WorldWideScience

Sample records for stream heat content

  1. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  2. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  3. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. (general)

  4. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  5. GENERALIZATION, FORMULATION AND HEAT CONTENTS OF SIMULATED MSW WITH HIGH MOISTURE CONTENT

    Directory of Open Access Journals (Sweden)

    A. JOHARI

    2012-12-01

    Full Text Available This paper presents a generalization technique for the formulation of simulated municipal solid waste. This technique is used for the elimination of the inconsistency in the municipal solid waste (MSW characteristics due to its heterogeneous nature. The compositions of simulated municipal solid waste were formulated from four major municipal waste streams components in Malaysia namely paper, plastic, food and yard waste. The technique produced four simplified waste generalization categories with composition of paper (19%, plastic (25%, food (27% and green waste (29% respectively. Comparative study was conducted for proximate analysis for the determination of volatile matter, fixed carbon and ash content. Ultimate analysis was performed for carbon and hydrogen content. The heat content for simulated and actual municipal solid waste showed good agreement. The moisture content of the simulated municipal solid waste and actual municipal solid waste were established at 52.34% and 61.71% respectively. Overall results were considered to be representative of the actual compositions of municipal solid waste in Malaysia.

  6. The Calculated and Measured Performance Characteristics of a Heated-Wire Liquid-Water-Content Meter for Measuring Icing Severity

    Science.gov (United States)

    Neel, Carr B.; Steinmetz, Charles P.

    1952-01-01

    Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.

  7. Simultaneous determination of reference free-stream temperature and convective heat transfer coefficients

    International Nuclear Information System (INIS)

    Jeong, Gi Ho; Song, Ki Bum; Kim, Kui Soon

    2001-01-01

    This paper deals with the development of a new method that can obtain heat transfer coefficient and reference free stream temperature simultaneously. The method is based on transient heat transfer experiments using two narrow-band TLCs. The method is validated through error analysis in terms of the random uncertainties in the measured temperatures. It is shown how the uncertainties in heat transfer coefficient and free stream temperature can be reduced. The general method described in this paper is applicable to many heat transfer models with unknown free stream temperature

  8. Advanced content delivery, streaming, and cloud services

    CERN Document Server

    Sitaraman, Ramesh Kumar; Robinson, Dom

    2014-01-01

    While other books on the market provide limited coverage of advanced CDNs and streaming technologies, concentrating solely on the fundamentals, this book provides an up-to-date comprehensive coverage of the state-of-the-art advancements in CDNs, with a special focus on Cloud-based CDNs. The book includes CDN and media streaming basics, performance models, practical applications, and business analysis. It features industry case studies, CDN applications, and open research issues to aid practitioners and researchers, and a market analysis to provide a reference point for commercial entities. The book covers Adaptive Bitrate Streaming (ABR), Content Delivery Cloud (CDC), Web Acceleration, Front End Optimization (FEO), Transparent Caching, Next Generation CDNs, CDN Business Intelligence and more.

  9. ESTIMATION OF THE TEMPERATURE RISE OF A MCU ACID STREAM PIPE IN NEAR PROXIMITY TO A SLUDGE STREAM PIPE

    International Nuclear Information System (INIS)

    Fondeur, F; Michael Poirier, M; Samuel Fink, S

    2007-01-01

    Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar(reg s ign) L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring

  10. A thermal design method for the performance optimization of multi-stream plate-fin heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Li, Yanzhong [Xi’an Jiaotong University, Xi’an (China); Sunden, Bengt [Lund University, Lund (Sweden); Han, Fenghui [Dalian Maritime University, Dalian (China)

    2017-06-15

    An optimization design method based on field synergy principle is developed for Multi-stream plate-fin heat exchangers (MPHEs) with a segmented differential model. The heat exchanger is divided into a number of sub-exchangers along the main stream, and each sub-exchanger consists of N passages along the height of the exchanger. Compared with the traditional heat exchanger design, this method allows temperature and pressure fields to be obtained via coupling calculation with consideration of variable physical properties and the axial heat loss of the heat exchanger. Finally, the heat exchanger is optimally designed using a temperature-difference uniformity optimization factor based on field synergy principle. This design model can provide an accurate temperature field and pressure field, because the stream properties are determined by the mean temperature and pressure of each local sub-exchanger. Optimum results indicate that the temperature distribution on the cross section of the heat exchanger is relatively uniform and that the temperature difference of heat transfer for each stream is always a small value. These characteristics prove the feasibility and effectiveness of this design model. In this paper, a case of five stream plate-fin heat exchangers for an ethylene plant is designed under a practical cold box operating condition with the proposed model, the structure and heat transfer of which are optimally determined. The design model and optimization method proposed in this work can provide theoretical and technical support to the optimization design of MPHEs.

  11. Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery

    International Nuclear Information System (INIS)

    Yu, Haoshui; Eason, John; Biegler, Lorenz T.; Feng, Xiao

    2017-01-01

    In the past decades, the Organic Rankine Cycle (ORC) has become a promising technology for low and medium temperature energy utilization. In refineries, there are usually multiple waste heat streams to be recovered. From a safety and controllability perspective, using an intermedium (hot water) to recover waste heat before releasing heat to the ORC system is more favorable than direct integration. The mass flowrate of the intermediate hot water stream determines the amount of waste heat recovered and the final hot water temperature affects the thermal efficiency of ORC. Both, in turn, exert great influence on the power output. Therefore, the hot water mass flowrate is a critical decision variable for the optimal design of the system. This study develops a model for techno-economic optimization of an ORC with simultaneous heat recovery and capital cost optimization. The ORC is modeled using rigorous thermodynamics with the concept of state points. The task of waste heat recovery using the hot water intermedium is modeled using the Duran-Grossmann model for simultaneous heat integration and process optimization. The combined model determines the optimal design of an ORC that recovers multiple waste heat streams in a large scale background process using an intermediate heat transfer stream. In particular, the model determines the optimal heat recovery approach temperature (HRAT), the utility load of the background process, and the optimal operating conditions of the ORC simultaneously. The effectiveness of this method is demonstrated with a case study that uses a refinery as the background process. Sensitivity of the optimal solution to the parameters (electricity price, utility cost) is quantified in this paper. - Highlights: • A new model for Organic Rankine cycle design optimization is presented. • Process heat integration and ORC are considered simultaneously. • Rigorous equation oriented models of the ORC are used for accurate results. • Impact of working

  12. Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery

    International Nuclear Information System (INIS)

    Wang, Yufei; Tang, Qikui; Wang, Mengying; Feng, Xiao

    2017-01-01

    Highlights: • Comparison between ORC and Kalina cycles (KC) for multi-stream waste heat recovery. • Divide waste heat into straight, convex and concave based on its composite curve. • Use heat ratio and temperature of the most point to show the feature of waste heat. • KC is suitable for straight and most concave heat, while ORC for convex one. - Abstract: Organic Rankine cycle (ORC) and Kalina cycle are the main technologies to recover waste heat for power generation. Up to now, many works dealing with the thermodynamic performance comparison between ORC and Kalina cycles are available, but these studies considered for heat recovery from a single heat source or stream. In the process industry, there are multiple waste heat streams, forming a complex heat source profile. In this paper, based on the simulation model developed in the Aspen Hysys software, the two cycles are calculated and compared. According to the waste heat composite curve, the multi-stream waste heat is divided into three kinds, straight, convex, and concave waste heat. Two parameters, the ratio of the heat above and below the most salient/concave point (R) and the temperature of the most point, are used to roughly express the feature of waste heat. With the efficiency from waste heat (exergy) to power as energy performance indicator, the calculation results for waste heat with maximum supply temperature 180 °C show that for straight and concave waste heat with R not less than 0.2, Kalina cycle is better than ORC, while for convex waste heat, ORC is preferable. The work can provide a reference to choose a suitable technology to recover low temperature waste heat for power generation in the process industry.

  13. Effect of multi-stream heat exchanger on performance of natural gas liquefaction with mixed refrigerant

    Science.gov (United States)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2012-12-01

    A thermodynamic study is carried out to investigate the effect of multi-stream heat exchanger on the performance of natural gas (NG) liquefaction with mixed refrigerant (MR). A cold stream (low-pressure MR) is in thermal contact with opposite flow of two hot streams (high-pressure MR and NG feed) at the same time. In typical process simulation with commercial software (such as Aspen HYSYS®), the liquefaction performance is estimated with a method of minimum temperature approach, simply assuming that two hot streams have the same temperature. In this study, local energy balance equations are rigorously solved with temperature-dependent properties of MR and NG feed, and are linked to the thermodynamic cycle analysis. The figure of merit (FOM) is quantitatively examined in terms of UA (the product of overall heat transfer coefficient and heat exchange area) between respective streams. In a single-stage MR process, it is concluded that the temperature profile from HYSYS is difficult to realize in practice, and the FOM value from HYSYS is an over-estimate, but can be closely achieved with a proper heat-exchanger design. It is also demonstrated that there exists a unique optimal ratio in three UA's, and no direct heat exchanger between hot streams is recommended.

  14. Retrofitting of heat exchanger networks involving streams with variable heat capacity: Application of single and multi-objective optimization

    International Nuclear Information System (INIS)

    Sreepathi, Bhargava Krishna; Rangaiah, G.P.

    2015-01-01

    Heat exchanger network (HEN) retrofitting improves the energy efficiency of the current process by reducing external utilities. In this work, HEN retrofitting involving streams having variable heat capacity is studied. For this, enthalpy values of a stream are fitted to a continuous cubic polynomial instead of a stepwise approach employed in the previous studies [1,2]. The former methodology is closer to reality as enthalpy or heat capacity changes gradually instead of step changes. Using the polynomial fitting formulation, single objective optimization (SOO) and multi-objective optimization (MOO) of a HEN retrofit problem are investigated. The results obtained show an improvement in the utility savings, and MOO provides many Pareto-optimal solutions to choose from. Also, Pareto-optimal solutions involving area addition in existing heat exchangers only (but no new exchangers and no structural modifications) are found and provided for comparison with those involving new exchangers and structural modifications as well. - Highlights: • HEN retrofitting involving streams with variable heat capacities is studied. • A continuous approach to handle variable heat capacity is proposed and tested. • Better and practical solutions are obtained for HEN retrofitting in process plants. • Pareto-optimal solutions provide many alternate choices for HEN retrofitting

  15. Retrofit of heat exchanger networks with pressure recovery of process streams at sub-ambient conditions

    International Nuclear Information System (INIS)

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A.

    2015-01-01

    Highlights: • New mathematical model for heat exchanger networks retrofit with pressure recovery. • Optimal heat and work integration applied to the retrofit of sub-ambient processes. • Streams pressure manipulation is used to enhance heat integration of the system. • Compressors and turbines can act on a coupling shaft and/or as stand-alone equipment. • Use of smaller amount of cold utilities, reducing significantly the operational costs. - Abstract: This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes

  16. Analysis of stream temperature and heat budget in an urban river under strong anthropogenic influences

    Science.gov (United States)

    Xin, Zhuohang; Kinouchi, Tsuyoshi

    2013-05-01

    Stream temperature variations of the Tama River, which runs through highly urbanized areas of Tokyo, were studied in relation to anthropogenic impacts, including wastewater effluents, dam release and water withdrawal. Both long-term and longitudinal changes in stream temperature were identified and the influences of stream flow rate, temperature and volume of wastewater effluents and air temperature were investigated. Water and heat budget analyses were also conducted for several segments of the mainstream to clarify the relative impacts from natural and anthropogenic factors. Stream temperatures in the winter season significantly increased over the past 20 years at sites affected by intensive and warm effluents from wastewater treatment plants (WWTPs) located along the mainstream. In the summer season, a larger stream temperature increase was identified in the upstream reaches, which was attributable to the decreased flow rate due to water withdrawal. The relationship between air and stream temperatures indicated that stream temperatures at the upstream site were likely to be affected by a dam release, while temperatures in the downstream reaches have deviated more from air temperatures in recent years, probably due to the increased impacts of effluents from WWTPs. Results of the water and heat budget analyses indicated that the largest contributions to water and heat gains were attributable to wastewater effluents, while other factors such as groundwater recharge and water withdrawal were found to behave as energy sinks, especially in summer. The inflow from tributaries worked to reduce the impacts of dam release and the heat exchanges at the air-water interface contributed less to heat budgets in both winter and summer seasons for all river segments.

  17. Streamer Motives and User-Generated Content on Social Live-Streaming Services

    Directory of Open Access Journals (Sweden)

    Friedlander, Mathilde B.

    2017-03-01

    Full Text Available Three most popular information services, Periscope, Ustream, and YouNow, vicarious for all Social Live-Streaming Services (SLSSs, are investigated to analyze their streamers' motivations and the user-generated content. Additionally, we collected demographic data (gender and age. More than 7,500 streams by users from the U.S., Germany, and Japan were observed. Main streamer motivations on SLSSs are boredom, socializing, the need to reach a specific group, the need to communicate, and fun. Important content categories on all three SLSSs are chatting, sharing information, 24/7, and 'slice of life.' We were able to identify differences between users from the U.S., Germany, and Japan as well as between the users of Periscope, Ustream, and YouNow. The main motive to stream in the U.S. is to reach a specific group, while in Japan it is socializing, and in Germany boredom. The top content category for both, YouNow as well as Periscope, is to chat; on Ustream it is 24/7 (i.e., webcams.

  18. Joule heating induced stream broadening in free-flow zone electrophoresis.

    Science.gov (United States)

    Dutta, Debashis

    2018-03-01

    The use of an electric field in free-flow zone electrophoresis (FFZE) automatically leads to Joule heating yielding a higher temperature at the center of the separation chamber relative to that around the channel walls. For small amounts of heat generated, this thermal effect introduces a variation in the equilibrium position of the analyte molecules due to the dependence of liquid viscosity and analyte diffusivity on temperature leading to a modification in the position of the analyte stream as well as the zone width. In this article, an analytic theory is presented to quantitate such effects of Joule heating on FFZE assays in the limit of small temperature differentials across the channel gap yielding a closed form expression for the stream position and zone variance under equilibrium conditions. A method-of-moments approach is employed to develop this analytic theory, which is further validated with numerical solutions of the governing equations. Interestingly, the noted analyses predict that Joule heating can drift the location of the analyte stream either way of its equilibrium position realized in the absence of any temperature rise in the system, and also tends to reduce zone dispersion. The extent of these modifications, however, is governed by the electric field induced temperature rise and three Péclet numbers evaluated based on the axial pressure-driven flow, transverse electroosmotic and electrophoretic solute velocities in the separation chamber. Monte Carlo simulations of the FFZE system further establish a time and a length scale over which the results from the analytic theory are valid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Interhemispheric Changes in Atlantic Ocean Heat Content and Their Link to Global Monsoons

    Science.gov (United States)

    Lopez, H.; Lee, S. K.; Dong, S.; Goni, G. J.

    2015-12-01

    This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. The effect of eddies on the NH (SH) poleward of 30° is opposite with heat flux divergence (convergence), which must be balanced by sinking (rising) motion, consistent with a poleward (equatorward) displacement of the jet stream and mean storm track. The mechanism described here could easily be interpreted for the case of strong SAMHT, with the reverse influence on the interhemispheric atmospheric circulation and monsoons. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.

  20. On the correlation of heat transfer in turbulent boundary layers subjected to free-stream turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    The turbulent flow of a fluid bounded by a heated surface is a wonderfully complex yet derisively mundane phenomenon. Despite its commonness in natural and man-made environments, the authors struggle to accurately predict its behavior in many simple situations. A complexity encountered in a number of flows is the presence of free-stream turbulence. A turbulent free-stream typically yields increased surface friction and heat transfer. Turbulent boundary layers with turbulent free-streams are encountered in gas-turbine engines, rocket nozzles, electronic-cooling passages, geophysical flows, and numerous other dynamic systems. Here, turbulent boundary layers were subjected to grid-generated free-stream turbulence to study the effects of length scale and intensity on heat transfer. The research focused on correlating heat transfer without the use of conventional boundary-layer Reynolds numbers. The boundary-layers studied ranged from 400 to 2,700 in momentum-thickness Reynolds number and from 450 to 1,900 in enthalpy-thickness Reynolds number. Free-stream turbulence intensities varied from 0.1 to 8.0%. The turbulent-to-viscous length-scale ratios presented are the smallest found in the heat-transfer literature; the ratios spanned from 100 to 1000. The turbulent-to-thermal ratios (using enthalpy thickness as the thermal scale) are also the smallest reported; the ratios ranged from 3.2 to 12.3. A length-scale dependence was identified in a Stanton number based on a near-wall streamwise velocity fluctuation. A new near-wall Stanton number was introduced; this parameter was regarded as a constant in a two-region boundary-layer model. The new model correlated heat-transfer to within 7%.

  1. Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks

    Directory of Open Access Journals (Sweden)

    Chien-Peng Ho

    2007-03-01

    Full Text Available This paper presents a framework of content-adaptive packetization scheme for streaming of 3D wavelet-based video content over lossy IP networks. The tradeoff between rate and distortion is controlled by jointly adapting scalable source coding rate and level of forward error correction (FEC protection. A content dependent packetization mechanism with data-interleaving and Reed-Solomon protection for wavelet-based video codecs is proposed to provide unequal error protection. This paper also tries to answer an important question for scalable video streaming systems: given extra bandwidth, should one increase the level of channel protection for the most important packets, or transmit more scalable source data? Experimental results show that the proposed framework achieves good balance between quality of the received video and level of error protection under bandwidth-varying lossy IP networks.

  2. Application of quasi-steady-state plasma streams for simulation of ITER transient heat loads

    International Nuclear Information System (INIS)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Marchenko, A.K.; Solyakov, D.G.; Tereshin, V.I.; Trubchaninov, S.A.; Tsarenko, A.V.; Landman, I.

    2004-01-01

    The paper presents experimental investigations of energy characteristics of the plasma streams generated with quasi-steady-state plasma accelerator QSPA Kh-50 and adjustment of plasma parameters from the point of view its applicability for simulation of transient plasma heat loads expected for ITER disruptions and type I ELMs. Possibility of generation of high-power magnetized plasma streams with ion impact energy up to 0.6 keV, pulse length of 0.25 ms and heat loads varied in wide range from 0.5 to 30 MJ/m 2 has been demonstrated and some features of plasma interaction with tungsten targets in dependence on plasma heat loads are discussed. (author)

  3. Heat transfer by liquids in suspension in a turbulent gas stream (1960)

    International Nuclear Information System (INIS)

    Grison, E.; Commissariat a l'Energie Atomique, Saclay

    1960-01-01

    The introduction of a small volume of liquid into a turbulent gas stream used as cooling agent improves considerably the heat transfer coefficient of the gas. When the turbulent regime is established, one observes in a cylindrical tube two types of flow whether the liquid wets or does not wet the wall. In the first case, one gets on the wall an annular liquid film and droplets in suspension are in the gas stream. In the second case, a fog of droplets is formed without any liquid film on the wall. Experiments were performed with the following mixtures: water-hydrogen, water-nitrogen, ethanol-nitrogen (wetting liquids) introduced into a stainless steel tube of 4 mm ID, electrically heated on 320 mm of length. We varied the gas flow rate (Reynolds until 50000), the rate of the liquid flow rate to gas flow rate (until 15), the pressure (until 10 kg/cm 2 ), the temperature (until the boiling point) and the heat flux (until 250 W/cm 2 ). Two types of burnout were observed. A formula of correlation of the burnout heat flux is given. Making use of the analogy between mass transfer and heat transfer, a dimensionless formula of correlation of the local heat transfer coefficients is established. (author) [fr

  4. Streamer Motives and User-Generated Content on Social Live-Streaming Services

    OpenAIRE

    Friedlander, Mathilde B.

    2017-01-01

    Three most popular information services, Periscope, Ustream, and YouNow, vicarious for all Social Live-Streaming Services (SLSSs), are investigated to analyze their streamers' motivations and the user-generated content. Additionally, we collected demographic data (gender and age). More than 7,500 streams by users from the U.S., Germany, and Japan were observed. Main streamer motivations on SLSSs are boredom, socializing, the need to reach a specific group, the need to communicate, and fun. Im...

  5. Satellite Ocean Heat Content Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and Information...

  6. Non-uniform groundwater discharge across a stream bed: Heat as a tracer

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn; Engesgaard, Peter Knudegaard

    2011-01-01

    Time series analysis of conO nuous streambed temperature during a period of 47 d revealed that discharge to a stream is nonuniform, with strongly increasing verO cal fl uxes throughout the top 20 cm of the streambed–aquifer interface. An analyO cal soluO on to the transient heat transport equa...... near the streambed. Seepage meter measurements in the middle of the stream oO en resulted in highly variable fl ux esO - mates, which could have been caused by hyporheic fl ow due to the presence of a gravel layer. Discharge and recharge to the stream at the bank near the meadow was relaO vely steady...

  7. Heat transfer in MHD unsteady stagnation point flow with variable wall temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.; Takhar, H.S.

    stream_size 8739 stream_content_type text/plain stream_name Indian_J_Pure_Appl_Math_21_384.pdf.txt stream_source_info Indian_J_Pure_Appl_Math_21_384.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8.... Soc. A224 (1954), 1-23. 2. S. I. Cheng and D. Elliott, Heat Transfer and Fluid Mech. IlIstitUfl?, S:anfoni University. Stanford (CA). 1956, p.p.221-38. 3. S. I. Cheng, Quart. appl. Math. 14 (1956-1957), 337-52. (\\ K. T. Yang, J. Appl. Mecll. (Tr. ASME...

  8. Streams in the urban heat island: spatial and temporal variability in temperature

    Science.gov (United States)

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization

  9. Calculation of heat transfer in transversely stream-lined tube bundles with chess arrangement

    International Nuclear Information System (INIS)

    Migaj, V.K.

    1978-01-01

    A semiempirical theory of heat transfer in transversely stream-lined chess-board tube bundles has been developed. The theory is based on a single cylinder model and involves external flow parameter evaluation on the basis of the solidification principle of a vortex zone. The effect of turbulence is estimated according to experimental results. The method is extended to both average and local heat transfer coefficients. Comparison with experiment shows satisfactory agreement

  10. Evaluation of material fracture energy by its heat content

    International Nuclear Information System (INIS)

    Frolov, G.A.; Pasichnyj, V.V.; Polezhaev, Yu.V.; Frolov, A.A.; Choba, A.V.

    1986-01-01

    Based on published and experimental data it is shown that there is a simple relationship between the heat of evaporation and heat content. This allows in some instances the evaluation of a rate of material fracture by its content. Experimental and theoretical data for quartz glass ceramics, and glass-reinforced plastic are presented

  11. Variability in north tropical atlantic over the last 20 000 years and holocene gulf stream activity

    International Nuclear Information System (INIS)

    Cleroux, C.

    2007-10-01

    Modern oceanographical studies shown that most of the ocean heat content in the North Atlantic Western Boundary Current region is stored in the upper 400 meters. To study past heat content and Gulf Stream activity, we performed coupled analyses of oxygen isotopic and trace elemental composition on several foraminifera species to reconstruct upper water column temperature and salinity. Calcification depths of Globorotalia inflata, Globorotalia truncatulinoides and Pulleniatina obliquiloculata have been constrain by correlating modern hydrographic data to oxygen isotopic measurement of North Atlantic core-top samples. We found that the three deep-dwelling foraminifera species have a preferred habitat at the base of the seasonal thermocline (Cleroux et al, 2007). The same set of North Atlantic core-tops has been used to define relationships between trace elemental compositions and temperature. We established calibrations between Mg/Ca ratio or Sr/Ca ratio and temperature for the three deep-dwelling foraminifera (Cleroux et al, submitted). We apply this strategy on the core MD99-2203 located off Cape Hatteras where the Gulf Stream separate from the United States coast. High-resolution surface reconstructions over the Holocene show low amplitude periodic temperature and salinity changes that could be related to NAO type mechanisms. Large hydrological changes in sub-surface reflect variations of Labrador current and Mode Water influences. Using recent studies on Mode Water formation and Gulf Stream heat advection, we interpret our results in term of ocean heat content and Gulf Stream activity. (author)

  12. Using heat to characterize streambed water flux variability in four stream reaches

    Science.gov (United States)

    Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.

    2008-01-01

    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  13. Lattice Boltzmann simulation of the convective heat transfer from a stream-wise oscillating circular cylinder

    International Nuclear Information System (INIS)

    Bao Sheng; Chen Sheng; Liu Zhaohui; Zheng Chuguang

    2012-01-01

    Highlights: ► Heat transfer is enhanced by small and slow stream-wise oscillation. ► The average Nu decreases with increasing oscillation frequency. ► The RMS Nu increases with increasing frequency. ► The mean and RMS Nu reach a local maximum value in locked regime. ► Similar frequency effect is found for different Reynolds numbers. - Abstract: In this paper, we studied the convective heat transfer from a stream-wise oscillating circular cylinder. Two dimensional numerical simulations are conducted at Re = 100–200, A = 0.1–0.4 and F = f o /f s = 0.2–3.0 with the aid of the lattice Boltzmann method. In particular, detailed attentions are paid on the extensive numerical results elucidating the influence of oscillation frequency, oscillation amplitude and Reynolds number on the time-average and RMS value of the Nusselt number. Over the ranges of conditions considered herein, the heat transfer characteristics are observed to be influenced in an intricate manner by the value of the oscillation frequency (F), oscillation amplitude (A) and Reynolds number (Re). Firstly, the heat transfer is enhanced when the cylinder oscillates stream-wise with small amplitude and low frequency, while it will be reduced by large amplitude and high frequency. Secondly, the average Nusselt number (Nu (ave)) decreases against the increasing value of oscillation frequency, while the RMS value of the Nusselt number, Nu (RMS), displays an opposite trend. Third, we obtained a similar frequency effect on the heat transfer over the range of Reynolds numbers investigated in this paper. In addition, detailed analyses on phase portraits, energy spectrum are also made.

  14. Numerical study of the influence of the convective heat transport on acoustic streaming in a standing wave.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2018-02-01

    Within this work, acoustic streaming in an air-filled cylindrical resonator with walls supporting a temperature gradient is studied by means of numerical simulations. A set of equations based on successive approximations is derived from the Navier-Stokes equations. The equations take into account the acoustic-streaming-driven convective heat transport; as time-averaged secondary-field quantities are directly calculated, the equations are much easier to integrate than the original fluid-dynamics equations. The model equations are implemented and integrated employing commercial software COMSOL Multiphysics. Numerical calculations are conducted for the case of a resonator with a wall-temperature gradient corresponding to the action of a thermoacoustic effect. It is shown that due to the convective heat transport, the streaming profile is considerably distorted even in the case of weak wall-temperature gradients. The numerical results are consistent with available experimental data.

  15. Value Stream Mapping for Evaluation of Load Scheduling Possibilities in a District Heating Plant

    Directory of Open Access Journals (Sweden)

    Raivo Melsas

    2016-09-01

    Full Text Available The aim of this paper is to provide a solution for load scheduling by implementing value stream mapping, which is a straightforward enough for production management. Decision makers in the industry should have a clear understanding about positive effect from load scheduling and its effect to production outcome and process availability. Value stream mapping is a well-known process optimization tool from lean production philosophy. The aim of value stream mapping is to shorten the lead time of industrial processes and to reduce the intermediate stock amounts. By complementing value stream map with process energy intensity and energy stored in intermediate stocks, we can promote load scheduling possibilities. Our methodology provides a tool that is understandable and traceable for industry-minded decision makers. Finally, we present a real life test example for the new methodology, which is based on the production process of a district heating plant.

  16. A comparative study of plasma heating by ion acoustic and modified two-stream instabilities at subcritical quasi-perpendicular shocks

    International Nuclear Information System (INIS)

    Winske, D.; Giacalone, J.; Thomsen, M.F.; Mellott, M.M.

    1987-01-01

    Plasma heating due to the ion instability and the modified two-stream instability is examined for quasi-perpendicular subcritical shocks. Electron and ion heating is investigated as a function of upstream electron to ion temperature ratio and plasma beta using second-order heating rates. A simple shock model is employed in which the cross-field electron-ion drift speed is adjusted until the total (adiabatic plus anomalous) heating matches that required by the Rankine-Hugoniot relations. Quantities such as the width of the shock and the maximum electric field fluctuations are also calculated, and the results are compared with the ISEE data set of subcritical box shock crossings. The observed width of the shock, the amount of plasma heating, and the low-frequency electric field intensity are in reasonably good agreement with the calculations for the modified two-stream instability. On the other hand, the wave intensities at higher frequency are about 4 orders of magnitude smaller than those predicted for the ion acoustic instability at saturation, consistent with the fact that the measured shock widths imply cross-field drift speeds that are below threshold for this instability. It is therefore concluded that the dissipation at these shocks is most likely due to the lower frequency, modified two-stream instability

  17. Targeting the maximum heat recovery for systems with heat losses and heat gains

    International Nuclear Information System (INIS)

    Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

    2014-01-01

    Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

  18. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams

    Directory of Open Access Journals (Sweden)

    Yi-Huang eSu

    2014-12-01

    Full Text Available Both lower-level stimulus factors (e.g., temporal proximity and higher-level cognitive factors (e.g., content congruency are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently or upwards (incongruently to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  19. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams.

    Science.gov (United States)

    Su, Yi-Huang

    2014-01-01

    Both lower-level stimulus factors (e.g., temporal proximity) and higher-level cognitive factors (e.g., content congruency) are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual (AV) streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently) or upwards (incongruently) to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  20. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    OpenAIRE

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-01-01

    Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in ...

