in the bay is mainly composed of silt,but a sediment section at the Gaoqiao sampling site has high sand content. There are two possible reasons for this:one is that the region experienced a strong storm surge disaster in that period of sedimentation, which resulted in an instant rise in the water level and brought much coarse sand to be accumulated; and the other is that the region at that time was unvegetated beach in an intertidal zone without mangrove protection or with only poorly developed mangrove protection, and the sediment is normal tidal flat sand. Different particle grades and changes in clay, silt and sand contents at the Tongming sampling site can reflect the history of local sangrove development. Dating sediment using the average deposition rate can indicate the approximate time that the storm surge occurred and provide an important theoretical foundation and method for systematic research on sediment in the mangrove wetlands. Analysis shows that from 1963 to 2002, the timing of the storm surge is

  17. Distribution Characteristics and Pollution Assessment of Heavy Metals in Surface Sediments in Dagu River Wetland%大沽河湿地表层沉积物重金属分布特征及污染评价

    徐勇; 马绍赛; 陈聚法; 赵俊; 夏斌; 崔正国


    胶州湾属半封闭海湾,水体交换能力较弱,受多条河流人海影响,污染日趋加重,通过大沽河的径流量、输沙量和溶解污染物占到胶州湾人海河流的首位.根据区域特征,于2009年2、5、8、11月对大沽河湿地48个采样点表层沉积物中的Cu、Zn、Pb、Cd、Hg、As、有机碳、粒度进行测定,探讨了重金属含量和污染特征与总有机碳、粒度的关系,利用污染评价法和潜在生态风险评价法进行污染和风险分析.结果表明:胶州湾大沽河湿地表层沉积物重金属含量较低,大部分测站符合海洋沉积物质量(GB 18668-2002)Ⅰ类标准的要求.表层沉积物中Cu、Pb、Zn含量8月份最高、2月份次之、5月份最低.Pb、Hg、As 3种重金属含量在2月份最高.Cu、Pb、Zn和Cd重金属之间存在显著正相关关系,Hg与As存在明显的相关关系:除Cd和As外的4种重金属与沉积物粘土、有机碳含量之间也存在显著正相关性.重金属单因子污染程度总体较轻,属于低污染水平,污染程度依次为Hg>Cd>Pb>Cu>As>Zn.大沽河河口区表层沉积物重金属潜在生态风险总体处于较低水平,风险程度依次为Hg>Cd>Pb>Cu>As>Zn.%Jiaozhou Bay is a semi-enclosed bay of weak water exchange capacity, the pollution is increasingly heavier for the rivers into the sea, the account of river runoff, sediment and dissolved pollutants into the sea through Dagu River are the first in all the rivers for Jiaozhou Bay. According to the characteristics of Dagu Kiver, the contents of Cu, Pb, Zn, Cd, Hg, As, clay and organic carbon in the 48 surface sediments samples in the wetland of Dagu River were measured, in February, May, August, November of 2009. Firstly, the content and distributed characteristics of these heavy metals, and the relevance with different particle size and organic carbon were discussed, and methods of pollution assessment and the potential ecological risk assessment were used

  18. Uncertainty in tsunami sediment transport modeling

    Jaffe, Bruce E.; Goto, Kazuhisa; Sugawara, Daisuke; Gelfenbaum, Guy R.; La Selle, SeanPaul M.


    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. We explore sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami, study site, available input data, sediment grain size, and model. Although uncertainty has the potential to be large, published case studies indicate that both forward and inverse tsunami sediment transport models perform well enough to be useful for deciphering tsunami characteristics, including size, from deposits. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and development of hybrid modeling approaches to exploit the strengths of forward and inverse models.

  19. In-situ falling-head test for hydraulic conductivity: Evaluation in layered sediments of an analysis derived for homogenous sediments

    Burnette, Matthew C.; Genereux, David P.; Birgand, François


    The hydraulic conductivity (K) of streambeds is a critical variable controlling interaction of groundwater and surface water. The Hvorslev analysis for estimating K from falling-head test data has been widely used since the 1950s, but its performance in layered sandy sediments common in streams and lakes has not previously been examined. Our numerical simulations and laboratory experiments show that the Hvorslev analysis yields accurate K values in both homogenous sediment (for which the analysis was originally derived) and layered deposits with low-K sand over high-K sand. K from the Hvorslev analysis deviated significantly from true K only when two conditions were present together: (1) high-K sand was present over low-K sand, and (2) the bottom of the permeameter in which K was measured was at or very near the interface between high-K and low-K. When this combination of conditions exists, simulation and laboratory sand tank results show that in-situ Hvorslev K underestimates the true K of the sediment within a permeameter, because the falling-head test is affected by low-K sediment outside of (below the bottom of) the permeameter. In simulation results, the maximum underestimation (occurring when the bottom of the permeameter was at the interface of high K over low K) was by a factor of 0.91, 0.59, and 0.12 when the high-K to low-K ratio was 2, 10, and 100, respectively. In laboratory sand tank experiments, the underestimation was by a factor of about 0.83 when the high-K to low-K ratio was 2.3. Also, this underestimation of K by the Hvorslev analysis was about the same whether the underlying low-K layer was 2 cm or 174 cm thick (1% or 87% of the domain thickness). Numerical model simulations were useful in the interpretation of in-situ field K profiles at streambed sites with layering; specifically, scaling the model results to the maximum measured K at the top of the field K profiles helped constrain the likely ratio of high K to low K at field locations with

  20. Characterization of bottom sediments from Osaka Bay, Japan

    Tokunaga, S.; Hoshika, A.; Tatsumoto, H.


    The physical, chemical, and dewatering characteristics of 19 bottom sediments from Osaka Bay, Japan, have been analyzed to aid in the development of sediments in the coastal bay area. The sediments in the east near Osaka Port were highly polluted from the influence of human activities and were difficult to dewater. These sediments were composed of fine particles, low in pH, zetapotential, and initial settling rate, and were high in ignition loss, metal concentrations, compression volume, specific resistance, cake water content, and drying index. However, the sediments near Akashi Channel showed the reverse where they are affected by strong tidal current. A correlation analysis has been made of all the parameters. There are significant relationships between all the dewatering parameters. Therefore, sediments difficult to dewater by gravity settling are also difficult to dewater by vacuum filtration and solar evaporation. Sediments containing fine particles and pollutants are difficult to dewater. Several forms of pollutants can occur in the sediments.


    田林锋; 胡继伟; 秦樊鑫; 黄先飞; 刘峰; 罗桂林; 金梅


    Eight heavy metals(Cd,Pb,As,Hg,Cu,Zn,Fe and Mn) in 13 surface sediment samples collected from Hongfeng Lake in the karstic area of Guizhou Province,were analyzed to study contamination characteristics of heavy metals,and the potential ecological risk index(RI) method was employed to assess the potential risk induced by these heavy metals.The results obtained in this study indicate that the concentrations of these heavy metals follow the order: Fe Mn Zn Cu As Pb Cd Hg.Levels of the heavy metals in the north part of the lake were generally higher than those in the south part.Statistical analysis suggests correlations among Al,K,Ca,Na,P and the eight heavy metals,demonstrating the complex factors affecting the distribution characteristics of heavy metals in sediments.Ca showed significant negative correlation with most of the heavy metals,while the rest of the elements had positive correlations with the heavy metals.According to the ecological risk assessment,Hongfeng Lake might face a regional water pollution,and the ecological risk caused by the heavy metals in the north part of the lake was generally higher than that in the south part.Cd and Hg were the major contributors to potential ecological risk index among these heavy metals,and exerted a direct influence of ecological risk on the lake.%为了研究喀斯特高原深水湖泊沉积物中重金属元素的地球化学特征,以贵州红枫湖为研究对象,分析了该湖13个采样点表层沉积物中的Cd、Pb、As、Hg、Cu、Zn、Fe、Mn 8种重金属的含量分布特征,并采用潜在生态危害指数法(R I)与地统计分析对其表层沉积物中重金属生态风险性进行了评价与分析.结果表明,红枫湖沉积物中的重金属浓度分布特征为:Fe〉Mn〉Zn〉Cu〉As〉Pb〉Cd〉Hg;以花鱼洞-花鱼洞大桥为界,北湖沉积物中重金属含量普遍高于南湖湖区.相关性分析表明,A、lK、Ca、Na、P与这8种重金属表现出一定的相关性,其

  2. Seafloor and sediment characteristics in INDEX AREA

    Sharma, R.; Nath, B.N.; Valsangkar, A.B.; Khadge, N.H.; Gupta, S.M.; Parthiban, G.

    packed and have low compaction. Based on radiolarian fossil zonations, the biostratigraphic ages observed in majority of the cores show youngest radiolarian zone Buccinosphaecra invaginata in the top 30-35 cms and indicates that the stratification...

