WorldWideScience

Sample records for stream restoration projects

  1. Landscaping Considerations for Urban Stream Restoration Projects

    National Research Council Canada - National Science Library

    Bailey, Pam

    2004-01-01

    ... after restoration and its functionality for public use. The landscaping component of such stream and riparian restoration projects must be emphasized given its importance of visual success and public perception. The purpose of this technical note is to address landscaping considerations associated with urban stream and riparian restoration projects, and provide ideas to managers for enhancing the visual appeal and aesthetic qualities of urban projects.

  2. Lower Red River Meadow Stream Restoration Project

    International Nuclear Information System (INIS)

    1996-05-01

    As part of a continuing effort to restore anadromous fish populations in the South Fork Clearwater River basin of Idaho, Bonneville Power Administration (BPA) proposes to fund the Lower Red River Meadow Restoration Project (Project). The Project is a cooperative effort with the Idaho Soil and Water Conservation District, Nez Perce National Forest, Idaho Department of Fish and Game (IDFG), and the Nez Perce Tribe of Idaho. The proposed action would allow the sponsors to perform stream bank stabilization, aquatic and riparian habitat improvement activities on IDFG's Red River Management Area and to secure long-term conservation contracts or agreements for conducting streambank and habitat improvement activities with participating private landowners located in the Idaho County, Idaho, study area. This preliminary Environmental Assessment (EA) examines the potential environmental effects of stabilizing the stream channel, restoring juvenile fish rearing habitat and reestablishing a riparian shrub community along the stream

  3. A Function-Based Framework for Stream Assessment & Restoration Projects

    Science.gov (United States)

    This report lays out a framework for approaching stream assessment and restoration projects that focuses on understanding the suite of stream functions at a site in the context of what is happening in the watershed.

  4. Evaluating Stream Restoration Projects: What Do We Learn from Monitoring?

    Directory of Open Access Journals (Sweden)

    Zan Rubin

    2017-02-01

    Full Text Available Two decades since calls for stream restoration projects to be scientifically assessed, most projects are still unevaluated, and conducted evaluations yield ambiguous results. Even after these decades of investigation, do we know how to define and measure success? We systematically reviewed 26 studies of stream restoration projects that used macroinvertebrate indicators to assess the success of habitat heterogeneity restoration projects. All 26 studies were previously included in two meta-analyses that sought to assess whether restoration programs were succeeding. By contrast, our review focuses on the evaluations themselves, and asks what exactly we are measuring and learning from these evaluations. All 26 studies used taxonomic diversity, richness, or abundance of invertebrates as biological measures of success, but none presented explicit arguments why those metrics were relevant measures of success for the restoration projects. Although changes in biodiversity may reflect overall ecological condition at the regional or global scale, in the context of reach-scale habitat restoration, more abundance and diversity may not necessarily be better. While all 26 studies sought to evaluate the biotic response to habitat heterogeneity enhancement projects, about half of the studies (46% explicitly measured habitat alteration, and 31% used visual estimates of grain size or subjectively judged ‘habitat quality’ from protocols ill-suited for the purpose. Although the goal of all 26 projects was to increase habitat heterogeneity, 31% of the studies either sampled only riffles or did not specify the habitats sampled. One-third of the studies (35% used reference ecosystems to define target conditions. After 20 years of stream restoration evaluation, more work remains for the restoration community to identify appropriate measures of success and to coordinate monitoring so that evaluations are at a scale capable of detecting ecosystem change.

  5. Science in Action: Aesthetic Considerations for Stream Restoration

    Science.gov (United States)

    Aesthetics are an integral component of the social and economic benefits of stream restoration and should be considered in restoration projects for sustainable management. According to Bernhardt et al. (2005), aesthetics is one of the frequently listed goals for stream restoratio...

  6. Flood effects on an Alaskan stream restoration project: the value of long-term monitoring

    Science.gov (United States)

    Densmore, Roseann V.; Karle, Kenneth F.

    2009-01-01

    On a nationwide basis, few stream restoration projects have long-term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long-term and event-based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long-term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross-sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25-year flood on the stream and floodplain geometry and riparian vegetation. The long-term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.

  7. Impact of stream restoration on flood waves

    Science.gov (United States)

    Sholtes, J.; Doyle, M.

    2008-12-01

    Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.

  8. Towards a decision support system for stream restoration in the Netherlands: an overview of restoration projects and future needs

    NARCIS (Netherlands)

    Verdonschot, P.F.M.; Nijboer, R.C.

    2002-01-01

    Stream restoration is one of the answers to the lowland stream deterioration. For making proper choices in stream restoration, one firstly needs to understand the complex spatial and temporal interactions between physical, chemical and biological components in the stream ecosystem. Several

  9. Are Urban Stream Restoration Plans Worth Implementing?

    Science.gov (United States)

    Sarvilinna, Auri; Lehtoranta, Virpi; Hjerppe, Turo

    2017-01-01

    To manage and conserve ecosystems in a more sustainable way, it is important to identify the importance of the ecosystem services they provide and understand the connection between natural and socio-economic systems. Historically, streams have been an underrated part of the urban environment. Many of them have been straightened and often channelized under pressure of urbanization. However, little knowledge exists concerning the economic value of stream restoration or the value of the improved ecosystem services. We used the contingent valuation method to assess the social acceptability of a policy-level water management plan in the city of Helsinki, Finland, and the values placed on improvements in a set of ecosystem services, accounting for preference uncertainty. According to our study, the action plan would provide high returns on restoration investments, since the benefit-cost ratio was 15-37. Moreover, seventy-two percent of the respondents willing to pay for stream restoration chose "I want to conserve streams as a part of urban nature for future generations" as the most motivating reason. Our study indicates that the water management plan for urban streams in Helsinki has strong public support. If better marketed to the population within the watershed, the future projects could be partly funded by the local residents, making the projects easier to accomplish. The results of this study can be used in planning, management and decision making related to small urban watercourses.

  10. Comparison of active and passive stream restoration

    DEFF Research Database (Denmark)

    Kristensen, Esben Astrup; Thodsen, Hans; Dehli, Bjarke

    2013-01-01

    Modification and channelization of streams and rivers have been conducted extensively throughout the world during the past century. Subsequently, much effort has been directed at re-creating the lost habitats and thereby improving living conditions for aquatic organisms. However, as restoration...... methods are plentiful, it is difficult to determine which one to use to get the anticipated result. The aim of this study was to compare two commonly used methods in small Danish streams to improve the physical condition: re-meandering and passive restoration through cease of maintenance. Our...... investigation included measurement of the physical conditions in 29 stream reaches covering four different groups: (1) re-meandered streams, (2) LDC streams (the least disturbed streams available), (3) passively restored streams (>10 years stop of aintenance) and (4) channelized and non-restored streams. The in...

  11. Evaluating the accotink creek restoration project for improving water quality, in-stream habitat, and bank stability

    Science.gov (United States)

    Struck, S.D.; Selvakumar, A.; Hyer, K.; O'Connor, T.

    2007-01-01

    Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy metals) to receiving waters. To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff as well as to minimize pollutants and other stressors contained in stormwater runoff. It is well known that land-use practices directly impact urban streams. Stream flows in urbanized watersheds increase in magnitude as a function of impervious area and can result in degradation of the natural stream channel morphology affecting the physical, chemical, and biological integrity of the stream. Stream bank erosion, which also increases with increased stream flows, can lead to bank instability, property loss, infrastructure damage, and increased sediment loading to the stream. Increased sediment loads may lead to water quality degradation downstream and have negative impacts on fish, benthic invertebrates, and other aquatic life. Accotink Creek is in the greater Chesapeake Bay and Potomac watersheds, which have strict sediment criteria. The USEPA (United States Environmental Protection Agency) and USGS (United States Geological Survey) are investigating the effectiveness of stream restoration techniques as a BMP to decrease sediment load and improve bank stability, biological integrity, and in-stream water quality in an impaired urban watershed in Fairfax, Virginia. This multi-year project continuously monitors turbidity, specific conductance, pH, and water temperature, as well as biological and chemical water quality parameters. In addition, physical parameters (e.g., pebble counts, longitudinal and cross sectional stream surveys) were measured to assess geomorphic changes associated with the restoration. Data

  12. Effects of natural-channel-design restoration on habitat quality in Catskill Mountain streams, New York

    Science.gov (United States)

    Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark

    2010-01-01

    Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.

  13. Using Geomorphic Change Detection to Understand Restoration Project Success Relative to Stream Size

    Science.gov (United States)

    Yeager, A.; Segura, C.

    2017-12-01

    Large wood (LW) jams have long been utilized as a stream restoration strategy to create fish habitat, with a strong focus on Coho salmon in the Pacific Northwest. These projects continue to be implemented despite limited understanding of their success in streams of different size. In this study, we assessed the changes triggered by LW introductions in 10 alluvial plane bed reaches with varying drainage areas (3.9-22 km²) and bankfull widths (6.4-14.7 m) in one Oregon Coast Range basin. In this basin, LW was added in an effort to improve winter rearing habitat for Coho salmon. We used detailed topographic mapping (0.5 m² resolution) to describe the local stream and floodplain geometry. Pebble counts were used to monitor changes in average substrate size after the LW addition. Field surveys were conducted immediately after the LW were installed, in the summer of 2016, and one year after installation, in the summer of 2017. We used geomorphic change detection analysis to quantify the amount of scour and deposition at each site along with changes in average bankfull width. Then we determined the relative amount of change among all sites to identify which size stream changed the most. We also modeled fluctuations in water surface elevation at each site, correlating frequency and inundation of the LW with geomorphic changes detected from the topographic surveys. Preliminary results show an increase in channel width and floodplain connectivity at all sites, indicating an increase in off-channel habitat for juvenile Coho salmon. Bankfull widths increased up to 75% in small sites and up to 25% in large sites. Median grain size became coarser in large streams (increased up to 20%), while we saw a similar amount of fining at smaller sites. The overall increase in channel width is compensated by an overall decrease in bed elevation at both large and small sites, suggesting the maintenance of overall geomorphic equilibrium. Further work will include quantifying these

  14. Morphodynamic effects of riparian vegetation growth after stream restoration

    NARCIS (Netherlands)

    Vargas-Luna, Andrés; Crosato, Alessandra; Anders, Niels; Hoitink, Antonius J.F.; Keesstra, Saskia D.; Uijttewaal, Wim S.J.

    2018-01-01

    The prediction of the morphological evolution of renaturalized streams is important for the success of restoration projects. Riparian vegetation is a key component of the riverine landscape and is therefore essential for the natural rehabilitation of rivers. This complicates the design of

  15. Questioning the Faith - Models and Prediction in Stream Restoration (Invited)

    Science.gov (United States)

    Wilcock, P.

    2013-12-01

    River management and restoration demand prediction at and beyond our present ability. Management questions, framed appropriately, can motivate fundamental advances in science, although the connection between research and application is not always easy, useful, or robust. Why is that? This presentation considers the connection between models and management, a connection that requires critical and creative thought on both sides. Essential challenges for managers include clearly defining project objectives and accommodating uncertainty in any model prediction. Essential challenges for the research community include matching the appropriate model to project duration, space, funding, information, and social constraints and clearly presenting answers that are actually useful to managers. Better models do not lead to better management decisions or better designs if the predictions are not relevant to and accepted by managers. In fact, any prediction may be irrelevant if the need for prediction is not recognized. The predictive target must be developed in an active dialog between managers and modelers. This relationship, like any other, can take time to develop. For example, large segments of stream restoration practice have remained resistant to models and prediction because the foundational tenet - that channels built to a certain template will be able to transport the supplied sediment with the available flow - has no essential physical connection between cause and effect. Stream restoration practice can be steered in a predictive direction in which project objectives are defined as predictable attributes and testable hypotheses. If stream restoration design is defined in terms of the desired performance of the channel (static or dynamic, sediment surplus or deficit), then channel properties that provide these attributes can be predicted and a basis exists for testing approximations, models, and predictions.

  16. Applying High-Resolution Imagery to Evaluate Restoration-Induced Changes in Stream Condition, Missouri River Headwaters Basin, Montana

    Directory of Open Access Journals (Sweden)

    Melanie K. Vanderhoof

    2018-06-01

    Full Text Available Degradation of streams and associated riparian habitat across the Missouri River Headwaters Basin has motivated several stream restoration projects across the watershed. Many of these projects install a series of beaver dam analogues (BDAs to aggrade incised streams, elevate local water tables, and create natural surface water storage by reconnecting streams with their floodplains. Satellite imagery can provide a spatially continuous mechanism to monitor the effects of these in-stream structures on stream surface area. However, remote sensing-based approaches to map narrow (e.g., <5 m wide linear features such as streams have been under-developed relative to efforts to map other types of aquatic systems, such as wetlands or lakes. We mapped pre- and post-restoration (one to three years post-restoration stream surface area and riparian greenness at four stream restoration sites using Worldview-2 and 3 images as well as a QuickBird-2 image. We found that panchromatic brightness and eCognition-based outputs (0.5 m resolution provided high-accuracy maps of stream surface area (overall accuracy ranged from 91% to 99% for streams as narrow as 1.5 m wide. Using image pairs, we were able to document increases in stream surface area immediately upstream of BDAs as well as increases in stream surface area along the restoration reach at Robb Creek, Alkali Creek and Long Creek (South. Although Long Creek (North did not show a net increase in stream surface area along the restoration reach, we did observe an increase in riparian greenness, suggesting increased water retention adjacent to the stream. As high-resolution imagery becomes more widely collected and available, improvements in our ability to provide spatially continuous monitoring of stream systems can effectively complement more traditional field-based and gage-based datasets to inform watershed management.

  17. The Morphology of Streams Restored for Market and Nonmarket Purposes: Insights From a Mixed Natural-Social Science Approach

    Science.gov (United States)

    Singh, J.; Doyle, M.; Lave, R.; Robertson, M.

    2015-12-01

    Stream restoration is increasingly driven by compensatory mitigation; impacts to streams associated with typical land development activities must be offset via restoration of streams elsewhere. This policy creates an environment where restored stream 'credits' are traded under market-like conditions, comparable to wetland mitigation, carbon offsets, or endangered species habitat banking. The effect of mitigation on restoration design and construction is unknown. We use geomorphic surveys to quantify the differences between restored and nonrestored streams, and the difference between streams restored for market purposes (compensatory mitigation) from those restored for nonmarket programs. Physical study sites are located in the state of North Carolina, USA. We also analyze the social and political-economic drivers of the stream restoration and mitigation industry using analysis of policy documents and interviews with key personnel including regulators, mitigation bankers, stream designers, and scientists. Restored streams are typically wider, shallower and geomorphically more homogeneous than nonrestored streams. For example, nonrestored streams are typically characterized by more than an order of magnitude variability in radius of curvature and meander wavelength within a single study reach. By contrast, the radius of curvature in many restored streams does not vary for nearly the entire project reach. Streams restored for the mitigation market are typically headwater streams and part of a large, complex of long restored main channels, and many restored tributaries; streams restored for nonmarket purposes are typically shorter and consist of the main channel only. Interviews reveal that social forces shape the morphology of restored streams. Designers integrate many influences including economic and regulatory constraints, but traditions of practice have a large influence as well. Home to a fairly mature stream mitigation banking market, North Carolina can provide

  18. Survey of Beaver-related Restoration Practices in Rangeland Streams of the Western USA

    Science.gov (United States)

    Pilliod, David S.; Rohde, Ashley T.; Charnley, Susan; Davee, Rachael R.; Dunham, Jason B.; Gosnell, Hannah; Grant, Gordon E.; Hausner, Mark B.; Huntington, Justin L.; Nash, Caroline

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.

  19. Survey of beaver-related restoration practices in rangeland streams of the western USA

    Science.gov (United States)

    Pilliod, David S.; Rohde, Ashley T.; Charnley, Susan; Davee, Rachael R; Dunham, Jason B.; Gosnell, Hannah; Grant, Gordon E.; Hausner, Mark B.; Huntington, Justin L.; Nash, Caroline

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.

  20. Political and Economic Geomorphology: The Effect of Market Forces on Stream Restoration Designs

    Science.gov (United States)

    Singh, J.; Doyle, M. W.; Lave, R.; Robertson, M.

    2013-12-01

    Stream restoration in the U.S. is increasingly driven by compensatory mitigation; impacts to streams associated with typical land development activities must be offset via restoration of streams elsewhere. This policy application creates conditions in which restored stream ';credits' are traded under market-like conditions, comparable to wetland mitigation, carbon offsets, or endangered species habitat banking. The effect of this relatively new mechanism to finance stream restoration on design and construction is unknown. This research explores whether the introduction of a credit-based mitigation apparatus results in streams designed to maximize credit yields (i.e., ';credit-chasing') rather than focusing on restoring natural systems or functions. In other words, are market-based restored streams different from those designed for non-market purposes? We quantified geomorphic characteristics (e.g. hydraulic geometry, sinuosity, profile, bed sediment, LWD) of three types of streams: (1) a random sample of non-restored reaches, (2) streams restored for compensatory mitigation, and (3) streams restored under alternative funding sources (e.g., government grant programs, non-profit activities). We also compared the location of the types of stream reaches to determine whether there is a spatiality of restored streams. Physical data were complemented with a series of semi-structured interviews with key personnel in the stream restoration industry to solicit information on the influence of policy interpretation and market-driven factors on the design process. Preliminary analysis suggests that restoration is driving a directional shift in stream morphology in North Carolina. As a simple example, in the Piedmont, non-restored and restored channels had mean sinuosity of 1.17 and 1.23, respectively (p sale of restored stream credits, was seen as critically important rather than the marginal gains to be made by manipulating particular stream designs to glean more credits

  1. Reach-scale stream restoration in agricultural streams of southern Minnesota alters structural and functional responses of macroinvertebrates

    Science.gov (United States)

    Dolph, Christine L.; Eggert, Susan L.; Magner, Joe; Ferrington, Leonard C.; Vondracek, Bruce C.

    2015-01-01

    Recent studies suggest that stream restoration at the reach scale may not increase stream biodiversity, raising concerns about the utility of this conservation practice. We examined whether reach-scale restoration in disturbed agricultural streams was associated with changes in macroinvertebrate community structure (total macroinvertebrate taxon richness, total macroinvertebrate density, Ephemeroptera, Plecoptera, Trichoptera [EPT] taxon richness, % abundance of EPT taxa) or secondary production (macroinvertebrate biomass over time). We collected macroinvertebrate samples over the course of 1 y from restored and unrestored reaches of 3 streams in southern Minnesota and used generalized least-square (GLS) models to assess whether measures of community structure were related to reach type, stream site, or sampling month. After accounting for effects of stream site and time, we found no significant difference in total taxon richness or % abundance of EPT taxa between restored and unrestored reaches. However, the number of EPT taxa and macroinvertebrate density were significantly higher in restored than in unrestored reaches. We compared secondary production estimates among study reaches based on 95th-percentile confidence intervals generated via bootstrapping. In each study stream, secondary production was significantly (2–3×) higher in the restored than in the unrestored reach. Higher productivity in the restored reaches was largely a result of the disproportionate success of a few dominant, tolerant taxa. Our findings suggest that reach-scale restoration may have ecological effects that are not detected by measures of total taxon richness alone.

  2. Small mammal populations in a restored stream corridor

    International Nuclear Information System (INIS)

    Wike, L.D.

    2000-01-01

    An opportunity to study the response of a small mammal community to restoration of a riparian wetland was provided by the Pen Branch project at the Savannah River Site (SRS). Live trapping of small mammals was conducted on six transects at Pen Branch in 1996 and 1998 and at three transects at Meyer's Branch, an unimpacted stream at SRS, in 1997 and 1998. Distributions of rates of capture of the four most common species were both spatially and temporally uneven. Kruskal-Wallis one-way analysis of variance found no significant differences in the relationship of capture rates between species and between treatment and both the within-stream control and Meyers Branch. Habitat use and movement within stream corridors appears to be dependent primarily on species, with age and sex perhaps contributing to preference and distance moved. The lack of differences in capture rates related to transect or treatment may be due to the close proximity of sample transects relative to the movement potential of the species sampled

  3. Monitoring Urban Stream Restoration Efforts in Relation to Flood Behavior Along Minebank Run, Towson, MD

    Science.gov (United States)

    Lee, G.; Miller, A. J.

    2017-12-01

    Urban stream restoration efforts are commonly undertaken to combat channel degradation and restore natural stream hydrology. We examine changes in flood patterns along an approximately 1.5-mile reach of Minebank Run, located in Towson, MD, by comparing pre-restoration morphology from surveys conducted in 2001, post-restoration morphology in 2007, and current conditions in 2017 following damage to the restoration project from persistent flooding. Hydraulic modeling was conducted in HEC-RAS 2D using three alternative scenarios: 1) topographic contours from a 2001 survey of pre-restoration topography combined with 2005 LiDAR, 2) 2007 survey combined with 2005 LiDAR data representing the post-restoration channel morphology, and 3) a March 2017 DEM of current channel conditions. The 2017 DEM was created using Structure from Motion (SfM) from high resolution 4K video collected via Unmanned Aerial Vehicle (UAV) flights at a resolution of 0.05 meters. Flood hydrographs from a USGS stream gage located within the study reach as well as a simulated hydrograph of the 100-year storm event were routed through the pre-restoration, post-restoration, and current modeled terrain and analyzed for changes in water-surface elevation and depth, inundation extent, 2-d velocity fields, and translation vs. attenuation of the flood wave to assess the net impact on potential flood hazards. In addition, our study demonstrates that SfM is a quick and inexpensive method for collecting topographic data for hydrologic modeling, assessing stream characteristics including channel bed roughness, and for examining short term changes of channel morphology at a very fine scale.

  4. Use of Ecohydraulic-Based Mesohabitat Classification and Fish Species Traits for Stream Restoration Design

    Directory of Open Access Journals (Sweden)

    John S. Schwartz

    2016-11-01

    Full Text Available Stream restoration practice typically relies on a geomorphological design approach in which the integration of ecological criteria is limited and generally qualitative, although the most commonly stated project objective is to restore biological integrity by enhancing habitat and water quality. Restoration has achieved mixed results in terms of ecological successes and it is evident that improved methodologies for assessment and design are needed. A design approach is suggested for mesohabitat restoration based on a review and integration of fundamental processes associated with: (1 lotic ecological concepts; (2 applied geomorphic processes for mesohabitat self-maintenance; (3 multidimensional hydraulics and habitat suitability modeling; (4 species functional traits correlated with fish mesohabitat use; and (5 multi-stage ecohydraulics-based mesohabitat classification. Classification of mesohabitat units demonstrated in this article were based on fish preferences specifically linked to functional trait strategies (i.e., feeding resting, evasion, spawning, and flow refugia, recognizing that habitat preferences shift by season and flow stage. A multi-stage classification scheme developed under this premise provides the basic “building blocks” for ecological design criteria for stream restoration. The scheme was developed for Midwest US prairie streams, but the conceptual framework for mesohabitat classification and functional traits analysis can be applied to other ecoregions.

  5. Flume experiments on scour downstream of wood stream restoration structures

    Science.gov (United States)

    Pagliara, Stefano; Kurdistani, Sahameddin Mahmoudi

    2017-02-01

    River restoration aims to improve physical natural form and processes of a river. Techniques to control the riverbed, stabilize channel alignment, protect stream banks, and rebuild the natural habitat are an important part of river restoration projects. Rivers can be stabilized and habitat restored through techniques such as rebuilding meanders and pool-riffle sequences and managing large wood. Structures that limit channel width to accelerate the normal flows through the constricted section are referred to as stream deflectors. Single-wing, double-wing and triangular deflectors are the most commonly used types of this measure. Log-frame deflectors consist of a triangular log frame filled with rock. Deflector constructions singly or in series in low gradient meandering streams, divert base flows toward the center of the channel and, under certain conditions, increase the depth and velocity of flow thereby creating scour pools and enhancing fish habitat. Scour characteristics and morphologies downstream of log-frame deflectors have been analyzed at the hydraulic laboratory of the University of Pisa. All experiments have been carried out in clear water conditions. The results showed that the tailwater depth plays an important role on scour characteristics. In addition, it was experimentally proven that using log-frame deflectors instead of log-deflectors result in a better river bank protection. In this case, for all the tested hydraulic conditions, the scour hole never occurred close to the channel bank. Useful empirical relationships have been proposed in order to evaluate the main features of the scour geometry.

  6. Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity

    Science.gov (United States)

    Jeanne C. Chambers

    2000-01-01

    The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Station’s Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...

  7. Contrast of degraded and restored stream habitat using an individual-based salmon model

    Science.gov (United States)

    S. F. Railsback; M. Gard; Bret Harvey; Jason White; J.K.H. Zimmerman

    2013-01-01

    Stream habitat restoration projects are popular, but can be expensive and difficult to evaluate. We describe inSALMO, an individual-based model designed to predict habitat effects on freshwater life stages (spawning through juvenile out-migration) of salmon. We applied inSALMO to Clear Creek, California, simulating the production of total and large (>5 cm FL)...

  8. Determining hyporheic storage using the rSAS model in urban restored streams.

    Science.gov (United States)

    Stoll, E.; Putnam, S. M.; Cosans, C.; Harman, C. J.

    2017-12-01

    One aim of stream restoration is to increase the connectivity of the stream with the hyporheic zone, which is important for processes like denitrification. This study analyzed transects of different restoration techniques in an urban stream, Stony Run in Baltimore, Maryland. The extent of the hyporheic zone was determined using a combination of salt slug injection tracer studies to determine the breakthrough curves and the rank StorAge Selection (rSAS) model. Previous studies using salt tracer injections have often focused on the shape of the breakthrough curve and the transit time distributions of streams to infer indicies correlated with hyporheic zone storage. This study uses the rSAS model to determine the volume of storage that must be turning over to produce the breakthrough curve. This study looked at transects of two different restoration techniques, one with floodplain rehabilitation and one without. Both transects had cross vanes and pool and riffle systems and only differed in the steepness of the banks surrounding the stream. The utility and accuracy of rSAS method was found to be heavily dependent on accurate flow rates. To avoid potential skew in the results, normalized, relatively flow rate-independent metric of storage were compared among transects to reduce error resulting from the flow rate. The results suggested that stream water was retained for longer in a larger storage volume in the transect that did not have floodplain rehabilitation. When compared to the storage of a natural stream with similar geomorphologic characteristics, the restored transect without floodplain rehabilitation had a larger storage volume than the natural stream. The restored transect with floodplain rehabilitation not only had a smaller storage volume than the restored section without rehabilitation, but also had a smaller storage volume than the natural stream with similar bank slopes. This suggests that the floodplain restoration does not significantly contribute to

  9. Cheap and Cheerful Stream Restoration - An Example of System Wide Woody Addition Treatment

    Science.gov (United States)

    Wheaton, J. M.; Bennett, S. N.; Bouwes, N.; Camp, R.

    2012-12-01

    Stream restoration has been plagued with high price tags, limited spatial extents, and questionable effectiveness in light of largely absent monitoring efforts. One prominent example is the placement of large woody debris (LWD) structures and engineered log jams that are frequently employed to promote heterogeneity of instream habitat. Ironically, many of these treatments attempt to lock in place and over-engineer the woody structures as opposed to allowing them to adjust and rearrange themselves as natural LWD would have. We are in the midst of a large scale restoration experiment using LWD to recover ESA-listed steelhead trout (Oncorhynchus mykiss) populations in the Asotin Creek Watershed of Southeast Washington. The project is an Intensively Monitored Watershed (IMW) where the restoration treatment and monitoring use a hierarchal staircase design maximizing the power to detect a population level response in steelhead. We are treating over 12 km of stream with enough LWD input (> 200 pieces per km) to mimic the historic background wood loading and encourage the stream to reshape and regularly rework itself leaving. We are using hundreds of structures we call DWS (dynamic woody structures), which generally consist of a series of wooden fence posts driven into the stream bed and complex LWD anchored between them to invoke a specific hydrogeomorphic response. The real advantage of these DWS are their cost. They can be installed quickly (15-30 minutes each) and cheaply (adjust. This dynamic switching between alternative stable states, we postulate will maintain a diversity of habitat types, and support increased steelhead production. In the short-term, we have a host of explicit design hypotheses about the physical and biotic response and a multi-scalar monitoring program geared to test each of these. We will present findings from a preliminary pilot project on three of the study creeks, which was subjected to a major flood, and tests many of these hypotheses

  10. Nutrient Retention in Restored Streams and Floodplains: A ...

    Science.gov (United States)

    Abstract: Excess nitrogen (N) and phosphorus (P) from human activities have contributed to degradation of coastal waters globally. A growing body of work suggests that hydrologically restoring streams and floodplains in agricultural and urban watersheds has potential to increase nitrogen and phosphorus retention, but rates and mechanisms have not yet been synthesized and compared across studies. We conducted a review of nutrient retention within hydrologically reconnected streams and floodplains including 79 studies. Overall, 62% of results were positive, 26% were neutral, and 12% were negative. The studies we reviewed used a variety of methods to analyze nutrients cycling. We did a further intensive meta-analysis on nutrient spiraling studies because this method was the most consistent and comparable between studies. A meta-analysis of 240 experimental additions of ammonium (NH4+), nitrate (NO3-), and soluble reactive phosphorus (SRP) was synthesized from 15 nutrient spiraling studies. Overall, we found that rates of uptake were variable along stream reaches over space and time. Our results indicate that the size of the stream restoration (total surface area) and hydrologic residence time can be key drivers in influencing N and P uptake at broader watershed scales or along the urban watershed continuum. Excess nitrogen and phosphorus from human activities contributes to the degradation of water quality in streams and coastal areas nationally and globally.

  11. EFFECTS OF STREAM RESTORATION ON DENITRIFICATION In AN URBANIZING WATERSHED

    Science.gov (United States)

    Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic “reconnection” of a stream to its floodplain could ...

  12. Evaluating the ecological economic success of riparian restoration projects in Arizona (Abstract)

    Science.gov (United States)

    Gary B. Snider

    2000-01-01

    The past 4 years the Arizona Water Protection Fund provided more than $25 million to individuals and organizations for stream and riparian restoration projects in Arizona. Information which increases the awareness of the value of Arizona's riparian systems is crucial to the incorporation of ecosystem services into decision-making frameworks, which are largely...

  13. Hierarchical multi-taxa models inform riparian vs. hydrologic restoration of urban streams in a permeable landscape.

    Science.gov (United States)

    Gwinn, Daniel C; Middleton, Jen A; Beesley, Leah; Close, Paul; Quinton, Belinda; Storer, Tim; Davies, Peter M

    2018-03-01

    The degradation of streams caused by urbanization tends to follow predictable patterns; however, there is a growing appreciation for heterogeneity in stream response to urbanization due to the local geoclimatic context. Furthermore, there is building evidence that streams in mildly sloped, permeable landscapes respond uncharacteristically to urban stress calling for a more nuanced approach to restoration. We evaluated the relative influence of local-scale riparian characteristics and catchment-scale imperviousness on the macroinvertebrate assemblages of streams in the flat, permeable urban landscape of Perth, Western Australia. Using a hierarchical multi-taxa model, we predicted the outcomes of stylized stream restoration strategies to increase the riparian integrity at the local scale or decrease the influences of imperviousness at the catchment scale. In the urban streams of Perth, we show that local-scale riparian restoration can influence the structure of macroinvertebrate assemblages to a greater degree than managing the influences of catchment-scale imperviousness. We also observed an interaction between the effect of riparian integrity and imperviousness such that the effect of increased riparian integrity was enhanced at lower levels of catchment imperviousness. This study represents one of few conducted in flat, permeable landscapes and the first aimed at informing urban stream restoration in Perth, adding to the growing appreciation for heterogeneity of the Urban Stream Syndrome and its importance for urban stream restoration. © 2017 by the Ecological Society of America.

  14. How is success or failure in river restoration projects evaluated? Feedback from French restoration projects.

    Science.gov (United States)

    Morandi, Bertrand; Piégay, Hervé; Lamouroux, Nicolas; Vaudor, Lise

    2014-05-01

    Since the 1990s, French operational managers and scientists have been involved in the environmental restoration of rivers. The European Water Framework Directive (2000) highlights the need for feedback from restoration projects and for evidence-based evaluation of success. Based on 44 French pilot projects that included such an evaluation, the present study includes: 1) an introduction to restoration projects based on their general characteristics 2) a description of evaluation strategies and authorities in charge of their implementation, and 3) a focus on the evaluation of results and the links between these results and evaluation strategies. The results show that: 1) the quality of an evaluation strategy often remains too poor to understand well the link between a restoration project and ecological changes; 2) in many cases, the conclusions drawn are contradictory, making it difficult to determine the success or failure of a restoration project; and 3) the projects with the poorest evaluation strategies generally have the most positive conclusions about the effects of restoration. Recommendations are that evaluation strategies should be designed early in the project planning process and be based on clearly-defined objectives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Reconciling agriculture and stream restoration in Europe: A review relating to the EU Water Framework Directive.

    Science.gov (United States)

    Flávio, H M; Ferreira, P; Formigo, N; Svendsen, J C

    2017-10-15

    Agriculture is widespread across the EU and has caused considerable impacts on freshwater ecosystems. To revert the degradation caused to streams and rivers, research and restoration efforts have been developed to recover ecosystem functions and services, with the European Water Framework Directive (WFD) playing a significant role in strengthening the progress. Analysing recent peer-reviewed European literature (2009-2016), this review explores 1) the conflicts and difficulties faced when restoring agriculturally impacted streams, 2) the aspects relevant to effectively reconcile agricultural land uses and healthy riverine ecosystems and 3) the effects and potential shortcomings of the first WFD management cycle. Our analysis reveals significant progress in restoration efforts, but it also demonstrates an urgent need for a higher number and detail of restoration projects reported in the peer-reviewed literature. The first WFD cycle ended in 2015 without reaching the goal of good ecological status in many European water-bodies. Addressing limitations reported in recent papers, including difficulties in stakeholder integration and importance of small headwater streams, is crucial. Analysing recent developments on stakeholder engagement through structured participatory processes will likely reduce perception discrepancies and increase stakeholder interest during the next WFD planning cycle. Despite an overall dominance of nutrient-related research, studies are spreading across many important topics (e.g. stakeholder management, land use conflicts, climate change effects), which may play an important role in guiding future policy. Our recommendations are important for the second WFD cycle because they 1) help secure the development and dissemination of science-based restoration strategies and 2) provide guidance for future research needs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Pen Branch Project: Restoration of a Forested Wetland in South Carolina

    Science.gov (United States)

    Randall K. Kolka; Eric A. Nelson; Ronald E. Bonar; Neil C. Dulohery; David Gartner

    1998-01-01

    The Pen Branch Project is a program to restore a forested riparian wetland that has been subject to thermal disturbance caused by nuclear reactor operations at the Department of Energy's (DOE) Savannah River Site (SRS), an 80,200-hectare nuclear facility located in South Carolina. Various levels of thermal discharges to streams located across the US. have occurred...

  17. Assessing the Performance of In-Stream Restoration Projects Using Radio Frequency Identification (RFID Transponders

    Directory of Open Access Journals (Sweden)

    Bruce MacVicar

    2015-10-01

    Full Text Available Instream channel restoration is a common practice in river engineering that presents a challenge for research. One research gap is the development of monitoring techniques that allow for testable predictions of sediment transport and supply. Here we use Radio Frequency Identification (RFID transponders to compare the short-term (1-year sediment transport response to flood events in a restored and a control reach. The field site is Wilket Creek, an enlarged creek in a fully urbanized catchment without stormwater management control in Toronto, Ontario. The responses to three flooding periods, each of which are at or above the design bankfull discharge, are described. Key results are that (i particle mobility is lower in the restored reach for all three periods; (ii full mobility occurs in the control reach during the first two floods while partial mobility occurs in the restored reach; and (iii the constructed morphology exerted a controlling influence on particle entrainment, with higher mobility in the pools. Log-transformed travel distances exhibit normal distributions when grouped by particle size class, which allows a statistical comparison with power law and other predictive travel-distance relations. Results show that three bedload transport conditions can occur, with partial mobility associated with a mild relation between particle size and travel distance and full mobility associated with either a flat or steep relation depending on the degree of integration of particles in the bed. Recommendations on seeding strategy and sample sizes are made to improve the precision of the results by minimizing confidence intervals for mobility and travel distances. Even in a short term study, the RFID sediment tracking technique allows a process-based assessment of stream restoration outcomes that can be used to justify the instream intervention and plan future attempts to stabilize and enhance the system.

  18. River restoration: separating myths from reality

    Science.gov (United States)

    Friberg, N.; Woodward, G.

    2015-12-01

    River restorations are a social construct where degraded systems are physically modified to obtain a pre-disturbance set of attributes. These can be purely esthetic but are often linked to some kind of biotic recovery or the provision of important ecosystem services such as flood control or self-purification. The social setting of restoration projects, with a range of potential conflicts, significantly reduces scale of most interventions to a size with little room, or wish, for natural processes. We show that projects sizes are still very small and that the restoration target is not to recover natural geomorphic processes but rather to fulfil human perception of what a nice stream looks like. One case from Danish lowland streams, using a space-for-time substitution approach, shows excess use of pebble and gravel when restoring channelized sandy bottom streams, de-coupling the link between energy and substrate characteristics that are found in natural lowland systems. This has implication for both the biological structure and functioning of these systems as a direct link between substrate heterogeneity and macroinvertebrate diversity was not found in restored streams, while the density of grazer increased indicating an increased use of periphyton as a basal resource. Another case of adding woody debris to UK lowland streams, using a BACI study design, showed very little effect on the macroinvertebrate community even after a 100-year flood, which indicate that added tree trunks did not provide additional flow refugia. We suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers.

  19. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    Science.gov (United States)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  20. Can Viral Videos Help Beaver Restore Streams?

    Science.gov (United States)

    Castro, J. M.; Pollock, M. M.; Lewallen, G.; Jordan, C.; Woodruff, K.

    2015-12-01

    Have you watched YouTube lately? Did you notice the plethora of cute animal videos? Researchers, including members of our Beaver Restoration Research team, have been studying the restoration potential of beaver for decades, yet in the past few years, beaver have gained broad acclaim and some much deserved credit for restoration of aquatic systems in North America. Is it because people can now see these charismatic critters in action from the comfort of their laptops? While the newly released Beaver Restoration Guidebook attempts to answer many questions, sadly, this is not one of them. We do, however, address the use of beaver (Castor canadensis) in stream, wetland, and floodplain restoration and discuss the many positive effects of beaver on fluvial ecosystems. Our team, composed of researchers from NOAA National Marine Fisheries Service, US Fish and Wildlife Service, US Forest Service, and Portland State University, has developed a scientifically rigorous, yet accessible, practitioner's guide that provides a synthesis of the best available science for using beaver to improve ecosystem functions. Divided into two broad sections -- Beaver Ecology and Beaver Restoration and Management -- the guidebook focuses on the many ways in which beaver improve habitat, primarily through the construction of dams that impound water and retain sediment. In Beaver Ecology, we open with a discussion of the general effects that beaver dams have on physical and biological processes, and we close with "Frequently Asked Questions" and "Myth Busters". In Restoration and Management, we discuss common emerging restoration techniques and methods for mitigating unwanted beaver effects, followed by case studies from pioneering practitioners who have used many of these beaver restoration techniques in the field. The lessons they have learned will help guide future restoration efforts. We have also included a comprehensive beaver ecology library of over 1400 references from scientific journals

  1. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach

    Science.gov (United States)

    Norman, Laura M.; Sankey, Joel B.; Dean, David; Caster, Joshua J.; DeLong, Stephen B.; Henderson-DeLong, Whitney; Pelletier, Jon D.

    2017-01-01

    Rock-detention structures are used as restoration treatments to engineer ephemeral stream channels of southeast Arizona, USA, to reduce streamflow velocity, limit erosion, retain sediment, and promote surface-water infiltration. Structures are intended to aggrade incised stream channels, yet little quantified evidence of efficacy is available. The goal of this 3-year study was to characterize the geomorphic impacts of rock-detention structures used as a restoration strategy and develop a methodology to predict the associated changes. We studied reaches of two ephemeral streams with different watershed management histories: one where thousands of loose-rock check dams were installed 30 years prior to our study, and one with structures constructed at the beginning of our study. The methods used included runoff, sediment transport, and geomorphic modelling and repeat terrestrial laser scanner (TLS) surveys to map landscape change. Where discharge data were not available, event-based runoff was estimated using KINEROS2, a one-dimensional kinematic-wave runoff and erosion model. Discharge measurements and estimates were used as input to a two-dimensional unsteady flow-and-sedimentation model (Nays2DH) that combined a gridded flow, transport, and bed and bank simulation with geomorphic change. Through comparison of consecutive DEMs, the potential to substitute uncalibrated models to analyze stream restoration is introduced. We demonstrate a new approach to assess hydraulics and associated patterns of aggradation and degradation resulting from the construction of check-dams and other transverse structures. Notably, we find that stream restoration using rock-detention structures is effective across vastly different timescales.

  2. Morphodynamic regime change induced by riparian vegetation in a restored lowland stream

    NARCIS (Netherlands)

    Eekhout, J.P.C.; Hoitink, A.J.F.

    2013-01-01

    With the aim to establish and understand morphological changes in response to stream restoration measures, a detailed monitoring plan was implemented in a lowland stream called Lunterse Beek, located in the Netherlands. Over a period of 1.5 yr, the monitoring 5 included serial morphological surveys,

  3. The Whiteside Run restoration project: Wetlands and stream mitigation and restoration of a previously polluted stream

    International Nuclear Information System (INIS)

    Bigatel, A.; Hellier, W.W.; Forman, J.G.; Kepler, S.

    1998-01-01

    An 841,000 m 3 coal refuse pile from the operation of a now abandoned Lower Kitanning (B) coal deep mine had been the source of over 95% of the mine drainage pollution in Whiteside Run, a tributary of Moshannon Creek in Gulich and Woodward Townships, Clearfield County, Pennsylvania. Representative water quality upstream of the refuse pile was: pH = 6.9; alkalinity = 31 and acidity = 0 mg/L as CaCO 3 equivalent; [Fe] = 0.85 mg/L; [Mn] = 0.31 mg/L; and [Al] = 0.25 mg/L. Representative water quality downstream of the refuse pile before th project was: pH = 3.0; alkalinity = 0 and acidity = 358 mg/L as CaCO 3 equivalent; [Fe] = 7.08 mg/L; [Mn] = 0.81 mg/L; and [Al] = 46.86 mg/L. Present downstream water quality is: pH = 5.9; alkalinity = 14.3 and acidity = 8.1 mg/L as CaCO 3 equivalent; [Fe] = 1.57 mg/L; [Mn] = 0.92 mg/L; and [Al] = 0.97 mg/L. There has been a significant improvement in the diversity of aquatic life since the project was undertaken. Power Operating Co., Inc., a local coal mining company, applied for authorization to conduct coal mining activities which would affect a wetland with an area of 1.7 ha and 790 m of an unnamed tributary of Moshannon Creek. Although part of this wetland was anthropogenic, having developed because earlier mining activities by others had affected the channel of the unnamed tributary of Moshannon Creek, the major portion of the area was a natural wetland. Power Operating developed 2.6 ha (6.5 ac) of constructed wetlands to replace the wetland disturbed by mining. The refuse pile was removed and placed in the backfilled area of Power's adjacent surface mine permit, and the mitigation wetland was constructed on the area formerly occupied by the refuse pile. As a result, 6.4 km (4 mi) of formerly polluted stream are now capable of supporting fish

  4. Stream and floodplain restoration in a riparian ecosystem disturbed by placer mining

    Science.gov (United States)

    Karle, Kenneth F.; Densmore, Roseann V.

    1994-01-01

    Techniques for the hydrologic restoration of placer-mined streams and floodplains were developed in Denali National Park and Preserve Alaska, USA. The hydrologic study focused on a design of stream and floodplain geometry using hydraulic capacity and shear stress equations. Slope and sinuosity values were based on regional relationships. Design requirements include a channel capacity for a 1.5-year (bankfull) discharge and a floodplain capacity for a 1.5- to 100-year discharge. Concern for potential damage to the project from annual flooding before natural revegetation occurs led to development of alder (Alnus crispa) brush bars to dissipate floodwater energy and encourage sediment deposition. The brush bars, constructed of alder bundles tied together and anchored laterally adjacent to the channel, were installed on the floodplain in several configurations to test their effectiveness. A moderate flood near the end of the two-year construction phase of the project provided data on channel design, stability, floodplain erosion, and brush bar effectiveness. The brush bars provided substantial protection, but unconsolidated bank material and a lack of bed armour for a new channel segment led to some bank erosion, slope changes and an increase in sinuosity in several reaches of the study area.

  5. Early ecosystem responses to watershed restoration along a headwater stream

    DEFF Research Database (Denmark)

    Kallenbach, Emilie M.F.; Sand-Jensen, Kaj; Morsing, Jonas

    2018-01-01

    Along many streams, natural riparian vegetation has been replaced by agricultural fields or plantations resulting in ecosystem alterations due to changes of the interactions across the land-water ecotone. We studied the effect of restoration interventions by removing a dense spruce plantation in ...

  6. Results From a Channel Restoration Project: Hydraulic Design Considerations

    Science.gov (United States)

    Karle, K.F.; Densmore, R.V.; ,

    2001-01-01

    Techniques for the hydraulic restoration of placer-mined streams and floodplains were developed in Denali National Park and Preserve, Alaska. The two-year study at Glen Creek focused on a design of stream and floodplain geometry using hydraulic capacity and shear stress equations. Slope and sinuosity values were based on regional relationships. Design requirements included a channel capacity for a bankfull discharge and a floodplain capacity for a 1.5- to 100-year discharge. Several bio-engineering techniques using alder and willow, including anchored brush bars, streambank hedge layering, seedlings, and cuttings, were tested to dissipate floodwater energy and encourage sediment deposition until natural revegetation stabilized the new floodplains. Permanently monumented cross-sections installed throughout the project site were surveyed every one to three years. Nine years after the project began, a summer flood caused substantial damage to the channel form, including a change in width/depth ratio, slope, and thalweg location. Many of the alder brush bars were heavily damaged or destroyed, resulting in significant bank erosion. This paper reviews the original hydraulic design process, and describes changes to the channel and floodplain geometry over time, based on nine years of cross-section surveys.

  7. Soil and water characteristics in restored canebrake and forest riparian zones

    Science.gov (United States)

    Danielle M. Andrews; Christopher D. Barton; Randy Kolka; Charles C. Rhoades; Adam J. Dattilo

    2011-01-01

    The degradation of streams has been widespread in the United States. In Kentucky, for instance, almost all of its large streams have been impounded or channelized. A restoration project was initiated in a channelized section of Wilson Creek (Nelson Co., Kentucky) to return its predisturbance meandering configuration. A goal of the project was to restore the native...

  8. Sediment denitrification and nitrification is enhanced by the presence of macrophytes in a restored agricultural stream, Black Earth Creek, WI USA

    Science.gov (United States)

    Restoration of habitats that support microbial processing can enhance nitrate removal in agricultural streams. Macrophytes are common both in-stream and in the wetted fringe of agricultural stream systems, but are often removed in restoration to increase stream velocity or stabil...

  9. Effects of riparian vegetation development in a restored lowland stream

    NARCIS (Netherlands)

    Vargas-Luna, A.; Crosato, A.; Hoitink, A.J.F.; Groot, J.; Uijttewaal, W.S.J.

    2016-01-01

    This paper presents the morphodynamic effects of riparian vegetation growth in a lowland restored stream. Hydrological series, high-resolution bathymetric data and aerial photographs are combined in the study. The vegetation root system was found to assert a strong control on soil stabilization,

  10. Lower Red River Meadow Restoration Project : Biennial Report 1996-97.

    Energy Technology Data Exchange (ETDEWEB)

    LRK Communications; Wildlife Habitat Institute; Pocket Water, Inc.

    2003-07-01

    The Red River has been straightened and the riparian vegetation corridor eliminated in several reaches within the watershed. The river responded by incision resulting in over-steepened banks, increased sedimentation, elevated water temperatures, depressed groundwater levels, reduced floodplain function, and degraded fish habitat. The Lower Red River Meadow Restoration Project is a multi-phase ecosystem enhancement effort that restores natural physical and biological processes and functions to stabilize the stream channel and establish high quality habitats for fish and wildlife. A natural channel restoration philosophy guides the design and on the ground activities, allowing the channel to evolve into a state of dynamic equilibrium. Two years of planning, two years of restoration in Phases I and II, and one year post-restoration monitoring are complete. By excavating new bends and reconnecting historic meanders, Phase I and II channel realignment increased channel length by 3,060 feet, decreased channel gradient by 25 percent, and increased sinuosity from 1.7 to 2.3. Cross-sectional shapes and point bars were modified to maintain deep pool habitat at low flow and to reconnect the meadow floodplain. Improved soil moisture conditions will help sustain the 31,500 native riparian plantings reestablished within these two phases. Overall, short-term restoration performance was successful. Analyses of long-term parameters document either post-restoration baseline conditions or early stages of evolution toward desired conditions. An adaptive management strategy has helped to improve restoration designs, methods, and monitoring. Lessons learned are being transferred to a variety of audiences to advance the knowledge of ecological restoration and wise management of watersheds.

  11. Survey of beaver-related restoration practices in rangeland streams of the western USA

    Science.gov (United States)

    David S. Pilliod; Ashley T. Rohde; Susan Charnley; Rachael R. Davee; Jason B. Dunham; Hannah Gosnell; Gordon E. Grant; Mark B. Hausner; Justin L. Huntington; Caroline Nash

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the...

  12. Prioritization of Forest Restoration Projects: Tradeoffs between Wildfire Protection, Ecological Restoration and Economic Objectives

    Directory of Open Access Journals (Sweden)

    Kevin C. Vogler

    2015-12-01

    Full Text Available The implementation of US federal forest restoration programs on national forests is a complex process that requires balancing diverse socioecological goals with project economics. Despite both the large geographic scope and substantial investments in restoration projects, a quantitative decision support framework to locate optimal project areas and examine tradeoffs among alternative restoration strategies is lacking. We developed and demonstrated a new prioritization approach for restoration projects using optimization and the framework of production possibility frontiers. The study area was a 914,657 ha national forest in eastern Oregon, US that was identified as a national priority for restoration with the goal of increasing fire resiliency and sustaining ecosystem services. The results illustrated sharp tradeoffs among the various restoration goals due to weak spatial correlation of forest stressors and provisional ecosystem services. The sharpest tradeoffs were found in simulated projects that addressed either wildfire risk to the urban interface or wildfire hazard, highlighting the challenges associated with meeting both economic and fire protection goals. Understanding the nature of tradeoffs between restoration objectives and communicating them to forest stakeholders will allow forest managers to more effectively design and implement economically feasible restoration projects.

  13. Deer Island Aquatic Ecosystem Restoration Project

    Science.gov (United States)

    2015-07-01

    across the U.S. Army Corps of Engineers (USACE) requires that a broad base of EWN understanding and support be built . The Deer Island Aquatic...USACE) requires that a broad base of EWN understanding and support be built . The Deer Island Aquatic Ecosystem Restoration Project (Deer Island AERP...Mississippi Wetlands Restoration Projects). The project received additional funding through several public laws in response to hurricane damages

  14. Project Rio Blanco: site restoration. Final report

    International Nuclear Information System (INIS)

    1978-01-01

    Project Rio Blanco was a joint Government-industry experiment using nuclear explosives to stimulate the flow of natural gas from low permeability formations which could not be economically produced through conventional methods. The project consisted of the simultaneous detonation of three nuclear explosives on May 17, 1973, in a 7,000 foot well in northwestern Colorado. Gas production testing and project evaluation continued through June 1976. The site cleanup and restoration planning phase began in December 1975 and was concluded with the issuance of an operational plan, Project Rio Blanco Site Cleanup and Restoration Plan, NVO-173, in May 1976. Actual site restoration activities were conducted during the period from July to November 1976. The activities throughout the restoration period are summarized and the final site status, including the disposition of all project facilities and the status of all project related wells after plug and abandonment and recompletion work are described

  15. Integrating ecological restoration into CDM forestry projects

    International Nuclear Information System (INIS)

    Ma, Maohua; Haapanen, Toni; Singh, Ram Babu; Hietala, Reija

    2014-01-01

    Highlights: • Concerns and issues in sustainability of CDM forestry projects are reviewed. • Ecological restoration is suggested to be integrated in the CDM framework. • As an ecosystem supporting service, soil restoration on degraded land is of primary importance. • Regenerating forests naturally rather than through monoculture plantations is suggested. • Potential social impacts of ecological restoration are discussed. - Abstract: The Clean Development Mechanism (CDM) is proposed to reduce greenhouse gas emissions and promote sustainable development. CDM forestry projects should contribute to mitigation of climate change through afforestation and reforestation (A/R) activities on degraded land in developing countries. However, like other types of CDM projects, the forestry projects have encountered a number of concerns and critiques. Appropriate approaches and concrete aims to achieve long-term sustainability have been lacking, and reforms have therefore been called for. The aims of this paper are to examine the published information relevant to these concerns, and frame appropriate approaches for a more sustainable CDM. In this review, as a first step to tackle some of these issues, ecological restoration is suggested for integration into the CDM framework. Essentially, this involves the restoration of ecosystem supporting service (soil restoration), upon which forests regenerate naturally rather than establishing monoculture plantations. In this way, forestry projects would bring cost-effective opportunities for multiple ecosystem services. Potential approaches, necessary additions to the monitoring plans, and social impacts of ecological restoration in CDM projects are discussed

  16. Surface and ground water quality in a restored urban stream affected by road salts

    Science.gov (United States)

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  17. Have wet meadow restoration projects in the Southwestern U.S. been effective in restoring geomorphology, hydrology, soils, and plant species composition?

    Directory of Open Access Journals (Sweden)

    Ramstead Karissa M

    2012-09-01

    Full Text Available Abstract Background Wet meadows occur in numerous locations throughout the American Southwest, but in many cases have become heavily degraded. Among other things they have frequently been overgrazed and have had roads built through them, which have affected the hydrology of these wetland ecosystems. Because of the important hydrologic and ecological functions they are believed to perform, there is currently significant interest in wet meadow restoration. Several restoration projects have been completed recently or are underway in the region, sometimes at considerable expense and with minimal monitoring. The objective of this review was to evaluate the effects of wet meadow restoration projects in the southwestern United States on geomorphology, hydrology, soils and plant species composition. A secondary objective was to determine the effects of wet meadow restoration projects on wildlife. Methods Electronic databases, internet search engines, websites and personal contacts were used to find articles of relevance to this review. Articles were filtered by title, abstract and full text. Summary information for each of the articles remaining after the filtering process was compiled and used to assess the quality of the evidence presented using two different approaches. Results Our searches yielded 48 articles, of which 25 were published in peer-reviewed journals, 14 were monitoring or project reports, and 9 were published in conference proceedings or are unpublished theses or manuscripts. A total of 26 operational-scale restoration projects were identified. A wide range of restoration techniques were employed, ranging from small-scale manipulations of stream channels (e.g., riffle structures to large scale pond-and-plug projects. Other common restoration techniques included fencing to exclude livestock (and sometimes also native ungulates, other forms of grazing management, seeding, and transplanting seedlings. Most of the articles reported that

  18. Poplar Island Environmental Restoration Project Nekton Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Poplar Island Environmental Restoration Project (PIERP) is a large scale 1,800 acres restoration project located in mid Chesapeake Bay. Fishery collections are...