  1. Seasonal relationships between foliar moisture content, heat content and biochemistry of lodge pole pine and big sagebrush foliage

    Science.gov (United States)

    Yi Qi; Matt Jolly; Philip E. Dennison; Rachael C. Kropp

    2016-01-01

    Wildland fires propagate by liberating energy contained within living and senescent plant biomass. The maximum amount of energy that can be generated by burning a given plant part can be quantified and is generally referred to as its heat content (HC). Many studies have examined heat content of wildland fuels but studies examining the seasonal variation in foliar HC...

  2. STREAMTO: Streaming Content using a Tamper-Resistant Token

    NARCIS (Netherlands)

    Cheng, Jieyin; Chong, C.N.; Doumen, J.M.; Etalle, Sandro; Hartel, Pieter H.; Nikolaus, Stefan

    2004-01-01

    StreamTo uses tamper resistant hardware tokens to generate the key stream needed to decrypt encrypted streaming music. The combination of a hardware token and steaming media effectively brings tried and tested PayTV technology to the Internet. We provide a security analysis and present two prototype

  3. Thermal damage study on diamond tools at varying laser heating time and temperature by Raman spectroscopy and SEM

    CSIR Research Space (South Africa)

    Masina, BN

    2011-07-01

    Full Text Available 1400 G O B I c a m e r a t e m p e r a t u r e ( K e l v i n ) Blackbody object temperature (Kelvin) y = 0.96 x Slide 10 Physical changes on the diamond tool samples due to the laser heating Initial 5 min – 895 K 15 min – 968 K 25 min – 979 K... stream_source_info Masina_2011_ABSTRACT ONLY.pdf.txt stream_content_type text/plain stream_size 3683 Content-Encoding UTF-8 stream_name Masina_2011_ABSTRACT ONLY.pdf.txt Content-Type text/plain; charset=UTF-8 Thermal...

  4. Akamai Streaming

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Akamai offers world-class streaming media services that enable Internet content providers and enterprises to succeed in today's Web-centric marketplace. They deliver live event Webcasts (complete with video production, encoding, and signal acquisition services), streaming media on demand, 24/7 Webcasts and a variety of streaming application services based upon their EdgeAdvantage.

  5. Control and Innovation on Digital Platforms : the case of Netflix and streaming of video content

    OpenAIRE

    Vigeland, Eirik

    2012-01-01

    In this thesis I investigate innovation processes on innovation platforms, and look at the role played by content release for innovation in digital distribution of home entertainment. I argue that innovation platforms rely on several aspects of innovation in order to succeed, and this thesis is concerned with one of these, namely release of digital entertainment content. I use the American video streaming service Netflix as a case and example of such an innovation platform. By using techno...

  6. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  7. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    International Nuclear Information System (INIS)

    Wissink, Jan G.; Rodi, Wolfgang

    2009-01-01

    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  8. Ocean heat content and Earth's radiation imbalance

    International Nuclear Information System (INIS)

    Douglass, David H.; Knox, Robert S.

    2009-01-01

    Earth's radiation imbalance is determined from ocean heat content data and compared with results of direct measurements. Distinct time intervals of alternating positive and negative values are found: 1960-mid-1970s (-0.15), mid-1970s-2000 (+0.15), 2001-present (-0.2 W/m 2 ), and are consistent with prior reports. These climate shifts limit climate predictability.

  9. Impact of moisture content in AAC on its heat insulation properties

    Science.gov (United States)

    Rubene, S.; Vilnitis, M.

    2017-10-01

    One of the most popular trends in construction industry is sustainable construction. Therefore, application of construction materials with high insulation characteristics has significantly increased during the past decade. Requirements for application of construction materials with high insulation parameters are required not only by means of energy saving and idea of sustainable construction but also by legislative requirements. Autoclaved aerated concrete (AAC) is a load bearing construction material, which has high heat insulation parameters. However, if the AAC masonry construction has high moisture content the heat insulation properties of the material decrease significantly. This fact lead to the necessity for the on-site control of moisture content in AAC in order to avoid inconsistency between the designed and actual thermal resistivity values of external delimiting constructions. Research of the impact of moisture content in AAC on its heat insulation properties has been presented in this paper.

  10. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    Sodium acetate trihydrate is a phase change material that can be used for long term heat storage in solar heating systems because of its relatively high heat of fusion, a melting temperature of 58 °C and its ability to supercool stable. In practical applications sodium acetate trihydrate tend to ......, 0.3–0.5 % (wt.%) Xanthan Gum or 1–2% (wt.%) of some solid or liquid polymers as additives had significantly higher heat contents compared to samples of sodium acetate trihydrate suffering from phase separation....

  11. Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, S. [Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111 (Iran, Islamic Republic of); Dehghan, M. [Department of Mechanical Engineering, Semnan University, P.O. Box: 35196-45399, Semnan (Iran, Islamic Republic of); Ellahi, R., E-mail: rellahi@engr.ucr.edu [Department of Mathematics and Statistics, FBAS, IIUI, 44000 Islamabad (Pakistan); Department of Mechanical Engineering, Bourns Hall, University of California, Riverside, CA 92521 (United States); Riaz, M. [Department of QEC, National Defense University, E-9 Sector, 44000 Islamabad (Pakistan); Jamal-Abad, M.T. [Department of Mechanical Engineering, Semnan University, P.O. Box: 35196-45399, Semnan (Iran, Islamic Republic of)

    2015-03-15

    A mathematical model for two-dimensional fluid flow under the influence of stream wise transverse magnetic fields in laminar regime is simulated in this study. Heat transfer past a square diamond shaped porous obstacle is also taken into account. The attention is focused to investigate the effects of intensity and direction of magnetic field, Darcy and Reynolds numbers on the mechanism of convective heat transfer and flow structures. The Darcy–Brinkman–Forchheimer model along with the Maxwell equations is used. The nonlinear coupled equations using a finite volume approach (FVA) are solved numerically. The calculations are performed for different governing parameters such as Reynolds number, Nusselt number, Stuart number and Prandtl Number. The physical interpretation of velocity and isothermal contours is assigned through graphs. It is shown that the effects of a transverse magnetic field on flow behavior and heat transfer mechanism are more than that of the stream wise magnetic field. The configuration of streamlines and vorticity contours phenomena are also presented for porous diamond obstacle. Comparison of the numerical solutions with existing literature is also made. - Highlights: • This paper analyses two-dimensional fluid flow under the influence of stream wise transverse magnetic field. • Heat transfer past a square diamond shaped porous obstacle is taken into account. • The Darcy–Brinkman–Forchheimer model is used. • Finite volume approach is used to find numerical solutions. • The configuration of streamlines and vorticity contours phenomena are presented through graphs.

  12. Relationship between the dough quality and content of specific glutenin proteins in wheat mill streams, and its application to making flour suitable for instant Chinese noodles.

    Science.gov (United States)

    Yahata, Eriko; Maruyama-Funatsuki, Wakako; Nishio, Zenta; Yamamoto, Yoshihiko; Hanaoka, Akihiro; Sugiyama, Hisashi; Tanida, Masatoshi; Saruyama, Haruo

    2006-04-01

    The content of specific proteins such as high-molecular-weight glutenin subunits HMW-GS 5+10 and low-molecular-weight glutenin subunits LMW-GS KS2 in wheat mill streams of extra-strong Kachikei 33 wheat was quantified by SDS-PAGE and 2D-PAGE. The mill streams showed varied quantities of HMW-GS 5+10 (0.077 to 2.007 mg/g of mill stream), LMW-GS KS2 (0.018 to 0.586 mg/g of mill stream) and total protein (9.42% to 18.98%). The contents of these specific proteins in the mill streams were significantly correlated with the SDS sedimentation volume and the mixing properties, which are respective indices of specific loaf volume and dough strength. The contents of these specific glutenin proteins in the mill streams were therefore found to be significantly important for improving the dough quality suitable for bread and Chinese noodles. Accordingly, we present here the application of this information to the development of an effective method for producing mill streams with high quality and yield that are suitable for instant Chinese noodles.

  13. Process for humidifying a gaseous fuel stream

    International Nuclear Information System (INIS)

    Sederquist, R. A.

    1985-01-01

    A fuel gas stream for a fuel cell is humidified by a recirculating hot liquid water stream using the heat of condensation from the humidified stream as the heat to vaporize the liquid water. Humidification is accomplished by directly contacting the liquid water with the dry gas stream in a saturator to evaporate a small portion of water. The recirculating liquid water is reheated by direct contact with the humidified gas stream in a condenser, wherein water is condensed into the liquid stream. Between the steps of humidifying and condensing water from the gas stream it passes through the fuel cell and additional water, in the form of steam, is added thereto

  14. Multiobjective heat exchanger network synthesis based on grouping of process streams

    Energy Technology Data Exchange (ETDEWEB)

    Laukkanen, T.P.

    2012-06-15

    Heat exchanger network synthesis (HENS) is an important process synthesis problem and different tools and methods have been presented to solve this synthesis problem. This is mainly due to its importance in achieving energy savings in industrial processes in a cost-efficient way. The problem is also hard to solve and has been proven NP-hard (Nondeterministic Polynomial-time) and hence it is not known if a computationally efficient (polynomial) algorithm to solve the problem exists. Thus methods that provide good approximate solutions with reasonable computational requirements are useful. The objective of this thesis is to present new HENS approaches that are able to generate good solutions for HENS problems in a computationally efficient way so that all the objectives of HENS are optimized simultaneously. The main approach in accomplishing this objective is by grouping process streams. This is done either on the basis of the fact that in reality the process streams belong to a specific group or these groups are artificially developed. In the latter approach the idea is to decompose the set of binary variables i.e., the variables that define the existence of heat exchanger matches, into two separate problems. In this way the number of different options to connect the streams decreases compared to the situation where no decomposition is present. This causes the solution time to decrease and provides options for solving larger HENS problems. In this work the multiobjective HENS problem is solved either with the traditional weighting method or with an interactive multiobjective optimization method. In the weighting method the weights are the annual costs of the different objectives. In the interactive multiobjective optimization method the Decision Maker (DM) controls the decision-making process by classifying the objectives at each iteration. This multiobjective approach provides the benefit of using interactive multiobjective optimization, so that it is possible to

  15. [Affect regularity of medicinal species and heating time on flavonoids contents in Epimedium cut crude drug].

    Science.gov (United States)

    Sun, E; Chen, Ling-ling; Jia, Xiao-bin; Qian, Qian; Cui, Li

    2012-09-01

    To study the affect regularity of medicinal species and heating time on flavonoids contents in Epimedium cut crude drug. Setting processing temperature at 170 degrees C, 39 batches Epimedium cut crude drug of different species were heated for 0, 5, 10 minutes. The contents of epimedin A, B, C, icariin, Baohuoside I in different species of Epimedium were determined by HPLC. The variance analysis was used to study the effect of medicinal species and heating time on the contents change of five major flavonoids. The contents of Epimedin A, B, C were significantly impacted by medicinal species (P time (P time and species (P > 0.05). The medicinal species and heat processed time are two important influence factors on the flavonoids contents in Epimedium. The contents of Epimedin A, C are abundant in Epimedium pubescens, and the contents of Epimedin B, Baohuoside I are higher in Epimedium brevicornu. After heating, the contents of Epimedin A, B, C are decreased, and icariin, Baohuoside I are increased. This study provides scientific evidences for variety certification, optimizing processing technology, exploring processing mechanism and clinical rational administration.

  16. Stream specificity and asymmetries in feature binding and content-addressable access in visual encoding and memory.

    Science.gov (United States)

    Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk

    2015-01-01

    Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.

  17. Variability in north tropical atlantic over the last 20 000 years and holocene gulf stream activity; Variabilite au cours des derniers 20 000 ans de l'hydrologie de l'atlantique tropical nord et de l'activite du gulf stream a partir de la composition isotopique de l'oxygene et de la composition en elements trace des foraminferes planctoniques profonds

    Energy Technology Data Exchange (ETDEWEB)

    Cleroux, C

    2007-10-15

    Modern oceanographical studies shown that most of the ocean heat content in the North Atlantic Western Boundary Current region is stored in the upper 400 meters. To study past heat content and Gulf Stream activity, we performed coupled analyses of oxygen isotopic and trace elemental composition on several foraminifera species to reconstruct upper water column temperature and salinity. Calcification depths of Globorotalia inflata, Globorotalia truncatulinoides and Pulleniatina obliquiloculata have been constrain by correlating modern hydrographic data to oxygen isotopic measurement of North Atlantic core-top samples. We found that the three deep-dwelling foraminifera species have a preferred habitat at the base of the seasonal thermocline (Cleroux et al, 2007). The same set of North Atlantic core-tops has been used to define relationships between trace elemental compositions and temperature. We established calibrations between Mg/Ca ratio or Sr/Ca ratio and temperature for the three deep-dwelling foraminifera (Cleroux et al, submitted). We apply this strategy on the core MD99-2203 located off Cape Hatteras where the Gulf Stream separate from the United States coast. High-resolution surface reconstructions over the Holocene show low amplitude periodic temperature and salinity changes that could be related to NAO type mechanisms. Large hydrological changes in sub-surface reflect variations of Labrador current and Mode Water influences. Using recent studies on Mode Water formation and Gulf Stream heat advection, we interpret our results in term of ocean heat content and Gulf Stream activity. (author)

  18. Effect of Heat Treatment on the Lycopene Content of Tomato Puree ...

    African Journals Online (AJOL)

    Effect of Heat Treatment on the Lycopene Content of Tomato Puree. MI Mohammed, DI Malami. Abstract. Lycopene is a powerful antioxidant. Epidemiological studies have associated its consumption with numerous health benefits. In this study the effects of heating on lycopene were investigated by exposing tomato ...

  19. Effect of water content on specific heat capacity of porcine septum cartilage

    Science.gov (United States)

    Chae, Yongseok; Lavernia, Enrique J.; Wong, Brian J.

    2002-06-01

    The effect of water content on specific heat capacity was examined using temperature modulated Differential Scanning Calorimetry (TMDSC). This research was motivated in part by the development laser cartilage reshaping operations, which use photothermal heating to accelerate stress relaxation and shape change. Deposition of thermal energy leads to mechanical stress relaxation and redistribution of cartilage internal stresses, which may lead to a permanent shape change. The specific heat of cartilage specimens (dia: 3 mm and thickness 1-2 mm) was measured using a heating rate of 2 degree(s)C/min for conventional DSC and 2 degree(s)C/min with an amplitude 0.38-0.45 degree(s)C and a period 60-100 sec for TMDSC. The amount of water in cartilaginous tissue was determined using thermogravimetry analysis (TGA) under ambient conditions. In order to correlate changes in heat flow with alterations in cartilage mechanical behavior, dynamic mechanical temperature analysis (DMTA) was used to estimate the specific transition temperatures where stress relaxation occurs. With decreasing water content, we identified a phase transition that shifted to a higher temperature after 35-45% water content was measured. The phase transition energy increased from 0.12 J/g to 1.68 J/g after a 45% weight loss. This study is a preliminary investigation focused on understanding the mechanism of the stress relaxation of cartilage during heating. The energy requirement of such a transition estimated using TMDSC and temperature range, where cartilage shape changes likely occur, was estimated.

  20. On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor

    International Nuclear Information System (INIS)

    Solovchuk, Maxim A.; Sheu, Tony W.H.; Thiriet, Marc; Lin, Win-Li

    2013-01-01

    The influences of blood vessels and focused location on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors are studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field in the hepatic cancerous region. The model construction is based on the linear Westervelt and bioheat equations as well as the nonlinear Navier–Stokes equations for the liver parenchyma and blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. Different blood vessel diameters and focal point locations were investigated. We found from this three-dimensional numerical study that in large blood vessels both the convective cooling and acoustic streaming can considerably change the temperature field and the thermal lesion near blood vessels. If the blood vessel is located within the beam width, both acoustic streaming and blood flow cooling effects should be addressed. The temperature rise on the blood vessel wall generated by a 1.0 MHz focused ultrasound transducer with the focal intensity 327 W/cm 2 was 54% lower when acoustic streaming effect was taken into account. Subject to the applied acoustic power the streaming velocity in a 3 mm blood vessel is 12 cm/s. Thirty percent of the necrosed volume can be reduced, when taking into account the acoustic streaming effect. -- Highlights: • 3D three-field coupling physical model for focused ultrasound tumor ablation is presented. • Acoustic streaming and blood flow cooling effects on ultrasound heating are investigated. • Acoustic streaming can considerably affect the temperature distribution. • The lesion can be reduced by 30% due to the acoustic streaming effect. • Temperature on the blood vessel wall is reduced by 54% due to the acoustic streaming effect

  1. Waste Heat to Power Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Elson, Amelia [ICF International, Fairfax, VA (United States); Tidball, Rick [ICF International, Fairfax, VA (United States); Hampson, Anne [ICF International, Fairfax, VA (United States)

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  2. Monitoring the sulfur content of coal streams by thermal-neutron-capture gamma-ray analysis

    International Nuclear Information System (INIS)

    Martin, J.W.; Hall, A.W.

    1976-07-01

    A theory was developed for evaluating a complex, prompt gamma ray spectrum to serve as the basis for an instrument to monitor continuously the sulfur content of tonnage streams of coal. Equations for the energies and intensities of prompt gamma rays emitted from 13 most significant elements in coal are combined into a single equation that defines the basic electronic design of the meter. The sulfur content of up to 10 tons per hour of coal was determined in pilot plant tests with a prototype meter. The precision of 0.04 percent sulfur substantiates the validity of the theory. In subsequent industrial plant tests the precision was determined to be a comparable 0.05 percent sulfur

  3. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    Directory of Open Access Journals (Sweden)

    Laura D'Evoli

    2013-07-01

    Full Text Available Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g. Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (−17%, while for lutein it was greater in the pulp fraction (−25%. Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (−36%. The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  4. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes.

    Science.gov (United States)

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-07-31

    Tomatoes and tomato products are rich sources of carotenoids-principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g). Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (-17%), while for lutein it was greater in the pulp fraction (-25%). Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (-36%). The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  5. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    Science.gov (United States)

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  6. Field test and sensitivity analysis of a sensible heat balance method to determine ice contents

    Science.gov (United States)

    Soil ice content impacts winter vadose zone hydrology. It may be possible to estimate changes in soil ice content with a sensible heat balance (SHB) method, using measurements from heat pulse (HP) sensors. Feasibility of the SHB method is unknown because of difficulties in measuring soil thermal pro...

  7. Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?

    Directory of Open Access Journals (Sweden)

    H. Trimmel

    2018-01-01

    Full Text Available Global warming has already affected European rivers and their aquatic biota, and climate models predict an increase of temperature in central Europe over all seasons. We simulated the influence of expected changes in heat wave intensity during the 21st century on water temperatures of a heavily impacted pre-alpine Austrian river and analysed future mitigating effects of riparian vegetation shade on radiant and turbulent energy fluxes using the deterministic Heat Source model. Modelled stream water temperature increased less than 1.5 °C within the first half of the century. Until 2100, a more significant increase of around 3 °C in minimum, maximum and mean stream temperatures was predicted for a 20-year return period heat event. The result showed clearly that in a highly altered river system riparian vegetation was not able to fully mitigate the predicted temperature rise caused by climate change but would be able to reduce water temperature by 1 to 2 °C. The removal of riparian vegetation amplified stream temperature increases. Maximum stream temperatures could increase by more than 4 °C even in annual heat events. Such a dramatic water temperature shift of some degrees, especially in summer, would indicate a total shift of aquatic biodiversity. The results demonstrate that effective river restoration and mitigation require re-establishing riparian vegetation and emphasize the importance of land–water interfaces and their ecological functioning in aquatic environments.

  8. Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?

    Science.gov (United States)

    Trimmel, Heidelinde; Weihs, Philipp; Leidinger, David; Formayer, Herbert; Kalny, Gerda; Melcher, Andreas

    2018-01-01

    Global warming has already affected European rivers and their aquatic biota, and climate models predict an increase of temperature in central Europe over all seasons. We simulated the influence of expected changes in heat wave intensity during the 21st century on water temperatures of a heavily impacted pre-alpine Austrian river and analysed future mitigating effects of riparian vegetation shade on radiant and turbulent energy fluxes using the deterministic Heat Source model. Modelled stream water temperature increased less than 1.5 °C within the first half of the century. Until 2100, a more significant increase of around 3 °C in minimum, maximum and mean stream temperatures was predicted for a 20-year return period heat event. The result showed clearly that in a highly altered river system riparian vegetation was not able to fully mitigate the predicted temperature rise caused by climate change but would be able to reduce water temperature by 1 to 2 °C. The removal of riparian vegetation amplified stream temperature increases. Maximum stream temperatures could increase by more than 4 °C even in annual heat events. Such a dramatic water temperature shift of some degrees, especially in summer, would indicate a total shift of aquatic biodiversity. The results demonstrate that effective river restoration and mitigation require re-establishing riparian vegetation and emphasize the importance of land-water interfaces and their ecological functioning in aquatic environments.

  9. The effect of molybdenum content with changes in phase and heat capacity of UMo alloy

    International Nuclear Information System (INIS)

    Aslina Br Ginting; Supardjo; Agoeng Kadarjono; Dian Anggraini

    2011-01-01

    Has done the analysis of phase and heat capacity change of the UMo alloy by variation of 7% Mo, 8% and 9% Mo. Analysis performed using phase change Differential Thermal Analysis (DTA) at a temperature between 30°C until 1400°C with heating rate 10°C/minute and heat capacity analysis carried out using Differential Scanning Calorimetry (DSC) at a temperature between 30°C to 450°C with heating rate 5°C/minute. The purpose of this study was to determine the character of the UMo alloy include phase change and heat capacity variation with Mo content due to higher content of Mo is expected to change both the character U-7% Mo alloy, U-8% Mo and U-9% Mo. The analysis showed that of 7% Mo, 8% Mo and 9% Mo the combination experiencing α+ δ a phase change becomes α + β phase at temperatures of 578.63°C to 580.16°C. At the temperature 606.50°C to 627.58°C having a phase change of α+ β to β + γ be followed by the endothermic reaction in the content of 9% Mo with the enthalpy ΔH = 6.5989 J / g. At temperatures 1075.45°C up to 1160.51°C phase change β + γ into γ phase. The increase in Mo content to heating at a temperature 1100°C not cause a significant phase change. At temperatures above 1177.21°C, the increase in Mo content leads to changes in the γ phase of forming L + γ phase which followed the reaction of uranium with Mo to form γ phase - solid solution. The higher content of Mo, the reaction heat is needed and released the greater. The results of the analysis of the heat capacity is obtained that the increase in Mo content in the U-7% Mo, U-8% Mo, and U-9% Mo alloy does not give a significant difference in heat capacity. This is attested by doing different test (F test) at 95% degree of confidence. This data is expected to be as a first step to study the manufacture of UMo alloy as a fuel of high uranium density for research reactor. (author)

  10. Decadal variation of ocean heat content and tropical cyclone activity ...

    Indian Academy of Sciences (India)

    The upper ocean heat content up to 700 m depth (OHC700) is an important ... made to examine the inter-decadal variations of tropical cyclone (TC) activity and OHC700 over the ..... In: Climate change 2007: The physical science basis (eds).

  11. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 1980-present, Heat Content

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Heat Content data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  12. Dissipation of the reactor heat at the Savannah River Plant

    International Nuclear Information System (INIS)

    Neill, J.S.; Babcock, D.F.

    1971-10-01

    The effluent cooling water from the heat exchangers of the Savannah River nuclear reactors is cooled by natural processes as it flows through the stream beds, canals, ponds, and swamps on the plant site. The Langhaar equation, which gives the rate of heat removal from the water surface as a function of the surface temperature, air temperature, relative humidity, and wind speed, is applied satisfactorily to calculate the cooling that occurs at all temperature levels and for all modes of water flow. The application of this equation requires an accounting of effects such as solar heating, shading, mixing, staging, stratification, underflow, rainfall, the imposed heat load, and the rate of change in heat content of the body of water

  13. Effect of moisture content on the R{sub 70} self-heating rate of Callide coal

    Energy Technology Data Exchange (ETDEWEB)

    Beamish, B. Basil; Hamilton, Garth R. [School of Engineering, The University of Queensland, St Lucia, Qld 4072 (Australia)

    2005-10-17

    Strip samples from the Boundary Hill pit at Callide have been tested in an adiabatic oven to assess the effect of moisture on the R{sub 70} self-heating rate of coal. The two strip samples tested had R{sub 70} self-heating rate values of 10.23 and 8.61 {sup o}C/h. As the moisture content of the coal was progressively increased, from the dry state of the test, the R{sub 70} value decreased dramatically. At approximately 40-50% of the moisture holding capacity of the coal, the self-heating rate becomes measurable. Above this critical level of moisture content, the heat produced by oxidation is dissipated by moisture evaporation and coal self-heating is significantly delayed. (author)

  14. Energy content of suspended detritus from Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Sumitra-Vijayaraghavan; Royan, J

    stream_size 3 stream_content_type text/plain stream_name Indian_J_Mar_Sci_20_80.pdf.txt stream_source_info Indian_J_Mar_Sci_20_80.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  15. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-10-01

    • To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  16. Effect of heating oils and fats in containers of different materials on their trans fatty acid content.

    Science.gov (United States)

    Kala, A L Amrutha; Joshi, Vishal; Gurudutt, K N

    2012-08-30

    The nature of the container material and temperature employed for deep-frying can have an influence on the development of trans fatty acids (TFAs) in the fat used. The present study was undertaken to determine the effect of heating vegetable oils and partially hydrogenated vegetable fats with different initial TFA content in stainless steel, Hindalium (an aluminium alloy), cast iron and glass containers. Ground nut oil (oil 1), refined, bleached and deodorised (RBD) palmolein (oil 2) and two partially hydrogenated vegetable oils with low (fat 1) and high (fat 2) TFA content were uniformly heated at 175-185 °C over a period of 12 h. An increase in TFA content to 20 g kg⁻¹ was observed in oil 2 in the cast iron container, while a decrease in TFA content of 20-30 g kg⁻¹ was observed in fat 2 in all containers. The heating process of fats and oils also led to an increase in Butyro refractometer reading and colour values. This study showed that the TFA 18:1t content of oil 1, oil 2 and fat 1 increased with repeated or prolonged heating. The cast iron container showed the highest increase in TFA 18:1t for RBD palmolein (oil 2). The amount of linoleic acid trans isomers formed in the heating process was negligible. Fat 2 with high initial TFA content showed a decrease in TFA 18:1 and 18:2 on heating in all containers. Oils heated in glass and stainless steel containers showed less TFA 18:1t formation. Copyright © 2012 Society of Chemical Industry.

  17. More than a House of Cards: Developing a Firm Foundation for Streaming Media and Consumer-Licensed Content in the Library

    Directory of Open Access Journals (Sweden)

    William Cross

    2016-09-01

    Full Text Available This article will introduce traditional library practice for licensing multimedia content and discuss the way that consumer-licensing and streaming services disrupt that practice. Sections II and III describe the statutory copyright regime designed by Congress to facilitate the socially-valuable work done by libraries and the impact of the move from ownership to licensed content. Collecting multimedia materials has always presented special legal challenges for libraries, particularly as licensed content has replaced the traditional practice of purchasing and circulation based on the first sale doctrine. These issues have grown even more complex as streaming services like Netflix and Amazon and video game downloads through services like Steam have come to dominate the landscape. Section IV will describe the way that consumer-licensed materials, which not only remove the ownership that undergirds library practice, but also the ability to negotiate for library use, imperil the congressionally-designed balance. Section V will present a path forward for libraries to develop robust, cutting-edge collections that reflect a sophisticated understanding of the contractual and copyright issues at play.

  18. Diurnal variability of heat fluxes and heat content at a few locations off central east coast of India during April 1989

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Rao, B.P.; Rao, V.S.; Rao, T.V.N.

    Diurnal variability of surface wind speed, net heat exchange, sea surface temperature, vertical thermal structure and heat content at three locations, viz., station A (17 degrees 59'N, 83 degrees 53.9'E), station B (17 degrees 00'N, 82 degrees 32...

  19. High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area.

    Science.gov (United States)

    Protano, G; Riccobono, F

    2002-01-01

    Stream waters draining an old mining area present very high rare earth element (REE) contents, reaching 928 microg/l as the maximum total value (sigmaREE). The middle rare earth elements (MREEs) are usually enriched with respect to both the light (LREEs) and heavy (HREEs) elements of this group, producing a characteristic "roof-shaped" pattern of the shale Post-Archean Australian Shales-normalized concentrations. At the Fenice Capanne Mine (FCM), the most important base metal mine of the study area, the REE source coincides with the mine tailings, mostly the oldest ones composed of iron-rich materials. The geochemical history of the REEs released into Noni stream from wastes in the FCM area is strictly determined by the pH, which controls the REE speciation and in-stream processes. The formation of Al-rich and mainly Fe-rich flocs effectively scavenges the REEs, which are readily and drastically removed from the solution when the pH approaches neutrality. Leaching experiments performed on flocs and waste materials demonstrate that Fe-oxides/oxyhydroxides play a key role in the release of lanthanide elements into stream waters. The origin of the "roof-shaped" REE distribution pattern as well as the peculiar geochemical behavior of some lanthanide elements in the aqueous system are discussed.