  3. Sediment transport capacity of hyperconcentrated flow


    As one of the most important components of river mechanics,sediment transport capacity of sediment-laden flows has attracted much attention from many researchers working on river mechanics and hydraulic engineering. Based on the time-averaged equation for a turbulent energy equilibrium in solid and liquid two-phase flow,an expression for the efficiency coefficient of suspended load movement was derived for the two-dimensional,steady,uniform,fully-developed turbulent flow. A new structural expression of sediment transport capacity was achieved. Using 115 runs of flume experimental data,which were obtained through two kinds of sediment transport experiments in the state of equilibrium,in combination with the basic rheological and sediment transporting characteristics of hyperconcentrated flow,the main parameters in the structural expression of sediment transport capacity were calibrated,and a new formula of sediment transport capacity for hyperconcentrated flow was developed. A large amount of field data from the Yellow River,Wuding River,and Yangtze River,etc. were adopted to verify the new formula and good agreement was obtained. These results above contribute to an improved theoretical system of river mechanics and a reliable tool for management of rivers carrying high concentration of sediments.

  4. Sediment transport capacity of hyperconcentrated flow

    SHU AnPing; FEI XiangJun


    As one of the most important components of river mechanics, sediment transport capacity of sediment-laden flows has attracted much attention from many re-searchers working on river mechanics and hydraulic engineering. Based on the time-averaged equation for a turbulent energy equilibrium in solid and liquid two-phase flow, an expression for the efficiency coefficient of suspended load movement was derived for the two-dimensional, steady, uniform, fully-developed turbulent flow. A new structural expression of sediment transport capacity was achieved. Using 115 runs of flume experimental data, which were obtained through two kinds of sediment transport experiments in the state of equilibrium, in combi-nation with the basic rheological and sediment transporting characteristics of hy-perconcentrated flow, the main parameters in the structural expression of sediment transport capacity were calibrated, and a new formula of sediment transport ca-pacity for hyperconcentrated flow was developed. A large amount of field data from the Yellow River, Wuding River, and Yangtze River, etc. were adopted to verify the new formula and good agreement was obtained. These results above contribute to an improved theoretical system of river mechanics and a reliable tool for man-agement of rivers carrying high concentration of sediments.

  5. 沙尘在防沙堤附近沉积特性的数值模拟%Numerical Simulation on Sedimentation Characteristics of Sand Dust Around Sand Preventing Dyke

    王志强; 何艺峰; 黄晟敏; 李国申; 高鸿恩; 富宝锋


    为研究沙尘在防沙堤附近的沉积特点,基于FLUENT软件,采用标准K-ε湍流模型和DPM模型对沙尘在防沙堤附近的运动轨迹进行数值模拟.结果表明,沙尘的运动轨迹受自身粒径、风速及防沙堤迎风面坡度的综合影响,沙粒粒径越小,风速越大,防沙堤迎风面坡度越缓,沙粒越过防沙堤的能力越强;除风速较低时部分小粒径颗粒沉积在防沙堤后端外,其余情况下沙尘沉积主要发生在防沙堤前端.%To study the sedimentation characteristics of sand dust around sand preventing dyke, the particle tracks were simulated by the standard A' -e model and DPM model based on FLUENT software. The results show that particles moving tracks are affected by particles size, wind velocity and sand preventing dyke l/h ratio of windward side synthetically. The sand dust quantity passing sand preventing dyke increases with wind velocity and l/h, and decreases but the case is just converse with particle size. Customarily most sand dust accumulate in front of the sand preventing dyke, only a little fine particles accumulate in the leeward at lower wind speed.

  6. Environmental effects of hydrothermal alteration and historical mining on water and sediment quality in Central Colorado

    Church, S.E.; Fey, D. L.; Klein, T.L.; Schmidt, T.S.; Wanty, R.B.; deWitt, E.H.; Rockwell, B.W.; San, Juan C.A.


    The U.S. Geological Survey conducted an environmental assessment of 198 catchments in a 54,000-km2 area of central Colorado, much of which is on Federal land. The Colorado Mineral Belt, a northeast-trending zone of historical base- and precious-metal mining, cuts diagonally across the study area. The investigation was intended to test the hypothesis that degraded water and sediment quality are restricted to catchments in which historical mining has occurred. Water, streambed sediment, and aquatic insects were collected from (1) catchments underlain by single lithogeochemical units, some of which were hydrothermally altered, that had not been prospected or mined; (2) catchments that contained evidence of prospecting, most of which contain hydrothermally altered rock, but no historical mining; and (3) catchments, all of which contain hydrothermally altered rock, where historical but now inactive mines occur. Geochemical data determined from catchments that did not contain hydrothermal alteration or historical mines met water quality criteria and sediment quality guidelines. Base-metal concentrations from these types of catchments showed small geochemical variations that reflect host lithology. Hydrothermal alteration and mineralization typically are associated with igneous rocks that have intruded older bedrock in a catchment. This alteration was regionally mapped and characterized primarily through the analysis of remote sensing data acquired by the ASTER satellite sensor. Base-metal concentrations among unaltered rock types showed small geochemical variations that reflect host lithology. Base-metal concentrations were elevated in sediment from catchments underlain by hydrothermally altered rock. Classification of catchments on the basis of mineral deposit types proved to be an efficient and accurate method for discriminating catchments that have degraded water and sediment quality. Only about 4.5 percent of the study area has been affected by historical mining

  7. Ocean Sediment Thickness Contours

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  8. National Geochemical Database: Sediment

    U.S. Geological Survey, Department of the Interior — Geochemical analysis of sediment samples from the National Geochemical Database. Primarily inorganic elemental concentrations, most samples are of stream sediment in...

  9. Indicators: Sediment Enzymes

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  10. National Geochemical Database: Sediment

    U.S. Geological Survey, Department of the Interior — Geochemical analysis of sediment samples from the National Geochemical Database. Primarily inorganic elemental concentrations, most samples are of stream sediment...

  11. Center for Contaminated Sediments

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers Center for Contaminated Sediments serves as a clearinghouse for technology and expertise concerned with contaminated sediments. The...

  12. Selected Metals in Sediments and Streams in the Oklahoma Part of the Tri-State Mining District, 2000-2006

    Andrews, William J.; Becker, Mark F.; Mashburn, Shana L.; Smith, S. Jerrod


    The abandoned Tri-State mining district includes 1,188 square miles in northeastern Oklahoma, southeastern Kansas, and southwestern Missouri. The most productive part of the Tri-State mining district was the 40-square mile part in Oklahoma, commonly referred to as 'the Picher mining district' in north-central Ottawa County, Oklahoma. The Oklahoma part of the Tri-State mining district was a primary producing area of lead and zinc in the United States during the first half of the 20th century. Sulfide minerals of cadmium, iron, lead, and zinc that remained in flooded underground mine workings and in mine tailings on the land surface oxidized and dissolved with time, forming a variety of oxide, hydroxide, and hydroxycarbonate metallic minerals on the land surface and in streams that drain the district. Metals in water and sediments in streams draining the mining district can potentially impair the habitat and health of many forms of aquatic and terrestrial life. Lakebed, streambed and floodplain sediments and/or stream water were sampled at 30 sites in the Oklahoma part of the Tri-State mining district by the U.S. Geological Survey and the Oklahoma Department of Environmental Quality from 2000 to 2006 in cooperation with the U.S. Environmental Protection Agency, and the Quapaw and Seneca-Cayuga Tribes of Oklahoma. Aluminum and iron concentrations of several thousand milligrams per kilogram were measured in sediments collected from the upstream end of Grand Lake O' the Cherokees. Manganese and zinc concentrations in those sediments were several hundred milligrams per kilogram. Lead and cadmium concentrations in those sediments were about 10 percent and 0.1 percent of zinc concentrations, respectively. Sediment cores collected in a transect across the floodplain of Tar Creek near Miami, Oklahoma, in 2004 had similar or greater concentrations of those metals than sediment cores collected at the upstream end of Grand Lake O' the Cherokees. The greatest concentrations of

  13. Physical and chemical characteristics including total and geochemical forms of phosphorus in sediment from the top 30 centimeters of cores collected in October 2006 at 26 sites in Upper Klamath Lake, Oregon

    Simon, Nancy S.; Ingle, Sarah N.