  19. Using Video to Communicate Scientific Findings -- Habitat Connections in Urban Streams

    Science.gov (United States)

    Harned, D. A.; Moorman, M.; Fitzpatrick, F. A.; McMahon, G.

    2011-12-01

    The U.S Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) provides information about (1) water-quality conditions and how those conditions vary locally, regionally, and nationally, (2) water-quality trends, and (3) factors that affect those conditions. As part of the NAWQA Program, the Effects of Urbanization on Stream Ecosystems (EUSE) study examined the vulnerability and resilience of streams to urbanization. Completion of the EUSE study has resulted in over 20 scientific publications. Video podcasts are being used in addition to these publications to communicate the relevance of these scientific findings to more general audiences such as resource managers, educational groups, public officials, and the general public. An example of one of the podcasts is a film examining effects of urbanization on stream habitat. "Habitat Connections in Urban Streams" explores how urbanization changes some of the physical features that provide in-stream habitat and examines examples of stream restoration projects designed to improve stream form and function. The "connections" theme is emphasized, including the connection of in-stream habitats from the headwaters to the stream mouth; connections between stream habitat and the surrounding floodplains, wetlands and basin; and connections between streams and people-- resource managers, public officials, scientists, and the general public. Examples of innovative stream restoration projects in Baltimore Maryland; Milwaukee, Wisconsin; and Portland Oregon are shown with interviews of managers, engineers, scientists, and others describing the projects. The film is combined with a website with links to extended film versions of the stream-restoration project interviews. The website and films are an example of USGS efforts aimed at improving science communication to a general audience. The film is available for access from the EUSE website: http://water.usgs.gov/nawqa/urban/html/podcasts.html. Additional films are

  20. Leadership success within disaster restoration projects.

    Science.gov (United States)

    Rapp, Randy R; Baroudi, Bassam

    2014-01-01

    Successful project managers draw their performance from essential leadership traits, as guided by their core values.Within disaster recovery, contractors who mitigate, repair, and reconstruct the built environment are often faced with challenges exceeding the norm. The effective leader is commonly expected to consider stakeholder motivations within distressing situations as well as other external and environmental factors when seeking to lead the project team to successful outcomes. This research is most concerned with leadership within the context of disaster restoration of the built environment. Its stimulus comes from the Restoration Industry Association (RIA)'s efforts to highlight leadership traits and core values for its Certified Restorer Body of Knowledge but would be of value to others associated with disaster recovery operations. Among organizations whose membership includes thousands of practitioners who restore and reconstruct the built environment after disasters, the RIA is the only one yet to formally and substantially research which core values and leader traits are deemed critical for the success of efforts to manage the means and methods applied on recovery job sites. Forty-six seasoned disaster restoration industry project professionals voluntarily responded to a survey questionnaire that sought their opinions about the traits and core values that they consider most important for successful disaster restoration project leadership. The most important leader traits were effective communication, professional competence, and leadership by example. The most important restoration industry values were integrity, compassion, and trustworthiness. The recognized imperative of compassion was unexpected in light of stereotypes often associated with construction-related contractors. This and other findings permit disaster response and recovery stakeholders to better understand qualities they should wish to see in leaders of contractor organizations, which

  1. Exploring applications of GPR methodology and uses in determining floodplain function of restored streams in the Gulf Coastal Plain, Alabama

    Science.gov (United States)

    Eckes, S. W.; Shepherd, S. L.

    2017-12-01

    Accurately characterizing subsurface structure and function of remediated floodplains is indispensable in understanding the success of stream restoration projects. Although many of these projects are designed to address increased storm water runoff due to urbanization, long term monitoring and assessment are often limited in scope and methodology. Common monitoring practices include geomorphic surveys, stream discharge, and suspended sediment loads. These data are comprehensive for stream monitoring but they do not address floodplain function in terms of infiltration and through flow. Developing noninvasive methods for monitoring floodplain moisture transfer and distribution will aid in current and future stream restoration endeavors. Ground penetrating radar (GPR) has been successfully used in other physiographic regions for noninvasive and continuous monitoring of (1) natural geomorphic environments including subsurface structure and landform change and (2) soil and turf management to monitor subsurface moisture content. We are testing the viability of these existing methods to expand upon the broad capabilities of GPR. Determining suitability will be done in three parts using GPR to (1) find known buried objects of typical materials used in remediation at measured depths, (2) understand GPR functionality in varying soil moisture content thresholds on turf plots, and (3) model reference, remediated, and impacted floodplains in a case study in the D'Olive Creek watershed located in Baldwin County, Alabama. We hypothesize that these methods will allow us to characterize moisture transfer from precipitation and runoff to the floodplain which is a direct function of floodplain health. The need for a methodology to monitor floodplains is widespread and with increased resolution and mobility, expanding GPR applications may help streamline remediation and monitoring practices.

  2. Evaluating the effectiveness of restoring longitudinal connectivity for stream fish communities: towards a more holistic approach.

    Science.gov (United States)

    Tummers, Jeroen S; Hudson, Steve; Lucas, Martyn C

    2016-11-01

    A more holistic approach towards testing longitudinal connectivity restoration is needed in order to establish that intended ecological functions of such restoration are achieved. We illustrate the use of a multi-method scheme to evaluate the effectiveness of 'nature-like' connectivity restoration for stream fish communities in the River Deerness, NE England. Electric-fishing, capture-mark-recapture, PIT telemetry and radio-telemetry were used to measure fish community composition, dispersal, fishway efficiency and upstream migration respectively. For measuring passage and dispersal, our rationale was to evaluate a wide size range of strong swimmers (exemplified by brown trout Salmo trutta) and weak swimmers (exemplified by bullhead Cottus perifretum) in situ in the stream ecosystem. Radio-tracking of adult trout during the spawning migration showed that passage efficiency at each of five connectivity-restored sites was 81.3-100%. Unaltered (experimental control) structures on the migration route had a bottle-neck effect on upstream migration, especially during low flows. However, even during low flows, displaced PIT tagged juvenile trout (total n=153) exhibited a passage efficiency of 70.1-93.1% at two nature-like passes. In mark-recapture experiments juvenile brown trout and bullhead tagged (total n=5303) succeeded in dispersing upstream more often at most structures following obstacle modification, but not at the two control sites, based on a Laplace kernel modelling approach of observed dispersal distance and barrier traverses. Medium-term post-restoration data (2-3years) showed that the fish assemblage remained similar at five of six connectivity-restored sites and two control sites, but at one connectivity-restored headwater site previously inhabited by trout only, three native non-salmonid species colonized. We conclude that stream habitat reconnection should support free movement of a wide range of species and life stages, wherever retention of such

  3. Lower Klickitat Riparian and In-channel Habitat Restoration Project, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Conley, Will

    2003-10-01

    This project focuses on the lower Klickitat River and its tributaries that provide or affect salmonid habitat. The overall goal is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of watersheds supporting anadromous fish production, particularly steelhead (Oncorhyncus mykiss) which are listed as 'Threatened' within the Mid-Columbia ESU. Restoration activities are aimed at restoring stream processes by removing or mitigating watershed perturbances and improving habitat conditions and water quality. In addition to steelhead, habitat improvements benefit Chinook (O. tshawytscha) and coho (O. kisutch) salmon, resident rainbow trout, and enhance habitat for many terrestrial and amphibian wildlife species. Protection activities compliment restoration efforts within the subbasin by securing refugia and preventing degradation. Since 90% of the project area is in private ownership, maximum effectiveness will be accomplished via cooperation with state, federal, tribal, and private entities. The project addresses goals and objectives presented in the Klickitat Subbasin Summary and the 1994 NWPPC Fish and Wildlife Program. Feedback from the 2000 Provincial Review process indicated a need for better information management to aid development of geographic priorities. Thus, an emphasis has been placed on database development and a review of existing information prior to pursuing more extensive implementation. Planning and design was initiated on several restoration projects. These priorities will be refined in future reports as the additional data is collected and analyzed. Tasks listed are for the April 1, 2001 to August 31, 2002 contract cycle, for which work was delayed during the summer of 2001 because the contract was not finalized until mid-August 2001. Accomplishments are provided for the September 1, 2001 to August 31, 2002 reporting period. During this reporting period

  4. A Case Study on Nitrogen Uptake and Denitrification in a Restored Urban Stream in Baltimore, Maryland

    Science.gov (United States)

    Restoring urban infrastructure and managing the nitrogen cycle represent emerging challenges for urban water quality. We investigated whether stormwater control measures (SCMs), a form of green infrastructure, integrated into restored and degraded urban stream networks can influe...

  5. Principles of Wetland Restoration

    Science.gov (United States)

    the return of a degraded ecosystem to a close approximation of its remaining natural potential - is experiencing a groundswell of support across the United States. The number of stream, river, lake, wetland and estuary restoration projects grows yearly

  6. South Stream Project and the Ukrainian Factor

    Directory of Open Access Journals (Sweden)

    Roxana Ioana Banciu

    2015-03-01

    Full Text Available The paper seeks to develop an analysis of the South Stream project in view of the Ukrainian crisis. We cannot put aside the internal factor as Ukraine is facing serious internal issues such as corruption and instability, therefore Russia’s invasion of Ukraine can not be simply ignored in this pipeline project. The article uses mostly facts that happened throughout last years, as well as for and against declarations in the case of the South Stream project and its mother Russia. When we hear about South Stream, we think of Russia and since 2007, this pipeline has encouraged Putin’s faith in energy superpower. A good point to start with was to gather all declarations since then and cover all actions that regard the South Stream game. In Russian foreign policy for the South Stream race, Soft Power was used more than enough and it has recently made room for Hard Power, which is the Ukraine never ending episode. Insights of the South Stream story have been lately related both softly and hardly, this is the reason why I have chosen to analyse both sides in order to complete the energy landscape.

  7. Restoration as mitigation: analysis of stream mitigation for coal mining impacts in southern Appalachia.

    Science.gov (United States)

    Palmer, Margaret A; Hondula, Kelly L

    2014-09-16

    Compensatory mitigation is commonly used to replace aquatic natural resources being lost or degraded but little is known about the success of stream mitigation. This article presents a synthesis of information about 434 stream mitigation projects from 117 permits for surface mining in Appalachia. Data from annual monitoring reports indicate that the ratio of lengths of stream impacted to lengths of stream mitigation projects were <1 for many projects, and most mitigation was implemented on perennial streams while most impacts were to ephemeral and intermittent streams. Regulatory requirements for assessing project outcome were minimal; visual assessments were the most common and 97% of the projects reported suboptimal or marginal habitat even after 5 years of monitoring. Less than a third of the projects provided biotic or chemical data; most of these were impaired with biotic indices below state standards and stream conductivity exceeding federal water quality criteria. Levels of selenium known to impair aquatic life were reported in 7 of the 11 projects that provided Se data. Overall, the data show that mitigation efforts being implemented in southern Appalachia for coal mining are not meeting the objectives of the Clean Water Act to replace lost or degraded streams ecosystems and their functions.

  8. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats...... and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled...... along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored...

  9. Prioritization of forest restoration projects: Tradeoffs between wildfire protection, ecological restoration and economic objectives

    Science.gov (United States)

    Kevin C. Vogler; Alan A. Ager; Michelle A. Day; Michael Jennings; John D. Bailey

    2015-01-01

    The implementation of US federal forest restoration programs on national forests is a complex process that requires balancing diverse socioecological goals with project economics. Despite both the large geographic scope and substantial investments in restoration projects, a quantitative decision support framework to locate optimal project areas and examine...

  10. Variable responses of fish assemblages, habitat, and stability to natural-channel-design restoration in Catskill Mountain streams

    Science.gov (United States)

    Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.

    2010-01-01

    Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.

  11. Restoring Wood-Rich Hotspots in Mountain Stream Networks

    Science.gov (United States)

    Wohl, E.; Scott, D.

    2016-12-01

    Mountain streams commonly include substantial longitudinal variability in valley and channel geometry, alternating repeatedly between steep, narrow and relatively wide, low gradient segments. Segments that are wider and lower gradient than neighboring steeper sections are hotspots with respect to: retention of large wood (LW) and finer sediment and organic matter; uptake of nutrients; and biomass and biodiversity of aquatic and riparian organisms. These segments are also more likely to be transport-limited with respect to floodplain and instream LW. Management designed to protect and restore riverine LW and the physical and ecological processes facilitated by the presence of LW is likely to be most effective if focused on relatively low-gradient stream segments. These segments can be identified using a simple, reach-scale gradient analysis based on high-resolution DEMs, with field visits to identify factors that potentially limit or facilitate LW recruitment and retention, such as forest disturbance history or land use. Drawing on field data from the western US, this presentation outlines a procedure for mapping relatively low-gradient segments in a stream network and for identifying those segments where LW reintroduction or retention is most likely to balance maximizing environmental benefits derived from the presence of LW while minimizing hazards associated with LW.

  12. Sears Point Tidal Marsh Restoration Project: Phase I

    Science.gov (United States)

    Information about the SFBWQP Sears Point Tidal Marsh Restoration Project: Phase I project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  13. Macroinvertebrate community responses to a dewatering disturbance gradient in a restored stream

    Directory of Open Access Journals (Sweden)

    J. D. Muehlbauer

    2011-06-01

    Full Text Available Dewatering disturbances are common in aquatic systems and represent a relatively untapped field of disturbance ecology, yet studying dewatering events along gradients in non-dichotomous (i.e. wet/dry terms is often difficult. Because many stream restorations can essentially be perceived as planned hydrologic manipulations, such systems can make ideal test-cases for understanding processes of hydrological disturbance. In this study we used an experimental drawdown in a 440 ha stream/wetland restoration site to assess aquatic macroinvertebrate community responses to dewatering and subsequent rewetting. The geomorphic nature of the site and the design of the restoration allowed dewatering to occur predictably along a gradient and decoupled the hydrologic response from any geomorphic (i.e. habitat heterogeneity effects. In the absence of such heterogeneous habitat refugia, reach-scale wetted perimeter and depth conditions exerted a strong control on community structure. The community exhibited an incremental response to dewatering severity over the course of this disturbance, which was made manifest not as a change in community means but as an increase in community variability, or dispersion, at each site. The dewatering also affected inter-species abundance and distributional patterns, as dewatering and rewetting promoted alternate species groups with divergent habitat tolerances. Finally, our results indicate that rapid rewetting – analogous to a hurricane breaking a summer drought – may represent a recovery process rather than an additional disturbance and that such processes, even in newly restored systems, may be rapid.

  14. Designing and Assessing Restored Meandering River Planform Using RVR Meander

    Science.gov (United States)

    Langendoen, E. J.; Abad, J. D.; Motta, D.; Frias, C. E.; Wong, M.; Barnes, B. J.; Anderson, C. D.; Garcia, M. H.; MacDonald, T. E.

    2013-12-01

    The ongoing modification and resulting reduction in water quality of U.S. rivers have led to a significant increase in river restoration projects over the last two decades. The increased interest in restoring degraded streams, however, has not necessarily led to improved stream function. Palmer and Allan (2005) found that many restoration projects fail to achieve their objectives due to the lack of policies to support restoration standards, to promote proven methods and to provide basic data needed for planning and implementation. Proven models of in-stream and riparian processes could be used not only to guide the design of restoration projects but also to assess both pre- and post-project indicators of ecological integrity. One of the most difficult types of river restoration projects concern reconstructing a new channel, often with an alignment and channel form different from those of the degraded pre-project channel. Recreating a meandering planform to provide longitudinal and lateral variability of flow and bed morphology to improve in-stream aquatic habitat is often desired. Channel meander planform is controlled by a multitude of variables, for example channel width to depth ratio, radius of curvature to channel width ratio, bankfull discharge, roughness, bed-material physical characteristics, bed material transport, resistance to erosion of the floodplain soils, riparian vegetation, etc. Therefore, current practices that use simple, empirically based relationships or reference reaches have led to failure in several instances, for example a washing out of meander bends or a highly unstable planform, because they fail to address the site-specific conditions. Recently, progress has been made to enhance a physically- and process-based model, RVR Meander, for rapid analysis of meandering river morphodynamics with reduced empiricism. For example, lateral migration is based on measurable physical properties of the floodplain soils and riparian vegetation versus

  15. Environmental Restoration Project - Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1998-06-01

    This Environmental Restoration (ER) Project Systems Engineering Management Plan (SEMP) describes relevant Environmental Restoration Contractor (ERC) management processes and shows how they implement systems engineering. The objective of this SEMP is to explain and demonstrate how systems engineering is being approached and implemented in the ER Project. The application of systems engineering appropriate to the general nature and scope of the project is summarized in Section 2.0. The basic ER Project management approach is described in Section 3.0. The interrelation and integration of project practices and systems engineering are outlined in Section 4.0. Integration with sitewide systems engineering under the Project Hanford Management Contract is described in Section 5.0

  16. Vermont EPSCoR Streams Project: Engaging High School and Undergraduate Students in Watershed Research

    Science.gov (United States)

    Ray, E.; McCabe, D.; Sheldon, S.; Jankowski, K.; Haselton, L.; Luck, M.; van Houten, J.

    2009-12-01

    The Vermont EPSCoR Streams Project engages a diverse group of undergraduates, high school students, and their teachers in hands-on water quality research and exposes them to the process of science. The project aims to (1) recruit students to science careers and (2) create a water quality database comprised of high-quality data collected by undergraduates and high school groups. The project is the training and outreach mechanism of the Complex Systems Modeling for Environmental Problem Solving research program, an NSF-funded program at the University of Vermont (UVM) that provides computational strategies and fresh approaches for understanding how natural and built environments interact. The Streams Project trains participants to collect and analyze data from streams throughout Vermont and at limited sites in Connecticut, New York, and Puerto Rico. Participants contribute their data to an online database and use it to complete individual research projects that focus on the effect of land use and precipitation patterns on selected measures of stream water quality. All undergraduates and some high school groups are paired with a mentor, who is either a graduate student or a faculty member at UVM or other college. Each year, undergraduate students and high school groups are trained to (1) collect water and macroinvertebrate samples from streams, (2) analyze water samples for total phosphorus, bacteria, and total suspended solids in an analytical laboratory, and/or (3) use geographic information systems (GIS) to assess landscape-level data for their watersheds. After training, high school groups collect samples from stream sites on a twice-monthly basis while undergraduates conduct semi-autonomous field and laboratory research. High school groups monitor sites in two watersheds with contrasting land uses. Undergraduate projects are shaped by the interests of students and their mentors. Contribution to a common database provides students with the option to expand the

  17. Contrasting landscape influences on sediment supply and stream restoration priorities in northern Fennoscandia (Sweden and Finland) and coastal British Columbia.

    Science.gov (United States)

    Rosenfeld, Jordan; Hogan, Daniel; Palm, Daniel; Lundquist, Hans; Nilsson, Christer; Beechie, Timothy J

    2011-01-01

    Sediment size and supply exert a dominant control on channel structure. We review the role of sediment supply in channel structure, and how regional differences in sediment supply and land use affect stream restoration priorities. We show how stream restoration goals are best understood within a common fluvial geomorphology framework defined by sediment supply, storage, and transport. Land-use impacts in geologically young landscapes with high sediment yields (e.g., coastal British Columbia) typically result in loss of in-stream wood and accelerated sediment inputs from bank erosion, logging roads, hillslopes and gullies. In contrast, northern Sweden and Finland are landscapes with naturally low sediment yields caused by low relief, resistant bedrock, and abundant mainstem lakes that act as sediment traps. Land-use impacts involved extensive channel narrowing, removal of obstructions, and bank armouring with boulders to facilitate timber floating, thereby reducing sediment supply from bank erosion while increasing export through higher channel velocities. These contrasting land-use impacts have pushed stream channels in opposite directions (aggradation versus degradation) within a phase-space defined by sediment transport and supply. Restoration in coastal British Columbia has focused on reducing sediment supply (through bank and hillslope stabilization) and restoring wood inputs. In contrast, restoration in northern Fennoscandia (Sweden and Finland) has focused on channel widening and removal of bank-armouring boulders to increase sediment supply and retention. These contrasting restoration priorities illustrate the consequences of divergent regional land-use impacts on sediment supply, and the utility of planning restoration activities within a mechanistic sediment supply-transport framework.

  18. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    Science.gov (United States)

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  19. Social Science Methods Used in the RESTORE Project

    Science.gov (United States)

    Lynne M. Westphal; Cristy Watkins; Paul H. Gobster; Liam Heneghan; Kristen Ross; Laurel Ross; Madeleine Tudor; Alaka Wali; David H. Wise; Joanne Vining; Moira. Zellner

    2014-01-01

    The RESTORE (Rethinking Ecological and Social Theories of Restoration Ecology) project is an interdisciplinary, multi-institutional research endeavor funded by the National Science Foundation's Dynamics of Coupled Natural Human Systems program. The goal of the project is to understand the links between organizational type, decision making processes, and...

  20. 78 FR 26063 - Central Utah Project Completion Act; East Hobble Creek Restoration Project Final Environmental...

    Science.gov (United States)

    2013-05-03

    ...-100-00-0-0, CUPCA00] Central Utah Project Completion Act; East Hobble Creek Restoration Project Final... Creek Restoration Project. These two agencies have determined that the proposed [[Page 26064

  1. The relation between project management education and newer streams in project management research

    DEFF Research Database (Denmark)

    Leimbach, Timo; Goodall, Julie Bladt

    2017-01-01

    In the last decades, research in project management (PM) has experienced significant new inputs from a range of new PM methodologies and critical research streams. As a consequence, members of the more critical streams have called for the education of project managers to advance from that of trai......In the last decades, research in project management (PM) has experienced significant new inputs from a range of new PM methodologies and critical research streams. As a consequence, members of the more critical streams have called for the education of project managers to advance from...... that of training technicians, to fostering reflective practitioners that are better equipped to handle the increasing complexity of the profession. This paper is based on a recently commenced re-search project titled "Rethinking Project Management Education – the Role of Universities" that is aimed at analysing...... how the development of PM research is reflected in the education of project managers. On the basis of a short overview of the state of the art of PM education research and practices, the possible challenges for the development of PM education are discussed, and, finding that there is a lack...

  2. Research/Evaluate Restoration of NE Oregon Streams: Effects of Livestock Exclosures (Corridor Fencing) on Riparian Vegetation, Stream Geomorphic Features and Fish Populations; Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, J. Boone

    2002-09-17

    aquatic habitats and associated riparian functions; (2) a means of determining rates of aquatic habitat improvement; and (3) a basis for projecting future trends of habitat recovery. The proposed research is intended to provide an improved understanding of both the effects and effectiveness of a commonly used habitat enhancement approach in the upper Columbia River Basin. This is the exclusion of domestic livestock from streamside communities and streams via corridor fencing (exclosures). This final report is broken into three separate chapters. The first chapter covers the vegetation change associated with livestock exclusion. The second chapter focuses on the physical geomorphic changes to the streambank and channel. The final chapter covers the response of salmonids and warmwater fishes to livestock exclusion at the spatial scales of exclosures as is commonly constructed today. It is expected that this study will provide an important scientific basis, currently lacking, for understanding the ecological principles of restoration/enhancement of sustainable aquatic habitats for salmonids. Thus, the results of this work are likely to have important ramifications for habitat improvement projects within and beyond the general geographic region of northeastern Oregon.

  3. Incorporating climate change projections into riparian restoration planning and design

    Science.gov (United States)

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  4. South Texas Native Plant Restoration Project

    Science.gov (United States)

    2012-10-01

    The South Texas Native Plant Restoration Project was a resounding success in that the primary goal of : developing commercial sources of native seed has been substantially met. By the conclusion of the project : on August 31, 2011, 20 native seed sou...

  5. Richland Environmental Restoration Project management action process document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This document is the prescribed means for providing direct input to the US Department of Energy Headquarters regarding the status, accomplishments, strategy, and issues of the Richland Environmental Restoration Project. The project mission, organizational interfaces, and operational history of the Hanford Site are provided. Remediation strategies are analyzed in detail. The document includes a status of Richland Environmental Restoration project activities and accomplishments, and it presents current cost summaries, schedules, and technical baselines.

  6. Richland Environmental Restoration Project management action process document

    International Nuclear Information System (INIS)

    1996-04-01

    This document is the prescribed means for providing direct input to the US Department of Energy Headquarters regarding the status, accomplishments, strategy, and issues of the Richland Environmental Restoration Project. The project mission, organizational interfaces, and operational history of the Hanford Site are provided. Remediation strategies are analyzed in detail. The document includes a status of Richland Environmental Restoration project activities and accomplishments, and it presents current cost summaries, schedules, and technical baselines

  7. Environmental restoration project configuration control

    International Nuclear Information System (INIS)

    Hutterman, L.L.

    1991-01-01

    This paper provides an overview of the approach that Westinghouse Idaho Nuclear Company, Inc. (WINCO) is using for the implementation of the configuration control requirements for a major system acquisition under the guidance of US Department of Energy (DOE) Order 4700.1, open-quotes Project Management System,close quotes for environmental restoration. The two major features of the WINCO environmental restoration approach relate to (1) the product and (2) the maintenance of the baseline for many sites in different phases at the same time. Historically, a project has typically produced a product. Environmental restoration in some ways produces no typical project product. Essentially, what is produced and what configuration control management is exercised on is one of the following: (1) the development of clean dirt, (2) the documentation to support clean dirt, or (3) the track record of each of the sites. It is the latter approach that this paper deals with. This approach is unique in that there are four baselines [cost, schedule, scope, and technical (the track record product)] rather than the typical three. This is essential in configuration management due to the lack of a uniquely identifiable product for each site. Essentially, the philosophy behind the four-part configuration controls allows the technical baseline to fulfill the function typically met by the identifiable product

  8. 78 FR 2685 - Central Utah Project Completion Act; East Hobble Creek Restoration Project Draft Environmental...

    Science.gov (United States)

    2013-01-14

    ... DEPARTMENT OF THE INTERIOR Office of the Secretary Central Utah Project Completion Act; East Hobble Creek Restoration Project Draft Environmental Assessment AGENCY: Office of the Assistant Secretary... assessment for the East Hobble Creek Restoration Project is available for public review and comment. The...

  9. Restoring stream habitat connectivity: a proposed method for prioritizing the removal of resident fish passage barriers.

    Science.gov (United States)

    O'Hanley, Jesse R; Wright, Jed; Diebel, Matthew; Fedora, Mark A; Soucy, Charles L

    2013-08-15

    Systematic methods for prioritizing the repair and removal of fish passage barriers, while growing of late, have hitherto focused almost exclusively on meeting the needs of migratory fish species (e.g., anadromous salmonids). An important but as of yet unaddressed issue is the development of new modeling approaches which are applicable to resident fish species habitat restoration programs. In this paper, we develop a budget constrained optimization model for deciding which barriers to repair or remove in order to maximize habitat availability for stream resident fish. Habitat availability at the local stream reach is determined based on the recently proposed C metric, which accounts for the amount, quality, distance and level of connectivity to different stream habitat types. We assess the computational performance of our model using geospatial barrier and stream data collected from the Pine-Popple Watershed, located in northeast Wisconsin (USA). The optimization model is found to be an efficient and practical decision support tool. Optimal solutions, which are useful in informing basin-wide restoration planning efforts, can be generated on average in only a few minutes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Adaptively Addressing Uncertainty in Estuarine and Near Coastal Restoration Projects

    Energy Technology Data Exchange (ETDEWEB)

    Thom, Ronald M.; Williams, Greg D.; Borde, Amy B.; Southard, John A.; Sargeant, Susan L.; Woodruff, Dana L.; Laufle, Jeffrey C.; Glasoe, Stuart

    2005-03-01

    Restoration projects have an uncertain outcome because of a lack of information about current site conditions, historical disturbance levels, effects of landscape alterations on site development, unpredictable trajectories or patterns of ecosystem structural development, and many other factors. A poor understanding of the factors that control the development and dynamics of a system, such as hydrology, salinity, wave energies, can also lead to an unintended outcome. Finally, lack of experience in restoring certain types of systems (e.g., rare or very fragile habitats) or systems in highly modified situations (e.g., highly urbanized estuaries) makes project outcomes uncertain. Because of these uncertainties, project costs can rise dramatically in an attempt to come closer to project goals. All of the potential sources of error can be addressed to a certain degree through adaptive management. The first step is admitting that these uncertainties can exist, and addressing as many of the uncertainties with planning and directed research prior to implementing the project. The second step is to evaluate uncertainties through hypothesis-driven experiments during project implementation. The third step is to use the monitoring program to evaluate and adjust the project as needed to improve the probability of the project to reach is goal. The fourth and final step is to use the information gained in the project to improve future projects. A framework that includes a clear goal statement, a conceptual model, and an evaluation framework can help in this adaptive restoration process. Projects and programs vary in their application of adaptive management in restoration, and it is very difficult to be highly prescriptive in applying adaptive management to projects that necessarily vary widely in scope, goal, ecosystem characteristics, and uncertainties. Very large ecosystem restoration programs in the Mississippi River delta (Coastal Wetlands Planning, Protection, and Restoration

  11. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Science.gov (United States)

    2010-02-09

    ...-04] RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes... Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of funding availability; Date... on January 19, 2010. That notice announced the NOAA Great Lakes Habitat Restoration Program Project...

  12. Simulating stream response to floodplain connectivity, reforestation and wetland restoration from reach to catchment scales

    Science.gov (United States)

    Singh, N.; Bomblies, A.; Wemple, B. C.; Ricketts, T.

    2017-12-01

    Natural infrastructure (e.g., floodplains, forests) can offer multiple ecosystem services (ES), including flood resilience and water quality improvement. In order to maintain these ES, state, federal and non-profit organizations may consider various interventions, such as increased floodplain connectivity, reforestation, and wetland restoration to minimize flood peaks and erosion during events. However, the effect of these interventions on hydro-geomorphic responses of streams from reach to catchment scales (>100 km2) are rarely quantified. We used stream geomorphic assessment datasets with a hydraulic model to investigate the influence of above mentioned interventions on stream power (SP), water depth (WD) and channel velocity (VEL) during floods of 2yr and 100yr return periods for three catchments in the Lake Champlain basin, Vermont. To simulate the effect of forests and wetlands, we changed the Manning's coefficient in the model, and to simulate the increased connectivity of the floodplain, we edited the LIDAR data to lower bank elevations. We find that the wetland scenario resulted in the greatest decline in WD and SP, whereas forested scenario exhibited maximum reduction in VEL. The connectivity scenario showed a decline in almost all stream responses, but the magnitude of change was relatively smaller. On average, 35% (2yr) and 50% (100yr) of altered reaches demonstrated improvement over baseline, and 39% (2yr) and 31% (100yr) of altered reaches showed degradation over baseline, across all interventions. We also noted changes in stream response along unaltered reaches (>30%), where we did not make interventions. Overall, these results point to the complexity related to stream interventions and suggest careful evaluation of spatially explicit tradeoffs of these interventions on river-floodplain ecosystem. The proposed approach of simulating and understanding stream's response to interventions, prior to the implementation of restoration activities, may lead to

  13. Sears Point Tidal Marsh Restoration Project: Phase II

    Science.gov (United States)

    Information about the SFBWQP Sears Point Tidal Marsh Restoration Project: Phase II, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  14. Richland Environmental Restoration Project Baseline Multi Year Work Plan Volume 1 Richland Environmental Restoration Project Plan

    International Nuclear Information System (INIS)

    Wintczak, T.M.

    2001-01-01

    The purpose of this project specification is to provide an overall scoping and document for the Environmental Restoration project, and to provide a link between the overall Hanford Site scope and the ER project. The purpose of this project specification is to provide an overall scoping document for the ER Project, and to provide a link between the overall Hanford Site scope and the ER Project. Additionally, this specification provides an integrated and consolidated source of information for the Richland ER Project. It identifies the ER Project vision, mission, and goals, as well as the operational history of the Hanford Site, along with environmental setting and hazards. This ER Project Specification is part of the overall ER Project baseline

  15. Effects of road salts on groundwater and surface water dynamics of socium and chloride in an urban restored stream

    Science.gov (United States)

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current basef...

  16. Hangman Restoration Project : Annual Report, August 1, 2001 - July 31, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Green, Gerald I.; Coeur D' Alene Tribe.

    2002-06-01

    The construction of hydroelectric facilities in the Columbia Basin resulted in the extirpation of anadromous fish stocks in Hangman Creek and its tributaries within the Coeur d'Alene Reservation. Thus, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as redband trout (Oncorhynchus mykiss garideini), westslope cutthroat trout (O. clarki lewisii) and bull trout (Salvelinus confluentus) as well as local wildlife populations. Additionally, the Tribe was forced to convert prime riparian habitat into agricultural lands to supply sustenance for their changed needs. Wildlife habitats within the portion of the Hangman Creek Watershed that lies within the Coeur d'Alene Indian Reservation have been degraded from a century of land management practices that include widespread conversion of native habitats to agricultural production and intensive silvicultural practices. Currently, wildlife and fish populations have been marginalized and water quality is significantly impaired. In the fall of 2000 the Coeur d'Alene Tribe Wildlife Program, in coordination with the Tribal Fisheries Program, submitted a proposal to begin addressing the degradations to functioning habitats within the Coeur d'Alene Reservation in the Hangman Watershed. That proposal led to the implementation of this project during BPA's FY2001 through FY2003 funding cycle. The project is intended to protect, restore and/or enhance priority riparian, wetland and upland areas within the headwaters of Hangman Creek and its tributaries in order to promote healthy self-sustaining fish and wildlife populations. A key goal of this project is the implementation of wildlife habitat protection efforts in a manner that also secures areas with the potential to provide stream and wetland habitats essential to native salmonid populations. This goal is critical in our efforts to address both resident fish and wildlife habitat needs in the Hangman Watershed. All

  17. John Day River Subbasin Fish Habitat Enhancement Project, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Jerome, James P.; Delano, Kenneth H.

    2003-03-01

    Work undertaken in 2002 included: (1) Seven new fence projects were completed thereby protecting 6.0 miles of stream (2) Completion of 0.7 miles of dredge tail leveling on Granite Creek. (3) New fence construction (300ft) plus one watergap on Indian Creek/ Kuhl property. (4) Maintenance of all active project fences (58.76 miles), watergaps (56), spring developments (32) and plantings were checked and repairs performed. (5) Restoration and Enhancement projects protected 3 miles of stream within the basin. (6) Since the initiation of the Fish Habitat Project in 1984 we have 67.21 miles of stream protected using 124.2 miles of fence. With the addition of the Restoration and Enhancement Projects we have 199.06 miles of fence protecting 124.57 miles of stream.

  18. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinver...

  19. Quantifying restoration success and recovery in a metal-polluted stream: A 17-year assessment of physicochemical and biological responses

    Science.gov (United States)

    Clements, W.H.; Vieira, N.K.M.; Church, S.E.

    2010-01-01

    Evaluating the effectiveness of stream restoration is often challenging because of the lack of pre-treatment data, narrow focus on physicochemical measures and insufficient post-restoration monitoring. Even when these fundamental elements are present, quantifying restoration success is difficult because of the challenges associated with distinguishing treatment effects from seasonal variation, episodic events and long-term climatic changes.2. We report results of one of the most comprehensive and continuous records of physical, chemical and biological data available to assess restoration success for a stream ecosystem in North America. Over a 17 year period we measured seasonal and annual changes in metal concentrations, physicochemical characteristics, macroinvertebrate communities, and brown trout Salmo trutta populations in the Arkansas River, a metal-contaminated stream in Colorado, USA.3. Although we observed significant improvements in water quality after treatment, the effectiveness of restoration varied temporally, spatially and among biological response variables. The fastest recovery was observed at stations where restoration eliminated point sources of metal contamination. Recovery of macroinvertebrates was significantly delayed at some stations because of residual sediment contamination and because extreme seasonal and episodic variation in metal concentrations prevented recolonization by sensitive species. Synthesis and applications. Because recovery trajectories after the removal of a stressor are often complex or nonlinear, long-term studies are necessary to assess restoration success within the context of episodic events and changes in regional climate. The observed variation in recovery among chemical and biological endpoints highlights the importance of developing objective criteria to assess restoration success. Although the rapid response of macroinvertebrates to reduced metal concentrations is encouraging, we have previously demonstrated that

  20. Wind River Watershed Restoration Project, Segment II, 2000-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, Brian; Olegario, Anthony; Powers, Paul

    2002-06-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its second year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey - Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW).

  1. Macroinvertebrate communities evaluated prior to and following a channel restoration project in Silver Creek, Blaine County, Idaho, 2001-16

    Science.gov (United States)

    MacCoy, Dorene E.; Short, Terry M.

    2017-11-22

    The U.S. Geological Survey, in cooperation with Blaine County and The Nature Conservancy, evaluated the status of macroinvertebrate communities prior to and following a channel restoration project in Silver Creek, Blaine County, Idaho. The objective of the evaluation was to determine whether 2014 remediation efforts to restore natural channel conditions in an impounded area of Silver Creek caused declines in local macroinvertebrate communities. Starting in 2001 and ending in 2016, macroinvertebrates were sampled every 3 years at two long-term trend sites and sampled seasonally (spring, summer, and autumn) in 2013, 2015, and 2016 at seven synoptic sites. Trend-site communities were collected from natural stream-bottom substrates to represent locally established macroinvertebrate assemblages. Synoptic site communities were sampled using artificial (multi-plate) substrates to represent recently colonized (4–6 weeks) assemblages. Statistical summaries of spatial and temporal patterns in macroinvertebrate taxonomic composition at both trend and synoptic sites were completed.The potential effect of the restoration project on resident macroinvertebrate populations was determined by comparing the following community assemblage metrics:Total taxonomic richness (taxa richness);Total macroinvertebrate abundance (total abundance);Ephemeroptera, Plecoptera, Trichoptera (EPT) richness;EPT abundance;Simpson’s diversity; andSimpson’s evenness for periods prior to and following restoration.A significant decrease in one or more metric values in the period following stream channel restoration was the basis for determining impairment to the macroinvertebrate communities in Silver Creek.Comparison of pre-restoration (2001–13) and post‑restoration (2016) macroinvertebrate community composition at trend sites determined that no significant decreases occurred in any metric parameter for communities sampled in 2016. Taxa and EPT richness of colonized assemblages at synoptic sites

  2. Instream habitat restoration and stream temperature reduction in a whirling disease-positive Spring Creek in the Blackfoot River Basin, Montana

    Science.gov (United States)

    Pierce, Ron; Podner, Craig; Marczak, Laurie B; Jones, Leslie A.

    2014-01-01

    Anthropogenic warming of stream temperature and the presence of exotic diseases such as whirling disease are both contemporary threats to coldwater salmonids across western North America. We examined stream temperature reduction over a 15-year prerestoration and postrestoration period and the severity of Myxobolus cerebralisinfection (agent of whirling disease) over a 7-year prerestoration and postrestoration period in Kleinschmidt Creek, a fully reconstructed spring creek in the Blackfoot River basin of western Montana. Stream restoration increased channel length by 36% and reduced the wetted surface area by 69% by narrowing and renaturalizing the channel. Following channel restoration, average maximum daily summer stream temperatures decreased from 15.7°C to 12.5°C, average daily temperature decreased from 11.2°C to 10.0°C, and the range of daily temperatures narrowed by 3.3°C. Despite large changes in channel morphology and reductions in summer stream temperature, the prevalence and severity of M. cerebralis infection for hatchery Rainbow Trout Oncorhynchus mykiss remained high (98–100% test fish with grade > 3 infection) versus minimal for hatchery Brown Trout Salmo trutta (2% of test fish with grade-1 infection). This study shows channel renaturalization can reduce summer stream temperatures in small low-elevation, groundwater-dominated streams in the Blackfoot basin to levels more suitable to native trout. However, because of continuous high infections associated with groundwater-dominated systems, the restoration of Kleinschmidt Creek favors brown trout Salmo trutta given their innate resistance to the parasite and the higher relative susceptibility of other salmonids.

  3. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  4. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    International Nuclear Information System (INIS)

    Bambic, Dustin G.; Alpers, Charles N.; Green, Peter G.; Fanelli, Eileen; Silk, Wendy K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage. - Seasonal hydrology and benthic sediments control copper and zinc concentrations in a stream through a restored mine site

  5. Emerson Parcel of Dutch Slough Tidal Marsh Restoration Project

    Science.gov (United States)

    Information about the SFBWQP Emerson Parcel of Dutch Slough Tidal Marsh Restoration Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  6. Reconciling agriculture and stream restoration in Europe: A review relating to the EU Water Framework Directive

    DEFF Research Database (Denmark)

    Flavio, Hugo; Ferreira, P.; Formigo, N.

    2017-01-01

    Agriculture is widespread across the EU and has caused considerable impacts on freshwater ecosystems. To revert the degradation caused to streams and rivers, research and restoration efforts have been developed to recover ecosystem functions and services, with the European Water Framework Directive.......g. stakeholder management, land use conflicts, climate change effects), which may play an important role in guiding future policy. Our recommendations are important for the second WFD cycle because they 1) help secure the development and dissemination of science-based restoration strategies and 2) provide...

  7. Fisheries Restoration Grant Program Projects [ds168

    Data.gov (United States)

    California Natural Resource Agency — This shapefile (FRGP_All_020209.shp) represents the locations of all ongoing and completed salmonid restoration projects in California with existing records in the...

  8. The Role of Anthropogenic Stratigraphy in River Restoration Projects

    Science.gov (United States)

    Evans, J. E.; Webb, L. D.

    2012-12-01

    As part of a river restoration project and removal of a low-head dam on the Ottawa River (northwestern Ohio and southeastern Michigan) in 2007, a longer-term project was initiated to assess anthropogenic changes of the Ottawa River fluvial system. A composite stratigraphic section 4.5 m in length was constructed by stratigraphic correlation from three trenches up to 2.5 m in depth and 14 vibracores up to 2.5 m in length, all within a small region (tires, intact or pieces of glass bottles, and one horizon of displaced railroad ties. Age control for the composite section is provided by 4 14C dates, 6 OSL dates, and one bottle with a date stamp. Two prominent flood horizons are indicated in multiple trenches or cores, and identified as the historic floods of 1913 and 1959. The data show the following major changes in the fluvial system over time: (1) prior to approximately 5 Ka, the river system was transporting mineral-rich sediment and formed meandering point-bar sequences approximately 1.5 m thick; (2) between approximately 5 Ka and 200 YBP, the river system was transporting organic-rich sediment (i.e., blackwater stream) bordered by riparian wetlands accumulating peat (part of the regional "Great Black Swamp" discovered by settlers from eastern North America); (3) between approximately 200 YBP and the early 1960s the river system was transporting mineral-rich sediment (i.e., brownwater stream), probably sourced from extensive land clearance for agriculture, which backfilled and overtopped the previous riparian wetlands and produced an series of thin channel fills interpreted as rapidly shifting avulsional channels; (4) since the early 1960s, sediment supply has exceeded sediment conveyance capacity, leading to vertical aggradation of approximately 1.7 m, creating the fill-terrace morphology evident today; and (5) overlapping with the previous stage, channel incision and lateral channel migration has produced a fluvial system dominated by bank erosion, logjams due

  9. Ecosystem Management and Restoration. Overview of Stream Restoration Technology: State of the Science. EMRRP, Volume 2, Number 3

    National Research Council Canada - National Science Library

    Fischenich, J

    1999-01-01

    The Ecosystem Management and Restoration Research Program (EMRRP), established in 1997, provides state-of-the-science techniques for prediction and analysis of environmental impacts of Corps projects and activities...

  10. Ecological Effects of Re-introduction of Salmonid Spawning Gravel in Lowland Danish Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Esben Astrup; Kronvang, Brian

    2009-01-01

    recently been conducted in many streams and rivers. However, systematic monitoring of these spawning gravel restoration projects is limited. The overall aim of this paper was to evaluate gravel reintroduction as a long-term salmonid rehabilitation method in 32 lowland streams. Displacement of gravel......, including both restored reaches and upstream control reaches. Downstream displacement of gravel was most common at sites where gravel was reintroduced without further improvement, although these sites exhibited the highest density of YOY brown trout (Salmo trutta), evidencing that the remaining gravel...... is still functional. The intensive study of three streams showed that spawning was enhanced by the introduction of spawning gravel at the restored sites compared to control sites and that habitat quality generally were improved. Our results also suggest complex interactions exist between spawning activity...

  11. Management systems for environmental restoration projects

    International Nuclear Information System (INIS)

    Harbert, R.R.

    1990-01-01

    This paper reports that the success fo large environmental restoration projects depends on sound management systems to guide the team of organizations and individuals responsible for the project. Public concern about and scrutiny of these environmental projects increase the stakes for those involved in the management of projects. The Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) uses a system approach to performing and improving the work necessary to meet FUSRAP objectives. This approach to preforming and improving the work necessary to meet FUSRAP objectives. This approach is based upon management criteria embodied in DOE cost and schedule control system and the quality assurance requirements. The project team used complementary criteria to develop a system of related parts and processes working together to accomplish the goals of the project

  12. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  13. NATURAL GAS SUPPLY PROJECTS FOR EUROPE – SOUTH STREAM AND NABUCCO

    Directory of Open Access Journals (Sweden)

    Domagoj Sučić

    2011-12-01

    Full Text Available South Stream and Nabucco are planned southern corridor projects for natural gas supply to Europe. South Stream is a Russian construction project of the gas pipeline with the capacity of 63 bcm of natural gas per year. It will connect Russia with Austria through Black Sea, Bulgaria, Serbia and Hungary, and with southern Italy through Greece and Ionian Sea, respectively. Nabucco is a European Union planned gas pipeline with the capacity of 31 bcm per year. If built, it will connect Caspian Region and Middle East with Austria through Turkey, Bulgaria, Romania and Hungary. Gas sources for South Stream pipeline are known and available, however it’s construction will be expensive. Nabucco gas pipeline construction costs will be two times less, but the unresolved political relations and non-existent infrastructure have caused it to have no available gas sources at the moment. Countries like Bulgaria and Hungary are involved with both projects, indicating the importance of both projects. In this paper SWOT analysis of the proposed projects was done and it has shown that there is a great chance Nabucco won’t be built if South Stream materializes first (the paper is published in Croatian.

  14. 75 FR 5765 - NOAA Coastal and Marine Habitat Restoration Project Supplemental Funding

    Science.gov (United States)

    2010-02-04

    ...-02] RIN 0648-ZC05 NOAA Coastal and Marine Habitat Restoration Project Supplemental Funding AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of supplemental funding for NOAA Coastal and Marine Habitat Restoration Projects. SUMMARY...

  15. Restoration of a forested wetland ecosystem in a thermally impacted stream corridor

    International Nuclear Information System (INIS)

    Nelson, E.A.; McKee, W.H. Jr.; Dulohery, C.J.

    1995-01-01

    The Savannah River Swamp is a 3,020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy's Savannah River Site (SRS). Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950's. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 50 C. The nearly continuous flood of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. Research has been ongoing to determine methods to reintroduce tree species characteristic of more mature forested wetlands. The goal of the restoration is to create structural and biological diversity in the forest canopy by establishing a mix of species typically present in riparian and wetland forests of the area

  16. EFFECTIVENESS OF LARGE WOODY DEBRIS IN STREAM REHABILITATION PROJECTS IN URBAN BASINS. (R825284)

    Science.gov (United States)

    Urban stream rehabilitation projects commonly include log placement to establish the types of habitat features associated with large woody debris (LWD) in undisturbed streams. Six urban in-stream rehabilitation projects were examined in the Puget Sound Lowland of western Washi...

  17. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old

  18. Climate and land cover effects on the temperature of Puget Sound streams: Assessment of Climate and Land Use Impacts on Stream Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qian [Department of Geography, University of California, Los Angeles, Los Angeles CA USA; Sun, Ning [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Nijssen, Bart [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Lettenmaier, Dennis P. [Department of Geography, University of California, Los Angeles, Los Angeles CA USA

    2016-03-06

    We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt-dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub-basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization

  19. Rehabilitation of an Incised Stream Using Plant Materials: the Dominance of Geomorphic Processes

    Directory of Open Access Journals (Sweden)

    F. Douglas. Shields, Jr.

    2008-12-01

    Full Text Available The restoration of potentially species-rich stream ecosystems in physically unstable environments is challenging, and few attempts have been evaluated scientifically. Restoration approaches that involve living and dead native vegetation are attractive economically and from an ecological standpoint. A 2-km reach of an incised, sand-bed stream in northern Mississippi was treated with large wood structures and willow plantings to trigger responses that would result in increasing similarity with a lightly degraded reference stream. Experimental approaches for stream bank and gully stabilization were also examined. Although the project was initially successful in producing improved aquatic habitat, after 4 yr it had failed to effectively address issues related to flashy watershed hydrology and physical instability manifest by erosion and sedimentation. The success of ecosystem rehabilitation was thus governed by landscape-scale hydrological and geomorphological processes.

  20. The science and practice of river restoration

    Science.gov (United States)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  1. A study of the effects of implementing agricultural best management practices and in-stream restoration on suspended sediment, stream habitat, and benthic macroinvertebrates at three stream sites in Surry County, North Carolina, 2004-2007-Lessons learned

    Science.gov (United States)

    Smith, Douglas G.; Ferrell, G.M.; Harned, Douglas A.; Cuffney, Thomas F.

    2011-01-01

    The effects of agricultural best management practices and in-stream restoration on suspended-sediment concentrations, stream habitat, and benthic macroinvertebrate assemblages were examined in a comparative study of three small, rural stream basins in the Piedmont and Blue Ridge Physiographic Provinces of North Carolina and Virginia between 2004 and 2007. The study was designed to assess changes in stream quality associated with stream-improvement efforts at two sites in comparison to a control site (Hogan Creek), for which no improvements were planned. In the drainage basin of one of the stream-improvement sites (Bull Creek), several agricultural best management practices, primarily designed to limit cattle access to streams, were implemented during this study. In the drainage basin of the second stream-improvement site (Pauls Creek), a 1,600-foot reach of the stream channel was restored and several agricultural best management practices were implemented. Streamflow conditions in the vicinity of the study area were similar to or less than the long-term annual mean streamflows during the study. Precipitation during the study period also was less than normal, and the geographic distribution of precipitation indicated drier conditions in the southern part of the study area than in the northern part. Dry conditions during much of the study limited opportunities for acquiring high-flow sediment samples and streamflow measurements. Suspended-sediment yields for the three basins were compared to yield estimates for streams in the southeastern United States. Concentrations of suspended sediment and nutrients in samples from Bull Creek, the site where best management practices were implemented, were high compared to the other two sites. No statistically significant change in suspended-sediment concentrations occurred at the Bull Creek site following implementation of best management practices. However, data collected before and after channel stabilization at the Pauls

  2. StreamNet Project : Annual Report Fiscal Year 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Bruce; Roger, Phil; Oftedahl, Lenora

    2008-12-12

    Fiscal Year 2008 (FY-08) represents a transitional year for the StreamNet project. While the project continued to acquire/update, standardize, georeference and disseminate fish-related data for the state, some tribal and one federal fisheries agencies, it also took on several new initiatives and is anticipating new regional guidance on data needs. Passage of the Columbia Basin Accords caused an administrative change within the project, separating the work done by the Columbia River Inter-Tribal Fish Commission (CRITFC) out to a separate contract with BPA. This will change the structure of the StreamNet contract but not change the relationship with the StreamNet Library or data developed by CRITFC, and will likely increase the availability of tribal data to StreamNet due to increased funding for tribal data efforts. This change will take effect in FY-09. We also expect that data work will be adjusted in the future in response to executive level policy direction in the Columbia Basin based on efforts to establish priorities under a regional data management framework. Data development emphasis was shifted this year to place highest priority on data that support indicators of fish abundance for the focal species covered in the Status of the Resource (SOTR) report, as requested by the Columbia Basin Fish and Wildlife Authority (CBFWA) Data Management Framework Subcommittee. We instituted an XML based web service allowing direct access to data from the project database for CBFWA to update the SOTR report. The project also increased efforts to work with tribal fisheries managers to provide data related assistance and to include tribal data in the StreamNet database. A primary theme this year was exploring means to speed the flow of data. We had ongoing success in our strategic emphasis on increasing automation of data conversion through development of comprehensive database systems within our partner agencies, as outlined in our Vision and Strategic Plan. By assisting

  3. Identifying Watershed, Landscape, and Engineering Design Factors that Influence the Biotic Condition of Restored Streams

    Directory of Open Access Journals (Sweden)

    Barbara Doll

    2016-04-01

    Full Text Available Restored stream reaches at 79 sites across North Carolina were sampled for aquatic macroinvertebrates using a rapid bioassessment protocol. Morphological design parameters and geographic factors, including watershed and landscape parameters (e.g., valley slope, substrate, were also compiled for these streams. Principal component regression analyses revealed correlations between design and landscape variables with macroinvertebrate metrics. The correlations were strengthened by adding watershed variables. Ridge regression was used to find the best-fit model for predicting dominant taxa from the “pollution sensitive” orders of Ephemeroptera (mayflies, Plecoptera (stoneflies, and Trichoptera (caddisflies, or EPT taxa, resulting in coefficient weights that were most interpretable relative to site selection and design parameters. Results indicate that larger (wider streams located in the mountains and foothills where there are steeper valleys, larger substrate, and undeveloped watersheds are expected to have higher numbers of dominant EPT taxa. In addition, EPT taxa numbers are positively correlated with accessible floodplain width and negatively correlated with width-to-depth ratio and sinuosity. This study indicates that both site selection and design should be carefully considered in order to maximize the resulting biotic condition and associated potential ecological uplift of the stream.

  4. Community-level response of fishes and aquatic macroinvertebrates to stream restoration in a third-order tributary of the Potomac River, USA

    Science.gov (United States)

    Selego, Stephen M.; Rose, Charnee L.; Merovich, George T.; Welsh, Stuart A.; Anderson, James T.

    2012-01-01

    Natural stream channel design principles and riparian restoration practices were applied during spring 2010 to an agriculturally impaired reach of the Cacapon River, a tributary of the Potomac River which flows into the Chesapeake Bay. Aquatic macroinvertebrates and fishes were sampled from the restoration reach, two degraded control, and two natural reference reaches prior to, concurrently with, and following restoration (2009 through 2010). Collector filterers and scrapers replaced collector gatherers as the dominant macroinvertebrate functional feeding groups in the restoration reach. Before restoration, based on indices of biotic integrity (IBI), the restoration reach fish and macroinvertebrate communities closely resembled those sampled from the control reaches, and after restoration more closely resembled those from the reference reaches. Although the macroinvertebrate community responded more favorably than the fish community, both communities recovered quickly from the temporary impairment caused by the disturbance of restoration procedures and suggest rapid improvement in local ecological conditions.