  20. Relationship between ash content and R{sub 70} self-heating rate of Callide Coal

    Energy Technology Data Exchange (ETDEWEB)

    Beamish, B. Basil; Blazak, Darren G. [School of Engineering, The University of Queensland, St Lucia, Qld 4072 (Australia)

    2005-10-17

    Borecore samples from the Trap Gully pit at Callide have been assessed using the R{sub 70} self-heating test. The highest R{sub 70} self-heating rate value was 16.22 {sup o}C/h, which is consistent with the subbituminous rank of the coal. R{sub 70} decreases significantly with increasing mineral matter content, as defined by the ash content of the coal. This effect is due to the mineral matter in the coal acting as a heat sink. A trendline equation has been fitted to the borecore data from the Trap Gully pit: R{sub 70}=0.0029xash{sup 2}-0.4889xash+20.644, where all parameters are on a dry-basis. This relationship can be used to model the self-heating hazard of the pit, both vertically and laterally. (author)

  1. Experimental determination of the empirical formula and energy content of unknown organics in waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I. [Univ. of Toronto, Dept. of Civil Engineering, Toronto, Ontario (Canada); Kosmatos, A. [Ontario Power Generation, Toronto, Ontario (Canada); Bagley, D.M. [Univ. of Toronto, Dept. of Civil Engineering, Toronto, Ontario (Canada)

    2002-06-15

    Two experimental methods are described in this paper: one for determining the empirical formula, and one for determining the energy content of unknown organics in waste streams. The empirical formula method requires volatile solids (VS), chemical oxygen demand (COD), total organic carbon (TOC), and total Kjeldahl nitrogen (TKN) to be measured for the waste; the formula can then be calculated from these values. To determine the energy content of the organic waste, bomb calorimetry was used with benzoic acid as a combustion aid. The results for standard compounds (glucose, propionic acid, L-arginine, and benzoic acid) were relatively good. The energy content measurement for wastewater and sludges had good reproducibility (i.e. 1.0 to 3.2% relative standard deviation for triplicate samples). Trouble encountered in the measurement of the empirical formulae of the waste samples was possibly due to difficulties with the TOC test; further analysis of this is required. (author)

  2. Experimental determination of the empirical formula and energy content of unknown organics in waste streams

    International Nuclear Information System (INIS)

    Shizas, I.; Kosmatos, A.; Bagley, D.M.

    2002-01-01

    Two experimental methods are described in this paper: one for determining the empirical formula, and one for determining the energy content of unknown organics in waste streams. The empirical formula method requires volatile solids (VS), chemical oxygen demand (COD), total organic carbon (TOC), and total Kjeldahl nitrogen (TKN) to be measured for the waste; the formula can then be calculated from these values. To determine the energy content of the organic waste, bomb calorimetry was used with benzoic acid as a combustion aid. The results for standard compounds (glucose, propionic acid, L-arginine, and benzoic acid) were relatively good. The energy content measurement for wastewater and sludges had good reproducibility (i.e. 1.0 to 3.2% relative standard deviation for triplicate samples). Trouble encountered in the measurement of the empirical formulae of the waste samples was possibly due to difficulties with the TOC test; further analysis of this is required. (author)

  3. Moisture content of PuO2 fuel used for the milliwatt generator heat source

    International Nuclear Information System (INIS)

    Zanotelli, W.A.

    1980-01-01

    The determination of the moisture content of 238 Pu dioxide fuel for use in Milliwatt Generator heat sources was studied in an attempt to more clearly define the production fuel preloading procedures. The study indicated that water was not present or being adsorbed at various steps of the process (or during storage) that could lead to compatibility problems during pretreatment or long-term storage. The moisture content of the plutonium dioxide was analyzed by a commercial moisture analyzer. The moisture content at all steps of the process including storage averaged from 0.002% to 0.005%. The moisture content of the plutonium dioxide exposed to moist atmosphere for 7 days was 0.001%. These values indicated that no significant amount of moisture was adsorbed by the plutonium dioxide fuel charges. The only significant moisture content found was an average of 3.47%, after self-calcination. This was expected since no additional steps, other than self-heating of the fuel, are taken to remove the water

  4. Ocean heat content variability in an ensemble of twentieth century ocean reanalyses

    Science.gov (United States)

    de Boisséson, Eric; Balmaseda, Magdalena Alonso; Mayer, Michael

    2017-08-01

    This paper presents a ten-member ensemble of twentieth century Ocean ReAnalyses called ORA-20C. ORA-20C assimilates temperature and salinity profiles and is forced by the ECMWF twentieth century atmospheric reanalysis (ERA-20C) over the 1900-2010 period. This study attempts to identify robust signals of ocean heat content change in ORA-20C and detect contamination by model errors, initial condition uncertainty, surface fluxes and observing system changes. It is shown that ORA-20C trends and variability in the first part of the century result from the surface fluxes and model drift towards a warmer mean state and weak meridional overturning circulation. The impact of the observing system in correcting the mean state causes the deceleration of the warming trend and alters the long-term climate signal. The ensemble spread reflects the long-lasting memory of the initial conditions and the convergence of the system to a solution compatible with surface fluxes, the ocean model and observational constraints. Observations constrain the ocean heat uptake trend in the last decades of the twentieth century, which is similar to trend estimations from the post-satellite era. An ocean heat budget analysis attributes ORA-20C heat content changes to surface fluxes in the first part of the century. The heat flux variability reflects spurious signals stemming from ERA-20C surface fields, which in return result from changes in the atmospheric observing system. The influence of the temperature assimilation increments on the heat budget is growing with time. Increments control the most recent ocean heat uptake signals, highlighting imbalances in forced reanalysis systems in the ocean as well as in the atmosphere.

  5. Evaluation of consequence due to higher hydrazine content in partitioning stream of PUREX process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. Suresh [Bhabha Atomic Research Centre, Mumbai (India). Special Nuclear Recycle Facility

    2016-07-01

    Hydrazine nitrate is being used as a stabilizer for U(IV) as well as Pu(III) during partitioning of Pu in PUREX process by scavenging the nitrous acid present along with nitric acid. As hydrazine hydrate as well as its salts have been successfully used for scrubbing of degradation products of TBP to aqueous phase, experiments were conducted to evaluate the consequence of hydrazine content during Pu partitioning. It was observed that higher amount of hydrazine nitrate along with uranous nitrate in the partitioning stream of PUREX process leads to build up of DBP in aqueous phase and resulted in precipitation of Pu.

  6. Maximising the recovery of low grade heat: An integrated heat integration framework incorporating heat pump intervention for simple and complex factories

    International Nuclear Information System (INIS)

    Miah, J.H.; Griffiths, A.; McNeill, R.; Poonaji, I.; Martin, R.; Leiser, A.; Morse, S.; Yang, A.; Sadhukhan, J.

    2015-01-01

    Highlights: • A new practical heat integration framework incorporating heat pump technology for simple and complex food factories. • A decision making procedure was proposed to select process or utility heat integration in complex and diverse factories. • New stream classifications proposed to identify and compare streams linked between process and utility, especially waste heat. • A range of ‘Heat Pump Thresholds’ to identify and compare heat pump configurations with steam generation combustion boiler. - Abstract: The recovery of heat has long been a key measure to improving energy efficiency and maximising the heat recovery of factories by Pinch analysis. However, a substantial amount of research has been dedicated to conventional heat integration where low grade heat is often ignored. Despite this, the sustainability challenges facing the process manufacturing community are turning interest on low grade energy recovery systems to further advance energy efficiency by technological interventions such as heat pumps. This paper presents a novel heat integration framework incorporating technological interventions for both simple and complex factories to evaluate all possible heat integration opportunities including low grade and waste heat. The key features of the framework include the role of heat pumps to upgrade heat which can significantly enhance energy efficiency; the selection process of heat pump designs which was aided by the development of ‘Heat Pump Thresholds’ to decide if heat pump designs are cost-competitive with steam generation combustion boiler; a decision making procedure to select process or utility heat integration in complex and diverse factories; and additional stream classifications to identify and separate streams that can be practically integrated. The application of the framework at a modified confectionery factory has yielded four options capable of delivering a total energy reduction of about 32% with an economic payback

  7. Aeroacoustics of Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  8. Advanced real-time manipulation of video streams

    CERN Document Server

    Herling, Jan

    2014-01-01

    Diminished Reality is a new fascinating technology that removes real-world content from live video streams. This sensational live video manipulation actually removes real objects and generates a coherent video stream in real-time. Viewers cannot detect modified content. Existing approaches are restricted to moving objects and static or almost static cameras and do not allow real-time manipulation of video content. Jan Herling presents a new and innovative approach for real-time object removal with arbitrary camera movements.

  9. Suppression of acoustic streaming in tapered pulse tubes

    International Nuclear Information System (INIS)

    Olson, J.R.; Swift, G.W.

    1998-01-01

    In a pulse tube cryocooler, the gas in the pulse tube can be thought of as an insulating piston, transmitting pressure and velocity from the cold heat exchanger to the hot end of the pulse tube. Unfortunately, convective heat transfer can carry heat from the hot end to the cold end and reduce the net cooling power. Here, the authors discuss one driver of such convection: steady acoustic streaming as generated by interactions between the boundary and the oscillating pressure, velocity, and temperature. Using a perturbation method, they have derived an analytical expression for the streaming in a tapered pulse tube with axially varying mean temperature in the acoustic boundary layer limit. The calculations showed that the streaming depends strongly on the taper angle, the ratio of velocity and pressure amplitudes, and the phase between the velocity and pressure, but it depends only weakly on the mean temperature profile and is independent of the overall oscillatory amplitude. With the appropriate tapering of the tube, streaming can be eliminated for a particular operating condition. Experimentally, the authors have demonstrated that an orifice pulse tube cryocooler with the calculated zero-streaming taper has more cooling power than one with either a cylindrical tube or a tapered pulse tube with twice the optimum taper angle

  10. Selenium contents in tobacco and main stream cigarette smoke determined using neutron activation analysis

    International Nuclear Information System (INIS)

    Marica Sorak-Pokrajac; Dermelj, M.; Zdenka Slejkovec; Eskinja, I.

    1994-01-01

    In the domain of the essential trace elements, the role of selenium is extermely important. As one of the volatile elements is can be partly absorbed through the pulmonary system during smoking and transported to different organs of the body. Thus a knowledge of its concentration levels in various sorts of tobacco and in the smoke of commercial cigarettes, as well as in the same type of cigarettes from plants treated with selenium, is of interest for various research fields. The purpose of this contribution is to present reliable quantitative data on selenium contents in tobacco, soil, and main stream cigarette smoke, obtained by destructive neutron activation analysis

  11. Investigation of the variation of the specific heat capacity of local soil samples from the Niger delta, Nigeria with moisture content

    International Nuclear Information System (INIS)

    Ofoegbu, C.O.; Adjepong, S.K.

    1987-11-01

    Results of an investigation of the variation, with moisture content, of the specific heat capacity of samples of three texturally different types of soil (clayey, sandy and sandy loam) obtained from the Niger delta area of Nigeria, are presented. The results show that the specific heat capacities of the soils studied, increase with moisture content. This increase is found to be linear for the entire range of moisture contents considered (0-25%), in the case of the sandy loam soil while for the clayey and sandy soils the specific heat capacity is found to increase linearly with moisture content up to about 15% after which the increase becomes parabolic. The rate of increase of specific heat capacity with moisture content appears to be highest in the clayey soil and lowest in the sandy soil. It is thought that the differences in the rates of increase of specific heat capacity with moisture content, observed for the soils, reflect the soils' water-retention capacities. (author) 3 refs, 5 figs

  12. Numerical study of unsteady MHD oblique stagnation point flow and heat transfer due to an oscillating stream

    Science.gov (United States)

    Javed, T.; Ghaffari, A.; Ahmad, H.

    2016-05-01

    The unsteady stagnation point flow impinging obliquely on a flat plate in presence of a uniform applied magnetic field due to an oscillating stream has been studied. The governing partial differential equations are transformed into dimensionless form and the stream function is expressed in terms of Hiemenz and tangential components. The dimensionless partial differential equations are solved numerically by using well-known implicit finite difference scheme named as Keller-box method. The obtained results are compared with those available in the literature. It is observed that the results are in excellent agreement with the previous studies. The effects of pertinent parameters involved in the problem namely magnetic parameter, Prandtl number and impinging angle on flow and heat transfer characteristics are illustrated through graphs. It is observed that the influence of magnetic field strength increases the fluid velocity and by the increase of obliqueness parameter, the skin friction increases.

  13. Heat and salt budgets over the Gulf Stream North Wall during LatMix survey in winter 2012.

    Science.gov (United States)

    Sanchez-Rios, A.; Shearman, R. K.; D'Asaro, E. A.; Lee, C.; Gula, J.; Klymak, J. M.

    2016-02-01

    As part of the ONR-sponsored LatMix Experiment, ship-based and glider-based observations following a Lagrangian float are used to examine the evolution of temperature, salinity and density along the Gulf Stream north wall in wintertime. Satellite observations during the survey and the in-situ measurements showed the presence of submesoscale (1) calculated for this regions corroborates the possibility of submesoscale dynamics. Using a heat and salinity budget, we show that surface forcing, entrainment from below and advection by the mean flow velocities are not sufficient to explain the observed rate of change of heat and salinity in the mixed layer. Although confidence estimates prevent an accurate flux divergence calculation, Reynold flux estimates are consistent with a cross-frontal exchange that can reproduce the observed temporal trends.

  14. Ocean heat content and Earth's radiation imbalance. II. Relation to climate shifts

    International Nuclear Information System (INIS)

    Douglass, D.H.; Knox, R.S.

    2012-01-01

    In an earlier study of ocean heat content (OHC) we showed that Earth's empirically implied radiation imbalance has undergone abrupt changes. Other studies have identified additional such climate shifts since 1950. The shifts can be correlated with features in recently updated OHC data. The implied radiation imbalance may possibly alternate in sign at dates close to the climate shifts. The most recent shifts occurred during 2001–2002 and 2008–2009. The implied radiation imbalance between these dates, in the direction of ocean heat loss, was −0.03±0.06 W/m 2 , with a possible systematic error of [−0.00,+0.09] W/m 2 . -- Highlights: ► Ocean heat content (OHC) slope discontinuities match similar Earth climate features. ► OHC slopes between climate shifts give most of the implied radiation balance (IRI). ► IRI often alternates in sign at dates close to the climate shifts. ► IRI between climate shifts of 2001–2002 and 2008–2009 was −0.03±0.06 W/m 2 . ► Geothermal flux is relevant to analyses of radiation imbalance.

  15. Effects of heating on salt-occluded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Hash, M.C.; Pereira, C.; Ackerman, J.P.

    1996-01-01

    The electrometallurgical treatment of spent nuclear fuel generates a waste stream of fission products in the electrolyte, LiCl-KCl eutectic salt. Argonne National Laboratory is developing a mineral waste form for this waste stream. The waste form consists of a composite formed by hot pressing salt-occluded zeolite and a glass binder. Pressing conditions must be judiciously chosen. For a given pressure, increasing temperatures and hold times give denser products but the zeolite is frequently converted to sodalite. Reducing the temperature or hold time leads to a porous zeolite composite. Therefore, conditions that affect the thermal stability of salt-occluded zeolite both with and without glass are being investigated in an ongoing study. The parameters varied in this stage of the work were heating time, temperature, salt loading, and glass content. The heat-treated samples were examined primarily by X-ray diffraction. Large variations were found in the rate at which salt-occluded zeolite converted to other phases such as nepheline, salt, and sodalite. The products depended on the initial salt loading. Heating times required for these transitions depended on the procedure and temperature used to prepare the salt-occluded zeolite. Mixtures of glass and zeolite reacted much faster than the pure salt-occluded zeolite and were almost always converted to sodalite

  16. Advective and atmospheric forced changes in heat and fresh water content in the Norwegian Sea, 1951-2010

    Science.gov (United States)

    Mork, Kjell Arne; Skagseth, Øystein; Ivshin, Victor; Ozhigin, Vladimir; Hughes, Sarah L.; Valdimarsson, Hédinn

    2014-09-01

    Climate variability in the Norwegian Sea was investigated in terms of ocean heat and fresh water contents of Atlantic water above a reference surface, using hydrographic data during spring 1951-2010. The main processes acting on this variability were examined and then quantified. The area-averaged water mass cooled and freshened, but a deepening of the reference surface resulted in a positive trend in the heat content of 0.3 W m-2. Air-sea heat fluxes explained about half of the interannual variability in heat content. The effect of the advection of Atlantic and Arctic waters on the variability varied with time, apparently due to large-scale changes in the ocean circulation. The data are consistent with the explanation that changing wind patterns caused buffering and then release of Arctic water in the Iceland Sea during the late 1960s to early 1970s, and this caused large hydrographic changes in the Norwegian Sea.

  17. Vectorization and improvement of nuclear codes (MEUDAS4, FORCE, STREAM V2.6, HEATING7-VP, SCDAP/RELAP5/MOD2.5, NBI3DGFN)

    International Nuclear Information System (INIS)

    Nemoto, Toshiyuki; Suzuki, Koichiro; Isobe, Nobuo; Machida, Masahiko; Osanai, Seiji; Yokokawa, Mitsuo

    1992-09-01

    Eight nuclear codes have been vectorized and modified to improve their performance. These codes are magnetic fluid equilibrium code MEUDAS4 (CR and FFT versions), the magnetic field analysis code FORCE, the three-dimensional heat fluid analysis code STREAM V2.6, the three-dimensional heat analysis code HEATING 7-VP, the severe accident transient analysis code SCDAP/RELAP 5/MOD 2.5 for light water reactors, the ion beam orbital analysis code NBI3DGFN, and a free electron laser analysis code. The speedup ratios of the vectorized versions to the original ones in scalar mode are 2.3-4.9, 1.9-5.4, 2.6-6.2, and 1.9 for the MEUDAS4, STREAM, FORCE, and free electron laser analysis code, respectively. The definition method of the computational regions in the HEATING7-VP is improved. The SCDAP/RELAP5/MOD2.5 is modified to use extended memory regions of the computer. In this report, outlines of the codes, techniques used in the vectorization and reorganization of the codes, verification of computed results, and improvement on the performance are presented. (author)

  18. The role of heating, cavitation and acoustic streaming in mediating ultrasound-induced changes of TGF-β gene expression in bone cells

    International Nuclear Information System (INIS)

    Harle, J; Mayia, F

    2004-01-01

    This paper relates ultrasound-induced changes in bone cell function to quantitative data assessing the level of several interaction mechanisms within the exposure environment. Characterisation of ultrasound fields in terms of resultant levels of heating, cavitation and acoustic streaming may provide a novel means of accurately assessing the likelihood of biological effects in vitro

  19. Multi-Decadal Oscillations of the Ocean Active Upper-Layer Heat Content

    Science.gov (United States)

    Byshev, Vladimir I.; Neiman, Victor G.; Anisimov, Mikhail V.; Gusev, Anatoly V.; Serykh, Ilya V.; Sidorova, Alexandra N.; Figurkin, Alexander L.; Anisimov, Ivan M.

    2017-07-01

    Spatial patterns in multi-decadal variability in upper ocean heat content for the last 60 years are examined using a numerical model developed at the Institute of Numerical Mathematics of Russia (INM Model) and sea water temperature-salinity data from the World Ocean Database (in: Levitus, NOAA Atlas NESDIS 66, U.S. Wash.: Gov. Printing Office, 2009). Both the model and the observational data show that the heat content of the Active Upper Layer (AUL) in particular regions of the Atlantic, Pacific and Southern oceans have experienced prominent simultaneous variations on multi-decadal (25-35 years) time scales. These variations are compared earlier revealed climatic alternations in the Northern Atlantic region during the last century (Byshev et al. in Doklady Earth Sci 438(2):887-892, 2011). We found that from the middle of 1970s to the end of 1990s the AUL heat content decreased in several oceanic regions, while the mean surface temperature increased on Northern Hemisphere continents according to IPCC (in: Stocker et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, 2013). This means that the climate-forcing effect of the ocean-atmosphere interaction in certain energy-active areas determines not only local climatic processes, but also have an influence on global-scale climate phenomena. Here we show that specific regional features of the AUL thermal structure are in a good agreement with climatic conditions on the adjacent continents. Further, the ocean AUL in the five distinctive regions identified in our study have resumed warming in the first decade of this century. By analogy inference from previous climate scenarios, this may signal the onset of more continental climate over mainlands.

  20. Discharge modulates stream metabolism dependence on fine particulate organic carbon in a Mediterranean WWTP-influenced stream

    Science.gov (United States)

    Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.

    2017-12-01

    Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore

  1. MATHEMATICAL MODELING OF HEATING RATE PRODUCT AT HIGH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    M. M. Akhmedova

    2014-01-01

    Full Text Available Methods of computing and mathematical modeling are all widely used in the study of various heat exchange processes that provide the ability to study the dynamics of the processes, as well as to conduct a reasonable search for the optimal technological parameters of heat treatment.This work is devoted to the identification of correlations among the factors that have the greatest effect on the rate of heating of the product at hightemperature heat sterilization in a stream of hot air, which are chosen as the temperature difference (between the most and least warming up points and speed cans during heat sterilization.As a result of the experimental data warming of the central and peripheral layers compote of apples in a 3 liter pot at high-temperature heat treatment in a stream of hot air obtained by the regression equation in the form of a seconddegree polynomial, taking into account the effects of pair interaction of these parameters. 

  2. Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    2012-01-01

    Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.

  3. Accuracy of surface heat fluxes from observations of operational satellites

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Sugimori, Y.

    stream_size 5 stream_content_type text/plain stream_name Remote_Sens_Geogr_Inf_Syst_Environ_Plan_1995_368.pdf.txt stream_source_info Remote_Sens_Geogr_Inf_Syst_Environ_Plan_1995_368.pdf.txt Content-Encoding ISO-8859-1 Content...

  4. A computational study for investigating acoustic streaming and tissue heating during high intensity focused ultrasound through blood vessel with an obstacle

    Science.gov (United States)

    Parvin, Salma; Sultana, Aysha

    2017-06-01

    The influence of High Intensity Focused Ultrasound (HIFU) on the obstacle through blood vessel is studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field around the obstacle through blood vessel. The model construction is based on the linear Westervelt and conjugate heat transfer equations for the obstacle through blood vessel. The system of equations is solved using Finite Element Method (FEM). We found from this three-dimensional numerical study that the rate of heat transfer is increasing from the obstacle and both the convective cooling and acoustic streaming can considerably change the temperature field.

  5. Movie Pirates of the Caribbean: Exploring Illegal Streaming Cyberlockers

    OpenAIRE

    Ibosiola, Damilola; Steer, Benjamin; Garcia-Recuero, Alvaro; Stringhini, Gianluca; Uhlig, Steve; Tyson, Gareth

    2018-01-01

    Online video piracy (OVP) is a contentious topic, with strong proponents on both sides of the argument. Recently, a number of illegal websites, called streaming cyberlockers, have begun to dominate OVP. These websites specialise in distributing pirated content, underpinned by third party indexing services offering easy-to-access directories of content. This paper performs the first exploration of this new ecosystem. It characterises the content, as well the streaming cyberlockers' individual ...

  6. Entropy resistance minimization: An alternative method for heat exchanger analyses

    International Nuclear Information System (INIS)

    Cheng, XueTao

    2013-01-01

    In this paper, the concept of entropy resistance is proposed based on the entropy generation analyses of heat transfer processes. It is shown that smaller entropy resistance leads to larger heat transfer rate with fixed thermodynamic force difference and smaller thermodynamic force difference with fixed heat transfer rate, respectively. For the discussed two-stream heat exchangers in which the heat transfer rates are not given and the three-stream heat exchanger with prescribed heat capacity flow rates and inlet temperatures of the streams, smaller entropy resistance leads to larger heat transfer rate. For the two-stream heat exchangers with fixed heat transfer rate, smaller entropy resistance leads to larger effectiveness. Furthermore, it is shown that smaller values of the concepts of entropy generation numbers and modified entropy generation number do not always correspond to better performance of the discussed heat exchangers. - Highlights: • The concept of entropy resistance is defined for heat exchangers. • The concepts based on entropy generation are used to analyze heat exchangers. • Smaller entropy resistance leads to better performance of heat exchangers. • The applicability of entropy generation minimization is conditional

  7. Distribution of cyclone heat potential in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma; Murty; Rao, D.P.

    stream_size 5 stream_content_type text/plain stream_name Indian_J_Mar_Sci_19_102.pdf.txt stream_source_info Indian_J_Mar_Sci_19_102.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  8. Prediction and explanation over DL-Lite data streams

    CSIR Research Space (South Africa)

    Klarman, S

    2013-12-01

    Full Text Available the popular DL-Lite family, and study the logic foundations of prediction and explanation over DL-Lite data streams, i.e., reasoning from finite segments of streaming data to conjectures about the content of the streams in the future or in the past. We propose...

  9. Heat as a tracer to determine streambed water exchanges

    Science.gov (United States)

    Constantz, J.

    2010-01-01

    This work reviews the use of heat as a tracer of shallow groundwater movement and describes current temperature-based approaches for estimating streambed water exchanges. Four common hydrologic conditions in stream channels are graphically depicted with the expected underlying streambed thermal responses, and techniques are discussed for installing and monitoring temperature and stage equipment for a range of hydrological environments. These techniques are divided into direct-measurement techniques in streams and streambeds, groundwater techniques relying on traditional observation wells, and remote sensing and other large-scale advanced temperatureacquisition techniques. A review of relevant literature suggests researchers often graphically visualize temperature data to enhance conceptual models of heat and water flow in the near-stream environment and to determine site-specific approaches of data analysis. Common visualizations of stream and streambed temperature patterns include thermographs, temperature envelopes, and one-, two-, and three-dimensional temperature contour plots. Heat and water transport governing equations are presented for the case of transport in streambeds, followed by methods of streambed data analysis, including simple heat-pulse arrival time and heat-loss procedures, analytical and time series solutions, and heat and water transport simulation models. A series of applications of these methods are presented for a variety of stream settings ranging from arid to continental climates. Progressive successes to quantify both streambed fluxes and the spatial extent of streambeds indicate heat-tracing tools help define the streambed as a spatially distinct field (analogous to soil science), rather than simply the lower boundary in stream research or an amorphous zone beneath the stream channel.

  10. Process and installation for heat recovery. Verfahren und Anlage zur Waermerueckgewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, M.

    1990-01-10

    The patent describes a method for heat recovery from the warmer of two separately conducted streams of a fluid, whereby heat is recovered through a first heat exchanger in the warmer stream of medium, a heat transfer medium in a transmitting circuit and a second heat exchanger in the cooler stream of fluid, whereby the transmitting circuit includes both heat exchangers, characterized in that the recovered thermic output ({Delta}t.Q) is continuously detected and a regulation of the quantity (Q) of heat transfer medium in this circuit to maximum thermic output is effected. (author) 4 figs., 2 refs.

  11. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    Science.gov (United States)

    Meltser, Mark Alexander; Gutowski, Stanley; Weisbrod, Kirk

    2001-01-01

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  12. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland

    International Nuclear Information System (INIS)

    Horttanainen, M.; Teirasvuo, N.; Kapustina, V.; Hupponen, M.; Luoranen, M.

    2013-01-01

    Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose

  13. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Horttanainen, M., E-mail: mika.horttanainen@lut.fi; Teirasvuo, N.; Kapustina, V.; Hupponen, M.; Luoranen, M.

    2013-12-15

    Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

  14. Innovation in radioactive wastewater-stream management: Part one

    International Nuclear Information System (INIS)

    Karameldin, A.

    2005-01-01

    Treatment of radioactive wastewater streams is receiving considerable attention in most countries that have nuclear reactors. The first Egyptian research reactor ETRR-1 has been operating for 40 years, resulting in accumulation of large quantities of wastewater collected in special drainage tanks called SDTs. Previous attempts were aimed at the volumetric reduction of streams present in SDTs, by reverse osmosis systems, which previously succeeded in reducing the water volume present in SDTs from 450 m 3 to 50 m 3 (during the period 1998-2000). The main drawbacks of the RO system are the additional amount of secondary wastes (turbidity and emulsion filters media replacement, and the excessive amounts of chemicals for the membrane cleaning, flushing and storing), and a limited contaminant release in the SDTs area, resulting in the decommissioning of the RO system. Meanwhile, the SDTs waste contents recently reached 500 m 3 . Recently, the invention of a system for volume reduction of the wastewater streams present in SDTs has been achieved. This system substantially utilises the air conditioning and ventilation techniques in water transfer from the wastewater to air. This process is promoted by a mutual heating and humidification of a compressed dry air introduced through SDTs. From the probable release of radioactive nuclides point of view, the analysis of the evaporation of waste streams present in SDTs has indicated that the proposed optimal evaporating temperature is around 75 deg. C. The design curve of the daily volumetric reduction of the wastewater streams vs. the necessary volumetric airflow rates at different operating temperatures has been achieved. Recently, an experimental facility is being constructed to obtain the optimal operating parameters of the system, regarding the probable emissions of the radioactive nuclides within the permissible release limits. (author)

  15. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  16. Heat integrated ethanol dehydration flowsheets

    Energy Technology Data Exchange (ETDEWEB)

    Hutahaean, L.S.; Shen, W.H.; Brunt, V. Van [Univ. of South Carolina, Columbia, SC (United States)

    1995-04-01

    zA theoretical evaluation of heat-integrated heterogeneous-azeotropic ethanol-water distillation flowsheets is presented. Simulations of two column flowsheets using several different hydrocarbon entrainers reveal a region of potential heat integration and substantial reduction in operating energy. In this paper, methods for comparing hydrocarbon entrainers are shown. Two aspects of entrainers are related to operating and capital costs. The binary azeotropic composition of the entrainer-ethanol mixture is related to the energy requirements of the flowsheet. A temperature difference in the azeotrophic column is related to the size of the column and overall process staging requirements. Although the hydrophobicity of an entrainer is essential for specification of staging in the dehydration column, no substantial increase in operating energy results from an entrainer that has a higher water content. Likewise, liquid-liquid equilibria between several entrainer-ethanol-water mixtures have no substantial effect on either staging or operation. Rather, increasing the alcohol content of the entrainer-ethanol azeotrope limits its recovery in the dehydration column, and increases the recycle and reflux streams. These effects both contribute to increasing the separation energy requirements and reducing the region of potential heat integration. A cost comparison with a multieffect extractive distillation flowsheet reveals that the costs are comparable; however, the extractive distillation flowsheet is more cost effective as operating costs increase.