    μThis study of phosphorus (P) cycling in eutrophic Upper Klamath Lake (UKL), Oregon, was conducted by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation. Lakebed sediments from the upper 30 centimeters (cm) of cores collected from 26 sites were characterized. Cores were sampled at 0.5, 1.5, 2.5, 3.5, 4.5, 10, 15, 20, 25, and 30 cm. Prior to freezing, water content and sediment pH were determined. After being freeze-dried, all samples were separated into greater than 63-micron (μm) particle-size (coarse) and less than 63-μm particle-size (fine) fractions. In the surface samples (0.5 to 4.5 cm below the sediment water interface), approximately three-fourths of the particles were larger than 63-μm. The ratios of the coarse particle-size fraction (>63 μm) and the fine particle-size fraction (<63 μm) were approximately equal in samples at depths greater than 10 cm below the sediment water interface. Chemical analyses included both size fractions of freeze-dried samples. Chemical analyses included determination of total concentrations of aluminum (Al), calcium (Ca), carbon (C), iron (Fe), poorly crystalline Fe, nitrogen (N), P, and titanium (Ti). Total Fe concentrations were the largest in sediment from the northern portion of UKL, Howard Bay, and the southern portion of the lake. Concentrations of total Al, Ca, and Ti were largest in sediment from the northern, central, and southernmost portions of the lake and in sediment from Howard Bay. Concentrations of total C and N were largest in sediment from the embayments and in sediment from the northern arm and southern portion of the lake in the general region of Buck Island. Concentrations of total C were larger in the greater than 63-μm particle-size fraction than in the less than 63-μm particle-size fraction. Sediments were sequentially extracted to determine concentrations of inorganic forms of P, including loosely sorbed P, P associated with poorly crystalline Fe oxides, and P

  14. 黄河口表层沉积物中重金属的环境地球化学特征%Environmental Characteristics of Heavy Metals in Surface Sediments from the Huanghe Estuary

    吴斌; 宋金明; 李学刚


    The contents of Cu, Pb, Zn, Cr, As and Hg in surface sediment from 14 sampling sites in the Huanghe estuary during July-August, 2011 were measured to investigate environmental geochemical characteristics of heavy metals related to multiple factors. The distribution, relationship with fine fraction and TOC, and sediment quality assessment concerning heavy metals were analyzed. The results showed that average concentrations of Cu, Pb, Zn, Cr, As and Hg in the Huanghe estuary were (16.5±2.7), (16.0±3.4), (21.0±3.3), (17.4±3.1), (6.5±1.2), (0. 044 4 ± 0. 030 7 ) mg·kg-1 , respectively, which were lower than those in other typical areas along the coast of China. The distribution of metals displayed higher profiles in south than that in north of the Huanghe estuary, with a trend of increase seaward, especially for stations in southwest of the Laizhou bay. The insignificant correlation among metals indicated the complex sources of heavy metals in flood season. Pearson correlation was also conducted between metal contents and percentage of fine particulates and TOC, which was also insignificant, suggesting heavy metal concentration and distribution in the study region were also controlled by other factors except grain size and TOC. There was a good correlation between clay fraction and TOC (r = 0.724, P < 0. 05 ) , indicating TOC tends to accumulate in clay. Compared with variety of background values and an internationally used consensus-based sediment quality guidelines ( CBSQGs) for saltwater ecosystem, heavy metals in surface sediments from the Huanghe estuary implied a low probability of toxic effect, despite a sharp contamination trend pertaining to Hg and Pb since 1980s.%为了探讨多重环境因素变化下黄河口沉积物中重金属的环境地球化学行为,研究了2011年7~8月黄河口14个表层沉积物样品中Cu、Pb、Zn、Cr、As和Hg等6种重金属的分布特征、环境影响因素及其生态风险.结果表

  15. Electrodialytic remediation of sediments

    Jensen, Pernille Erland

    often hinders this usage. Hence, for both types of sediments, expensive deposition at hazardous waste landfills is required. Electrodialysis is presently being developed as an alternative method for treatment of such contaminated sediments. Heavy metals are removed by treating the sediments...

  16. Studies on organic carbon, nitrogen and phosphorous in the sediments of Mandovi Estuary, Goa

    Nasnolkar, C.M.; Shirodkar, P.V.; Singbal, S.Y.S.

    Sediment organic carbon, total nitrogen, total phosphorous and hydrography of the overlying waters of the estuarine region in Mandovi Estuary, Goa, India have been studied. The relationship of carbon and nutrients with sediment characteristics...

  17. Organic carbon in the sediments of the lower reaches of Periar River

    Devi, K.S.; Venugopal, P.; Sankaranarayanan, V.N.

    Sediments are indicators of the quality of water overlying them and hence, useful in the assessment of environmental pollution. Temporal and spatial variations in sediment characteristics and organic carbon content from 9 stations in the lower...

  18. Sediment rarefaction resuspension and contaminant release under tidal curren- ts

    程鹏达; 朱红伟; 钟宝昌; 王道增


    Based on experiment in tidal flume, this paper analyzes the sediment rarefactive phenomenon and hydraulic characteristics of sediment resuspension with different physical properties under the effect of tidal current. According to this experiment, sediment resuspension is related to the hydraulic characteristics of overlying water and its own dry density, namely the moisture content of sediment and deposition time. Generally, river sediment can be classified into the upper layer of floating sludge and lower layer of deposit sediment. Incipient velocity goes higher as the sediment layer goes thicker. Based on the experiment, incipient velocity formula of sediment can be obtained. There is a cohesive force among natural fine sediment whose resuspension is almost irrelevant to their diameters. Therefore, the critical incipient velocity is determined by the cohesive force instead of particle diameter. The lower layer of deposit sediment is generally not so easy to start up. And it will be rarified and release into the overlying water when contacting with overlying water. However, this rarefaction release velocity is gentle and slow. Under the same flow condition, annual loss amount of lower layer deposited sediment is about one fifth of upper layer of floating sediment. Flow velocity of tidal river and variation of the water level are asymmetrical, both of which vary under different tidal cycles. During long tidal cycle, flow velocity and water level change in the same phase and amplitude with tide. During the whole ebb and flow, flow direction does not change as the water level goes under the influence of acceleration and deceleration. As the tide cycle increases, the incipient velocity of sediment goes higher. This means that the long period tide cycle plays buffer effect on the resuspension of sediment, which makes the sediment not so easy both to start up and to suspend.

  19. Stream-sediment geochemistry in mining-impacted streams : sediment mobilized by floods in the Coeur d'Alene-Spokane River system, Idaho and Washington

    Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed


    below the confluence of the North and South Forks, and then increase again downstream of the gradient flattening below Cataldo. Metal contents of suspended sediment in the Spokane River below Coeur d'Alene Lake were comparable to those of suspended sediment in the main stem of the Coeur d'Alene River above the lake during the 1997 spring runoff, but with somewhat higher Zn contents. Daily suspended-sediment loads were about 100 times larger in the 1996 flood (50-100-year recurrence interval) than in the smaller 1997 floods (2-5-year recurrence intervals). Significant differences in metal ratios and contents are also apparent between the two flood types. The predominant source of suspended sediment in the larger 1996 flood was previously deposited, metal-enriched flood-plain sediment, identified by its Zn/Pb ratio less than 1. Suspended sediment in the smaller 1997 floods had metal ratios distinct from those of the flood-plain deposits and was primarily derived from metal-enriched sediment stored within the stream channel, identified by a Zn/Pb ratio greater than 1. Sediment deposited during overbank flooding on the immediate streambank or natural levee of the river typically consists of sandy material with metal ratios and contents similar to those of the sandy streambed sediment in the adjacent river reach. Samples of overbank deposits in backlevee marshes collected after the 1996 flood have metal ratios similar to those of peak-flow suspended sediment in the same river reach, but generally lower metal contents.

  20. 密云水库上游流域次降雨坡面产流产沙特征%Characteristics of runoff and sediment during individual rainfall in upper area of Miyun Reservoir

    何杨洋; 王晓燕; 段淑怀


    Rainfall is the main factor driving surface runoff and soil erosion. In order to clarify the characteristics of individual rainfall runoff and soil erosion in upper area of Miyun Reservoir and the impact of rainfall depth and intensity on surface runoff and soil erosion under different land use types with various slopes, data on rainfall runoff and soil erosion of 213 individual rainfalls in experimental plots of Shixia watershed from 2006 to 2010 were collected and analyzed. Clustering analysis, variance analysis and correlation analysis was conducted, and the results showed that: 1) The critical period to implement soil and water conservation measures was in July and August of each year. When the rainfall depth of 24h was larger than 10 mm, the water and soil conservation measures should be adopted; 2) In upper area of Miyun Reservoir, the rainfall could be divided into 3 different types according to rainfall depth and intensity. The main rainfall type in this region was the low precipitation with low intensity, although it couldn’t drive soil loss substantially. Across the land-uses of bare land, arable land and forestland, high depth but medium intensity rainfall is always the major reason that should be responsible for surface runoff and soil erosion. While, in the grass land, medium depth but high intensity rainfall was the main type causing surface runoff and soil erosion; 3) The runoff depth and sediment yield of bare land was always the highest among different land-use patterns. For the medium precipitation with high intensity, forestland can greatly reduce the runoff in comparison with bare land. While, for low precipitation with low intensity and high precipitation but with medium intensity, the runoff reduction efficiency in the arable land was very low, while the efficiency was extremely high in the grassland and forestland. The reduction of sediment had not shown any significant difference across these land-uses; 4) The relationship between runoff

  1. Sediment chemoautotrophy in the coastal ocean

    Vasquez-Cardenas, Diana; Meysman, Filip J. R.; van Breugel, Peter; Boschker, Henricus T. S.


    oxidation. Sediments with an O2-H2S interface exhibited highest chemoautotrophy activity in the top centimeter via canonical sulfur oxidation, whereas in the presence of electrogenic sulfur oxidation a uniform distribution of chemoautotrophy throughout the top centimeters of the sediment was evidenced. Lowest dark carbon fixation was found in permeable advective-driven sediments with deep oxygen penetration resulting in higher subsurface than surface activity. Hence, the depth-distribution of chemoautotrophy in coastal sediments varies due to several biogeochemical characteristics such as grain size, organic carbon content, presence of filamentous sulfur oxidizing bacteria, and macrofaunal activity.