  5. Explaining linkages (and lack of) between riparian vegetation biodiversity and geomorphic complexity in restored streams of northern Sweden

    Science.gov (United States)

    Polvi, Lina; Maher Hasselquist, Eliza; Nilsson, Christer

    2014-05-01

    Ecological theory suggests that species richness and habitat heterogeneity are positively correlated; therefore stream restoration often relies on increasing geomorphic complexity to promote biodiversity. However, past studies have failed to demonstrate a link between post-restoration biodiversity and geomorphic complexity. These studies have usually relied on only one metric for quantifying complexity, rather than a holistic metric for complexity that represents several aspects of the channel morphology, and have based their observations in catchments with widespread land-use impacts. We use a geomorphic complexity gradient based on five geomorphic aspects (longitudinal, cross-sectional, planform, sediment texture, and instream wood) to determine whether streams with higher levels of complexity also have greater riparian vegetation biodiversity. We also compare biodiversity values with the potential complexity of reaches based on the large-scale controls of valley and channel gradient and the presence of large glacial legacy sediment (boulders). We focus on tributary channels in boreal forests of northern Sweden, where stream modification associated with log-floating from the 1850s to the 1960s created highly simplified channels. Driven by concerns for fish, restoration began in the 1970s by returning large cobbles and boulders into the main channel from the channel edge, and evolved into 'demonstration restoration,' placing very large boulders and trees into the channel, reopening side channels, and constructing fish spawning areas. We evaluate 22 reaches along tributaries of the Vindel River in northern Sweden with four restoration statuses: channelized, restored, demonstration restored, and unimpacted. Detailed morphologic, sediment, and instream wood data allow calculation of 29 metrics of geomorphic complexity, from which a complexity gradient was identified using multivariate statistics. The percent cover of riparian vegetation was identified in 0.5 x 0.5 m

  6. Uranium mining environmental restoration project (PRAMU)

    International Nuclear Information System (INIS)

    Asenjo, A.

    2002-01-01

    The National Atomic Energy Commission (CNEA) started its activities 50 years ago and obtained significant results. At the present time, the CNEA is defined as an Institution of research and development in the nuclear field. It is also responsible for the management of radioactive wastes and the dismantling of nuclear and radioactive facilities. Mining and milling activities have been carried out during the past 40 years and at present the CNEA is undertaking the Uranium Mining Environmental Restoration Project (PRAMU). The aim of this project is to restore the environment as much as is possible in all places where uranium mining and milling activities were developed when taking into consideration both economic and technical reality. First, the characteristics of the problems in each site are determined through appropriate studies which identify the existing or potential impacts, the possible pathways of contamination, etc. The sites being studied are: MALARGUE (Mendoza Province), CORDOBA (Cordoba Province), LOS GIGANTES (Cordoba Province), HUEMUL (Mendoza Province), PICHINAN (Chubut Province), TONCO (Salta Province), LA ESTELA (San Luis Province), LOS COLORADOS (La Rioja Province). PRAMU seeks to improve the current conditions of the tailings deposits and mines and to ensure the long term protection of people and the environment. The CNEA is required to comply with all legislation that is in force and is under the control of various national, provincial and local State institutions. The main objectives of the project for the various sites are: (a) Malargue site: to implement the actions necessary for environmental restoration and management of the tailings derived from the uranium ores processed in the industrial plant; (b) Cordoba and Los Gigantes sites: to design, engineer and execute the activities required for closure of the sites; (c) Other sites (Huemul, Pichinan, Tonco, La Estela, Los Colorados): to develop an environmental evaluation and, on the basis of

  7. Stream systems.

    Science.gov (United States)

    Jack E. Williams; Gordon H. Reeves

    2006-01-01

    Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...

  8. Hydrodynamic Modeling Analysis to Support Nearshore Restoration Projects in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Zhaoqing Yang

    2014-01-01

    Full Text Available To re-establish the intertidal wetlands with full tidal exchange and improve salmonid rearing habitat in the Skagit River estuary, State of Washington, USA, a diked agriculture farm land along the Skagit Bay front is proposed to be restored to a fully functional tidal wetland. The complex and dynamic Skagit River estuarine system calls for the need of a multi-facet and multi-dimensional analysis using observed data, numerical and analytical methods. To assist the feasibility study of the restoration project, a hydrodynamic modeling analysis was conducted using a high-resolution unstructured-grid coastal ocean model to evaluate the hydrodynamic response to restoration alternatives and to provide guidance to the engineering design of a new levee in the restoration site. A set of parameters were defined to quantify the hydrodynamic response of the nearshore restoration project, such as inundation area, duration of inundation, water depth and salinity of the inundated area. To assist the design of the new levee in the restoration site, the maximum water level near the project site was estimated with consideration of extreme high tide, wind-induced storm surge, significant wave height and future sea-level rise based on numerical model results and coastal engineering calculation.

  9. Re-meandering of lowland streams: will disobeying the laws of geomorphology have ecological consequences?

    Science.gov (United States)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of

  10. Hydrologic response of streams restored with check dams in the Chiricahua Mountains, Arizona

    Science.gov (United States)

    Norman, Laura M.; Brinkerhoff, Fletcher C.; Gwilliam, Evan; Guertin, D. Phillip; Callegary, James B.; Goodrich, David C.; Nagler, Pamela L.; Gray, Floyd

    2016-01-01

    In this study, hydrological processes are evaluated to determine impacts of stream restoration in the West Turkey Creek, Chiricahua Mountains, southeast Arizona, during a summer-monsoon season (June–October of 2013). A paired-watershed approach was used to analyze the effectiveness of check dams to mitigate high flows and impact long-term maintenance of hydrologic function. One watershed had been extensively altered by the installation of numerous small check dams over the past 30 years, and the other was untreated (control). We modified and installed a new stream-gauging mechanism developed for remote areas, to compare the water balance and calculate rainfall–runoff ratios. Results show that even 30 years after installation, most of the check dams were still functional. The watershed treated with check dams has a lower runoff response to precipitation compared with the untreated, most notably in measurements of peak flow. Concerns that downstream flows would be reduced in the treated watershed, due to storage of water behind upstream check dams, were not realized; instead, flow volumes were actually higher overall in the treated stream, even though peak flows were dampened. We surmise that check dams are a useful management tool for reducing flow velocities associated with erosion and degradation and posit they can increase baseflow in aridlands.

  11. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Reaney, Mark D. [Nez Perce Tribe Department of Fisheries Resource Management

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fish production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  12. Effect of meander restoration on macroinvertebrate biodiversity: the case of the Borová stream (Blanský Les, Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Maradová, M.; Soldán, Tomáš

    2012-01-01

    Roč. 18, č. 1 (2012), s. 1-21 ISSN 1211-7420 Institutional research plan: CEZ:AV0Z50070508 Keywords : stream restoration * meander reconstruction * species richness Subject RIV: EH - Ecology, Behaviour http://www.npsumava.cz/gallery/21/6431-sg_18_1_maradovasoldan.pdf

  13. Detection of paleochannels using hydrogeophysical methods: An approach for more effective channel restoration

    Science.gov (United States)

    Altdorff, D.; Dietrich, P.; Epting, J.; Huggenberger, P.

    2011-12-01

    River restoration and applied restoration measures are of increasing importance for integrated water resources management (IWRM) as well as for ecosystem services including water storage and purification, habitat provision and climate regulation. However, often river restoration is planned and realized by engineering and constructing aspects only and hydrogeological settings and ancient stream dynamics are neglected. As a result desired outcomes of restoration projects are reduced with no significant alteration of stream conditions by simultaneously increasing costs. An opportunity to max out the restoration potential is to investigate ancient stream courses by applying hydrogeophysical methods as basis for targeted restoration measures. In this study, we investigate the paleochannel courses in a floodplain of a heavy modified low-mountain river in Switzerland by different hydrogeophysical methods. We use data from electromagnetic induction (EMI) with four different integral depths (0.75 to 6m) and gamma-spectrometry (GS) to generate a geological structure model (GSM) that allows delineating potential ancient stream courses. Thereby we derive the GSM iteratively by means of various electric conductivity (EC) forward models. We vary the geological input parameters based on the measured data until the synthetic EC maps fit to the real EC values. Then we incorporate the best fitted input data for a final GSM that shows the course of an ancient stream between the 2nd and 3rd layer (Fig 1). A comparison with a historical map shows good agreement with the situation before the river modification and also profiles from Ground Penetrating Radar (GPR) could generally confirm the obtained progression of ancient riverbed structures. The demonstrated iterative method is a tool for the characterization of test sites with no subsurface information and with the potential of detecting paleochannels.

  14. Compensatory stream and wetland mitigation in North Carolina: an evaluation of regulatory success.

    Science.gov (United States)

    Hill, Tammy; Kulz, Eric; Munoz, Breda; Dorney, John R

    2013-05-01

    Data from a probability sample were used to estimate wetland and stream mitigation success from 2007 to 2009 across North Carolina (NC). "Success" was defined as whether the mitigation site met regulatory requirements in place at the time of construction. Analytical results were weighted by both component counts and mitigation size. Overall mitigation success (including preservation) was estimated at 74 % (SE = 3 %) for wetlands and 75 % (SE = 4 %) for streams in NC. Compared to the results of previous studies, wetland mitigation success rates had increased since the mid-1990s. Differences between mitigation providers (mitigation banks, NC Ecosystem Enhancement Program's design-bid-build and full-delivery programs, NC Department of Transportation and private permittee-responsible mitigation) were generally not significant although permittee-responsible mitigation yielded higher success rates in certain circumstances. Both wetland and stream preservation showed high rates of success and the stream enhancement success rate was significantly higher than that of stream restoration. Additional statistically significant differences when mitigation size was considered included: (1) the Piedmont yielded a lower stream mitigation success rate than other areas of the state, and (2) recently constructed wetland mitigation projects demonstrated a lower success rate than those built prior to 2002. Opportunities for improvement exist in the areas of regulatory record-keeping, understanding the relationship between post-construction establishment and long-term ecological trajectories of stream and wetland restoration projects, incorporation of numeric ecological metrics into mitigation monitoring and success criteria, and adaptation of stream mitigation designs to achieve greater success in the Piedmont.

  15. Community-Level Response of Fishes and Aquatic Macroinvertebrates to Stream Restoration in a Third-Order Tributary of the Potomac River, USA

    Directory of Open Access Journals (Sweden)

    Stephen M. Selego

    2012-01-01

    Full Text Available Natural stream channel design principles and riparian restoration practices were applied during spring 2010 to an agriculturally impaired reach of the Cacapon River, a tributary of the Potomac River which flows into the Chesapeake Bay. Aquatic macroinvertebrates and fishes were sampled from the restoration reach, two degraded control, and two natural reference reaches prior to, concurrently with, and following restoration (2009 through 2010. Collector filterers and scrapers replaced collector gatherers as the dominant macroinvertebrate functional feeding groups in the restoration reach. Before restoration, based on indices of biotic integrity (IBI, the restoration reach fish and macroinvertebrate communities closely resembled those sampled from the control reaches, and after restoration more closely resembled those from the reference reaches. Although the macroinvertebrate community responded more favorably than the fish community, both communities recovered quickly from the temporary impairment caused by the disturbance of restoration procedures and suggest rapid improvement in local ecological conditions.

  16. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance

    2003-08-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream

  17. Development of Ecogeomorphological (EGM Stream Design and Assessment Tools for the Piedmont of Alabama, USA

    Directory of Open Access Journals (Sweden)

    Brian Helms

    2016-04-01

    Full Text Available Regional data needed for effective stream restoration include hydraulic geometry relationships (i.e., regional curves and reference channel morphology parameters. Increasingly ecological conditions are being considered when designing, implementing, and assessing restoration efforts. We provide morphology relationships and associated ecological endpoint curves for reference streams in the Alabama piedmont. Twenty-one reference stream reaches were identified in the Tallapoosa drainage of Alabama, ranging from 0.2 to 242 km2 drainage area. Geomorphic surveys were conducted in each stream to measure riffle cross-sections and longitudinal profiles and related to drainage area to develop regional curves. Fish, crayfish, and benthic macroinvertebrates were collected from each surveyed reach and related to drainage area and geomorphic data to provide associated biological community endpoints. Bankfull channel cross-section area, width, mean depth, and estimated discharge were strongly correlated to watershed drainage area, similar to efforts in other areas of the Piedmont ecoregion. Multiple measures of fish assemblages and crayfish size were strongly predicted by drainage area and geomorphic dimensions. Macroinvertebrates showed no taxonomic and limited functional relationships with drainage area and geomorphic dimension. These tools, which integrate geomorphological and ecological conditions, can result in improved stream evaluations and designs increasing the effectiveness of stream restoration projects.

  18. Pacific Lamprey Research and Restoration Project : Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Close, David A.

    2002-11-01

    Pacific lamprey (Lampetra tridentata) has significantly declined along the Oregon coast and in the Columbia River Basin (Downey et al. 1993; Close and Jackson 2001). Declines in adults can be partially attributed to hydroelectric dams, which have impeded passage of adult Pacific lamprey in the Columbia and Snake rivers, thus effecting larval recruitment in the basin. Adult pacific lamprey also declined in numbers in the Umatilla River, a tributary of the Columbia River. In addition to hydro power dams in the Columbia River, habitat alterations and chemical treatments have been involved in the collapse of Pacific lamprey populations in the Umatilla River. To initiate the restoration effort, CTUIR began developing a restoration plan in 1998. The goal of the lamprey research and restoration project is to restore natural production of Pacific lampreys in the Umatilla River to self-sustaining and harvestable level. This report is summarizing the studies and restoration efforts concluded in 2001.

  19. South Bay Salt Pond Restoration Project: Planning Phase at Southern Eden Landing

    Science.gov (United States)

    This project will complete the design and permits to restore 1,300 acres of tidal wetlands, provide 3.5 miles shoreline protection, and accelerate wetlands restoration at the Eden Landing Ecological Reserve.

  20. Do the Principles of Ecological Restoration Cover EU LIFE Nature Cofunded Projects in Denmark?

    Directory of Open Access Journals (Sweden)

    Jonas Morsing

    2013-12-01

    Full Text Available Ecological restoration is becoming a main component in nature management; hence, its definitions and interpretations of the underlying principles are widely discussed. In Denmark, restoration has been implemented for decades, and the LIFE Nature program has contributed to several large-scale projects. Our aim was to indicate tendencies in Danish nature policy by analyzing a representative sample of nature management projects. Using qualitative document analyses of official reports, we investigated how well 13 LIFE Nature cofinanced projects undertaken in Denmark fit with the principles of ecological restoration, as formulated in the nine attributes of the Society for Ecological Restoration's Primer on Ecological Restoration, and based on the five myths of ecological restoration. Objectives of the analyzed projects were divided into three categories: conservation of a single or a group of species; restoration of set-aside areas, mainly on abandoned agricultural land; and habitat management of Natura 2000 areas. Despite this grouping, improvement in living conditions for certain species associated with specific nature types was in focus in all projects. No projects considered or fulfilled all nine attributes. It seems that attributes associated with fundamental requirements for the existence of target species or habitats were more often fulfilled than attributes associated with continuity of the ecosystem as a whole, which indicated a focus on ecosystem structures rather than on processes. We found that the two assumptions of a predictable single endpoint (the myth of the Carbon Copy and that nature is controllable (the myth of Command and Control were notably frequent in the Danish projects. Often, the target ecosystem was associated with a semicultural landscape, and management focused on keeping the vegetation low and preventing overgrowth of colonizing trees. The results indicated that nature policy in Denmark and the LIFE Nature program are

  1. Metro Multnomah Wetlands - Multnomah Channel Wetland Restoration Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multnomah Channel Wetland Restoration Monitoring Project characterizes wetlands use by juvenile salmonids and other fishes in the Multnomah Channel Marsh Natural...

  2. John Day River Subbasin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Delano, Kenneth H.

    2004-04-01

    Work undertaken in 2003 included: (1) Seven new fence projects were completed thereby protecting 7.6 miles of stream (2) Completion of 0.7 miles of dredge tail leveling on Granite Creek. (3) Maintenance of all active project fences (66.14 miles), watergaps (66), spring developments (33) and plantings were checked and repairs performed. (4) Since the initiation of the Fish Habitat Project in 1984 we have 72.94 miles of stream protected using 131.1 miles of fence. With the addition of the Restoration and Enhancement Projects we have 205.96 miles of fence protecting 130.3 miles of stream.

  3. Wind River Watershed Project; 1998 Annual Report; Volume II

    International Nuclear Information System (INIS)

    Connolly, Patrick J.

    1999-01-01

    The authors report here their on-ground restoration actions. Part 1 describes work conducted by the Underwood Conservation District (UCD) on private lands. This work involves the Stabler Cut-Bank project. Part 2 describes work conducted by the U.S. Forest Service. The Stabler Cut-Bank Project is a cooperative stream restoration effort between Bonneville Power Administration (BPA), the UCD, private landowners, the U.S. Forest Service (USFS), and the U.S. Fish and Wildlife Service (USFWS). The Stabler site was identified by UCD during stream surveys conducted in 1996 as part of a USFWS funded project aimed at initiating water quality and habitat restoration efforts on private lands in the basin. In 1997 the Wind River Watershed Council selected the project as a top priority demonstration project. The landowners were approached by the UCD and a partnership developed. Due to their expertise in channel rehabilitation, the Forest Service was consulted for the design and assisted with the implementation of the project. A portion of the initial phase of the project was funded by USFWS. However, the majority of funding (approximately 80%) has been provided by BPA and it is anticipated that additional work that is planned for the site will be conducted with BPA funds

  4. South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  5. Water Awareness Through Environmental Restoration

    Science.gov (United States)

    Davis-Caldwell, K.

    2012-04-01

    and negative effects of human presence on the local and global water supply. Student research scientifically tested ways to slow down the effects of run-off contaminants. Students also revisit water analysis and plant trees as buffers as part of their stream preservation efforts in a culminating activity. Oyster Reef Restoration Project: As a result of changes in climate, pollution and human consumption, the oyster population in the Chesapeake Bay had previously been on a rapid decline. The Oyster Reef Restoration Project allows students to understand the creatures of the bay and the cause of this decline. They explore the domino effect this has had on the quality of the water in the bay and future implications on the environment when the oyster population fluctuates significantly. Students construct concrete reefs and study the components of its contents and the reef's impact on the bay. Students are responsible for mixing, pouring and preparing the reef for its eventual drop in the bay. Wetlands Recovery: Following the elimination of a substantial amount of the natural wetlands behind the elementary and middle schools, a wetlands area was erected on the school grounds. This pond has been used to learn about habitats and the role humans, plants and organisms play in the preservation of the earth soil and water supply. This wetland is used by both the elementary and middle schools as a place for hands-on inquiry based learning. Students maintain the upkeep of the pond and teach other students at lower grades.

  6. Pacific Lamprey Research and Restoration Project, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Close, David; Aronsuu, Kimmo; Jackson, Aaron

    2003-07-01

    Pacific lamprey (Lampetra tridentata) has significantly declined along the Oregon coast and in the Columbia River Basin (Downey et al. 1993, Close and Jackson 2001). Declines in adults can be partially attributed to hydroelectric dams, which have impeded passage of adult Pacific lamprey in the Columbia and Snake rivers (Moser et al. 2002), thus effecting larval recruitment in the basin (Moser and Close in press). Adult Pacific lamprey also declined in numbers in the Umatilla River, a tributary of the Columbia River (Close and Jackson 2001). In addition to hydro power dams in the Columbia River, habitat alterations and chemical treatments have been involved in the collapse of Pacific lamprey populations in the Umatilla River (Close 1999). To initiate the restoration effort, CTUIR began developing a restoration plan in 1998. The goal of the lamprey research and restoration project is to restore natural production of Pacific lampreys in the Umatilla River to self-sustaining and harvestable level. This report is summarizing the studies and restoration efforts concluded in 2002.

  7. How to scientifically assess a restoration project: a case study

    Science.gov (United States)

    Alvarez de Buergo, M.; Fort, R.; Freire, D. M.; Lopez-Arce, P.; Vazquez-Calvo, C.

    2012-04-01

    Commonly, it is said that there is lack of communication among scientists, conservators, restorers, project managers and architects. But sometimes this communication flows, and we can find enormous benefits from and for all the participating agents. This is the case we present in this work, in which technical agents in charge of the restoration of a building, asked for some scientific advice to perform the restoration of a heritage building. The results were successful and fantastic for both of them, in terms of one part asking for consultation and the other answering to the demands and resolving real problems. This is the case of a marvellous Renaissance building (Medinaceli Dukes palace, 15th-16th centuries) in the central area of Spain (Cogolludo, Guadalajara). Focused on the restoration project, we were asked for consultancy on how to solve matters like the assessment of the already fixed in project cleaning method for the stone façades, the efficacy and durability methods for some conservation products to be applied, the presence or not of a patina on the stone; the viability of using some restoration mortars, and the origin of some efflorescences that came out just after placed in the building a restoration rendering mortar. Responses to these matters were answered by performing tests both in the lab and on site in the building. The efficiency and effects on stone of the blasting cleaning method was assessed by first analysing the nature and thickness of the surface deposits to be removed (SEM-EDS analyses); secondly, roughness and colour measurements were performed, and thirdly, SEM-EDS analyses were carried out again to determine whether the cleaning method was able to remove part of the surface deposits, completely, or even part of the stone substrate. Some conservation products were tested on stone specimens, both their efficacy and their durability, concluding that it was better not to apply any of them. A patina was found on the stone façade under SEM

  8. Can air temperature be used to project influences of climate change on stream temperature?

    Science.gov (United States)

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  9. Spatio-temporal variation of stream-aquifer interaction: Effect of a weir construction in Korea

    Science.gov (United States)

    Lee, Hyeonju; Koo, Min-Ho; Kim, Kisu; Kim, Yongcheol

    2015-04-01

    The Four Major Rivers Restoration Project was conducted to secure sufficient water resources, introduce comprehensive flood control measures, and improve water quality while restore the river ecosystem in Korea. The dredging of river bed and the installation of 16 weirs were done in Han, Geum, Yeongsan, and Nakdong rivers from late 2010 to early 2012 as a part of the project. Groundwater data obtained from 213 groundwater monitoring wells near the four major rivers were used to analyze the impacts of weir construction on the nearby groundwater flow system. The groundwater level and chemical characteristics were analyzed to investigate how the groundwater flow system and water quality changed after the weir construction. The results showed that groundwater level rose immediately following the rise of stream stage after the weir construction. Also, the hydrologic condition of the stream in some upland of the weirs was changed from a gaining to a losing stream. Consequently, the direction of groundwater flow was changed from perpendicular to parallel to the stream, and it swapped the groundwater in the downstream of the weir for the water recharged from the stream. Considering the results, some groundwater quality is expected to be changed and become similar to that of the stream, although the change has been not observed yet. Therefore, both further monitoring of the groundwater quality and hydrogeochemical analysis are required for quantitatively evaluating the effect of the weir.

  10. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.

    2012-01-01

    Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars (for example, U.S. Government Accounting Office, 2001). In recent years, passage at hundreds of crossings has been restored, primarily by replacing barrier road culverts with bridges or stream simulation culverts designed to pass all species and all life stages of aquatic life and simulate natural hydro-geomorphic processes (U.S. Forest Service, 2008). The current situation has motivated two general questions: 1. Are current design standards for stream simulation culverts adequately re-establishing passage for aquatic biota? and 2. How do we monitor and evaluate effectiveness of passage restoration? To address the latter question, a national workshop was held in March 2010, in Portland, Oregon. The workshop included experts on aquatic organism passage from across the nation (see table of participants, APPENDIX) who addressed four classes of methods for monitoring effectiveness of aquatic organism passage—individual movement, occupancy, demography, and genetics. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream crossings. The report outlines basic methods for evaluating road-stream crossing passage impairment and restoration and discusses under what circumstances and conditions each method will be useful; what questions each method can potentially answer; how to design and implement an evaluation study; and points out the fundamental reality that most evaluation projects will require special funding and partnerships among researchers and resource managers. The report is organized into the following sections, which can be read independently: 1. Historical context: In this section, we provide a brief history of events leading up to the present situation

  11. Restoration of Gooseberry Creek

    Science.gov (United States)

    Jonathan W. Long

    2000-01-01

    Grazing exclusion and channel modifications were used to restore wet meadows along a stream on the Fort Apache Indian Reservation. The efforts are reestablishing functional processes to promote long-term restoration of wetland health and species conservation.

  12. Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration

    Science.gov (United States)

    O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-01-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  13. Feet Wet, Hands Dirty: Engaging Students in Science Teaching and Learning with Stream Investigations

    Science.gov (United States)

    Haines, Sarah

    2016-01-01

    Stream investigation and restoration projects offer unique experiential opportunities to engage students in outdoor learning experiences that are relevant to the communities in which they live. These experiences promote an understanding of watershed issues and establish positive attitudes and behaviors that benefit local watersheds and help to…

  14. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPA efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).

  15. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Thom, Ronald M.; Borde, Amy B.; Roegner, G. C.; Whiting, Allan H.; Johnson, Gary E.; Dawley, Earl; Skalski, John R.; Vavrinec, John; Ebberts, Blaine D.

    2006-12-20

    This report is the second annual report of a six-year project to evaluate the cumulative effects of habitat restoration projects in the Columbia River Estuary, conducted by Pacific Northwest National Laboratory's Marine Sciences Laboratory, NOAA's National Marine Fisheries Service Pt. Adams Biological Field Station, and the Columbia River Estuary Study Taskforce for the US Army Corps of Engineers. In 2005, baseline data were collected on two restoration sites and two associated reference sites in the Columbia River estuary. The sites represent two habitat types of the estuary--brackish marsh and freshwater swamp--that have sustained substantial losses in area and that may play important roles for salmonids. Baseline data collected included vegetation and elevation surveys, above and below-ground biomass, water depth and temperature, nutrient flux, fish species composition, and channel geometry. Following baseline data collection, three kinds of restoration actions for hydrological reconnection were implemented in several locations on the sites: tidegate replacements (2) at Vera Slough, near the city of Astoria in Oregon State, and culvert replacements (2) and dike breaches (3) at Kandoll Farm in the Grays River watershed in Washington State. Limited post-restoration data were collected: photo points, nutrient flux, water depth and temperature, and channel cross-sections. In subsequent work, this and additional post-restoration data will be used in conjunction with data from other sites to estimate net effects of hydrological reconnection restoration projects throughout the estuary. This project is establishing methods for evaluating the effectiveness of individual projects and a framework for assessing estuary-wide cumulative effects including a protocol manual for monitoring restoration and reference sites.

  16. John Day River Subbasin Fish Habitat Enhancement Project, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Delano, Kenneth H.; Jerome, James P.

    2002-07-01

    Work undertaken in 2001 included: (1) 3335 structure posts were pounded on six new projects thereby protecting 10 miles of stream (2) Completion of 1000 ft. of barbed wire fence and one watergap on the Middle Fork of the John Day River/ Forrest property. (3) Fence removal of 5010 ft. of barbed wire fence on the Meredith project. (4) Maintenance of all active project fences (66 miles), watergaps (76), spring developments (32) and plantings were checked and repairs performed. (5) Since the initiation of the Fish Habitat Project in 1984 we have 63.74 miles of stream protected using 106.78 miles of fence. With the addition of the Restoration and Enhancement Projects we have 180.64 miles of fence protecting 120.6 miles of stream.

  17. 76 FR 46721 - Salmon-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project...

    Science.gov (United States)

    2011-08-03

    ...-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project Environmental Impact... improve the health of the ecosystem and reach the desired future condition. DATES: Comments concerning the... Ecosystem Restoration Project EIS, P.O. Box 180, 11 Casey Rd., North Fork, ID 83466. Comments may also be...

  18. System Safety Program Plan for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boos, K.A.

    1996-01-01

    This System Safety Program Plan (SSPP) outlines the safety analysis strategy for project W-314, ''Tank Farm Restoration and Safe Operations.'' Project W-314 will provide capital improvements to Hanford's existing Tank Farm facilities, with particular emphasis on infrastructure systems supporting safe operation of the double-shell activities related to the project's conceptual Design Phase, but is planned to be updated and maintained as a ''living document'' throughout the life of the project to reflect the current safety analysis planning for the Tank Farm Restoration and Safe Operations upgrades. This approved W-314 SSPP provides the basis for preparation/approval of all safety analysis documentation needed to support the project

  19. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Roegner, Curtis; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Johnson, Gary E.; Sobocinski, Kathryn L.; Anderson, Michael G.; Ebberts, Blaine

    2005-12-15

    The restoration of wetland salmon habitat in the tidal portion of the Columbia River is occurring at an accelerating pace and is anticipated to improve habitat quality and effect hydrological reconnection between existing and restored habitats. Currently multiple groups are applying a variety of restoration strategies in an attempt to emulate historic estuarine processes. However, the region lacks both a standardized means of evaluating the effectiveness of individual projects as well as methods for determining the cumulative effects of all restoration projects on a regional scale. This project is working to establish a framework to evaluate individual and cumulative ecosystem responses to restoration activities in order to validate the effectiveness of habitat restoration activities designed to benefit salmon through improvements to habitat quality and habitat opportunity (i.e. access) in the Columbia River from Bonneville Dam to the ocean. The review and synthesis of approaches to measure the cumulative effects of multiple restoration projects focused on defining methods and metrics of relevance to the CRE, and, in particular, juvenile salmon use of this system. An extensive literature review found no previous study assessing the cumulative effects of multiple restoration projects on the fundamental processes and functions of a large estuarine system, although studies are underway in other large land-margin ecosystems including the Florida Everglades and the Louisiana coastal wetlands. Literature from a variety of scientific disciplines was consulted to identify the ways that effects can accumulate (e.g., delayed effects, cross-boundary effects, compounding effects, indirect effects, triggers and thresholds) as well as standard and innovative tools and methods utilized in cumulative effects analyses: conceptual models, matrices, checklists, modeling, trends analysis, geographic information systems, carrying capacity analysis, and ecosystem analysis. Potential

  20. Aquatic ecosystem response to timber harvesting for the purpose of restoring aspen.

    Directory of Open Access Journals (Sweden)

    Bobette E Jones

    Full Text Available The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003-2010 involved two projects located in Lassen National Forest. The Pine-Bogard Project consisted of three treatments adjacent to Pine and Bogard Creeks: (i Phase 1 in January 2004, (ii Phase 2 in August 2005, and (iii Phase 3 in January 2008. The Bailey Project consisted of one treatment adjacent to Bailey Creek in September 2006. Treatments involved whole tree removal using track-laying harvesters and rubber tire skidders. More than 80% of all samples analyzed for NO₃-N, NH₄-N, and PO₄-P at Pine, Bogard, and Bailey Creeks were below the detection limit, with the exception of naturally elevated PO₄-P in Bogard Creek. All nutrient concentrations (NO₃-N, NH₄-N, PO₄-P, K, and SO₄-S showed little variation within streams and across years. Turbidity and TSS exhibited annual variation, but there was no significant increase in the difference between upstream and downstream turbidity and TSS levels. There was a significant decrease in stream canopy cover and increase in the potential fraction of solar radiation reaching the streams in response to the Pine-Bogard Phase 3 and Bailey treatments; however, there was no corresponding increase in stream temperatures. Macroinvertebrate metrics indicated healthy aquatic ecosystem conditions throughout the course of the study. Lastly, the removal of vegetation significantly increased soil moisture in treated stands relative to untreated stands. These results indicate that, with careful planning and implementation of site-specific best management

  1. Use of the geometric mean of opposing planar projections in pre-reconstruction restoration of SPECT images

    International Nuclear Information System (INIS)

    Boulfelfel, D.; Rangayyan, R.M.; Hahn, L.J.; Kloiber, R.

    1992-01-01

    This paper presents a restoration scheme for single photon emission computed tomography (SPECT) images that performs restoration before reconstruction (pre-reconstruction restoration) from planar (projection) images. In this scheme, the pixel-by-pixel geometric mean of each pair of opposing (conjugate) planar projections is computed prior to the reconstruction process. The averaging process is shown to help in making the degradation phenomenon less dependent on the distance of each point of the object from the camera. The restoration filters investigated are the Wiener and power spectrum equalization filters. (author)

  2. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010.

    Science.gov (United States)

    Lu, Fei; Hu, Huifeng; Sun, Wenjuan; Zhu, Jiaojun; Liu, Guobin; Zhou, Wangming; Zhang, Quanfa; Shi, Peili; Liu, Xiuping; Wu, Xing; Zhang, Lu; Wei, Xiaohua; Dai, Limin; Zhang, Kerong; Sun, Yirong; Xue, Sha; Zhang, Wanjun; Xiong, Dingpeng; Deng, Lei; Liu, Bojie; Zhou, Li; Zhang, Chao; Zheng, Xiao; Cao, Jiansheng; Huang, Yao; He, Nianpeng; Zhou, Guoyi; Bai, Yongfei; Xie, Zongqiang; Tang, Zhiyao; Wu, Bingfang; Fang, Jingyun; Liu, Guohua; Yu, Guirui

    2018-04-17

    The long-term stressful utilization of forests and grasslands has led to ecosystem degradation and C loss. Since the late 1970s China has launched six key national ecological restoration projects to protect its environment and restore degraded ecosystems. Here, we conducted a large-scale field investigation and a literature survey of biomass and soil C in China's forest, shrubland, and grassland ecosystems across the regions where the six projects were implemented (∼16% of the country's land area). We investigated the changes in the C stocks of these ecosystems to evaluate the contributions of the projects to the country's C sink between 2001 and 2010. Over this decade, we estimated that the total annual C sink in the project region was 132 Tg C per y (1 Tg = 10 12 g), over half of which (74 Tg C per y, 56%) was attributed to the implementation of the projects. Our results demonstrate that these restoration projects have substantially contributed to CO 2 mitigation in China.

  3. Predictive Modeling of Transient Storage and Nutrient Uptake: Implications for Stream Restoration

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-12-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO-3)(NO3-) uptake rates inferred using the nutrient spiraling model underestimated the total NO-3NO3- mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO-3NO3- mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  4. Can air temperature be used to project influences of climate change on stream temperature?

    Science.gov (United States)

    Ivan Arismendi; Mohammad Safeeq; Jason B Dunham; Sherri L Johnson

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To...

  5. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework.

    Science.gov (United States)

    McCoy, Amy L; Holmes, S Rankin; Boisjolie, Brett A

    2018-03-01

    Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.

  6. Flow Restoration in the Columbia River Basin: An Evaluation of a Flow Restoration Accounting Framework

    Science.gov (United States)

    McCoy, Amy L.; Holmes, S. Rankin; Boisjolie, Brett A.

    2018-03-01

    Securing environmental flows in support of freshwater biodiversity is an evolving field of practice. An example of a large-scale program dedicated to restoring environmental flows is the Columbia Basin Water Transactions Program in the Pacific Northwest region of North America, which has been restoring flows in dewatered tributary habitats for imperiled salmon species over the past decade. This paper discusses a four-tiered flow restoration accounting framework for tracking the implementation and impacts of water transactions as an effective tool for adaptive management. The flow restoration accounting framework provides compliance and flow accounting information to monitor transaction efficacy. We review the implementation of the flow restoration accounting framework monitoring framework to demonstrate (a) the extent of water transactions that have been implemented over the past decade, (b) the volumes of restored flow in meeting flow targets for restoring habitat for anadromous fish species, and (c) an example of aquatic habitat enhancement that resulted from Columbia Basin Water Transactions Program investments. Project results show that from 2002 to 2015, the Columbia Basin Water Transactions Program has completed more than 450 water rights transactions, restoring approximately 1.59 million megaliters to date, with an additional 10.98 million megaliters of flow protected for use over the next 100 years. This has resulted in the watering of over 2414 stream kilometers within the Columbia Basin. We conclude with a discussion of the insights gained through the implementation of the flow restoration accounting framework. Understanding the approach and efficacy of a monitoring framework applied across a large river basin can be informative to emerging flow-restoration and adaptive management efforts in areas of conservation concern.

  7. 77 FR 65167 - Blacksmith Ecological Restoration Project, Eldorado National Forest, Placer and El Dorado...

    Science.gov (United States)

    2012-10-25

    ... DEPARTMENT OF AGRICULTURE Forest Service Blacksmith Ecological Restoration Project, Eldorado... comments to 7600 Wentworth Springs Rd., Georgetown, CA 95634 Attention: Blacksmith Ecological Restoration... (PSD). In preparation for prescribed fire, perimeter line construction would be needed where roads...

  8. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  9. Subtidal Bathymetric Changes by Shoreline Armoring Removal and Restoration Projects

    Science.gov (United States)

    Wallace, J.

    2016-12-01

    The Salish Sea, a region with a diverse coastline, is altered by anthropogenic shoreline modifications such as seawalls. In recent years, local organizations have moved to restore these shorelines. Current research monitors the changes restoration projects have on the upper beach, lower beach, and intertidal, however little research exists to record possible negative effects on the subtidal. The purpose of this research is to utilize multibeam sonar bathymetric data to analyze possible changes to the seafloor structure of the subtidal in response to shoreline modification and to investigate potential ecosystem consequences of shoreline alteration. The subtidal is home to several species including eelgrass (Zostera marina). Eelgrass is an important species in Puget Sound as it provides many key ecosystem functions including providing habitat for a wide variety of organisms, affecting the physics of waves, and sediment transport in the subtidal. Thus bathymetric changes could impact eelgrass growth and reduce its ability to provide crucial ecosystem services. Three Washington state study sites of completed shoreline restoration projects were used to generate data from areas of varied topographic classification, Seahurst Park in Burien, the Snohomish County Nearshore Restoration Project in Everett, and Cornet Bay State Park on Whidbey Island. Multibeam sonar data was acquired using a Konsberg EM 2040 system and post-processed in Caris HIPS to generate a base surface of one-meter resolution. It was then imported into the ArcGIS software suite for the generation of spatial metrics. Measurements of change were calculated through a comparison of historical and generated data. Descriptive metrics generated included, total elevation change, percent area changed, and a transition matrix of positive and negative change. Additionally, pattern metrics such as, surface roughness, and Bathymetric Position Index (BPI), were calculated. The comparison of historical data to new data

  10. The optimized baseline project: Reinventing environmental restoration at Hanford

    International Nuclear Information System (INIS)

    Goodenough, J.D.; Janaskie, M.T.; Kleinen, P.J.

    1994-01-01

    The U.S. Department of Energy Richland Operations Office (DOE-RL) is using a strategic planning effort (termed the Optimized Baseline Project) to develop a new approach to the Hanford Environmental Restoration program. This effort seeks to achieve a quantum leap improvement in performance through results oriented prioritization of activities. This effort was conducted in parallel with the renegotiation of the Tri-Party Agreement and provided DOE with an opportunity to propose innovative initiatives to promote cost effectiveness, accelerate progress in the Hanford Environmental Restoration Program and involve stakeholders in the decision-making process. The Optimized Baseline project is an innovative approach to program planning and decision-making in several respects. First, the process is a top down, value driven effort that responds to values held by DOE, the regulatory community and the public. Second, planning is conducted in a way that reinforces the technical management process at Richland, involves the regulatory community in substantive decisions, and includes the public. Third, the Optimized Baseline Project is being conducted as part of a sitewide Hanford initiative to reinvent Government. The planning process used for the Optimized Baseline Project has many potential applications at other sites and in other programs where there is a need to build consensus among diverse, independent groups of stakeholders and decisionmakers. The project has successfully developed and demonstrated an innovative approach to program planning that accelerates the pace of cleanup, involves the regulators as partners with DOE in priority setting, and builds public understanding and support for the program through meaningful opportunities for involvement

  11. Digital collection of aerial photographs from the Common Murre Restoration Project, 1996 (NODC Accession 0015544)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Common Murre Restoration Project is a comprehensive seabird restoration effort aimed at enhancing depleted seabird populations in central California,...

  12. Digital collection of aerial photographs from the Common Murre Restoration Project, 1997 (NODC Accession 0037159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Common Murre Restoration Project is a comprehensive seabird restoration effort aimed at enhancing depleted seabird populations in central California,...

  13. Digital collection of aerial photographs from the Common Murre Restoration Project, 2005 (NODC Accession 0057025)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Common Murre Restoration Project is a comprehensive seabird restoration effort aimed at enhancing depleted seabird populations in central California,...

  14. Digital collection of aerial photographs from the Common Murre Restoration Project, 1998 (NODC Accession 0037160)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Common Murre Restoration Project is a comprehensive seabird restoration effort aimed at enhancing depleted seabird populations in central California,...

  15. Digital collection of aerial photographs from the Common Murre Restoration Project, 2006 (NODC Accession 0058096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Common Murre Restoration Project is a comprehensive seabird restoration effort aimed at enhancing depleted seabird populations in central California,...

  16. Using Habitat Equivalency Analysis to Assess the Cost Effectiveness of Restoration Outcomes in Four Institutional Contexts

    Science.gov (United States)

    Scemama, Pierre; Levrel, Harold

    2016-01-01

    At the national level, with a fixed amount of resources available for public investment in the restoration of biodiversity, it is difficult to prioritize alternative restoration projects. One way to do this is to assess the level of ecosystem services delivered by these projects and to compare them with their costs. The challenge is to derive a common unit of measurement for ecosystem services in order to compare projects which are carried out in different institutional contexts having different goals (application of environmental laws, management of natural reserves, etc.). This paper assesses the use of habitat equivalency analysis (HEA) as a tool to evaluate ecosystem services provided by restoration projects developed in different institutional contexts. This tool was initially developed to quantify the level of ecosystem services required to compensate for non-market impacts coming from accidental pollution in the US. In this paper, HEA is used to assess the cost effectiveness of several restoration projects in relation to different environmental policies, using case studies based in France. Four case studies were used: the creation of a market for wetlands, public acceptance of a port development project, the rehabilitation of marshes to mitigate nitrate loading to the sea, and the restoration of streams in a protected area. Our main conclusion is that HEA can provide a simple tool to clarify the objectives of restoration projects, to compare the cost and effectiveness of these projects, and to carry out trade-offs, without requiring significant amounts of human or technical resources.

  17. Hydraulic analysis of river training cross-vanes as part of post-restoration monitoring

    Directory of Open Access Journals (Sweden)

    T. A. Endreny

    2011-07-01

    Full Text Available River restoration design methods are incrementally improved by studying and learning from monitoring data in previous projects. In this paper we report post-restoration monitoring data and simulation analysis for a Natural Channel Design (NCD restoration project along 1600 m of the Batavia Kill (14 km2 watershed in the Catskill Mountains, NY. The restoration project was completed in 2002 with goals to reduce bank erosion and determine the efficacy of NCD approaches for restoring headwater streams in the Catskill Mountains, NY. The NCD approach used a reference-reach to determine channel form, empirical relations between the project site and reference site bankfull dimensions to size channel geometry, and hydraulic and sediment computations based on a bankfull (1.3 yr return interval discharge to test channel capacity and sediment stability. The NCD project included 12 cross-vanes and 48 j-hook vanes as river training structures along 19 meander bends to protect against bank erosion and maintain scour pools for fish habitat. Monitoring data collected from 2002 to 2004 were used to identify aggradation of pools in meander bends and below some structures. Aggradation in pools was attributed to the meandering riffle-pool channel trending toward step-pool morphology and cross-vane arms not concentrating flow in the center of the channel. The aggradation subsequently caused flow splitting and 4 partial point bar avulsions during a spring 2005 flood with a 25-yr return interval. Processing the pre-flood monitoring data with hydraulic analysis software provided clues the reach was unstable and preventative maintenance was needed. River restoration and monitoring teams should be trained in robust hydraulic analytical methods that help them extend project restoration goals and structure stability.

  18. 77 FR 21722 - Gore Creek Restoration Project; Intent To Prepare an Environmental Impact Statement

    Science.gov (United States)

    2012-04-11

    ... District Ranger, P.O. Box 7, Yampa, Colorado 80483 or email comments to comments-rocky-mountain-medicine... causing adverse impacts to stream networks within the project boundary. Proposed Action The Yampa Ranger..., road decommissioning, new road construction, and dispersed campsite decommissioning along streams...

  19. A project to develop restoration methods for buildings and facilities after a terrorist attack

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.F. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Div]|[Environment Canada, Ottawa, ON (Canada). River Road Environmental Technology Centre; Volchek, K.; Hornof, M.; Boudreau, L.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Best, M. [Health Canada, Ottawa, ON (Canada); Garbutt, M.; Krishnan, J.; Wagener, S.; Bernard, K. [Health Canada, Winnipeg, MB (Canada); Cousins, T.; Haslip, D. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2004-07-01

    A multi-agent project was initiated to review site restoration after a terrorist attack. The objective was to acquire and compile information on all known restoration procedures for buildings, exteriors of buildings, their interior contents, and adjacent areas such as parking lots, lawns and vehicles. All procedures were then tested and validated. Restoration procedures included pickup, neutralization, decontamination, removal and final destruction/deposition of the contaminant, cleaning material and contaminated debris resulting from the terrorist act. This research and development project considered chemical, biological and nuclear contamination with the intent to develop methods to decontaminate and restore buildings after a chemical, biological and radiological (CBR) attack. Ideas were collected from work conducted around the world. The efficacy of best candidates was tested along with all selected chemical target items. The project also involved the preparation of procedures for decontamination and restoration. Ultimately, a tradeoff decision basis will be developed to provide information on abandonment and quarantine versus cleanup. The study revealed that there are several technologies that can be used for the decontamination of structures and equipment after acts of terrorism, however, no one technique will work for all contaminants on all surfaces. The selection of a decontamination method depends on the contaminant, the surface being decontaminated and economic, social and health factors. The amount of waste generated by decontamination is a major feasibility factor. 25 refs., 6 tabs.

  20. Exxon Valdez Oil Spill Restoration Project final report: Monitoring for evaluation of recovery and restoration of injured nearshore resources

    Science.gov (United States)

    Ballachey, Brenda E.; Bodkin, James L.; Kloecker, Kim; Dean, Tom; Colettie, Heather A

    2015-01-01

    In 2012, we completed three consecutive years of full field sampling in WPWS for EVOS Restoration Project 10100750. Nearshore monitoring was conducted in collaboration with the NPS SWAN I&M program and, beginning in 2012, as part of the EVOSTC GWA program. Data collection was done in accordance with standard operating procedures set forth to monitor marine water chemistry and quality, marine intertidal invertebrates, kelps and seagrasses, marine birds, black oystercatchers, and sea otters. Summer sampling in 2012 represented the fourth year of sampling in WPWS (an initial year of sampling was done in WPWS in 2007; EVOS Restoration Project 070750). Based on our monitoring of nearshore species in WPWS, and comparisons of data from WPWS and other areas within the Gulf of Alaska, we have no evidence of continued injury to biological resources at the spatial scales we are monitoring. A key finding is that recovery of the sea otter population is no longer constrained by exposure to lingering oil; this is consistent with related EVOSTC studies on harlequin ducks (Restoration Project 12120114-Q). We anticipate continued annual nearshore monitoring in WPWS and at KATM and KEFJ under GWA, with data summaries and analyses including all three areas to provide a larger spatial and temporal context to the understanding of processes and patterns in nearshore ecosystems of the GOA which were impacted by the EVOS of 1989.

  1. INVENTORY OF ECOSYSTEM RESTORATION PROJECTS - PUBLISHED ON THE OFFICE OF WATER WEB PAGE

    Science.gov (United States)

    USEPA's National Risk Management Research Laboratory working jointly with the Office of Water, has developed an Internet-accessible database of ecosystem restoration projects within the Mid-Atlantic Integrated Assessment (MAIA) region. This article informs project owners of the i...

  2. Functions and requirements for tank farm restoration and safe operations, Project W-314. Revision 3

    International Nuclear Information System (INIS)

    Garrison, R.C.

    1995-01-01

    This Functions and Requirements document (FRD) establishes the basic performance criteria for Project W-314, in accordance with the guidance outlined in the letter from R.W. Brown, RL, to President, WHC, ''Tank Waste Remediation System (TWRS) Project Documentation Methodology,'' 94-PRJ-018, dated 3/18/94. The FRD replaces the Functional Design Criteria (FDC) as the project technical baseline documentation. Project W-314 will improve the reliability of safety related systems, minimize onsite health and safety hazards, and support waste retrieval and disposal activities by restoring and/or upgrading existing Tank Farm facilities and systems. The scope of Project W-314 encompasses the necessary restoration upgrades of the Tank Farms' instrumentation, ventilation, electrical distribution, and waste transfer systems

  3. Mummy Restoration Project Among the Anga of Papua New Guinea.

    Science.gov (United States)

    Beckett, Ronald G; Nelson, Andrew J

    2015-06-01

    We report on a unique Mummy restoration project among the anga of papua new guinea. Moimango was a village leader who had gone through the smoked body mummification process about 50 years ago. His smoked body has been displayed, alongside other ancestors, on a cliff niche gallery 308 m (1011 feet) above Koke Village. Although somewhat protected by an overhang, Moimango suffered a great deal of deterioration as he has been unprotected and exposed to the elements. The goals of our 2010 expedition to Koke Village was to assess the efficacy of restoration efforts applied to Moimango initiated by the authors and villagers of Koke in 2008. The restoration process used materials native to the local jungles. We examined Moimango for additional restoration challenges that may have arisen since the 2008 expedition. We discovered that many of the restoration techniques developed and applied in 2008 held up well. We found that the anatomical supports developed from native tapa and kumaka sap were still in place and effective, as well as our lichen eradication method of a suca slurry applied in 2008. Of particular importance was the stability of Moimago's head, which prior to restoration, was held in place by only the mummified muscle and integument of the lateral and posterior neck region. Endoscopic evaluation demonstrated disarticulated C1 and C2 vertebrae. New restoration challenges included construction of a new display chair, realignment and securing of the mandible, replacing and securing a loose tooth, repatching, and recoating with ritualistic red ochre clay. © 2015 Wiley Periodicals, Inc.

  4. Rehabilitating agricultural streams in Australia with wood: a review.

    Science.gov (United States)

    Lester, Rebecca E; Boulton, Andrew J

    2008-08-01

    Worldwide, the ecological condition of streams and rivers has been impaired by agricultural practices such as broadscale modification of catchments, high nutrient and sediment inputs, loss of riparian vegetation, and altered hydrology. Typical responses include channel incision, excessive sedimentation, declining water quality, and loss of in-stream habitat complexity and biodiversity. We review these impacts, focusing on the potential benefits and limitations of wood reintroduction as a transitional rehabilitation technique in these agricultural landscapes using Australian examples. In streams, wood plays key roles in shaping velocity and sedimentation profiles, forming pools, and strengthening banks. In the simplified channels typical of many agricultural streams, wood provides habitat for fauna, substrate for biofilms, and refuge from predators and flow extremes, and enhances in-stream diversity of fish and macroinvertebrates.Most previous restoration studies involving wood reintroduction have been in forested landscapes, but some results might be extrapolated to agricultural streams. In these studies, wood enhanced diversity of fish and macroinvertebrates, increased storage of organic material and sediment, and improved bed and bank stability. Failure to meet restoration objectives appeared most likely where channel incision was severe and in highly degraded environments. Methods for wood reintroduction have logistical advantages over many other restoration techniques, being relatively low cost and low maintenance. Wood reintroduction is a viable transitional restoration technique for agricultural landscapes likely to rapidly improve stream condition if sources of colonists are viable and water quality is suitable.

  5. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Bryson, Amanda J.; Cameron, April; Coleman, Andre M.; Corbett, C.; Dawley, Earl M.; Ebberts, Blaine D.; Kauffman, Ronald; Roegner, G. Curtis; Russell, Micah T.; Silva, April; Skalski, John R.; Thom, Ronald M.; Vavrinec, John; Woodruff, Dana L.; Zimmerman, Shon A.

    2010-10-26

    This is the sixth annual report of a seven-year project (2004 through 2010) to evaluate the cumulative effects of habitat restoration actions in the lower Columbia River and estuary (LCRE). The project, called the Cumulative Effects Study, is being conducted for the U.S. Army Corps of Engineers Portland District (USACE) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL), the Pt. Adams Biological Field Station of the National Marine Fisheries Service (NMFS), the Columbia River Estuary Study Taskforce (CREST), and the University of Washington. The goal of the Cumulative Effects Study is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the 235-km-long LCRE. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. From 2005 through 2009, annual field research involved intensive, comparative studies paired by habitat type (tidal swamp versus marsh), trajectory (restoration versus reference site), and restoration action (tidegate replacement vs. culvert replacement vs. dike breach).

  6. Projecting the success of plant restoration with population viability analysis

    Science.gov (United States)

    Bell, T.J.; Bowles, M.L.; McEachern, A.K.; Brigham, C.A.; Schwartz, M.W.

    2003-01-01

    Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5% (Menges 1991, 1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduces in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993, 1994; Bowles et al. 1993, 1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.). Population viability analysis (PVA) can provide a critical foundation for plant restoration, as it models demographic projections used to evaluate the probability of population persistence and links plant life history with restoration strategies. It is unknown how well artificially created populations will meet demographic modeling requirements (e.g., due to artificial cohort transitions) and few, if any, PVAs have been applied to restorations. To guide application of PVA to restored populations and to illustrate potential difficulties, we examine effects of planting different life stages, model initial population sizes needed to achieve population viability, and compare demographic characteristics between natural and restored populations. We develop and compare plant population restoration viability analysis (PRVA) case studies of

  7. Supplement Analysis for the Watershed Management Program EIS--Tapteal Bend Riparian Corridor Restoration Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-08-11

    The Bonneville Power Administration is proposing to fund the restoration of approximately 500 feet of streambank along the Yakima River at river mile 8, upstream of the Van Giesen Bridge on SR 224, in and between Richland and West Richland, Washington. This project will also result in the acquisition of Fox Island, a 12-acre island directly across the river from the restoration area. There is no development planned for the island. The proposed project includes: The installation of a bio-engineered streambank that incorporates barbs to capture silt and deflect flow, roughened rock or log toes, a riparian buffer, soil reinforcement, and bank grading. Long-term photo-point and plot sampling will also be implemented to evaluate the effectiveness and success of the restoration project. The NEPA compliance checklist for this project was completed by Darrel Sunday, a contractor with Sunday and Associates, Inc. (April 4, 2004), and meets the standards and guidelines for the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Endangered Species Act (ESA) listed species that may occur in the general vicinity of the project area are the pygmy rabbit, bald eagle, bull trout, Ute ladies'-tresses, and mid-Columbia Steelhead. The pygmy rabbit, bald eagle, and Ute ladies'Tresses are not known to occur in the immediate project vicinity, and it was determined that the proposed restoration project would have no effect on these species. It is difficult to determine if bull trout occur within the Tapteal project area and Dave Carl of the Washington Department of Fish & Wildlife was contacted and concurred with this assumption. It was determined that the project may affect, but is not likely to adversely affect bull trout, and the U.S. Fish & Wildlife Service has concurred with that determination (July 28, 2004). For the mid-Columbia Steelhead, an anadromous fish species, BPA has determined that if conducted in accordance with

  8. Structural Responses of a Stream Community to a Channel Relocation Using a Natural Channel Design Approach

    Science.gov (United States)

    Jack, J.; Word, D.; Daniel, W.; Pritchard, S.; Parola, A.; Vesely, B.