  17. Design of common heat exchanger network for batch processes

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar

    2014-01-01

    Heat integration of energy streams is very important for the efficient energy recovery in production systems. Pinch technology is a very useful tool for heat integration and maximizing energy efficiency. Creating of heat exchangers network as a common solution for systems in batch mode that will be applicable in all existing time slices is very difficult. This paper suggests a new methodology for design of common heat exchanger network for batch processes. Heat exchanger network designs were created for all determined repeatable and non-repeatable time periods – time slices. They are the basis for creating the common heat exchanger network. The common heat exchanger network as solution, satisfies all heat-transfer needs for each time period and for every existing combination of selected streams in the production process. This methodology use split of some heat exchangers into two or more heat exchange units or heat exchange zones. The reason for that is the multipurpose use of heat exchangers between different pairs of streams in different time periods. Splitting of large heat exchangers would maximize the total heat transfer usage of heat exchange units. Final solution contains heat exchangers with the minimum heat load as well as the minimum need of heat transfer area. The solution is applicable for all determined time periods and all existing stream combinations. - Highlights: •Methodology for design of energy efficient systems in batch processes. •Common Heat Exchanger Network solution based on designs with Pinch technology. •Multipurpose use of heat exchangers in batch processes

  18. Effect of Cr Contents and Heat Treating on Reverted Austenite in Maraging Steel Weldments

    Science.gov (United States)

    Kim, S. W.; Lee, H. W.

    2018-05-01

    By conducting flux cored arc welding (FCAW) on maraging steels with Cr contents of 1.4 and 5.2 wt%, this study observed the effects of Cr content and heat treating on reverted austenite formation in welded maraging steel. Aging treatment was carried out at the temperatures of 450, 480 and 530 °C for 3 h in each condition. As the aging temperature increased, reverted austenite was formed along the interdendritic and intercellular grain boundaries, and the proportion of reverted austenite increased with increasing Cr addition. The aging process led to the segregation of Ti and Mo along the interdendritic and intercellular grain boundaries. Some of the welded specimens were subjected to solution heat treatment at 820 and 1250 °C for 1 h after welding, resulting in a decrease in reverted austenite fraction.

  19. State and performance of on-stream ash content determination in lignite and black coal using 2-energy transmission technique

    International Nuclear Information System (INIS)

    Thuemmel, H.W.; Koerner, G.; Leonhardt, J.

    1986-01-01

    The total r.m.s. ash error of the 2-energy transmission on-stream ash gauges KRAS-2 (CIIRR, GDR) and SIROASH (Australia) are 4 weight percentage for raw lignite and 0.5 weight percentage for black coal, respectively. A detailed error analysis shows that this difference is due to the high water content and to strong variations in the ash composition of raw lignite. Both gauges show essentially the same radiometric performance. (author)

  20. Temperature of the Gulf Stream

    Science.gov (United States)

    2002-01-01

    The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using

  1. Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content

    Science.gov (United States)

    Piecuch, Christopher G.; Ponte, Rui M.; Little, Christopher M.; Buckley, Martha W.; Fukumori, Ichiro

    2017-09-01

    The subpolar North Atlantic (SPNA) is subject to strong decadal variability, with implications for surface climate and its predictability. In 2004-2005, SPNA decadal upper ocean and sea-surface temperature trends reversed from warming during 1994-2004 to cooling over 2005-2015. This recent decadal trend reversal in SPNA ocean heat content (OHC) is studied using a physically consistent, observationally constrained global ocean state estimate covering 1992-2015. The estimate's physical consistency facilitates quantitative causal attribution of ocean variations. Closed heat budget diagnostics reveal that the SPNA OHC trend reversal is the result of heat advection by midlatitude ocean circulation. Kinematic decompositions reveal that changes in the deep and intermediate vertical overturning circulation cannot account for the trend reversal, but rather ocean heat transports by horizontal gyre circulations render the primary contributions. The shift in horizontal gyre advection reflects anomalous circulation acting on the mean temperature gradients. Maximum covariance analysis (MCA) reveals strong covariation between the anomalous horizontal gyre circulation and variations in the local wind stress curl, suggestive of a Sverdrup response. Results have implications for decadal predictability.

  2. Optimisasi Suhu Pemanasan dan Kadar Air pada Produksi Pati Talas Kimpul Termodifikasi dengan Teknik Heat Moisture Treatment (HMT (Optimization of Heating Temperature and Moisture Content on the Production of Modified Cocoyam Starch Using Heat Moisture Treatment (HMT Technique

    Directory of Open Access Journals (Sweden)

    I Nengah Kencana Putra

    2016-12-01

    Full Text Available One of the physically starch modification technique is heat-moisture treatment (HMT. This technique can increase the resistance of starch to heat, mechanical treatment, and acid during processing.  This research aimed to find out the influence of heating temperature and moisture content in the modification process of cocoyam starch  with HMT techniques on the characteristic of product, and then to determine the optimum heating temperature and moisture content in the process. The research was designed with a complete randomized design (CRD with two factors factorial experiment.  The first factor was temperature of the heating consists of 3 levels namely 100 °C, 110 °C, and 120 °C. The second factor was the moisture content of starch which consists of 4 levels, namely 15 %, 20 %, 25 %, and 30 %. The results showed that the heating temperature and moisture content significantly affected water content, amylose content and swelling power of modified cocoyam starch product, but the treatment had no significant effect on the solubility of the product. HMT process was able to change the type of cocoyam starch from type B to type C. The optimum heating temperature and water content on modified cocoyam starch production process was 110 °C and 30 % respectively. Such treatment resulted in a modified cocoyam starch with moisture content of 6.50 %, 50,14 % amylose content, swelling power of 7.90, 0.0009% solubility, paste clarity of 96.310 % T, and was classified as a type C starch.   ABSTRAK Salah satu teknik modifikasi pati secara fisik adalah teknik Heat Moisture Treatment (HMT. Teknik ini dapat meningkatkan ketahanan pati terhadap panas, perlakuan mekanik, dan asam selama pengolahan. Penelitian ini bertujuan untuk mengetahui pengaruh suhu dan kadar air pada proses modifikasi pati talas kimpul dengan teknik HMT terhadap karakteristik produk, dan selanjutnya menentukan suhu dan kadar air yang optimal dalam proses tersebut. Penelitian ini dirancang

  3. Effect of milk fat content on the performance of ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium and Listeria monocytogenes.

    Science.gov (United States)

    Kim, S-S; Kang, D-H

    2015-08-01

    The effect of milk fat content on ohmic heating compared to conventional heating for inactivation of food-borne pathogens was investigated. Sterile cream was mixed with sterile buffered peptone water and adjusted to 0, 3, 7, 10% (w/v) milk fat content. These samples with varying fat content were subjected to ohmic and conventional heating. The effect of milk fat on temperature increase and electrical conductivity were investigated. Also, the protective effect of milk fat on the inactivation of foodborne pathogens was studied. For conventional heating, temperatures of samples increased with time and were not significantly (P > 0.05) different regardless of fat content. Although the inactivation rate of Escherichia coli O157:H7, Salmonella Typhimurium and L. monocytogens decreased in samples of 10% fat content, a protective effect was not observed for conventional heating. In contrast with conventional heating, ohmic heating was significantly affected by milk fat content. Temperature increased more rapidly with lower fat content for ohmic heating due to higher electrical conductivity. Nonuniform heat generation of nonhomogeneous fat-containing samples was verified using a thermal infrared camera. Also, the protective effect of milk fat on E. coli O157:H7 and Listeria monocytogenes was observed in samples subjected to ohmic heating. These results indicate that food-borne pathogens can survive in nonhomogeneous fat-containing foods subjected to ohmic heating. Therefore, more attention is needed regarding ohmic heating than conventional heating for pasteurizing fat-containing foods. The importance of adequate pasteurization for high milk fat containing foods was identified. © 2015 The Society for Applied Microbiology.

  4. The effect of industrial effluent stream on the groundwater

    International Nuclear Information System (INIS)

    Yasar, A.; Ahmad, N.; Chaudhry, M.N.; Sarwar, M.

    2005-01-01

    This study was performed to investigate the effect of the industrial wastewater stream on the groundwater. Wastewater was characterized in terms of inorganic and organic constituents. Inorganic constituents included Na/sup +/, Ca/sup 2+/ K/sup +/, Cl/sup -/, NO/sub 3//sup -/ and SO/sub 4//sup 2-/ coupled with heavy metal elements such as, Cd, Cr, Pb, Mn, Cu, Ni, Fe and In. Organic load of the stream was determined in terms of chemical oxygen demand (COD), biological oxygen demand (BOD/sub 5/) and ammonia-nitrogen (NH/sub 3/-N) contents. Other characteristics were pH, electrical conductivity (EC) and total dissolved solids (TDS). The correlation coefficients between quality parameter pairs of stream water and groundwater were determined to ascertain the source of groundwater contamination. At station 1, BOD/sub 5/ and COD contents were 20 times and Cr concentration was 10 times higher than the permissible limits for stream water [1]. Contents of these parameters reflected the level of industrial and domestic pollution coming from India. However, large variations in the levels of these parameters at down stream sites of the drain were characteristic of type and nature of industrial effluents and domestic sewage joining the stream. Analysis results of more than one hundred groundwater samples from shallow and deep wells around the drain showed that groundwater of shallow aquifers was contaminated due to drain water. A comparison of the contents of these parameters in shallow wells with WHO standards showed that some parameters such as turbidity, TDS, Na/sup +/, F -and heavy metals like Cr were found higher than the permissible limits. (author)

  5. CovertCast: Using Live Streaming to Evade Internet Censorship

    Directory of Open Access Journals (Sweden)

    McPherson Richard

    2016-07-01

    Full Text Available We design, implement, and evaluate CovertCast, a censorship circumvention system that broadcasts the content of popular websites in real-time, encrypted video streams on common live-streaming services such as YouTube. CovertCast does not require any modifications to the streaming service and employs the same protocols, servers, and streaming software as any other user of the service. Therefore, CovertCast cannot be distinguished from other live streams by IP address filtering or protocol fingerprinting, raising the bar for censors.

  6. Surface heat fluxes using satellite observations: A case study in the northwest Pacific

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Sugimori, Y; Akiyama, M.

    stream_size 16 stream_content_type text/plain stream_name J_Atmos_Ocean_Technol_12_1071.pdf.txt stream_source_info J_Atmos_Ocean_Technol_12_1071.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  7. H(+) - O(+) two-stream interaction on auroral field lines

    International Nuclear Information System (INIS)

    Bergmann, R.

    1990-01-01

    Upflowing beams of hydrogen, oxygen, and minor ion species, and downward accelerated electrons have been observed above several thousand kilometers altitude on evening auroral field lines. The mechanism for electron and ion acceleration is generally accepted to be the presence of a quasi-static electric field with a component parallel to the earth's magnetic field. The thermal energy of the observed beams is much larger than ionospheric ion temperatures indicating that the beams have been heated as they are accelerated upward. This heating is probably due to a two-stream interaction between beams of different mass ions. The beams gain equal energy in the potential drop and so have different average velocities. Their relative streaming initiates an ion-ion two-stream interaction which then mediates a transfer of energy and momentum between the beams and causes thermalization of each beam. The qualitative evidence that supports this scenario is reviewed. Properties of the two-stream instability are presented in order to demonstrate that a calculation of the evolution of ion beams requires a model that includes field-aligned spatial structure. 26 refs

  8. Heated water jet in coflowing turbulent stream

    International Nuclear Information System (INIS)

    Shirazi, M.A.; McQuivey, R.S.; Keefer, T.N.

    1974-01-01

    Effects of ambient turbulence on temperature and salinity distributions of heated water and neutrally buoyant saltwater jets were studied for a wide range of densimetric jet Froude numbers, jet discharge velocities, and ambient turbulence levels in a 4-ft-wide channel. Estimates of vertical and lateral diffusivity coefficients for heat and for salt were obtained from salinity and temperature distributions taken at several stations downstream of the injection point. Readily usable correlations are presented for plume center-line temperature, plume width, and trajectory. The ambient turbulence affects the gross behavior characteristics of the plume. The effects vary with the initial jet Froude number and the jet to ambient velocity ratio. Heat and salinity are transported similarly and the finite source dimensions and the initial jet characteristics alter the numerical value of the diffusivity

  9. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran

    Impact from groundwater abstraction on freshwater resources and ecosystems is an issue of sincere concern in Denmark and many other countries worldwide. In addition, climate change projections add complexity to the existing conflict between water demands to satisfy human needs and water demands...... required to conserve streams as biologically diverse and healthy ecosystems. Solutions to this intensifying conflict require a holistic approach whereby stream biota is related to their physical environment at catchment scale, as also demanded by the EU Water Framework Directive. In the present study......, climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  10. Viscous dissipation effects on heat transfer inflow past a continuously moving porous plate

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Soundalgekar, V.M.

    stream_size 6 stream_content_type text/plain stream_name Proc_Math_Soc_B.H.U_11_53.pdf.txt stream_source_info Proc_Math_Soc_B.H.U_11_53.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  11. Cosmic-Ray Feedback Heating of the Intracluster Medium

    Energy Technology Data Exchange (ETDEWEB)

    Ruszkowski, Mateusz [Department of Astronomy, University of Michigan, 1085 South University Avenue, 311 West Hall, Ann Arbor, MI 48109 (United States); Yang, H.-Y. Karen; Reynolds, Christopher S., E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: chris@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-07-20

    Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We find that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (i) CRs come into contact with the ambient ICM and efficiently heat it, (ii) streaming instability heating dominates over Coulomb and hadronic heating, (iii) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (iv) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.

  12. Secure remote service execution for web media streaming

    OpenAIRE

    Mikityuk, Alexandra

    2017-01-01

    Through continuous advancements in streaming and Web technologies over the past decade, the Web has become a platform for media delivery. Web standards like HTML5 have been designed accordingly, allowing for the delivery of applications, high-quality streaming video, and hooks for interoperable content protection. Efficient video encoding algorithms such as AVC/HEVC and streaming protocols such as MPEG-DASH have served as additional triggers for this evolution. Users now employ...

  13. Triploidy induction in Nile tilapia, Oreochromis niloticus L. using pressure, heat and cold shocks

    Digital Repository Service at National Institute of Oceanography (India)

    Hussain, M.G.; Chatterji, A.; McAndrew, B.J.; Johnstone, R.

    stream_size 7 stream_content_type text/plain stream_name Theor_Appl_Genet_81_6.pdf.txt stream_source_info Theor_Appl_Genet_81_6.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  14. The effect of the moisture content of a local heat source on the blood flow response of the skin.

    Science.gov (United States)

    Petrofsky, Jerrold Scott; Bains, Gurinder; Raju, Chinna; Lohman, Everett; Berk, Lee; Prowse, Michelle; Gunda, Shashi; Madani, Piyush; Batt, Jennifer

    2009-09-01

    Numerous studies have examined the effect of local and global heating of the body on skin blood flow. However, the effect of the moisture content of the heat source on the skin blood flow response has not been examined. Thirty-three subjects, without diabetes or cardiovascular disease, between the ages of 22 and 32 were examined to determine the relationship between the effects of dry vs. moist heat applied for the same length of time and with the skin clamped at the same skin temperature on the blood flow response of the skin. The skin, heated with an infrared heat lamp (skin temperature monitored with a thermocouple) to 40 degrees C for 15 min, was either kept moist with wet towels or, in a separate experiment, kept dry with Drierite (a desiccant) between the towels to remove any moisture. Before and after heat exposure of the forearm, blood pressure, heart rate, skin moisture content, skin temperature, and skin blood flow were recorded. The results of the experiment showed that there was no change in skin moisture after 15 min exposure to dry heat at 40 degrees C. However, with moist heat, skin moisture increased by 43.7%, a significant increase (P heat, blood flow increased from the resting value by 282.3% whereas with moist heat, blood flow increased by 386% over rest, a significant increase over dry heat (P heat was a better heating modality than dry heat. The reason may be linked to moisture sensitivity in calcium channels in the vascular endothelial cell.

  15. Derivation of effectiveness-NTU method for heat exchangers with heat leak; TOPICAL

    International Nuclear Information System (INIS)

    William M. Soyars

    2001-01-01

    A powerful and useful method for heat exchanger analysis is the effectiveness-NTU method. The equations for this technique presented in textbooks, however, are limited to the case where all of the heat transfer occurs between the two fluid streams. In an application of interest to us, cryogenic heat exchangers, we wish to consider a heat leak term. Thus, we have derived equations for the(var e psilon)-NTU method with heat leak involved. The cases to be studied include evaporators, condensers, and counter-flow, with heat leak both in and out

  16. The Effect of Sub-Auroral Polarization Streams (SAPS) on Ionosphere and Thermosphere during 2015 St. Patrick's Day storm: Global Ionosphere-Thermosphere Model (GITM) Simulations

    Science.gov (United States)

    Guo, J.; Deng, Y.; Zhang, D.; Lu, Y.; Sheng, C.

    2017-12-01

    Sub-Auroral Polarization Streams (SAPS) are incorporated into the non-hydrostatic Global Ionosphere-Thermosphere Model (GITM), revealing the complex effects on neutral dynamics and ion-neutral coupling processes. The intense westward ion stream could enhance the neutral zonal wind within the SAPS channel. Through neutral dynamics the neutrals then divide into two streams, one turns poleward and the other turns equatorward, forming a two-cell pattern in the SAPS-changed wind. The significant Joule heating induced by SAPS also leads to traveling atmospheric disturbances (TAD) accompanied by traveling ionospheric disturbances (TID), increasing the total electron content (TEC) by 2-8 TECu in the mid-latitude ionosphere. We investigate the potential causes of the reported poleward wind surge during the St. Patrick's Day storm in 2015. It is confirmed that Coriolis force on the westward zonal wind can contribute the poleward wind during post-SAPS interval. In addition, the simulations imply that the sudden decrease of heating rate within auroral oval could result in a TAD propagating equatorward, which could also be responsible for the sudden poleward wind surge. This study highlights the complicated effects of SAPS on ion-neutral coupling and neutral dynamics.

  17. ATLAS Live: Collaborative Information Streams

    CERN Document Server

    Goldfarb, S; The ATLAS collaboration

    2011-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at th...

  18. Web Audio/Video Streaming Tool

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2003-01-01

    In order to promote NASA-wide educational outreach program to educate and inform the public of space exploration, NASA, at Kennedy Space Center, is seeking efficient ways to add more contents to the web by streaming audio/video files. This project proposes a high level overview of a framework for the creation, management, and scheduling of audio/video assets over the web. To support short-term goals, the prototype of a web-based tool is designed and demonstrated to automate the process of streaming audio/video files. The tool provides web-enabled users interfaces to manage video assets, create publishable schedules of video assets for streaming, and schedule the streaming events. These operations are performed on user-defined and system-derived metadata of audio/video assets stored in a relational database while the assets reside on separate repository. The prototype tool is designed using ColdFusion 5.0.

  19. Evaluation of the influence of different heat-treatment methods on fatty acids content particulary trans isomers in french fries

    OpenAIRE

    Mojska, H.; Malecka, K.; Gielecinska, I.; Sitek, A.; Pawlicka, M.

    2009-01-01

    The aim of our study was to evaluate the influence of different heat treatment methods on trans fatty acids content in French fries. French fries were heat-treated by using a deep fryer, a frying pan, an oven and a microwave. The fatty acids content was analyzed by high-resolution capillary gas chromatography using MS detector (GC/MS). The highest increase in fat was determined in French fries prepared in deep fryer in comparison to raw French fries, whereas the lowest by using oven and micro...

  20. Heat tracer methods

    Science.gov (United States)

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    The flow of heat in the subsurface is closely linked to the movement of water (Ingebritsen et al., 2006). As such, heat has been used as a tracer in groundwater studies for more than 100 years (Anderson, 2005). As with chemical and isotopic tracers (Chapter 7), spatial or temporal trends in surface and subsurface temperatures can be used to infer rates of water movement. Temperature can be measured accurately, economically, at high frequencies, and without the need to obtain water samples, facts that make heat an attractive tracer. Temperature measurements made over space and time can be used to infer rates of recharge from a stream or other surface water body (Lapham, 1989; Stonestrom and Constantz, 2003); measurements can also be used to estimate rates of steady drainage through depth intervals within thick unsaturated zones (Constantz et al., 2003; Shan and Bodvarsson, 2004). Several thorough reviews of heat as a tracer in hydrologic studies have recently been published (Constantz et al., 2003; Stonestrom and Constantz, 2003; Anderson, 2005; Blasch et al., 2007; Constantz et al., 2008). This chapter summarizes heat-tracer approaches that have been used to estimate recharge.Some clarification in terminology is presented here to avoid confusion in descriptions of the various approaches that follow. Diffuse recharge is that which occurs more or less uniformly across large areas in response to precipitation, infiltration, and drainage through the unsaturated zone. Estimates of diffuse recharge determined using measured temperatures in the unsaturated zone are referred to as potential recharge because it is possible that not all of the water moving through the unsaturated zone will recharge the aquifer; some may be lost to the atmosphere by evaporation or plant transpiration. Estimated fluxes across confining units in the saturated zone are referred to as interaquifer flow (Chapter 1). Focused recharge is that which occurs directly from a point or line source, such

  1. Cleaning Schedule Operations in Heat Exchanger Networks

    Directory of Open Access Journals (Sweden)

    Huda Hairul

    2018-01-01

    Full Text Available Heat exchanger networks have been known to be the essential parts in the chemical industries. Unfortunately, since the performance of heat exchanger can be decreasing in transferring the heat from hot stream into cold stream due to fouling, then cleaning the heat exchanger is needed to restore its initial performance periodically. A process of heating crude oil in a refinery plant was used as a case study. As many as eleven heat exchangers were used to heat crude oil before it was heated by a furnace to the temperature required to the crude unit distillation column. The purpose of this study is to determine the cleaning schedule of heat exchanger on the heat exchanger networks due to the decrease of the overall heat transfer coefficient by various percentage of the design value. A close study on the process of heat exchanger cleaning schedule in heat exchanger networks using the method of decreasing overall heat transfer coefficient as target. The result showed that the higher the fouling value the more often the heat exchanger is cleaned because the overall heat transfer coefficient decreases quickly.

  2. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  3. Adaptive Media Streaming to Mobile Devices: Challenges, Enhancements, and Recommendations

    OpenAIRE

    Evensen, Kristian; Kupka, Tomas; Riiser, Haakon; Ni, Pengpeng; Eg, Ragnhild; Griwodz, Carsten; Halvorsen, Pål

    2014-01-01

    Video streaming is predicted to become the dominating traffic in mobile broadband networks. At the same time, adaptive HTTP streaming is developing into the preferred way of streaming media over the Internet. In this paper, we evaluate how different components of a streaming system can be optimized when serving content to mobile devices in particular. We first analyze the media traffic from a Norwegian network and media provider. Based on our findings, we outline benefits and chal...

  4. Correlation Lengths for Estimating the Large-Scale Carbon and Heat Content of the Southern Ocean

    Science.gov (United States)

    Mazloff, M. R.; Cornuelle, B. D.; Gille, S. T.; Verdy, A.

    2018-02-01

    The spatial correlation scales of oceanic dissolved inorganic carbon, heat content, and carbon and heat exchanges with the atmosphere are estimated from a realistic numerical simulation of the Southern Ocean. Biases in the model are assessed by comparing the simulated sea surface height and temperature scales to those derived from optimally interpolated satellite measurements. While these products do not resolve all ocean scales, they are representative of the climate scale variability we aim to estimate. Results show that constraining the carbon and heat inventory between 35°S and 70°S on time-scales longer than 90 days requires approximately 100 optimally spaced measurement platforms: approximately one platform every 20° longitude by 6° latitude. Carbon flux has slightly longer zonal scales, and requires a coverage of approximately 30° by 6°. Heat flux has much longer scales, and thus a platform distribution of approximately 90° by 10° would be sufficient. Fluxes, however, have significant subseasonal variability. For all fields, and especially fluxes, sustained measurements in time are required to prevent aliasing of the eddy signals into the longer climate scale signals. Our results imply a minimum of 100 biogeochemical-Argo floats are required to monitor the Southern Ocean carbon and heat content and air-sea exchanges on time-scales longer than 90 days. However, an estimate of formal mapping error using the current Argo array implies that in practice even an array of 600 floats (a nominal float density of about 1 every 7° longitude by 3° latitude) will result in nonnegligible uncertainty in estimating climate signals.

  5. Analysis of streaming media systems

    NARCIS (Netherlands)

    Lu, Y.

    2010-01-01

    Multimedia services have been popping up at tremendous speed in recent years. A large number of these multimedia streaming systems are introduced to the consumer market. Internet Service Providers, Telecommunications Operators, Service/Content Providers, and end users are interested in the

  6. ATLAS Live: Collaborative Information Streams

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, Steven [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Collaboration: ATLAS Collaboration

    2011-12-23

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  7. ATLAS Live: Collaborative Information Streams

    International Nuclear Information System (INIS)

    Goldfarb, Steven

    2011-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  8. Changing their tune : How consumers' adoption of online streaming affects music consumption and discovery

    NARCIS (Netherlands)

    Datta, Hannes; Knox, George; Bronnenberg, Bart

    Instead of purchasing individual content, streaming adopters rent access to libraries, with content being free at the margin. In this paper, we study how the adoption of music streaming affects consumers’ listening behavior. Using a unique panel data set of individual consumers’ listening histories

  9. Measurement of dynamic adsorption coefficient of Xe on coconut charcoal in CO2 streams by gas-solid chromatography

    International Nuclear Information System (INIS)

    Sun Xinxi; Huang Yuying; Li Wangchang

    1984-01-01

    This paper presents a method for measuring the dynamic adsorption coefficients of Xe on coconut charcoal II-2 in CO 2 carrier streams by SP-2305E gas chromatograph with the thermal conductivity cell. The adsorption column is made of stainless steel (diameter 4 x 240 mm) packed with 60-80 mesh coconut charcoal II-2. The CO 2 content in carrier streams is about 87%. Three groups of data of Xe dynamic adsorption coefficient were obtained at temperature 15.5 deg C, 31.5 deg C and 50.5 deg C by pulse injection respectively. Another group was obtained at temperature approx. 16 deg C by continueous injection. In addition, adsorption isotherms and adsorption isometrics were determined. In this experimental system, the adsorption heat of Xe on coconut charcoal II-2 is 2820 cal/mole

  10. Academic streaming in Europe

    DEFF Research Database (Denmark)

    Falaschi, Alessandro; Mønster, Dan; Doležal, Ivan

    2004-01-01

    The TF-NETCAST task force was active from March 2003 to March 2004, and during this time the mem- bers worked on various aspects of streaming media related to the ultimate goal of setting up common services and infrastructures to enable netcasting of high quality content to the academic community...

  11. The Effect of Moisture Content and Temperature on the Specific Heat Capacity of Nut and Kernel of Two Iranian Pistachio Varieties

    Directory of Open Access Journals (Sweden)

    A.R Salari Kia

    2014-04-01

    Full Text Available Pistachio has a special ranking among Iranian agricultural products. Iran is known as the largest producer and exporter of pistachio in the world. Agricultural products are imposed under different thermal treatments during storage and processing. Designing all these processes requires thermal parameters of the products such as specific heat capacity. Regarding the importance of pistachio processing as an exportable product, in this study the specific heat capacity of nut and kernel of two varieties of Iranian pistachio (Kalle-Ghochi and Badami were investigated at four levels of moisture content (initial moisture content (5%, 15%, 25% and 40% w.b. and three levels of temperature (40, 50 and 60°C. In both varieties, the differences between the data were significant at the 1% of probability; however, the effect of moisture content was greater than that of temperature. The results indicated that the specific heat capacity of both nuts and kernels increase logarithmically with increase of moisture content and also increase linearly with increase of temperature. This parameter has altered for nut and kernel of Kalle-Ghochi and Badami varieties within the range of 1.039-2.936 kJ kg-1 K-1, 1.236-3.320 kJ kg-1 K-1, 0.887-2.773 kJ kg-1 K-1 and 0.811-2.914 kJ kg-1 K-1, respectively. Moreover, for any given level of temperature, the specific heat capacity of kernels was higher than that of nuts. Finally, regression models with high R2 values were developed to predict the specific heat capacity of pistachio varieties as a function of moisture content and temperature

  12. Surface heat budget of the Caribbean Sea during the pre-hurricane period (April-May) of 1990

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; PrasannaKumar, S.; Brown, P; Gray, C.R.; Hulse, J.; Jeremiah, P; Wagh, A.B.; Desai, B.N.

    stream_size 10 stream_content_type text/plain stream_name Caribb_Mar_Stud_2_87.pdf.txt stream_source_info Caribb_Mar_Stud_2_87.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  13. Real Time Synchronization of Live Broadcast Streams with User Generated Content and Social Network Streams

    NARCIS (Netherlands)

    Stokking, H.M.; Kaptein, A.M.; Veenhuizen, A.T.; Spitters4, M.M.; Niamut, O.A.