  2. 江汉平原东北缘麻城剖面磁化率特征及气候环境意义%Sediment Magnetism Characteristics and Its Climatic Environment Significance of Northeast Margin of Jianghan Plain

    张玉芬; 李长安; 孙习林; 毛欣; 高孟秋; 熊德强; 王金鑫


    In order to reveal the sediment magnetism characteristics and its climatic environment evolution since Late Pleistocene of the Jianghan plain,we collected magnetic susceptibility samples from Macheng,the northeast margin of the Jianghan plain, for analysis.The results show that the mass susceptibility of magnetic materials in Macheng profile is relatively low(10.85 × 10 -8 m3 ·kg-1 on average),and the variation range of mass susceptibility is narrow (5.76×10 -8 -23.39 ×10 -8 m3 ·kg-1 ). However,the variation range of frequency susceptibility is relatively wide (5.35%-50.35% and 24.71% on average),which shows that the content of SP (super paramagnetism)particulate is high.The cyclic wave characteristics of magnetic susceptibil-ity and frequency magnetic susceptibility data suggest that the paleoclimate environment of this region could be divided into 7 evolution phases.According to the chronological data,it is concluded that the sedimentary environment of this region has un-dergone limnetic facies sedimentary stage,lacustrine sedimentary stage,swamp sedimentary stage in flood plain since Late Pleistocene,whereas the climate has undergone the phased variation of humid- dry-cold- warm-wet- dry-cool- dry-cold-humid-dry (drought)and cool,which is consistent with the global climate change characteristics since Late Pleistocene.%为了探讨和揭示江汉平原晚更新世以来沉积物磁学特征和该区的气候环境演变规律,对新近发现的位于江汉平原东北缘的麻城剖面进行了磁化率样品的采集和测试与对应年代学分析,结果表明:(1)麻城剖面沉积物质量磁化率值偏低,平均值为10.85×10-8 m3· kg-1,全剖面变化不大,为5.76×10-8~23.39×10-8 m3· kg-1,但频率磁化率波动较大,分布于5.35%~50.35%,平均值为24.71%,显示具有较高的超顺磁性颗粒(super paramagnetism,SP)含量;(2)根据磁化率和频率磁化率曲线的旋回波动特点,结合年代学测试结果,将该区


    Wenxue LI; Jixiang LIU; Zhanwei WAN


    Small runoff, large sediment load, and incompatible relationship of flow and sediment load are very important characteristics of the Yellow River. They are also the crux of the most prominent problems of the Yellow River. To solve these problems, the regimes of flow and sediment load have to be improved by increasing water, reducing sediment load, and by using reservoirs to regulate flow and sediment load. The results of experiments for regulating the flow and sediment load in the last three years by the Xiaolangdi Reservoir have indicated that this measure is a realistic and effective way to mitigate the prominent problems in flood control of the Lower Yellow River at present and in the near future. However, the regulation system is still imperfect. It is advisable to speed up the pace of research and construction of the system for regulating flow and sediment load.




    By means of a test flume with semi-circular cross-section, bedload and suspended-sediment transport of non-cohesive material have been studied in transient flow. The experimental facility enables us to investigate the time evolution of friction and transport parameters. Preliminary measurements with a fixed bottom instead of a sediment bed yield a reliable assessment of flow and friction characteristics. Time sequence in unsteady flow of the relevant parameters is revealed. The influence of turbulence variation and shear stress variation on the transport is investigated. As existing transport equations are found to be in poor agreement with experimental data, a new "engineering" concept is constructed which relates friction velocity to transport.

  5. Multi-Fraction Bayesian Sediment Transport Model

    Mark L. Schmelter


    Full Text Available A Bayesian approach to sediment transport modeling can provide a strong basis for evaluating and propagating model uncertainty, which can be useful in transport applications. Previous work in developing and applying Bayesian sediment transport models used a single grain size fraction or characterized the transport of mixed-size sediment with a single characteristic grain size. Although this approach is common in sediment transport modeling, it precludes the possibility of capturing processes that cause mixed-size sediments to sort and, thereby, alter the grain size available for transport and the transport rates themselves. This paper extends development of a Bayesian transport model from one to k fractional dimensions. The model uses an existing transport function as its deterministic core and is applied to the dataset used to originally develop the function. The Bayesian multi-fraction model is able to infer the posterior distributions for essential model parameters and replicates predictive distributions of both bulk and fractional transport. Further, the inferred posterior distributions are used to evaluate parametric and other sources of variability in relations representing mixed-size interactions in the original model. Successful OPEN ACCESS J. Mar. Sci. Eng. 2015, 3 1067 development of the model demonstrates that Bayesian methods can be used to provide a robust and rigorous basis for quantifying uncertainty in mixed-size sediment transport. Such a method has heretofore been unavailable and allows for the propagation of uncertainty in sediment transport applications.

  6. Grain Size Characteristics of Paleo-Flood Sediments at the Yuxi Site in Chongqing%重庆市玉溪遗址古洪积地层的粒度特征

    李中轩; 闫慧; 朱诚; 吴国玺


    通过玉溪遗址T0403探方11个古洪积层粒度参数分析,发现该遗址古洪积层的特征是:①遗址古洪积层粒度频率曲线为单峰正偏,分选差,概率累积曲线为典型三段式,且推移质组分〉40%;②洪积层角闪石、磷灰石等不稳定矿物含量高于现代洪水层,表明古洪积层主要为近源沉积。联系到古洪积层形成期(6.3~7.5 ka B.P.)属于全新世大暖期的高温波动期,干湿波动是造成玉溪地区洪水频发的主要原因,同时根据遗址文化地层出土的器物判断,古洪积层沉积粒度特征变化与新石器人类的农业生产活动有关。%Based on the grain-size parameters of 11 paleo-flood layers in the trench of T0403 at the Yuxi Site of Chongqing,this article compared them with modern flood deposits and discerned the differences for the sake of sedimentary dynamics and provenance.The paleo-flood deposits were characterized by:(a)grain size frequency curves were single peak and positive skewness,and the sorting was poor.The cumulative probability lines appeared typical three-segmented patterns,and the bed-loading fractions exceeded 40%;(b) higher concentration of instable heavy minerals in the paleo-flood deposits indicated that the ancient alluvial components were near-sourced deposition;(c) the forming stage(6.3 ~ 7.5 ka B.P.) of paleo-flood deposits was in the Holocene climatic fluctuation period with frequent wet-dry changes with frequent floods;and(d) according to the unearthed artifacts and animal bones in the cultural sediments,human activities of primitive agriculture made an important impacts upon grain-size characteristics of paleo-flood layers in later phases of the Yuxi Site.Consequently,more and more anthropic disturbances had been involved in the big cycle of the nature with the advent of agricultural time.

  7. Dual-domain mass-transfer parameters from electrical hysteresis: theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    Briggs, Martin; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, Jr., John W.


    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  8. What controls sediment flux in dryland channels?

    Michaelides, K.; Singer, M. B.


    Theories for the development of longitudinal and grain size profiles in perennial fluvial systems are well developed, allowing for generalization of sediment flux and sorting in these fluvial systems over decadal to millennial time scales under different forcings (e.g., sediment supply, climate changes, etc). However, such theoretical frameworks are inadequate for understanding sediment flux in dryland channels subject to spatially and temporally discontinuous streamflow, where transport capacity is usually much lower than sediment supply. In such fluvial systems, channel beds are poorly sorted with weak vertical layering, poorly defined bar forms, minimal downstream fining, and straight longitudinal profiles. Previous work in dryland channels has documented sediment flux at higher rates than their humid counterparts once significant channel flow develops, pulsations in bed material transport under constant discharge, and oscillations in dryland channel width that govern longitudinal patterns in erosion and deposition. These factors point to less well appreciated controls on sediment flux in dryland valley floors that invite further study. This paper investigates the relative roles of hydrology, bed material grain size, and channel width on sediment flux rates in the Rambla de Nogalte in southeastern Spain. Topographic valley cross sections and hillslope and channel particle sizes were collected from an ephemeral-river reach. Longitudinal grain-size variation on the hillslopes and on the channel bed were analysed in order to determine the relationship between hillslope supply characteristics and channel grain-size distribution and longitudinal changes. Local fractional estimates of bed-material transport in the channel were calculated using a range of channel discharge scenarios in order to examine the effect of channel hydrology on sediment transport. Numerical modelling was conducted to investigate runoff connectivity from hillslopes to channel and to examine the

  9. Stabilization of bottom sediments from Rzeszowski Reservoir

    Koś Karolina


    Full Text Available The paper presents results of stabilization of bottom sediments from Rzeszowski Reservoir. Based on the geotechnical characteristics of the tested sediments it was stated they do not fulfill all the criteria set for soils in earth embankments. Therefore, an attempt to improve their parameters was made by using two additives – cement and lime. An unconfined compressive strength, shear strength, bearing ratio and pH reaction were determined on samples after different time of curing. Based on the carried out tests it was stated that the obtained values of unconfined compressive strength of sediments stabilized with cement were relatively low and they did not fulfill the requirements set by the Polish standard, which concerns materials in road engineering. In case of lime stabilization it was stated that the tested sediments with 6% addition of the additive can be used for the bottom layers of the improved road base.