    2005-05-01

    Streams have been heavily impacted by historical and contemporary management practices. Restorations are seen as a way to enhance stream ecosystem integrity, but there are few restoration sites where pre- and post-restoration data are available to assess "success." In 2003, a channelized reach of Wilson Creek (Kentucky, USA) was relocated using a natural channel design approach. We compared the structural and functional responses of the stream pre- and post restoration/relocation at sites within Wilson and two reference streams. Despite the construction disturbance, water chemistry parameters such as nitrate and turbidity were nearly identical at sampling stations above and below the relocation for 2003-2004. Macroinvertebrate colonization of the relocation sites was rapid, with communities dominated by Cheumatopsyche, Perlesta and Baetis. Assessments of CPOM transport indicated that the new stream channel is more retentive of leaf and woody debris material than the pre-restoration Wilson sites or unrestored reference stream sites. The restoration of suitable habitat and the presence of "source populations" for colonization may compensate for even large-scale (but short-term) construction disturbance. More research is needed to assess the balance between the disturbance impacts of restoration installation and the long term benefits of stream ecological improvement.

  9. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery.

    Science.gov (United States)

    Kruse, Natalie A; DeRose, Lisa; Korenowsky, Rebekah; Bowman, Jennifer R; Lopez, Dina; Johnson, Kelly; Rankin, Edward

    2013-10-15

    Acid mine drainage (AMD) negatively impacts not only stream chemistry, but also aquatic biology. The ultimate goal of AMD treatment is restoration of the biological community, but that goal is rarely explicit in treatment system design. Hewett Fork in Raccoon Creek Watershed, Ohio, has been impacted by historic coal mining and has been treated with a calcium oxide doser in the headwaters of the watershed since 2004. All of the acidic inputs are isolated to a 1.5 km stretch of stream in the headwaters of the Hewett Fork watershed. The macroinvertebrate and fish communities have begun to recover and it is possible to distinguish three zones downstream of the doser: an impaired zone, a transition zone and a recovered zone. Alkalinity from both the doser and natural sources and physical stream parameters play a role in stream restoration. In Hewett Fork, natural alkaline additions downstream are higher than those from the doser. Both, alkaline additions and stream velocity drive sediment and metal deposition. Metal deposition occurs in several patterns; aluminum tends to deposit in regions of low stream velocity, while iron tends to deposit once sufficient alkalinity is added to the system downstream of mining inputs. The majority of metal deposition occurs upstream of the recovered zone. Both the physical stream parameters and natural alkalinity sources influence biological recovery in treated AMD streams and should be considered in remediation plans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Revitalisation of Orlík reservoir – case study of a regional restoration project

    Directory of Open Access Journals (Sweden)

    Ivana Očásková

    2014-06-01

    Full Text Available This case study describes the bottom-up formation of a regional project for restoring a reservoir. Land use changes in the upper Vltava river basin caused the eutrophication of Orlík reservoir, which resulted in water blooms, which in association with socio-economic changes caused a decline in tourism in this region and serious difficulties for local people. The study examines how public awareness helped in the establishment of a restoration project, its framework and strategy. Regional governance of the project management took into consideration both knowledge-based solutions and the interests of local people and municipalities. The project has the potential for resolving both environmental and socio-economic problems and providing a sustainable win-win strategy for the region, residents, tourists and stakeholders.

  11. [Restoration filtering based on projection power spectrum for single-photon emission computed tomography].

    Science.gov (United States)

    Kubo, N

    1995-04-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.

  12. Restoration filtering based on projection power spectrum for single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Kubo, Naoki

    1995-01-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical 'least squares filter' theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the 'Butterworth' filtering method (cut-off frequency of 0.15 cycles/pixel), and 'Wiener' filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99m Tc filled cylinder, were used. NMSE of the 'Butterworth' filter, 'Wiener' filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images. (author)

  13. Efficacy of plastic mesh tubes in reducing herbivory damage by the invasive nutria (Myocastor coypus) in an urban restoration site

    Science.gov (United States)

    Sheffels, Trevor R.; Systma, Mark D.; Carter, Jacoby; Taylor, Jimmy D.

    2014-01-01

    The restoration of stream corridors is becoming an increasingly important component of urban landscape planning, and the high cost of these projects necessitates the need to understand and address potential ecological obstacles to project success. The nutria(Myocastor coypus) is an invasive, semi-aquatic rodent native to South America that causes detrimental ecological impacts in riparian and wetland habitats throughout its introduced range, and techniques are needed to reduce nutria herbivory damage to urban stream restoration projects. We assessed the efficacy of standard Vexar® plastic mesh tubes in reducing nutria herbivory damage to newly established woody plants. The study was conducted in winter-spring 2009 at Delta Ponds, a 60-ha urban waterway in Eugene, Oregon. Woody plants protected by Vexar® tubes demonstrated 100% survival over the 3-month initial establishment period, while only 17% of unprotected plantings survived. Nutria demonstrated a preference for black cottonwood (Populus balsamifera ssp trichocarpa) over red osier dogwood (Cornussericea) and willow (Salix spp). Camera surveillance showed that nutria were more active in unprotected rather than protected treatments. Our results suggest that Vexar® plastic mesh tubing can be an effective short-term herbivory mitigation tool when habitat use by nutria is low. Additionally, planting functionally equivalent woody plant species that are less preferred by nutria, and other herbivores, may be another method for reducing herbivory and improving revegetation success. This study highlights the need to address potential wildlife damage conflicts in the planning process for stream restoration in urban landscapes.

  14. Large-scale dam removal in the northeast United States: documenting ecological responses to the Penobscot River Restoration Project

    Science.gov (United States)

    Collins, M. J.; Aponte Clarke, G.; Baeder, C.; McCaw, D.; Royte, J.; Saunders, R.; Sheehan, T.

    2012-12-01

    The Penobscot River Restoration Project aims to improve aquatic connectivity in New England's second largest watershed ( 22,000 km2) by removing the two lowermost, mainstem dams and bypassing a third dam on a principal tributary upstream. Project objectives include: restoring unobstructed access to the entire historic riverine range for five lower river diadromous species including Atlantic and shortnose sturgeon; significantly improving access to upstream habitat for six upper river diadromous species including Atlantic salmon; reconnecting trophic linkages between headwater areas and the Gulf of Maine; restoring fluvial processes to the former impoundments; improving recreational and Penobscot Nation cultural opportunities; and maintaining basin-wide hydropower output. The project is expected to have landscape-scale benefits and the need for a significant investment in long-term monitoring and evaluation to formally quantify ecosystem response has been recognized. A diverse group of federal, state, tribal, NGO, and academic partners has developed a long-term monitoring and evaluation program composed of nine studies that began in 2009. Including American Recovery and Reinvestment Act (ARRA) funding that leveraged partner contributions, we have invested nearly $2M to date in pre- and post-removal investigations that evaluate geomorphology/bed sediment, water quality, wetlands, and fisheries. Given the number of affected diadromous species and the diversity of their life histories, we have initiated six distinct, but related, fisheries investigations to document these expected changes: Atlantic salmon upstream and downstream passage efficiency using passive integrated transponder (PIT) and acoustic telemetry; fish community structure via an index of biotic integrity (IBI); total diadromous fish biomass through hydroacoustics; shortnose sturgeon spawning and habitat use via active and passive acoustic telemetry; and freshwater-marine food web interactions by

  15. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    Science.gov (United States)

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  16. Design considerations for large woody debris placement in stream enhancement projects. North American Journal of Fisheries Management

    Science.gov (United States)

    Robert H. Hilderbrand; A. Dennis Lemly; C. Andrew Dolloff; Kelly L. Harpster

    1998-01-01

    Log length exerted a critical influence in stabilizing large woody debris (LWD) pieces added as an experimental stream restoration technique. Logs longer than the average bank-full channel width (5.5 m) were significantly less likely to be displaced than logs shorter than this width. The longest log in stable log groups was significantly longer than the longest log in...

  17. Case studies of riparian and watershed restoration in the southwestern United States—Principles, challenges, and successes

    Science.gov (United States)

    Ralston, Barbara E.; Sarr, Daniel A.; Ralston, Barbara E.; Sarr, Daniel A.

    2017-07-18

    Globally, rivers and streams are highly altered by impoundments, diversions, and stream channelization associated with agricultural and water delivery needs. Climate change imposes additional challenges by further reducing discharge, introducing variability in seasonal precipitation patterns, and increasing temperatures. Collectively, these changes in a river or stream’s annual hydrology affects surface and groundwater dynamics, fluvial processes, and the linked aquatic and riparian responses, particularly in arid regions. Recognizing the inherent ecosystem services that riparian and aquatic habitats provide, society increasingly supports restoring the functionality of riparian and aquatic ecosystems.Given the wide range in types and scales of riparian impacts, approaches to riparian restoration can range from tactical, short-term, and site-specific efforts to strategic projects and long-term collaborations best pursued at the watershed scale. In the spirit of sharing information, the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center convened a workshop June 23-25, 2015, in Flagstaff, Ariz. for practitioners in restoration science to share general principles, successful restoration practices, and discuss the challenges that face those practicing riparian restoration in the southwestern United States. Presenters from the Colorado River and the Rio Grande basins, offered their perspectives and experiences in restoration at the local, reach and watershed scale. Outcomes of the workshop include this Proceedings volume, which is composed of extended abstracts of most of the presentations given at the workshop, and recommendations or information needs identified by participants. The organization of the Proceedings follows a general progression from local scale restoration to river and watershed scale approaches, and finishes with restoration assessments and monitoring.

  18. The land value impacts of wetland restoration.

    Science.gov (United States)

    Kaza, Nikhil; BenDor, Todd K

    2013-09-30

    U.S. regulations require offsets for aquatic ecosystems damaged during land development, often through restoration of alternative resources. What effect does large-scale wetland and stream restoration have on surrounding land values? Restoration effects on real estate values have substantial implications for protecting resources, increasing tax base, and improving environmental policies. Our analysis focuses on the three-county Raleigh-Durham-Chapel Hill, North Carolina region, which has experienced rapid development and extensive aquatic ecological restoration (through the state's Ecosystem Enhancement Program [EEP]). Since restoration sites are not randomly distributed across space, we used a genetic algorithm to match parcels near restoration sites with comparable control parcels. Similar to propensity score analysis, this technique facilitates statistical comparison and isolates the effects of restoration sites on surrounding real estate values. Compared to parcels not proximate to any aquatic resources, we find that, 1) natural aquatic systems steadily and significantly increase parcel values up to 0.75 mi away, and 2) parcels 0.5 mi from EEP sites gain substantial amenity value. When we control for intervening water bodies (e.g. un-restored streams and wetlands), we find a similar inflection point whereby parcels points to the need for higher public visibility of aquatic ecosystem restoration programs and increased public information about their value. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Image restoration by the method of convex projections: part 2 applications and numerical results.

    Science.gov (United States)

    Sezan, M I; Stark, H

    1982-01-01

    The image restoration theory discussed in a previous paper by Youla and Webb [1] is applied to a simulated image and the results compared with the well-known method known as the Gerchberg-Papoulis algorithm. The results show that the method of image restoration by projection onto convex sets, by providing a convenient technique for utilizing a priori information, performs significantly better than the Gerchberg-Papoulis method.

  20. WE-AB-207A-02: John’s Equation Based Consistency Condition and Incomplete Projection Restoration Upon Circular Orbit CBCT

    International Nuclear Information System (INIS)

    Ma, J; Qi, H; Wu, S; Xu, Y; Zhou, L; Yan, H

    2016-01-01

    Purpose: In transmitted X-ray tomography imaging, projections are sometimes incomplete due to a variety of reasons, such as geometry inaccuracy, defective detector cells, etc. To address this issue, we have derived a direct consistency condition based on John’s Equation, and proposed a method to effectively restore incomplete projections based on this consistency condition. Methods: Through parameter substitutions, we have derived a direct consistency condition equation from John’s equation, in which the left side is only projection derivative of view and the right side is projection derivative of other geometrical parameters. Based on this consistency condition, a projection restoration method is proposed, which includes five steps: 1) Forward projecting reconstructed image and using linear interpolation to estimate the incomplete projections as the initial result; 2) Performing Fourier transform on the projections; 3) Restoring the incomplete frequency data using the consistency condition equation; 4) Performing inverse Fourier transform; 5) Repeat step 2)∼4) until our criteria is met to terminate the iteration. Results: A beam-blocking-based scatter correction case and a bad-pixel correction case were used to demonstrate the efficacy and robustness of our restoration method. The mean absolute error (MAE), signal noise ratio (SNR) and mean square error (MSE) were employed as our evaluation metrics of the reconstructed images. For the scatter correction case, the MAE is reduced from 63.3% to 71.7% with 4 iterations. Compared with the existing Patch’s method, the MAE of our method is further reduced by 8.72%. For the bad-pixel case, the SNR of the reconstructed image by our method is increased from 13.49% to 21.48%, with the MSE being decreased by 45.95%, compared with linear interpolation method. Conclusion: Our studies have demonstrated that our restoration method based on the new consistency condition could effectively restore the incomplete projections

  1. Sulimar Queen environmental restoration project closure package Sandia environmental stewardship exemplar.

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, Jack B.

    2008-09-01

    In March 2008, Sandia National Laboratories (Sandia), in partnership with the Bureau of Land Management, Roswell Field Office, completed its responsibilities to plug and abandon wells and restore the surface conditions for the Sulimar Queens Unit, a 2,500 acre oil field, in Chaves County, Southeast New Mexico. Sandia assumed this liability in an agreement to obtain property to create a field laboratory to perform extensive testing and experimentation on enhanced oil recovery techniques for shallow oil fields. In addition to plugging and abandoning 28 wells, the project included the removal of surface structures and surface reclamation of disturbed lands associated with all plugged and abandoned wells, access roads, and other auxiliary facilities within unit boundaries. A contracting strategy was implemented to mitigate risk and reduce cost. As the unit is an important wildlife habitat for prairie chickens, sand dune lizards, and mule deer, the criteria for the restoration and construction process were designed to protect and enhance the wildlife habitat. Lessons learned from this project include: (1) extreme caution should be exercised when entering agreements that include future liabilities, (2) partnering with the regulator has huge benefits, and (3) working with industry experts, who were familiar with the work, and subcontractors, who provided the network to complete the project cost effectively.

  2. Evaluation of Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Diefenderfer, Heida L.; Thom, Ronald M.; Roegner, G. Curtis; Ebberts, Blaine D.; Skalski, John R.; Borde, Amy B.; Dawley, Earl; Coleman, Andre M.; Woodruff, Dana L.; Breithaupt, Stephen A.; Cameron, April; Corbett, C.; Donley, Erin E.; Jay, D. A.; Ke, Yinghai; Leffler, K.; McNeil, C.; Studebaker, Cindy; Tagestad, Jerry D.

    2012-05-01

    This is the seventh and final annual report of a project (2004–2010) addressing evaluation of the cumulative effects of habitat restoration actions in the 235-km-long lower Columbia River and estuary. The project, called the Cumulative Effects (CE) study, was conducted for the U.S. Army Corps of Engineers Portland District by a collaboration of research agencies led by the Pacific Northwest National Laboratory. We achieved the primary goal of the CE study to develop a methodology to evaluate the cumulative effects of habitat actions in the Columbia Estuary Ecosystem Restoration Program. We delivered 1) standard monitoring protocols and methods to prioritize monitoring activities; 2) the theoretical and empirical basis for a CE methodology using levels-of-evidence; 3) evaluations of cumulative effects using ecological relationships, geo-referenced data, hydrodynamic modeling, and meta-analyses; and 4) an adaptive management process to coordinate and coalesce restoration efforts in the LCRE. A solid foundation has been laid for future comprehensive evaluations of progress made by the Columbia Estuary Ecosystem Restoration Program to understand, conserve, and restore ecosystems in the lower Columbia River and estuary.

  3. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  4. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  5. Hydrogeomorphic connectivity on roads crossing in rural headwaters and its effect on stream dynamics.

    Science.gov (United States)

    Thomaz, Edivaldo L; Peretto, Gustavo T

    2016-04-15

    Unpaved roads are ubiquitous features that have been transforming the landscape through human history. Unpaved roads affect the water and sediment pathways through a catchment and impacts the aquatic ecosystem. In this study, we describe the effect of unpaved road on the hydrogeomorphic connectivity at the rural headwater scale. Measurement was based on the stream crossing approach, i.e., road superimposing the drainage system. We installed a Parshall flume coupled with single-stage suspended sediment sampler at each stream crossing. In addition, we displayed our monitoring scheme with an upscaling perspective from second-order to third-order stream. We concluded that the road-stream coupling dramatically changed the stream dynamic. The increase of discharge caused by roads at the headwater was 50% larger compared to unaffected streams. Additionally, suspended sediment concentration enhancement at stream crossings ranged from to 413% at second-order streams to 145% at third-order streams. The landform characteristics associated with the road network produced an important hydrogeomorphic disruption in the landscape. As a result, the sediment filter function of the riparian zone was reduced dramatically. Therefore, we recommend that projects for aquatic system restoration or conservation in rural landscape consider the role of the road network on stream dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. An Ecosystem-Based Approach to Habitat Restoration Projects with Emphasis on Salmonids in the Columbia River Estuary, 2003 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.; Thom, R.; Whiting, A. (Pacific Northwest National Laboratory)

    2003-11-01

    Habitat restoration in the Columbia River estuary (CRE) is an important off-site mitigation action in the 2000 Biological Opinion (BiOp), an operation of the Federal Columbia River Power System. The CRE, defined as the tidally influenced stretch of river from the mouth to Bonneville Dam 146 miles upstream, is part of the migration pathway for anadromous fish in the Columbia Basin, including salmon listed under the Endangered Species Act (ESA). Salmon in various stages of life, from fry to adults, use tidal channels and wetlands in the CRE to feed, find refuge from predators, and transition physiologically from freshwater to saltwater. Over the last 100 years, however, the area of some wetland habitats has decreased by as much as 70% because of dike and levee building, flow regulation, and other activities. In response to the decline in available habitat, the BiOp's Reasonable and Prudent Alternative (RPA) included mandates to 'develop a plan addressing the habitat needs of juvenile salmon and steelhead in the estuary' (RPA Action 159) and 'develop and implement an estuary restoration program with a goal of protecting and enhancing 10,000 acres of tidal wetlands and other key habitats' (RPA Action 160). To meet Action 159 and support Action 160, this document develops a science-based approach designed to improve ecosystem functions through habitat restoration activities in the CRE. The CRE habitat restoration program's goal and principles focus on habitat restoration projects in an ecosystem context. Since restoration of an entire ecosystem is not generally practical, individual habitat restoration projects have the greatest likelihood of success when they are implemented with an ecosystem perspective. The program's goal is: Implementation of well-coordinated, scientifically sound projects designed to enhance, protect, conserve, restore, and create 10,000 acres of tidal wetlands and other key habitats to aid rebuilding of ESA

  7. A visual progression of the Fort Valley Restoration Project treatments using remotely sensed imagery (P-53)

    Science.gov (United States)

    Joseph E. Crouse; Peter Z. Fule

    2008-01-01

    The landscape surrounding the Fort Valley Experimental Forest in northern Arizona has changed dramatically in the past decade due to the Fort Valley Restoration Project, a collaboration between the Greater Flagstaff Forest Partnership, Coconino National Forest, and Rocky Mountain Research Station. Severe wildfires in 1996 sparked community concern to start restoration...

  8. The Carolina Bay Restoration Project - Final Report 2000-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Christopher

    2007-12-15

    A Wetlands Mitigation Bank was established at SRS in 1997 as a compensatory alternative for unavoidable wetland losses. Prior to restoration activities, 16 sites included in the project were surveyed for the SRS Site Use system to serve as a protective covenant. Pre-restoration monitoring ended in Fall 2000, and post restoration monitoring began in the Winter/Spring of 2001. The total interior harvest in the 16 bays after harvesting the trees was 19.6 ha. The margins in the opencanopy, pine savanna margin treatments were thinned. Margins containing areas with immature forested stands (bay 5184 and portions of bay 5011) were thinned using a mechanical shredder in November 2001. Over 126 hectares were included in the study areas (interior + margin). Planting of two tree species and the transplanting of wetland grass species was successful. From field surveys, it was estimated that approximately 2700 Nyssa sylvatica and 1900 Taxodium distichum seedlings were planted in the eight forested bays resulting in an average planting density of ≈ 490 stems ha-1. One hundred seedlings of each species per bay (where available) were marked to evaluate survivability and growth. Wetland grass species were transplanted from donor sites on SRS to plots that ranged in size from 100 – 300 m2, depending on wetland size. On 0.75 and 0.6 meter centers, respectively, 2198 plugs of Panicum hemitomon and 3021 plugs Leersia hexandra were transplanted. New shoots originating from the stumps were treated with a foliar herbicide (Garlon® 4) during the summer of 2001 using backpack sprayers. Preliminary information from 2000-2004 regarding the hydrologic, vegetation and faunal response to restoration is presented in this status report.

  9. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oily wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.

  10. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    International Nuclear Information System (INIS)

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oily wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals

  11. Evaluation of an Unsuccessful Brook Trout Electrofishing Removal Project in a Small Rocky Mountain Stream.

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Kevin A.; Lamansky, Jr., James A.; Schill, Daniel J.

    2006-01-26

    In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout from streams by means of electrofishing. Although the success of such projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. A multiagency watershed advisory group (WAG) conducted a 3-year removal project to reduce brook trout and enhance native salmonids in 7.8 km of a southwestern Idaho stream. We evaluated the costs and success of their project in suppressing brook trout and looked for brook trout compensatory responses, such as decreased natural mortality, increased growth, increased fecundity at length, and earlier maturation. The total number of brook trout removed was 1,401 in 1998, 1,241 in 1999, and 890 in 2000; removal constituted an estimated 88% of the total number of brook trout in the stream in 1999 and 79% in 2000. Although abundance of age-1 and older brook trout declined slightly during and after the removals, abundance of age-0 brook trout increased 789% in the entire stream 2 years after the removals ceased. Total annual survival rate for age-2 and older brook trout did not decrease during the removals, and the removals failed to produce an increase in the abundance of native redband trout Oncorhynchus mykiss gairdneri. Lack of a meaningful decline and unchanged total mortality for older brook trout during the removals suggest that a compensatory response occurred in the brook trout population via reduced natural mortality, which offset the removal of large numbers of brook trout. Although we applaud WAG personnel for their goal of enhancing native salmonids by suppressing brook trout via electrofishing removal, we conclude that their efforts were unsuccessful and suggest that similar future projects elsewhere over such large stream lengths would be costly, quixotic enterprises.

  12. Ecological Restoration: Guidance from Theory

    Directory of Open Access Journals (Sweden)

    Joy Zedler

    2005-09-01

    Full Text Available A review of the science and practice of ecosystem restoration led me to identify key ecological theories and concepts that are relevant to planning, implementing, and sustaining restoration efforts. From experience with actual restoration projects, I provide guidance for improving the restoration process. Despite an abundance of theory and guidance, restoration goals are not always achieved, and pathways toward targets are not highly predictable. This is understandable, since each restoration project has many constraints and unique challenges. To improve restoration progress, I advise that sites be designed as experiments to allow learning while doing. At least the larger projects can be restored in phases, each designed as experimental treatments to test alternative restoration approaches. Subsequent phases can then adopt one or more of the treatments that best achieved goals in earlier phases while applying new tests of other restoration measures. Both science and restoration can progress simultaneously. This phased, experimental approach (called “adaptive restoration” is an effective tool for improving restoration when monitoring, assessment, interpretation and research are integrated into the process.

  13. A restoration and conservation project of the “Saint Dominic” Monastery in Soriano Calabro, Italy

    Directory of Open Access Journals (Sweden)

    Nazzareno Davolos

    2008-04-01

    Full Text Available The article is extracted from the Master Thesis about Restoration of the Monuments at “La Sapienza”, University of the Studies of Rome. The Monastery was one of the most important of the Dominican Order in Europe. The building dates back to year 1510, it broke down almost completely in the earthquake of year 1659. It was rebuilt following the architect B. Presti’s project. At the present time the “Saint Domenic” Monastery largely seems a ruin, mainly as a consequence of the cat- N. Davolos - A restoration and conservation project of the ÒSaint DominicÓ Monastery... 185 astrophic earthquake in 1783. However, with the new look that has acquired, it still preserves an extraordinary charm that continues to astonish. The project followed the trend of the critical and conservative restoration with the safeguard of the artistic and figurative data of the “Saint Domenic” Monastery which has been analysed through an accurate historical-critical work. The idea is to preserve and transmit to the future generations the “Saint Domenic” monument in his authenticity, in its formal and material consistence, with the marks of the passing of time. The abstracts reports only the most important aspects which are representative of the project. Besides the historical analysis, laboratory examination have been executed on the material used in the construction of the ancient facade through the observation of thin sections by optic microscope and with the realization of spectrum of X-ray diffraction, in order to know the nature and composition, the state of preservation and the kinds of deterioration to support an appropriate intervention of restoration.

  14. Landowner and visitor response to forest landscape restoration: the Chequamegon-Nicolet National Forest Northeast Sands Project

    Science.gov (United States)

    Kristin Floress; Anna Haines; Emily Usher; Paul Gobster; Mike. Dockry

    2018-01-01

    This report is intended to support the ongoing pine barrens restoration on work in the Lakewood-Laona Ranger District on the Chequamegon-Nicolet National Forest (CNNF). The report provides the results from 2016 surveys and focus groups examining landowner and visitor attitudes toward forest management treatments, communication, and restoration project outcomes; their...

  15. Restoration of the analytically reconstructed OpenPET images by the method of convex projections

    Energy Technology Data Exchange (ETDEWEB)

    Tashima, Hideaki; Murayama, Hideo; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan); Katsunuma, Takayuki; Suga, Mikio [Chiba Univ. (Japan). Graduate School of Engineering; Kinouchi, Shoko [National Institute of Radiological Sciences, Chiba (Japan); Chiba Univ. (Japan). Graduate School of Engineering; Obi, Takashi [Tokyo Institute of Technology (Japan). Interdisciplinary Graduate School of Science and Engineering; Kudo, Hiroyuki [Tsukuba Univ. (Japan). Graduate School of Systems and Information Engineering

    2011-07-01

    We have proposed the OpenPET geometry which has gaps between detector rings and physically opened field-of-view. The image reconstruction of the OpenPET is classified into an incomplete problem because it does not satisfy the Orlov's condition. Even so, the simulation and experimental studies have shown that applying iterative methods such as the maximum likelihood expectation maximization (ML-EM) algorithm successfully reconstruct images in the gap area. However, the imaging process of the iterative methods in the OpenPET imaging is not clear. Therefore, the aim of this study is to analytically analyze the OpenPET imaging and estimate implicit constraints involved in the iterative methods. To apply explicit constraints in the OpenPET imaging, we used the method of convex projections for restoration of the images reconstructed by the analytical way in which low-frequency components are lost. Numerical simulations showed that the similar restoration effects are involved both in the ML-EM and the method of convex projections. Therefore, the iterative methods have advantageous effect of restoring lost frequency components of the OpenPET imaging. (orig.)

  16. Meeting the requirements for a DOE environmental restoration project. The Fernald strategy

    International Nuclear Information System (INIS)

    Vanoss, R.L.; Risenhoover, G.M.

    1994-01-01

    Environmental Restoration (ER) of five Operable Units (OU) at Fernald Environmental Management Project (FEMP) includes compliance with the requirements of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Resource Conservation Recovery Act (RCRA), National Environmental Policy Act (NEPA), and DOE Orders. Each regulatory driver has differing procedural requirements for documenting calculations, decisions, and actions involved in site cleanup. Integration of documentation and avoidance of duplication can save time and money. Such savings are being achieved by OU specific application of supporting studies, revised procedures, and guidance documents. Each OU is seeking appropriate opportunities to produce single documents that simultaneously fulfill the important requirements of the other regulations and DOE orders. These opportunities are evaluated at all phases of decision making, remedial design, and remedial action. Three essential processes precede environmental restoration/remedial action at a DOE site/project: 1. Completion of decision-making documents required by governing or applicable statutes. 2. Completion of important scientific and engineering analyses of remedial alternatives, and design and implementation of the remedial solution established in the CERCLA Record of Decision (ROD). 3. Preparation of DOE-mandated documentation to record engineering evaluations and cost estimates required for budgeting, decision making, and project management. Methodology and requirements for each process have developed from long, successful practice, but independently of each other. FERMCO, as new DOE contractor at Fernald and first Environmental Restoration Management Contractor (ERMC), is committed to a process of Continuous Performance Improvement (CPI). A major reevaluation of documentation and processes for support of environmental decision-making and design of cleanup activities to remediate the five OUs at the FEMP is being undertaken

  17. Urban River Restoration in Tehran: Challenges and Opportunities

    Science.gov (United States)

    Azizi, S.; Mousavi, H.; Farshad, F.; Hoseinzade Vahedi, N.; Zanjanian, M.; Khamesi, A.; Shojaee, M.; Safdarnejad, S. M.; Mirrahimi, H.; Ahmari, N.

    2015-12-01

    The typical treatment of urban river streams in Tehran has been limited channelization over the last 30 years. Changes in stream hydrology resulting from urbanization causes a widening gap between river and neighborhoods that results in the ecological and visual division between built and natural environments. To address these problems, a new management perspective in Tehran municipality seeks creating a sequence of thematic green spaces which serve as meeting points for adjacent neighborhoods. Implementation of pilot projects has proved that restoration of urban rivers requires a holistic approach with a range of technologies and tools that contribute to the goal of integrated planning. Currently, our team is working on Darband and Darabad catchments in north east Tehran,to provide opportunities for restoration of natural life in order to improve the amenity, ecology and sustainability of an urban river environment based on 4 key planning principles of: Demonstrating characteristics of the city's unique relationship to the river in the riverfront design; Knowing the river ecosystem and planning for a scale larger than the river front; minimizing new floodplain development; and Providing public access, connections, and recreational uses. This presentation will discuss the process of developing a new integrated GIS-based catchment planning system which helped the City shape its strategic plan for two catchments for the 2015-2030 period through multi-objective and multi-criteria optimization. The strategic plan is expected to enable the city to project the effects of introducing any future development in the catchment area on the river system, helping it to prevent such development activities which can have unintended long-term impacts.

  18. Image restoration by the method of convex projections: part 1 theory.

    Science.gov (United States)

    Youla, D C; Webb, H

    1982-01-01

    A projection operator onto a closed convex set in Hilbert space is one of the few examples of a nonlinear map that can be defined in simple abstract terms. Moreover, it minimizes distance and is nonexpansive, and therefore shares two of the more important properties of ordinary linear orthogonal projections onto closed linear manifolds. In this paper, we exploit the properties of these operators to develop several iterative algorithms for image restoration from partial data which permit any number of nonlinear constraints of a certain type to be subsumed automatically. Their common conceptual basis is as follows. Every known property of an original image f is envisaged as restricting it to lie in a well-defined closed convex set. Thus, m such properties place f in the intersection E(0) = E(i) of the corresponding closed convex sets E(1),E(2),...EE(m). Given only the projection operators PE(i) onto the individual E(i)'s, i = 1 --> m, we restore f by recursive means. Clearly, in this approach, the realization of the P(i)'s in a Hilbert space setting is one of the major synthesis problems. Section I describes the geometrical significance of the three main theorems in considerable detail, and most of the underlying ideas are illustrated with the aid of simple diagrams. Section II presents rules for the numerical implementation of 11 specific projection operators which are found to occur frequently in many signal-processing applications, and the Appendix contains proofs of all the major results.

  19. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1994-01-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities

  20. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration

    1994-10-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities.

  1. 76 FR 70955 - Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project

    Science.gov (United States)

    2011-11-16

    ... DEPARTMENT OF AGRICULTURE Forest Service Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The Helena National Forest (HNF) is proposing on the Lincoln Ranger...

  2. The Carolina Bay Restoration Project - Status Report II 2000-2004.

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Christopher

    2006-07-13

    A Wetlands Mitigation Bank was established at SRS in 1997 as a compensatory alternative for unavoidable wetland losses. Prior to restoration activities, 16 sites included in the project were surveyed for the SRS Site Use system to serve as a protective covenant. Pre-restoration monitoring ended in Fall 2000, and post restoration monitoring began in the Winter/Spring of 2001. The total interior harvest in the 16 bays after harvesting the trees was 19.6 ha. The margins in the opencanopy, pine savanna margin treatments were thinned. Margins containing areas with immature forested stands (bay 5184 and portions of bay 5011) were thinned using a mechanical shredder in November 2001. Over 126 hectares were included in the study areas (interior + margin). Planting of two tree species and the transplanting of wetland grass species was successful. From field surveys, it was estimated that approximately 2700 Nyssa sylvatica and 1900 Taxodium distichum seedlings were planted in the eight forested bays resulting in an average planting density of ≈ 490 stems ha-1. One hundred seedlings of each species per bay (where available) were marked to evaluate survivability and growth. Wetland grass species were transplanted from donor sites on SRS to plots that ranged in size from 100 – 300 m2, depending on wetland size. On 0.75 and 0.6 meter centers, respectively, 2198 plugs of Panicum hemitomon and 3021 plugs Leersia hexandra were transplanted. New shoots originating from the stumps were treated with a foliar herbicide (Garlon® 4) during the summer of 2001 using backpack sprayers. Preliminary information from 2000-2004 regarding the hydrologic, vegetation and faunal response to restoration is presented in this status report. Post restoration monitoring will continue through 2005. A final report to the Mitigation Bank Review Team will be submitted in mid-2006.

  3. Science Roles and Interactions in Adaptive Management of Large River Restoration Projects, Midwest United States

    Science.gov (United States)

    Jacobson, R. B.; Galat, D. L.; Smith, C. B.

    2010-12-01

    Most large-river restoration projects include formal or informal implementations of adaptive management strategies which acknowledge uncertainty and use scientific inquiry to learn and refine management options. Although the central role of science in reducing uncertainty is acknowledged in such projects, specific roles and interactions can vary widely, including how science relates to decision-making within the governance of these projects. Our objective is to present some structured generalizations about science roles and interactions as developed from the authors’ experiences in adaptive management of large river restoration in the Midwest United States. Scientific information may be introduced into decision making by scientists acting in any of the three roles common to adaptive management -- action agency representative, stakeholder, or science provider. We have observed that confusion and gridlock can arise when it is unclear if a scientist is acting as an advocate for a stakeholder or management position, or instead as an independent, “honest broker” of science. Although both advocacy and independence are proper and expected in public decision making, it is useful when scientists unambiguously identify their role. While complete scientific independence may be illusory, transparency and peer review can promote the ideal. Transparency comes from setting clear directions and objectives at the decision-making level and defining at the outset how learning will help assess progress and inform decisions. Independent peer reviews of proposals, study plans, and publications serve as a powerful tool to advance scientific independence, even if funding sources present a potential conflict of interest. Selection of experts for scientific advice and review often requires consideration of the balance between benefits of the “outside” expert (independent, knowledgeable but with little specific understanding of the river system), compared to those provided by the

  4. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  5. Recurrent die-offs of adult coho salmon returning to spawn in Puget Sound lowland urban streams.

    Directory of Open Access Journals (Sweden)

    Nathaniel L Scholz

    Full Text Available Several Seattle-area streams in Puget Sound were the focus of habitat restoration projects in the 1990s. Post-project effectiveness monitoring surveys revealed anomalous behaviors among adult coho salmon returning to spawn in restored reaches. These included erratic surface swimming, gaping, fin splaying, and loss of orientation and equilibrium. Affected fish died within hours, and female carcasses generally showed high rates (>90% of egg retention. Beginning in the fall of 2002, systematic spawner surveys were conducted to 1 assess the severity of the adult die-offs, 2 compare spawner mortality in urban vs. non-urban streams, and 3 identify water quality and spawner condition factors that might be associated with the recurrent fish kills. The forensic investigation focused on conventional water quality parameters (e.g., dissolved oxygen, temperature, ammonia, fish condition, pathogen exposure and disease status, and exposures to metals, polycyclic aromatic hydrocarbons, and current use pesticides. Daily surveys of a representative urban stream (Longfellow Creek from 2002-2009 revealed premature spawner mortality rates that ranged from 60-100% of each fall run. The comparable rate in a non-urban stream was <1% (Fortson Creek, surveyed in 2002. Conventional water quality, pesticide exposure, disease, and spawner condition showed no relationship to the syndrome. Coho salmon did show evidence of exposure to metals and petroleum hydrocarbons, both of which commonly originate from motor vehicles in urban landscapes. The weight of evidence suggests that freshwater-transitional coho are particularly vulnerable to an as-yet unidentified toxic contaminant (or contaminant mixture in urban runoff. Stormwater may therefore place important constraints on efforts to conserve and recover coho populations in urban and urbanizing watersheds throughout the western United States.

  6. Moses Lake Fishery Restoration Project : FY 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    None given

    2000-12-01

    The Moses Lake Project consists of 3 phases. Phase 1 is the assessment of all currently available physical and biological information, the collection of baseline biological data, the formulation of testable hypotheses, and the development of a detailed study plan to test the hypotheses. Phase 2 is dedicated to the implementation of the study plan including data collection, hypotheses testing, and the formulation of a management plan. Phase 3 of the project is the implementation of the management plan, monitoring and evaluation of the implemented recommendations. The project intends to restore the failed recreational fishery for panfish species (black crappie, bluegill and yellow perch) in Moses Lake as off site mitigation for lost recreational fishing opportunities for anadromous species in the upper Columbia River. This report summarizes the results of Phase 1 investigations and presents the study plan directed at initiating Phase 2 of the project. Phase 1of the project culminates with the formulation of testable hypotheses directed at investigating possible limiting factors to the production of panfish in Moses Lake. The limiting factors to be investigated will include water quality, habitat quantity and quality, food limitations, competition, recruitment, predation, over harvest, environmental requirements, and the physical and chemical limitations of the system in relation to the fishes.

  7. Predictive Mapping of the Biotic Condition of Conterminous U.S. Rivers and Streams

    Science.gov (United States)

    Understanding and mapping the spatial variations in the biological condition of streams could provide an important tool for assessment and restoration of stream ecosystems. The US EPA’s National Rivers and Streams Assessment (NRSA) summarizes the percent of stream lengths within ...

  8. Recommendations for computer modeling codes to support the UMTRA groundwater restoration project

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, M.D. [Sandia National Labs., Albuquerque, NM (United States); Khan, M.A. [IT Corp., Albuquerque, NM (United States)

    1996-04-01

    The Uranium Mill Tailings Remediation Action (UMTRA) Project is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the US. The surface restoration phase, which includes containment and stabilization of the abandoned uranium mill tailings piles, has a specific termination date and is nearing completion. Therefore, attention has now turned to the groundwater restoration phase, which began in 1991. Regulated constituents in groundwater whose concentrations or activities exceed maximum contaminant levels (MCLs) or background levels at one or more sites include, but are not limited to, uranium, selenium, arsenic, molybdenum, nitrate, gross alpha, radium-226 and radium-228. The purpose of this report is to recommend computer codes that can be used to assist the UMTRA groundwater restoration effort. The report includes a survey of applicable codes in each of the following areas: (1) groundwater flow and contaminant transport modeling codes, (2) hydrogeochemical modeling codes, (3) pump and treat optimization codes, and (4) decision support tools. Following the survey of the applicable codes, specific codes that can best meet the needs of the UMTRA groundwater restoration program in each of the four areas are recommended.

  9. Recommendations for computer modeling codes to support the UMTRA groundwater restoration project

    International Nuclear Information System (INIS)

    Tucker, M.D.; Khan, M.A.

    1996-04-01

    The Uranium Mill Tailings Remediation Action (UMTRA) Project is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the US. The surface restoration phase, which includes containment and stabilization of the abandoned uranium mill tailings piles, has a specific termination date and is nearing completion. Therefore, attention has now turned to the groundwater restoration phase, which began in 1991. Regulated constituents in groundwater whose concentrations or activities exceed maximum contaminant levels (MCLs) or background levels at one or more sites include, but are not limited to, uranium, selenium, arsenic, molybdenum, nitrate, gross alpha, radium-226 and radium-228. The purpose of this report is to recommend computer codes that can be used to assist the UMTRA groundwater restoration effort. The report includes a survey of applicable codes in each of the following areas: (1) groundwater flow and contaminant transport modeling codes, (2) hydrogeochemical modeling codes, (3) pump and treat optimization codes, and (4) decision support tools. Following the survey of the applicable codes, specific codes that can best meet the needs of the UMTRA groundwater restoration program in each of the four areas are recommended

  10. Big rock point restoration project BWR major component removal, packaging and shipping - planning and experience

    International Nuclear Information System (INIS)

    Milner, T.; Dam, S.; Papp, M.; Slade, J.; Slimp, B.; Nurden, P.

    2001-01-01

    The Big Rock Point boiling water reactor (BWR) at Charlevoix, MI was permanently shut down on August 29th 1997. In 1999 BNFL Inc.'s Reactor Decommissioning Group (RDG) was awarded a contract by Consumers Energy (CECo) for the Big Rock Point (BRP) Major Component Removal (MCR) project. BNFL Inc. RDG has teamed with MOTA, Sargent and Lundy and MDM Services to plan and execute MCR in support of the facility restoration project. The facility restoration project will be completed by 2005. Key to the success of the project has been the integration of best available demonstrated technology into a robust and responsive project management approach, which places emphasis on safety and quality assurance in achieving project milestones linked to time and cost. To support decommissioning of the BRP MCR activities, a reactor vessel (RV) shipping container is required. Discussed in this paper is the design and fabrication of a 10 CFR Part 71 Type B container necessary to ship the BRP RV. The container to be used for transportation of the RV to the burial site was designed as an Exclusive Use Type B package for shipment and burial at the Barnwell, South Carolina (SC) disposal facility. (author)

  11. Effects of river restoration on riparian biodiversity in secondary channels of the Pite River, Sweden.

    Science.gov (United States)

    Helfield, James M; Engström, Johanna; Michel, James T; Nilsson, Christer; Jansson, Roland

    2012-01-01

    Between 1850 and 1970, rivers throughout Sweden were channelized to facilitate timber floating. Floatway structures were installed to streamline banks and disconnect flow to secondary channels, resulting in simplified channel morphologies and more homogenous flow regimes. In recent years, local authorities have begun to restore channelized rivers. In this study, we examined the effects of restoration on riparian plant communities at previously disconnected secondary channels of the Pite River. We detected no increase in riparian diversity at restored sites relative to unrestored (i.e., disconnected) sites, but we did observe significant differences in species composition of both vascular plant and bryophyte communities. Disconnected sites featured greater zonation, with mesic-hydric floodplain species represented in plots closest to the stream and mesic-xeric upland species represented in plots farthest from the stream. In contrast, restored sites were most strongly represented by upland species at all distances relative to the stream. These patterns likely result from the increased water levels in reconnected channels where, prior to restoration, upland plants had expanded toward the stream. Nonetheless, the restored fluvial regime has not brought about the development of characteristic flood-adapted plant communities, probably due to the short time interval (ca. 5 years) since restoration. Previous studies have demonstrated relatively quick responses to similar restoration in single-channel tributaries, but secondary channels may respond differently due to the more buffered hydrologic regimes typically seen in anabranching systems. These findings illustrate how restoration outcomes can vary according to hydrologic, climatic and ecological factors, reinforcing the need for site-specific restoration strategies.

  12. Managing trade-offs in landscape restoration and revegetation projects.

    Science.gov (United States)

    Maron, Martine; Cockfield, Geoff

    2008-12-01

    Landscape restoration projects often have multiple and disparate conservation, resource enhancement, and sometimes economic objectives, since projects that seek to meet more than one objective tend to be viewed more positively by funding agencies and the community. The degree to which there are trade-offs among desired objectives is an important variable for decision makers, yet this is rarely explicitly considered. In particular, the existence of ecological thresholds has important implications for decision-making at both the project level and the regional level. We develop a model of the possibilities and choices for an agency seeking to achieve two environmental objectives in a region through revegetation of a number of sites. A graphical model of the production possibilities sets for a single revegetation project is developed, and different trade-off relationships are discussed and illustrated. Then the model is used to demonstrate the possibilities for managing all such projects within a region. We show that, where there are thresholds in the trade-off relationship between two objectives, specialization (single- or dominant-objective projects) should be considered. This is illustrated using a case study in which revegetation is used to meet avian biodiversity and salinity mitigation objectives. We conclude that where there are sufficient scientific data, explicit consideration of different types of trade-offs can assist in making decisions about the most efficient mix and type of projects to better achieve a range of objectives within a region.

  13. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data.

    Science.gov (United States)

    Wallace, J Bruce; Eggert, Susan L; Meyer, Judy L; Webster, Jackson R

    2015-05-01

    invertebrate production. Predator production and total production were tightly coupled in reference and treatment streams, indicating strong relationships between predators and their prey. Results from the artificial wood addition demonstrate that physical structure alone will not restore invertebrate productivity without detrital resources from the riparian forest. Our long-term studies conducted over three decades at the ecosystem scale unequivocally show the necessity of maintaining and restoring aquatic-terrestrial linkages in forested headwater streams.

  14. Restoring coastal wetlands that were ditched for mosquito control: a preliminary assessment of hydro-leveling as a restoration technique

    Science.gov (United States)

    Smith, Thomas J.; Tiling, Ginger; Leasure, Pamela S.

    2007-01-01

    The wetlands surrounding Tampa Bay, Florida were extensively ditched for mosquito control in the 1950s. Spoil from ditch construction was placed adjacent to the wetlands ditches creating mound-like features (spoil-mounds). These mounds represent a loss of 14% of the wetland area in Tampa Bay. Spoil mounds interfere with tidal flow and are locations for non-native plants to colonize (e.g., Schinus terebinthifolius). Removal of the spoil mounds to eliminate exotic plants, restore native vegetation, and re-establish natural hydrology is a restoration priority for environmental managers. Hydro-leveling, a new technique, was tested in a mangrove forest restoration project in 2004. Hydro-leveling uses a high pressure stream of water to wash sediment from the spoil mound into the adjacent wetland and ditch. To assess the effectiveness of this technique, we conducted vegetation surveys in areas that were hydro-leveled and in non-hydro-leveled areas 3 years post-project. Adult Schinus were reduced but not eliminated from hydro-leveled mounds. Schinus seedlings however were absent from hydro-leveled sites. Colonization by native species was sparse. Mangrove seedlings were essentially absent (≈2 m−2) from the centers of hydro-leveled mounds and were in low density on their edges (17 m−2) in comparison to surrounding mangrove forests (105 m−2). Hydro-leveling resulted in mortality of mangroves adjacent to the mounds being leveled. This was probably caused by burial of pneumatophores during the hydro-leveling process. For hydro-leveling to be a useful and successful restoration technique several requirements must be met. Spoil mounds must be lowered to the level of the surrounding wetlands. Spoil must be distributed further into the adjacent wetland to prevent burial of nearby native vegetation. Finally, native species may need to be planted on hydro-leveled areas to speed up the re-vegetation process.

  15. Phase 1 studies summary of major findings of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    Science.gov (United States)

    Valoppi, Laura

    2018-04-02

    Executive SummaryThe South Bay Salt Pond Restoration Project (Project) is one of the largest restoration efforts in the United States. It is located in South San Francisco Bay of California. It is unique not only for its size—more than 15,000 acres—but also for its location adjacent to one of the nation’s largest urban areas, home to more than 4 million people (Alameda, Santa Clara, and San Mateo Counties). The Project is intended to restore and enhance wetlands in South San Francisco Bay while providing for flood management, wildlife-oriented public access, and recreation. Restoration goals of the project are to provide a mosaic of saltmarsh habitat to benefit marsh species and managed ponds to benefit waterbirds, throughout 3 complexes and 54 former salt ponds.Although much is known about the project area, significant uncertainties remain with a project of this geographic and temporal scale of an estimated 50 years to complete the restoration. For example, in order to convert anywhere from 50 to 90 percent of the existing managed ponds to saltmarsh habitat, conservation managers first enhance the habitat of managed ponds in order to increase use by waterbirds, and provide migratory, wintering, and nesting habitat for more than 90 species of waterbirds. Project managers have concluded that the best way to address these uncertainties is to carefully implement the project in phases and learn from the outcome of each phase. The Adaptive Management Plan (AMP) identifies specific restoration targets for multiple aspects of the Project and defines triggers that would necessitate some type of management action if a particular aspect is trending negatively. U.S. Geological Survey (USGS) biologist Laura Valoppi served as the project Lead Scientist and oversaw implementation of the AMP in coordination with other members of the Project Management Team (PMT), comprised of representatives from the California State Coastal Conservancy, California Department of Fish and

  16. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  17. Classifications for Coastal Wetlands Planning, Protection and Restoration Act site-specific projects: 2008 and 2009

    Science.gov (United States)

    Jones, William R.; Garber, Adrienne

    2012-01-01

    The Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) funds over 100 wetland restoration projects across Louisiana. Integral to the success of CWPPRA is its long-term monitoring program, which enables State and Federal agencies to determine the effectiveness of each restoration effort. One component of this monitoring program is the analysis of high-resolution, color-infrared aerial photography at the U.S. Geological Survey's National Wetlands Research Center in Lafayette, Louisiana. Color-infrared aerial photography (9- by 9-inch) is obtained before project construction and several times after construction. Each frame is scanned on a photogrametric scanner that produces a high-resolution image in Tagged Image File Format (TIFF). By using image-processing software, these TIFF files are then orthorectified and mosaicked to produce a seamless image of a project area and its associated reference area (a control site near the project that has common environmental features, such as marsh type, soil types, and water salinities.) The project and reference areas are then classified according to pixel value into two distinct classes, land and water. After initial land and water ratios have been established by using photography obtained before and after project construction, subsequent comparisons can be made over time to determine land-water change. Several challenges are associated with the land-water interpretation process. Primarily, land-water classifications are often complicated by the presence of floating aquatic vegetation that occurs throughout the freshwater systems of coastal Louisiana and that is sometimes difficult to differentiate from emergent marsh. Other challenges include tidal fluctuations and water movement from strong winds, which may result in flooding and inundation of emergent marsh during certain conditions. Compensating for these events is difficult but possible by using other sources of imagery to verify marsh conditions for other

  18. Restoration projects for decontamination of facilities from chemical, biological and radiological contamination after terrorist actions

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Lumley, T.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Payette, P.; Laframboise, D.; Best, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Krishnan, J.; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Winnipeg, MB (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada); Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada)

    2006-07-01

    This paper reviewed studies that identified better decontamination methods for chemical, biological and radiological/nuclear (CBRN) attacks. In particular, it reviewed aspects of 3 projects in which procedures were tested and validated for site restoration. Cleanup targets or standards for decontaminating buildings and materials after a CBRN attack were also developed. The projects were based on physicochemical and toxicological knowledge of potential terrorist agents and selected surface matrices. The projects also involved modeling and assessing environmental and health risks. The first multi-agent project involved gathering information on known procedures for restoration of areas including interiors and exteriors of buildings, contents, parking lots, lawn, and vehicles. Air inside the building was included. The efficacy of some of the proposed concepts was tested. Results included the determination of appropriate surrogates for anthrax and tests of liquid and gaseous biocides on the surrogates. The development of new contamination procedures using peroxyacetic acid were also discussed. The second project involved decontamination tests on CBRN using specially-constructed buildings at the Counter-terrorism Technology Centre at Defence Research and Development Canada in Suffield. The buildings will be contaminated with chemical and biological agents and with short-lived radionuclides. They will be decontaminated using the best-performing technologies known. Information collected will include fate of the contaminant and decontamination products, effectiveness of the restoration methods, cost and duration of cleanup and logistical problems. The third project is aimed at developing cleanup standards for decontaminating buildings and construction materials after a chemical or biological attack. It will create as many as 12 algorithms for the development of 50 standards which will help cleanup personnel and first-responders to gauge whether proposed methods can achieve

  19. A demonstration project to test ecological restoration of a pinyon-juniper ecosystem

    Science.gov (United States)

    David W. Huffman; Michael T. Stoddard; Peter Z. Fule; W. Wallace Covington; H. B. Smith

    2008-01-01

    To test an approach for restoring historical stand densities and increasing plant species diversity of a pinyon-juniper ecosystem, we implemented a demonstration project at two sites (CR and GP) on the Grand Canyon-Parashant National Monument in northern Arizona. Historical records indicated that livestock grazing was intensive on the sites beginning in the late 1800s...

  20. Independent technical review of the Sandia National Laboratories Environmental Restoration Project

    International Nuclear Information System (INIS)

    1994-11-01

    An Independent Technical Review was conducted of the Environmental Restoration Project. The objective of the review was recommendations, from a commercial perspective, on a systems level path forward to safe, minimum cost and schedule project completion. The work presented represents the consensus analysis and recommendations of thirteen individuals with varied backgrounds, expertise, and experience. The ITR team recommends that the barriers to the opportunity described in the diagnosis be eliminated using an integrated DOE-Sandia system approach. Piecemeal changes will not result in the desired commercial efficiency. DOE needs to operate as the contracting agency for a Major System Acquisition. If it does not, commercial performance will not be achieved regardless of the contractor. Likewise, Sandia needs to establish and implement the necessary project structure and management systems to operate with commercial contractor like efficiency

  1. Scale-dependent geomorphic responses to active restoration and implications for cutthroat trout

    Science.gov (United States)

    Salant, N.; Miller, S. W.

    2009-12-01

    The predominant goal of instream habitat restoration is to increase the diversity, density and/or biomass of aquatic organisms through enhanced physical heterogeneity and increased food availability. In physically homogenized systems, habitat restoration is most commonly achieved at the reach-scale through the addition of structures or channel reconfiguration. Despite the completion of over 6,000 restoration projects in the United States, studies of fish responses to habitat restoration have largely produced equivocal results. Paradoxically, restoration monitoring overwhelmingly focuses on fish response without understanding how these responses link to the physical variables being altered and the scale at which geomorphic changes occur. Our study investigates whether instream habitat restoration affects geomorphic conditions at spatial scales relevant to the organism of interest (i.e. the spatial scale of the variables limiting to that organism). We measure the effects of active restoration on geomorphic metrics at three spatial scales (local, unit, and reach) using a before-after-control-impact design in a historically disturbed and heavily managed cutthroat trout stream. Observed trout habitat preferences (for spawning and juvenile/adult residence) are used to identify the limiting physical variables and are compared to the scale of spatially explicit geomorphic responses. Four reaches representing three different stages of restoration (before, one month and one year after) are surveyed for local-scale physical conditions, unit- and reach-scale morphology, resident fish use, and redd locations. Local-scale physical metrics include depth, nearbed and average velocity, overhead cover, particle size, and water quality metrics. Point measurements stratified by morphological unit are used to determine physical variability among unit types. Habitat complexity and availability are assessed at the reach-scale from topographic surveys and unit maps. Our multi

  2. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  3. Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Roegner, G. Curtis; Diefenderfer, Heida L.; Borde, Amy B.; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Zimmerman, Shon A.; Johnson, Gary E.