    2013-01-01

    This paper describes the work in the FP7 STEER project on augmenting a live broadcast with live user generated content. This user generated content consists of both video content, captured with mobile devices, and social network content, such as Facebook or Twitter messages. To enable multi-source

  14. Effect of microwave heating on content of cyanogenic glycosides in linseed

    Directory of Open Access Journals (Sweden)

    Ivanov Dušica

    2012-01-01

    Full Text Available Linseed is a good source of linoleic (LA, 18:2, n-6 and especially α-linolenic acid (ALA, 18:3, n-3, ω6 and ω-3 polyunsaturated fatty acids (PUFA, which are essential because mammals, and therefore humans, cannot endogenously synthesize them and must adopt them exogenously from dietary sources. In spite of its high nutritive value, linseed has not been effectively exploited in animal feeding, due to the fact that it contains antinutritive components, which are cyanogenic glycosides (CG and antivitamin B6 (linatine. CGs are a major limitation in application of linseed and its meal in animal nutrition. The objective of the study was to investigate effect of microwave heat treatment on the content of hydrogen cyanide, and consequently cyanogenic glycosides in linseed. Operating frequency of microwave oven was 2450 mHz, and working power was 240W, 400W, 560W and 800W. Samples were treated for 0, 3, 6 and 10 minutes for every working power. When microwave power of 560 W and 800 W was used for 6 min and longer, linseed samples were burned and damaged, therefore these treatments should not be used. Minimal time of heating with microwave power of 400W, which would provide reduction of HCN content under allowed limits (250 mg/kg of linseed, was determined graphically using three-dimensional contour plot graph and it was 290 s (4 minutes and 50 s. This regime is recommended for treating linseed before usage as a feed compound.

  15. Temperature, heat content, mixing and stability in Lake Orta: a pluriannual investigation

    Directory of Open Access Journals (Sweden)

    Luigi BARBANTI

    2001-02-01

    Full Text Available This paper describes the overall state of some physical phenomena occurring in Lake Orta, such as thermal stratification and destratification, accumulation and release of heat, vertical winter mixing, and stability of the water mass. The historical series of temperature distribution along the water column in the period 1984-1999, from which the holo-oligomictic character of Lake Orta emerges, is analysed. The monthly evaluation of the heat contents metre by metre from 0 to 143 m depth reveals how the complete winter mixing occurs only when the energy present within the whole column is less than 1,675 MJ m-2; above this value the circulation is only partial, as in the other deep subalpine lakes. A water layer in the deep hypolimnion has been shown to contain a climatic memory, which has generally increased since 1981. Walker’s stability analysis has revealed that when at a depth below 90 metres there is a level where 0.07 J m-2 are exceeded, total mixing cannot take place. In contrast, the Birgean work identifies, during the heating phase, the layers of the lake where energy is stored or lost.

  16. Heat transfer fouling characteristics of microfiltered thin stillage from the dry grind process.

    Science.gov (United States)

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2010-08-01

    We investigated effects of microfiltration (MF) on heat transfer fouling tendencies of thin stillage. A stainless steel MF membrane (0.1 micron pore size) was used to remove solids from thin stillage. At filtration conditions of 690kPa, the MF process effectively recovered total solids from thin stillage. Thin stillage was concentrated from 7.0% to 22.4% solids with average permeate flux rates of 180+/-30 L/m(2)/h at 75 degrees C. In retentate streams, protein and fat contents were increased from 23.5 and 16.7% db to 27.6 and 31.1% db, respectively, and ash content was reduced from 10.5% to 3.8% db. Removal of solids, protein and fat generated a microfiltration permeate (MFP) that was used as an input stream to the fouling probe system; MFP fouling tendencies were measured. An annular fouling probe was used to measure fouling tendencies of thin stillage from a commercial dry grind facility. When comparing diluted thin stillage (DTS) stream and MFP, a reduction in solids concentration was not the only reason of fouling decrement. Selective removal of protein and fat played an important role in mitigating the fouling. At t=10h, mean fouling rates of MFP were an order of magnitude lower when compared to thin stillage and diluted streams. When maximum probe temperature (200 degrees C) was reached, mean fouling rates for thin stillage, DTS and MFP were 7.1x10(-4), 4.2x10(-4) and 2.6x10(-4) m(2) degrees C/kW/min, respectively. In DTS and MFP, the induction period was prolonged by factors of 4.3 and 9.5, respectively, compared to the induction period for thin stillage fouling. Mean fouling rates were decreased by factors of 2.3 and 23.4 for DTS and MFP, respectively. Fouling of MFP took twice the time to reach a probe temperature of 200 degrees C than did thin stillage (22 h vs 10 h, respectively). A reduction in heat transfer fouling could be achieved by altering process stream composition using microfiltration. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Tissue content of sulfomucins and sialomucins in the colonic mucosa, without fecal stream, undergoing daily intervention with sucralfate.

    Science.gov (United States)

    Bonassa, Christiny Emmanuelle Gabriel; Pereira, José Aires; Campos, Fábio Guilherme Caserta Maryssael de; Rodrigues, Murilo Rocha; Sato, Daniela Tiemi; Chaim, Felipe David Mendonça; Martinez, Carlos Augusto Real

    2015-05-01

    To measure the content of acidic mucin, sialomucin, and sulfomucins in the colonic mucosa without fecal stream submit to intervention with sucralfate (SCF). Thirty-six rats were submitted to a right colostomy and a distal mucous fistula and divided into two groups according to sacrifice to be performed two or four weeks. Each group was divided into three subgroups according daily application of enemas containing saline, SCF at 1.0 g/kg/day or 2.0 g/kg/day. Colitis was diagnosed by histological analysis. Acid mucins were determined with the Alcian-Blue and sulfomucin and sialomucin by high iron diamine-alcian blue (HID-AB) techniques. The mucins were quantified by computer-assisted image analysis. Mann-Whitney and ANOVA tests were used to analyze the results establishing the level of significance of 5% for both (p<0.05). SCF enemas decreased the inflammation score and was related to the concentration used and time of the intervention. SCF at both concentrations increased the content of acid mucin, which was related to the concentration used and to the improvement in the inflammatory score. There was an increase in the content of sulfomucins and sialomucins in SCF groups. SCF increased sulfomucins from 2 weeks of intervention, which was not related to the dose or time of application. The increase in sialomucin content was related to the time and dose used in the intervention. Sucralfate increased the content of acidic mucins, primarily at the expense of sialomucin, which was affected by the dose and time of intervention.

  18. A heat exchanger analogy of automotive paint ovens

    International Nuclear Information System (INIS)

    Rao, Preetham P.

    2013-01-01

    Computational prediction of vehicle temperatures in an automotive paint oven is essential to predict paint quality and manufacturability. The complex geometry of vehicles, varying scales in the flow, transient nature of the process, and the tightly coupled conjugate heat transfer render the numerical models computationally very expensive. Here, a novel, simplified model of the oven is developed using an analogy to a three-stream cross flow heat exchanger that transfers heat from air to a series of moving bodies and supporting carriers. The analogous heat exchanger equations are developed and solved numerically. Steady state Computational Fluid Dynamics (CFD) simulations are carried out to model the flow field and to extract the heat transfer coefficients around the body and carriers. The air temperature distribution from the CFD models is used as a boundary condition in the analogous model. Correction coefficients are used in the analogy to take care of various assumptions. These are determined from existing test data. The same corrections are used to predict air temperatures for a modified configuration of the oven and a different vehicle. The method can be used to conduct control volume analysis of ovens to determine energy efficiency, and to study new vehicle or oven designs. -- Highlights: • Analogy of an automotive paint oven as a three stream cross flow heat exchanger. • The three streams are vehicle bodies, carriers and hot air. • Convection coefficients and inlet air stream temperatures from steady CFD simulations. • Analogy useful for overall energy efficiency analysis of conveyor ovens in general

  19. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  20. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  1. Degradation of Anthocyanin Content in Sour Cherry Juice During Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lilla Szalóki-Dorkó

    2015-01-01

    Full Text Available Sour cherry juices made from two sour cherry cultivars (Érdi bőtermő and Kántorjánosi 3, were investigated to determine their total anthocyanin content and half-life of anthocyanins during heat treatment at different temperatures (70, 80 and 90 °C for 4 h. Before the heat treatment, Érdi bőtermő juice had higher anthocyanin concentration (812 mg/L than Kántorjánosi 3 juice (513 mg/L. The greatest heat sensitivity of anthocyanins was measured at 90 °C, while the treatments at 80 and 70 °C caused lower thermal degradation. The loss of anthocyanins in Érdi bőtermő juice after treatment was 38, 29 and 18 %, respectively, while in Kántorjánosi 3 juice losses of 46, 29 and 19 % were observed, respectively. At 90 °C sour cherry Érdi bőtermő juice had higher half-life (t1/2 of anthocyanins, while the Kántorjánosi 3 juice had higher t1/2 values at 70 °C. Cyanidin-3-glucosyl-rutinoside was present in higher concentrations in both cultivars (Érdi bőtermő: 348 and Kántorjánosi 3: 200 mg/L than cyanidin-3-rutinoside (177 and 121 mg/L before treatment. However, during the experiment, cyanidin-3-rutinoside was proved to be more resistant to heat. Comparing the two varieties, both investigated pigment compounds were more stable in Kántorjánosi 3 than in Érdi bőtermő. Degradation rate of anthocyanins was cultivar-dependent characteristic, which should be taken into account in the food production.

  2. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    Science.gov (United States)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  3. Novel graphical approach as fouling pinch for increasing fouling formation period in heat exchanger network (HEN) state of the art

    International Nuclear Information System (INIS)

    Azad, Abazar Vahdat; Ghaebi, Hadi; Amidpour, Majid

    2011-01-01

    In this paper a new graphical tool is proposed for investigation of fouling formation period in heat exchanger networks (HEN). The objective of this paper is increasing the time that HEN can perform its desirable heat transfer operation without required cleaning process. In a typical heat exchanger network, fouling formation rate of some streams is more than other ones. The method obtained in this work is based on given more opportunity for fouling formation for streams with high fouling formation rate. In fact high fouling formation rate streams are replaced with low fouling formation rate streams between different heat exchangers so that more fouling formation opportunity may be given for HEN. Therefore the HEN cleaning time decreases in fixed time period and the high fouling formation streams should pass from the path that the low fouling formation rate stream previously has passed, and inversely. As a result, secondly stream with high fouling formation rate mixes with residues of primary stream (low fouling formation rate stream). Therefore we should consider to adoption and conformability of streams structures (for prevention of streams destruction) and thermal considerations (for desirable heat transfer). Outlet temperatures of hot and cold streams should state in predefined temperatures. For satisfying thermal consideration after streams replacement this approach can be used in plants that cleanliness and its operational costs are most important problem.

  4. Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.

    Science.gov (United States)

    Gubaidullin, Amir A; Yakovenko, Anna V

    2015-06-01

    Acoustic streaming in a gas filled cylindrical cavity subjected to the vibration effect is investigated numerically. Both thermally insulated walls and constant temperature walls are considered. The range of vibration frequencies from low frequencies, at which the process can be described by an approximate analytical solution, to high frequencies giving rise to strong nonlinear effects is studied. Frequencies lower than the resonant one are chosen, and nonlinearity is achieved due to the large amplitude. The problem is solved in an axisymmetric statement. The dependence of acoustic streaming in narrow channels at vibration frequencies lower than the resonant one on the type of thermal boundary conditions is shown. The streaming vortices' directions of rotation in the case of constant temperature walls are found to be opposite to those in the case of thermally insulated walls. Different nonlinear effects, which increase with the frequency of vibration, are obtained. Nonlinear effects manifesting as the nonuniformity of average temperature, pressure, and density are in turn found to be influencing the streaming velocity and streaming structure.

  5. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  6. Heat transfer in flow of an elastico-viscous fluid past a semi-infinite plate with variable temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V; Murty

    stream_size 5 stream_content_type text/plain stream_name J_Braz_Soc_Mech_Sci_26_22.pdf.txt stream_source_info J_Braz_Soc_Mech_Sci_26_22.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  7. The overall heat transfer characteristics of a double pipe heat exchanger: comparison of experimental data with predictions of standard correlations

    International Nuclear Information System (INIS)

    Mehrabian, M. A.; Mansouri, S. H.; Sheikhzadeh, G. A.

    2002-01-01

    The single-phase flow and thermal performance of a double pipe heat exchanger are examined by experimental methods. The working fluid is water at atmospheric pressure. Temperature measurements at the inlet and outlet of the two streams and also at an intermediate point half way between the inlet and outlet is made, using copper-constantan thermocouple wires. Mass flow rates for each stream are also measured using calibrated ratemeters. Heat is supplied to the inner tube stream by an immersion heater. The overall heat transfer coefficients are inferred from the measured data. The heat transfer coefficient of the inner tube flow (circular cross section) is calculated using the standard correlations. The heat transfer coefficient of the outer tube flow (annular cross section) is then deduced.Higher heat transfer coefficients are reported in the laminar flow regime in comparison to the predictions of standard correlations for straight and smooth tubes. The reasons for this discrepancy are identified and discussed. Experimental errors in measuring temperatures and mass flow rates are studied and their effects on the heat transfer coefficients are estimated. Experimental results for the range of operating conditions used in this work show that the outer tube side heat transfer coefficients are smaller than the inner side heat transfer coefficients by a factor of almost 1.5 and 3.4 in counter flow and parallel flow arrangements, respectively. The agreement with predictions is very good for the counter flow arrangement, but not very good for the parallel flow arrangement

  8. Synchronized Multimedia Streaming on the iPhone Platform with Network Coding

    DEFF Research Database (Denmark)

    Vingelmann, Peter; Fitzek, Frank; Pedersen, Morten Videbæk

    2011-01-01

    on the iPhone that use point-to-point architectures. After acknowledging their limitations, we propose a solution based on network coding to efficiently and reliably deliver the multimedia content to many devices in a synchronized manner. Then we introduce an application that implements this technique......This work presents the implementation of synchronized multimedia streaming for the Apple iPhone platform. The idea is to stream multimedia content from a single source to multiple receivers with direct or multihop connections to the source. First we look into existing solutions for video streaming...... on the iPhone. We also present our testbed, which consists of 16 iPod Touch devices to showcase the capabilities of our application....

  9. Reconnaissance study of uranium and fluorine contents of stream and lake waters, West Greenland

    International Nuclear Information System (INIS)

    Steenfelt, A.; Dam, E.

    1982-01-01

    The present study forms part of a current investigation on the applicability of geochemical methods in mineral exploration in Greenland. The sampling programme of 1981 comprised three parts: (1) A helicopter supported, low density, regional sampling (1 sample/30 km 2 ) of stream water and stream sediment in the area covered by map sheet 66 V.2, south-east of Soendre Stroemfjord. A total of 207 water samples was obtained. (2) Detailed sampling within a 20 km 2 area of lake and stream water (71 samples) from a camp at 66deg49'N, 25deg37'W, 25 km south-west of Soendre Stroemfjord. (3) Reconnaissance sampling, by boat, along the southern part of the west coast of Greenland. The aim of this reconnaissance was to obtain information on the character of the drainage systems and on the availability of sample media (water, stream sediment, aquatic moss) for geochemical exploration. A total of 195 water samples were collected. In addition, rust zones and areas of known mineralisation along the coast were sampled. (author)

  10. A thermoacoustic-Stirling heat engine: detailed study

    Science.gov (United States)

    Backhaus; Swift

    2000-06-01

    A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood.

  11. Assimilation of old carbon by stream food webs in arctic Alaska

    Science.gov (United States)

    O'Donnell, J. A.; Carey, M.; Xu, X.; Koch, J. C.; Walker, J. C.; Zimmerman, C. E.

    2017-12-01

    Permafrost thaw in arctic and sub-arctic region is mobilizing old carbon (C) from perennially frozen soils, driving the release of old C to the atmosphere and to aquatic ecosystems. Much research has focused on the transport and lability of old dissolved organic C (DOC) as a possible feedback to the climate system following thaw. However, little is known about the role of old C as a source to aquatic food webs in watersheds underlain by thawing permafrost. To quantify the contributions of old C to Arctic stream food-webs, we measured the radiocarbon (Δ14C) and stable isotope (δ13C, δ15N) contents of periphyton, macroinvertebrates, and resident fish species (Arctic Grayling (Thymallus arcticus) and Dolly Varden (Salvelinus malma)). We also characterized the isotopic composition of possible C sources, including DOC, dissolved inorganic carbon (DIC), and soil organic matter. Samples were collected across 10 streams in Arctic Alaska, draining watersheds underlain by varying parent material and ground-ice content, from ice-poor bedrock to ice-rich loess (i.e. Yedoma). Fraction modern (FM) values for Arctic Grayling and Dolly Varden ranged from 0.6720 to 1.0101 (3195 years BP to modern) across all streams, and closely tracked spatial variation in Δ14C content of periphyton. Parent material and ground-ice content appear to govern the age and form of dissolved C sources to stream biota. For instance, in watersheds underlain by ice-poor bedrock, old DIC (< 5000 years BP) was the dominant C source to stream biota, reflecting contributions from carbonate weathering and soil respiration. In streams draining ice-rich Yedoma, high concentrations of younger DOC were the primary C source to stream biota, reflecting leaching of DOC from saturated, peaty soils of the active layer. These findings highlight the importance of permafrost characteristics as a control on subsurface hydrology and the delivery of aged C to surface waters. Given the large stores Pleistocene-aged organic

  12. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  13. Zirconia/Hydroxyapatite Composites Synthesized Via Sol-Gel: Influence of Hydroxyapatite Content and Heating on Their Biological Properties

    Science.gov (United States)

    Bollino, Flavia; Armenia, Emilia; Tranquillo, Elisabetta

    2017-01-01

    Zirconia (ZrO2) and zirconia-based glasses and ceramics are materials proposed for use in the dental and orthopedic fields. In this work, ZrO2 glass was modified by adding different amounts of bioactive and biocompatible hydroxyapatite (HAp). ZrO2/HAp composites were synthesized via the sol-gel method and heated to different temperatures to induce modifications of their chemical structure, as ascertained by Fourier transform infrared spectroscopy (FTIR) analysis. The aim was to investigate the effect of both HAp content and heating on the biological performances of ZrO2. The materials’ bioactivity was studied by soaking samples in a simulated body fluid (SBF). FTIR and scanning electron microscopy (SEM)) analyses carried out after exposure to SBF showed that all materials are bioactive, i.e., they are able to form a hydroxyapatite layer on their surface. Moreover, the samples were soaked in a solution containing bovine serum albumin (BSA). FTIR analysis proved that the synthesized materials are able to adsorb the blood protein, the first step of cell adhesion. WST-8 ([2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt]) assay showed that no cytotoxicity effects were induced by the materials’ extract. However, the results proved that bioactivity increases with both the HAp content and the temperature used for the thermal treatment, whereas biocompatibility increases with heating but is not affected by the HAp content. PMID:28773116

  14. Influence of moisture content on inactivation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in powdered red and black pepper spices by radio-frequency heating.

    Science.gov (United States)

    Jeong, Seul-Gi; Kang, Dong-Hyun

    2014-04-17

    The influence of moisture content during radio-frequency (RF) heating on heating rate, dielectric properties, and inactivation of foodborne pathogens was investigated. The effect of RF heating on the quality of powdered red and black pepper spices with different moisture ranges was also investigated. Red pepper (12.6%, 15.2%, 19.1%, and 23.3% dry basis, db) and black pepper (10.1%, 17.2%, 23.7%, and 30.5% db) inoculated with Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium were treated in a RF heating system with 27.12 MHz. The heating rate of the sample was dependent on moisture content up to 19.1% (db) of red pepper and 17.2% (db) of black pepper, but there was a significant decrease in the heating rate when the moisture content was increased beyond these levels. The dielectric properties of both samples increased with a rise in moisture content. As the moisture content increased, treatment time required to reduce E. coli O157:H7 and S. Typhimurium by more than 7 log CFU/g (below the detection limit, 1 log CFU/g) decreased and then increased again without affecting product quality when the moisture content exceeded a level corresponding to the peak heating rate. RF treatment significantly (Pspices. These results suggest that RF heating can be effectively used to not only control pathogens but also reduce moisture levels in spices and that the effect of inactivation is dependent on moisture content. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Application of Streaming Effect and Joule Heating Effect of Pulse Current in Crack Healing of Metal Materials

    Directory of Open Access Journals (Sweden)

    Jian Chu

    2017-06-01

    Full Text Available Remanufacture engineering is an emerging industry that saves resources as well as protects the environment. However, cracks on remanufactured components can result in serious trouble. Therefore, in order to avoid unnecessary waste of resources and energy, these cracks should be repaired radically in order to ensure the smooth progressing of the remanufacturing process. Consequently, the crack healing technique of metal materials is very important in the field of remanufacturing. In this study, the U-shape vane stainless steel of a centrifugal compressor which had cracks was processed by pulse current using a high pulse current discharge device, and the influence of the streaming effect and Joule heating effect of pulse current on the crack healing of metal materials was studied, aiming to provide references for the better application of this technology in the remanufacturing field in the future.

  16. Effect of the addition of wheat bran stream on dough rheology and bread quality

    Directory of Open Access Journals (Sweden)

    Iuliana Banu

    2012-08-01

    Full Text Available The milling by-products have high nutritional value and can be incorporated into white flour. This study was aimed at comparatively examining the rheological behaviour of the doughs made from wheat white flour with different levels (3-30% of bran streams incorporated and from wholewheat. The results indicated significant correlations between the ash content of the wheat bran streams incorporated into flour and Alveograph, Rheofermentograph and Mixolab parameters. The white flour sample with 25% wheat bran streams had the ash content similar to wholewheat, but the dough rheology was improved. The quality of the white flour bread with 25% wheat bran streams was improved compared to the wholemeal bread.

  17. ATLAS Live: Collaborative Information Streams

    CERN Document Server

    Goldfarb, S; The ATLAS collaboration

    2010-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using the SCALA digital signage software system. The system is robust and flexible, allowing for the usage of scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intrascreen divisibility. The video is made available to the collaboration or public through the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video t...

  18. Micro-structured heat exchanger for cryogenic mixed refrigerant cycles

    Science.gov (United States)

    Gomse, D.; Reiner, A.; Rabsch, G.; Gietzelt, T.; Brandner, J. J.; Grohmann, S.

    2017-12-01

    Mixed refrigerant cycles (MRCs) offer a cost- and energy-efficient cooling method for the temperature range between 80 and 200 K. The performance of MRCs is strongly influenced by entropy production in the main heat exchanger. High efficiencies thus require small temperature gradients among the fluid streams, as well as limited pressure drop and axial conduction. As temperature gradients scale with heat flux, large heat transfer areas are necessary. This is best achieved with micro-structured heat exchangers, where high volumetric heat transfer areas can be realized. The reliable design of MRC heat exchangers is challenging, since two-phase heat transfer and pressure drop in both fluid streams have to be considered simultaneously. Furthermore, only few data on the convective boiling and condensation kinetics of zeotropic mixtures is available in literature. This paper presents a micro-structured heat exchanger designed with a newly developed numerical model, followed by experimental results on the single-phase pressure drop and their implications on the hydraulic diameter.

  19. Effect of pH Changes on Antioxidant Capacity and the Content of Betalain Pigments During the Heating of a Solution of Red Beet Betalains

    Directory of Open Access Journals (Sweden)

    Mikołajczyk-Bator Katarzyna

    2017-06-01

    Full Text Available Red beets and their products are mainly consumed after processing. In this study, the effect of pH on changes in antioxidant capacity (AC and the content of betalain pigments were analysed during the heating of a betalain preparation solution. With pH ranging from 4 to 9 during the heat-treatment, the content of red pigments decreased depending on the pH level of the sample. The losses of red pigments in the investigated betalain preparation solution increased along with rising pH levels of the heated solution. The greatest losses were recorded at pH of 9.0. An opposite correlation was observed for yellow pigments. The content of yellow pigments in the heated betalain preparation solution was increasing along with increasing pH. The most pronounced increase in the content of yellow pigments was found at pH of 6.5 and 7.0. At the same time, the heated betalain preparation solution was shown to exhibit a higher antioxidant capacity at pH of 6.0 (14.9 μmol Trolox/mL than at pH of 4.0 (12.6 μmol Trolox/mL. It was observed that the increase in the antioxidant capacity in heated betalain preparation solutions with pH in the 6.0–6.5 range occurred as a result of increased concentrations of neobetanin, assessed by HPLC, within the pH range from 5.0 to 6.5.

  20. For Video Streaming/Delivery: Is HTML5 the Real Fix?

    Directory of Open Access Journals (Sweden)

    John Millard

    2013-10-01

    Full Text Available The general movement towards streaming or playing videos on the web has grown exponentially in the last decade. The combination of new streaming technologies and faster Internet connections continue to provide enhanced and robust user experience for video content. For many organizations, adding videos on their websites has transitioned from a “cool” feature to a mission critical service. Some of the benefits in putting videos online include: to engage and convert visitors, to raise awareness or drive interest, to share inspirational stories or recent unique events, etc. Along with the growth in the use and need for video content on the web; delivering videos online also remains a messy activity for developers and web teams. Examples of existing challenges include creating more accessible videos with captions and delivering content (using adaptive streaming for the diverse range of mobile and tablet devices. In this article, we report on the decision-making and early results in using the Kaltura video platform in two popular library platforms: CONTENTdm and DSpace.

  1. An efficient method based on the uniformity principle for synthesis of large-scale heat exchanger networks

    International Nuclear Information System (INIS)

    Zhang, Chunwei; Cui, Guomin; Chen, Shang

    2016-01-01

    Highlights: • Two dimensionless uniformity factors are presented to heat exchange network. • The grouping of process streams reduces the computational complexity of large-scale HENS problems. • The optimal sub-network can be obtained by Powell particle swarm optimization algorithm. • The method is illustrated by a case study involving 39 process streams, with a better solution. - Abstract: The optimal design of large-scale heat exchanger networks is a difficult task due to the inherent non-linear characteristics and the combinatorial nature of heat exchangers. To solve large-scale heat exchanger network synthesis (HENS) problems, two dimensionless uniformity factors to describe the heat exchanger network (HEN) uniformity in terms of the temperature difference and the accuracy of process stream grouping are deduced. Additionally, a novel algorithm that combines deterministic and stochastic optimizations to obtain an optimal sub-network with a suitable heat load for a given group of streams is proposed, and is named the Powell particle swarm optimization (PPSO). As a result, the synthesis of large-scale heat exchanger networks is divided into two corresponding sub-parts, namely, the grouping of process streams and the optimization of sub-networks. This approach reduces the computational complexity and increases the efficiency of the proposed method. The robustness and effectiveness of the proposed method are demonstrated by solving a large-scale HENS problem involving 39 process streams, and the results obtained are better than those previously published in the literature.

  2. On the mechanisms behind decadal heat content changes in the eastern subpolar gyre

    Science.gov (United States)

    Desbruyères, Damien; Mercier, Herlé; Thierry, Virginie

    2015-03-01

    Historical and modern hydrographic data show substantial decadal variability in the heat content (HC) of the eastern subpolar North Atlantic. Those changes are here investigated in an eddy-permitting simulation (ORCA025-G70) forced by reanalysis products for the period 1965-2004. The observed and simulated decadal signal is characterized by a strong cooling in the 1960s and 1970s, a period of minor changes in the 1980s, and a strong warming in the 1990s and 2000s. A heat budget calculation is performed within a box bounded by the Greenland-Scotland sills and the Cape Farewell (Greenland)-Portugal A25-Ovide section. The decadal variability of HC is mainly governed by the integrated effect of anomalous oceanic heat transport across A25-Ovide (HTA25), with local air-sea heat fluxes playing a damping role. The impact of temperature changes acting upon the mean oceanic circulation is shown to dominate the long-term behavior of HTA25 . Through Lagrangian experiments, we show that temperature anomalies advected by the mean circulation across A25-Ovide are mostly created by the gyre circulation anomalies upstream of A25-Ovide and the associated changes in the relative proportion of cold subpolar and warm subtropical waters feeding the northern and southern branches of the North Atlantic Current. These temperature anomalies induce large-scale changes in the pycnocline slope east of Reykjanes Ridge along A25-Ovide: when the NAC is relatively cold (warm), the main pycnocline moves upward (downward) in the Iceland Basin and on top of Reykjanes Ridge, thereby increasing (decreasing) the pycnocline slope. The resulting velocity anomalies lead to heat transport changes that strongly oppose the thermally-driven heat transport anomalies.

  3. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  4. Personalized professional content recommendation

    Science.gov (United States)

    Xu, Songhua

    2015-10-27

    A personalized content recommendation system includes a client interface configured to automatically monitor a user's information data stream transmitted on the Internet. A hybrid contextual behavioral and collaborative personal interest inference engine resident to a non-transient media generates automatic predictions about the interests of individual users of the system. A database server retains the user's personal interest profile based on a plurality of monitored information. The system also includes a server programmed to filter items in an incoming information stream with the personal interest profile and is further programmed to identify only those items of the incoming information stream that substantially match the personal interest profile.