  10. Flux saturation length of sediment transport.

    Pähtz, Thomas; Kok, Jasper F; Parteli, Eric J R; Herrmann, Hans J


    Sediment transport along the surface drives geophysical phenomena as diverse as wind erosion and dune formation. The main length scale controlling the dynamics of sediment erosion and deposition is the saturation length Ls, which characterizes the flux response to a change in transport conditions. Here we derive, for the first time, an expression predicting Ls as a function of the average sediment velocity under different physical environments. Our expression accounts for both the characteristics of sediment entrainment and the saturation of particle and fluid velocities, and has only two physical parameters which can be estimated directly from independent experiments. We show that our expression is consistent with measurements of Ls in both aeolian and subaqueous transport regimes over at least 5 orders of magnitude in the ratio of fluid and particle density, including on Mars.

  11. 气泡对沉积物声学特性影响研究:以东海沉积物为例∗%Effect of gas bubble on acoustic characteristic of sediment:taking sediment from East China Sea for example

    李红星; 陶春辉; 刘富林; 周建平


    The effect of gas bubble on acoustic characteristic of sediment is important for ocean science, ocean geology, ocean geophysics, etc. Twenty five samples of ocean bottom sediments are extracted through gravity sampling equipment from the East China Sea and are sealed in PVC pipes for storage in order to study the effect of gas bubble on acoustic characteristic of sediment. In order to obtain the gas content of sediment, in this the paper the Micro-CT scanning technology is introduced into sediment measuring method. The different X ray absorption rates of water, gas and solid particles in sediment samples are obtained through Micro-CT scanning using Siemens’ Micro-CT scanner. The gas volume content and water volume content in sediment can be obtained according to CT number distribution. The acoustic measurement is carried out in laboratory using intelligent nonmetal ultrasonic detector and the 40 kHz waves are launched from one side of the sediment sample and obtained from another side. The acoustic attenuation can be obtained according to the amplitudes of launched and received waves and the acoustic velocity can be obtained according to travelling time when acoustic wave goes through the sediment. The attenuation of sediment sample is about a few to twenty and the velocity is about 1100 to 1700 m·s−1. By mean of analysis of regression, the correlations are obtained among gas content, fluid content, acoustic velocity, attenuation and power function, which better match the measuring data. The result of study indicates that slight augment of gas content can cause sharp decrease of acoustic velocity and rapid increase of acoustic attenuation. The increment and decrement decrease obviously when the gas content exceeds 10%. The result in this paper is useful to explore oil and gas seismic.%气泡对海底沉积物的声学物理特性的影响在海洋学、海洋地质学和海洋地球物理学等领域中都有着重要的研究意义。利用Micro-CT扫描仪

  12. Sediment Core Laboratory

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments. DESCRIPTION: The multisensor core logger measures...

  13. Sediment Core Laboratory

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments.DESCRIPTION: The multisensor core logger measures...

  14. Dynamics of Cohesive Sediments

    Johansen, Claus

    the nature of the cohesive sediment with respect to the transport processes is presented. In addition, the flocculation process and the rheological behaviour of cohesive sediments is outlined. The second part contains the laboratory experiments. The laboratory experiments were conducted with respect......The present thesis considers the transport processes of cohesive sediments. The cohesive sediment used in the laboratory experiments was kaolinite, a clay mineral, in order to be able to reproduce the individual experiments. In the first part of the thesis, the theoretical considerations regarding...

  15. Water and streambed-material data, Eagle Creek watershed, Indiana, August 1980, October and December 1982, and April 1983; updating of U.S. Geological Survey Open-file report 83-215

    Wangsness, David J.


    Water-quality surveys within the Eagle Creek watershed were done by the U.S. Geological Survey in August 1980, October and December 1982 and April 1983 in cooperation with the city of Indianapolis, Department of Public Works. Streambed-material and water samples were collected from Finley and Eagle Creek and was analyzed for selected metals, insecticides, and acid-extractable and base-neutral-extractable compounds. Water samples also were analyzed for volatile organic compounds. The 1982-83 surveys represent different flow conditions. This report lists all the data collected and analyzed by the U.S. Geological Survey but does not interpret any of the results.

  16. 三峡水库进出库水沙特征及其影响因素分析%Analysis of characteristics of inflow and outflow runoff and sediment in Three Gorges Reservoir and its influential factors

    李海宁; 张燕菁


    受气候变化和人类活动的影响,近年来三峡水库进出库水沙条件发生了很大变化。运用Mann-Kendall方法及小波分析方法,研究了三峡水库入出库主要控制站近60 a的实测径流量和输沙量时间序列。结果表明:进出库径流量存在减小趋势但减幅不大,入库输沙量明显减小;主要控制站径流量和输沙量序列均具有明显的多时间尺度特征,径流量和输沙量的第一主周期分别为12~28 a,15~25 a;水土保持、上游修建水利工程、河道采砂等人类活动是输沙量明显减小的主要原因,而其对径流量的影响相对较小。%The runoff and sediment condition of Three Gorges Reservoir has changed significantly in recent years due to the effects of climate changes and human activities. The Mann-Kendall method and wavelet transform method are applied to analyze the annual runoff and sediment discharge data of the main controlling hydrological stations in recent 60 years. The results show that the runoff has a slight decreasing trend, while the sediment decreases sharply. Both runoff and sediment series of the main stations have an obvious properties of multiple time scale, the dominant period of runoff and sediment are 12-year to 28-year and 15-year to 25-year respectively. The impact of runoff changes on the sediment changes is small, while the soil and water conservation measures, construction of hydraulic engineering projects on upstream and the sand mining are the main causes for the sediment reduction.

  17. Occurrence and concentrations of selected trace elements and halogenated organic compounds in stream sediments and potential sources of polychlorinated biphenyls, Leon Creek, San Antonio, Texas, 2012–14

    Wilson, Jennifer T.


    The Texas Department of State Health Services issued fish consumption advisories in 2003 and 2010 for Leon Creek in San Antonio, Texas, based on elevated concentrations of polychlorinated biphenyls (PCBs) in fish tissues. The U.S. Geological Survey (USGS) measured elevated PCB concentrations in stream-sediment samples collected during 2007–9 from Leon Creek at Lackland Air Force Base (now known as Joint Base San Antonio-Lackland; the sampling site at this base is hereinafter referred to as the “Joint Base site”) and sites on Leon Creek downstream from the base. This report describes the occurrence and concentrations of selected trace elements and halogenated organic compounds (pesticides, flame retardants, and PCBs) and potential sources of PCBs in stream-sediment samples collected from four sites on Leon Creek during 2012–14. In downstream order, sediment samples were collected from Leon Creek at northwest Interstate Highway 410 (Loop 410), Rodriguez Park, Morey Road, and Joint Base. The USGS periodically collected streambed-sediment samples during low flow and suspended-sediment samples during high flow.

  18. The contribution of bank and surface sediments to fluvial sediment ...

    The contribution of bank and surface sediments to fluvial sediment transport of the Pra River. ... Sediment source studies involving a simple mixing model was undertaken in the ... For bank erosion, river channel bank materials were sampled.

  19. Influence Of Groundwater Discharge On Arsenic Contamination In Sediments

    A field investigation was conducted to evaluate the impact of a discharging arsenic plume on sediment contaminant characteristics at a site adjacent to a landfill in northeastern Massachusetts. Site characterization included assessment of the hydrologic and chemical samples coll...