    2008-04-25

    Protocols for monitoring salmon habitat restoration projects are essential for the U.S. Army Corps of Engineers' environmental efforts in the Columbia River estuary. This manual provides state-of-the science data collection and analysis methods for landscape features, water quality, and fish species composition, among others.

  4. Conceptual design report for tank farm restoration and safe operations, project W-314

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  5. Tolerating correlated failures in Massively Parallel Stream Processing Engines

    DEFF Research Database (Denmark)

    Su, L.; Zhou, Y.

    2016-01-01

    Fault-tolerance techniques for stream processing engines can be categorized into passive and active approaches. A typical passive approach periodically checkpoints a processing task's runtime states and can recover a failed task by restoring its runtime state using its latest checkpoint. On the o......Fault-tolerance techniques for stream processing engines can be categorized into passive and active approaches. A typical passive approach periodically checkpoints a processing task's runtime states and can recover a failed task by restoring its runtime state using its latest checkpoint....... On the other hand, an active approach usually employs backup nodes to run replicated tasks. Upon failure, the active replica can take over the processing of the failed task with minimal latency. However, both approaches have their own inadequacies in Massively Parallel Stream Processing Engines (MPSPE...

  6. The interactive effects of climate change, riparian management, and a nonnative predator on stream-rearing salmon.

    Science.gov (United States)

    Lawrence, David J; Stewart-Koster, Ben; Olden, Julian D; Ruesch, Aaron S; Torgersen, Christian E; Lawler, Joshua J; Butcher, Don P; Crown, Julia K

    2014-06-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use-related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory, nonnative smallmouth bass have also been introduced into many northwestern streams, and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and nonnative species on stream-rearing salmon and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin. We compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of chinook salmon-rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing chinook salmon and potentially predatory bass in the early summer (two- to fourfold increase) and greater abundance of

  7. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  8. Fernald restoration: ecologists and engineers integrate restoration and cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Eric; Homer, John

    2002-07-15

    As cleanup workers excavate pits and tear down buildings at the Fernald site in southwest Ohio, site ecologists are working side-by-side to create thriving wetlands and develop the early stages of forest, prairie, and savanna ecosystems to restore natural resources that were impacted by years of site operations. In 1998, the U.S. Department of Energy-Fernald Office (DOE-FN) and its cleanup contractor, Fluor Fernald, Inc., initiated several ecological restoration projects in perimeter areas of the site (e.g., areas not used for or impacted by uranium processing or waste management). The projects are part of Fernald's final land use plan to restore natural resources over 904 acres of the 1,050-acre site. Pete Yerace, the DOE-FN Natural Resource Trustee representative is working with the Fernald Natural Resource Trustees in an oversight role to resolve the state of Ohio's 1986 claim against DOE for injuries to natural resources. Fluor Fernald, Inc., and DOE-FN developed the ''Natural Resource Restoration Plan'', which outlines 15 major restoration projects for the site and will restore injured natural resources at the site. In general, Fernald's plan includes grading to maximize the formation of wetlands or expanded floodplain, amending soil where topsoil has been removed during excavation, and establishing native vegetation throughout the site. Today, with cleanup over 35 percent complete and site closure targeted for 2006, Fernald is entering a new phase of restoration that involves heavily remediated areas. By working closely with engineers and cleanup crews, site ecologists can take advantage of remediation fieldwork (e.g., convert an excavated depression into a wetland) and avoid unnecessary costs and duplication. This collaboration has also created opportunities for relatively simple and inexpensive restoration of areas that were discovered during ongoing remediation. To ensure the survival of the plant material in heavily

  9. Importance of including cultural practices in ecological restoration.

    Science.gov (United States)

    Wehi, Priscilla M; Lord, Janice M

    2017-10-01

    Ecosystems worldwide have a long history of use and management by indigenous cultures. However, environmental degradation can reduce the availability of culturally important resources. Ecological restoration aims to repair damage to ecosystems caused by human activity, but it is unclear how often restoration projects incorporate the return of harvesting or traditional life patterns for indigenous communities. We examined the incorporation of cultural use of natural resources into ecological restoration in the context of a culturally important but protected New Zealand bird; among award-winning restoration projects in Australasia and worldwide; and in the peer-reviewed restoration ecology literature. Among New Zealand's culturally important bird species, differences in threat status and availability for hunting were large. These differences indicate the values of a colonizing culture can inhibit harvesting by indigenous people. In Australasia among award-winning ecological restoration projects, restored areas beyond aesthetic or recreational use, despite many projects encouraging community participation. Globally, restoration goals differed among regions. For example, in North America, projects were primarily conservation oriented, whereas in Asia and Africa projects frequently focused on restoring cultural harvesting. From 1995 to 2014, the restoration ecology literature contained few references to cultural values or use. We argue that restoration practitioners are missing a vital component for reassembling functional ecosystems. Inclusion of sustainably harvestable areas within restored landscapes may allow for the continuation of traditional practices that shaped ecosystems for millennia, and also aid project success by ensuring community support. © 2017 Society for Conservation Biology.

  10. Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project: FY 1994--FY 2001

    International Nuclear Information System (INIS)

    1993-12-01

    This Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993

  11. Connectivity and conditional models of access and abundance of species in stream networks.

    Science.gov (United States)

    Chelgren, Nathan D; Dunham, Jason B

    2015-07-01

    Barriers to passage of aquatic organisms at stream road crossings are a major cause of habitat fragmentation in stream networks. Accordingly, large investments have been made to restore passage at these crossings, but often without estimation of population-level benefits. Here, we describe a broad-scale approach to quantifying the effectiveness of passage restoration in terms interpretable at population levels, namely numbers of fish and length of stream gained through restoration, by sampling abundance in a study design that accounts for variable biogeographic species pools, variable stream and barrier configurations, and variable probabilities of capture and detectability for multiple species. We modified an existing zero-inflated negative-binomial model to estimate the probability of site access, abundance conditional on access, and capture probability of individual fish. Therein, we modeled probability of access as a function of gradient, stream road-crossing type, and downstream access by fish simultaneously with a predictive model for abundance at sites accessible to fish. Results indicated that replacement of barriers with new crossing designs intended to allow for greater movement was associated with dramatically higher probability of access for all fishes, including migratory Pacific salmon, trout, sculpin, and lamprey. Conversely, existing non-replaced crossings negatively impacted fish distributions. Assuming no downstream constraints on access, we estimated the potential length of stream restored by the program ranged between 7.33 (lamprey) and 15.28 km (small coastal cutthroat and rainbow trout). These contributions represented a fraction of the total length available upstream (187 km) of replaced crossings. When limited ranges of species were considered, the estimated contributions of culvert replacement were reduced (1.65-km range, for longnose dace to 12.31 km for small coastal cutthroat and rainbow trout). Numbers of fish contributed ranged from

  12. Modelling of stormwater infiltration for stream restoration. Beder (Aarhus) case study

    DEFF Research Database (Denmark)

    Locatelli, Luca; Bockhorn, Britta; Klint, K. E.

    to assess the impact of stormwater runoff infiltration on (1) the water balance; (2) stream flow of the local stream Hovedgrøften; and (3) the risk of polluting the primary aquifer. The hydrogeological model was developed in a deterministic groundwater model (MIKE SHE) which was coupled dynamically...... carried out by developing a hydrogeological model of the Beder area in Aarhus, Denmark. The model area is characterized by the presence of a secondary unconfined aquifer that partly contributes baseflow to the local streams and partly to recharge to the underlying primary aquifer. The model was applied...... to a hydrodynamic 1-D river model (MIKE 11). Geological data based on spear mapping, geophysical data and lithology from local boreholes were used to set up the geological model. Groundwater observation and stream flow measurements were used for model calibration and validation.Different scenarios were analyzed...

  13. Monitoring habitat restoration projects: U.S. Fish and Wildlife Service Pacific Region Partners for Fish and Wildlife Program and Coastal Program Protocol

    Science.gov (United States)

    Woodward, Andrea; Hollar, Kathy

    2011-01-01

    The U.S. Fish and Wildlife Service's (FWS) Pacific Region (Region 1) includes more than 158 million acres (almost 247,000 square miles) of land base in Idaho, Oregon, Washington, Hawai`i, the Commonwealth of the Northern Mariana Islands, American Samoa, Guam, the Republic of Palau, the Federated States of Micronesia, and the Republic of the Marshall Islands. Region 1 is ecologically diverse with landscapes that range from coral reefs, broadleaf tropical forests, and tropical savannahs in the Pacific Islands, to glacial streams and lakes, lush old-growth rainforests, inland fjords, and coastal shoreline in the Pacific Northwest, to the forested mountains, shrub-steppe desert, and native grasslands in the Inland Northwest. Similarly, the people of the different landscapes perceive, value, and manage their natural resources in ways unique to their respective regions and cultures. The Partners for Fish and Wildlife Program (Partners Program) and Coastal Program work with a variety of partners in Region 1 including individual landowners, watershed councils, land trusts, Soil and Water Conservation Districts, non-governmental organizations, Tribal governments, Native Hawaiian organizations, and local, State, and Federal agencies. The Partners Program is the FWS's vanguard for working with private landowners to voluntarily restore and conserve fish and wildlife habitat. Using non-regulatory incentives, the Partners Program engages willing partners to conserve and protect valuable fish and wildlife habitat on their property and in their communities. This is accomplished by providing the funding support and technical and planning tools needed to make on-the-ground conservation affordable, feasible, and effective. The primary goals of the Pacific Region Partners Program are to: Promote citizen and community-based stewardship efforts for fish and wildlife conservation Contribute to the recovery of at-risk species, Protect the environmental integrity of the National Wildlife

  14. Ecological restoration: Biodiversity and conservation

    International Nuclear Information System (INIS)

    Vargas Rios, Orlando

    2011-01-01

    In this essay the principal concepts and methods applied on projects aimed at ecological restoration are reviewed, with emphasis on the relationship between conservation, biodiversity and restoration. The most common definitions are provided and the steps to take into account to develop projects on ecological restoration, which will be determined by the level of degradation of the ecosystem to be intervened.

  15. Water quality in South San Francisco Bay, California: current condition and potential issues for the South Bay Salt Pond Restoration Project.

    Science.gov (United States)

    Grenier, J Letitia; Davis, Jay A

    2010-01-01

    The SBSPRP is an extensive tidal wetland restoration project that is underway at the margin of South San Francisco Bay, California. The Project, which aims to restore former salt ponds to tidal marsh and manage other ponds for water bird support, is taking place in the context of a highly urbanized watershed and an Estuary already impacted by chemical contaminants. There is an intimate relationship between water quality in the watershed, the Bay, and the transitional wetland areas where the Project is located. The Project seeks to restore habitat for endangered and endemic species and to provide recreational opportunities for people. Therefore, water quality and bioaccumulation of contaminants in fish and wildlife is an important concern for the success of the Project. Mercury, PCBs, and PBDEs are the persistent contaminants of greatest concern in the region. All of these contaminants are present at elevated concentrations both in the abiotic environment and in wildlife. Dioxins, pyrethroids, PAHs, and selenium are also problematic. Organochlorine insecticides have historically impacted the Bay, and they remain above thresholds for concern in a small proportion of samples. Emerging contaminants, such as PFCs and non-PBDE flame retardants, are also an important water quality issue. Beyond chemical pollutants, other concerns for water quality in South San Francisco Bay exist, and include biological constituents, especially invasive species, and chemical attributes, such as dissolved oxygen and salinity. Future changes, both from within the Project and from the Bay and watershed, are likely to influence water quality in the region. Project actions to restore wetlands could worsen, improve, or not affect the already impaired water quality in South Bay. Accelerated erosion of buried sediment as a consequence of Project restoration actions is a potentially serious regional threat to South Bay water and sediment quality. Furthermore, the planned restoration of salt ponds

  16. Looking back on a successful project. The Restoration of the Royal Palace in Amsterdam

    Directory of Open Access Journals (Sweden)

    Bert van Bommel

    2013-06-01

    Full Text Available After 1968, few changes were made to the Royal Palace in Amsterdam and eventually the palace was no longer functionally and technically up-to-date. Initially, the most recent restoration was only aimed at remedying that situation. Also, the project was split up and priority was given to fixing up the interior. Gradually, the actual restoration gained prominence. In 2007 it was decided to also restore the 1808 furniture. Until 2006, the government architect had hardly been involved in the restoration of the interior. This architect, Krijn van den Ende, was advised by various committees. Prior restorations (1929-1939 and 1960-1968 had restored the palace to its 17th-century state as best as possible. The most recent restoration respected this, while at the same time it aimed at connecting the 17th century character of the building to the unique collection of Empire furniture. This furniture was restored, as were the chandeliers and candelabras. All the ceilings on the first floor were studied and treated and the paintings between the beams were meticulously restored. A very important aspect was the restoration of the so-called ‘Bataven’ series in the galleries. Much of the work concerned making the building conform to contemporary standards. Once again the palace is now a suitable venue for official occasions. The inevitable addition of a lift did however cause quite a stir. Accessibility was improved and more representative rooms are now open to the public than before. The government architect was involved already in the preparatory stages of the second part of the restoration, which concerned the façades and the roofs. In executing the actual work a support committee provided advice and direction on his behalf. Although the sandstone is generally of a high quality, before 1968 a limited number of deteriorating blocks had been replaced. This time too, a number of blocks needed attention. The heavy scaffolding that needed to be installed for

  17. Supporting Managers, Hearing the Public: A Decision Support Approach for Evaluating Ecosystem Services and Social Benefits from Urban Wetland and Stream-Buffer Restoration

    Science.gov (United States)

    Public officials and environmental managers face difficult decisions about how to allocate limited funds to the most beneficial restoration projects and how to define what a “beneficial” project is. Beneficial to what? Or to whom? And where? Traditionally, managers ha...

  18. Impact of river restoration on groundwater - surface water - interactions

    Science.gov (United States)

    Kurth, Anne-Marie; Schirmer, Mario

    2014-05-01

    Since the end of the 19th century, flood protection was increasingly based on the construction of impermeable dams and side walls (BWG, 2003). In spite of providing flood protection, these measures also limited the connectivity between the river and the land, restricted the area available for flooding, and hampered the natural flow dynamics of the river. Apart from the debilitating effect on riverine ecosystems due to loss of habitats, these measures also limited bank filtration, inhibited the infiltration of storm water, and affected groundwater-surface water-interactions. This in turn had a profound effect on ecosystem health, as a lack of groundwater-surface water interactions led to decreased cycling of pollutants and nutrients in the hyporheic zone and limited the moderation of the water temperature (EA, 2009). In recent decades, it has become apparent that further damages to riverine ecosystems must be prohibited, as the damages to ecology, economy and society surmount any benefits gained from exploiting them. Nowadays, the restoration of rivers is a globally accepted means to restore ecosystem functioning, protect water resources and amend flood protection (Andrea et al., 2012; Palmer et al., 2005; Wortley et al., 2013). In spite of huge efforts regarding the restoration of rivers over the last 30 years, the question of its effectiveness remains, as river restorations often reconstruct a naturally looking rather than a naturally functioning stream (EA, 2009). We therefore focussed our research on the effectiveness of river restorations, represented by the groundwater-surface water-interactions. Given a sufficiently high groundwater level, a lack of groundwater-surface water-interactions after restoration may indicate that the vertical connectivity in the stream was not fully restored. In order to investigate groundwater-surface water-interactions we determined the thermal signature on the stream bed and in +/- 40 cm depth by using Distributed Temperature

  19. Skjern River Restoration Counterfactual

    DEFF Research Database (Denmark)

    Clemmensen, Thomas Juel

    2014-01-01

    In 2003 the Skjern River Restoration Project in Denmark was awarded the prestigious Europa Nostra Prize for ‘conserving the European cultural heritage’ (Danish Nature Agency 2005). In this case, however, it seems that the conservation of one cultural heritage came at the expense of another cultural...... this massive reconstruction work, which involved moving more than 2,7 million cubic meters of earth, cause a lot of ‘dissonance’ among the local population, the resulting ‘nature’ and its dynamic processes are also constantly compromising the preferred image of the restored landscape (Clemmensen 2014......). The presentation offers insight into an on-going research and development project - Skjern River Restoration Counterfactual, which question existing trends and logics within nature restoration. The project explores how the Skjern River Delta could have been ‘restored’ with a greater sensibility for its cultural...

  20. Summary of operations and performance of the Murdock site restoration project in 2008.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2009-06-04

    This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the third full year of system operation, from January 1 through December 31, 2008. Performance in June 2005 through December 2007 was reported previously (Argonne 2007, 2008). In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters of a small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). The restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review period. The annual performance reports for the Murdock project assemble information that will become part of the five-year review and evaluation of the remediation effort. This review will occur in 2010. This document presents overviews of the treatment facilities (Section 2) and site operations and activities (Section 3), then describes the groundwater, surface water, vegetation, and atmospheric monitoring results (Section 4) and modifications and costs during the review period (Section 5). Section 6 summarizes the current period of operation. A gallery of photographs of the Murdock project is in Appendix A.

  1. The interactive effects of climate change, riparian management, and a non-native predators on stream-rearing salmon

    Science.gov (United States)

    Lawrence, David J.; Stewart-Koster, Ben; Olden, Julian D.; Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Butcher, Don P.; Crown, Julia K.

    2014-01-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We

  2. Bayesian Modeling of the Assimilative Capacity Component of Stream Nutrient Export

    Science.gov (United States)

    Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a TMDL load capacity is developed...

  3. 76 FR 70480 - Otay River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National...

    Science.gov (United States)

    2011-11-14

    ... River Estuary Restoration Project, South San Diego Bay Unit of the San Diego Bay National Wildlife...), intend to prepare an environmental impact statement (EIS) for the proposed Otay River Estuary Restoration... any one of the following methods. Email: [email protected] . Please include ``Otay Estuary NOI'' in the...

  4. Case Study Application of the Biodiversity Security Index to Ranking Feasibility Studies for Ecosystem Restoration Projects of the U.S. Army Corps of Engineers

    Science.gov (United States)

    2016-04-01

    ER D C/ EL C R- 16 -1 Ecosystem Management and Restoration Research Program Case Study Application of the Biodiversity Security Index... Biodiversity Security Index to Ranking Feasibility Studies for Ecosystem Restoration Projects of the U.S. Army Corps of Engineers Richard A. Cole... Biodiversity Security Index (BSI) was applied to 23 project sites ranked for restoration feasibility study annual funding by the U. S. Army Corps of

  5. Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence

    Science.gov (United States)

    Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.

    2017-12-01

    Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by CitSci.org. Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.

  6. Restoration and construction (buildings). Solar electric power. How to complete a photovoltaic project

    International Nuclear Information System (INIS)

    Bareau, Helene; Juniere, Olivier

    2017-10-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic but comprehensive outlook on the way to complete a solar photovoltaic project in the cases of the restoration or the construction of a building. After a presentation of solar energy, its transformation into electric power, and the installation of solar photovoltaic panels and equipment, the brochure exposes the various steps of a photovoltaic project: economic analysis (cost estimation, budgets, financing incentives, power prices, the choice between selling or using electric power, the contracts, etc.), the planning of the project, the administrative procedure, the selection of a professional installer, how to run the photovoltaic system, how to run the business, etc

  7. Addressing elder abuse: the Waterloo restorative justice approach to elder abuse project.

    Science.gov (United States)

    Groh, Arlene; Linden, Rick

    2011-04-01

    The Community Care Access Centre (CCAC) of Waterloo Region, in partnership with a number of other social service agencies, designed and implemented a restorative justice model applicable to older adults who have been abused by an individual in a position of trust. The project was very successful in building partnerships, as many community agencies came together to deal with the problem of elder abuse. The program also raised the profile of elder abuse in the community. However, despite intensive efforts, referrals to the restorative justice program were quite low. Because of this, the program moved to a new organizational model, the Elder Abuse Response Team (EART), which has retained the guiding philosophy of restorative justice but has broadened the mandate. The team has evolved into a conflict management system that has multiple points of entry for cases and multiple options for dealing with elder abuse. The team has developed a broad range of community partners who can facilitate referrals to the EART and also can help to provide an individualized response to each case. The transition to the EART has been successful, and the number of referrals has increased significantly. Copyright © Taylor & Francis Group, LLC

  8. Project No. 10 - Partial restoration of Ignalina NPP territory

    International Nuclear Information System (INIS)

    2000-01-01

    At present Ignalina NPP territory makes a total of 2544 ha of land. Due to termination of construction activity development and due to the decision taken to shutdown unit 1 the need in such a territory fell off. For normal and safe operation of Ignalina NPP 1440 ha is enough, including 1237 ha for of Ignalina NPP administrative area and 203 ha for auxiliary objects. Ignalina NPP will have to rearrange territory, forestry that was damaged during the construction activities of the plant and to restore the damaged farmlands and to pass the rearranged forestry that belonged to the Ignalina NPP to the Ministry of Forestry. The total estimated cost of the project is about 1.042 M EURO

  9. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    International Nuclear Information System (INIS)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment

  10. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  11. The development of a system to assess the ecological quality of streams based on macroinvertebrates - design of the sampling programme within the AQEM project

    NARCIS (Netherlands)

    Hering, D.; Buffagni, A.; Moog, O.; Sandin, L.; Sommerhäuser, M.; Strubauer, I.; Feld, C.; Johnson, R.; Pinto, P.; Skoulikidis, N.; Verdonschot, P.F.M.; Zahrádková, S.

    2003-01-01

    The EU Water Framework Directive (WFD) requires river assessment systems based on benthic invertebrates. The AQEM project is developing, at a European scale, such a methodology, based on a comparison of communities of reference streams and degraded streams. The project is focussing on three main

  12. Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Dawley, Earl M.; Ebberts, Blaine D.; Putman, Douglas A.; Roegner, G. C.; Russell, Micah; Skalski, John R.; Thom, Ronald M.; Vavrinec, John

    2008-10-01

    The goal of this multi-year study (2004-2010) is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the lower Columbia River and estuary. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. Field research in 2005, 2006, and 2007 involved intensive, comparative studies paired by habitat type (tidal swamp vs. marsh), trajectory (restoration vs. reference site), and restoration action (tide gate vs. culvert vs. dike breach). The field work established two kinds of monitoring indicators for eventual cumulative effects analysis: core and higher-order indicators. Management implications of limitations and applications of site-specific effectiveness monitoring and cumulative effects analysis were identified.

  13. The cost and feasibility of marine coastal restoration.

    Science.gov (United States)

    Bayraktarov, Elisa; Saunders, Megan I; Abdullah, Sabah; Mills, Morena; Beher, Jutta; Possingham, Hugh P; Mumby, Peter J; Lovelock, Catherine E

    2016-06-01

    Land-use change in the coastal zone has led to worldwide degradation of marine coastal ecosystems and a loss of the goods and services they provide. Restoration is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed and is critical for habitats where natural recovery is hindered. Uncertainties about restoration cost and feasibility can impede decisions on whether, what, how, where, and how much to restore. Here, we perform a synthesis of 235 studies with 954 observations from restoration or rehabilitation projects of coral reefs, seagrass, mangroves, salt-marshes, and oyster reefs worldwide, and evaluate cost, survival of restored organisms, project duration, area, and techniques applied. Findings showed that while the median and average reported costs for restoration of one hectare of marine coastal habitat were around US$80000 (2010) and US$1600000 (2010), respectively, the real total costs (median) are likely to be two to four times higher. Coral reefs and seagrass were among the most expensive ecosystems to restore. Mangrove restoration projects were typically the largest and the least expensive per hectare. Most marine coastal restoration projects were conducted in Australia, Europe, and USA, while total restoration costs were significantly (up to 30 times) cheaper in countries with developing economies. Community- or volunteer-based marine restoration projects usually have lower costs. Median survival of restored marine and coastal organisms, often assessed only within the first one to two years after restoration, was highest for saltmarshes (64.8%) and coral reefs (64.5%) and lowest for seagrass (38.0%). However, success rates reported in the scientific literature could be biased towards publishing successes rather than failures. The majority of restoration projects were short-lived and seldom reported monitoring costs. Restoration success depended primarily on the ecosystem, site selection, and techniques

  14. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    development of a 105-foot well for off-stream livestock watering at approximately River Mile 12.0 Wildhorse Creek and construction of an engineered stream ford at approximately River Mile 3.0 Mission Creek. A total of $277,848 in financial cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Environmental Protection Agency, U.S. Department of Agriculture, National Oceanic and Atmospheric Administration, U.S. Workforce Investment Act, Oregon Watershed Enhancement Board, Umatilla County and Pheasants Forever for planning efforts and habitat enhancements. Monitoring continued to quantify baseline conditions and the effects of habitat enhancements in the upper basin. Daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 96 existing and three newly established photo points to document habitat recovery and pre-project conditions. Transects were measured at three stream channel cross sections to assist with engineering and design and to obtain baseline data regarding channel morphology. Biological inventories were conducted at River Mile 3.0 Mission Creek to determine pre-project fish utilization above and below the passage barrier. Post-project inventories were also conducted at River Mile 85.0 of the Umatilla River at a project site completed in 1999. Umatilla Subbasin Watershed Assessment efforts were continued under a subcontract with Eco-Pacific. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs. Water Works Consulting, Duck Creek Associates and Ed Salminen Consulting were subcontracted for watershed assessment and restoration planning in the Meacham Creek Subwatershed. A document detailing current

  15. How economics can further the success of ecological restoration.

    Science.gov (United States)

    Iftekhar, Md Sayed; Polyakov, Maksym; Ansell, Dean; Gibson, Fiona; Kay, Geoffrey M

    2017-04-01

    Restoration scientists and practitioners have recently begun to include economic and social aspects in the design and investment decisions for restoration projects. With few exceptions, ecological restoration studies that include economics focus solely on evaluating costs of restoration projects. However, economic principles, tools, and instruments can be applied to a range of other factors that affect project success. We considered the relevance of applying economics to address 4 key challenges of ecological restoration: assessing social and economic benefits, estimating overall costs, project prioritization and selection, and long-term financing of restoration programs. We found it is uncommon to consider all types of benefits (such as nonmarket values) and costs (such as transaction costs) in restoration programs. Total benefit of a restoration project can be estimated using market prices and various nonmarket valuation techniques. Total cost of a project can be estimated using methods based on property or land-sale prices, such as hedonic pricing method and organizational surveys. Securing continuous (or long-term) funding is also vital to accomplishing restoration goals and can be achieved by establishing synergy with existing programs, public-private partnerships, and financing through taxation. © 2016 Society for Conservation Biology.

  16. River restoration strategies in channelized, low-gradient landscapes of West Tennessee, USA

    Science.gov (United States)

    Smith, D.P.; Diehl, T.H.; Turrini-Smith, L. A.; Maas-Baldwin, J.; Croyle, Z.

    2009-01-01

    West Tennessee has a complex history of watershed disturbance, including agricultural erosion, channelization, accelerated valley sedimentation, and the removal and reestablishment of beaver. Watershed management has evolved from fl oodplain drainage via pervasive channelization to include local drainage canal maintenance and local river restoration. Many unmaintained canals are undergoing excessive aggradation and complex channel evolution driven by upland erosion and low valley gradient. The locus of aggradation in fully occluded canals (valley plugs) moves up-valley as sediment continues to accumulate in the backwater behind the plug. Valley plugs that cause canal avulsion can lead to redevelopment of meandering channels in less disturbed areas of the fl oodplain, in a process of passive self-restoration. Some valley plugs have brought restored fl oodplain function, reoccupation of extant historic river channels, and formation of a "sediment shadow" that protects downstream reaches from excess sedimentation. Despite the presence of numerous opportunities, there is presently no mechanism for including valley plugs in mitigation projects. In 1997 a survey of 14 reference reach cross sections documented relations between drainage area and bankfull geometry of relatively unmodified streams in West Tennessee. Reassessment of seven of those sites in 2007 showed that one had been dammed by beaver and that two sites could not be analyzed further because of signifi cant vertical or lateral instability. In contrast to other regions of North America, the results suggest that stream channels in this region fl ood more frequently than once each year, and can remain out of banks for several weeks each year. ?? 2009 Geological Society of America.

  17. 77 FR 18997 - Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger...

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF AGRICULTURE Forest Service Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger District, Coconino County, AZ AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The U.S. Forest Service (FS) will...

  18. 77 FR 23740 - Sears Point Wetland and Watershed Restoration Project, Sonoma County, CA; Final Environmental...

    Science.gov (United States)

    2012-04-20

    ...-FF08RSFC00] Sears Point Wetland and Watershed Restoration Project, Sonoma County, CA; Final Environmental... environmental impact report and environmental impact statement (EIR/EIS) for the Sears Point Wetland and..., while providing public access and recreational and educational opportunities compatible with ecological...

  19. High value of ecological information for river connectivity restoration

    Science.gov (United States)

    Sethi, Suresh; O'Hanley, Jesse R.; Gerken, Jonathon; Ashline, Joshua; Bradley, Catherine

    2017-01-01

    ContextEfficient restoration of longitudinal river connectivity relies on barrier mitigation prioritization tools that incorporate stream network spatial structure to maximize ecological benefits given limited resources. Typically, ecological benefits of barrier mitigation are measured using proxies such as the amount of accessible riverine habitat.ObjectivesWe developed an optimization approach for barrier mitigation planning which directly incorporates the ecology of managed taxa, and applied it to an urbanizing salmon-bearing watershed in Alaska.MethodsA novel river connectivity metric that exploits information on the distribution and movement of managed taxon was embedded into a barrier prioritization framework to identify optimal mitigation actions given limited restoration budgets. The value of ecological information on managed taxa was estimated by comparing costs to achieve restoration targets across alternative barrier prioritization approaches.ResultsBarrier mitigation solutions informed by life history information outperformed those using only river connectivity proxies, demonstrating high value of ecological information for watershed restoration. In our study area, information on salmon ecology was typically valued at 0.8–1.2 M USD in costs savings to achieve a given benefit level relative to solutions derived only from stream network information, equating to 16–28% of the restoration budget.ConclusionsInvesting in ecological studies may achieve win–win outcomes of improved understanding of aquatic ecology and greater watershed restoration efficiency.

  20. Trends and habitat associations of waterbirds using the South Bay Salt Pond Restoration Project, San Francisco Bay, California

    Science.gov (United States)

    De La Cruz, Susan E. W.; Smith, Lacy M.; Moskal, Stacy M.; Strong, Cheryl; Krause, John; Wang, Yiwei; Takekawa, John Y.

    2018-04-02

    Executive SummaryThe aim of the South Bay Salt Pond Restoration Project (hereinafter “Project”) is to restore 50–90 percent of former salt evaporation ponds to tidal marsh in San Francisco Bay (SFB). However, hundreds of thousands of waterbirds use these ponds over winter and during fall and spring migration. To ensure that existing waterbird populations are supported while tidal marsh is restored in the Project area, managers plan to enhance the habitat suitability of ponds by adding islands and berms to change pond topography, manipulating water salinity and depth, and selecting appropriate ponds to maintain for birds. To help inform these actions, we used 13 years of monthly (October–April) bird abundance data from Project ponds to (1) assess trends in waterbird abundance since the inception of the Project, and (2) evaluate which pond habitat characteristics were associated with highest abundances of different avian guilds and species. For comparison, we also evaluated waterbird abundance trends in active salt production ponds using 10 years of monthly survey data.We assessed bird guild and species abundance trends through time, and created separate trend curves for Project and salt production ponds using data from every pond that was counted in a year. We divided abundance data into three seasons—fall (October–November), winter (December–February), and spring (March–April). We used the resulting curves to assess which periods had the highest bird abundance and to identify increasing or decreasing trends for each guild and species.

  1. Morphology of a Wetland Stream

    Science.gov (United States)

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  2. Chironomus larvae (Chironomidae: Diptera as water quality indicators along an environmental gradient in a neotropical urban stream

    Directory of Open Access Journals (Sweden)

    Nadja Gomes Machado

    2015-04-01

    Full Text Available Anthropogenic interference in urban lotic systems is a factor affecting the biota of waterbodies. Aquatic macro invertebrates are an important food source for fish and are valuable indicators of water quality. The objective of this work was to study Chironomus larvae (Chironomidae: Diptera distribution along an environmental gradient in Barbado Stream, Cuiabá, MT, Brazil. No individual Chironomus was found in the springs of Barbado Stream, which may indicate preservation of the area. During the study period, we found 40.3 and 94.4 individuals/m2 at points 3 and 4 (low course, respectively. There is eutrophication in these sites due to domestic sewage discharges, indicating low quality water. The Barbado Stream needs restoration projects that include an awareness of the residents of their neighborhood’s environmental importance, and investments in the sanitation sector to prioritize the collection and treatment of wastewater and solid waste collection.

  3. Los Alamos National Laboratory Environmental Restoration Project quarterly technical report, April--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-18

    This quarterly report describes the technical status of activities in the Los Alamos National Laboratory Environmental Restoration (ER) Project. Each activity is identified by an activity data sheet number, a brief title describing the activity or the technical area where the activity is located, and the name of the project leader. The Hazardous and Solid Waste Amendments (HSWA) portion of the facility operating permit requires the submission of a technical progress report on a quarterly basis. This report, submitted to fulfill the permit`s requirement, summarizes the work performed and the results of sampling and analysis in the ER Project. Suspect waste found include: Radionuclides, high explosives, metals, solvents and organics. The data provided in this report have not been validated. These data are considered ``reviewed data.``

  4. Pollution prevention and waste minimization opportunity assessment in environmental restoration

    International Nuclear Information System (INIS)

    Roybal, J.A.; Willison, C.P.

    1997-01-01

    The Environmental Restoration (ER) Project at Sandia National Laboratories implicitly subscribed to the philosophy of pollution prevention and waste minimization. As a result of a Department of Energy (DOE) offer, Pollution Prevention Opportunity Assessments (PPOA) were conducted at two ER sites and a decontamination and Demolition (D and D) site. The purpose of one of the PPOAs was to identify pollution prevention (P2) opportunities during environmental remediation at the Classified Waste Landfill located at Sandia National Laboratories, New Mexico (SNL/NM). The remediation activities at this site are scheduled to begin in the fall of 1997. The PPOA included presentations by the team members, a tour of the site, and a brainstorming session to list the waste streams, identify P2 opportunities and rank them in order of priority. Twenty-five P2 opportunities were identified during the brainstorming session of which twenty-two opportunities were selected for further investigation. Those twenty-two opportunities are discussed in this paper. A cost benefit analysis was performed for each P2 opportunity based on the estimated waste volume, feasibility, and cost. Pollution Prevention by Design (P2D) was incorporated into the PPOA to introduce waste minimization techniques that can be used during the planning phase of restoration projects

  5. Understanding restoration of Oregon's Wood River through multi-modal hydrogeomorphic monitoring

    Science.gov (United States)

    Dearman, T.; Hughes, M. L.

    2017-12-01

    Channelized reaches of the lower Wood River in the Upper Klamath Basin of Oregon have undergone extensive restoration since the late 1990's, when the Bureau of Land Management began managing for the benefit of redband trout and other native-endemic species. Restoration included reconstruction of a floodplain and channel meanders, narrowing and deepening of channel, and excavation and reoccupation of fluvio-deltaic channels connecting the river to the Upper Klamath-Agency Lake system. The goals of this study were to extend the restoration monitoring record and evaluate post-restoration performance in light of this record. Monitoring included channel-bathymetry mapping, measurements of sediment transport (bedload), and measurement of discharge at points throughout the project reach under differing stage conditions. Results indicate two distinct domains of channel response to restoration: (1) an upstream domain marked by aggradation in the early and incision in the late post-restoration periods, and (2) a downstream domain marked by the inverse responses of degradation in the early and aggradation in the late post-restoration periods. These domains are separated by the confluence of an artificial channel maintained for boating access. Flow and sediment-transport continuity are interrupted at this confluence. At high stage (winter/spring) impoundment from the lake stalls flow, inducing sediment deposition. Stage falls as lake level recedes in the summer and stream power is restored, thereby releasing the sediment trapped at high stage. Aggradation in the downstream domain coupled with excavation of a birdfoot distributary in 2010 combined to initiate an avulsion from one distributary to another during the 2015 flow recession. With the exception of this recent avulsion, monitoring data suggest the channel system is approaching a dynamic equilibrium and behaving consistently with the rate law in geomorphology. This study provides the first known synthesis of long

  6. Guidelines for evaluating performance of oyster habitat restoration

    Science.gov (United States)

    Baggett, Lesley P.; Powers, Sean P.; Brumbaugh, Robert D.; Coen, Loren D.; DeAngelis, Bryan M.; Greene, Jennifer K.; Hancock, Boze T.; Morlock, Summer M.; Allen, Brian L.; Breitburg, Denise L.; Bushek, David; Grabowski, Jonathan H.; Grizzle, Raymond E.; Grosholz, Edwin D.; LaPeyre, Megan K.; Luckenbach, Mark W.; McGraw, Kay A.; Piehler, Michael F.; Westby, Stephanie R.; zu Ermgassen, Philine S. E.

    2015-01-01

    Restoration of degraded ecosystems is an important societal goal, yet inadequate monitoring and the absence of clear performance metrics are common criticisms of many habitat restoration projects. Funding limitations can prevent adequate monitoring, but we suggest that the lack of accepted metrics to address the diversity of restoration objectives also presents a serious challenge to the monitoring of restoration projects. A working group with experience in designing and monitoring oyster reef projects was used to develop standardized monitoring metrics, units, and performance criteria that would allow for comparison among restoration sites and projects of various construction types. A set of four universal metrics (reef areal dimensions, reef height, oyster density, and oyster size–frequency distribution) and a set of three universal environmental variables (water temperature, salinity, and dissolved oxygen) are recommended to be monitored for all oyster habitat restoration projects regardless of their goal(s). In addition, restoration goal-based metrics specific to four commonly cited ecosystem service-based restoration goals are recommended, along with an optional set of seven supplemental ancillary metrics that could provide information useful to the interpretation of prerestoration and postrestoration monitoring data. Widespread adoption of a common set of metrics with standardized techniques and units to assess well-defined goals not only allows practitioners to gauge the performance of their own projects but also allows for comparison among projects, which is both essential to the advancement of the field of oyster restoration and can provide new knowledge about the structure and ecological function of oyster reef ecosystems.

  7. Assessing the value of the Central Everglades Planning Project (CEPP) in Everglades restoration: an ecosystem service approach

    Science.gov (United States)

    Richardson, Leslie A.; Keefe, Kelly; Huber, Christopher C.; Racevskis, Laila; Gregg, Reynolds; Thourot, Scott; Miller, Ian

    2014-01-01

    This study identifies a full range of ecosystem services that could be affected by a restoration project in the central Everglades and monetizes the economic value of a subset of these services using existing data. Findings suggest that the project will potentially increase many ecosystem services that have considerable economic value to society. The ecosystem services monetized within the scope of this study are a subset of the difference between the future-with the Central Everglades Planning Project (CEPP) and the future-without CEPP, and they totaled ~ $1.8 billion USD at a 2.5% discount rate. Findings suggest that the use of ecosystem services in project planning and communications may require acknowledgment of the difficulty of monetizing important services and the limitations associated with using only existing data and models. Results of this study highlight the need for additional valuation efforts in this region, focused on those services that are likely to be impacted by restoration activities but were notably challenging to value in this assessment due to shortages of data.

  8. The restoration project : decontamination of facilities from chemical, biological and radiological contamination after terrorist action

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div; Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Duncan, L.; Best, M.; Krishnan; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2005-07-01

    Bioterrorism poses a real threat to the public health and national security, and the restoration of affected facilities after a chemical, biological or radiological attack is a major concern. This paper reviewed aspects of a project conducted to collect information, test and validate procedures for site restoration after a terrorist attack. The project began with a review of existing technology and then examined new technologies. Restoration included pickup, neutralization, decontamination, removal and final destruction and deposition of contaminants as well as cleaning and neutralization of material and contaminated waste from decontamination. The project was also intended to test existing concepts and develop new ideas. Laboratory scale experiments consisted of testing, using standard laboratory techniques. Radiation decontamination consisted of removal and concentration of the radioisotopes from removal fluid. General restoration guidelines were provided, as well as details of factors considered important in specific applications, including growth conditions and phases of microorganisms in biological decontamination, or the presence of inhibitors or scavengers in chemical decontamination. Various agents were proposed that were considered to have broad spectrum capability. Test surrogates for anthrax were discussed. The feasibility of enhanced oxidation processes was examined in relation to the destruction of organophosphorus, organochlorine and carbamate pesticides. The goal was to identify a process for the treatment of surfaces contaminated with pesticides. Tests included removal from carpet, porous ceiling tile, steel plates, and floor tiles. General radiation contamination procedures and techniques were reviewed, as well as radiological decontamination waste treatment. It was concluded that there is no single decontamination technique applicable for all contaminants, and decontamination methods depend on economic, social and health factors. The amount of

  9. Greenhouse gas emissions from a Danish riparian wetland before and after restoration

    DEFF Research Database (Denmark)

    Audet, Joachim; Elsgaard, Lars; Kjærgaard, Charlotte

    2013-01-01

    Restoration of riparian wetlands often aims at increasing the removal of nitrogen and phosphorus by re-establishing the hydrological connectivity between the stream and the surrounding floodplain. However, the geochemically reduced soil conditions in the newly restored area may favor the emission...

  10. Project Management Support and Services for the Environmental Restoration and Waste Management. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    The Los Alamos National Laboratory (LANL) Environmental Restoration Technical Support Office (ERTSO) contracted Project Time ampersand Cost, Inc. (PT ampersand C) on 16 November 1992 to provide support services to the US Department of Energy (DOE). ERTSO had traditionally supported the DOE Albuquerque office in the Environmental Restoration and Waste Management Programs and had also supported the Office of Waste Management (EM-30) at DOE Headquarters in Germantown, Maryland. PT ampersand C was requested to provide project management and support services for the DOE as well as liaison and coordination of responses and efforts between various agencies. The primary objective of this work was to continue LANL's technical support role to EM-30 and assist in the development of the COE Cost and Schedule Estimating (CASE) Guide for EM-30. PT ampersand C's objectives, as specified in Section B of the contract, were well met during the duration of the project through the review and comment of various draft documents, trips to DOE sites providing program management support and participating in the training for the EM-30 Cost and Schedule Estimating Guide, drafting memos and scheduling future projects, attending numerous meetings with LANL, DOE and other subcontractors, and providing written observations and recommendations.he results obtained were determined to be satisfactory by both the LANL ERTSO and DOE EM-30 organizations. The objective to further the support from LANL and their associated subcontractor (PT ampersand C) was met. The contract concluded with no outstanding issues

  11. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    Science.gov (United States)

    Wolf, Kristin L.; Noe, Gregory; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  12. Relation of project managers' personality and project performance: An approach based on value stream mapping

    Directory of Open Access Journals (Sweden)

    Maurizio Bevilacqua

    2014-09-01

    Full Text Available Purpose: This work investigates the influence of project managers’ personality on the success of a project in a Multinational Corporation. The methodology proposed for analyzing the project managers’ personality is based on the Myers-Briggs Type Indicator.Design/methodology/approach: Forty projects carried out in 2012 by multinational corporation, concerning new product development (NPD, have been analyzed, comparing the profile of project managers with results obtained in terms of traditional performance indexes (time delay and over-budget of projects and performance indexes usually used in “Lean Production” sector (waste time and type of “wastes”. A detailed analysis of the most important “wastes” during the project development is carried out using the Value Stream Mapping (VSM technique.Findings and Originality/value: Relying on the Myers–Briggs personality instrument, results show that extroverted managers (as opposed to introverted managers carry out projects that show lower delay and lower waste time. Introverted managers often make “Over-processing” and “Defect” types of waste. Moreover, lower delay and over-budget have been shown by perceiving managers.Research limitations: Regarding the limitations of this work it is necessary to highlight that we collected data from project managers in a retrospective way. While we believe that several aspects of our data collection effort helped enhance the accuracy of the results, future research could conduct real-time case study research to get more detailed insights into the proposed relationships and avoid retrospective bias. Moreover we focused on a single respondent, the project manager. This helped us ensure that their interpretations played an important role in product development. But, we cannot examined the opinion of team members that could be different from project managers opinion regarding some questions.Originality/value: This research provides insight useful

  13. Summary of operations and performance of the Murdock site restoration project in 2007.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2008-06-03

    This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the second full year of system operation, from January 1 through December 31, 2007. Performance in June 2005 through December 2006 was reported previously (Argonne 2007). In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters of a small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). The restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review period. The annual performance reports for the Murdock project assemble information that will become part of the five-year review and evaluation of the remediation effort. This review will occur in 2010. This document presents overviews of the treatment facilities (Section 2) and site operations and activities (Section 3), then describes the groundwater, surface water, vegetation, and atmospheric monitoring results (Section 4) and modifications and costs during the review period (Section 5). Section 6 summarizes the current period of operation. A gallery of photographs of the Murdock project is in Appendix A. A brief

  14. Macroinvertebrate Community Response to the Elimination of Concentrated Feedlot Runoff to a Headwater Stream

    Science.gov (United States)

    Snitgen, J. L.; Moren, M. M.

    2005-05-01

    During rainfall and snow melt events, a first order, cold-water stream was receiving varying amounts of liquefied manure from a concentrated feed lot. Stream restoration efforts included the implementation of best management practices to prevent further discharge of the water/manure mixture to the stream. Physical, chemical and biological data were collected pre-construction and two years post-construction of the containment system at a fixed location downstream of the feedlot. Hilsenhoff Biotic Index scores improved significantly, from 6.79 or "Fairly Poor" before the installation of the manure containment system, to 5.28 or "Good" after the installation of the manure containment system. Taxa richness improved from 25 to 34 and the EPT score improved from 0 to 4. Key words: macroinvertebrate, community response, manure, feedlot runoff, stream restoration

  15. Technical framework for groundwater restoration

    International Nuclear Information System (INIS)

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled ''Preplanning Guidance Document for Groundwater Restoration''. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration

  16. A summary of the environmental restoration program retrieval demonstration project at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    McQuary, J.

    1991-02-01

    This report provides a summary of the Environmental Restoration Program's Retrieval Demonstration Project at the Idaho National Engineering Laboratory. This project developed concepts for demonstrating facilities and equipment for the retrieval of buried transuranic mixed waste at the INEL. Included is a brief assessment of the viability, cost effectiveness, and safety of retrieval based on the developed concept. Changes made in Revision 1 reflect editorial changes only. 31 refs., 1 fig

  17. Red River Stream Improvement Final Design Nez Perce National Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Watershed Consulting, LLC

    2007-03-15

    This report details the final stream improvement design along the reach of Red River between the bridge below Dawson Creek, upstream for approximately 2 miles, Idaho County, Idaho. Geomorphic mapping, hydrologic profiles and cross-sections were presented along with existing fish habitat maps in the conceptual design report. This information is used to develop a stream improvement design intended to improve aquatic habitat and restore riparian health in the reach. The area was placer mined using large bucket dredges between 1938 and 1957. This activity removed most of the riparian vegetation in the stream corridor and obliterated the channel bed and banks. The reach was also cut-off from most valley margin tributaries. In the 50 years since large-scale dredging ceased, the channel has been re-established and parts of the riparian zone have grown in. However, the recruitment of large woody debris to the stream has been extremely low and overhead cover is poor. Pool habitat makes up more than 37% of the reach, and habitat diversity is much better than the project reach on Crooked River. There is little large woody debris in the stream to provide cover for spawning and juvenile rearing, because the majority of the woody debris does not span a significant part of the channel, but is mainly on the side slopes of the stream. Most of the riparian zone has very little soil or subsoil left after the mining and so now consists primarily of unconsolidated cobble tailings or heavily compacted gravel tailings. Knapweed and lodgepole pine are the most successful colonizers of these post mining landforms. Tributary fans which add complexity to many other streams in the region, have been isolated from the main reach due to placer mining and road building.

  18. Factoring stream turbulence into global assessments of nitrogen pollution.

    Science.gov (United States)

    Grant, Stanley B; Azizian, Morvarid; Cook, Perran; Boano, Fulvio; Rippy, Megan A

    2018-03-16

    The discharge of excess nitrogen to streams and rivers poses an existential threat to both humans and ecosystems. A seminal study of headwater streams across the United States concluded that in-stream removal of nitrate is controlled primarily by stream chemistry and biology. Reanalysis of these data reveals that stream turbulence (in particular, turbulent mass transfer across the concentration boundary layer) imposes a previously unrecognized upper limit on the rate at which nitrate is removed from streams. The upper limit closely approximates measured nitrate removal rates in streams with low concentrations of this pollutant, a discovery that should inform stream restoration designs and efforts to assess the effects of nitrogen pollution on receiving water quality and the global nitrogen cycle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Alteration of stream temperature by natural and artificial beaver dams.

    Science.gov (United States)

    Weber, Nicholas; Bouwes, Nicolaas; Pollock, Michael M; Volk, Carol; Wheaton, Joseph M; Wathen, Gus; Wirtz, Jacob; Jordan, Chris E

    2017-01-01

    Beaver are an integral component of hydrologic, geomorphic, and biotic processes within North American stream systems, and their propensity to build dams alters stream and riparian structure and function to the benefit of many aquatic and terrestrial species. Recognizing this, beaver relocation efforts and/or application of structures designed to mimic the function of beaver dams are increasingly being utilized as effective and cost-efficient stream and riparian restoration approaches. Despite these verities, the notion that beaver dams negatively impact stream habitat remains common, specifically the assumption that beaver dams increase stream temperatures during summer to the detriment of sensitive biota such as salmonids. In this study, we tracked beaver dam distributions and monitored water temperature throughout 34 km of stream for an eight-year period between 2007 and 2014. During this time the number of natural beaver dams within the study area increased by an order of magnitude, and an additional 4 km of stream were subject to a restoration manipulation that included installing a high-density of Beaver Dam Analog (BDA) structures designed to mimic the function of natural beaver dams. Our observations reveal several mechanisms by which beaver dam development may influence stream temperature regimes; including longitudinal buffering of diel summer temperature extrema at the reach scale due to increased surface water storage, and creation of cool-water channel scale temperature refugia through enhanced groundwater-surface water connectivity. Our results suggest that creation of natural and/or artificial beaver dams could be used to mitigate the impact of human induced thermal degradation that may threaten sensitive species.

  20. Technical Approach and Plan for Transitioning Spent Nuclear Fuel (SNF) Project Facilities to the Environmental Restoration Program

    International Nuclear Information System (INIS)

    SKELLY, W.A.

    1999-01-01

    This document describes the approach and process in which the 100-K Area Facilities are to be deactivated and transitioned over to the Environmental Restoration Program after spent nuclear fuel has been removed from the K Basins. It describes the Transition Project's scope and objectives, work breakdown structure, activity planning, estimated cost, and schedule. This report will be utilized as a planning document for project management and control and to communicate details of project content and integration

  1. RIGED-RA project - Restoration and management of Coastal Dunes in the Northern Adriatic Coast, Ravenna Area - Italy

    Science.gov (United States)

    Giambastiani, Beatrice M. S.; Greggio, Nicolas; Sistilli, Flavia; Fabbri, Stefano; Scarelli, Frederico; Candiago, Sebastian; Anfossi, Giulia; Lipparini, Carlo A.; Cantelli, Luigi; Antonellini, Marco; Gabbianelli, Giovanni

    2016-10-01

    Coastal dunes play an important role in protecting the coastline. Unfortunately, in the last decades dunes have been removed or damaged by human activities. In the Emilia- Romagna region significant residual dune systems are found only along Ravenna and Ferrara coasts. In this context, the RIGED-RA projectRestoration and management of coastal dunes along the Ravenna coast” (2013-2016) has been launched with the aims to identify dynamics, erosion and vulnerability of Northern Adriatic coast and associated residual dunes, and to define intervention strategies for dune protection and restoration. The methodology is based on a multidisciplinary approach that integrates the expertise of several researchers and investigates all aspects (biotic and abiotic), which drive the dune-beach system. All datasets were integrated to identify test sites for applying dune restoration. The intervention finished in April 2016; evolution and restoration efficiency will be assessed.

  2. Stream temperature responses to timber harvest and best management practices—findings from the ODF RipStream project

    Science.gov (United States)

    Jeremy D. Groom

    2013-01-01

    Studies over the past 40 years have established that riparian buff er retention along streams protects against stream temperature increase. Th is protection is neither universal nor complete; some buff ered streams still warm, while other streams’ temperatures remain stable. Oregon Department of Forestry developed riparian rules in the Forest Practices Act (FPA) to...

  3. Modeling Hydrologic Processes after Vegetation Restoration in an Urban Watershed with HEC-HMS

    Science.gov (United States)

    Stevenson, K.; Kinoshita, A. M.

    2017-12-01

    The San Diego River Watershed in California (USA) is highly urbanized, where stream channel geomorphology are directly affected by anthropogenic disturbances. Flooding and water quality concerns have led to an increased interest in improving the condition of urban waterways. Alvarado Creek, a 1200-meter section of a tributary to the San Diego River will be used as a case study to understand the degree to which restoration efforts reduce the impacts of climate change and anthropogenic activities on hydrologic processes and water quality in urban stream ecosystems. In 2016, non-native vegetation (i.e. Washingtonia spp. (fan palm), Phoenix canariensis (Canary Island palm)) and approximately 7257 kilograms of refuse were removed from the study reach. This research develops the United States Army Corp of Engineers Hydrologic Engineering Center's Hydraulic Modeling System (USACE HEC-HMS) using field-based data to model and predict the short- and long-term impacts of restoration on geomorphic and hydrologic processes. Observations include cross-sectional area, grain-size distributions, water quality, and continuous measurements of streamflow, temperature, and precipitation. Baseline and design storms are simulated before and after restoration. The model will be calibrated and validated using field observations. The design storms represent statistical likelihoods of storms occurrences, and the pre- and post-restoration hydrologic responses will be compared to evaluate the impact of vegetation and waste removal on runoff processes. Ultimately model parameters will be transferred to other urban creeks in San Diego that may potentially undergo restoration. Modeling will be used to learn about the response trajectory of rainfall-runoff processes following restoration efforts in urban streams and guide future management and restoration activities.

  4. The 12-foot pressure wind tunnel restoration project model support systems

    Science.gov (United States)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  5. Sustainable Strategies for the Dynamic Equilibrium of the Urban Stream, Cheonggyecheon

    Science.gov (United States)

    Seo, D.; Kwon, Y.