  5. Trace metals content (contaminants) as initial indicator in the quality of heat treated palm oil whole extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fauzi, Noor Akhmazillah bt [Chemical and Bioprocess Department, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia); Sarmidi, Mohd Roji [Chemical Engineering Pilot Plant, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2011-07-01

    An investigation was carried out on the effect of different sterilization time on the trace metals concentration of palm oil whole extract. Palm fruits were collected, cleaned and sterilized for 0, 20, 40 and 60 minutes. The kernels were then stripped from the sterilized fruits to get the pulp and later the pulp was pressed using small scale expeller. The resulting puree was centrifuge at 4000 rpm for 20 minutes. The palm oil whole extract were then collected and trace metals analysis was conducted using Inductively Couple Plasma-Mass Spectrometry (ICP-MS). The result showed that the highest yield was obtained at 40 minutes of sterilization with 19.9 {+-} 0.21 % (w/w). There was no significant different (p < 0.5) in total trace metals content between the degrees of the heat treatment. Na+ was found as the highest trace metals content in the extract with mean concentration ranging from 1.05 {+-} 0.03 ppm to 2.36 {+-} 0.01 ppm. 40 minutes of heating time was predicted to have good oil quality due to higher content in trace metals that inhibit the lipase enzyme activity.

  6. Numerical investigation of transient behaviour of the recuperative heat exchanger in a MR J-T cryocooler using different heat transfer correlations

    Science.gov (United States)

    Damle, R. M.; Ardhapurkar, P. M.; Atrey, M. D.

    2016-12-01

    In J-T cryocoolers operating with mixed refrigerants (nitrogen-hydrocarbons), the recuperative heat exchange takes place under two-phase conditions. Simultaneous boiling of the low pressure stream and condensation of the high pressure stream results in higher heat transfer coefficients. The mixture composition, operating conditions and the heat exchanger design are crucial for obtaining the required cryogenic temperature. In this work, a one-dimensional transient algorithm is developed for the simulation of the two-phase heat transfer in the recuperative heat exchanger of a mixed refrigerant J-T cryocooler. Modified correlation is used for flow boiling of the high pressure fluid while different condensation correlations are employed with and without the correction for the low pressure fluid. Simulations are carried out for different mixture compositions and numerical predictions are compared with the experimental data. The overall heat transfer is predicted reasonably well and the qualitative trends of the temperature profiles are also captured by the developed numerical model.

  7. End-to-End Mechanisms for Rate-Adaptive Multicast Streaming over the Internet

    OpenAIRE

    Rimac, Ivica

    2005-01-01

    Continuous media applications over packet-switched networks are becoming more and more popular. Radio stations, for example, already use streaming technology to disseminate their content to users on the Internet, and video streaming services are expected to experience similar popularity. In contrast to traditional television and radio broadcast systems, however, prevalent Internet streaming solutions are based on unicast communication and raise scalability and efficiency issues. Multicast com...

  8. Recommending personally interested contents by text mining, filtering, and interfaces

    Science.gov (United States)

    Xu, Songhua

    2015-10-27

    A personalized content recommendation system includes a client interface device configured to monitor a user's information data stream. A collaborative filter remote from the client interface device generates automated predictions about the interests of the user. A database server stores personal behavioral profiles and user's preferences based on a plurality of monitored past behaviors and an output of the collaborative user personal interest inference engine. A programmed personal content recommendation server filters items in an incoming information stream with the personal behavioral profile and identifies only those items of the incoming information stream that substantially matches the personal behavioral profile. The identified personally relevant content is then recommended to the user following some priority that may consider the similarity between the personal interest matches, the context of the user information consumption behaviors that may be shown by the user's content consumption mode.

  9. A thermoacoustic-Stirling heat engine: Detailed study

    International Nuclear Information System (INIS)

    Backhaus, S.; Swift, G. W.

    2000-01-01

    A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood. (c) 2000 Acoustical Society of America

  10. Stream Response to an Extreme Defoliation Event

    Science.gov (United States)

    Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.

    2017-12-01

    Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net

  11. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.

    Science.gov (United States)

    Trujillo, Francisco Javier; Knoerzer, Kai

    2011-11-01

    High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Simultaneous Effects of Total Solids Content, Milk Base, Heat Treatment Temperature and Sample Temperature on the Rheological Properties of Plain Stirred Yogurt

    Directory of Open Access Journals (Sweden)

    Attilio Converti

    2006-01-01

    Full Text Available Response surface methodology was used to establish a relationship between total solids content, milk base, heat treatment temperature, and sample temperature, and consistency index, flow behaviour index, and apparent viscosity of plain stirred yogurts. Statistical treatments resulted in developments of mathematical models. All samples presented shear thinning fluid behaviour. The increase of the content of total solids (9.3–22.7 % and milk base heat treatment temperature (81.6–98.4 °C resulted in a significant increase in consistency index and a decrease in flow behaviour index. Increase in the sample temperature (1.6–18.4 °C caused a decrease in consistency index and increase in flow behaviour index. Apparent viscosity was directly related to the content of total solids. Rheological properties of yogurt were highly dependent on the content of total solids in milk.

  13. Jet Noise Scaling in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  14. Cytoplasmic Streaming - Skylab Student Experiment ED-63

    Science.gov (United States)

    1973-01-01

    This chart describes the Skylab student experiment (ED-63), Cytoplasmic Streaming, proposed by Cheryl A. Peitz of Arapahoe High School, Littleton, Colorado. Experiment ED-63 was to observe the effect of zero-gravity on cytoplasmic streaming in the aquatic plant named Elodea, commonly called water weed or water thyme. The phenomenon of cytoplasmic streaming is not well understood, but it is recognized as the circulation mechanism of the internal materials or cytoplasm of a cell. Cytoplasm is a gelatinous substance that has the ability to change its viscosity and flow, carrying various cell materials with it. The activity can be stimulated by sunlight or heat. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  15. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  16. Ebullitive methane emissions from oxygenated wetland streams

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  17. Energy efficiency improvement of a Kraft process through practical stack gases heat recovery

    International Nuclear Information System (INIS)

    Mostajeran Goortani, B.; Mateos-Espejel, E.; Moshkelani, M.; Paris, J.

    2011-01-01

    A process scheme for the optimal recovery of heat from stack gases considering energy and technical constraints has been developed and applied to an existing Kraft pulping mill. A system based on a closed loop recirculation of hot oil is used to recover the heat from stack gases and distribute it to the appropriate cold streams. The recovery of heat from stack gases is part of an overall optimization of the Kraft mill. Tools such as Pinch Analysis and exergy analysis are used to evaluate the process streams. The results indicate that 10.8 MW of heat from stack gases can be reused to heat process streams such as the deaerator water, hot water, drying filtrates, and black liquor. A simulation model of the recirculation loop has been developed to determine the specifications of the recovery system. The total heat exchanger surface area required by the system is 3460 m 2 , with a hot oil recirculation temperature of 137 o C. The anticipated total investment is $10.3 M, with a payback time of 1.8 years. - Highlights: → We developed a process design for recovering heat from stack gases in a Kraft mill. → The recovered heat is optimally distributed to the process cold streams. → Heat recovery system has a total surface area of 3500 m 2 without gases condensation. → A reduction of 7 percent in total process steam demand is anticipated. → A total investment of 10.3 M$ is needed with a payback time of less than two years

  18. Soliton collapse during ionospheric heating

    International Nuclear Information System (INIS)

    Sheerin, J.P.; Nicholson, D.R.; Payne, G.L.; Duncan, L.M.

    1984-01-01

    We present analytical and numerical work which indicates that during ionospheric heating with high-powered hf radio waves, the oscillating two-stream instability may dominate the parametric decay instability. The oscillating two-stream instability saturates nonlinearly through the formation of solitons which undergo a collisionally damped collapse. Using the heater and radar facilities at Arecibo Observatory, we have investigated this phenomenon experimentally. Recent results from our theoretical and experimental investigations are presented

  19. Numeric Analysis for Relationship-Aware Scalable Streaming Scheme

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2014-01-01

    Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.

  20. Implementation of a subcanopy solar radiation model on a forested headwater basin in the Southern Appalachians to estimate riparian canopy density and stream insolation for stream temperature models

    Science.gov (United States)

    Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.

    2016-12-01

    Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and

  1. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    Science.gov (United States)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  2. Streaming Media for Web Based Training.

    Science.gov (United States)

    Childers, Chad; Rizzo, Frank; Bangert, Linda

    This paper discusses streaming media for World Wide Web-based training (WBT). The first section addresses WBT in the 21st century, including the Synchronized Multimedia Integration Language (SMIL) standard that allows multimedia content such as text, pictures, sound, and video to be synchronized for a coherent learning experience. The second…

  3. On forecasting ionospheric total electron content responses to high-speed solar wind streams

    Directory of Open Access Journals (Sweden)

    Meng Xing

    2016-01-01

    Full Text Available Conditions in the ionosphere have become increasingly important to forecast, since more and more spaceborne and ground-based technological systems rely on ionospheric weather. Here we explore the feasibility of ionospheric forecasts with the current generation of physics-based models. In particular, we focus on total electron content (TEC predictions using the Global Ionosphere-Thermosphere Model (GITM. Simulations are configured in a forecast mode and performed for four typical high-speed-stream events during 2007–2012. The simulated TECs are quantified through a metric, which divides the globe into a number of local regions and robustly differentiates between quiet and disturbed periods. Proposed forecast products are hourly global maps color-coded by the TEC disturbance level of each local region. To assess the forecasts, we compare the simulated TEC disturbances with global TEC maps derived from Global Positioning System (GPS satellite observations. The forecast performance is found to be merely acceptable, with a large number of regions where the observed variations are not captured by the simulations. Examples of model-data agreements and disagreements are investigated in detail, aiming to understand the model behavior and improve future forecasts. For one event, we identify two adjacent regions with similar TEC observations but significant differences in how local chemistry versus plasma transport contribute to electron density changes in the simulation. Suggestions for further analysis are described.

  4. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  5. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia.

    Science.gov (United States)

    Hla, San Shwe; Roberts, Daniel

    2015-07-01

    The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. U, Th, K content, heat production and thermal conductivity of Sao Paulo, Brazil continental shelf sediments: a reconnaissance work

    International Nuclear Information System (INIS)

    Pereira, E.B.; Hamza, V.M.; Furtado, V.V.; Adams, J.A.S.

    1985-01-01

    A reconnaissance of the natural potassium, uranium and thorium content, the radiogenic heat production and the thermal conductivity of 80 bottom surface sediment samples collected from the Brazilian continental shelf off Sao Paulo was made. The average equivalent contents of these radio-elements in an estuarine ambient were 1.21%, 1.75 ppm and 4.29 ppm respectively, and 1.20%, 1.21 ppm and 4.05 ppm, respectively, in the shelf samples. The largest radioelement contents were associated with the more fine-grained sediments. The 234 U to 238 U isotopic ratios varied from 0.60 to 1.75 with an average of 1.11, indicating that the sources for the uranium in these sediments are both terrigenous and from the sea water. An average radiogenic heat production of 0.63 (+ - 0.04) μW.m -3 was calculated from the experimental concentration data. Data for the thermal conductivity measurements ranged from 0.83 to 2.51 μW.m -1 . 0 C -1 , with an average of 1.81 μW.m -1 . 0 C -1 . (Author) [pt

  7. Influence of the Gulf Stream on the troposphere.

    Science.gov (United States)

    Minobe, Shoshiro; Kuwano-Yoshida, Akira; Komori, Nobumasa; Xie, Shang-Ping; Small, Richard Justin

    2008-03-13

    The Gulf Stream transports large amounts of heat from the tropics to middle and high latitudes, and thereby affects weather phenomena such as cyclogenesis and low cloud formation. But its climatic influence, on monthly and longer timescales, remains poorly understood. In particular, it is unclear how the warm current affects the free atmosphere above the marine atmospheric boundary layer. Here we consider the Gulf Stream's influence on the troposphere, using a combination of operational weather analyses, satellite observations and an atmospheric general circulation model. Our results reveal that the Gulf Stream affects the entire troposphere. In the marine boundary layer, atmospheric pressure adjustments to sharp sea surface temperature gradients lead to surface wind convergence, which anchors a narrow band of precipitation along the Gulf Stream. In this rain band, upward motion and cloud formation extend into the upper troposphere, as corroborated by the frequent occurrence of very low cloud-top temperatures. These mechanisms provide a pathway by which the Gulf Stream can affect the atmosphere locally, and possibly also in remote regions by forcing planetary waves. The identification of this pathway may have implications for our understanding of the processes involved in climate change, because the Gulf Stream is the upper limb of the Atlantic meridional overturning circulation, which has varied in strength in the past and is predicted to weaken in response to human-induced global warming in the future.

  8. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-11-01

    Full Text Available The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10mM and 22˚C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity and extracellular polymeric substance (EPS composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  9. E. coli Surface Properties Differ between Stream Water and Sediment Environments.

    Science.gov (United States)

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .

  10. Baseline Glass Development for Combined Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-01-01

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.(1) Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.(2-5) Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  11. Content-based TV sports video retrieval using multimodal analysis

    Science.gov (United States)

    Yu, Yiqing; Liu, Huayong; Wang, Hongbin; Zhou, Dongru

    2003-09-01

    In this paper, we propose content-based video retrieval, which is a kind of retrieval by its semantical contents. Because video data is composed of multimodal information streams such as video, auditory and textual streams, we describe a strategy of using multimodal analysis for automatic parsing sports video. The paper first defines the basic structure of sports video database system, and then introduces a new approach that integrates visual stream analysis, speech recognition, speech signal processing and text extraction to realize video retrieval. The experimental results for TV sports video of football games indicate that the multimodal analysis is effective for video retrieval by quickly browsing tree-like video clips or inputting keywords within predefined domain.

  12. Technical and economic working domains of industrial heat pumps: Part 1 - single stage vapour compression heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix

    2015-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions was carried out considering......, the transcritical R744 expands the working domain for low sink outlet temperatures....

  13. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Pedersen, N. L.

    2005-01-01

    1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or w......1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams...... the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C-1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream...... at ambient temperature by 30-40% and 80-130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal...

  14. Ocean heat content and ocean energy budget: make better use of historical global subsurface temperature dataset

    Science.gov (United States)

    Cheng, L.; Zhu, J.

    2016-02-01

    Ocean heat content (OHC) change contributes substantially to global sea level rise, also is a key metric of the ocean/global energy budget, so it is a vital task for the climate research community to estimate historical OHC. While there are large uncertainties regarding its value, here we review the OHC calculation by using the historical global subsurface temperature dataset, and discuss the sources of its uncertainty. The presentation briefly introduces how to correct to the systematic biases in expendable bathythermograph (XBT) data, a alternative way of filling data gaps (which is main focus of this talk), and how to choose a proper climatology. A new reconstruction of historical upper (0-700 m) OHC change will be presented, which is the Institute of Atmospheric Physics (IAP) version of historical upper OHC assessment. The authors also want to highlight the impact of observation system change on OHC calculation, which could lead to bias in OHC estimates. Furthermore, we will compare the updated observational-based estimates on ocean heat content change since 1970s with CMIP5 results. This comparison shows good agreement, increasing the confidence of the climate models in representing the climate history.

  15. Poly-P storage by natural biofilms in streams with varying biogeochemistry

    Science.gov (United States)

    Carrick, H. J.

    2015-12-01

    Anthropogenic inputs of nitrogen (N) and phosphorus (P) have increased in many watersheds throughout the world; these inputs have been linked to the eutrophication of inland and coastal waters worldwide. We selected and surveyed 20, third-order streams that supported a range of water column biogeochemical conditions (conductivity, nutrient concentrations) located in the mid-Atlantic region, USA. Biofilm biomass, algal taxonomic composition, and nutrient stoichiometry (C, N, P, and poly-P) were measured at all stream sites. Pulse-amplitude modulation fluorometry (PAM) was used to estimate photosynthetic parameters for stream biofilms (e.g., alpha, Pmax), while microbiology techniques were used to verify poly-P storage by pro- and eukaryotic components of the biofilm (e.g., epi-fluorescent staining). As anticipated, chlorophyll ranged over 2 orders of magnitude among the streams (range 10-1,000 mg/m2). Biofilm chlorophyll and algal biovolume levels increased with water column nutrient contents, while the C:P ratio within the biofilm decreased. Both pro and eukaryotic organisms were present in resident biofilms and actively stored intracellular poly-P. Finally, the rate of photosynthetic within the biofilms appeared to be driven the nutritional condition of the biofilms; pmax and alpha values increased with significantly with stream biofilm poly-P content (r2 = 0.35 and 0.44, respectively). These results indicated that where nutrients are plentiful, biofilms P storage is favored, and this is likely a key regulator of stream biofilm biomass and productivity.

  16. Trophic structure of macroinvertebrates in tropical pasture streams

    Directory of Open Access Journals (Sweden)

    Bruna Neves da Silveira-Manzotti

    Full Text Available Abstract: Aim The aim of this study was to describe the diet of stream macroinvertebrates and to determine their trophic groups. Methods Invertebrates were sampled with D nets in three pasture streams. They were identified to genus level and submitted to gut content analysis, except for fluid feeders such as hemipterans, to which diet data was obtained from the literature. Trophic groups were determined based on a similarity analysis using the Bray-Curtis similarity coefficient. Results Five trophic groups were defined: fine-detritivores (feed mostly on fine particulate organic matter - FPOM, coarse-detritivores/herbivores (feed mostly on coarse particulate organic matter - CPOM - and plant material, omnivores, specialist-predators (prey upon aquatic insects only, and generalist-predators. Ephemeroptera, Diptera (except Tanypodinae, Coleoptera, and Trichoptera (except Smicridea were detritivores. The caddis Macronema (Trichoptera fed exclusively on plant detritus and Tanypodinae and Smicridea were classified as omnivores. The odonate families Calopterygidae and Gomphidae were classified as specialist-predators, while Macrobrachium (Decapoda, Belostoma, and Limnocoris (Hemiptera were generalist-predators. Conclusions The great quantity and frequency of occurrence of FPOM consumed by most taxa highlight the importance of this food resource for macroinvertebrate communities from tropical streams. Furthermore, observed variations on trophic group assignment for some taxa indicate the generalist and opportunistic nature of these aquatic invertebrates. Such findings reinforce the importance of conducting gut content analysis on macroinvertebrates to understand their role in the structure and functioning of tropical streams.

  17. System for NO reduction using sublimation of cyanuric acid

    Science.gov (United States)

    Perry, R.A.

    1989-01-24

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid. 1 fig.

  18. Phase characterisation in spark plasma sintered TiPt alloy

    CSIR Research Space (South Africa)

    Chikosha, S

    2011-12-01

    Full Text Available stream_source_info chikosha_2011.pdf.txt stream_content_type text/plain stream_size 4354 Content-Encoding UTF-8 stream_name chikosha_2011.pdf.txt Content-Type text/plain; charset=UTF-8 PHASE CHARACTERISATION IN SPARK... to form “necks”  Radiant Joule heat and pressure drives “neck” growth and material transfer © CSIR 2006 www.csir.co.za Page 6 Objective  Produce TiPt alloy compacts by Spark plasma sintering (SPS) of equiatomic...

  19. Process integration: Cooling water systems design

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-10-01

    Full Text Available stream_source_info Gololo2_2010.pdf.txt stream_content_type text/plain stream_size 17891 Content-Encoding UTF-8 stream_name Gololo2_2010.pdf.txt Content-Type text/plain; charset=UTF-8 The 13th Asia Pacific Confederation... results in a nonlinear program (NLP) formulation and the second case yields mixed integer nonlinear program (MINLP). In both cases the cooling towers operating capacity were debottlenecked without compromising the heat duties. The 13th Asia...

  20. Radon in streams and ground waters of Pennsylvania as a guide to uranium deposits

    International Nuclear Information System (INIS)

    Korner, L.A.; Rose, A.W.

    1977-06-01

    Radon-222, a daughter in the radioactive decay of uranium, has potential as a geochemical guide to uranium ores because of its chemical inertness and its relatively easy determination. The radon contents of 59 stream and 149 ground waters have been determined with a newly designed portable radon detector in order to test the method in uranium exploration. Radon contents of stream waters do not appear useful for reconnaissance uranium exploration of areas like Pennsylvania because of relatively rapid degassing of radon from turbulent waters, and because most radon is derived from nearby influx of ground waters into the streams. Radon in streams near uranium occurrences in Carbon and Lycoming counties is lower than many background streams. Radon in ground water is recommended as a reconnaissance method of uranium exploration because most samples from near mineralized areas are anomalous in radon. In contrast, uranium in ground waters is not anomalous near mineralized areas in Carbon County. Equations are derived to show the relation of radon in ground waters to uranium contents of enclosing rocks, emanation of radon from the solids to water, and porosity or fracture width. Limonites are found to be highly enriched in radium, the parent of radon. A model for detection of a nearby uranium ore body by radon measurement on a pumping well has been developed

  1. Cold spraying SiC/Al metal matrix composites: effects of SiC contents and heat treatment on microstructure, thermophysical and flexural properties

    Science.gov (United States)

    Gyansah, L.; Tariq, N. H.; Tang, J. R.; Qiu, X.; Feng, B.; Huang, J.; Du, H.; Wang, J. Q.; Xiong, T. Y.

    2018-02-01

    In this paper, cold spray was used as an additive manufacturing method to fabricate 5 mm thick SiC/Al metal matrix composites with various SiC contents. The effects of SiC contents and heat treatment on the microstructure, thermophysical and flexural properties were investigated. Additionally, the composites were characterized for retention of SiC particulates, splat size, surface roughness and the progressive understanding of strengthening, toughening and cracking mechanisms. Mechanical properties were investigated via three-point bending test, thermophysical analysis, and hardness test. In the as-sprayed state, flexural strength increased from 95.3 MPa to 133.5 MPa, an appreciation of 40% as the SiC contents increased, and the main toughening and strengthening mechanisms were zigzag crack propagation and high retention of SiC particulates respectively. In the heat treatment conditions, flexural strength appreciated significantly compared to the as-sprayed condition and this was as a result of coarsening of pure Al splat. Crack branching, crack deflection and interface delamination were considered as the main toughening mechanisms at the heat treatment conditions. Experimental results were consistent with the measured CTE, hardness, porosity and flexural modulus.

  2. Thermal striping heat transfer measurements in sodium AKB experiments

    International Nuclear Information System (INIS)

    Sheriff, N.; Sephton, K.P.; Gleave, C.

    1988-01-01

    Temperature fluctuations are produced in the sodium flow of fast reactors where hot and cold flow streams mix. A sodium experiment mounted on the Interatom facility AKB has been used to measure the heat transfer conditions in a flow stream with typical temperature fluctuations. The measurements were made at locations near to the leading edge of a plate, where in practice the most severe conditions are expected. With tests carried out over a wide range of flows good correlations of the heat transfer data with flow have been obtained. A simple theoretical model is proposed to explain the magnitude of the measured heat transfer coefficients, and the use of reasonable assumptions in the model produce good agreement with the experimental measurements

  3. Climate and land cover effects on the temperature of Puget Sound streams: Assessment of Climate and Land Use Impacts on Stream Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qian [Department of Geography, University of California, Los Angeles, Los Angeles CA USA; Sun, Ning [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Nijssen, Bart [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Lettenmaier, Dennis P. [Department of Geography, University of California, Los Angeles, Los Angeles CA USA

    2016-03-06

    We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt-dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub-basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization

  4. Video Streaming Transfer in a Smart Satellite Mobile Environment

    OpenAIRE

    Celandroni, Nedo; Davoli, Franco; Ferro, Erina; Gotta, Alberto

    2009-01-01

    In the near future, transportation media are likely to become "smart spaces", where sophisticated services are offered to the passengers. Among such services, we concentrate on video streaming provided on buses that move in urban, suburban, or highway environments. A contents' source utilizes a satellite DVB-S2 link for transmitting video streams to a bus, which, in its turn, relays it to its passengers' devices. A bus works in a smart mode taking advantage of the knowledge of the exact point...

  5. Simulation and analysis of main steam control system based on heat transfer calculation

    Science.gov (United States)

    Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai

    2018-05-01

    In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.

  6. Modelling of Split Condenser Heat Pump: Optimization and Exergy Analysis

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a numerical study of a split condenser heat pump (SCHP). The SCHP setup differs from a traditional heat pump (THP) setup in the way that two separate water streams on the secondary side of the condenser are heated in parallel to different temperature levels, whereas only one...

  7. Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule

    International Nuclear Information System (INIS)

    Sanaye, Sepehr; Niroomand, Behzad

    2007-01-01

    Modeling and simulation of heat exchanger networks for estimating the amount of fouling, variations in overall heat transfer coefficient, and variations in outlet temperatures of hot and cold streams has a significant effect on production analysis. In this analysis, parameters such as the exchangers' types and arrangements, their heat transfer surface areas, mass flow rates of hot and cold streams, heat transfer coefficients and variations of fouling with time are required input data. The main goal is to find the variations of the outlet temperatures of the hot and cold streams with time to plan the optimum cleaning schedule of heat exchangers that provides the minimum operational cost or maximum amount of savings. In this paper, the simulation of heat exchanger networks is performed by choosing an asymptotic fouling function. Two main parameters in the asymptotic fouling formation model, i.e. the decay time of fouling formation (τ) and the asymptotic fouling resistance (R f ∼ ) were obtained from empirical data as input parameters to the simulation relations. These data were extracted from the technical history sheets of the Khorasan Petrochemical Plant to guaranty the consistency between our model outputs and the real operating conditions. The output results of the software program developed, including the variations with time of the outlet temperatures of the hot and cold streams, the heat transfer coefficient and the heat transfer rate in the exchangers, are presented for two case studies. Then, an objective function (operational cost) was defined, and the optimal cleaning schedule of the HEN (heat exchanger network) in the Urea and Ammonia units were found by minimizing the objective function using a numerical search method. Based on this minimization procedure, the decision was made whether a heat exchanger should be cleaned or continue to operate. The final result was the most cost effective plan for the HEN cleaning schedule. The corresponding savings by

  8. Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, Sepehr [Energy Systems Improvement Laboratory, Mechanical Engineering Department, Iran University of Science and Technology (IUST), Narmak, Tehran 16488 (Iran, Islamic Republic of)]. E-mail: sepehr@iust.ac.ir; Niroomand, Behzad [Energy Systems Improvement Laboratory, Mechanical Engineering Department, Iran University of Science and Technology (IUST), Narmak, Tehran 16488 (Iran, Islamic Republic of)

    2007-05-15

    Modeling and simulation of heat exchanger networks for estimating the amount of fouling, variations in overall heat transfer coefficient, and variations in outlet temperatures of hot and cold streams has a significant effect on production analysis. In this analysis, parameters such as the exchangers' types and arrangements, their heat transfer surface areas, mass flow rates of hot and cold streams, heat transfer coefficients and variations of fouling with time are required input data. The main goal is to find the variations of the outlet temperatures of the hot and cold streams with time to plan the optimum cleaning schedule of heat exchangers that provides the minimum operational cost or maximum amount of savings. In this paper, the simulation of heat exchanger networks is performed by choosing an asymptotic fouling function. Two main parameters in the asymptotic fouling formation model, i.e. the decay time of fouling formation ({tau}) and the asymptotic fouling resistance (R{sub f}{sup {approx}}) were obtained from empirical data as input parameters to the simulation relations. These data were extracted from the technical history sheets of the Khorasan Petrochemical Plant to guaranty the consistency between our model outputs and the real operating conditions. The output results of the software program developed, including the variations with time of the outlet temperatures of the hot and cold streams, the heat transfer coefficient and the heat transfer rate in the exchangers, are presented for two case studies. Then, an objective function (operational cost) was defined, and the optimal cleaning schedule of the HEN (heat exchanger network) in the Urea and Ammonia units were found by minimizing the objective function using a numerical search method. Based on this minimization procedure, the decision was made whether a heat exchanger should be cleaned or continue to operate. The final result was the most cost effective plan for the HEN cleaning schedule. The

  9. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  10. Estimating energy fluxes within the stream-aquifer interface of the Avenelles basin

    Science.gov (United States)

    Berrhouma, Asma; Rivière, Agnès; Goblet, Patrick; Cucchi, Karina; Rubin, Yoram; Baudin, Aurélien; Ansart, Patrick; Flipo, Nicolas

    2017-04-01

    The understanding of water temperature evolution and its associated energy fluxes is important to follow the aquatic habitats evolution and to predict future modifications induced by climate change. The spatio-temporal energy balance dynamics within the stream-aquifer interface is complex because of the multitude of physical, morphological and meteorological parameters on which it depends. This critical interface is involving numerous physical and bio-geochemical processes which are taking place at different time and spatial scales. The energy balance estimation at this interface depends mainly on the direction, magnitude and variability of water exchanges and the temporal variation of river and aquifer temperatures as well as the thermal porous media properties. In this work, a combined numerical and experimental approach is used to study the temporal and spatial evolution of the energy budget along 6 km of the stream network of the Avenelles watershed. With an area of 46 km2, the Avenelles watershed is located 70 km east from Paris. The Avenelles river presents different types of connectivity with the underlying aquifers. Five Local Monitoring Stations (LOMOS) have been deployed along the hydraulic corridor to monitor the water and thermal exchanges between the stream and aquifer over years, based on continuous pressure and temperature measurements in the river, the hyporheic zone (HZ) and the underlying aquifer. A 2D finite element thermo-hydrogeological model (METIS) coupled with a parameters screening script is used to determine the hydrogeological and thermal properties of the HZ and of the underlying aquifers by inversion at five LOMOS. Once the local models are calibrated, water and heat fluxes through the stream - aquifer interface are assessed over years (2012-2015) along the stream network. This work offers a new understanding of the stream-aquifer interface functioning, shifting from a pure hydrological characterizing toward a more subtle view that

  11. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J. R.; Wang, D. [Gas Technology Institute; Bischoff, B.; Ciora, [Media and Process Technology; Radhakrishnan, B.; Gorti, S. B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina

  12. Microbial incorporation of nitrogen in stream detritus

    Science.gov (United States)

    Diane M. Sanzone; Jennifer L. Tank; Judy L. Meyer; Patrick J. Mulholland; Stuart E.G. Findlay

    2001-01-01

    We adapted the chloroform fumigation method to determine microbial nitrogen (N) and microbial incorporation of 15N on three common substrates [leaves, wood and fine benthic organic matter (FBOM)] in three forest streams. We compared microbial N and 15 content of samples collected during a 6-week15N-NH...