  20. A Study on Distribution Characteristics of Dissolved Organic Nitrogen (DON) in the Sediments of Lake Shankou%山口湖沉积物中溶解性有机氮的分布特征

    华飞; 赵广超; 张靖天; 昝逢宇; 贾其娜; 霍守亮


    The contents and distribution characteristics of dissolved organic nitrogen ( DON) and free amino acids ( FAA) from the sediments of Lake Shankou, a typical mountain lake in northeast region were studied.The results indicated that the DON contents ranged from 124.41 to 560.17 mg/kg with averaged value of 304.78 mg/kg, comprising 45.25%of total dissolved nitrogen ( TDN) and 5.27%of total nitrogen ( TN) in Lake Shankou.The contents of FAA varied from 9.21 to 18.53 mg/kg with averaged value of 12.19 mg/kg, comprising 4.35% of DON, 1.91% of TDN and 0.22% of TN, respectively.The DON molecular fraction results indicated that the dominating fractions of DON and SUV254 were low molecular weight with MW 30 ku.At Station 2 in the downstream of Lake Shankou, the small MW fractions ( 30 ku) with high DOC/DON ratios mainly from external input in water.The small MW fractions (30 ku) were with much low DOC/DON ratios at Stations 8 and 13, implying that they were mainly from internal sources.%以东北典型山地湖泊山口湖为研究对象,研究了沉积物中溶解性有机氮( DON)和氨基酸的浓度及分布特征。结果表明,山口湖沉积物DON浓度为124.41~560.17 mg/kg,平均值为304.78 mg/kg,占沉积物溶解性总氮( TDN)的45.25%,占沉积物总氮( TN)的5.27%;氨基酸浓度为9.21~18.53 mg/kg,平均值为12.19 mg/kg,占DON、TDN、TN的比例分别为4.35%、1.91%和0.22%。沉积物DON分子量分级结果表明,DON和SUV254分子量分布主要是小分子量(<1 ku)为主;而大分子量(>30 ku)的DOC占主要部分。下游2号采样点沉积物在分子量<1 ku时DOC/DON处于中等水平,这部分有机质既有内源释放也有外源输入,而分子量>30 ku的DOC/DON较高,说明这部分有机质主要来自外源;上游8号、13号采样点,分子量<1 ku和>30 ku的DOC/DON很小,说明其有机质主要来自内源。

  1. Pyrethroid insecticides in bed sediments from urban and agricultural streams across the United States

    Hladik, Michelle; Kuivila, Kathryn


    Pyrethroid insecticides are hydrophobic compounds that partition to streambed sediments and have been shown to cause toxicity to non-target organisms; their occurrence is well documented in parts of California, but there have been limited studies in other urban and agricultural areas across the United States. To broaden geographic understanding of pyrethroid distributions, bed sediment samples were collected and analyzed from 36 streams in 25 states, with about 2/3 of the sites in urban areas and 1/3 in agricultural areas. At least one pyrethroid (of the 14 included in the analysis) was detected in 78% of samples. Seven pyrethroids were detected in one or more samples. Bifenthrin was the most frequently detected (58% of samples), followed by permethrin (31%), resmethrin (17%), and cyfluthrin (14%). The other three detected pyrethroids (cyhalothrin, cypermethrin and delta/tralomethrin) were found in two or fewer of the samples. Concentrations ranged from 0.3 to 180 ng g-1 dry weight. The number of pyrethroids detected were higher in the urban samples than in the agricultural samples, but the highest concentrations of individual pyrethroids were split between urban and agricultural sites. The pyrethroids detected in the agricultural areas generally followed use patterns. Predicted toxicity was greater for urban areas and attributed to bifenthrin, cyfluthrin and cypermethrin, while in agricultural areas the toxicity was mainly attributed to bifenthrin.

  2. Characterization of archaeal community in contaminated and uncontaminated surface stream sediments.

    Porat, Iris; Vishnivetskaya, Tatiana A; Mosher, Jennifer J; Brandt, Craig C; Yang, Zamin K; Brooks, Scott C; Liang, Liyuan; Drake, Meghan M; Podar, Mircea; Brown, Steven D; Palumbo, Anthony V


    Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle.

  3. Sediment supply to beaches

    Aagaard, Troels


    and this reduces confidence in predictions of long-term shoreline change. In this paper, field measurements of suspended sediment load and cross-shore transport on the lower shoreface are used to derive a model for sediment supply from the lower to the upper shoreface at large spatial and temporal scales. Data...

  4. Sediment Trapping Pathways and Mechanisms through the Mekong Tidal River and Subaqueous Delta


    processes (e.g., winds/waves, precipitation, temperature and biological factors) influence the transport pathways, seabed erosion /deposition, and...approach is to use in situ observations to evaluate the hydrodynamics, sediment fluxes, and sediment characteristics within the coastal/ fluvial ...hydrodynamic and sediment transport studies on transects that encompassed the transition from fluvial to estuarine. The boat transited for 24 hours

  5. Geotechnical properties of deep-sea sediments from central Indian Ocean Basin

    Khadge, N.H.

    Physical and geotechnical properties of 2 sediment cores from the nodule rich area of the Central Indian Ocean Basin are studied to know the sediment characteristics. Average water content of sediment from 2 deep-sea cores is 289% with 151...

  6. Combined effects of copper and food on the midge Chironomus riparius in whole sediment bioassays

    Haas, de E.M.; Paumen, M.L.; Koelmans, A.A.; Kraak, M.H.S.


    Effects observed in whole-sediment bioassays must be seen as the joint effect of all sediment characteristics. In whole-sediment bioassays. however. adverse effects oil test organisms are usually attributed to the presence of contaminants and effects of food are often ignored. The aim of this study

  7. New proposed method for prediction of reservoir sedimentation distribution

    H. Hosseinjanzadeh; K. Hosseini; K. Kaveh; S.F. Mousavi


    abstract Prediction of sediment distribution in reservoirs is an important issue for dam designers to determine the reservoir active storage capacity. Methods proposed to calculate sediment distribution are varied, and mainly empirical. Among all the methods currently available, only area-reduction and area-increment methods are considered as the principal methods for prediction of sediment distribution. In this paper, data of 16 reservoirs in the United States are used to propose a new empirical method for prediction of sediment distribution in reservoirs. In the proposed method, reservoir sediment distribu-tion is related to sediment volume and original reservoir characteristics. To validate the accuracy of the new proposed method, obtained results are compared with survey data for two reservoirs. The results of this investigation showed that the proposed method has an acceptable accuracy.

  8. 贵州草海沉积物重金属污染特征及潜在生态风险分析%Pollution Characteristics and Potential Ecological Risk Assessment of Heavy Metals in Sediments of Caohai in Guizhou Province,China

    林绍霞; 张清海; 郭媛; 欧阳勇; 林昌虎


    In order to investigate the pollution and accumulation characteristics, sediments from different directions in Caohai wetland were collected and concentrations of Zn, Cr, Pb, Cu, As, Cd and Hg in sediments were detected .Meanwhile, the spatial distribution characteristics of heavy metals in sediments were analyzed and the potential ecological risks were evaluated with RI(The Potential Ecological Risk Index). The results showed the order of the concentrations of heavy metals in the sediments was Zn>Cr>Pb>Cu>As>Cd>Hg and the spatial distribution of decrease from center to edge. The order of pollution level of different heavy metals was Cd>Hg>Zn>Pb>As>Cu>Cr. The potential ecological risk index of heavy metals in sediments exceed 150 due to the high concentrations of Cd. And, the results also showed serious degree of pollution of most sampling points.%为研究重金属在草海沉积物中富集污染状况,以7种毒性重金属为研究对象,从不同方位对草海沉积物中重金属进行采样测试,分析重金属含量水平及空间分布特征,同时应用潜在生态危害指数法进行评价.结果表明,草海沉积物中重金属富集特征为Zn>Cr>Pb>Cu>As>Cd>Hg,且在空间分布上呈现从湖心向边缘逐渐减少的趋势,重金属污染程度表现为Cd>Hg>Zn>Pb>As>Cu>Cr,在Cd的潜在生态风险系数高贡献下,沉积物中重金属潜在生态风险指数均大于150,多数达到严重程度.

  9. Spatial Modelling of Sediment Transport over the Upper Citarum Catchment



    Full Text Available This paper discusses set up of a spatial model applied in Geographic Information System (GIS environment for predicting annual erosion rate and sediment yield of a watershed. The study area is situated in the Upper Citarum Catchment of West Java. Annual sediment yield is considered as product of erosion rate and sediment delivery ratio to be modelled under similar modeling tool. Sediment delivery ratio is estimated on the basis of sediment resident time. The modeling concept is based on the calculation of water flow velocity through sub-catchment surface, which is controlled by topography, rainfall, soil characteristics and various types of land use. Relating velocity to known distance across digital elevation model, sediment resident time can be estimated. Data from relevance authorities are used. Bearing in mind limited knowledge of some governing factors due to lack of observation, the result has shown the potential of GIS for spatially modeling regional sediment transport. Validation of model result is carried out by evaluating measured and computed total sediment yield at the main outlet. Computed total sediment yields for 1994 and 2001 are found to be 1.96×106 and 2.10×106tons/year. They deviate roughly 54 and 8% with respect to those measured in the field. Model response due to land use change observed in 2001 and 1994 is also recognised. Under presumably constant rainfall depth, an increase of overall average annual erosion rate of 11% resulted in an increase of overall average sediment yield of 7%.

  10. Assessment of possible sources of microbiological contamination and water-quality characteristics of the Jacks Fork, Ozark National Scenic Riverways, Missouri; phase II

    Davis, Jerri V.; Richards, Joseph M.