    2018-04-01

    Cheonggyecheon, which had been transformed into a 14-lane urban highway and a large underground sewer system, was finally converted back to an urban stream again. Its transformation has been praised as a successful example of urban downtown regeneration and beautification. It is, however, obvious that there have not been prudent ecological considerations since the project’s principal goals were to provide public recreational use and achieve maximum flood control capacity via the use of embankments. For a healthier and sustainable stream environment, Cheonggyecheon should be ecologically re-restored again, based on a dynamic equilibrium model. It must primarily establish a corridor of vegetation, an aquatic transitional zone, and install constructed wetlands nearby which support the water source. The upper streams of Cheonggyecheon should be further restored and supply natural waters. Furthermore, there ultimately needs to be de-channelization for hydrological sustainability. This would vary from merely increasing the sinuosity to thoroughly reconstruct a naturalized stream. Complete dynamic equilibrium of Cheonggyecheon can be accomplished through more fundamental sustainable strategies.

  6. Toward Design Guidelines for Stream Restoration Structures: Measuring and Modeling Unsteady Turbulent Flows in Natural Streams with Complex Hydraulic Structures

    Science.gov (United States)

    Lightbody, A.; Sotiropoulos, F.; Kang, S.; Diplas, P.

    2009-12-01

    Despite their widespread application to prevent lateral river migration, stabilize banks, and promote aquatic habitat, shallow transverse flow training structures such as rock vanes and stream barbs lack quantitative design guidelines. Due to the lack of fundamental knowledge about the interaction of the flow field with the sediment bed, existing engineering standards are typically based on various subjective criteria or on cross-sectionally-averaged shear stresses rather than local values. Here, we examine the performance and stability of in-stream structures within a field-scale single-threaded sand-bed meandering stream channel in the newly developed Outdoor StreamLab (OSL) at the St. Anthony Falls Laboratory (SAFL). Before and after the installation of a rock vane along the outer bank of the middle meander bend, high-resolution topography data were obtained for the entire 50-m-long reach at 1-cm spatial scale in the horizontal and sub-millimeter spatial scale in the vertical. In addition, detailed measurements of flow and turbulence were obtained using acoustic Doppler velocimetry at twelve cross-sections focused on the vicinity of the structure. Measurements were repeated at a range of extreme events, including in-bank flows with an approximate flow rate of 44 L/s (1.4 cfs) and bankfull floods with an approximate flow rate of 280 L/s (10 cfs). Under both flow rates, the structure reduced near-bank shear stresses and resulted in both a deeper thalweg and near-bank aggradation. The resulting comprehensive dataset has been used to validate a large eddy simulation carried out by SAFL’s computational fluid dynamics model, the Virtual StreamLab (VSL). This versatile computational framework is able to efficiently simulate 3D unsteady turbulent flows in natural streams with complex in-stream structures and as a result holds promise for the development of much-needed quantitative design guidelines.

  7. Legacies of stream channel modification revealed using General Land Office surveys, with implications for water temperature and aquatic life

    Directory of Open Access Journals (Sweden)

    Seth M. White

    2017-02-01

    Full Text Available Land use legacies can have a discernible influence in present-day watersheds and should be accounted for when designing conservation strategies for riverine aquatic life. We describe the environmental history of three watersheds within the Grande Ronde subbasin of the Columbia River using General Land Office survey field notes from the 19th century. In the two watersheds severely impacted by Euro-American land use, stream channel widths—a metric representing habitat simplification—increased from an average historical width of 16.8 m to an average present width of 20.8 m in large streams; 4.3 m to 5.5 m in small, confined or partly confined streams; and 3.5 m to 6.5 m in small, laterally unconfined steams. Conversely, we did not detect significant change in stream widths in an adjacent, wilderness stream with minimal human impact. Using a mechanistic water temperature model and restoration scenarios based on the historical condition, we predicted that stream restoration in the impacted watersheds could notably decrease average water temperatures—especially when channel narrowing is coupled with riparian restoration—up to a 6.6°C reduction in the upper Grande Ronde River and 3.0°C in Catherine Creek. These reductions in water temperature translated to substantial changes in the percentage of stream network habitable to salmon and steelhead migration (from 29% in the present condition to 79% in the fully restored scenario and to core juvenile rearing (from 13% in the present condition to 36% in the fully restored scenario. We conclude that land use legacies leave an important footprint on the present landscape and are critical for understanding historic habitat-forming processes as a necessary first step towards restoration.

  8. Urbanization and stream ecology: Diverse mechanisms of change

    Science.gov (United States)

    Roy, Allison; Capps, Krista A.; El-Sabaawi, Rana W.; Jones, Krista L.; Parr, Thomas B.; Ramirez, Alonso; Smith, Robert F.; Walsh, Christopher J.; Wenger, Seth J.

    2016-01-01

    The field of urban stream ecology has evolved rapidly in the last 3 decades, and it now includes natural scientists from numerous disciplines working with social scientists, landscape planners and designers, and land and water managers to address complex, socioecological problems that have manifested in urban landscapes. Over the last decade, stream ecologists have met 3 times at the Symposium on Urbanization and Stream Ecology (SUSE) to discuss current research, identify knowledge gaps, and promote future research collaborations. The papers in this special series on urbanization and stream ecology include both primary research studies and conceptual synthesis papers spurred from discussions at SUSE in May 2014. The themes of the meeting are reflected in the papers in this series emphasizing global differences in mechanisms and responses of stream ecosystems to urbanization and management solutions in diverse urban streams. Our hope is that this series will encourage continued interdisciplinary and collaborative research to increase the global understanding of urban stream ecology toward stream protection and restoration in urban landscapes.

  9. Restoration of Delta Streams: A Case History and Conceptual Model

    National Research Council Canada - National Science Library

    Killgore, K. J; Hoover, Jan J; Murphy, Catherine E; Parrish, Kent D; Johnson, David R; Myers, Karen F

    2008-01-01

    .... Low water, excessive sedimentation in smaller delta streams, and the accumulation of pesticides such as DDT are the consequences of these anthropogenic disturbances resulting in dominance of tolerant fish species...

  10. Estudi i implementació del protocol de streaming http live streaming per un client i-phone

    OpenAIRE

    Núñez Vera, Jordi

    2013-01-01

    [ANGLÈS] The aim of this project is, on the one hand, the analysis of Apple's HTTP Live Streaming protocol, which is an adaptative video and audio streaming protocol able to change the streams' bit rate according to the capacity of the media through which it is being transmitted. On the other hand, the project shows a client development of this protocol for the iPhone mobile device describing this platform from scratch. I trace here the necessary steps for developing applications on iOS and I...

  11. Assessing data quality for a federal environmental restoration project: Rationalizing the requirements of multiple clients

    International Nuclear Information System (INIS)

    Kiszka, V.R.; Carlsen, T.M.

    1994-07-01

    Most environmental restoration projects at federal facilities face the difficult task of melding the quality assurance (QA) requirements of multiple clients, as well as dealing with historical data that are often of unknown quality. At Lawrence Livermore National Laboratory (LLNL), we have successfully integrated the requirements of our multiple clients by carefully developing a QA program that efficiently meets our clients' needs. The Site 300 Experimental Test Site is operated by LLNL in support of its national defense program. The responsibility for conducting environmental contaminant investigations and restoration at Site 300 is vested in the Site 300 Environmental Restoration Project (Site 300 ERP) of LLNL's Environmental Restoration Division. LLNL Site 300 ERP must comply with the QA requirements of several clients, which include: the LLNL Environmental Protection Department, the DOE, the US Environmental Protection Agency-Region IX (EPA), the California Regional Water Quality Control Board -- Central Valley Region, and the California Department of Toxic Substances Control. This comprehensive QA program was used to determine the acceptability of historical data. The Site 300 ERP began soil and ground water investigations in 1982. However, we did not begin receiving analytical quality assurance/quality control (QA/QC) data until 1989; therefore, the pre-1989 data that were collected are of unknown quality. The US EPA QAMS-005/80 defines data quality as the totality of features and characteristics of data that bears on its ability to satisfy a given purpose. In the current context, the characteristics of major importance are accuracy, precision, completeness, representativeness, and comparability. Using our established QA program, we determined the quality of this historical data based on its comparability to the post-1989 data. By accepting this historical data, we were able to save a considerable amount of money in recharacterization costs

  12. The socioeconomic factors that facilitate or constrain restoration management: Watershed rehabilitation and wet meadow (bofedal) restoration in the Bolivian Andes.

    Science.gov (United States)

    Hartman, Brett D; Cleveland, David A

    2018-03-01

    Restoration ecology holds promise for addressing land degradation in impoverished rural environments, provided the approach is adapted to rural development settings. While there is a need for increased integration of social dynamics in land restoration, few systematic studies exist. We explored the socioeconomic factors that influence restoration management, including local motives and perceived benefits, incentives, land tenancy, institutional factors, conflict resolution, accessibility, off-farm labor, and outmigration. The study area is a successful watershed rehabilitation and wet meadow restoration project in the Bolivian Andes that began in 1992. We used household survey methods (n = 237) to compare the communities that had conducted the most restoration management with those that had conducted the least. Results suggest that several factors facilitate investments in land restoration, including aligning restoration objectives with local motives and perceived benefits, ensuring incentives are in place to stimulate long-term investments, conflict resolution, private land tenancy, and accessibility. However, higher levels of organization and active leadership can facilitate land restoration on communal lands. Increased livelihood benefits from land restoration helped slow the rate of rural to urban migration, with 24.5% outmigration in the highest restoration management communities compared to 62.1% in the lowest restoration management communities. Results suggest that land restoration projects that integrate community development into project planning and implementation will achieve greater success. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market

    Energy Technology Data Exchange (ETDEWEB)

    Dieckhoener, Caroline

    2010-12-15

    Due to the increasing European import dependency, significant additional natural gas volumes will be required. In addition to the Nord Stream pipeline, the Nabucco and South Stream pipeline are projects planned for the next decade to provide further gas supplies to the European market. As one of the European Union's energy policies' foci is security of supply, the question can be raised if and how these projects contribute to this objective not only in terms of diversification but also in case of supply disruptions such as occurred in 2009 during the Russia-Ukraine gas crisis. This paper discusses the impact of these two major gas import pipeline projects on the South-Eastern Europe gas supply and analyzes their effects on gas flows and marginal cost prices in general and in case of gas supply disruptions via Ukraine in a model-based analysis with the European natural gas infrastructure and dispatch model TIGER. (orig.)

  14. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands.

    Science.gov (United States)

    Wolf, Kristin L; Noe, Gregory B; Ahn, Changwoo

    2013-07-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots ( = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Cost Based Value Stream Mapping as a Sustainable Construction Tool for Underground Pipeline Construction Projects

    Directory of Open Access Journals (Sweden)

    Murat Gunduz

    2017-11-01

    Full Text Available This paper deals with application of Value Stream Mapping (VSM as a sustainable construction tool on a real construction project of installation of underground pipelines. VSM was adapted to reduce the high percentage of non-value-added activities and time wastes during each construction stage and the paper searched for an effective way to consider the cost for studied construction of underground pipeline. This paper is unique in its way that it adopts cost implementation of VSM to improve the productivity in underground pipeline projects. The data was observed and collected from site during construction, indicating the cycle time, value added and non-value added of each construction stage. The current state was built based on these details. This was an eye-opening exercise and a process management tool as a trigger for improvement. After the current state assessment, a future state is attempted by Value Stream Mapping tool balancing the resources using a Line of Balance (LOB technique. Moreover, a sustainable cost estimation model was developed during current state and future state to calculate the cost of underground pipeline construction. The result shows a cost reduction of 20.8% between current and future states. This reflects the importance of the cost based Value Stream Mapping in construction as a sustainable measurement tool. This new tool could be utilized in construction industry to add the sustainability and effective cost management.

  16. Restoration of groundwater after solution mining at the Highland Uranium Project, Wyoming, USA

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, J. [Waste Technology Group, British Nuclear Fuels PLC, Risley, Warrington (United Kingdom); Huffman, L. [Power Resources Inc., Highland Uranium Mine, Glenrock, Wyoming (United States)

    2000-07-01

    The Highland Project, located in Converse County, Wyoming, has had a successful 11 year history of in-situ leach mining of Tertiary roll-front uranium deposits. The uranium ore is oxidized and solubilized by circulating native groundwater, containing additional dissolved O{sub 2} and CO{sub 2}, within confined fluvial aquifers at depths of 200 - 250 m. The changing chemistry of this groundwater during leaching is discussed, as are the various treatment techniques that have been used to restore this fluid at the end of mining. Examples are provided which demonstrate the varying effectiveness of each technique for the reduction of elevated concentrations of different groundwater parameters. The complications arising from the proximity of the earliest wellfields to abandoned, conventional mine workings, as well as unexpected side effects from each restoration method, have combined to make an interesting case history from this long established mining operation. (author)

  17. Restoration and revegetation associated with control of saltcedar and Russian olive: Chapter 7

    Science.gov (United States)

    Shafroth, Patrick B.; Merritt, David M.; Beauchamp, Vanessa B.; Lair, Kenneth D.

    2010-01-01

    Rationales for controlling or eliminating saltcedar and Russian olive from sites, river reaches, or entire streams include implicit or explicit assumptions that natural recovery or applied restoration of native plant communities will follow exotic plant removal (McDaniel and Taylor, 2003; Quimby and others, 2003). The vegetation that replaces saltcedar and Russian olive after treatment (“replacement vegetation”), with or without restoration actions, strongly influences the extent to which project objectives are successfully met. It is often assumed or implied that saltcedar and Russian olive removal alone is “restoration,” and many reports equate restoration success with areal extent of nonnative plants treated (for example, Duncan and others, 1993). However, removal of nonnative species alone does not generally constitute restoration. In this chapter, the term “restoration” refers to conversion of saltcedar- and Russian olive-dominated sites to a replacement vegetation type that achieves specific management goals and helps return parts of the system to a desired state. The degree to which a site is “restored” following removal of saltcedar or Russian olive typically depends upon a range of factors, such as (1) the site’s potential for restoration (such as extant soil conditions, site hydrology), (2) the direct and indirect effects of removal (for example, mechanical impacts to the site, effects of herbicides on nontarget vegetation), (3) the efficacy of restoration activities (for example, grading, reseeding, pole planting), and (4) the maintenance of processes that support native vegetation and prevent re-colonization by nonnative communities over the long term.This chapter summarizes and synthesizes the published literature on the topic of restoring native riparian vegetation following saltcedar and Russian olive control or removal. Most of the studies reviewed here are from saltcedar removal, revegetation, and river restoration projects in

  18. Riparian forest restoration: Conflicting goals, trade-offs, and measures of success

    Science.gov (United States)

    Heather L. Bateman; David M. Merritt; J. Bradley Johnson

    2012-01-01

    Restoration projects can have varying goals, depending on the specific focus, rationale, and aims for restoration. When restoration projects use project-specific goals to define activities and gauge success without considering broader ecological context, determination of project implications and success can be confounding. We used case studies from the Middle Rio...

  19. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The ''Tank Farm Restoration and Safe Operations'' (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization's waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ''Test and Evaluation,'' which is derived from DOE Order 430.1, ''Life Cycle Asset Management.'' It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending

  20. Environmental Restoration Contractor Waste Minimization and Pollution Prevention Plan

    International Nuclear Information System (INIS)

    Lewis, R.A.

    1994-11-01

    The purpose of this plan is to establish the Environmental Restoration Contractor (ERC) Waste Minimization and Pollution Prevention (WMin/P2) Program and outline the activities and schedules that will be employed to reduce the quantity and toxicity of wastes generated as a result of restoration and remediation activities. It is intended to satisfy the US Department of Energy (DOE) and other legal requirements. As such, the Pollution Prevention Awareness program required by DOE Order 5400.1 is included with the Pollution Prevention Program. This plan is also intended to aid projects in meeting and documenting compliance with the various requirements for WMin/P2, and contains the policy, objectives, strategy, and support activities of the WMin/P2 program. The basic elements of the plan are pollution prevention goals, waste assessments of major waste streams, implementation of feasible waste minimization opportunities, and a process for reporting achievements. Various pollution prevention techniques will be implemented with the support of employee training and awareness programs to reduce waste and still meet applicable requirements. Information about the Hanford Site is in the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan

  1. Cost-benefit analysis of wetland restoration

    DEFF Research Database (Denmark)

    Dubgaard, Alex

    2004-01-01

    The purpose of cost-benefit analysis (CBA) is to identify value for money solutions to government policies or projects. Environmental policy appraisal is typically complicated by the fact that thre are a number of feasible solutions to a decision problem - each yielding a different mix of environ...... is to illustrate the application of CBA within the field of river restoration. The Skjern River restoration project in Denmark is used as an empirical example of how these methods can be applied in the wetland restoration context....

  2. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  3. Forward-looking farmers owning multiple potential wetland restoration sites: implications for efficient restoration

    Science.gov (United States)

    Schroder (Kushch), Svetlana; Lang, Zhengxin; Rabotyagov, Sergey

    2018-04-01

    Wetland restoration can increase the provision of multiple non-market ecosystem services. Environmental and socio-economic factors need to be accounted for when land is withdrawn from agriculture and wetlands are restored. We build multi-objective optimization models to provide decision support for wetland restoration in the Le Sueur river watershed in Southern Minnesota. We integrate environmental objectives of sediment reduction and habitat protection with socio-economic factors associated with the overlap of private land with potential wetland restoration sites in the watershed and the costs representing forward-looking farmers voluntarily taking land out of agricultural production in favor of wetland restoration. Our results demonstrate that the inclusion of these factors early on in the restoration planning process affects both the total costs of the restoration project and the spatial distribution of optimally selected wetland restoration sites.

  4. Cost Estimating Handbook for Environmental Restoration

    International Nuclear Information System (INIS)

    1993-01-01

    Environmental restoration (ER) projects have presented the DOE and cost estimators with a number of properties that are not comparable to the normal estimating climate within DOE. These properties include: An entirely new set of specialized expressions and terminology. A higher than normal exposure to cost and schedule risk, as compared to most other DOE projects, due to changing regulations, public involvement, resource shortages, and scope of work. A higher than normal percentage of indirect costs to the total estimated cost due primarily to record keeping, special training, liability, and indemnification. More than one estimate for a project, particularly in the assessment phase, in order to provide input into the evaluation of alternatives for the cleanup action. While some aspects of existing guidance for cost estimators will be applicable to environmental restoration projects, some components of the present guidelines will have to be modified to reflect the unique elements of these projects. The purpose of this Handbook is to assist cost estimators in the preparation of environmental restoration estimates for Environmental Restoration and Waste Management (EM) projects undertaken by DOE. The DOE has, in recent years, seen a significant increase in the number, size, and frequency of environmental restoration projects that must be costed by the various DOE offices. The coming years will show the EM program to be the largest non-weapons program undertaken by DOE. These projects create new and unique estimating requirements since historical cost and estimating precedents are meager at best. It is anticipated that this Handbook will enhance the quality of cost data within DOE in several ways by providing: The basis for accurate, consistent, and traceable baselines. Sound methodologies, guidelines, and estimating formats. Sources of cost data/databases and estimating tools and techniques available at DOE cost professionals

  5. Do large scale restoration projects reduce within-species traits variability? - Présentées à 2 congrès

    OpenAIRE

    Harzé, Mélanie; Monty, Arnaud; Mahy, Grégory

    2015-01-01

    Dry calcareous grasslands represent local biodiversity hotspots of European temperate regions. They have suffered intensive fragmentations due to due to the abandonment of traditional agropastoral systems and the resulting encroachment, reforestation, urbanization or transformation into arable lands. In order to preserve and enhance their ecological value, a series of ecological restoration projects have been implemented throughout Europe (LIFE+). As habitats restoration costs can be prohibit...

  6. Adaptive restoration of river terrace vegetation through iterative experiments

    Science.gov (United States)

    Dela Cruz, Michelle P.; Beauchamp, Vanessa B.; Shafroth, Patrick B.; Decker, Cheryl E.; O’Neil, Aviva

    2014-01-01

    Restoration projects can involve a high degree of uncertainty and risk, which can ultimately result in failure. An adaptive restoration approach can reduce uncertainty through controlled, replicated experiments designed to test specific hypotheses and alternative management approaches. Key components of adaptive restoration include willingness of project managers to accept the risk inherent in experimentation, interest of researchers, availability of funding for experimentation and monitoring, and ability to restore sites as iterative experiments where results from early efforts can inform the design of later phases. This paper highlights an ongoing adaptive restoration project at Zion National Park (ZNP), aimed at reducing the cover of exotic annual Bromus on riparian terraces, and revegetating these areas with native plant species. Rather than using a trial-and-error approach, ZNP staff partnered with academic, government, and private-sector collaborators to conduct small-scale experiments to explicitly address uncertainties concerning biomass removal of annual bromes, herbicide application rates and timing, and effective seeding methods for native species. Adaptive restoration has succeeded at ZNP because managers accept the risk inherent in experimentation and ZNP personnel are committed to continue these projects over a several-year period. Techniques that result in exotic annual Bromus removal and restoration of native plant species at ZNP can be used as a starting point for adaptive restoration projects elsewhere in the region.

  7. Site Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Noynaert, L.; Bruggeman, A.; Cornelissen, R.; Massaut, V.; Rahier, A

    2001-04-01

    The objectives, the programme, and the achievements of the Site Restoration Department of SCK-CEN in 2000 are summarised. Main activities include the decommissioning of the BR3 PWR-reactor as well as other clean-up activities, projects on waste minimisation and activities related to the management of decommissioning projects. The department provides consultancy and services to external organisations.

  8. Site Restoration

    International Nuclear Information System (INIS)

    Noynaert, L.; Bruggeman, A.; Cornelissen, R.; Massaut, V.; Rahier, A.

    2001-01-01

    The objectives, the programme, and the achievements of the Site Restoration Department of SCK-CEN in 2000 are summarised. Main activities include the decommissioning of the BR3 PWR-reactor as well as other clean-up activities, projects on waste minimisation and activities related to the management of decommissioning projects. The department provides consultancy and services to external organisations

  9. Collaborative Approaches to Flow Restoration in Intermittent Salmon-Bearing Streams: Salmon Creek, CA, USA

    Directory of Open Access Journals (Sweden)

    Cleo Woelfle-Erskine

    2017-03-01

    Full Text Available In Mediterranean-climate regions of California and southern Oregon, juvenile salmon depend on groundwater aquifers to sustain their tributary habitats through the dry summers. Along California’s North Coast streams, private property regimes on land have created commons tragedies in groundwater and salmon fisheries, both classic examples of commons that are often governed collectively and sustainably by their users. Understanding the linkages between salmon and groundwater is one major focus of salmon recovery and climate change adaptation planning in central California and increasingly throughout the Pacific Northwest. In this paper, I use extended field interviews and participant-observation in field ecology campaigns and regulatory forums to explore how, in one water-scarce, salmon-bearing watershed on California’s central coast, collaborators are synthesizing agency and landowner data on groundwater and salmon management. I focus on three projects undertaken by citizen scientists in collaboration with me and Gold Ridge Resource Conservation District staff: salmonid censuses, mapping of wet and dry stream reaches and well monitoring. I find that collaborative research initiated by local residents and agency personnel has, in some cases, created a new sense of ecological possibility in the region. I also consider some limitations of this collaborations, namely the lack of engagement with indigenous Pomo and Miwok tribal members, with the Confederated Tribes of Graton Rancheria and with farmworkers and other marginalized residents, and suggest strategies for deepening environmental justice commitments in future collaborative work.

  10. Characterizing Process-Based River and Floodplain Restoration Projects on Federal Lands in Oregon, and Assessing Catalysts and Barriers to Implementation

    Science.gov (United States)

    Bianco, S.; Jones, J. A.; Gosnell, H.

    2017-12-01

    Process-based restoration, a new approach to river and floodplain management, is being implemented on federal lands across Oregon. These management efforts are aimed at promoting key physical processes in order to improve river ecological function, create diverse habitat, and increase biological productivity for ESA-listed bull trout and spring Chinook salmon. Although the practice is being disseminated across the Pacific Northwest, it remains unclear what is driving aquatic and riparian ecosystem restoration towards this process-based approach and away from form-based methods such as Rosgen's Natural Channel Design. The technical aspects of process-based restoration have been described in the literature (ex. Beechie et al. 2010), but little is known about the practice from a social science perspective, and few case studies exist to assess the impact of these efforts. We combine semi-structured qualitative interviews with management experts and photogrammetric analysis to better understand how complex social processes and changing ideas about aquatic ecosystems are manifesting on the ground in federal land management. This study characterizes process-based river and floodplain restoration projects on federal lands in Oregon, and identifies catalysts and barriers to its implementation. The Deer Creek Floodplain Enhancement project serves as a case study for photogrammetric analysis. To characterize long-term changes at Deer Creek, geomorphic features were mapped and classified using orthoimage mosaics developed from a time series of historic aerial photographs dating back to 1954. 3D Digital Elevation Models (3D-DEMs) were created of portions of the modified sections of Deer Creek and its floodplain immediately before and after restoration using drone-captured aerial photography and a photogrammetric technique called Structure from Motion. These 3D-DEMs have enabled extraction of first-order geomorphic variables to compare pre- and post-project conditions. This

  11. 30 CFR 874.14 - Water supply restoration.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Water supply restoration. 874.14 Section 874.14... ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.14 Water supply restoration. (a) Any... supply restoration projects. For purposes of this section, “water supply restoration projects” are those...

  12. Sediment Budgets and Sources Inform a Novel Valley Bottom Restoration Practice Impacted by Legacy Sediment: The Big Spring Run, PA, Restoration Experiment

    Science.gov (United States)

    Walter, R. C.; Merritts, D.; Rahnis, M. A.; Gellis, A.; Hartranft, J.; Mayer, P. M.; Langland, M.; Forshay, K.; Weitzman, J. N.; Schwarz, E.; Bai, Y.; Blair, A.; Carter, A.; Daniels, S. S.; Lewis, E.; Ohlson, E.; Peck, E. K.; Schulte, K.; Smith, D.; Stein, Z.; Verna, D.; Wilson, E.

    2017-12-01

    Big Spring Run (BSR), a small agricultural watershed in southeastern Pennsylvania, is located in the Piedmont Physiographic Province, which has the highest nutrient and sediment yields in the Chesapeake Bay watershed. To effectively reduce nutrient and sediment loading it is important to monitor the effect of management practices on pollutant reduction. Here we present results of an ongoing study, begun in 2008, to understand the impact of a new valley bottom restoration strategy for reducing surface water sediment and nutrient loads. We test the hypotheses that removing legacy sediments will reduce sediment and phosphorus loads, and that restoring eco-hydrological functions of a buried Holocene wetland (Walter & Merritts 2008) will improve surface and groundwater quality by creating accommodation space to trap sediment and process nutrients. Comparisons of pre- and post-restoration gage data show that restoration lowered the annual sediment load by at least 118 t yr-1, or >75%, from the 1000 m-long restoration reach, with the entire reduction accounted for by legacy sediment removal. Repeat RTK-GPS surveys of pre-restoration stream banks verified that >90 t yr-1 of suspended sediment was from bank erosion within the restoration reach. Mass balance calculations of 137Cs data indicate 85-100% of both the pre-restoration and post-restoration suspended sediment storm load was from stream bank sources. This is consistent with trace element data which show that 80-90 % of the pre-restoration outgoing suspended sediment load at BSR was from bank erosion. Meanwhile, an inventory of fallout 137Cs activity from two hill slope transects adjacent to BSR yields average modern upland erosion rates of 2.7 t ha-1 yr-1 and 5.1 t ha-1 yr-1, showing modest erosion on slopes and deposition at toe of slopes. We conclude that upland farm slopes contribute little soil to the suspended sediment supply within this study area, and removal of historic valley bottom sediment effectively

  13. Wind River Watershed Restoration 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.; Jezorek, Ian G. [U.S. Geological Survey

    2008-11-10

    During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder

  14. Benefits of investing in ecosystem restoration.

    Science.gov (United States)

    DE Groot, Rudolf S; Blignaut, James; VAN DER Ploeg, Sander; Aronson, James; Elmqvist, Thomas; Farley, Joshua

    2013-12-01

    Measures aimed at conservation or restoration of ecosystems are often seen as net-cost projects by governments and businesses because they are based on incomplete and often faulty cost-benefit analyses. After screening over 200 studies, we examined the costs (94 studies) and benefits (225 studies) of ecosystem restoration projects that had sufficient reliable data in 9 different biomes ranging from coral reefs to tropical forests. Costs included capital investment and maintenance of the restoration project, and benefits were based on the monetary value of the total bundle of ecosystem services provided by the restored ecosystem. Assuming restoration is always imperfect and benefits attain only 75% of the maximum value of the reference systems over 20 years, we calculated the net present value at the social discount rates of 2% and 8%. We also conducted 2 threshold cum sensitivity analyses. Benefit-cost ratios ranged from about 0.05:1 (coral reefs and coastal systems, worst-case scenario) to as much as 35:1 (grasslands, best-case scenario). Our results provide only partial estimates of benefits at one point in time and reflect the lower limit of the welfare benefits of ecosystem restoration because both scarcity of and demand for ecosystem services is increasing and new benefits of natural ecosystems and biological diversity are being discovered. Nonetheless, when accounting for even the incomplete range of known benefits through the use of static estimates that fail to capture rising values, the majority of the restoration projects we analyzed provided net benefits and should be considered not only as profitable but also as high-yielding investments. Beneficios de Invertir en la Restauración de Ecosistemas. © 2013 Society for Conservation Biology.

  15. Nuclear criticality safety program for environmental restoration projects

    International Nuclear Information System (INIS)

    Marble, R.C.; Brown, T.D.

    1994-05-01

    The Fernald Environmental Management Project (FEMP), formerly known as the Feed Materials Production Center (FMPC), is located on a 1050 acre site approximately twenty miles northwest of Cincinnati, Ohio. The production area of the site covers approximately 136 acres in the central portion of the site. Surrounding the core production area is a buffer consisting of leased grazing land, reforested land, and unused areas. The uranium processing facility was designed and constructed in the early 1950s. During the period from 1952 to 1989 the site produced uranium feed material and uranium products used in the United States weapons complex. Production at the site ended in 1989, when the site was shut down for what was expected to be a short period of time. However, the FUTC was permanently shut down in 1991, and the site's mission was changed from production to environmental restoration. The objective of this paper is to give an update on activities at the Fernald Site and to describe the Nuclear Criticality Safety issues that are currently being addressed

  16. 77 FR 14418 - Grand Ditch Breach Restoration Draft Environmental Impact Statement, Rocky Mountain National Park...

    Science.gov (United States)

    2012-03-09

    ... natural conditions and processes in park units (NPS Management Policies 2006, section 4.1.5). The... environmental impact statement: restore appropriate stream and groundwater processes, restore appropriate native.... Management activities would be conducted using hand tools to reduce impact on wilderness character. This...

  17. Inside the "Black Box" of River Restoration: Using Catchment History to Identify Disturbance and Response Mechanisms to Set Targets for Process-Based Restoration

    Directory of Open Access Journals (Sweden)

    Sarah Mika

    2010-12-01

    Full Text Available Many river restoration projects fail. Inadequate project planning underpins many of the reasons given for failure (such as setting overly ambitious goals; selecting inappropriate sites and techniques; losing stakeholder motivation; and neglecting to monitor, assess, and document projects. Another major problem is the lack of an agreed guiding image to direct the activities aimed at restoring the necessary biophysical and ecological processes within the logistic constraints of on-ground works. Despite a rich literature defining the components of restoration project planning, restoration ecology currently lacks an explicit and logical means of moving from the initial project vision through to on-ground strategies. Yet this process is fundamental because it directly links the ecological goals of the project to the on-ground strategies used to achieve them. We present a planning process that explicitly uses an interdisciplinary mechanistic model of disturbance drivers and system responses to build from the initial project vision to the implementation of on-ground works. A worked example on the Upper Hunter River in southeastern Australia shows how understanding catchment history can reveal disturbance and response mechanisms, thus facilitating process-based restoration.

  18. Stream hydraulics and temperature determine the metabolism of geothermal Icelandic streams

    Directory of Open Access Journals (Sweden)

    Demars B. O.L.

    2011-07-01

    Full Text Available Stream ecosystem metabolism plays a critical role in planetary biogeochemical cycling. Stream benthic habitat complexity and the available surface area for microbes relative to the free-flowing water volume are thought to be important determinants of ecosystem metabolism. Unfortunately, the engineered deepening and straightening of streams for drainage purposes could compromise stream natural services. Stream channel complexity may be quantitatively expressed with hydraulic parameters such as water transient storage, storage residence time, and water spiralling length. The temperature dependence of whole stream ecosystem respiration (ER, gross primary productivity (GPP and net ecosystem production (NEP = GPP − ER has recently been evaluated with a “natural experiment” in Icelandic geothermal streams along a 5–25 °C temperature gradient. There remained, however, a substantial amount of unexplained variability in the statistical models, which may be explained by hydraulic parameters found to be unrelated to temperature. We also specifically tested the additional and predicted synergistic effects of water transient storage and temperature on ER, using novel, more accurate, methods. Both ER and GPP were highly related to water transient storage (or water spiralling length but not to the storage residence time. While there was an additional effect of water transient storage and temperature on ER (r2 = 0.57; P = 0.015, GPP was more related to water transient storage than temperature. The predicted synergistic effect could not be confirmed, most likely due to data limitation. Our interpretation, based on causal statistical modelling, is that the metabolic balance of streams (NEP was primarily determined by the temperature dependence of respiration. Further field and experimental work is required to test the predicted synergistic effect on ER. Meanwhile, since higher metabolic activities allow for higher pollutant degradation or uptake

  19. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    Energy Technology Data Exchange (ETDEWEB)

    Elicio, Andy U. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  20. Healthcare for migrants, participatory health research and implementation science--better health policy and practice through inclusion. The RESTORE project.

    Science.gov (United States)

    MacFarlane, Anne; O'Reilly-de Brún, Mary; de Brún, Tomas; Dowrick, Christopher; O'Donnell, Catherine; Mair, Frances; Spiegel, Wolfgang; van den Muijsenbergh, Maria; van Weel Baumgarten, Evelyn; Lionis, Christos; Clissmann, Ciaran

    2014-06-01

    This is a time of unprecedented mobility across the globe. Healthcare systems need to adapt to ensure that primary care is culturally and linguistically appropriate for migrants. Evidence-based guidelines and training interventions for cultural competence and the use of professional interpreters are available across European healthcare settings. However, in real-world practice migrants and their healthcare providers 'get by' with a range of informal and inadequate strategies. RESTORE is an EU FP7 funded project, which is designed to address this translational gap. The objective of RESTORE is to investigate and support the implementation of guidelines and training initiatives to support communication in cross-cultural consultations in selected European primary care settings. RESTORE is a qualitative, participatory health project running from 2011-2015. It uses a novel combination of normalization process theory and participatory learning and action research to follow and shape the implementation journeys of relevant guidelines and training initiatives. Research teams in Ireland, England, the Netherlands, Austria and Greece are conducting similar parallel qualitative case study fieldwork, with a complementary health policy analysis led by Scotland. In each setting, key stakeholders, including migrants, are involved in participatory data generation and analysis. RESTORE will provide knowledge about the levers and barriers to the implementation of guidelines and training initiatives in European healthcare settings and about successful, transferrable strategies to overcome identified barriers. RESTORE will elucidate the role of policy in shaping these implementation journeys; generate recommendations for European policy driving the development of culturally and linguistically appropriate healthcare systems.

  1. In-stream chemical neutralization: A whole watershed approach to mitigating acid mine drainage

    International Nuclear Information System (INIS)

    Britt, D.L.

    1994-01-01

    The North Branch of the Potomac River is adversely affected by acid mine drainage (AMD) throughout its entire length. As an alternative to mine-mouth treatment methods an in-stream AMD-neutralization demonstration program for an approximately 25-mile segment of the North Branch of the Potomac River was designed and implemented. This river segment was ranked as the highest priority site in Maryland for a demonstration project owing to its combination of very poor water quality and excellent potential for supporting a recreational sport fishery in the absence of toxic metal and acid loadings. A whole-watershed approach employing Scandinavian doser technologies and calcium carbonate neutralizing agents is the basis for the North Branch Potomac River demonstration project. The project involves four phases: feasibility (1), design (2), implementation (3), and monitoring (4). This watershed approach to mitigating AMD is expected to restore circumneutrial water quality and to promote desirable fishery resources throughout the mainstem and selected tributaries of the North Branch of the Potomac River Upstream of Jennings Randolph Dam. This paper summarizes Phases 1--3 of the demonstration project

  2. Economic evaluation of neutral streams and of river construction methods

    International Nuclear Information System (INIS)

    Donat, M.

    1998-12-01

    There are no current markets for the management and restoration of natural streams. However, economic elements tend to play an increasingly important role when it comes to decisions about river management activities. Although preference structures of market consumers can be analyzed using prices, there are several short-comings in using this technique for goods with no or an insufficient market. This is especially true for 'natural streams'. The non-existence of market prices for goods or their parts does not mean that they do not have a value or that there is no preference structure for them. After an introductory discussion of ethical and value issues, specific methods for evaluating and analyzing the willingness-to-pay for natural streams and theirs restoration are developed further. Using direct interview techniques, locals in three different watersheds in Upper Austria are ask for their preferences and social pricing of natural streams and river management options. The areas the interviews were conducted in, represent a watershed dominated by intensive agricultural and residential uses, another watershed typical for a rural community and a third representing a watershed of a relatively pristine river of the Northern Alpine limestone range mainly used by forestry and tourism. Demographic data, eco-morphological stream characteristics and preferences of the interviewed about elements of a natural stream, user and non-user values were linked and analyzed. The results of a personal interviewing technique conducted in these watersheds showed to be capable to capture the preference structure in small watersheds and may offer some help for decision-making concerning river management issues. (author)

  3. UF's Lone Cabbage Oyster Reef Restoration Project: a use case in implementing a data management plan (DMP)

    OpenAIRE

    Aufmuth, Joe

    2018-01-01

    Data management plans are created to satisfy funding agency proposal requirements related to the data life cycle. Once an award is made researchers must implement the plan they described. But how is this best accomplished? The presentation UF’s Lone Cabbage Oyster Reef Restoration Project: a use case in implementing a data management plan (DMP) describes how PI's for this grant funded research project are achieving its data management plan goals using an academic library's consulting team.

  4. Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers.

    Science.gov (United States)

    DeVries, Paul; Aldrich, Robert

    2015-08-01

    A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m(3)/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans.

  5. Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers

    Science.gov (United States)

    DeVries, Paul; Aldrich, Robert

    2015-08-01

    A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m3/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans.

  6. Sampling, Splitting and Merging in Coinductive Stream Calculus

    NARCIS (Netherlands)

    M. Niqui (Milad); J.J.M.M. Rutten (Jan); C. Bolduc; J. Desharnais; B. Ktari

    2010-01-01

    textabstractWe study various operations for partitioning, projecting and merging streams of data. These operations are motivated by their use in dataflow programming and the stream processing languages. We use the framework of \\emph{stream calculus} and \\emph{stream circuits} for defining and

  7. Sampling, splitting and merging in coinductive stream calculus

    NARCIS (Netherlands)

    M. Niqui (Milad); J.J.M.M. Rutten (Jan)

    2009-01-01

    htmlabstractWe study various operations for partitioning, projecting and merging streams of data. These operations are motivated by their use in dataflow programming and the stream processing languages. We use the framework of stream calculus and stream circuits for defining and proving properties

  8. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  9. Advanced Monitoring Systems Initiative Project Achievements for Environmental Restoration and Waste Management

    International Nuclear Information System (INIS)

    Hohman, E.H.; Lohrstorfer, C.L.; Venedam, R.J.; Weeks, S.J.; Fannin, C.R.

    2006-01-01

    The Advanced Monitoring Systems Initiative (AMSI) project has been in existence since 2002. In this short time period, AMSI has successfully developed, tested and/or demonstrated over 30 advanced sensors and monitoring systems for applications in environmental restoration, waste management and other areas of national interest. This presentation summarizes the AMSI project, and gives examples of recent successes. The purpose of the presentation is to make Symposium attendees aware of AMSI's capabilities and experience, for possible use in the future. Example successes include the following: - Automated hexavalent chromium (Cr(VI)) monitoring in wells alongside the Columbia River; - Atmospheric chemical sensor array for remote, real-time plume tracking; - Wireless sensor platform for long-term monitoring of subsurface moisture; - Embedded piezo-resistive micro-cantilever (EPM) units for carbon tetrachloride (CCl 4 ) and hydrogen cyanide (HCN) detection; - 'iHistorian' for efficient, real-time data management of chemical releases. (authors)

  10. Methodology for ranking restoration options

    DEFF Research Database (Denmark)

    Jensen, Per Hedemann

    1999-01-01

    techniques as a function of contamination and site characteristics. The project includes analyses of existing remediation methodologies and contaminated sites, and is structured in the following steps:-characterisation of relevant contaminated sites -identication and characterisation of relevant restoration...... techniques -assessment of the radiological impact -development and application of a selection methodology for restoration options -formulation ofgeneric conclusions and development of a manual The project is intended to apply to situations in which sites with nuclear installations have been contaminated...

  11. Columbia Estuary Ecosystem Restoration Program: Restoration Design Challenges for Topographic Mounds, Channel Outlets, and Reed Canarygrass

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinks, Ian A. [Columbia Land Trust, Vancouver, WA (United States); Cullinan, Valerie I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    The purpose of this study was to provide science-based information to practitioners and managers of restoration projects in the Columbia Estuary Ecosystem Restoration Program (CEERP) regarding aspects of restoration techniques that currently pose known challenges and uncertainties. The CEERP is a program of the Bonneville Power Administration (BPA) and the U.S. Army Corps of Engineers (Corps), Portland District, in collaboration with the National Marine Fisheries Service and five estuary sponsors implementing restoration. The estuary sponsors are Columbia Land Trust, Columbia River Estuary Study Taskforce, Cowlitz Tribe, Lower Columbia Estuary Partnership, and Washington Department of Fish and Wildlife. The scope of the research conducted during federal fiscal year 2015 included three aspects of hydrologic reconnection that were selected based on available scientific information and feedback from restoration practitioners during project reviews: the design of mounds (also called hummocks, peninsulas, or berms); the control of reed canarygrass (Phalaris arundinaceae); and aspects of channel network design related to habitat connectivity for juvenile salmonids.

  12. ATLAS Live: Collaborative Information Streams

    CERN Document Server

    Goldfarb, S; The ATLAS collaboration

    2011-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at th...

  13. RELATIONSHIPS AMONG GEOMORPHOLOGY, HYDROLOGY, AND VEGETATION IN RIPARIAN MEADOWS: RESTORATION IMPLICATIONS

    Science.gov (United States)

    Vegetation patterns and dynamics within riparian corridors are controlled largely by geomorphic position, substrate characteristics and hydrologic regimes. Understanding management and restoration options for riparian meadow complexes exhibiting stream incision requires knowledge...

  14. Wind River Watershed Restoration Project; Underwood Conservation District, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jim

    2004-02-01

    The goal of the Wind River project is to preserve, protect and restore Wind River steelhead. In March, 1998, the National Marine Fisheries Service listed the steelhead of the lower Columbia as 'threatened' under the Endangered Species Act. In 1997, the Washington Department of Fish and Wildlife rated the status of the Wind River summer run steelhead as critical. Due to the status of this stock, the Wind River summer steelhead have the highest priority for recovery and restoration in the state of Washington's Lower Columbia Steelhead Conservation Initiative. The Wind River Project includes four cooperating agencies. Those are the Underwood Conservation District (UCD), United States Geological Service (USGS), US Forest Service (USFS), and Washington State Department of Fish & Wildlife (WDFW). Tasks include monitoring steelhead populations (USGS and WDFW), Coordinating a Watershed Committee and Technical Advisory Group (UCD), evaluating physical habitat conditions (USFS and UCD), assessing watershed health (all), reducing road sediments sources (USFS), rehabilitating riparian corridors, floodplains, and channel geometry (UCD, USFS), evaluate removal of Hemlock Dam (USFS), and promote local watershed stewardship (UCD, USFS). UCD's major efforts have included coordination of the Wind River Watershed Committee and Technical Advisory Committee (TAC), water temperature and water chemistry monitoring, riparian habitat improvement projects, and educational activities. Our coordination work enables the local Watershed Committee and TAC to function and provide essential input to Agencies, and our habitat improvement work focuses on riparian revegetation. Water chemistry and temperature data collection provide information for monitoring watershed conditions and fish habitat, and are comparable with data gathered in previous years. Water chemistry information collected on Trout Creek should, with 2 years data, determine whether pH levels make conditions

  15. The cost of wetland creation and restoration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    King, D.; Bohlen, C.

    1995-08-01

    This report examines the economics of wetland creation, restoration, and enhancement projects, especially as they are used within the context of mitigation for unavoidable wetland losses. Complete engineering-cost-accounting profiles of over 90 wetland projects were developed in collaboration with leading wetland restoration and creation practitioners around the country to develop a primary source database. Data on the costs of over 1,000 wetland projects were gathered from published sources and other available databases to develop a secondary source database. Cases in both databases were carefully analyzed and a set of baseline cost per acre estimates were developed for wetland creation, restoration, and enhancement. Observations of costs varied widely, ranging from $5 per acre to $1.5 million per acre. Differences in cost were related to the target wetland type, and to site-specific and project-specific factors that affected the preconstruction, construction, and post-construction tasks necessary to carry out each particular project. Project-specific and site-specific factors had a much larger effect on project costs than wetland type for non-agricultural projects. Costs of wetland creation and restoration were also shown to differ by region, but not by as much as expected, and in response to the regulatory context. The costs of wetland creation, restoration, and enhancement were also analyzed in a broader economic context through examination of the market for wetland mitigation services, and through the development of a framework for estimating compensation ratios-the number of acres of created, restored, or enhanced wetland required to compensate for an acre of lost natural wetland. The combination of per acre creation, restoration, and enhancement costs and the compensation ratio determine the overall mitigation costs associated with alternative mitigation strategies.

  16. A successful waste stream analysis on a large construction project in a radiologically controlled area

    International Nuclear Information System (INIS)

    Kennicott, M.; Richardson, D.; Starke, T.P.

    1997-01-01

    The Los Alamos National Laboratory (the Laboratory) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently under going a major, multi-year demolition and construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D and D) job and are identical to the requirements of any of several upgrades projects anticipated for the laboratory and other Department of Energy (DOE) sites. For these reasons the CMR upgrades Project is seen as an ideal model facility--to test the application and measure the success of waste minimization techniques which could be implemented for any similar projects. The purpose of this paper will be to discuss the successful completion of a waste stream analysis. The analyses performed was to measure the potential impact of waste generation, in terms of volume and costs, for a reconfiguration option being considered to change the approach and execution of the original project

  17. Issues related to uncertainty in projections of hazardous and mixed waste volumes in the U.S. Department of Energy's environmental restoration program

    International Nuclear Information System (INIS)

    Picel, K.C.

    1995-01-01

    Projected volumes of contaminated media and debris at US Department of Energy (DOE) environmental restoration sites that are potentially subject to the hazardous waste provisions of the Resource Conservation and Recovery Act are needed to support programmatic planning. Such projections have been gathered in various surveys conducted under DOE's environmental restoration and waste management programs. It is expected that reducing uncertainty in the projections through review of existing site data and process knowledge and through further site characterization will result in substantially lowered projections. If promulgated, the US Environmental Protection Agency's Hazardous Waste Identification Rule would result in potentially even greater reductions in the projections when site conditions are reviewed under the provisions of the new rule. Reducing uncertainty in projections under current and future waste identification rules may be necessary to support effective remediation planning. Further characterization efforts that may be conducted should be designed to limit uncertainty in identifying volumes of wastes to the extent needed to support alternative selection and to minimize costs of remediation

  18. Hangman Restoration Project Year-End Report FY2008.

    Energy Technology Data Exchange (ETDEWEB)

    Coeur d' Alene Tribe Department of Natural Resources.

    2008-11-12

    This report covers the main goals of FY2008 from which the Work Elements were derived. The goals and products are listed by heading and the associated work elements are referenced in the text. A list of the FY2008 Work Elements is included as Appendix A. FY2008 witnessed the completion of the hntkwipn Management Plan and the first substantive efforts to restore the important habitats encompassed by the mitigation properties in the Upper Hangman Watershed. Native grasses were planted and germination was evaluated. Also, drain tiles that greatly altered the hydrologic function of the Sheep and Hangman Creek Flood Plains were removed and/or disrupted. Preparation for future restoration efforts were also made in FY2008. Designs were produced for the realignment of Sheep Creek and the decommissioning of seven drainage ditches within hntkwipn. A prioritization plan was drafted that greatly expands the area of focus for restoring native fish population in Hangman Creek.

  19. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project Annual Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Sear, Sheri

    2001-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection- 1990-91) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation-1992-96). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI

  20. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Charles D.

    2000-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection- 1990-91) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation-1992-96). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI

  1. Minimizing waste in environmental restoration

    International Nuclear Information System (INIS)

    Moos, L.; Thuot, J.R.

    1996-01-01

    Environmental restoration, decontamination and decommissioning and facility dismantelment projects are not typically known for their waste minimization and pollution prevention efforts. Typical projects are driven by schedules and milestones with little attention given to cost or waste minimization. Conventional wisdom in these projects is that the waste already exists and cannot be reduced or minimized. In fact, however, there are three significant areas where waste and cost can be reduced. Waste reduction can occur in three ways: beneficial reuse or recycling; segregation of waste types; and reducing generation of secondary waste. This paper will discuss several examples of reuse, recycle, segregation, and secondary waste reduction at ANL restoration programs

  2. Olefin Recovery from Chemical Industry Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  3. The STRATEGY project: decision tools to aid sustainable restoration and long-term management of contaminated agricultural ecosystems.

    Science.gov (United States)

    Howard, B J; Beresford, N A; Nisbet, A; Cox, G; Oughton, D H; Hunt, J; Alvarez, B; Andersson, K G; Liland, A; Voigt, G

    2005-01-01

    The STRATEGY project (Sustainable Restoration and Long-Term Management of Contaminated Rural, Urban and Industrial Ecosystems) aimed to provide a holistic decision framework for the selection of optimal restoration strategies for the long-term sustainable management of contaminated areas in Western Europe. A critical evaluation was carried out of countermeasures and waste disposal options, from which compendia of state-of-the-art restoration methods were compiled. A decision support system capable of optimising spatially varying restoration strategies, that considered the level of averted dose, costs (including those of waste disposal) and environmental side effects was developed. Appropriate methods of estimating indirect costs associated with side effects and of communicating with stakeholders were identified. The importance of stakeholder consultation at a local level and of ensuring that any response is site and scenario specific were emphasised. A value matrix approach was suggested as a method of addressing social and ethical issues within the decision-making process, and was designed to be compatible with both the countermeasure compendia and the decision support system. The applicability and usefulness of STRATEGY outputs for food production systems in the medium to long term is assessed.

  4. The STRATEGY project: decision tools to aid sustainable restoration and long-term management of contaminated agricultural ecosystems

    International Nuclear Information System (INIS)

    Howard, B.J.; Beresford, N.A.; Nisbet, A.; Cox, G.; Oughton, D.H.; Hunt, J.; Alvarez, B.; Andersson, K.G.; Liland, A.; Voigt, G.

    2005-01-01

    The STRATEGY project (Sustainable Restoration and Long-Term Management of Contaminated Rural, Urban and Industrial Ecosystems) aimed to provide a holistic decision framework for the selection of optimal restoration strategies for the long-term sustainable management of contaminated areas in Western Europe. A critical evaluation was carried out of countermeasures and waste disposal options, from which compendia of state-of-the-art restoration methods were compiled. A decision support system capable of optimising spatially varying restoration strategies, that considered the level of averted dose, costs (including those of waste disposal) and environmental side effects was developed. Appropriate methods of estimating indirect costs associated with side effects and of communicating with stakeholders were identified. The importance of stakeholder consultation at a local level and of ensuring that any response is site and scenario specific were emphasised. A value matrix approach was suggested as a method of addressing social and ethical issues within the decision-making process, and was designed to be compatible with both the countermeasure compendia and the decision support system. The applicability and usefulness of STRATEGY outputs for food production systems in the medium to long term is assessed

  5. ATLAS Live: Collaborative Information Streams

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, Steven [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Collaboration: ATLAS Collaboration

    2011-12-23

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  6. ATLAS Live: Collaborative Information Streams

    International Nuclear Information System (INIS)

    Goldfarb, Steven

    2011-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  7. Restorative justice innovations in Canada.

    Science.gov (United States)

    Wilson, Robin J; Huculak, Bria; McWhinnie, Andrew

    2002-01-01

    As many jurisdictions move towards more retributive measures as a means to address public discontent with crime, a parallel movement has developed in regard to restorative justice. This article presents three restorative initiatives currently in use in Canada. Each initiative addresses offender behavior and community engagement at a different point in the justice continuum. The use of Sentencing Circles is an example of how restorative justice principles can be instituted at the front end, prior to an offender becoming lodged in the system. The Restorative Justice Options to Parole Suspension project demonstrates how community engagement can assist in preventing offenders from being returned to the system once they have achieved conditional release. The Circles of Support and Accountability project has enlisted the support of professionally supported volunteers in the community reintegration of high-risk sexual offenders. These initiatives are presented within a framework of effective correctional interventions and increased empowerment for a variety of stakeholders. Copyright 2002 John Wiley & Sons, Ltd.

  8. Advancing stream restoration design: a science-based approach using data and methodologies from the agencies

    Science.gov (United States)

    Jessica Palazzolo; Joshua Robinson; Phillip Ellis

    2016-01-01

    Ecosystem restoration design is a relatively new field of work that requires multi-disciplinary expertise in the natural sciences. Although the field is new, federal agencies and public institutions have spent several decades and millions of dollars researching the sciences and methods that underly restoration activities. However, many restoration practitioners are...

  9. VT River Restoration Data in Lamoille County

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Documented river and riparian buffer restoration projects in Lamoille County, Vermont. Restoration includes buffer plantings (trees and shrubs),...

  10. A Policy Analysis Perspective on Ecological Restoration

    Directory of Open Access Journals (Sweden)

    Susan Baker

    2013-06-01

    Full Text Available Using a simple stages model of the policy process, we explore the politics of ecological restoration using an array of examples drawn across sector, different size and scale, and from different countries. A policy analysis perspective reveals how, at both the program and project levels, ecological restoration operates within a complex and dynamic interplay between technical decision making, ideologies, and interest politics. Viewed through the stages model, restoration policy involves negotiating nature across stages in the policy making process, including agenda setting, policy formulation, implementation, and evaluation. The stages model is a useful heuristic devise; however, this linear model assumes that policy makers approach the issue rationally. In practice, ecological restoration policy takes place in the context of different distributions of power between the various public and private actors involved at the different stages of restoration policy making. This allows us to reiterate the point that ecological restoration is best seen not only as a technical task but as a social and political project.