  13. Consumer-resource stoichiometry in detritus-based streams

    Science.gov (United States)

    Wyatt F. Cross; Jonathan P. Benstead; Amy D. Rosemond; J. Bruce Wallace

    2003-01-01

    Stoichiometric relationships between consumers and resources in detritus-based ecosystems have received little attention, despite the importance of detritus in most food webs. We analysed carbon (C), nitrogen (N), and phosphorus (P) content of invertebrate consumers, and basal food resources in two forested headwater streams (one reference and the other nutrient-...

  14. Rivers and streams in the media: a content analysis of ecosystem services

    Directory of Open Access Journals (Sweden)

    Matthew A. Weber

    2017-09-01

    Full Text Available Although ecosystem services research has become common, few efforts are directed toward in-depth understanding of the specific ecological quantities people value. The theoretical framework of final ecosystem services focuses attention on such measurable attributes, as a common currency for social-ecological systems research. Environmental communications as well as ecological monitoring and analysis efforts could be enhanced through increased documentation of final ecosystem services. For example, small changes in the way ecosystems are described could strongly influence relevance to the public and improve the foundation for environmental decision making. Focusing on rivers and streams, we conducted a content analysis of existing publications to document the breadth and frequency with which various measurable attributes, such as flooding, water quality characteristics, and wildlife appeared in different news sources over a multiyear timeline. In addition to attributes, motivations for human interest in river-related resources were also coded, such as recreation or preservation for future generations. To allow testing of differences between materials written for different audiences, three sources were sampled: a blog hosted by National Geographic, New York Times articles, and Wall Street Journal articles. The coding approach was rigorously tested in a pilot phase, with measures developed to ensure high data quality, including use of two independent coders. Results show numerous similarities across sources with some notable differences in emphasis. Significant relationships between groups of attribute and motivation codes were also found, one outcome of which is further support for the importance of nonuse values for fish and wildlife. Besides offering insight on ecosystem services, the project demonstrates an in-depth quantitative approach to analyzing preexisting qualitative data.

  15. Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization.

    Science.gov (United States)

    Woodhouse, Francis G; Goldstein, Raymond E

    2013-08-27

    Many cells exhibit large-scale active circulation of their entire fluid contents, a process termed cytoplasmic streaming. This phenomenon is particularly prevalent in plant cells, often presenting strikingly regimented flow patterns. The driving mechanism in such cells is known: myosin-coated organelles entrain cytoplasm as they process along actin filament bundles fixed at the periphery. Still unknown, however, is the developmental process that constructs the well-ordered actin configurations required for coherent cell-scale flow. Previous experimental works on streaming regeneration in cells of Characean algae, whose longitudinal flow is perhaps the most regimented of all, hint at an autonomous process of microfilament self-organization driving the formation of streaming patterns during morphogenesis. Working from first principles, we propose a robust model of streaming emergence that combines motor dynamics with both microscopic and macroscopic hydrodynamics to explain how several independent processes, each ineffectual on its own, can reinforce to ultimately develop the patterns of streaming observed in the Characeae and other streaming species.

  16. Correlates of elemental-isotopic composition of stream fishes: the importance of land-use, species identity and body size.

    Science.gov (United States)

    Montaña, C G; Schalk, C M

    2018-04-01

    The isotopic (δ 13 C and δ 15 N) and stoichiometric (C:N:P) compositions of four fish species (Family Centrarchidae: Lepomis auritus, Lepomis cyanellus; Family Cyprinidae: Nocomis leptocephalus, Semotilus atromaculatus) were examined across four North Carolina Piedmont streams arrayed along an urbanization gradient. Both isotopic and stoichiometric composition of fishes appeared to track changes occurring in basal resource availability. Values of δ 13 C of basal resources and consumers were more enriched at the most urbanized streams. Similarly, basal resources and consumers were δ 15 N-enriched at more urbanized streams. Basal resource stoichiometry varied across streams, with periphyton being the most variable. Primary consumers stoichiometry also differed across streams. Intraspecific variation in fish stoichiometry correlated with the degree of urbanization, as the two cyprinids had higher N content and L. cyanellus had higher P content in more urbanized streams, probably due to enrichment of basal resources. Intrinsic factors, specifically species identity and body size also affected stoichiometric variation. Phosphorus (P) content increased significantly with body size in centrarchids, but not in cyprinids. These results suggest that although species identity and body size are important predictors of elemental stoichiometry, the complex nature of altered urban streams may yield imbalances in the elemental composition of consumers via their food resources. © 2018 The Fisheries Society of the British Isles.

  17. Measurements and Predictions of the Noise from Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.

    2015-01-01

    An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary-to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with

  18. Standard Test Method for Calculation of Stagnation Enthalpy from Heat Transfer Theory and Experimental Measurements of Stagnation-Point Heat Transfer and Pressure

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the calculation from heat transfer theory of the stagnation enthalpy from experimental measurements of the stagnation-point heat transfer and stagnation pressure. 1.2 Advantages 1.2.1 A value of stagnation enthalpy can be obtained at the location in the stream where the model is tested. This value gives a consistent set of data, along with heat transfer and stagnation pressure, for ablation computations. 1.2.2 This computation of stagnation enthalpy does not require the measurement of any arc heater parameters. 1.3 Limitations and ConsiderationsThere are many factors that may contribute to an error using this type of approach to calculate stagnation enthalpy, including: 1.3.1 TurbulenceThe turbulence generated by adding energy to the stream may cause deviation from the laminar equilibrium heat transfer theory. 1.3.2 Equilibrium, Nonequilibrium, or Frozen State of GasThe reaction rates and expansions may be such that the gas is far from thermodynamic equilibrium. 1.3.3 Noncat...

  19. Microstructural Characterization and Mechanical Properties Analysis of Weld Metals with Two Ni Contents During Post-Weld Heat Treatments

    Science.gov (United States)

    Wu, Da-yong; Han, Xiu-lin; Tian, Hong-tao; Liao, Bo; Xiao, Fu-ren

    2015-05-01

    This study designed post-weld heat treatments, including reheating and tempering, associated with hot bending to investigate the microstructures, toughness, and hardness of two weld metals with different Ni contents (transformation temperature and increased the proportion of acicular ferrite (AF). Furthermore, a high Ni content promoted the martensite/austenite (M/A) constituent formation after reheating. The promotion of the M/A formation increased the number of cementite particles, and accelerated cementite coarsening during tempering. The large-angle grain boundary density from the AF improved the toughness despite the negative effect of cementite. The strengthening contributions were calculated, and the grain refinement was the greatest. The high Ni content decreased the effective grain size with a 2 deg tolerance angle, thus enhancing the grain refinement contribution.

  20. Modelling of Split Condenser Heat Pump with Limited Set of Plate Heat Exchanger Dimensions

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2017-01-01

    in parallel to different temperature levels, whereas only one stream is heated in a THP. The length/width ratio of the plate heat exchangers on the high pressure side of a SCHP was investigated to find the optimal plate dimensions with respect to minimum area of the heat exchangers. The total heat exchanger...... area was found to decrease with an increasing length/width ratio of the plates. The marginal change in heat exchanger area was shown to be less significant for heat exchangers with high length/width ratios. In practice only a limited number of plate dimensions are available and feasible...... in the production. This was investigated to find the practical potential of a SCHP compared to a THP. Using plates optimized for a SCHP in a THP, the total required heat exchanger area increased by approximately 100% for the conditions investigated in this study, indicating that available plate dimensions influence...

  1. Heat transfer by liquids in suspension in a turbulent gas stream (1960); Transfert de chaleur par liquides entraines dans un ecoulement gazeux turbulent (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Grison, E [Commissariat a l' Energie Atomique, Lab. de Physique-Chimie et basses temperatures, Grenoble (France).Centre d' Etudes Nucleaires; Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The introduction of a small volume of liquid into a turbulent gas stream used as cooling agent improves considerably the heat transfer coefficient of the gas. When the turbulent regime is established, one observes in a cylindrical tube two types of flow whether the liquid wets or does not wet the wall. In the first case, one gets on the wall an annular liquid film and droplets in suspension are in the gas stream. In the second case, a fog of droplets is formed without any liquid film on the wall. Experiments were performed with the following mixtures: water-hydrogen, water-nitrogen, ethanol-nitrogen (wetting liquids) introduced into a stainless steel tube of 4 mm ID, electrically heated on 320 mm of length. We varied the gas flow rate (Reynolds until 50000), the rate of the liquid flow rate to gas flow rate (until 15), the pressure (until 10 kg/cm{sup 2}), the temperature (until the boiling point) and the heat flux (until 250 W/cm{sup 2}). Two types of burnout were observed. A formula of correlation of the burnout heat flux is given. Making use of the analogy between mass transfer and heat transfer, a dimensionless formula of correlation of the local heat transfer coefficients is established. (author) [French] L'introduction d'un faible volume de liquide dans un ecoulement gazeux turbulent utilise comme fluide refrigerant permet une amelioration considerable des coefficients d'echanges thermiques que l'on aurait si le gaz etait employe seul (nous avons obtenu un facteur d'amelioration superieur a 10). En regime turbulent etabli, on observe dans un tube deux modes d'ecoulements selon que le liquide mouille ou ne mouille pas la paroi. Dans le premier cas, on obtient sur la paroi un film annulaire liquide et des gouttelettes en suspension dans le coeur gazeux. Dans le deuxieme cas, il se forme un veritable brouillard sans film liquide sur la paroi. Les etudes experimentales ont ete effectuees avec les melanges eau-hydrogene, eau-azote, ethanol-azote (liquides

  2. Convective heat transfer from rotating disks subjected to streams of air

    CERN Document Server

    aus der Wiesche, Stefan

    2016-01-01

    This Brief describes systematically results of research studies on a series of convective heat transfer phenomena from rotating disks in air crossflow. Phenomena described in this volume were investigated experimentally using an electrically heated disk placed in the test section of a wind tunnel. The authors describe findings in which transitions between different heat transfer regimes can occur in dependency on the involved Reynolds numbers and the angle of incidence, and that these transitions could be related to phenomenological Landau and Landau-de Gennes models. The concise volume closes a substantial gap in the scientific literature with respect to flow and heat transfer in rotating disk systems and provides a comprehensive presentation of new and recent results not previously published in book form.

  3. Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spores with increased core water content and with or without major DNA-binding proteins

    International Nuclear Information System (INIS)

    Popham, D.L.; Sengupta, S.; Setlow, P.

    1995-01-01

    Spores of a Bacillus subtilis strain with an insertion mutation in the dacB gene, which codes for an enzyme involved in spore cortex biosynthesis, have a higher core water content than wild-type spores. Spores lacking the two major α/β-type small, acid-soluble proteins (SASP) (termed a α - β - spores) have the same core water content as do wild-type spores, but α - β - dacB spores had more core water than did dacB spores. The resistance of α - β - , α - β - dacB, dacB, and wild-type spores to dry and moist heat, hydrogen peroxide, and UV radiation has been determined, as has the role of DNA damage in spore killing by moist heat and hydrogen peroxide. These data (1) suggest that core water content has little if any role in spore UV resistance and are consistent with binding of α/β-type SASP to DNA being the major mechanism providing protection to spores from UV radiation; (2) suggest that binding of αβ-type SASP to DNA is the major mechanism unique to spores providing protection from dry heat; (3) suggest that spore resistance to moist heat and hydrogen peroxide is affected to a large degree by the core water content, as increased core water resulted in large decreases in spore resistance to these agents; and (4) indicate that since this decreased resistance (i.e., in dacB spores) is not associated with increased spore killing by DNA damage, spore DNA must normally be extremely well protected against such damage, presumably by the saturation of spore DNA by α/β-type SASP. 19 refs., 2 figs., 5 tabs

  4. A Survey on Content Adaptation Systems towards Energy Consumption Awareness

    Directory of Open Access Journals (Sweden)

    Mohd Norasri Ismail

    2013-01-01

    Full Text Available The availability of heterogeneous devices has rapidly changed the way people access the World Wide Web that includes rich content applications such as video streaming, 3D games, video conferencing, and mobile TV. However, most of these devices' (i.e., mobile phone, PDA, smartphone, and tablet capabilities differ in terms of built-in software and library (what they can display, display size (how the content appears, and battery supply (how long the content can be displayed. In order for the digital contents to fit the target device, content adaptation is required. There have been many projects focused on energy-aware-based content adaptation that have been designed with different goals and approaches. This paper reviews some of the representative content adaptation solutions that have been proposed during the last few years, in relation to energy consumption focusing on wireless multimedia streaming in mobile devices. Also, this paper categorizes the research work according to different classifications of multimedia content adaptation requirements. In addition, we discuss some energy-related challenges content adaptation systems.

  5. Experimental and numerical analysis of heat transfer phenomena in a sensor tube of a mass flow controller

    International Nuclear Information System (INIS)

    Jang, Seok Pil; Kim, Sung Jin; Choi, Do Hyung

    2000-01-01

    As a mass flow controller is widely used in many manufacturing processes for controlling a mass flow rate of gas with accuracy of 1%, several investigators have tried to describe the heat transfer phenomena in a sensor tube of an MFC. They suggested a few analytic solutions and numerical models based on simple assumptions, which are physically unrealistic. In the present work, the heat transfer phenomena in the sensor tube of the MFC are studied by using both experimental and numerical methods. The numerical model is introduced to estimate the temperature profile in the sensor tube as well as in the gas stream. In the numerical model, the conjugate heat transfer problem comprising the tube wall and the gas stream is analyzed to fully understand the heat transfer interaction between the sensor tube and the fluid stream using a single domain approach. This numerical model is further verified by experimental investigation. In order to describe the transport of heat energy in both the flow region and the sensor tube, the Nusselt number at the interface between the tube wall and the gas stream as well as heatlines is presented from the numerical solution

  6. Heat transfer to accelerating gas flows

    International Nuclear Information System (INIS)

    Kennedy, T.D.A.

    1978-01-01

    The development of fuels for gas-cooled reactors has resulted in a number of 'gas loop' experiments in materials-testing research reactors. In these experiments, efforts are made to reproduce the conditions expected in gas-cooled power reactors. Constant surface temperatures are sought over a short (300 mm) fuelled length, and because of entrance effects, an accelerating flow is required to increase the heat transfer down-stream from the entrance. Strong acceleration of a gas stream will laminarise the flow even at Reynolds Numbers up to 50000, far above values normally associated with laminar flow. A method of predicting heat transfer in this situation is presented here. An integral method is used to find the velocity profile; this profile is then used in an explicit finite-difference solution of the energy equation to give a temperature profile and resultant heat-transfer coefficient values. The Kline criterion, which compares viscous and disruptive forces, is used to predict whether the flow will be laminar. Experimental results are compared with predictions, and good agreement is found to exist. (author)

  7. Recovery Temperature, Transition, and Heat Transfer Measurements at Mach 5

    Science.gov (United States)

    Brinich, Paul F.

    1961-01-01

    Schlieren, recovery temperature, and heat-transfer measurements were made on a hollow cylinder and a cone with axes alined parallel to the stream. Both the cone and cylinder were equipped with various bluntnesses, and the tests covered a Reynolds number range up to 20 x 10(exp 6) at a free-stream Mach number of 4.95 and wall to free-stream temperature ratios from 1.8 to 5.2 (adiabatic). A substantial transition delay due to bluntness was found for both the cylinder and the cone. For the present tests (Mach 4.95), transition was delayed by a factor of 3 on the cylinder and about 2 on the cone, these delays being somewhat larger than those observed in earlier tests at Mach 3.1. Heat-transfer tests on the cylinder showed only slight effects of wall temperature level on transition location; this is to be contrasted to the large transition delays observed on conical-type bodies at low surface temperatures at Mach 3.1. The schlieren and the peak-recovery-temperature methods of detecting transition were compared with the heat-transfer results. The comparison showed that the first two methods identified a transition point which occurred just beyond the end of the laminar run as seen in the heat-transfer data.

  8. Olive Oil Total Phenolic Contents and Sensory Sensations Trends during Oven and Microwave Heating Processes and Their Discrimination Using an Electronic Tongue

    Directory of Open Access Journals (Sweden)

    Rafaela Prata

    2018-01-01

    Full Text Available Olive oil has unique organoleptic attributes and its consumption is associated with nutritional and health benefits, which are mainly related to its rich composition in phenolic and volatile compounds. The use of olive oil in heat-induced cooking leads to deep reduction of phenolic and volatile concentrations and to changes of the sensory profiles. This work confirmed that oven and microwave heating significantly reduced total phenolic contents (P value < 0.0001, one-way ANOVA, more pronounced in the latter, together with a significant reduction of the intensity of fruity, sweet, bitter, pungent, and green attributes (P value < 0.0001, Kruskal-Wallis test, particularly for fruity and green sensations. Besides, bitter, fruity, green, and pungent intensities showed a linear dependency with the total phenolic contents (0.8075≤R-Pearson ≤ 0.9694. Finally, the potentiometric electronic tongue together with linear discriminant analysis-simulated annealing algorithm allowed satisfactory discrimination (sensitivities of 94±4%, for repeated K-fold cross-validation of olive oils subjected to intense microwave heating (5–10 min, 160–205°C from those processed under usual cooking conditions (oven heating during 15–60 min or microwave heating during 1.5–3 min, 72–165°C. This could be due to the different responses of the electronic tongue towards olive oils with diverse phenolic and sensory profiles.

  9. Natural and Artificial Methods for Regeneration of Heat Resources for Borehole Heat Exchangers to Enhance the Sustainability of Underground Thermal Storages: A Review

    Directory of Open Access Journals (Sweden)

    Tomasz Sliwa

    2015-09-01

    Full Text Available The concept of borehole heat exchanger (BHE field exploitation is described, along with problems regarding the sustainability of heat resources in rock masses. A BHE field sometimes has problems with the stability of the heat carrier temperature during long-term exploitation. The main reason for this is an insufficient heat stream with which to transfer heat by conduction in rock. Possibilities for the regeneration of heat in rock masses, based on experiences at the Geoenergetics Laboratory (Drilling, Oil and Gas Faculty, AGH University of Science and Technology, are described.

  10. Face customization in a real-time digiTV stream

    Science.gov (United States)

    Lugmayr, Artur R.; Creutzburg, Reiner; Kalli, Seppo; Tsoumanis, Andreas

    2002-03-01

    The challenge in digital, interactive TV (digiTV) is to move the consumer from the refiguration state to the configuration state, where he can influence the story flow, the choice of characters and other narrative elements. Besides restructuring narrative and interactivity methodologies, one major task is content manipulation to provide the auditorium the ability to predefine actors that it wants to have in its virtual story universe. Current solutions in broadcasting video provide content as monolithic structure, composed of graphics, narration, special effects, etc. compressed into one high bit rate MPEG-2 stream. More personalized and interactive TV requires a contemporary approach to segment video data in real-time to customize contents. Our research work emphasizes techniques for interchanging faces/bodies against virtual anchors in real-time constrained broadcasted video streams. The aim of our research paper is to show and point out solutions for realizing real-time face and avatar customization. The major task for the broadcaster is metadata extraction by applying face detection/tracking/recognition algorithms, and transmission of the information to the client side. At the client side, our system shall provide the facility to pre-select virtual avatars stored in a local database, and synchronize movements and expressions with the current digiTV contents.

  11. Gas stream cleaning system and method

    Science.gov (United States)

    Kunchal, S. Kumar; Erck, Louis J.; Harris, Harry A.

    1979-04-13

    An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.

  12. Mining Frequent Item Sets in Asynchronous Transactional Data Streams over Time Sensitive Sliding Windows Model

    International Nuclear Information System (INIS)

    Javaid, Q.; Memon, F.; Talpur, S.; Arif, M.; Awan, M.D.

    2016-01-01

    EPs (Extracting Frequent Patterns) from the continuous transactional data streams is a challenging and critical task in some of the applications, such as web mining, data analysis and retail market, prediction and network monitoring, or analysis of stock market exchange data. Many algorithms have been developed previously for mining FPs (Frequent Patterns) from a data stream. Such algorithms are currently highly required to develop new solutions and approaches to the precise handling of data streams. New techniques, solutions, or approaches are developed to address unbounded, ordered, and continuous sequences of data and for the generation of data at a rapid speed from data streams. Hence, extracting FPs using fresh or recent data involves the high-level analysis of data streams. We have suggested an efficient technique for the window sliding model; this technique extracts new and fresh FPs from high-speed data streams. In this study, a CPILT (Compacted Tree Compact Pattern Tree) is developed to capture the latest contents in the stream and to efficiently remove outdated contents from the data stream. The main concept introduced in this work on CPILT is the dynamic restructuring of a tree, which is helpful in producing a compacted tree and the frequency descending structure of a tree on runtime. With the help of the mining technique of FP growth, a complete list of new and fresh FPs is obtained from a CPILT using an existing window. The memory usage and time complexity of the latest FPs in high-speed data streams can efficiently be determined through proper experimentation and analysis. (author)

  13. Content-based intermedia synchronization

    Science.gov (United States)

    Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat

    1995-03-01

    Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.

  14. Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water

    Science.gov (United States)

    Tsai, Chung-Yi; Alexander, Jerry

    2009-01-01

    A nanoporous membrane is used for the pervaporation process in which potable water is maintained, at atmospheric pressure, on the feed side of the membrane. The water enters the non-pervaporation (NPV) membrane device where it is separated into two streams -- retentate water and permeated water. The permeated pure water is removed by applying low vapor pressure on the permeate side to create water vapor before condensation. This permeated water vapor is subsequently condensed by coming in contact with the cool surface of a heat exchanger with heat being recovered through transfer to the feed water stream.

  15. innovation in radioactive waste water-stream management

    International Nuclear Information System (INIS)

    Shaaban, D.A.E.F.

    2010-01-01

    treatment of radioactive waste dtreams is receiving considereble attention in most countries. the present work is for the radioactive wastewater stream management, by volume reduction by a mutual heating and humidificaction of a compressed dry air introduced through the wastewater. in the present work, a mathematical model describing the volume reduction by at the optimum operating condition is determined. a set of coupled first order differential equations, obtained through the mass and energy conservations laws, are used to obtain the humidity ratio, water diffused to the air stream, water temperature, and humid air stream temperature distributions through the bubbling column. these coupled differential equations are simulataneously solved numerically by the developed computer program using fourth order rung-kutta method. the results obtained, according to the present mathematical model, revealed that the air bubble state variables such as mass transfer coefficient (K G ) and interfacial area (a) have a strong effect on the process. therefore, the behavior of the air bubble state variables with coulmn height can be predicted and optimized. moreover, the design curves of the volumetric reduction of the wastewater streams are obtained and assessed at the different operating conditions. an experimental setup was constructed to verify the suggested model. comperhensive comparison between suggested model results, recent experimental measurements and the results of previous work was carried out

  16. Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses

    Science.gov (United States)

    Wang, Gongjie; Cheng, Lijing; Abraham, John; Li, Chongyin

    2018-04-01

    Inconsistent global/basin ocean heat content (OHC) changes were found in different ocean subsurface temperature analyses, especially in recent studies related to the slowdown in global surface temperature rise. This finding challenges the reliability of the ocean subsurface temperature analyses and motivates a more comprehensive inter-comparison between the analyses. Here we compare the OHC changes in three ocean analyses (Ishii, EN4 and IAP) to investigate the uncertainty in OHC in four major ocean basins from decadal to multi-decadal scales. First, all products show an increase of OHC since 1970 in each ocean basin revealing a robust warming, although the warming rates are not identical. The geographical patterns, the key modes and the vertical structure of OHC changes are consistent among the three datasets, implying that the main OHC variabilities can be robustly represented. However, large discrepancies are found in the percentage of basinal ocean heating related to the global ocean, with the largest differences in the Pacific and Southern Ocean. Meanwhile, we find a large discrepancy of ocean heat storage in different layers, especially within 300-700 m in the Pacific and Southern Oceans. Furthermore, the near surface analysis of Ishii and IAP are consistent with sea surface temperature (SST) products, but EN4 is found to underestimate the long-term trend. Compared with ocean heat storage derived from the atmospheric budget equation, all products show consistent seasonal cycles of OHC in the upper 1500 m especially during 2008 to 2012. Overall, our analyses further the understanding of the observed OHC variations, and we recommend a careful quantification of errors in the ocean analyses.

  17. Cascade heat recovery with coproduct gas production

    Science.gov (United States)

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  18. The effectiveness of streaming video on medical student learning: a case study.

    Science.gov (United States)

    Bridge, Patrick D; Jackson, Matt; Robinson, Leah

    2009-08-19

    Information technology helps meet today's medical students' needs by providing multiple curriculum delivery methods. Video streaming is an e-learning technology that uses the Internet to deliver curriculum while giving the student control of the content's delivery. There have been few studies conducted on the effectiveness of streaming video in medical schools. A 5-year retrospective study was conducted using three groups of students (n = 1736) to determine if the availability of streaming video in Years 1-2 of the basic science curriculum affected overall Step 1 scores for first-time test-takers. The results demonstrated a positive effect on program outcomes as streaming video became more readily available to students. Based on these findings, streaming video technology seems to be a viable tool to complement in-class delivery methods, to accommodate the needs of medical students, and to provide options for meeting the challenges of delivering the undergraduate medical curriculum. Further studies need to be conducted to continue validating the effectiveness of streaming video technology.

  19. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  20. Biochemical effects of heat shock and caffeine on post-irradiation oxic and anoxic damage in barley seeds of low and high water content

    International Nuclear Information System (INIS)

    Singh, S.P.; Kesavan, P.C.

    1991-01-01

    Wet heat shock (60 o C, 90s) and caffeine (3.8 x 10 -4 M) afford significant radioprotection against post-irradiation O 2 -dependent damage which develops in seeds of ∼ 3.5% moisture content. The damage was assessed in terms of seedling injury on the eighth day of growth. An increase in seedling injury is clearly seen, associated with a parallel increase in the peroxidase activity. There is a concomitant decrease in the content of total peroxides. Both these post-irradiation treatments potentiate the O 2 -independent component of seedling injury, irrespective of the seed moisture content. Analysis of the peroxidase activity in the seedlings using non-denaturing polyacrylamide gel electrophoresis reveals that two additional bands appear with the post-irradiation oxic damage. Radioprotection against this damage by caffeine, heat shock and O 2 -free post-irradiation hydration is accompanied by the disappearance of these two additional bands. (author)

  1. Direct heat transfer considerations for improving energy efficiency in pulp and paper Kraft mills

    International Nuclear Information System (INIS)

    Savulescu, Luciana Elena; Alva-Argaez, Alberto

    2008-01-01

    The success of any process improvement study depends on the quality of the available data and the way in which the plant-specific characteristics are incorporated in the applied conceptual models; in the context of process integration studies these issues are directly related to the rules followed during the data extraction stage. Improving energy efficiency in a pulp and paper Kraft mill requires the identification of the most promising heat recovery network retrofit projects. In a retrofit analysis using pinch technology/process integration methods, only the process streams associated to the existing heat exchangers and some outlet streams (such as wastewater/effluent streams and vents) with high potential for heat recovery are usually included, while the energy exchanged through non-isothermal stream mixing (NIM) or direct heat transfer (DHT) is often assumed fixed and is not considered in the analysis. Relaxing this assumption requires extracting more data to represent the DHT design configuration that exists in the plant. However, different data extraction options can be considered to represent the DHT configuration depending on the associated process/operation constraints. This work describes a systematic procedure to extract and analyse the impacts of DHT on the overall energy efficiency of a Kraft process with a specific focus on mixing along the pulp line and in water tanks

  2. A Distributed Flocking Approach for Information Stream Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Intelligence analysts are currently overwhelmed with the amount of information streams generated everyday. There is a lack of comprehensive tool that can real-time analyze the information streams. Document clustering analysis plays an important role in improving the accuracy of information retrieval. However, most clustering technologies can only be applied for analyzing the static document collection because they normally require a large amount of computation resource and long time to get accurate result. It is very difficult to cluster a dynamic changed text information streams on an individual computer. Our early research has resulted in a dynamic reactive flock clustering algorithm which can continually refine the clustering result and quickly react to the change of document contents. This character makes the algorithm suitable for cluster analyzing dynamic changed document information, such as text information stream. Because of the decentralized character of this algorithm, a distributed approach is a very natural way to increase the clustering speed of the algorithm. In this paper, we present a distributed multi-agent flocking approach for the text information stream clustering and discuss the decentralized architectures and communication schemes for load balance and status information synchronization in this approach.