    August 6 to12, 2000. A 24-hour sample collection effort was conducted the weekend of July 15 and 16, 2000, to investigate the effect that large numbers of swimmers, canoeists, and tubers had on fecal coliform densities in the Jacks Fork. Five or six samples were collected at six sites between Saturday morning and the following Sunday afternoon. No fecal coliform density at any of the sites sampled exceeded the whole-body-contact recreation standard. Because bacteria survive longer in stream-bed sediments than in water, a source of bacteria in the water column could be from resuspension of accumulated bacteria from streambed sediments. Water and streambed-sediment samples were collected at three sites on August 3, 2000, 1 week before a trail ride and again at three sites on 2 Assessment of Possible Sources of Microbiological Contamination of the Jacks Fork, Missouri?Phase II August 8, 2000, during a trail ride. Results indicate that fecal coliform bacteria densities increased substantially in the streambed sediment and the water column during the trail ride.Sixty-five Escherichia coli isolates obtained from water samples collected at 9 sites and 23 Escherichia coli isolates obtained from stream-bed-sediment samples collected at 5 sites were submitted for ribotyping analysis. Samples were collected in 2000 during a variety of nonrecreational and recreational season river uses, including trail rides, canoeing, tubing, and swimming. Of the 65 isolates from water samples, 40 percent were identified as originating from sewage, 29 percent from horse, 11 percent from cow, and 20 percent from an unknown source. Of the 23 isolates from streambed-sediment samples, 39 percent were identified as originating from sewage, 35 percent from horse, 13 percent from cow, and 13 percent from unknown sources.Analysis of physical property (dissolved oxygen, pH, specific conductance, and temperature) and nutrient (dissolved nitrite plus nitrate and total phosphorus) data


    王豪壮; 陈志华; 王春娟; 刘合林; 赵仁杰; 唐正; 黄元辉


    Grain size characteristics of surface sediments on the Prydz Bay shelf , East Antarctica , together with dynamic environment , were analyzed to illustrate sediment types , compositions and relevant glaciomarine sedimentation .The surface sediments were classified into nine types:gravel, muddy sandy gravel, gravelly mud, gravelly muddy sand, slightly gravelly mud , slightly gravelly muddy sand , sand , sandy silt , and silt .The study area could be divided in-to two sections based on sediment grain size and topography , a gravelly mud section in the east of the bay and a gravelly sand section in the west .In the eastern gravelly mud section , including Four Ladies Bank , the Svenner Channel , the Prydz Channel and the Amery Basin , sedimentation is mainly controlled by marine circulation with lit-tle contribution from iceberg , and then sediments are relatively fine and contain a large amount of clay and fine silt . In contrast , the coarse-grained sediments in the western gravelly sand section , including the Fram Bank and the Amery Ice Shelf front , are products of iceberg , current and Amery ice shelf with an exception of fine-grain sediment occurring in the polynya .%基于对普里兹湾陆架表层沉积物粒度分析,结合海区动力环境特点,初步探讨了考察区类型、组成及冰海沉积作用特点。研究区表层沉积物大体可分为:砾( G)、泥质砂质砾( msG)、砾质泥( gM)、砾质泥质砂( gmS)、含砾泥((g)M)、含砾泥质砂((g)mS)、砂(S)、砂质粉砂(sZ)和粉砂(Z)九种类型。依据沉积物粒度特征与地形变化,可将研究区划分为东部含砾泥质区和西部含砾砂质区。在东部含砾泥质区,包括四夫人浅滩、Svenner水道区、普里兹水道区和埃默里海盆区,沉积作用主要受海流影响,冰筏碎屑的影响有限,沉积物总体较细,粘土和细粉砂含量较高,粗粉砂和砂含量较低。在西部含

  12. Analysis of the Characteristics and Causes of the Increase of Soil Moisture Content Under Muddy Water Irrigation with Different Sediment Gradations%不同泥沙级配浑水灌溉下土壤水分增长特性及成因分析

    卞艳丽; 曹惠提; 常志富


    Through the experiment on the infiltration of muddy water irrigation under combinations of two sediment concentrations and four different sediment gradations ,it has been found that sediment particle sizes affect the growth process of soil moisture signif‐icantly .The smaller the sizes of sediment particles in muddy water are ,the less their accumulative infiltration capacity and content of soil moisture increase ,while the more the differences with the results of clean water irrigation test are .The growth process of soil moisture and changing process of accumulative infiltration capacity are in line with the positive power function relationship ,indicating that the growth process of soil moisture is the irrigation quantity distributing process in soil .The changing process of accumulative infiltration capacity reflects the increasing process of test pit soil moisture content ;accumulative infiltration capacity of a certain time of infiltration are superimposed with the changing content of different depths of soil moisture in the process of irrigation at the same time .According to the growing characteristics of soil moisture with muddy water irrigation of different sediment gradations ,the cau‐ses of that lies in the sediment deposition formed on the soil surface under muddy water irrigation ,the greater the sediment concen‐tration and the finer the sediment gradation are ,the more denser the sediment deposition is ,then the greater the resistance of water through the soil void is ,which leads to the slower growth of soil moisture content .%通过在测坑中开展灌溉条件下2种含沙量4种泥沙级配组合下的浑水灌溉入渗试验,发现泥沙级配对土壤水分增长过程的影响显著:泥沙级配越细,相同灌溉入渗历时的累积入渗量和土壤含水量增加量越小,与清水灌溉试验结果的差异性越大。土壤含水量的增长过程与累积入渗量变化过程均符合指数为正的幂函数关系,说

  13. Sediment acoustic index method for computing continuous suspended-sediment concentrations

    Landers, Mark N.; Straub, Timothy D.; Wood, Molly S.; Domanski, Marian M.


    Suspended-sediment characteristics can be computed using acoustic indices derived from acoustic Doppler velocity meter (ADVM) backscatter data. The sediment acoustic index method applied in these types of studies can be used to more accurately and cost-effectively provide time-series estimates of suspended-sediment concentration and load, which is essential for informed solutions to many sediment-related environmental, engineering, and agricultural concerns. Advantages of this approach over other sediment surrogate methods include: (1) better representation of cross-sectional conditions from large measurement volumes, compared to other surrogate instruments that measure data at a single point; (2) high temporal resolution of collected data; (3) data integrity when biofouling is present; and (4) less rating curve hysteresis compared to streamflow as a surrogate. An additional advantage of this technique is the potential expansion of monitoring suspended-sediment concentrations at sites with existing ADVMs used in streamflow velocity monitoring. This report provides much-needed standard techniques for sediment acoustic index methods to help ensure accurate and comparable documented results.

  14. Removal Characteristics of THMFP by Dissolved Air Flotation and Sedimentation%气浮和沉淀工艺对三卤甲烷生成势的去除特性研究

    孙晓明; 乔琦; 刘景洋


    The removal efficiency of trihalomethanes formation potential (THMFP) in different molecular weight ranges by dissolved air flotation ( DAF) and sedimentation was studied. The effect of floe morphology on the removal efficiency of THMFP was investigated. The results showed that the removal efficiency of THMFP in each molecular weight range by DAF was better than that by sedimentation. Both were more successful in removing THMFP from larger molecular weight range. The linear correlation coefficient of UV254 and THMFP was 0. 917, which indicated that UV254 could appropriately reflect the content of THMFP. The fractal dimension of DAF floe was less than that of sedimentation floe, and the porosity of the DAP floe was larger than that of sedimentation floe, which resulted in enhanced floccula-tion and adsorption space of organic matter. The size of DAF floe was smaller and the efficiency of ortho-kinetic flocculation was better, which could increase the contact probability between floe and organic matter. So the removal efficiency of THMFP by DAF was better than that by sedimentation.%研究了气浮和沉淀工艺对不同分子质量区间三卤甲烷生成势(THMFP)的去除效果及絮体形态对去除THMFP的影响.结果表明,气浮工艺对各分子质量区间THMFP的去除效果均优于沉淀工艺,二者均以去除大分子质量区间的THMFP为主,对小分子质量区间THMFP的去除效果较差.UV254与THMFP值的线性相关系数为0.917,UV254值可以较好地反映THMFP的含量.气浮絮体的分形维数小于沉淀絮体,孔隙率较大,可以增加对有机物的活性吸附空间;气浮絮体尺寸较小,具有更好的同向絮凝效果,增加了絮体和有机物的接触概率,从而使气浮工艺对THMFP的去除效果优于沉淀工艺.

  15. Settlement prediction model of slurry suspension based on sedimentation rate attenuation

    Shuai-jie GUO


    Full Text Available This paper introduces a slurry suspension settlement prediction model for cohesive sediment in a still water environment. With no sediment input and a still water environment condition, control forces between settling particles are significantly different in the process of sedimentation rate attenuation, and the settlement process includes the free sedimentation stage, the log-linear attenuation stage, and the stable consolidation stage according to sedimentation rate attenuation. Settlement equations for sedimentation height and time were established based on sedimentation rate attenuation properties of different sedimentation stages. Finally, a slurry suspension settlement prediction model based on slurry parameters was set up with a foundation being that the model parameters were determined by the basic parameters of slurry. The results of the settlement prediction model show good agreement with those of the settlement column experiment and reflect the main characteristics of cohesive sediment. The model can be applied to the prediction of cohesive soil settlement in still water environments.