  11. Challenges of ecological restoration

    DEFF Research Database (Denmark)

    Halme, Panu; Allen, Katherine A.; Aunins, Ainars

    2013-01-01

    we introduce northern forests as an ecosystem, discuss the historical and recent human impact and provide a brief status report on the ecological restoration projects and research already conducted there. Based on this discussion, we argue that before any restoration actions commence, the ecology......The alarming rate of ecosystem degradation has raised the need for ecological restoration throughout different biomes and continents. North European forests may appear as one of the least vulnerable ecosystems from a global perspective, since forest cover is not rapidly decreasing and many...... on Biological Diversity. Several northern countries are now taking up this challenge by restoring forest biodiversity with increasing intensity. The ecology and biodiversity of boreal forests are relatively well understood making them a good model for restoration activities in many other forest ecosystems. Here...

  12. StreamNet, 1999-2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Bruce; Roger, Phil; Butterfield, Bart (Pacific States Marine Fisheries Commission, Gladstone, OR)

    2001-09-01

    The StreamNet Project is a cooperative project that provides basic fishery management data in a consistent format across the Columbia Basin region, with some data from outside the region. Specific categories of data are acquired from the multiple data generating agencies in the Columbia Basin, converted into a standardized data exchange format (DEF) and distributed to fish researchers, managers and decision makers directly or through an on-line data retrieval system (www.streamnet.org). The project is funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. This cooperative effort is composed of a region-wide project administered by the Pacific States Marine Fisheries Commission (PSMFC) that is responsible for project management, regional data management and data delivery (Region), plus seven contributing projects within the data generating entities: Columbia River Intertribal Fish Commission (CRITFC); Idaho Department of Fish and Game (IDFG); Montana Fish, Wildlife and Parks (MFWP); Oregon Department of Fish and Wildlife (ODFW); Shoshone-Bannock Tribes; U. S. Fish and Wildlife Service (FWS); and Washington Department of Fish and Wildlife (WDFW). The contributing projects are funded through the StreamNet contract but work within their respective agencies and are referred to here as the agency's StreamNet project (for example, ''IDFG StreamNet'' for Idaho's project). The StreamNet Project provides an important link in the chain of data flow in the Columbia Basin, with specific emphasis on data collected routinely over time by management agencies. Basic fish related data are collected in the field by the various state, tribal and federal agencies in the basin for purposes related to each agency's individual mission and responsibility. As a result, there often is a lack of standardization among agencies in field methodology or data management. To be

  13. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J. (US Geological Survey, Columbia River Research Laboratory, Western Fisheries Research Center, Cook, WA)

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  14. Restoration of floodplain meadows: Effects on the re-establishment of mosses

    Science.gov (United States)

    Wolski, Grzegorz J.; Harnisch, Matthias; Otte, Annette; Bomanowska, Anna; Donath, Tobias W.

    2017-01-01

    Vascular plants serve as target species for the evaluation of restoration success as they account for most of the plant species diversity and vegetation cover. Although bryophytes contribute considerably to the species diversity of meadows, they are rarely addressed in restoration projects. This project is a first step toward making recommendations for including mosses in alluvial floodplain restoration projects. The opportunity to assess the diversity and ecological requirements of mosses on floodplain meadows presented itself within the framework of a vegetation monitoring that took place in 2014 on meadows located along the northern Upper Rhine. In this area, large-scale meadow restoration projects have taken place since 1997 in both the functional and fossil floodplains. Other studies have shown that bryophytes are generally present in green hay used in restoration, providing inadvertent bryophyte introduction. We compared bryophyte communities in donor and restored communities and correlated these communities with environmental variables—taking into account that the mosses on the restoration sites possibly developed from green hay. This analysis provided insights as to which species of bryophytes should be included in future restoration projects, what diaspores should be used, and how they should be transferred. Data on bryophyte occurrence were gathered from old meadows, and from restoration sites. We found distinct differences in bryophyte composition (based on frequency) in restored communities in functional flood plains compared to donor communities. Generally, restoration sites are still characterized by a lower species-richness, with a significantly lower occurrence of rare and red listed species and a lower species-heterogeneity. In conclusion, our research establishes what mosses predominate in donor and restored alluvial meadows along the northern Upper River, and what microsite conditions favour particular species. This points the way to deliberate

  15. Hydrology of Dutch Cirsio-Molinietum meadows : Prospects for restoration

    NARCIS (Netherlands)

    Jansen, A. J. M.; Grootjans, A. P.; Jalink, M. H.; Bakker, J.P.

    . Fen meadows (Cirsio dissecti-Molinietum) are seriously threatened by desiccation, acidification and eutro-phication. In The Netherlands several projects were launched to restore damaged fen meadows. This review describes how successes and failures of these restoration projects depend on

  16. Effects of Large Wood on River-Floodplain Connectivity in a Headwater Appalachian Stream

    Science.gov (United States)

    Keys, T.; Govenor, H.; Jones, C. N.; Hession, W. C.; Scott, D.; Hester, E. T.

    2017-12-01

    Large wood (LW) plays an important, yet often undervalued role in stream ecosystems. Traditionally, LW has been removed from streams for aesthetic, navigational, and flood mitigation purposes. However, extensive research over the last three decades has directly linked LW to critical ecosystem functions including habitat provisioning, stream geomorphic stability, and water quality improvements; and as such, LW has increasingly been implemented in stream restoration activities. One of the proposed benefits to this restoration approach is that LW increases river-floodplain connectivity, potentially decreasing downstream flood peaks and improving water quality. Here, we conducted two experiential floods (i.e., one with and one without LW) in a headwater, agricultural stream to explore the effect of LW on river-floodplain connectivity and resulting hydrodynamic processes. During each flood, we released an equal amount of water to the stream channel, measured stream discharge at upstream and downstream boundaries, and measured inundation depth at multiple locations across the floodplain. We then utilized a 2-dimensional hydrodynamic model (HEC-RAS) to simulate floodplain hydrodynamics. We first calibrated the model using observations from the two experimental floods. Then, we utilized the calibrated model to evaluate differing LW placement strategies and effects under various flow conditions. Results show that the addition of LW to the channel decreased channel velocity and increased inundation extent, inundation depth, and floodplain velocity. Differential placement of LW along the stream impacted the levels of floodplain discharge, primarily due to the geomorphic characteristics of the stream. Finally, we examined the effects of LW on floodplain hydrodynamics across a synthetic flow record, and found that the magnitude of river-floodplain connectivity decreased as recurrence interval increased, with limited impacts on storm events with a recurrence interval of 25 years

  17. Technical approach to groundwater restoration

    International Nuclear Information System (INIS)

    1993-01-01

    The Technical Approach to Groundwater Restoration (TAGR) provides general technical guidance to implement the groundwater restoration phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The TAGR includes a brief overview of the surface remediation and groundwater restoration phases of the UMTRA Project and describes the regulatory requirements, the National Environmental Policy Act (NEPA) process, and regulatory compliance. A section on program strategy discusses program optimization, the role of risk assessment, the observational approach, strategies for meeting groundwater cleanup standards, and remedial action decision-making. A section on data requirements for groundwater restoration evaluates the data quality objectives (DQO) and minimum data required to implement the options and comply with the standards. A section on sits implementation explores the development of a conceptual site model, approaches to site characterization, development of remedial action alternatives, selection of the groundwater restoration method, and remedial design and implementation in the context of site-specific documentation in the site observational work plan (SOWP) and the remedial action plan (RAP). Finally, the TAGR elaborates on groundwater monitoring necessary to evaluate compliance with the groundwater cleanup standards and protection of human health and the environment, and outlines licensing procedures

  18. The critical role of islands for waterbird breeding and foraging habitat in managed ponds of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    Science.gov (United States)

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Smith, Lacy M.; Moskal, Stacy M.; De La Cruz, Susan E. W.; Yee, Julie L.; Takekawa, John Y.

    2014-01-01

    The South Bay Salt Pond Restoration Project aims to restore 50–90 percent of former salt evaporation ponds into tidal marsh in South San Francisco Bay, California. However, large numbers of waterbirds use these ponds annually as nesting and foraging habitat. Islands within ponds are particularly important habitat for nesting, foraging, and roosting waterbirds. To maintain current waterbird populations, the South Bay Salt Pond Restoration Project plans to create new islands within former salt ponds in South San Francisco Bay. In a series of studies, we investigated pond and individual island attributes that are most beneficial to nesting, foraging, and roosting waterbirds.

  19. Hydrological classification, a practical tool for mangrove restoration

    NARCIS (Netherlands)

    Loon, van Anne F.; Brake, te Bram; Huijgevoort, Van Marjolein H.J.; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration

  20. Settling characteristics of fine-grained sediments used in Louisiana coastal land building and restoration projects

    Science.gov (United States)

    Ghose Hajra, M.

    2016-02-01

    Coastal property development, sea level rise, geologic subsidence, loss of barrier islands, increasing number and intensity of coastal storms and other factors have resulted in water quality degradation, wetlands loss, reduced storm and surge protection, ground settlement, and other challenges in coastal areas throughout the world. One of the goals towards reestablishing a healthy coastal ecosystem is to rebuild wetlands with river diversion or sediment conveyance projects that optimally manage and allocate sediments, minimally impact native flora and fauna, and positively affect the water quality. Engineering properties and material characteristics of the dredged material and foundation soils are input parameters in several mathematical models used to predict the long term behavior of the dredged material and foundation soil. Therefore, proper characterization of the dredged material and foundation soils is of utmost importance in the correct design of a coastal restoration and land reclamation project. The sedimentation and consolidation characteristics of the dredged material as well as their effects on the time rate of settlement of the suspended solid particles and underlying foundation soil depend, among other factors, on the (a) grain size distribution of the dredged material, (b) salinity (fresh, brackish, or saltwater environment) of the composite slurry, and (c) concentration of the solid particles in the slurry. This paper will present the results from column settling tests and self-weight consolidation tests performed on dredged samples obtained from actual restoration projects in Louisiana. The effects of salinity, grain size distribution, and initial particle concentration on the sedimentation and consolidation parameters of the dredged material will also be discussed.

  1. Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic-terrestrial ecosystems

    OpenAIRE

    Stubbington, Rachel; England, Judy; Wood, Paul J.; Sefton, Catherine E.M.

    2017-01-01

    Temporary streams are defined by periodic flow cessation, and may experience partial or complete loss of surface water. The ecology and hydrology of these transitional aquatic-terrestrial ecosystems have received unprecedented attention in recent years. Research has focussed on the arid, semi-arid, and Mediterranean regions in which temporary systems are the dominant stream type, and those in cooler, wetter temperate regions with an oceanic climate influence are also receiving increasing atte...

  2. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams

    Science.gov (United States)

    Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance

    2010-01-01

    We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...

  3. Variable exchange between a stream and an aquifer in the Rio Grande Project Area

    Science.gov (United States)

    Sheng, Z.; Abudu, S.; Michelsen, A.; King, P.

    2016-12-01

    Both surface water and groundwater in the Rio Grande Project area in southern New Mexico and Far West Texas have been stressed by natural conditions such as droughts and human activities, including urban development and agricultural irrigation. In some area pumping stress in the aquifer becomes so great that it depletes the river flow especially during the irrigation season, typically from March through October. Therefore understanding such relationship between surface water and groundwater becomes more important in regional water resources planning and management. In this area, stream flows are highly regulated by the upstream reservoirs during the irrigation season and greatly influenced by return flows during non-irrigation season. During a drought additional groundwater pumping to supplement surface water shortage further complicates the surface water and groundwater interaction. In this paper the authors will use observation data and results of numerical models (MODFLOW) to characterize and quantify hydrological exchange fluxes between groundwater in the aquifers and surface water as well as impacts of groundwater pumping. The interaction shows a very interesting seasonal variation (irrigation vs. non-irrigation) as well as impact of a drought. Groundwater has been pumped for both municipal supplies and agricultural irrigation, which has imposed stresses toward both stream flows and aquifer storage. The results clearly show that historic groundwater pumping has caused some reaches of the river change from gaining stream to losing stream. Beyond the exchange between surface water and groundwater in the shallow aquifer, groundwater pumping in a deep aquifer could also enhance the exchanges between different aquifers through leaky confining layers. In the earlier history of pumping, pumping from the shallow aquifer is compensated by simple depletion of surface water, while deep aquifer tends to use the aquifer storage. With continued pumping, the cumulative

  4. Nord Stream 2: keeping the head cool

    International Nuclear Information System (INIS)

    Aoun, Marie-Claire

    2016-01-01

    Nord Stream 2 is the name of a project of a pipeline which will transport Russian natural gas into the European Union. The author first presents the context of this project announced during a forum in Saint Petersburg, and signed in september 2015 between Gazprom and several European stakeholders (Eon, BASF, Engie, Shell and OMV). The objective is for Moscow to secure its north-western European market on the long term. Some physical characteristics of the project are evoked, and the European dependence on gas imports is described. The author then discusses how European countries are divided about this project: some support it (like mainly Germany) while some others are fiercely against (Eastern European countries which complain about their loss of transfer revenues, or countries like Bulgaria, Greece and Italy about the loss of an alternative gas corridor). The project also faces legal obstacles related to patrimony separation and access of third parties to the network. Finally, and while mentioning other projects (Nord Stream 1 and South Stream), the author shows that the difficulties and problems faced by this project are a perfect illustration of a fractured European gas sector

  5. Ecological restoration across the Mediterranean Basin as viewed by practitioners.

    Science.gov (United States)

    Nunes, Alice; Oliveira, Graça; Mexia, Teresa; Valdecantos, Alejandro; Zucca, Claudio; Costantini, Edoardo A C; Abraham, Eleni M; Kyriazopoulos, Apostolos P; Salah, Ayman; Prasse, Ruediger; Correia, Otília; Milliken, Sarah; Kotzen, Benz; Branquinho, Cristina

    2016-10-01

    Restoration efforts in the Mediterranean Basin have been changing from a silvicultural to an ecological restoration approach. Yet, to what extent the projects are guided by ecological restoration principles remains largely unknown. To analyse this issue, we built an on-line survey addressed to restoration practitioners. We analysed 36 restoration projects, mostly from drylands (86%). The projects used mainly soil from local sources. The need to comply with legislation was more important as a restoration motive for European Union (EU) than for non-EU countries, while public opinion and health had a greater importance in the latter. Non-EU countries relied more on non-native plant species than EU countries, thus deviating from ecological restoration guidelines. Nursery-grown plants used were mostly of local or regional provenance, whilst seeds were mostly of national provenance. Unexpected restoration results (e.g. inadequate biodiversity) were reported for 50% of the projects and restoration success was never evaluated in 22%. Long term evaluation (>6years) was only performed in 31% of cases, and based primarily on plant diversity and cover. The use of non-native species and species of exogenous provenances may: i) entail the loss of local genetic and functional trait diversity, critical to cope with drought, particularly under the predicted climate change scenarios, and ii) lead to unexpected competition with native species and/or negatively impact local biotic interactions. Absent or inappropriate monitoring may prevent the understanding of restoration trajectories, precluding adaptive management strategies, often crucial to create functional ecosystems able to provide ecosystem services. The overview of ecological restoration projects in the Mediterranean Basin revealed high variability among practices and highlighted the need for improved scientific assistance and information exchange, greater use of native species of local provenance, and more long

  6. Assessing floodplain restoration success using soil morphology indicators

    Science.gov (United States)

    Guenat, Claire; Fournier, Bertrand; Bullinger-Weber, Géraldine; Grin, Karin; Pfund, Simona; Mitchell, Edward

    2010-05-01

    Floodplains are complex ecological systems that fulfil different ecological, economic and social functions related to physical, chemical, and biological processes. The fluvial dynamics of most rivers in industrialized countries have been altered to such an extent that floodplains are now one of the most threatened ecosystems worldwide. This adverse impact has been widely recognized and, nowadays, extensive attempts are underway to return rivers to more natural conditions and restore their ecological quality and essential ecosystem functions. As a consequence, the number of restoration projects worldwide is rapidly increasing. However, despite an estimated global cost of more than 1 billion dollars annually, there is a crucial lack of monitoring and quantitative evaluations. Indeed, most projects are never monitored post-restoration (NRC 1992). In Switzerland, only 35% of the projects include a monitoring program mainly based on flora and fauna (BAFU). The design, selection and optimization of indicators for project monitoring are of major importance for sustainable management of riverine ecosystems. However, despite the growing body of literature on potential indicators and criteria for assessing the success of restoration projects no standardised or generally applicable method exists. Furthermore, soils are rarely considered among the possible indicators despite their crucial roles in ecosystems such as decomposition, supplying resources (habitats, gene pool, biomass, and raw materials), and environmental interactions (storage, filtering, transformation). We therefore hypothesized that soils may constitute an appropriate synthetic and functional indicator for the evaluation of river restoration success, especially in the framework of river widening aiming to increase the terrestrial biodiversity. In agreement with the current concepts of river restoration, we propose an assessment tool for floodplain restoration based on three soil morphology criteria (soil

  7. Web application to access U.S. Army Corps of Engineers Civil Works and Restoration Projects information for the Rio Grande Basin, southern Colorado, New Mexico, and Texas

    Science.gov (United States)

    Archuleta, Christy-Ann M.; Eames, Deanna R.

    2009-01-01

    The Rio Grande Civil Works and Restoration Projects Web Application, developed by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers (USACE) Albuquerque District, is designed to provide publicly available information through the Internet about civil works and restoration projects in the Rio Grande Basin. Since 1942, USACE Albuquerque District responsibilities have included building facilities for the U.S. Army and U.S. Air Force, providing flood protection, supplying water for power and public recreation, participating in fire remediation, protecting and restoring wetlands and other natural resources, and supporting other government agencies with engineering, contracting, and project management services. In the process of conducting this vast array of engineering work, the need arose for easily tracking the locations of and providing information about projects to stakeholders and the public. This fact sheet introduces a Web application developed to enable users to visualize locations and search for information about USACE (and some other Federal, State, and local) projects in the Rio Grande Basin in southern Colorado, New Mexico, and Texas.

  8. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-06-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  9. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Effors; US Geological Survey Reports, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Munz, Carrie S. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-02-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the third year of at least a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  10. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone

    Science.gov (United States)

    Howard, Rebecca J.; Day, Richard H.; Krauss, Ken W.; From, Andrew S.; Allain, Larry K.; Cormier, Nicole

    2017-01-01

    Extensive hydrologic modifications in coastal regions across the world have occurred to support infrastructure development, altering the function of many coastal wetlands. Wetland restoration success is dependent on the existence of hydrologic regimes that support development of appropriate soils and the growth and persistence of wetland vegetation. In Florida, United States, the Comprehensive Everglades Restoration Program (CERP) seeks to restore, protect, and preserve water resources of the greater Everglades region. Herein we describe vegetation dynamics in a mangrove-to-marsh ecotone within the impact area of a CERP hydrologic restoration project currently under development. Vegetation communities are also described for a similar area outside the project area. We found that vegetation shifts within the impact area occurred over a 7-year period; cover of herbaceous species varied by location, and an 88% increase in the total number of mangrove seedlings was documented. We attribute these shifts to the existing modified hydrologic regime, which is characterized by a low volume of freshwater sheet flow compared with historical conditions (i.e. before modification), as well as increased tidal influence. We also identified a significant trend of decreasing soil surface elevation at the impact area. The CERP restoration project is designed to increase freshwater sheet flow to the impact area. Information from our study characterizing existing vegetation dynamics prior to implementation of the restoration project is required to allow documentation of long-term project effects on plant community composition and structure within a framework of background variation, thereby allowing assessment of the project's success in restoring critical ecosystem functions.

  11. Public support for river restoration. A mixed-method study into local residents' support for and framing of river management and ecological restoration in the Dutch floodplains.

    Science.gov (United States)

    Buijs, Arjen E

    2009-06-01

    In many European countries, accommodating water has become the dominant paradigm in river management. In the Netherlands, extensive river restoration projects are being implemented, many of which draw serious opposition from the public. To investigate the causes of such opposition, a comprehensive study of public attitudes towards river restoration was conducted in three floodplains, both before and after river restoration. The study combined quantitative questionnaires (N=562) with open interviews (N=29). This paper describes how local residents perceive the effects of river restoration on landscape quality and how residents and protest groups use landscape quality in combination with other arguments to strategically frame river management policies. Results show that measurement of the perceived outcomes of nature restoration needs to be complemented by a more dynamic type of research, focusing on the social processes of the framing of restoration plans. Theoretically, the paper aims to contribute to the development of a rigorous research strategy to study framing processes in environmental management, using a mixed-methods approach. In general, local residents are supportive of river restoration projects. Although restoration may diminish feelings of attachment to an area, for most people this negative effect is compensated by the positive effects on scenic beauty and perceived protection from flooding. However, these positive effects may become contested because of the active framing of river restoration by protest groups. Residents use three distinct frames to give meaning to river restoration projects: (i) an attachment frame, focusing on cultural heritage and place attachment (ii) an attractive nature frame, focusing on nature as attractive living space and the intrinsic value of nature (iii) a rurality frame, focusing on rural values, agriculture and cultural heritage. Resistance to river restoration plans stems from the attachment and rurality frames

  12. Planning for environmental restoration of uranium mining and milling sites in Central and Eastern Europe. Proceedings of a workshop held under the technical co-operation project RER/9/022 on environmental restoration in Central and Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    An IAEA Regional Technical Co-operation (TC) project RER/9/022 on ``Environmental Restoration`` for central and eastern Europe and the former USSR was launched in 1992 and concluded at the end of 1996. The first phase of this project had the primary purpose of identifying and characterizing radioactively contaminated sites in the region, including evaluation of doses to the general public and other environmental impacts. The main result of this phase of the project were published in IAEA-TECDOC-865. A new 1995-1996 phase of the project focused on the radioactive contamination of uranium mining and milling sites and the development of plans for environmental restoration of these sites. While the 1993-1994 phase aimed at attracting the attention of Member States in the region to a long neglected problem, the second phase served as a stimulus to initiate concrete planning activities that would lead to corrective actions in highly contaminated areas in those countries. As a consequence, the project emphasis shifted from scientific discussions to the identification of responsibilities, planning activities, and the assessment of existing and required resources for the eventual implementation of restoration plans. The 1995-1996 phase of the project consisted of a planning meeting and three workshops that addressed different topical themes. The papers compiled in this publication were presented at the last workshop, held in Felix, Romania, 4-8 November 1996. They summarize national situations in environmental contamination as of the end of 1996 and ongoing or planned actions for remediation. Refs, figs, tabs.

  13. Planning for environmental restoration of uranium mining and milling sites in Central and Eastern Europe. Proceedings of a workshop held under the technical co-operation project RER/9/022 on environmental restoration in Central and Eastern Europe

    International Nuclear Information System (INIS)

    1997-11-01

    An IAEA Regional Technical Co-operation (TC) project RER/9/022 on ''Environmental Restoration'' for central and eastern Europe and the former USSR was launched in 1992 and concluded at the end of 1996. The first phase of this project had the primary purpose of identifying and characterizing radioactively contaminated sites in the region, including evaluation of doses to the general public and other environmental impacts. The main result of this phase of the project were published in IAEA-TECDOC-865. A new 1995-1996 phase of the project focused on the radioactive contamination of uranium mining and milling sites and the development of plans for environmental restoration of these sites. While the 1993-1994 phase aimed at attracting the attention of Member States in the region to a long neglected problem, the second phase served as a stimulus to initiate concrete planning activities that would lead to corrective actions in highly contaminated areas in those countries. As a consequence, the project emphasis shifted from scientific discussions to the identification of responsibilities, planning activities, and the assessment of existing and required resources for the eventual implementation of restoration plans. The 1995-1996 phase of the project consisted of a planning meeting and three workshops that addressed different topical themes. The papers compiled in this publication were presented at the last workshop, held in Felix, Romania, 4-8 November 1996. They summarize national situations in environmental contamination as of the end of 1996 and ongoing or planned actions for remediation

  14. 78 FR 56921 - South Bay Salt Pond Restoration Project, Phase 2 (Ponds R3, R4, R5, S5, A1, A2W, A8, A8S, A19...

    Science.gov (United States)

    2013-09-16

    ...-F2013227943] South Bay Salt Pond Restoration Project, Phase 2 (Ponds R3, R4, R5, S5, A1, A2W, A8, A8S, A19... South Bay Salt Pond Restoration Project and consists of restoring and enhancing over 2,000 acres of... Pollution Control Plant located at 700 Los Esteros Road, San Jose, California. The details of the public...

  15. How public issues shape environmental restoration plans - experiences with Colorado UMTRA projects

    International Nuclear Information System (INIS)

    Hunt, B.; Monaghan, J.

    1991-01-01

    Federal environmental restoration plans are being significantly impacted by open-quotes grassrootsclose quotes public pressure and by community demands, some of which have little relation to the technical standards of remediation and which go well beyond authorizing legislation. These demands often represent significant additional project costs. A review of Uranium Mill Tailings Remedial Action (UMTRA) Program experiences in Colorado suggests that the more serious open-quotes grassrootsclose quotes issues associated with remediation rarely diminish and, in fact, will intensify over time. This presents program administrators with the dilemma of attempting to adhere to program mandates and keep projects within budget, while at the same time trying to be responsive to community concerns. Such high-profiled community debates have the ability to delay remediation and even jeopardize important projects. After prolonged public debate, when it becomes clear an issue will not dissipate, project officials may be forced to meet certain community demands. Often, this results in not only increased costs, but a loss of public confidence in clean-up efforts. Evidence also suggests, however, that when critical public issues can be identified and addressed before they become overly contentious, significant problems and controversy can be avoided; but, the situation is made difficult because project officials often lack the policy guidance to determine which, if any, community demands should be addressed and to what extent they should be met. The adoption of several key public policy principles by program administrators will provide a greater ability to address community demands in a timely and successful manner

  16. Selecting cost-effective areas for restoration of ecosystem services.

    Science.gov (United States)

    Adame, M F; Hermoso, V; Perhans, K; Lovelock, C E; Herrera-Silveira, J A

    2015-04-01

    Selection of areas for restoration should be based on cost-effectiveness analysis to attain the maximum benefit with a limited budget and overcome the traditional ad hoc allocation of funds for restoration projects. Restoration projects need to be planned on the basis of ecological knowledge and economic and social constraints. We devised a novel approach for selecting cost-effective areas for restoration on the basis of biodiversity and potential provision of 3 ecosystem services: carbon storage, water depuration, and coastal protection. We used Marxan, a spatial prioritization tool, to balance the provision of ecosystem services against the cost of restoration. We tested this approach in a mangrove ecosystem in the Caribbean. Our approach efficiently selected restoration areas that at low cost were compatible with biodiversity targets and that maximized the provision of one or more ecosystem services. Choosing areas for restoration of mangroves on the basis carbon storage potential, largely guaranteed the restoration of biodiversity and other ecosystem services. © 2014 Society for Conservation Biology.

  17. Quantifying the "So what?" of Restoration: A Framework for Evaluating the Ecological and Socio-economic Outcomes of Restoration Activities in the Gulf of Mexico

    Science.gov (United States)

    Henkel, J. R.; Dausman, A.; Cowan, J.; Sutter, B.

    2017-12-01

    Healthy and sustainable ecosystems are essential for thriving and resilient coastal communities. As a result of settlements following the Deepwater Horizon oil spill, the Gulf Coast Ecosystem Restoration Council (Council) and other funding entities, will receive billions of dollars over the next 15 years for restoration projects and programs. These and future restoration efforts present an opportunity to improve the function of coastal wetlands in the Gulf of Mexico, and potentially address long-standing barriers to ecosystem health and resilience in the region. In its Comprehensive Plans, the Council has committed to science-based decision-making, collaboration among its eleven state and federal members, and close coordination with other Gulf restoration and conservation funding efforts including NRDA, NFWF and other federal programs to leverage resources and integrate complementary restoration efforts. To help fulfill these commitments the Council is exploring methods and tools to collect and assess data to evaluate and report on both ecological and socio-economic outcomes of restoration projects. Application of these tools in coordination with restoration partners, will demonstrate the cascading benefits of ecosystem restoration in a quantifiable way, and can help decision-makers increase investments in ecosystem restoration that will support the long-term sustainability of coastal systems. An understanding of ecosystem function and services can also provide a transparent lens for communicating the results of successful ecosystem restoration projects to the public (helping answer the "So what?" of ecosystem restoration). As the Council moves forward making decisions based on the best available science, improving ecosystem functioning and services will play a role in project and program selection and will result in more resilient ecosystems. This will enable the Council to help communities enhance their ability to recover from natural and manmade disasters and

  18. Stream hydrology limits recovery of riparian ecosystems after wolf reintroduction.

    Science.gov (United States)

    Marshall, Kristin N; Hobbs, N Thompson; Cooper, David J

    2013-04-07

    Efforts to restore ecosystems often focus on reintroducing apex predators to re-establish coevolved relationships among predators, herbivores and plants. The preponderance of evidence for indirect effects of predators on terrestrial plant communities comes from ecosystems where predators have been removed. Far less is known about the consequences of their restoration. The effects of removal and restoration are unlikely to be symmetrical because removing predators can create feedbacks that reinforce the effects of predator loss. Observational studies have suggested that the reintroduction of wolves to Yellowstone National Park initiated dramatic restoration of riparian ecosystems by releasing willows from excessive browsing by elk. Here, we present results from a decade-long experiment in Yellowstone showing that moderating browsing alone was not sufficient to restore riparian zones along small streams. Instead, restoration of willow communities depended on removing browsing and restoring hydrological conditions that prevailed before the removal of wolves. The 70-year absence of predators from the ecosystem changed the disturbance regime in a way that was not reversed by predator reintroduction. We conclude that predator restoration may not quickly repair effects of predator removal in ecosystems.

  19. Groundwater and surface water dynamics of Na and Cl in an urban stream: effects of road salts

    Science.gov (United States)

    AbstractRoad salts are a growing environmental and health concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na and Cl in an urban stream, Minebank Run (MBR), MD. We observed an increasing salinity trend in this restored stream. Current b...

  20. The precision problem in conservation and restoration

    Science.gov (United States)

    Hiers, J. Kevin; Jackson, Stephen T.; Hobbs, Richard J.; Bernhardt, Emily S.; Valentine, Leonie E.

    2016-01-01

    Within the varied contexts of environmental policy, conservation of imperilled species populations, and restoration of damaged habitats, an emphasis on idealized optimal conditions has led to increasingly specific targets for management. Overly-precise conservation targets can reduce habitat variability at multiple scales, with unintended consequences for future ecological resilience. We describe this dilemma in the context of endangered species management, stream restoration, and climate-change adaptation. Inappropriate application of conservation targets can be expensive, with marginal conservation benefit. Reduced habitat variability can limit options for managers trying to balance competing objectives with limited resources. Conservation policies should embrace habitat variability, expand decision-space appropriately, and support adaptation to local circumstances to increase ecological resilience in a rapidly changing world.

  1. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Farmington Project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Farmington project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 71 groundwater samples, 345 stream sediment samples, and 178 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from <0.20 to 21.77 ppB. The highest values are from groundwaters producing from areas in or near the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations, and the Farmington Canyon Complex. The uranium:boron ratio delineates an anomalous trend associated with the Farmington Canyon Complex. Variables associated with uranium in groundwaters producing from the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations include the uranium:sulfate ratio, boron, barium, potassium, lithium, silicon, chloride, selenium, and vanadium. Soluble uranium concentrations (U-FL) in stream sediments range from 0.99 to 86.41 ppM. Total uranium concentrations (U-NT) range from 1.60 to 92.40 ppM. Thorium concentrations range from <2 to 47 ppM. Anomalous concentrations of these variables are associated with the Farmington Canyon Complex. Variables which are associated with uranium include cerium, sodium, niobium, phosphorus, titanium, and yttrium

  2. Effect of severe hurricanes on biorock coral reef restoration projects in Grand Turk, Turks and Caicos Islands.

    Science.gov (United States)

    Wells, Lucy; Perez, Fernando; Hibbert, Marlon; Clerveaux, Luc; Johnson, Jodi; Goreau, Thomas J

    2010-10-01

    Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5 m deep in Grand Turk, at Oasis (October 2006) and at Governor's Beach (November 2007). Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor's Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor's Beach. After hurricanes Hanna and Ike (September 2008) the Governor's Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure). Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas.

  3. Multi-method characterization of low-level radioactive waste at two Sandia National Laboratories environmental restoration sites

    International Nuclear Information System (INIS)

    Johnson, C.E. Jr.; Galloway, R.B.; Dotson, P.W.

    1999-01-01

    This paper discusses the application of multiple characterization methods to radioactive wastes generated by the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration (ER) Project during the excavation of buried materials at the Classified Waste Landfill (CWLF) and the Radioactive Waste Landfill (RWL). These waste streams include nuclear weapon components and other refuse that are surface contaminated or contain sealed radioactive sources with unknown radioactivity content. Characterization of radioactive constituents in RWL and CWLF waste has been problematic, due primarily to the lack of documented characterization data prior to burial. A second difficulty derives from the limited information that ER project personnel have about weapons component design and testing that was conducted in the early days of the Cold War. To reduce the uncertainties and achieve the best possible waste characterization, the ER Project has applied both project-specific and industry-standard characterization methods that, in combination, serve to define the types and quantities of radionuclide constituents in the waste. The resulting characterization data have been used to develop waste profiles for meeting disposal site waste acceptance criteria

  4. StreamNet, annual report FY 2000; ANNUAL

    International Nuclear Information System (INIS)

    Schmidt, Bruce R.

    2001-01-01

    The StreamNet Project is a cooperative project that provides basic fishery management data in a consistent format across the Columbia Basin region, with some data from outside the region. Specific categories of data are acquired from the multiple data generating agencies in the Columbia Basin, converted into a standardized data exchange format (DEF) and distributed to fish researchers, managers and decision makers directly or through an on-line data retrieval system (www.streamnet.org). The project is funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. This cooperative effort is composed of a region-wide project administered by the Pacific States Marine Fisheries Commission (PSMFC) that is responsible for project management, regional data management and data delivery (Region), plus seven contributing projects within the data generating entities: Columbia River Intertribal Fish Commission (CRITFC); Idaho Department of Fish and Game (IDFG); Montana Fish, Wildlife and Parks (MFWP); Oregon Department of Fish and Wildlife (ODFW); Shoshone-Bannock Tribes; U. S. Fish and Wildlife Service (FWS); and Washington Department of Fish and Wildlife (WDFW). The contributing projects are funded through the StreamNet contract but work within their respective agencies and are referred to here as the agency's StreamNet project (for example, ''IDFG StreamNet'' for Idaho's project). The StreamNet Project provides an important link in the chain of data flow in the Columbia Basin, with specific emphasis on data collected routinely over time by management agencies. Basic fish related data are collected in the field by the various state, tribal and federal agencies in the basin for purposes related to each agency's individual mission and responsibility. As a result, there often is a lack of standardization among agencies in field methodology or data management. To be able to utilize data for comparison or

  5. From repairing the damaged landscape to restoration project

    Directory of Open Access Journals (Sweden)

    Céline Granjou

    2010-10-01

    Full Text Available The study adopts an empirical sociological approach to analyse how the objectives behind the revegetation of ski trails and runs in the French alpine resort of Alpe d’Huez have evolved since the 1970s. A revegetation programme was first introduced to repair the scars left by the works conducted to equip the resort with infrastructures, and then, over time, it became a more complex restoration project. At first, revegetation techniques were developed to fight soil erosion, but soon also became associated with the idea of “turning the mountain green again”. Now, 40 years later, revegetation is aimed at restoring both a natural ecosystem and a cultural landscape. The ski resort’s managers, local farmers, technicians, and those conducting research in the area share a common desire to promote autochthony, which in some cases runs the risk of reproducing folklore. Far from adopting an overriding ethical perspective, the study suggests that the area’s physical characteristics, specific history and configuration of local actors have shaped and continue to shape both the manner in which ecological restoration is implemented, through political choices and technical decisions, and the debates it gives rise to. The study concludes by examining the specificity of the findings for Alpe d’Huez and discussing their validity for other alpine ski resorts.A partir d’une approche sociologique empirique, ce texte propose une analyse de la mise en œuvre de la revégétalisation sur la station de l’Alpe d’Huez depuis les années 1970. Il montre comment la revégétalisation est passée d’un objectif de réparation des cicatrices provoquées par les aménagements à une entreprise plus complexe de restauration. S’il s’agissait au départ de répondre à un objectif technique de lutte contre l’érosion, la revégétalisation a pris rapidement une tournure paysagère (reverdissement ; elle a ensuite été pensée dans une perspective de

  6. ATLAS Live: Collaborative Information Streams

    CERN Document Server

    Goldfarb, S; The ATLAS collaboration

    2010-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using the SCALA digital signage software system. The system is robust and flexible, allowing for the usage of scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intrascreen divisibility. The video is made available to the collaboration or public through the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video t...

  7. A decision support system for restoration planning of stream valley ecosystems

    NARCIS (Netherlands)

    Pieterse, N.M.; Verkroost, A.W.M.; Wassen, M.; Olde Venterink, H.; Kwakernaak, C.

    2002-01-01

    Despite efforts that have been put into conservation, there is a continuing loss of species and ecosystems in Western Europe. There is a growing awareness that restoration is an essential step to stop this tide. Unfortunately, there is lack of understanding about the multitude of functions and the

  8. Time-Based Data Streams: Fundamental Concepts for a Data Resource for Streams

    Energy Technology Data Exchange (ETDEWEB)

    Beth A. Plale

    2009-10-10

    Real time data, which we call data streams, are readings from instruments, environmental, bodily or building sensors that are generated at regular intervals and often, due to their volume, need to be processed in real time. Often a single pass is all that can be made on the data, and a decision to discard or keep the instance is made on the spot. Too, the stream is for all practical purposes indefinite, so decisions must be made on incomplete knowledge. This notion of data streams has a different set of issues from a file, for instance, that is byte streamed to a reader. The file is finite, so the byte stream is becomes a processing convenience more than a fundamentally different kind of data. Through the duration of the project we examined three aspects of streaming data: the first, techniques to handle streaming data in a distributed system organized as a collection of web services, the second, the notion of the dashboard and real time controllable analysis constructs in the context of the Fermi Tevatron Beam Position Monitor, and third and finally, we examined provenance collection of stream processing such as might occur as raw observational data flows from the source and undergoes correction, cleaning, and quality control. The impact of this work is severalfold. We were one of the first to advocate that streams had little value unless aggregated, and that notion is now gaining general acceptance. We were one of the first groups to grapple with the notion of provenance of stream data also.

  9. Drivers of Ecological Restoration: Lessons from a Century of Restoration in Iceland

    Directory of Open Access Journals (Sweden)

    Ása L. Aradóttir

    2013-12-01

    Full Text Available We analyzed the main drivers for ecological restoration in Iceland from 1907 to 2010 and assessed whether the drivers have changed over time and what factors might explain the changes, if any. Our study was based on a catalogue of 100 restoration projects, programs, and areas, representing 75% to 85% of all restoration activities in Iceland. Catastrophic erosion was an early driver for soil conservation and restoration efforts that still ranked high in the 2000s, reflecting the immense scale of soil erosion and desertification in Iceland. Socioeconomic drivers such as farming and the provision of wood products were strong motivators of ecological restoration over most of the 20th century, although their relative importance decreased with time as the number and diversity of drivers increased. In the 1960s and 1970s, the construction of hard infrastructure, and moral values such as improving the aesthetics of the countryside and "repaying the debt to the land" emerged as motivations for restoration actions. In the late 1990s, the United Nations Climate Change Convention became a driver for restoration, and the importance of nature conservation and recreation increased. Technological development and financial incentives did not show up as drivers of ecological restoration in our study, although there are some indications of their influence. Furthermore, policy was a minor driver, which might reflect weak policy instruments for ecological restoration and some counteractive policies.

  10. Fish movement ecology in high gradient headwater streams: Its relevance to fish passage restoration through stream culvert barriers

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.

    2007-01-01

    Restoration of fish passage through culvert barriers has emerged as a major issue in the Pacific Northwest and nationwide, in part, because of their potential influence on fish movement. Movement is an essential mechanism by which mobile animals acquire the resources necessary for the successful completion of their life-cycles. In this report, we provide a brief review of some essential characteristics of animal movement and examples from a focal group of fishes in Washington State: salmon, trout, and char. We begin by outlining some basic characteristics of animal movement and then apply that foundation to the case of salmonid fishes. Next we consider the consequences of disrupting fish movement with human-constructed barriers, such as culverts. Finally, this body of evidence is summarized, and we propose a short list of what we view as high priority information needs to support more effective restoration of fish passage through culverts.

  11. Authentication for Propulsion Test Streaming Video

    Data.gov (United States)

    National Aeronautics and Space Administration — A streaming video system was developed and implemented at SSC to support various propulsion projects at SSC. These projects included J-2X and AJ-26 rocket engine...

  12. Sex and the single Salix: considerations for riparian restoration

    Science.gov (United States)

    Thomas D. Landis; David R. Dreesen; R. Kasten Dumroese

    2003-01-01

    Most restoration projects strive to create a sustain able plant community but exclusive use of vegetatively propagated material may be preventing this goal. The dioecious willows and cottonwoods of the Salicaceae are widely used in riparian restoration projects. Hardwood cuttings have traditionally been used to propagate these species in nurseries, and live stakes,...

  13. Marine Ecosystem Restoration in Changing European Seas

    DEFF Research Database (Denmark)

    Ounanian, Kristen; Delaney, Alyne; Carballo Cárdenas, Eira

    2017-01-01

    and using different narratives of marine restoration, and being confronted with different forms of uncertainties. The paper’s overall contribution is the synthesis of these seemingly disparate components (narratives of restoration, uncertainty in decision making, and governance arrangements) to evaluate...... the impact of existing (maritime and environmental) policies, the governance setting, definitions of restoration and uncertainties on the effectiveness of marine restoration projects. Such a synthesis is a necessary move toward a systematic evaluation of ways to govern and formally institutionalize marine...

  14. GAGES: A stream gage database for evaluating natural and alteredflow conditions in the conterminous United States

    Science.gov (United States)

    Falcone, James A.; Carlisle, Daren M.; Wolock, David M.; Meador, Michael R.

    2010-01-01

    Stream flow is a controlling element in the ecology of rivers and streams. Knowledge of the natural flow regime facilitates the assessment of whether specific hydrologic attributes have been altered by humans in a particular stream and the establishment of specific goals for stream-flow restoration. Because most streams are ungaged or have been altered by human influences, characterizing the natural flow regime is often only possible by estimating flow characteristics based on nearby stream gages of reference quality, i.e., gaged locations that are least disturbed by human influences. The ability to evaluate natural stream flow, that which is not altered by human activities, would be enhanced by the existence of a nationally consistent and up-to-date database of gages in relatively undisturbed watersheds.

  15. Design for Restoration: beyond the survey

    Directory of Open Access Journals (Sweden)

    Giovanni Carbonara

    2015-01-01

    Full Text Available  This new issue, that we can define special, marks an important change for DISEGNARECON (its transfer from the University of Bologna to the University of L’Aquila facing the topic of the Design for the Restoration in a way that is special too. Treated in fact - beside the outgoing editor in chief, Roberto Mingucci - by Mario Centofanti, who now assumes the responsibility for the magazine, and Giovanni Carbonara, which is definitely authoritative reference in the field. Sharing a strong interest for communicating the Restoration Project, they intended to indicate the substantial union of methods and objectives between the disciplines of architectural survey and of restoration, which makes the meaning of an aggregation now also institutionally formalized and particularly significant for the project on the existing architecture. 

  16. A morphological comparison of narrow, low-gradient streams traversing wetland environments to alluvial streams.

    Science.gov (United States)

    Jurmu, Michael C

    2002-12-01

    Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.

  17. 78 FR 1246 - Otay River Estuary Restoration Project; South San Diego Bay Unit and Sweetwater Marsh Unit of the...

    Science.gov (United States)

    2013-01-08

    ...-FF08RSDC00] Otay River Estuary Restoration Project; South San Diego Bay Unit and Sweetwater Marsh Unit of the... scoping with regard to the environmental impact statement (EIS) for the proposed Otay River Estuary... one of the following methods. Email: [email protected] . Please include ``Otay Estuary NOI'' in the...

  18. Richland Environmental Restoration Project management action process document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    A critical mission of the U.S. Department of Energy (DOE) is the planning, implementation, and completion of environmental restoration programs at DOE facilities. An integral part of this mission involves the safe and cost-effective environmental restoration of the Hanford Site. For over 40 years the Hanford Site supported United States national defense programs, largely through the production of nuclear materials. One legacy of historical Hanford Site operations is a significant waste inventory of radioactive and/or regulated chemical materials. Releases of these materials have, in some cases, contaminated the Hanford Site environment. The DOE Richland Operations Office (RL) is responsible for protecting human health and the environment from potential Hanford Site environmental hazards by identifying, assessing, and mitigating risks posed by contaminated sites.

  19. Richland Environmental Restoration Project management action process document

    International Nuclear Information System (INIS)

    1996-04-01

    A critical mission of the U.S. Department of Energy (DOE) is the planning, implementation, and completion of environmental restoration programs at DOE facilities. An integral part of this mission involves the safe and cost-effective environmental restoration of the Hanford Site. For over 40 years the Hanford Site supported United States national defense programs, largely through the production of nuclear materials. One legacy of historical Hanford Site operations is a significant waste inventory of radioactive and/or regulated chemical materials. Releases of these materials have, in some cases, contaminated the Hanford Site environment. The DOE Richland Operations Office (RL) is responsible for protecting human health and the environment from potential Hanford Site environmental hazards by identifying, assessing, and mitigating risks posed by contaminated sites

  20. Effect of severe hurricanes on Biorock Coral Reef Restoration Projects in Grand Turk, Turks and Caicos Islands

    Directory of Open Access Journals (Sweden)

    Lucy Wells

    2010-10-01

    Full Text Available Artificial reefs are often discouraged in shallow waters over concerns of storm damage to structures and surrounding habitat. Biorock coral reef restoration projects were initiated in waters around 5m deep in Grand Turk, at Oasis (October 2006 and at Governor’s Beach (November 2007. Hemi-cylindrical steel modules, 6m long were used, four modules at Oasis and six at Governor’s Beach. Each project has over 1200 corals transplanted from sites with high sedimentation damage, and are regularly monitored for coral growth, mortality and fish populations. Corals show immediate growth over wires used to attach corals. Growth has been measured from photographs using a software program and is faster at Governor’s Beach. After hurricanes Hanna and Ike (September 2008 the Governor’s Beach structure was fully standing since the waves passed straight through with little damage, the Oasis structures which were tie-wired rather than welded had one module collapse (since been replaced with a new, welded structure. Hurricane Ike was the strongest hurricane on record to hit Grand Turk. Most cables were replaced following the hurricanes due to damage from debris and high wave action. The projects lost about a third of the corals due to hurricanes. Most of those lost had only been wired a few days before and had not yet attached themselves firmly. These projects have regenerated corals and fish populations in areas of barren sand or bedrock and are now attractive to snorkelers. High coral survival and low structural damage after hurricanes indicate that Biorock reef restoration can be effective in storm-impacted areas. Rev. Biol. Trop. 58 (Suppl. 3: 141-149. Epub 2010 October 01.

  1. The Precision Problem in Conservation and Restoration.

    Science.gov (United States)

    Hiers, J Kevin; Jackson, Stephen T; Hobbs, Richard J; Bernhardt, Emily S; Valentine, Leonie E

    2016-11-01

    Within the varied contexts of environmental policy, conservation of imperilled species populations, and restoration of damaged habitats, an emphasis on idealized optimal conditions has led to increasingly specific targets for management. Overly-precise conservation targets can reduce habitat variability at multiple scales, with unintended consequences for future ecological resilience. We describe this dilemma in the context of endangered species management, stream restoration, and climate-change adaptation. Inappropriate application of conservation targets can be expensive, with marginal conservation benefit. Reduced habitat variability can limit options for managers trying to balance competing objectives with limited resources. Conservation policies should embrace habitat variability, expand decision-space appropriately, and support adaptation to local circumstances to increase ecological resilience in a rapidly changing world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Channel response in a semiarid stream to removal of tamarisk and Russian olive

    Science.gov (United States)

    Jaeger, Kristin L.; Wohl, Ellen

    2011-02-01

    We report observed short-term (3 years) channel adjustment in an incised, semiarid stream to the removal of invasive plants, tamarisk (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) by (1) removing the above-ground portion of the plant (cut-stump method) and (2) removing the entire plant (whole-plant method). The stream flows through Canyon de Chelly National Monument in Arizona, USA., draining an ˜1500 km2 catchment. Average channel width is 13 m; average thalweg depth is 2-3 m, although channel banks exceed 8 m locally. Channels adjusted primarily through widening, with significantly larger changes occurring in whole-plant removal reaches; however, neither plant removal method elicited large-scale bank destabilization, and the channels remained entrenched. Particular site conditions limiting large-scale destabilization include the absence of sufficient streamflow magnitudes, the presence of clay layers at the bank toe, the remaining presence of native vegetation, and the entrenched morphology. Our findings serve as a cautionary note regarding the temporal and spatial variability in channel response to invasive plant removal and underscore the importance of considering site-specific conditions in future restoration projects that include invasive plant removal.

  3. Application of Science-Based Restoration Planning to a Desert River System

    Science.gov (United States)

    Laub, Brian G.; Jimenez, Justin; Budy, Phaedra

    2015-06-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  4. Application of science-based restoration planning to a desert river system

    Science.gov (United States)

    Laub, Brian G.; Jimenez, Justin; Budy, Phaedra

    2015-01-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  5. STREAMS - Technology Programme. Yearbook 2003

    International Nuclear Information System (INIS)

    2003-01-01

    The STREAMS Technology Programme addresses municipal waste. Municipal waste is composed of waste from households and small businesses. The programme focuses on five areas Waste prevention, Collection, transportation, and management of waste streams, Waste treatment technologies, Waste recycling into raw materials and new products, Landfill technologies. The development projects of the STREAMS Programme utilize a number of different technologies, such as biotechnology, information technology, materials technology, measurement and analysis, and automation technology. Finnish expertise in materials recycling technologies and related electronics and information technology is extremely high on a worldwide scale even though the companies represent SMEs. Started in 2001, the STREAMS programme has a total volume of 27 million euros, half of which is funded by Tekes. The programme runs through the end of 2004. (author)

  6. River Restoration and Meanders

    Directory of Open Access Journals (Sweden)

    G. Mathias Kondolf

    2006-12-01

    Full Text Available Among the most visually striking river restoration projects are those that involve the creation of a new channel, often in a new alignment and generally with a form and dimensions that are different from those of the preproject channel. These channel reconstruction projects often have the objective of creating a stable, single-thread, meandering channel, even on rivers that were not historically meandering, on rivers whose sediment load and flow regime would not be consistent with such stable channels, or on already sinuous channels whose bends are not symmetrical. Such meandering channels are often specified by the Rosgen classification system, a popular restoration design approach. Although most projects of this type have not been subject to objective evaluation, completed postproject appraisals show that many of these projects failed within months or years of construction. Despite its, at best, mixed results, this classification and form-based approach continues to be popular because it is easy to apply, because it is accessible to those without formal training in fluvial geomorphology, and probably because it satisfies a deep-seated, although unrecognized, cultural preference for single-thread meandering channels. This preference is consistent with 18th-century English landscape theories, which held the serpentine form to be ideal and led to widespread construction of meandering channels on the country estates of the era. The preference for stability in restored channels seems to be widely accepted by practitioners and funders despite the fact that it is antithetical to research showing that dynamically migrating channels have the greatest ecological richness.

  7. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  8. Mechanical site preparation for forest restoration

    Science.gov (United States)

    Magnus Lof; Daniel C. Dey; Rafael M. Navarro; Douglass F. Jacobs

    2012-01-01

    Forest restoration projects have become increasingly common around the world and planting trees is almost always a key component. Low seedling survival and growth may result in restoration failures and various mechanical site preparation techniques for treatment of soils and vegetation are important tools used to help counteract this. In this article, we synthesize the...

  9. Gridded Surface Subsurface Hydrologic Analysis Modeling for Analysis of Flood Design Features at the Picayune Strand Restoration Project

    Science.gov (United States)

    2016-08-01

    restore its predrainage hydrology and ecological function for beneficial effects on flora and fauna in the project area and surrounding public lands. The...partnership with South Florida Water Management District (SFWMD), is constructing these features. Engineering support is required for hydrologic and...simulation accuracy and related resource requirements. Spatial data products such as digital elevation models, surveyed channel cross sections, soil

  10. Deforestation and benthic indicators: how much vegetation cover is needed to sustain healthy Andean streams?

    Science.gov (United States)

    Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.

  11. In situ bioassays with Chironomus riparius larvae to biomonitor metal pollution in rivers and to evaluate the efficiency of restoration measures in mine areas

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Mafalda S. [CESAM and Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)], E-mail: mafaldafaria@sapo.pt; Lopes, Ricardo J. [CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, 4485-661 Vairao (Portugal); Malcato, Joao; Nogueira, Antonio J.A.; Soares, Amadeu M.V.M. [CESAM and Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2008-01-15

    In this study we evaluate the ability of an in situ bioassay with Chironomus riparius larvae, using larval development and growth as endpoints, to biomonitor water quality and to assess the biological recovery of metal contaminated freshwater ecosystems of mine areas that are subject of restoration measures. The bioassay was carried out in streams located near an abandoned goldmine in North Portugal, throughout an environmental rehabilitation of the mine (2002-2004). During this period, a decrease in the inhibition of larval growth in the metal contaminated stream was observed. The bioassay was also performed in streams located near an active tungsten mine in Central Portugal. Larval growth and development were highly inhibited in the stream that receives acid drainage from the tungsten mine and treated water from the AMD treatment station. The results indicate that the bioassay can be used to evaluate the efficiency of environmental restoration measures in mining areas. - In situ bioassays with Chironomus riparius larvae can be a suitable tool to monitor restoration efficiency after a long time of metallic sediment contamination.

  12. In situ bioassays with Chironomus riparius larvae to biomonitor metal pollution in rivers and to evaluate the efficiency of restoration measures in mine areas

    International Nuclear Information System (INIS)

    Faria, Mafalda S.; Lopes, Ricardo J.; Malcato, Joao; Nogueira, Antonio J.A.; Soares, Amadeu M.V.M.