  16. 天鹅湖沉积物对磷的吸附动力学及等温吸附特征%Characteristics of Adsorption Kinetics and Isotherms of Phosphate on Sediments in Swan Lake

    高丽; 侯金枝; 宋鹏鹏


    以荣成天鹅湖这一天然泻湖为研究对象,研究了6个样点沉积物对磷的吸附动力学曲线和等温吸附方程,并分析了沉积物理化性质与磷吸附参数间的关系.结果表明,天鹅湖不同区域沉积物对磷的吸附动力学均符合二级动力学方程,吸附反应主要在前10h内完成,且0~2h内反应迅速.根据Langmuir模型,6个样点沉积物对磷的理论吸附容量(Qmax)的范围为294.12~1 111.11 mg/kg,其中湖区北部和中部沉积物的吸附能力高于南部.沉积物对水体中磷的吸附解吸平衡浓度(EPC0)的变幅为0.002 ~ 0.033 mg/L,其与沉积物本底吸附态磷(NAP)呈较弱的正相关关系.本研究条件下,大部分样点的EPC0小于上覆水中磷的浓度,其中湖区西北部和东南部沉积物中磷具有向上覆水体释放的趋势.沉积物的NAP与总氮、有机质、活性铝和黏粒间均呈显著正相关,Qmax与铁铝结合态磷、有机质、活性铝和粉粒间呈显著的正相关关系.活性铝、有机质和粒度是影响沉积物磷吸附的主要因素.%Adsorption kinetics and isotherms of phosphate on six sediments collected in Rongcheng Swan Lake (a nature lagoon) were determined in laboratory, and the relationship between the physical-chemical properties and the adsorption parameters of sediments was also discussed. The results indicated that the adsorption kinetics curve of phosphate at different sites all followed the second-order adsorption kinetic model. The adsorption reaction mainly occurred within 0-10 h, and the maximum adsorption rates occurred within 0-2 h. According to the Langmuir isotherm equation, phosphate adsorption capacity (Qmax) of surface sediments from Swan Lake varied from 294.12 mg/kg to 1 111.11 mg/kg. Phosphate sorption potential on the sediments from the northern and center areas was much higher than that from the south. The zero equilibrium phosphate concentration (EPC0) changed at the range of 0.002-0.033 mg/L, which

  17. Sediment Analysis Network for Decision Support (SANDS)

    Hardin, D. M.; Keiser, K.; Graves, S. J.; Conover, H.; Ebersole, S.


    Since the year 2000, Eastern Louisiana, coastal Mississippi, Alabama, and the western Florida panhandle have been affected by 28 tropical storms, seven of which were hurricanes. These tropical cyclones have significantly altered normal coastal processes and characteristics in the Gulf region through sediment disturbance. Although tides, seasonality, and agricultural development influence suspended sediment and sediment deposition over periods of time, tropical storm activity has the capability of moving the largest sediment loads in the shortest periods of time for coastal areas. The importance of sediments upon water quality, coastal erosion, habitats and nutrients has made their study and monitoring vital to decision makers in the region. Currently agencies such as United States Army Corps of Engineers (USACE), NASA, and Geological Survey of Alabama (GSA) are employing a variety of in-situ and airborne based measurements to assess and monitor sediment loading and deposition. These methods provide highly accurate information but are limited in geographic range, are not continuous over a region and, in the case of airborne LIDAR are expensive and do not recur on a regular basis. Multi-temporal and multi-spectral satellite imagery that shows tropical-storm-induced suspended sediment and storm-surge sediment deposits can provide decision makers with immediate and long-term information about the impacts of tropical storms and hurricanes. It can also be valuable for those conducting research and for projects related to coastal issues such as recovery, planning, management, and mitigation. The recently awarded Sediment Analysis Network for Decision Support will generate decision support products using NASA satellite observations from MODIS, Landsat and SeaWiFS instruments to support resource management, planning, and decision making activities in the Gulf of Mexico. Specifically, SANDS will generate decision support products that address the impacts of tropical storms

  18. Sulfide and methane production in sewer sediments: Field survey and model evaluation.

    Liu, Yiwen; Tugtas, A Evren; Sharma, Keshab R; Ni, Bing-Jie; Yuan, Zhiguo


    Sewer sediment processes have been reported to significantly contribute to overall sulfide and methane production in sewers, at a scale comparable to that of sewer biofilms. The physiochemical and biological characteristics of sewer sediments are heterogeneous; however, the variability of in-sediments sulfide and methane production rates among sewers has not been assessed to date. In this study, five sewer sediment samples were collected from two cities in Australia with different climatic conditions. Batch assays were conducted to determine the rates of sulfate reduction and methane production under different flow velocity (shear stress) conditions as well as under completely mixed conditions. The tests showed substantial and variable sulfate reduction and methane production activities among different sediments. Sulfate reduction and methane production from sewer sediments were confirmed to be areal processes, and were dependent on flow velocity/shear stress. Despite of the varying characteristics and reactions kinetics, the sulfate reduction and methane production processes in all sediments could be well described by a one-dimensional sewer sediment model recently developed based on results obtained from a laboratory sewer sediment reactor. Model simulations indicated that the in-situ contribution of sewer sediment emissions could be estimated without the requirement of measuring the specific sediment characteristics or the sediment depths.

  19. On extracting sediment transport information from measurements of luminescence in river sediment

    Gray, Harrison J.; Tucker, Gregory E.; Mahan, Shannon A.; McGuire, Chris; Rhodes, Edward J.


    Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring long-time scale (102-106 years) transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here we attempt to estimate sediment transport rates by using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model from first principles by using conservation of energy and sediment mass to explain the downstream pattern of luminescence in river channel sediment. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The model demonstrates that the downstream pattern of river sand luminescence should show exponential-like decay in the headwaters which asymptotes to a constant value with further downstream distance. The parameters from the model can then be used to estimate the time-averaged virtual velocity, characteristic transport lengthscale, storage time scale, and floodplain exchange rate of fine sand-sized sediment in a fluvial system. The sediment transport values predicted from the luminescence method show a broader range than those reported in the literature, but the results are nonetheless encouraging and suggest that luminescence demonstrates potential as a sediment transport indicator. However, caution is warranted when applying the model as the complex nature of sediment transport can sometimes invalidate underlying simplifications.

  20. On extracting sediment transport information from measurements of luminescence in river sediment

    Gray, Harrison J.; Tucker, Gregory E.; Mahan, Shannon; McGuire, Chris; Rhodes, Edward J.


    Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring long-time scale (102–106 years) transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here we attempt to estimate sediment transport rates by using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model from first principles by using conservation of energy and sediment mass to explain the downstream pattern of luminescence in river channel sediment. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The model demonstrates that the downstream pattern of river sand luminescence should show exponential-like decay in the headwaters which asymptotes to a constant value with further downstream distance. The parameters from the model can then be used to estimate the time-averaged virtual velocity, characteristic transport lengthscale, storage time scale, and floodplain exchange rate of fine sand-sized sediment in a fluvial system. The sediment transport values predicted from the luminescence method show a broader range than those reported in the literature, but the results are nonetheless encouraging and suggest that luminescence demonstrates potential as a sediment transport indicator. However, caution is warranted when applying the model as the complex nature of sediment transport can sometimes invalidate underlying simplifications.

  1. Schools Of Up to A Dozen Animal Skeletons, Each In Form of the Ellipitcal Letter "O", Ranging in Height From 4 Inches to Over 1 Ft. and Body Thickness of 1/2-3/4 Inches, Have Been Found Embedded in Top 1 of Only 2 Extruded Limestone Streambeds That Run Across West Face of Grandeur Pk., Wasatch Range and Then Turn East, Going Upstream, to Church Fork (or Park), Millcreek Canyon, Remaining Separated. Lower Streambed Was Not Examined Beyond West Face. Various Other Skeletal Structures Exist and Strata of Seashells Have Previously Been Shown(1), Esp. in Antitributary Streams.

    McDonald, Keith L.; McDonald, Russell T.


    Walking s. along dirt road that lies above residential area at about Lake Bonneville shoreline (5,200 ft.) and viewing e. at the 8,299 ft. Gradeur Pk., we count e-w running subridges from Parleys Canyon and recognize that 4th such ridge is that which descends from Grandeur Pk. About 300 ft. below the peak (no surveyor's instruments are employed), the upper limestone streambed passes thru 4th subridge, where the streambed reaches its highest elevation on w. face, running due n. and then this white limestone streambed to its present main ravine, turns 90 degrees to w., down towards Salt Lake Valley and remains, closely, the former main drainage ravine. Intersection of this 4th subridge with upper limestone streambed locates about 1 dozen "0"-shaped skeletons. However, it is clear that at some period, upper stream turned 90 degrees to w. at this intersection, running down present 4th ridgecrest and then turned to n.w., 50-100 ft. later to travel a few hundred meters to intercept the former main revine. Some seashells and "0" skeletons are located in this 50-100 ft. distance but immed. beyond, on 4th subridge, we could find no evidence of streamflow, altho observations were too hasty and we could have gone further w. We Rocky Mts. were formed this 1st and smallest n.w. streambed was forced out of ground and is very appar. when viewed from S. L. Valley, but small. The lower extruded streambed, above, is probably younger than the above highest one, which is more rich in limestone over w. face of Grandeur Pk. and lies perhaps 300 ft below 1st