    2008-01-01

    In this study we evaluate the ability of an in situ bioassay with Chironomus riparius larvae, using larval development and growth as endpoints, to biomonitor water quality and to assess the biological recovery of metal contaminated freshwater ecosystems of mine areas that are subject of restoration measures. The bioassay was carried out in streams located near an abandoned goldmine in North Portugal, throughout an environmental rehabilitation of the mine (2002-2004). During this period, a decrease in the inhibition of larval growth in the metal contaminated stream was observed. The bioassay was also performed in streams located near an active tungsten mine in Central Portugal. Larval growth and development were highly inhibited in the stream that receives acid drainage from the tungsten mine and treated water from the AMD treatment station. The results indicate that the bioassay can be used to evaluate the efficiency of environmental restoration measures in mining areas. - In situ bioassays with Chironomus riparius larvae can be a suitable tool to monitor restoration efficiency after a long time of metallic sediment contamination

  13. Viking GCMS Data Restoral and Perceiving Temperature on Other Worlds: Astrobiology Projects at NASA Ames

    Science.gov (United States)

    Guzman, Melissa

    2015-01-01

    The primary task for the summer was to procure the GCMS data from the National Space Science Data Coordinated Archive (NSSDCA) and to assess the current state of the data set for possible reanalysis opportunities. After procurement of the Viking GCMS data set and analysis of its current state, the internship focus shifted to preparing a plan for restoral and archiving of the GCMS data set. A proposal was prepared and submitted to NASA Headquarters to restore and make available the 8000 mass chromatographs that are the basic data generated by the Viking GCMS instrument. The relevance of this restoral and the methodology we propose for restoral is presented. The secondary task for the summer is to develop a thermal model for the perceived temperature of a human standing on Mars, Titan, or Europa. Traditionally, an equation called "Fanger's comfort equation" is used to measure the perceived temperature by a human in a given reference environment. However, there are limitations to this model when applied to other planets. Therefore, the approach for this project has been to derive energy balance equations from first principles and then develop a methodology for correlating "comfort" to energy balance. Using the -20 C walk-in freezer in the Space Sciences building at NASA Ames, energy loss of a human subject is measured. Energy loss for a human being on Mars, Titan and Europa are calculated from first principles. These calculations are compared to the freezer measurements, e.g. for 1 minute on Titan, a human loses as much energy as x minutes in a -20 C freezer. This gives a numerical comparison between the environments. These energy calculations are used to consider the physiological comfort of a human based on the calculated energy losses.

  14. Aquifer restoration at uranium in situ leach sites

    International Nuclear Information System (INIS)

    Anastasi, F.S.; Williams, R.E.

    1985-01-01

    In situ mining of uranium involves injection of a leaching solution (lixiviant) into an ore-bearing aquifer. Frequently, the ground water in the mined aquifer is a domestic or livestock water supply. As the lixiviant migrates through the ore body, uranium and various associated elements such as arsenic, selenium, molybdenum, vanadium and radium-226 are mobilized in the ground water. Aquifer restoration after in situ mining is not fully understood. Several methods have been developed to restore mined aquifers to pre-mining (baseline) quality. Commonly used methods include ground water sweeping, clean water injection, and treatment by ion exchange and reverse osmosis technologies. Ammonium carbonate lixiviant was used at one RandD in situ mine. Attempts were made to restore the aquifer using a variety of methods. Efforts were successful in reducing concentrations of the majority of contaminants to baseline levels. Concentrations of certain parameters, however, remained at levels above baseline six months after restoration ceased. Relatively large quantities of ground water were processed in the restoration attempt considering the small size of the project (1.25 acre). More thorough characterization of the hydrogeology of the site may have enhanced the effectiveness of restoration and reduced potential environmental impacts associated with the project. This paper presents some of the findings of a research project conducted by the Mineral Resources Waste Management Team at the University of Idaho in Moscow, Idaho. Views contained herein do not reflect U.S. Nuclear Regulatory Commission policy

  15. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation

    Science.gov (United States)

    Dittbrenner, Benjamin J.; Pollack, Michael M.; Schilling, Jason W.; Olden, Julian D.; Lawler, Joshua J.; Torgersen, Christian E.

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors—information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17

  16. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation.

    Science.gov (United States)

    Dittbrenner, Benjamin J; Pollock, Michael M; Schilling, Jason W; Olden, Julian D; Lawler, Joshua J; Torgersen, Christian E

    2018-01-01

    Through their dam-building activities and subsequent water storage, beaver have the potential to restore riparian ecosystems and offset some of the predicted effects of climate change by modulating streamflow. Thus, it is not surprising that reintroducing beaver to watersheds from which they have been extirpated is an often-used restoration and climate-adaptation strategy. Identifying sites for reintroduction, however, requires detailed information about habitat factors-information that is not often available at broad spatial scales. Here we explore the potential for beaver relocation throughout the Snohomish River Basin in Washington, USA with a model that identifies some of the basic building blocks of beaver habitat suitability and does so by relying solely on remotely sensed data. More specifically, we developed a generalized intrinsic potential model that draws on remotely sensed measures of stream gradient, stream width, and valley width to identify where beaver could become established if suitable vegetation were to be present. Thus, the model serves as a preliminary screening tool that can be applied over relatively large extents. We applied the model to 5,019 stream km and assessed the ability of the model to correctly predict beaver habitat by surveying for beavers in 352 stream reaches. To further assess the potential for relocation, we assessed land ownership, use, and land cover in the landscape surrounding stream reaches with varying levels of intrinsic potential. Model results showed that 33% of streams had moderate or high intrinsic potential for beaver habitat. We found that no site that was classified as having low intrinsic potential had any sign of beavers and that beaver were absent from nearly three quarters of potentially suitable sites, indicating that there are factors preventing the local population from occupying these areas. Of the riparian areas around streams with high intrinsic potential for beaver, 38% are on public lands and 17% are

  17. Detector response restoration in image reconstruction of high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Liang, Z.

    1994-01-01

    A mathematical method was studied to model the detector response of high spatial-resolution positron emission tomography systems consisting of close-packed small crystals, and to restore the resolution deteriorated due to crystal penetration and/or nonuniform sampling across the field-of-view (FOV). The simulated detector system had 600 bismuth germanate crystals of 3.14 mm width and 30 mm length packed on a single ring of 60 cm diameter. The space between crystal was filled up with lead. Each crystal was in coincidence with 200 opposite crystals so that the FOV had a radius of 30 cm. The detector response was modeled based on the attenuating properties of the crystals and the septa, as well as the geometry of the detector system. The modeled detector-response function was used to restore the projections from the sinogram of the ring-detector system. The restored projections had a uniform sampling of 1.57 mm across the FOV. The crystal penetration and/or the nonuniform sampling were compensated in the projections. A penalized maximum-likelihood algorithm was employed to accomplish the restoration. The restored projections were then filtered and backprojected to reconstruct the image. A chest phantom with a few small circular ''cold'' objects located at the center and near the periphery of FOV was computer generated and used to test the restoration. The reconstructed images from the restored projections demonstrated resolution improvement off the FOV center, while preserving the resolution near the center

  18. Final Report for the Intermountain Center for River Rehabilitation and Restoration (ICRRR)

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, John C. [Utah State Univ., Logan, UT (United States)

    2016-08-19

    The Intermountain Center for River Rehabilitation and Restoration (ICRRR) was created in 2006 by the Department of Watershed Sciences to help meet the challenge of reversing national trends in freshwater ecosystem degradation. The ICRRR was disbanded in 2015, and its activities were transferred to other research centers within the Department of Watershed Sciences. The mission of the ICRRR was to advance the science and practice of river restoration and environmental management and to transfer that knowledge to the public and private sectors by undertaking targeted research, teaching, and extension/outreach activities. The ICRRR had two foci: restoration practices of small streams and rehabilitation of intermediate and large rivers. The ICRRR focused its work in the western United States.

  19. Methodology for ranking restoration options

    International Nuclear Information System (INIS)

    Hedemann Jensen, Per

    1999-04-01

    The work described in this report has been performed as a part of the RESTRAT Project FI4P-CT95-0021a (PL 950128) co-funded by the Nuclear Fission Safety Programme of the European Commission. The RESTRAT project has the overall objective of developing generic methodologies for ranking restoration techniques as a function of contamination and site characteristics. The project includes analyses of existing remediation methodologies and contaminated sites, and is structured in the following steps: characterisation of relevant contaminated sites; identification and characterisation of relevant restoration techniques; assessment of the radiological impact; development and application of a selection methodology for restoration options; formulation of generic conclusions and development of a manual. The project is intended to apply to situations in which sites with nuclear installations have been contaminated with radioactive materials as a result of the operation of these installations. The areas considered for remedial measures include contaminated land areas, rivers and sediments in rivers, lakes, and sea areas. Five contaminated European sites have been studied. Various remedial measures have been envisaged with respect to the optimisation of the protection of the populations being exposed to the radionuclides at the sites. Cost-benefit analysis and multi-attribute utility analysis have been applied for optimisation. Health, economic and social attributes have been included and weighting factors for the different attributes have been determined by the use of scaling constants. (au)

  20. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H S; Kim, G N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  1. Development of decontamination, decommissioning and environmental restoration technology

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of D evelopment of decontamination, decommissioning and environmental restoration technology , the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  2. Development of regional curves of bankfull-channel geometry and discharge for streams in the non-urban, Piedmont Physiographic Province, Pennsylvania and Maryland

    Science.gov (United States)

    Cinotto, Peter J.

    2003-01-01

    Stream-restoration projects utilizing natural stream designs frequently are based on the bankfull-channel characteristics of stream reaches that can accommodate streamflow and sediment transport without excessive erosion or deposition and lie within a watershed that has similar runoff characteristics. The bankfull channel at an ungaged impaired site or reference reach is identified by use of field indicators and is confirmed with tools such as regional curves. Channel dimensions were surveyed at 14 streamflow-measurement stations operated by the U.S. Geological Survey (USGS) in the Gettysburg-Newark Lowland Section, Piedmont Lowland Section, and the Piedmont Upland Section of the Piedmont Physiographic Province1 in Pennsylvania and Maryland. From the surveyed channel dimensions, regional curves were developed from regression analyses of the relations between drainage area and the cross-sectional area, mean depth, width, and streamflow of the bankfull channel at these sites. Bankfull cross-sectional area and bankfull discharge have the strongest relation to drainage area as evidenced by R2 values of 0.94 and 0.93, respectively. The relation between bankfull crosssectional area and drainage area has a p-value of less than 0.001; no p-value is presented for the relation between bankfull discharge and drainage area because of a non-normal residual distribution. The relation between bankfull width and drainage area has an R2 value of 0.80 and a p-value of less than 0.001 indicating a moderate linear relation between all stations. The relation between bankfull mean depth and drainage area, with an R2 value of 0.72 and a p-value of less than 0.001, also indicates a moderate linear relation between all stations. The concept of regional curves can be a valuable tool to support efforts in stream restoration. Practitioners of stream restoration need to recognize it as such and realize the limitations. The small number of USGS streamflow-measurement stations available for

  3. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Directory of Open Access Journals (Sweden)

    Elliott L Matchett

    Full Text Available The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration

  4. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Science.gov (United States)

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  5. The Development of the Comic Spirit in 17th Century England from James Shirley to William Congreve. Curriculum Projects, April 7-June 16, 1992. The Huntington Theatre Company Master Works Study in Restoration Comedy.

    Science.gov (United States)

    Huntington Theatre Co., Boston, MA.

    Developed by the participants of the Huntington Theatre Company's Master Works Study in Restoration Comedy, this collection presents one-day lesson plans and curriculum projects for teaching Restoration comedy. The collection offers 15 one-day lesson plans and 15 curriculum projects (ranging over several weeks) suitable for secondary school…

  6. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Cottonwood project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of Cottonwood project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 15 groundwater samples, 79 stream sediment samples, and 85 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from 0.25 to 3.89 ppB. The highest concentrations are from groundwaters from the Little Cottonwood and Ferguson Stocks. Variables that appear to be associated with uranium in groundwater include cobalt, iron, potassium, manganese, nickel, sulfate, and to a lesser extent, molybdenum and strontium. This association is attributed to the Monzonitic Little Cottonwood Stock, granodioritic to granitic and lamprophyric dikes, and known sulfide deposits. Soluble uranium concentrations (U-FL) in stream sediments range from 0.31 to 72.64 ppM. Total uranium concentrations (U-NT) range from 1.80 to 75.20 ppM. Thorium concentrations range from <2 to 48 ppM. Anomalous values for uranium and thorium are concentrated within the area of outcrop of the Little Cottonwood and Ferguson Stocks. Variables which are areally associated with high values of uranium, thorium, and the U-FL:U-NT ratio within the Little Cottonwood Stock are barium, copper, molybdenum, and zinc. High concentrations of these variables are located near sulfide deposits within the Little Cottonwood Stock

  7. Application of the Hydroecological Integrity Assessment Process for Missouri Streams

    Science.gov (United States)

    Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.

    2009-01-01

    Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and

  8. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated acquatic ecosystems: The project ``moira``

    Energy Technology Data Exchange (ETDEWEB)

    Appelgren, A.; Bergstrom, U. [Studsvik Eco and AB, Nykoping (Sweden); Brittain, J. [Oslo Univ. (Norway). LFI Zoological Museum; Gallego Diaz, E. [Madrid Universidad Politecnica (Spain). Dept. de Ingenieria Nuclear; Hakanson, L. [KEMA Nuclear, Arnhem (Niger); Monte, L. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1996-10-01

    The present report describes the fundamental principles of the research programme MOIRA (a model based computerized system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) financed by the EC (European Community) (Contract N F14P-CT96-0036). The interventions to restore radionuclides contaminated aquatic systems may result in detrimental ecological, social and economical effects. Decision makers must carefully evaluate these impacts. The main aim of the MOIRA project is the development of an expert system based on validated models predicting the evolution of the radioactive contamination of fresh water systems following countermeasure applications and their relevant ecological, social and economical impacts. The expert system will help decision makers, that are not necessarily gifted with experience in environmental modeling, to identify optimal remedial strategies for restoring contaminated fresh water systems.

  9. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated aquatic ecosystems: the project MOIRA

    International Nuclear Information System (INIS)

    Appelgren, A.; Bergstrom, U.; Brittain, J.; Monte, L.

    1996-10-01

    The present report describes the fundamental principles of the research programme MOIRA (a model based computerized system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) financed by the EC (European Community) (Contract N F14P-CT96-0036). The interventions to restore radionuclides contaminated aquatic systems may result in detrimental ecological, social and economical effects. Decision makers must carefully evaluate these impacts. The main aim of the MOIRA project is the development of an expert system based on validated models predicting the evolution of the radioactive contamination of fresh water systems following countermeasure applications and their relevant ecological, social and economical impacts. The expert system will help decision makers, that are not necessarily gifted with experience in environmental modeling, to identify optimal remedial strategies for restoring contaminated fresh water systems

  10. Point spread function modeling and image restoration for cone-beam CT

    International Nuclear Information System (INIS)

    Zhang Hua; Shi Yikai; Huang Kuidong; Xu Zhe

    2015-01-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. (authors)

  11. Stream instability countermeasures applied at Kansas Department of Transportation highway structures.

    Science.gov (United States)

    2008-11-01

    This project considered stream instability countermeasures used by the Kansas Department of Transportation (KDOT) to protect the highway infrastructure at stream crossings from changes due to the dynamic nature of streams. Site visits were made to 13...

  12. Predicting environmental restoration activities through static simulation

    International Nuclear Information System (INIS)

    Ross, T.L.; King, D.A.; Wilkins, M.L.; Forward, M.F.

    1994-12-01

    This paper discusses a static simulation model that predicts several performance measures of environmental restoration activities over different remedial strategies. Basic model operation consists of manipulating and processing waste streams via selecting and applying remedial technologies according to the strategy. Performance measure prediction is possible for contaminated soil, solid waste, surface water, groundwater, storage tank, and facility sites. Simulations are performed for the U.S. Department of Energy in support of its Programmatic Environmental Impact Statement

  13. Use of hydrologic and hydrodynamic modeling for ecosystem restoration

    Science.gov (United States)

    Obeysekera, J.; Kuebler, L.; Ahmed, S.; Chang, M.-L.; Engel, V.; Langevin, C.; Swain, E.; Wan, Y.

    2011-01-01

    Planning and implementation of unprecedented projects for restoring the greater Everglades ecosystem are underway and the hydrologic and hydrodynamic modeling of restoration alternatives has become essential for success of restoration efforts. In view of the complex nature of the South Florida water resources system, regional-scale (system-wide) hydrologic models have been developed and used extensively for the development of the Comprehensive Everglades Restoration Plan. In addition, numerous subregional-scale hydrologic and hydrodynamic models have been developed and are being used for evaluating project-scale water management plans associated with urban, agricultural, and inland costal ecosystems. The authors provide a comprehensive summary of models of all scales, as well as the next generation models under development to meet the future needs of ecosystem restoration efforts in South Florida. The multiagency efforts to develop and apply models have allowed the agencies to understand the complex hydrologic interactions, quantify appropriate performance measures, and use new technologies in simulation algorithms, software development, and GIS/database techniques to meet the future modeling needs of the ecosystem restoration programs. Copyright ?? 2011 Taylor & Francis Group, LLC.

  14. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  15. Diverse Approaches to Implement and Monitor River Restoration: A Comparative Perspective in France and Germany

    Science.gov (United States)

    Morandi, Bertrand; Kail, Jochem; Toedter, Anne; Wolter, Christian; Piégay, Hervé

    2017-11-01

    River restoration is a main emphasis of river management in European countries. Cross-national comparisons of its implementation are still rare in scientific literature. Based on French and German national censuses, this study compares river restoration practices and monitoring by analysing 102 French and 270 German projects. This comparison aims to draw a spatial and temporal framework of restoration practices in both countries to identify potential drivers of cross-national similarities and differences. The results underline four major trends: (1) a lag of almost 15 years in river restoration implementation between France and Germany, with a consequently higher share of projects in Germany than in France, (2) substantial similarities in restored reach characteristics, short reach length, small rivers, and in "agricultural" areas, (3) good correspondences between stressors identified and restoration measures implemented. Morphological alterations were the most important highlighted stressors. River morphology enhancement, especially instream enhancements, were the most frequently implemented restoration measures. Some differences exist in specific restoration practices, as river continuity restoration were most frequently implemented in French projects, while large wood introduction or channel re-braiding were most frequently implemented in German projects, and (4) some quantitative and qualitative differences in monitoring practices and a significant lack of project monitoring, especially in Germany compared to France. These similarities and differences between Germany and France in restoration application and monitoring possibly result from a complex set of drivers that might be difficult to untangle (e.g., environmental, technical, political, cultural).

  16. The use of multi-dimensional flow and morphodynamic models for restoration design analysis

    Science.gov (United States)

    McDonald, R.; Nelson, J. M.

    2013-12-01

    River restoration projects with the goal of restoring a wide range of morphologic and ecologic channel processes and functions have become common. The complex interactions between flow and sediment-transport make it challenging to design river channels that are both self-sustaining and improve ecosystem function. The relative immaturity of the field of river restoration and shortcomings in existing methodologies for evaluating channel designs contribute to this problem, often leading to project failures. The call for increased monitoring of constructed channels to evaluate which restoration techniques do and do not work is ubiquitous and may lead to improved channel restoration projects. However, an alternative approach is to detect project flaws before the channels are built by using numerical models to simulate hydraulic and sediment-transport processes and habitat in the proposed channel (Restoration Design Analysis). Multi-dimensional models provide spatially distributed quantities throughout the project domain that may be used to quantitatively evaluate restoration designs for such important metrics as (1) the change in water-surface elevation which can affect the extent and duration of floodplain reconnection, (2) sediment-transport and morphologic change which can affect the channel stability and long-term maintenance of the design; and (3) habitat changes. These models also provide an efficient way to evaluate such quantities over a range of appropriate discharges including low-probability events which often prove the greatest risk to the long-term stability of restored channels. Currently there are many free and open-source modeling frameworks available for such analysis including iRIC, Delft3D, and TELEMAC. In this presentation we give examples of Restoration Design Analysis for each of the metrics above from projects on the Russian River, CA and the Kootenai River, ID. These examples demonstrate how detailed Restoration Design Analysis can be used to

  17. Restoring of offshore wind farm sites. Lillgrund Pilot Project; Aaterstaellande av havsbaserad vindkraft. Lillgrund Pilot Projekt

    Energy Technology Data Exchange (ETDEWEB)

    Stumle Wikander, Jhenny (Vattenfall Vindkraft AB, Stockholm (Sweden))

    2009-02-15

    This report focuses on the legal aspects of decommissioning and restoring of offshore wind farm sites, as part of an extensive report on the Lillgrund Offshore Wind Farm Pilot Project. For this analysis, all permit conditions of the granted permits for the offshore wind parks in Sweden have been collected and studied. According to the Swedish Environmental code 'the validity of a permit, approval or exemption may be made subject to the requirement that the person who intends to pursue the activity must furnish a security for the costs of after-treatment and any other restoration measures that may be necessary as a result. The state, municipalities, county councils and associations of municipalities shall not be required to furnish a security. If there is cause to assume that the security furnished is no longer sufficient, the authority which is considering the application for a permit, approval or exemption may require an additional security to be furnished'. The permits show that different types of securities are being used, with bank warranties and securities being the most common. Securities are either fixed and furnished prior to start of construction or start of operations, or they are obtained gradually over the life of the project. Among the twelve permits studied, a gradual tendency to use a combination of the two alternatives can bee seen. The conditions governing when an offshore wind farm is to be discontinued and which parts need to be partly or fully removed from the site are obviously of future importance. The issue has been addressed to different degrees in the permits, some to a clear legal extent, while others are more general. The Lillgrund Offshore Wind Farm was secured for 60 million SEK. The extent to which the park is to be decommissioned and the site to be restored is decided by the county administrative board once production is terminated

  18. Evaluation of nekton use and habitat characteristics of restored Louisiana marsh

    Science.gov (United States)

    Thom, C.S.B.; Peyre, M.K.G.L.; Nyman, J.A.

    2004-01-01

    Marsh terracing and coconut fiber mats are two wetland restoration techniques implemented at Sabine National Wildlife Refuge, Louisiana, USA. Using nekton as an indicator of habitat quality, nekton community assemblages were compared between terraced, coconut-matted, unmanaged marsh (restoration goal), and open water (pre-restoration) habitats. Using a throw trap and a 3 m ?? 2 m straight seine, 192 nekton samples were collected over four dates in 2001 and 2002 at all habitats. Nekton abundance was similar at unmanaged marsh (restoration goal), coconut mat, and terrace edge, and significantly higher than at open water (pre-restoration) sites (P Coconut-matted habitat and unmanaged marsh edges had significantly higher numbers of benthic dependent species than terrace edges (P coconut-matted sites. Future restoration projects may evaluate the combined use of coconut mats with terracing projects in order to enhance habitat for benthic dependent nekton.

  19. Planning for environmental restoration of radioactively contaminated sites in central and eastern Europe. V. 3: Technologies for, and the implementation of, environmental restoration of contaminated sites. Proceedings of a workshop held within the technical co-operation project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The radioactive contaminant materials resulting from diverse activities in relation to the nuclear fuel cycle, defence related operations, and various industries in addition to medical and research facilities represent perhaps the most severe and immense pollution left from a past era. The political changes in central and eastern Europe (CEE) not only brought some disclosure of the radioactively contaminated sites, but also resulted in a political condition in which this region became receptive to co-operation from a range of outside countries. The subjects of the first workshop held in Budapest, 4-8 October 1993, was the identification and characterization of radioactively contaminated sites in the region. The second part of the project and the second workshop (Piestany, Slovak Republic, 12-16 April 1994) involved planning and preparing the identified sites for restoration. This included items such as the restoration objectives, dose and environmental assessment, cost analysis, strategy and prioritization. Eventually, the third part of the project covered technologies for, and the implementation of, environmental restoration. The third and final workshop was held in Rez, Czech Republic, 12-16 December 1994. Refs, figs, tabs.

  20. Planning for environmental restoration of radioactively contaminated sites in central and eastern Europe. V. 3: Technologies for, and the implementation of, environmental restoration of contaminated sites. Proceedings of a workshop held within the technical co-operation project

    International Nuclear Information System (INIS)

    1996-05-01

    The radioactive contaminant materials resulting from diverse activities in relation to the nuclear fuel cycle, defence related operations, and various industries in addition to medical and research facilities represent perhaps the most severe and immense pollution left from a past era. The political changes in central and eastern Europe (CEE) not only brought some disclosure of the radioactively contaminated sites, but also resulted in a political condition in which this region became receptive to co-operation from a range of outside countries. The subjects of the first workshop held in Budapest, 4-8 October 1993, was the identification and characterization of radioactively contaminated sites in the region. The second part of the project and the second workshop (Piestany, Slovak Republic, 12-16 April 1994) involved planning and preparing the identified sites for restoration. This included items such as the restoration objectives, dose and environmental assessment, cost analysis, strategy and prioritization. Eventually, the third part of the project covered technologies for, and the implementation of, environmental restoration. The third and final workshop was held in Rez, Czech Republic, 12-16 December 1994. Refs, figs, tabs

  1. Wind River Watershed restoration: 1999 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Connolly, Patrick J.

    2001-01-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey-Columbia River Research Lab (USGS-CRRL), and WA Department of Fish and Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination-Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring-Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment-Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration-Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  2. Developing a national stream morphology data exchange: Needs, challenges, and opportunities

    Science.gov (United States)

    Collins, Mathias J.; Gray, John R.; Peppler, Marie C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.

    2012-05-01

    Stream morphology data, primarily consisting of channel and foodplain geometry and bed material size measurements, historically have had a wide range of applications and uses including culvert/ bridge design, rainfall- runoff modeling, food inundation mapping (e.g., U.S. Federal Emergency Management Agency food insurance studies), climate change studies, channel stability/sediment source investigations, navigation studies, habitat assessments, and landscape change research. The need for stream morphology data in the United States, and thus the quantity of data collected, has grown substantially over the past 2 decades because of the expanded interests of resource management agencies in watershed management and restoration. The quantity of stream morphology data collected has also increased because of state-of-the-art technologies capable of rapidly collecting high-resolution data over large areas with heretofore unprecedented precision. Despite increasing needs for and the expanding quantity of stream morphology data, neither common reporting standards nor a central data archive exist for storing and serving these often large and spatially complex data sets. We are proposing an open- access data exchange for archiving and disseminating stream morphology data.

  3. Hydrological Classification, a Practical Tool for Mangrove Restoration

    OpenAIRE

    Van Loon, Anne F.; Te Brake, Bram; Van Huijgevoort, Marjolein H. J.; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined....

  4. Operational restoration of the Pen Branch bottomland hardwood and swamp wetlands - the research setting

    International Nuclear Information System (INIS)

    Nelson, E.A.

    2000-01-01

    thickets that support a lower diversity of wildlife. No volunteer seedlings of heavy-seeded hardwoods or cypress have been found in the corridor areas. Research was conducted to determine methods to reintroduce tree species characteristic of more mature forested wetlands. Three restoration strategies were formulated to deal with the differing conditions of the Upper Corridor, the Lower Corridor, and the Delta regions of the impacted area. Site preparation and planting of each area with mixtures of tree species were carried out to speed the restoration of the ecosystem. Species composition and selection were altered based on the current and expected hydrological regimes that the reforestation areas will be experiencing. Because of the operational design of the restoration project, a research program naturally followed to document the success. Many of those efforts are detailed here

  5. Environmental restoration and biological contamination: ecological and legal aspects

    Directory of Open Access Journals (Sweden)

    Ademir Reis

    2005-05-01

    Full Text Available Environmental restoration is a pressing current need. However, protected areas have been exposed to biological contamination risks because the traditional techniques of restoration frequently use exotic species. This causes some concern, since biological contamination is the second major cause of species extinction in the world. It is important to use only native species in restoration projects in order to promote an effective environmental restoration without the risk of contamination. This paper discusses some issues concerning environmental restoration, biological contamination and the need for clearer laws.

  6. South Bay Salt Pond Restoration, Phase II at Ravenswood

    Science.gov (United States)

    Information about the South Bay Salt Pond Restoration Project: Phase II Construction at Ravenswood, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  7. Evidence of climate change impact on stream low flow from the tropical mountain rainforest watershed in Hainan Island, China

    Science.gov (United States)

    Z. Zhou; Y. Ouyang; Z. Qiu; G. Zhou; M. Lin; Y. Li

    2017-01-01

    Stream low flow estimates are central to assessing climate change impact, water resource management, and ecosystem restoration. This study investigated the impacts of climate change upon stream low flows from a rainforest watershed in Jianfengling (JFL) Mountain, Hainan Island, China, using the low flow selection method as well as the frequency and probability analysis...

  8. Geomorphological evolution of a newly restored upland temporary stream

    Science.gov (United States)

    Marteau, Baptiste; Batalla, Ramon J.; Gibbins, Chris N.; Green, David R.; Vericat, Damià

    2015-04-01

    The river Ehen, NW England, has been designated as a Special Area of Conservation (SAC) as it hosts England's largest population of freshwater pearl mussels (M. margaritifera). One of the Ehen's main headwater tributary, Ben Gill, was diverted to Ennerdale Lake in the 1970s to help increase the volume of water available for abstraction. Concerns over this diversion on the hydrology and sediment dynamics of the Ehen has led to the reconnection of this temporary stream as part of a project designed to improve habitat conditions for mussels in the Ehen. The reconnection has involved the construction of a new section of channel, following the natural (pre-diversion) course of Ben Gill. This paper presents findings of research designed to track the morphological evolution of the newly created Ben Gill channel. The work follows a previous research in which fluvial dynamics in the Ehen were studied before the reconnection of Ben Gill. Morpho-sedimentary dynamics are analysed at multiple scales: from the movement of individual particles, to changes on channel morphology following competent flow events. Changes in the channel's grain size distributions have been investigated in different sections, while bed mobility has been assessed using a combination of radio frequency identification (RFID) tags inserted into representative particles and painted bed patches. Additionally, digital elevation models (DEMs) of the entire new channel have been constructed by means of automatic digital photogrammetry using high resolution aerial photography taken by an unmanned aerial vehicle (UAV). DEMs of difference (DoD) between major flow events have been used to track lateral and longitudinal changes in the channel at a spatial resolution of less than 5cm. Finally, in order to link sedimentological changes in the new channel to its impact on the main stem Ehen, morpho-sedimentary changes of a gravel bar at the confluence have been monitored combining tracers (i.e. RFID) and repeated

  9. Project Gasbuggy well plugging and site restoration plan

    International Nuclear Information System (INIS)

    1978-07-01

    The operational plan for conducting the final restoration work at the site of the first U.S. underground nuclear experiment for the stimulation of low-productivity natural gas reservoirs is given. The plan includes well plugging procedures, surface facilities decontamination and removal procedures, radiological guidelines, and environmental considerations

  10. Stream fishes and desirable fish stocks

    DEFF Research Database (Denmark)

    Dieperink, C.; Sand-Jensen, K.

    2006-01-01

    Freshwater fi sh communities have always been valuable resources for society, particularly the species that migrate between freshwater and the sea. Historically, eel, salmon and trout were so abundant that good fi shing luck could turn a capable fi sherman into a wealthy person. Unfortunately......, illustrates this historical decline and also the diffi culty of re-establishing healthy fi sh communities once the original populations have deteriorated or, in the case of salmon, become extinct. Efforts are currently needed to be made to effectively restore and manage fi sh communities in streams....

  11. Environmental Restoration Contractor Waste Minimization and Pollution Prevention Plan. Revision 1

    International Nuclear Information System (INIS)

    Lewis, R.A.

    1996-03-01

    This plan contains the Environmental Restoration Contractor (ERC) Waste Minimization and Pollution Prevention (WMin/P2) Program. The plan outlines the activities and schedules developed by the ERC to reduce the quantity and toxicity of waste dispositioned as a result of restoration and remediation activities. This plan satisfies US Department of Energy (DOE) requirements including the Pollution Prevention Awareness program required by DOE Order 5400.1 (DOE 1988). This plan is consistent with Executive Order 12856 and Secretary O'Leary's pollution prevention Policy Statement of December 27, 1994, which set US and DOE pollution prevention policies, respectively. It is also consistent with the DOE Pollution Prevention Crosscut Plan, 1994, which provides guidance in meeting the DOE goals in pollution prevention. The purpose of this plan is to aid ERC projects in meeting and documenting compliance with requirements for WMin/P2. This plan contains the objectives, strategy, and support activities of the ERC Team WMin/P2 program. The basic elements of the plan are pollution prevention goals, waste assessments of major waste streams, implementation of feasible waste minimization opportunities, and a process for reporting achievements. Wherever appropriate, the ERC will integrate the pollution prevention activities in this plan into regular program activities rather than establishing separate WMin/P2 activities. Moreover, wherever possible, existing documents, procedures, and activities will be used to meet WMin/P2 requirements

  12. The role of beaver in shaping steelhead trout (Oncorhynchus mykiss) habitat complexity and thermal refugia in a central Oregon stream

    Science.gov (United States)

    Consolati, F.; Wheaton, J. M.; Neilson, B. T.; Bouwes, N.; Pollock, M. M.

    2012-12-01

    The incised and degraded habitat of Bridge Creek, tributary to the John Day River in central Oregon, is thought to be limiting the local population of ESA-listed steelhead trout (Oncorhynchus mykiss). Restoration efforts for this watershed are aimed to improve their habitat through reconnecting the channel with portions of its former floodplain (now terraces) to increase stream habitat complexity and the extent of riparian vegetation. This is being done via the installation of over a hundred beaver dam support (BDS) structures that are designed to either mimic beaver dams or support existing beaver dams. The overall objective of this study is to determine if the BDS structures have had an effect on stream channel habitat complexity and thermal refugia in selected sections of Bridge Creek. Analysis of stream temperature data in restoration treatment and control areas will show the effects of beaver dams on stream temperature. Analysis of aerial imagery and high resolution topographic data will exhibit how the number and types of geomorphic units have changed after the construction of beaver dams. Combined, the results of this research are aimed to increase our understanding of how beaver dams impact fish habitat and stream temperature.

  13. „Blue-green“ corridors as a tool for mitigation of natural hazards and restoration of urbanized areas: A case study of Belgrade city

    Directory of Open Access Journals (Sweden)

    Ristić Ratko

    2013-01-01

    Full Text Available Urbanized areas constantly need new surfaces for building of commercial, residental or infrastructure facilities. Belgrade, the capital of Serbia and a big regional center, with 2,000,000 inhabitants, covers a territory of 3,500 km2. Decreasing of surfaces under forest vegetation, urbanization and inadequate agricultural measures have caused intensive erosion and more frequent torrential floods. Belgrade authorities have defined a new strategy for land use and urban planning in order to decrease the risk from destructive erosion processes and torrential floods and help the establishment of new recreational areas, preservation of biodiversity and mitigation of the „heat island“ effect. The strategy is based on the restoration of „blue-green“ corridors (residuals of open streams and fragments of forest vegetation. The restoration of „blue-green“ corridors is presented at the experimental watersheds of the Kaljavi and Jelezovac streams. The restoration works will be performed in the 2014-2020 period, on the basis of erosion and stream control demands, as well as environmental and social requests, including biological, soil-bioengineering activities and certain administrative measures. The forest surfaces will be increased by 1.38 km2 (18.11% of the total area. The restoration of “blue-green” corridors in the experimental watersheds will decrease the values of maximal discharges (p = 1% by about 50%, and the volumes of direct runoff by about 40%. Erosive material production and transport will be decreased by about 44% in the Kaljavi stream watershed, and 37% in the Jelezovac stream watershed. Ten kilometers of sealed walking and cycling paths, 1.7 km of unsealed forest paths, six open gyms and seven rest areas will strengthen the potential of this area for sports and recreation. The restoration will help the protection and controlled usage of the natural and cultural values in the area, and the connection of

  14. Restoration in South Africa

    CSIR Research Space (South Africa)

    Blignaut, J

    2010-01-01

    Full Text Available Restoration can provide a wide range of direct and indirect benefits to society. However, there are very few projects that have attempted to properly quantify those benefits and present them in such a way that society is motivated to invest...

  15. Nord Stream 2: May Cooler Heads Prevail

    International Nuclear Information System (INIS)

    Aoun, Marie-Claire

    2016-01-01

    Since the announcement of the Nord Stream 2 project in June 2015, the debate around the benefits of this project for Europe is raging, putting forward political, economic and commercial arguments. Within the space of a few months, Russia has conducted a radical strategic change towards Europe in its gas policy. Following the announcements in 2014 of a major shift towards Asia, the cancellation of the South Stream project and its replacement by the Turkish Stream, relations with European gas companies have been strengthened since mid-2015. Russia's initiatives to replace its European partners are now to be viewed as part of a transformed international gas landscape. Tensions in the liquefied natural gas (LNG) market following Fukushima have given way to market surpluses. These are characterised on the one hand by lower growth in Asian demand for LNG gas, and on the other hand by the arrival on the market of new major exporters such as Australia and the United States. A new era, more favourable to gas importing countries, has opened up since the end of 2014. Moreover, the key pivot to Asia, expected by Moscow in 2014, is still far off. Discussions with Beijing about the project for a Western route proved to be more difficult than expected. Similarly, negotiations between Turkey and Russia on the Turkish Stream project have been very laborious, having been interrupted for several months because of diplomatic rows between the two countries. Finally, Russia's room for manoeuvre has narrowed, given the collapse in oil and gas prices and Western economic sanctions, which are weighing heavily on its economy. And the increased competitiveness of Russian oil companies due to the ruble devaluation will not transform this situation sustainably

  16. Prairie Restoration Project: Alternatives for Identifying Gifted Students

    Science.gov (United States)

    Salisbury, Katie E.; Rule, Audrey C.; Vander Zanden, Sarah M.

    2016-01-01

    An authentic, challenging curriculum engaged middle school students from an urban district in exploratory work related to restoring a small prairie at the school. Integrated science-literacy-arts activities were coupled with a system of thinking skills that helped students view issues from different perspectives. Impassioned guest speakers and an…

  17. Web Audio/Video Streaming Tool

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2003-01-01

    In order to promote NASA-wide educational outreach program to educate and inform the public of space exploration, NASA, at Kennedy Space Center, is seeking efficient ways to add more contents to the web by streaming audio/video files. This project proposes a high level overview of a framework for the creation, management, and scheduling of audio/video assets over the web. To support short-term goals, the prototype of a web-based tool is designed and demonstrated to automate the process of streaming audio/video files. The tool provides web-enabled users interfaces to manage video assets, create publishable schedules of video assets for streaming, and schedule the streaming events. These operations are performed on user-defined and system-derived metadata of audio/video assets stored in a relational database while the assets reside on separate repository. The prototype tool is designed using ColdFusion 5.0.

  18. Stream habitat or water quality - what influences stronger fish and macrozoobenthos biodiversity?

    Czech Academy of Sciences Publication Activity Database

    Adámek, Z.; Jurajda, Pavel

    2001-01-01

    Roč. 1, č. 3 (2001), s. 305-311 ISSN 1642-3593. [Ecohydrology as a tool for restoration of physically degraded fish habitats. Warsaw, 11.06.2001-13.06.2001] Institutional research plan: CEZ:AV0Z6093917 Keywords : stream ecology * water quality * fish communities Subject RIV: EH - Ecology, Behaviour

  19. Relational Restorative Justice Pedagogy in Educator Professional Development

    Science.gov (United States)

    Vaandering, Dorothy

    2014-01-01

    What would a professional development experience rooted in the philosophy, principles, and practices of restorative justice look and feel like? This article describes how such a professional development project was designed to implement restorative justice principles and practices into schools in a proactive, relational and sustainable manner by…

  20. Germination characteristics of Rhinanthus minor influence field emergence, competitiveness and potential use in restoration projects.

    Science.gov (United States)

    Marin, M; Laverack, G; Matthews, S; Powell, A A

    2018-02-10

    The facultative root hemi-parasite Rhinanthus minor is often used in grassland habitat restoration projects to regulate ecosystem structure and function. Its impact on community productivity and diversity as a function of resource supply, sward composition and management has been widely investigated. However, there is a lack of information about the possible influence of seed quality on the efficacy of the hemi-parasite. Ten seed lots from commercial sources were sown in the field and their germination characteristics were investigated in the laboratory. Seeds from four lots were also germinated and sown in pots alongside plants of two host species, Lotus corniculatus and Holcus lanatus. Plant establishment, height and flowering density were evaluated for the hemi-parasite, while plant biomass was measured for both R. minor and its host. Two aspects of seed quality influenced the field emergence of seed lots of R. minor, the radicle emergence (%) and the length of the lag period from the beginning of imbibition to germination (mean germination time), which indicates seed vigour. A longer lag period (lower vigour) was associated with higher levels of seedling mortality and lower plant vigour, in terms of plant height and biomass accumulation and was also reflected in the parasitic impact of the seed lots. Seed quality, specifically germination and vigour, can influence the establishment, survival, subsequent plant productivity and parasitic impact of R. minor in vegetation restoration projects. Seed quality is discussed as a key factor to consider when predicting the impact of the hemi-parasite on community productivity and diversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Summary of operations and performance of the Murdock site restoration project in June 2005-December 2006.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2007-05-31

    This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the initial period of systems operation, from June 2005 through December 2006. In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters of a small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). The restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review period. This document presents overviews of the treatment facilities (Section 2) and site operations and activities (Section 3), then describes the groundwater, surface water, vegetation, and atmospheric monitoring results (Section 4) and modifications and costs during the review period (Section 5). Section 6 summarizes the initial period of operation.

  2. A restoration genetics guide for coral reef conservation.

    Science.gov (United States)

    Baums, Iliana B

    2008-06-01

    Worldwide degradation of coral reef communities has prompted a surge in restoration efforts. They proceed largely without considering genetic factors because traditionally, coral populations have been regarded as open over large areas with little potential for local adaptation. Since, biophysical and molecular studies indicated that most populations are closed over shorter time and smaller spatial scales. Thus, it is justified to re-examine the potential for site adaptation in corals. There is ample evidence for differentiated populations, inbreeding, asexual reproduction and the occurrence of ecotypes, factors that may facilitate local adaptation. Discovery of widespread local adaptation would influence coral restoration projects mainly with regard to the physical and evolutionary distance from the source wild and/or captive bred propagules may be moved without causing a loss of fitness in the restored population. Proposed causes for loss of fitness as a result of (plant) restoration efforts include founder effects, genetic swamping, inbreeding and/or outbreeding depression. Direct evidence for any of these processes is scarce in reef corals due to a lack of model species that allow for testing over multiple generations and the separation of the relative contributions of algal symbionts and their coral hosts to the overall performance of the coral colony. This gap in our knowledge may be closed by employing novel population genetic and genomics approaches. The use of molecular tools may aid managers in the selection of appropriate propagule sources, guide spatial arrangement of transplants, and help in assessing the success of coral restoration projects by tracking the performance of transplants, thereby generating important data for future coral reef conservation and restoration projects.

  3. A review of theoretical frameworks applicable for designing agricultural watershed restoration projects

    Science.gov (United States)

    Agricultural watershed restoration is the process of assisting the recovery of ecosystem structure and/or function within watersheds that have been degraded and damaged by agriculture. Unfortunately, agricultural watershed restoration is the rare exception within the Midwestern United States despit...

  4. Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  5. Hurricanes Katrina and Rita and the Coastal Louisiana Ecosystem Restoration

    National Research Council Canada - National Science Library

    Zinn, Jeffrey

    2005-01-01

    ... for a $1.1 billion multiyear program to construct five projects that would help to restore portions of the coastal Louisiana ecosystem by slowing the rate of wetland loss and restoring some wetlands...

  6. Fluvial Geomorphology and River Restoration: Uneasy Allies (Invited)

    Science.gov (United States)

    Kondolf, G. M.

    2009-12-01

    A growing body of literature demonstrates that river restoration based on understanding of geomorphic and ecological process is more likely to be sustainable than form-based approaches. In the early days of river ‘restoration’ in North America, most projects involved bank stabilization, habitat structure placement, or construction of rocked meandering channels, at odds with restoration of the dynamic processes we now see as fundamental to effective, sustainable restoration. Recent years have seen a growing body of restoration programs emphasizing restoration of connectivity and geomorphic process. This evolution has been reflected in publications, from the form-based approach advocated in the early 1990s by an NRC panel (which did not include a geomorphologist) to more recent works by interdisciplinary panels emphasizing process restoration. Large-scale river restoration came later to Europe, motivated by the EU Water Framework Directive (2000) requirements that member states implement measures to improve ecological status of degraded rivers. Interestingly, European approaches to restoration have often reflected a more nuanced understanding of process, including deliberate recreation of unstable braided channels, removal of bank protection, and reconnecting floodplains. In part this may reflect a reaction to the more thorough post-war channelization of rivers in western Europe. In part it may also reflect a greater influence of academic and research laboratories upon practitioners than in the US, where a strong anti-intellectual strain, cultural preference for easy fixes, and reluctance to conduct objective post-project assessments have contributed to the adoption of form-based approaches by many public agencies.

  7. Restoration of Lost Lake, recovery of an impacted Carolina Bay

    International Nuclear Information System (INIS)

    Wike, L.D.; Gladden, J.B.; Mackey, H.E. Jr.; Rogers, V.A.

    1995-01-01

    Lost Lake is one of approximately 200 Carolina bays found on the Savannah River Site (SRS). Until 1984 Lost Lake was contaminated by heavy metals and solvents overflowing from a nearby settling basin. Up to 12 inches of surface soil and all vegetation was removed from the bay as part of a RCRA removal action. A plan for restoration was initiated in 1989 and implemented in 1990 and 1991. Extensive planning led to defined objectives, strategies, treatments, and monitoring programs allowing successful restoration of Lost Lake. The primary goal of the project was to restore the wetland ecosystem after a hazardous waste clean up operation. An additional goal was to study the progress of the project and the success of the restoration activity. Several strategy considerations were necessary in the restoration plan. The removal of existing organic soils had to have compensation, a treatment scheme for planting and the extent of manipulation of the substrate had to be considered, monitoring decisions had to be made, and the decision whether or not to actively control the hydrology of the restored system

  8. Ecological benefits of passive wetland treatment systems designed for acid mine drainage: With emphasis on watershed restoration

    International Nuclear Information System (INIS)

    McCleary, E.C.; Kepler, D.A.

    1994-01-01

    Western Pennsylvania has been a large source of coal for much of the US since the late 1800's. During the extraction of the coal resources, acid mine drainage (AMD) often resulted. AMD from abandoned discharges has effectively rendered thousands of kilometers of streams lifeless in the Appalachian coal region. Restoration of these streams has been limited in previous years primarily because of the lack of cost-effective treatment for AMD. Conventional treatment can treat AMD effectively but is costly to operate and maintain and is effective only when receiving human attention. Passive wetland treatment systems have proven to be the only realistic AMD treatment strategy, in terms of watershed restoration activities. If ecosystem health is the reason for implementing effluent standards then it can be reasonably argued that passive wetland treatment systems supply the most effective overall treatment, even if they do not meet one or more of the current effluent standards. Recent advancements in passive wetland treatment system technology have provided a management tool that could be used to treat the majority of AMD discharges cost-effectively, and when used strategically could reasonably be employed to restore the thousands of kilometers of AMD-affected streams in the coal regions of Appalachia. Secondary benefits that have been observed with passive wetland treatment systems suggest that these systems may be providing for accelerated ecological recovery independent of regulated effluent standards

  9. Weaver Bottoms Wildlife Habitat Restoration: A Case Study

    National Research Council Canada - National Science Library

    Davis, Mary M; Damberg, Carol

    1994-01-01

    .... The Weaver Bottoms Rehabilitation Project is a large scale wetland restoration project that is directed at regaining lost habitat by creating hydrological and energy conditions conducive to marsh growth and production. Davis et al. (1993...

  10. Mount St. Helens Ecosystem Restoration General Reevaluation Study Reconnaissance Report

    Science.gov (United States)

    2007-07-01

    reproduction observed in impacted streams was attributed to temporary groundwater upwelling. Adult salmon and steelhead that returned to the Toutle River...to 33.5% in 1982. Survival of eggs to hatching stage in volcanic substrate ranged from 50% to 95%. Successful reproduction observed in...areas with native conifers . Look for opportunities to enhance or restore off-channel rearing habitat. 84 A number of habitat constraints still

  11. Principles for urban stormwater management to protect stream ecosystems

    Science.gov (United States)

    Walsh, Christopher J.; Booth, Derek B.; Burns, Matthew J.; Fletcher, Tim D.; Hale, Rebecca L.; Hoang, Lan N.; Livingston, Grant; Rippy, Megan A.; Roy, Allison; Scoggins, Mateo; Wallace, Angela

    2016-01-01

    Urban stormwater runoff is a critical source of degradation to stream ecosystems globally. Despite broad appreciation by stream ecologists of negative effects of stormwater runoff, stormwater management objectives still typically center on flood and pollution mitigation without an explicit focus on altered hydrology. Resulting management approaches are unlikely to protect the ecological structure and function of streams adequately. We present critical elements of stormwater management necessary for protecting stream ecosystems through 5 principles intended to be broadly applicable to all urban landscapes that drain to a receiving stream: 1) the ecosystems to be protected and a target ecological state should be explicitly identified; 2) the postdevelopment balance of evapotranspiration, stream flow, and infiltration should mimic the predevelopment balance, which typically requires keeping significant runoff volume from reaching the stream; 3) stormwater control measures (SCMs) should deliver flow regimes that mimic the predevelopment regime in quality and quantity; 4) SCMs should have capacity to store rain events for all storms that would not have produced widespread surface runoff in a predevelopment state, thereby avoiding increased frequency of disturbance to biota; and 5) SCMs should be applied to all impervious surfaces in the catchment of the target stream. These principles present a range of technical and social challenges. Existing infrastructural, institutional, or governance contexts often prevent application of the principles to the degree necessary to achieve effective protection or restoration, but significant potential exists for multiple co-benefits from SCM technologies (e.g., water supply and climate-change adaptation) that may remove barriers to implementation. Our set of ideal principles for stream protection is intended as a guide for innovators who seek to develop new approaches to stormwater management rather than accept seemingly

  12. Ecological engineering alternatives for remediation and restoration of a drastically disturbed landscape

    Energy Technology Data Exchange (ETDEWEB)

    Nairn, R W; Hare, L; Mercer, M; Dresback, K; Pepple, K; Kirchner, A; Cseak, D; Lossing, J; Durham, C; Chen, B

    1999-07-01

    As part of a Fall 1998 Environmental Science graduate seminar in Ecological Engineering at the University of Oklahoma, students were asked to submit a proposal for the holistic and sustainable restoration of the Tar Creek Superfund Site, Ottawa county, Oklahoma. the Tar Creek site is a portion of an abandoned lead and zinc mining area known as the Tri-State Mining District (OL, KS and MO) and includes approximately 104 square kilometers of disturbed land surface and contaminated water resources in extreme northeastern Oklahoma. Approximately 94 million cubic meters of contaminated water currently exist in the underground voids. In 1979, acidic, metal-rich waters began to discharge into Tar Creek from natural springs, bore holes and mine shafts. In addition, approximately 37 million cubic meters of processed mine waste materials (chat) litter their surface in large piles. Approximately 324 hectares of contaminated tailings settling ponds also exist on site. Student submitted proposals addressed the following four subject areas: passive treatment options for stream water quality improvement, surface reclamation and revegetation, stream habitat restoration and joint ecological and economic sustainability. Proposed designs for passive treatment of the contaminated mine drainage included unique constructed wetland designs that relief on a combination of biological and geochemical processes, use of microbial mats for luxury metal uptake, enhanced iron oxidation via windmill-based aeration and fly ash injection. proposed surface reclamation methods included minimal regrading following by biosolid, ash and other organic amendment applications and several phytoremediation techniques, especially the use of hyperaccumulators. The stream and riparian restoration portion of the proposals focused on chat removal, phytoremediation and species reintroduction. proposed joint ecological and economic sustainability ventures included development of recreational facilities, mining

  13. Differential incorporation of natural spawners vs. artificially planted salmon carcasses in a stream food web: Evidence from delta 15N of juvenile coho salmon

    Science.gov (United States)

    Placement of salmon carcasses is a common restoration technique in Oregon and Washington streams, with the goal of improving food resources and productivity of juvenile salmon. To explore the effectiveness of this restoration technique, we measured the δ15N of juvenile coho salmo...

  14. Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport

    Science.gov (United States)

    Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.

    2017-12-01

    In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.

  15. South Bay Salt Pond Tidal Wetland Restoration Phase II Planning

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Tidal Wetland Restoration Phase II Planning project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic re

  16. Annual Report Fiscal Year 2003 of the Secretary of the Army on Civil Works Activities (1 October 2002 - 30 September 2003)

    Science.gov (United States)

    2004-07-29

    County, and nine stream restoration and stormwater wetland sites in Mont - November 15, 1994 gomery County. The project will restore a...maintenance and operation, review and inspections were made for the following projects during Fiscal Year 2003: Ararat River, Surry County, N.C...PROJECTS For Last Cost to September 30, 2003 Full Report See Annual Operation and Project Report for Construction Maintenance 6-36 Ararat

  17. Monitoring of the restored streams in the Vltavský Luh, Šumava National Park

    Czech Academy of Sciences Publication Activity Database

    Bojková, J.; Čížková, H.; Kučerová, Andrea; Rádková, V.; Soldán, Tomáš; Svidenský, R.; Vrba, Jaroslav

    2015-01-01

    Roč. 21, č. 1 (2015), s. 73-79 ISSN 1211-7420 Institutional support: RVO:67985939 ; RVO:60077344 Keywords : restoration * macroinvertebrates * vegetation * hydrology Subject RIV: EH - Ecology, Behaviour

  18. Restoration and economics: A union waiting to happen?

    Science.gov (United States)

    Alicia S.T. Robbins; Jean M. Daniels

    2012-01-01

    In this article, our objective is to introduce economics as a tool for the planning, prioritization, and evaluation of restoration projects. Studies that develop economic estimates of public values for ecological restoration employ methods that may be unfamiliar to practitioners. We hope to address this knowledge gap by describing economic concepts in the context of...

  19. Desirable forest structures for a restored Front Range

    Science.gov (United States)

    Yvette L. Dickinson; Rob Addington; Greg Aplet; Mike Babler; Mike Battaglia; Peter Brown; Tony Cheng; Casey Cooley; Dick Edwards; Jonas Feinstein; Paula Fornwalt; Hal Gibbs; Megan Matonis; Kristen Pelz; Claudia Regan

    2014-01-01

    As part of the federal Collaborative Forest Landscape Restoration Program administered by the US Forest Service, the Colorado Front Range Collaborative Forest Landscape Restoration Project (FR-CFLRP, a collaborative effort of the Front Range Roundtable1 and the US Forest Service) is required to define desired conditions for lower montane ponderosa pine (Pinus ponderosa...

  20. Restoring Detroit's Street Lighting System

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    The City of Detroit is in the midst of a comprehensive restoration of its street lighting system that includes transitioning the existing HPS sources to LED. This report provides an objective review of the circumstances surrounding the system restoration, the processes undertaken and decisions made, and the results so far — and contains useful information about issues that arise during large-scale LED street lighting projects.