  3. Tracking Gendered Streams

    Directory of Open Access Journals (Sweden)

    Maria Eriksson

    2017-10-01

    Full Text Available One of the most prominent features of digital music services is the provision of personalized music recommendations that come about through the profiling of users and audiences. Based on a range of "bot experiments," this article investigates if, and how, gendered patterns in music recommendations are provided by the streaming service Spotify. While our experiments did not give any strong indications that Spotify assigns different taste profiles to male and female users, the study showed that male artists were highly overrepresented in Spotify's music recommendations; an issue which we argue prompts users to cite hegemonic masculine norms within the music industries. Although the results should be approached as historically and contextually contingent, we argue that they point to how gender and gendered tastes may be constituted through the interplay between users and algorithmic knowledge-making processes, and how digital content delivery may maintain and challenge gender relations and gendered power differentials within the music industries. Seen through the lens of critical research on software, music and gender performativity, the experiments thus provide insights into how gender is shaped and attributed meaning as it materializes in contemporary music streams.

  4. Gravel bar thermal variability and its potential consequences for CO2 evasion from Alpine coldwater streams

    Science.gov (United States)

    Boodoo, Kyle; Battin, Tom; Schelker, Jakob

    2017-04-01

    Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. We extended our study to 13 other gravel bars of varying physical characteristics within the surrounding Ybbs and Erlauf catchments, conducting diurnal spot samplings in summer 2016. Temperatures within the observed permanently wetted hyporheic zone (-56 to -100cm depth below GB surface) of the OSB, were warmer than both end members, surface water and groundwater >18% of the year, particularly during summer. There was a general increase in exceedance within the periodically wetted gravel bar sediment toward the gravel bar surface, further evidencing downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB seasonal temperatures were associated with increased CO2 evasion fluxes within the OSB, particularly during summer. This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn, while downward heat transfer in summer may enhance GB metabolism and therefore

  5. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    Science.gov (United States)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  6. Restoration of a forested wetland ecosystem in a thermally impacted stream corridor

    International Nuclear Information System (INIS)

    Nelson, E.A.; McKee, W.H. Jr.; Dulohery, C.J.

    1995-01-01

    The Savannah River Swamp is a 3,020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy's Savannah River Site (SRS). Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950's. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 50 C. The nearly continuous flood of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. Research has been ongoing to determine methods to reintroduce tree species characteristic of more mature forested wetlands. The goal of the restoration is to create structural and biological diversity in the forest canopy by establishing a mix of species typically present in riparian and wetland forests of the area

  7. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    Science.gov (United States)

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  8. Vibro-fluidized bed heat pump drying of mint leaves with respect to phenolic content, antioxidant activity, and color indices

    Directory of Open Access Journals (Sweden)

    Ataei Ardestani Seyed Majid

    2015-01-01

    Full Text Available Because of high porosity and stickiness of mint leaves, they could not be fluidized well during fluidization. In this study, a vibro-fluidized bed dryer assisted heat pump system was designed and fabricated to overcome this problem. The drying experiments were carried out at temperatures of 40, 50 and 60 °C. The quality of the dehydrated samples was assessed based on color indices, antioxidant activity, and total phenolic content. Drying process primarily occurred in falling rate period. The effective coefficient of moisture transfer of the samples was increased with air temperature and varied from 4.26656×10-11 to 2.95872×10-10 m2 s-1 for heat pump drying (HPD method, and 3.71918×10-11 to 1.29196×10-10 m2 s-1 for none-heat pump drying (NHPD method. The color indices for temperatures of 40 and 50 °C were very close to each other, whereas by increasing temperature to 60 °C, a remarkable loss of green color was observed. The highest phenolic content was found in methanolic extract for HPD at 60 °C, and NHPD at 50 °C contained the lowest amount of phenolic compounds. NHPD treatments showed lower antioxidant activity compared to HPD treatments at the same temperature due to the longer drying times.

  9. Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant

    International Nuclear Information System (INIS)

    Raskovic, P.; Anastasovski, A.; Markovska, Lj.; Mesko, V.

    2010-01-01

    The process integration of the bioprocess plant for production of yeast and alcohol was studied. Preliminary energy audit of the plant identified the huge amount of thermal losses, caused by waste heat in exhausted process streams, and reviled the great potential for energy efficiency improvement by heat recovery system. Research roadmap, based on process integration approach, is divided on six phases, and the primary tool used for the design of heat recovery network was Pinch Analysis. Performance of preliminary design are obtained by targeting procedure, for three process stream sets, and evaluated by the economic criteria. The results of process integration study are presented in the form of heat exchanger networks which fulfilled the utilization of waste heat and enable considerable savings of energy in short payback period.

  10. Nontrivial influence of acoustic streaming on the efficiency of annular thermoacoustic prime movers

    International Nuclear Information System (INIS)

    Penelet, G.; Gusev, V.; Lotton, P.; Bruneau, M.

    2006-01-01

    The nonlinear processes controlling the time-dependent evolution of sound in annular thermoacoustic prime movers are studied. It is demonstrated that, under some heating conditions, the evolution of the temperature field induced by the excitation of acoustic streaming provides an additional amplification of sound which results in a complicated periodic onset and damping of thermoacoustic instability. The study of this particular example provides the opportunity to demonstrate that the excitation of acoustic streaming does not necessarily imply a decrease in the engine's efficiency

  11. Convection heat transfer of closely-spaced spheres with surface blowing

    Energy Technology Data Exchange (ETDEWEB)

    Kleinstreuer, C. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering); Chiang, H. (Thermofluid Technology Div., Industrial Technology Research Inst., Chutung (Taiwan, Province of China))

    1993-05-01

    A validated computer simulation model has been developed for the analysis of colinear spheres in a heated gas stream. Using the Galerkin finite element method, the steady-state Navier-Stokes and heat transfer equations have been solved describing laminar axisymmetric thermal flow past closely-spaced monodisperse spheres with fluid injection. Of interest are the coupled nonlinear interaction effects on the temperature fields and ultimately on the Nusselt number of each sphere for different free stream Reynolds numbers (20 [<=] Re [<=] 200) and intersphere distances (1.5 [<=] d[sub ij] [<=] 6.0) in the presence of surface blowing (0 [<=] v[sub b] [<=] 0.1). Fluid injection (i.e. blowing) and associated wake effects generate lower average heat transfer coefficients for each interacting sphere when the Reynolds number increases (Re > 100). Heat transfer is also reduced at small spacings especially for the second and third sphere. A Nusselt number correlation for each interacting (porous) sphere has been developed based on computer experiments. (orig.)

  12. Streaming Pool: reuse, combine and create reactive streams with pleasure

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    When connecting together heterogeneous and complex systems, it is not easy to exchange data between components. Streams of data are successfully used in industry in order to overcome this problem, especially in the case of "live" data. Streams are a specialization of the Observer design pattern and they provide asynchronous and non-blocking data flow. The ongoing effort of the ReactiveX initiative is one example that demonstrates how demanding this technology is even for big companies. Bridging the discrepancies of different technologies with common interfaces is already done by the Reactive Streams initiative and, in the JVM world, via reactive-streams-jvm interfaces. Streaming Pool is a framework for providing and discovering reactive streams. Through the mechanism of dependency injection provided by the Spring Framework, Streaming Pool provides a so called Discovery Service. This object can discover and chain streams of data that are technologically agnostic, through the use of Stream IDs. The stream to ...

  13. No reduction using sublimination of cyanuric acid

    Science.gov (United States)

    Perry, Robert A.

    1996-01-01

    A method of reducing the NO content of a gas stream comprises contacting the gas stream with an amount of HNCO at a temperature effective for heat-induced decomposition of cyanuric acid, said amount and temperature being effective for the resultant lowering of the NO content of the gas stream, said cyanuric acid being particulate and having a particle size of less than 90 .mu.m.

  14. Comparison of total and cold-extractable uranium in stream sediments of the southwestern Karoo supergroup, South Africa

    International Nuclear Information System (INIS)

    Jakob, W.R.O.; Smit, M.C.B.; Murphy, G.C.

    1979-01-01

    In order to evaluate the usefullness of cold-extractable uranium as a tool of uranium prospecting in stream sediments of the southwestern Karoo, South Africa, ten orientation studies were conducted near known mineralisation jointly by the Atomic Energy Board and the Geological Survey of South Africa. These indicate that the topography determines the nature of the dispersion. In areas of moderate to high relief the total uranium content of the stream sediment gives dispersion trains up to about 500 m from the mineralisation, and peak-to-background ratios of about 3. The use of cold-extractable uranium doubles the length of the dispersion, and peak-to-background ratios are greater than 10 and may be as high as 35. In areas of low relief, the total uranium content of the sediment gives low anomalies, with short dispersion downstream. Cold-extractable uranium gives anomalies 500-1 000 m from the mineralisation. This is interpreted to be due to the longer residence time of the clay minerals in the stream. In order to test the applicability of cold-extractable uranium on a regional scale, 720 samples were collected at a density of one sample per square kilometre. Statistical treatment of the data shows the U content of the stream sediments, to be log-normally distributed. For cold-extractable uranium, polymodal distributions, apparently representing background and anomalous samples, can be separated with a high rate of success, and meaningful threshold values can be assigned. This is not the case for the total uranium content of the stream sediments [af

  15. Technical and Economic Working Domains of Industrial Heat Pumps: Part 1 - Vapour Compression Heat Pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix

    2014-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions is carried out considering...... the constraints of available refrigeration equipment and a requirement of a positive Net Present Value of the investment. The considered sink outlet temperature range is from 40 °C to 140 °C, but for the heat pumps considered in this paper, the upper limit is 100 °C. Five heat pumps are studied. For each set...... of heat sink and source temperatures the optimal solution is determined. At low sink temperature glide R717 heat pumps show best performance, while at higher sink glide transcritical R744 may become important. In a second paper, the results of the VCHP are compared to a similar study considering...

  16. Low grade waste heat recovery using heat pumps and power cycles

    International Nuclear Information System (INIS)

    Bor, D.M. van de; Infante Ferreira, C.A.; Kiss, Anton A.

    2015-01-01

    Thermal energy represents a large part of the global energy usage and about 43% of this energy is used for industrial applications. Large amounts are lost via exhaust gases, liquid streams and cooling water while the share of low temperature waste heat is the largest. Heat pumps upgrading waste heat to process heat and cooling and power cycles converting waste heat to electricity can make a strong impact in the related industries. The potential of several alternative technologies, either for the upgrading of low temperature waste heat such as compression-resorption, vapor compression and trans-critical heat pumps, or for the conversion of this waste heat by using organic Rankine, Kalina and trilateral cycle engines, are investigated with regards to energetic and economic performance by making use of thermodynamic models. This study focuses on temperature levels of 45–60 °C as at this temperature range large amounts of heat are rejected to the environment but also investigates the temperature levels for which power cycles become competitive. The heat pumps deliver 2.5–11 times more energy value than the power cycles in this low temperature range at equal waste heat input. Heat engines become competitive with heat pumps at waste heat temperatures at 100 °C and above. - Highlights: • Application of heat pump technology for heating and cooling. • Compression resorption heat pumps operating with large glides approaching 100 K. • Compression-resorption heat pumps with wet compression. • Potential to convert Industrial waste heat to power or high grade heat. • Comparison between low temperature power cycles and heat pumps

  17. Biochemical effects of heat shock and caffeine on post-irradiation oxic and anoxic damage in barley seeds of low and high water content

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Kesavan, P.C. (Jawaharlal Nehru Univ., New Delhi (India). School of Life Sciences)

    1991-05-01

    Wet heat shock (60{sup o}C, 90s) and caffeine (3.8 x 10{sup -4}M) afford significant radioprotection against post-irradiation O{sub 2}-dependent damage which develops in seeds of {similar to} 3.5% moisture content. The damage was assessed in terms of seedling injury on the eighth day of growth. An increase in seedling injury is clearly seen, associated with a parallel increase in the peroxidase activity. There is a concomitant decrease in the content of total peroxides. Both these post-irradiation treatments potentiate the O{sub 2}-independent component of seedling injury, irrespective of the seed moisture content. Analysis of the peroxidase activity in the seedlings using non-denaturing polyacrylamide gel electrophoresis reveals that two additional bands appear with the post-irradiation oxic damage. Radioprotection against this damage by caffeine, heat shock and O{sub 2}-free post-irradiation hydration is accompanied by the disappearance of these two additional bands. (author).

  18. Heat recovery networks synthesis of large-scale industrial sites: Heat load distribution problem with virtual process subsystems

    International Nuclear Information System (INIS)

    Pouransari, Nasibeh; Maréchal, Francois

    2015-01-01

    Highlights: • Synthesizing industrial size heat recovery network with match reduction approach. • Targeting TSI with minimum exchange between process subsystems. • Generating a feasible close-to-optimum network. • Reducing tremendously the HLD computational time and complexity. • Generating realistic network with respect to the plant layout. - Abstract: This paper presents a targeting strategy to design a heat recovery network for an industrial plant by dividing the system into subsystems while considering the heat transfer opportunities between them. The methodology is based on a sequential approach. The heat recovery opportunity between process units and the optimal flow rates of utilities are first identified using a Mixed Integer Linear Programming (MILP) model. The site is then divided into a number of subsystems where the overall interaction is resumed by a pair of virtual hot and cold stream per subsystem which is reconstructed by solving the heat cascade inside each subsystem. The Heat Load Distribution (HLD) problem is then solved between those packed subsystems in a sequential procedure where each time one of the subsystems is unpacked by switching from the virtual stream pair back into the original ones. The main advantages are to minimize the number of connections between process subsystems, to alleviate the computational complexity of the HLD problem and to generate a feasible network which is compatible with the minimum energy consumption objective. The application of the proposed methodology is illustrated through a number of case studies, discussed and compared with the relevant results from the literature

  19. Effects of oxygen content and heating rate on phase transition behavior in Bi2(V0.95Ti0.05)O5.475-x

    International Nuclear Information System (INIS)

    Taninouchi, Yu-ki; Uda, Tetsuya; Ichitsubo, Tetsu; Awakura, Yasuhiro; Matsubara, Eiichiro

    2011-01-01

    Highlights: → Phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and physical forms. → At the same heating rate of 10 K min -1 , Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. → α f directly transformed to β f at fast heating rates. At a slower heating rate of 2 K min -1 , β f precipitated from α f due to the sufficient diffusion of Ti and oxygen vacancies. - Abstract: The phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and sample forms, has been studied by means of differential scanning calorimetry. Thermogravimetric analysis revealed that the oxygen content per compositional formula varied with the applied thermal treatment, although no significant structural difference was observed by X-ray diffraction (XRD) analysis. The phase transition behavior from α f to β f and from β f to γ f , observed at a heating rate of 10 K min -1 , are markedly affected by the sample preparation. For example, the endothermic peak of the transition from α f to β f appeared at around 400 deg. C for quenched powder and at around 320 deg. C for powder cooled at 0.5 K min -1 . The trend of the transition temperatures can be qualitatively explained in terms of oxygen content, i.e., Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits the transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. We confirmed the two types of transition behavior from α f to β f depending on heating rate of DSC and high-temperature X-ray diffraction (HT-XRD) analysis. At rapid heating rates of 10 and 40 K min -1 , α f transformed to β f directly. Meanwhile, at a slow heating rate of 2 K min -1 , the β f precipitated from α f because slow heating

  20. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  1. The Influence of the Powder Stream on High-Deposition-Rate Laser Metal Deposition with Inconel 718

    Directory of Open Access Journals (Sweden)

    Chongliang Zhong

    2017-10-01

    Full Text Available For the purpose of improving the productivity of laser metal deposition (LMD, the focus of current research is set on increasing the deposition rate, in order to develop high-deposition-rate LMD (HDR-LMD. The presented work studies the effects of the powder stream on HDR-LMD with Inconel 718. Experiments have been designed and conducted by using different powder feeding nozzles—a three-jet and a coaxial powder feeding nozzle—since the powder stream is mainly determined by the geometry of the powder feeding nozzle. After the deposition trials, metallographic analysis of the samples has been performed. The laser intensity distribution (LID and the powder stream intensity distribution (PID have been characterized, based on which the processes have been simulated. Finally, for verifying and correcting the used models for the simulation, the simulated results have been compared with the experimental results. Through the conducted work, suitable boundary conditions for simulating the process with different powder streams has been determined, and the effects of the powder stream on the process have also been determined. For a LMD process with a three-jet nozzle a substantial part of the powder particles that hit the melt pool surface are rebounded; for a LMD process with a coaxial nozzle almost all the particles are caught in the melt pool. This is due to the different particle velocities achieved with the two different nozzles. Moreover, the powder stream affects the heat exchange between the heated particles and the melt pool: a surface boundary condition applies for a powder stream with lower particle velocities, in the experiment provided by a three-jet nozzle, and a volumetric boundary condition applies for a powder stream with higher particle velocities, provided by a coaxial nozzle.

  2. Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch

    Directory of Open Access Journals (Sweden)

    Ornanong S. Kittipongpatana

    2015-01-01

    Full Text Available Native jackfruit seed starch (JFS contains 30% w/w type II resistant starch (RS2 and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC, temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2% was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16. FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in Tg and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged.

  3. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  4. Advanced industrial ceramic heat pipe recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Strumpf, H.J.; Stillwagon, T.L.; Kotchick, D.M.; Coombs, M.G.

    1988-01-01

    This paper summarizes the results of an investigation involving the use of ceramic heat pipe recuperators for high-temperature heat recovery from industrial furnaces. The function of the recuperator is to preheat combustion air with furnace exhaust gas. The heat pipe recuperator comprises a bundle of individual ceramic heat pipes acting in concert, with a partition separating the air and exhaust gas flow streams. Because each heat pipe is essentially an independent heat exchanger, the failure of a single tube does not compromise recuperator integrity, has only a minimal effect on overall heat exchanger performance and enables easier replacement of individual heat pipes. In addition, the heat pipe acts as an essentially isothermal heat transfer device, leading to a high thermodynamic efficiency. Cost estimates developed for heat pipe recuperator systems indicate favorable payback periods. Laboratory studies have demonstrated the feasibility of fabricating the required ceramic tubes, coating the inside of the tubes with CVD tungsten, and sealing the heat pipe with an electron-beam-welded or vacuum-brazed end cap.

  5. Thermal Variability in Gravel Bars and its Potential Consequences for CO2 Evasion from Alpine Coldwater Streams

    Science.gov (United States)

    Boodoo, K. S.; Schelker, J.; Battin, T. J.

    2016-12-01

    Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. During warm summer months, diurnal vertical temperature patterns were most pronounced and were detected throughout all one-meter-depth profiles. Furthermore, permanently wetted GB sediment (-56 cm depth) temperatures above that of stream and groundwater occurred 17% of the year, particularly during summer. This is further evidence for downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB temperatures were associated with increased CO2 evasion fluxes; the strength of the relationship increased with depth (max. r2 = 0.61 at -100cm depth). This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn and winter, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. The importance of these processes is likely to increase, particularly in cold-water streams, due to the occurrence of more frequent and intense warm

  6. Documentation of a daily mean stream temperature module—An enhancement to the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Sanders, Michael J.; Markstrom, Steven L.; Regan, R. Steven; Atkinson, R. Dwight

    2017-09-15

    A module for simulation of daily mean water temperature in a network of stream segments has been developed as an enhancement to the U.S. Geological Survey Precipitation Runoff Modeling System (PRMS). This new module is based on the U.S. Fish and Wildlife Service Stream Network Temperature model, a mechanistic, one-dimensional heat transport model. The new module is integrated in PRMS. Stream-water temperature simulation is activated by selection of the appropriate input flags in the PRMS Control File and by providing the necessary additional inputs in standard PRMS input files.This report includes a comprehensive discussion of the methods relevant to the stream temperature calculations and detailed instructions for model input preparation.

  7. Solar air heating system for combined DHW and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-12-01

    The project deals with the development and testing of a simple system for utilization of the summer excess heat from small solar air heating systems for preheating of fresh air. The principle of the system is to lead the heated air down around a domestic hot water tank letting the surface of the tank act as heat exchanger between the air and the water. In order to increase the heat transfer, coefficient fins into the air stream were mounted on the tank. A complete system with 3 m{sup 2} solar air collector, ductworks and a 85 litre storage were set up and extensively monitored. The air stream through the system was created by a fan connected directly to one or two PV-panels leading to a solar radiation dependent flow rate without the use of any other control. Based on monitoring results the system was characterized and a TRNSYS model of the system was developed and calibrated/validated. The monitoring and the simulations with the TRNSYS model revealed several interesting things about the system. The monitoring revealed that the system is capable of bringing the temperature of the water in the storage above 60 deg. C at warm days with clear sky conditions. The storage is very stratified, which is beneficial as usable hot water temperatures rather quickly are obtained. The performance was highly dependent on the airflow rate through the system. It can be concluded that the investigated system will have a performance in the order of 500 kWh during the winter, spring and autumn months and around 250 kWh during the four summer months - or in total a yearly performance of 750 kWh/m{sup 2}. A small traditional solar heating system for preheating of domestic hot water would have a higher performance during the four summer months, but no performance during the rest of the year if the system is installed in a summer house, which only is occupied during the summer. The parametric analysis further indicates that it is possible to further optimise the system when the thermal

  8. Heat capacities of several Co{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip; Chen, Song

    2013-12-20

    Highlights: • Heat contents from 600 K to 1500 K of selected Co{sub 2}YZ were measured by drop calorimeters. • Heat capacities were obtained by taking derivatives of heats contents which were fitted with second order polynomial with respect to temperature. • Melting points determined by DSC were consistent with literature data. • Heats of fusion determined by DSC were comparable with those obtained by extrapolation of heat contents. - Abstract: Heat contents of several Co{sub 2}-based Heusler compounds Co{sub 2}YZ (Y = Fe, Mn, Ti; Z = Al, Ga, Si, Ge, Sn) were measured from 500 K to 1500 K using a Setaram MTHC 96 drop calorimeter. Second order polynomials were adopted to fit the data and heat capacities were obtained by taking the derivatives with respect to temperature. Melting points were determined by differential scanning calorimetry (DSC) and measured heats of fusion were compared with those obtained from extrapolation of heat contents.

  9. Analyzing indicators of stream health for Minnesota streams

    Science.gov (United States)

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  10. Magnitude and processes of bank erosion at a small stream in Denmark

    DEFF Research Database (Denmark)

    Veihe, Anita; Jensen, Niels H.; Schiøtz, Iris Gunia

    2011-01-01

    River banks are important sources of sediment and phosphorus to fluvial systems, and the erosion processes operating on the banks are complex and change over time. This study explores the magnitude of bank erosion on a cohesive streambank within a small channelized stream and studies the various...... (17Ð6–30Ð1 mm year-1) and total P content on the banks were relatively high, which makes the bank an important source of sediment and phosphorus to the stream, and it was estimated that 0Ð27 kg Ptot year-1 ha-1 may potentially be supplied to the stream from the banks. Yearly pin erosion rates...

  11. Direct heat transfer considerations for improving energy efficiency in pulp and paper Kraft mills

    Energy Technology Data Exchange (ETDEWEB)

    Savulescu, Luciana Elena; Alva-Argaez, Alberto [Natural Resources (Canada)

    2008-10-15

    The success of any process improvement study depends on the quality of the available data and the way in which the plant-specific characteristics are incorporated in the applied conceptual models; in the context of process integration studies these issues are directly related to the rules followed during the data extraction stage. Improving energy efficiency in a pulp and paper Kraft mill requires the identification of the most promising heat recovery network retrofit projects. In a retrofit analysis using pinch technology/process integration methods, only the process streams associated to the existing heat exchangers and some outlet streams (such as wastewater/effluent streams and vents) with high potential for heat recovery are usually included, while the energy exchanged through non-isothermal stream mixing (NIM) or direct heat transfer (DHT) is often assumed fixed and is not considered in the analysis. Relaxing this assumption requires extracting more data to represent the DHT design configuration that exists in the plant. However, different data extraction options can be considered to represent the DHT configuration depending on the associated process/operation constraints. This work describes a systematic procedure to extract and analyse the impacts of DHT on the overall energy efficiency of a Kraft process with a specific focus on mixing along the pulp line and in water tanks. (author)

  12. Performance of tubes-and plate fins heat exchangers

    International Nuclear Information System (INIS)

    Rosman, E.C.

    1979-11-01

    By means of a two-dimensional analysis performance, and using local heat transfer coefficients, the plate fin temperature distribution, the air bulk temperature along the stream path and the fin efficiency can be obtained, for several Reynolds numbers and fin materials. Herein are also presented the average heat transfer coefficients for isothermal plate fins, referring to heat exchangers with central-tube and rear-tube row and to two-row tubes heat exchangers configurations. It is possible to obtain the real tax or the real area of heat transfer, using the average hea transfer coefficients for isothermal plate fins and the fin efficiency. (Author) [pt

  13. Estimating groundwater-ephemeral stream exchange in hyper-arid environments: Field experiments and numerical simulations

    Science.gov (United States)

    Wang, Ping; Pozdniakov, Sergey P.; Vasilevskiy, Peter Yu.

    2017-12-01

    Surface water infiltration from ephemeral dryland streams is particularly important in hyporheic exchange and biogeochemical processes in arid and semi-arid regions. However, streamflow transmission losses can vary significantly, partly due to spatiotemporal variations in streambed permeability. To extend our understanding of changes in streambed hydraulic properties, field investigations of streambed hydraulic conductivity were conducted in an ephemeral dryland stream in north-western China during high and low streamflow periods. Additionally, streamflow transmission losses were numerically estimated using combined stream and groundwater hydraulic head data and stream and streambed temperature data. An analysis of slug test data at two different river flow stages (one test was performed at a low river stage with clean water and the other at a high river stage with muddy water) suggested that sedimentation from fine-grained particles, i.e., physical clogging processes, likely led to a reduction in streambed hydraulic properties. To account for the effects of streambed clogging on changes in hydraulic properties, an iteratively increasing total hydraulic resistance during the slug test was considered to correct the estimation of streambed hydraulic conductivity. The stream and streambed temperature can also greatly influence the hydraulic properties of the streambed. One-dimensional coupled water and heat flux modelling with HYDRUS-1D was used to quantify the effects of seasonal changes in stream and streambed temperature on streamflow losses. During the period from 6 August 2014 to 4 June 2015, the total infiltration estimated using temperature-dependent hydraulic conductivity accounted for approximately 88% of that using temperature-independent hydraulic conductivity. Streambed clogging processes associated with fine particle settling/wash up cycles during flow events, and seasonal changes in streamflow temperature are two considerable factors that affect water

  14. Streamflow and nutrient dependence of temperature effects on dissolved oxygen in low-order forest streams

    Science.gov (United States)

    April Mason; Y. Jun Xu; Philip Saksa; Adrienne Viosca; Johnny M. Grace; John Beebe; Richard Stich

    2007-01-01

    Low dissolved oxygen (DO) concentrations in streams can be linked to both natural conditions and human activities. In Louisiana, natural stream conditions such as low flow, high temperature and high organic content, often result in DO levels already below current water quality criteria, making it difficult to develop standards for Best Management Practices (BMPs)....

  15. Development of a method to determine the total C-14 content in saturated salt solutions

    International Nuclear Information System (INIS)

    Lucks, C.; Prautsch, C.

    2016-01-01

    This two-step method described here for the determination of the total carbon-14 content in saturated salt solutions is divided in the analysis of the carbon-14 in the evaporable and the non-evaporable fraction. After driving off the inorganic carbon by acidification, the volatile carbon compounds and volatile decomposition products follow with rising temperature inside the sample vessel in a mild stream of oxygen to a tube furnace equipped with CuO catalyst for oxidizing the carbon compounds to CO 2 at a temperature of 800 C. Water is condensed out with an intensive condenser and the released CO 2 is absorbed in a wash bottle filled with sodium hydroxide. Similarly, an aliquot of the evaporation residue is put in the first zone of the tube furnace during the second step of the analysis. After heating the catalyst in the second zone of the furnace to 800 C the residue is heated stepwise to 800 C. By proceeding in this way, the non-volatile compounds are decomposed or oxidised in the oxygen stream and finally completely oxidized by the aid of the catalyst. The released CO 2 is again absorbed in another wash bottle. The carbonate of each fraction is then precipitated as BaCO 3 separately. Finally, the precipitate is washed, dried, finely grounded and covered with toluene scintillation cocktail for measurement in a LSC. The detection limit is about 0,2 Bq/l for a sample volume of 250 ml.

  16. Performance evaluation of cryogenic counter-flow heat exchangers with longitudinal conduction, heat in-leak and property variations

    Science.gov (United States)

    Jiang, Q. F.; Zhuang, M.; Zhu, Z. G.; Y Zhang, Q.; Sheng, L. H.

    2017-12-01

    Counter-flow plate-fin heat exchangers are commonly utilized in cryogenic applications due to their high effectiveness and compact size. For cryogenic heat exchangers in helium liquefaction/refrigeration systems, conventional design theory is no longer applicable and they are usually sensitive to longitudinal heat conduction, heat in-leak from surroundings and variable fluid properties. Governing equations based on distributed parameter method are developed to evaluate performance deterioration caused by these effects. The numerical model could also be applied in many other recuperators with different structures and, hence, available experimental data are used to validate it. For a specific case of the multi-stream heat exchanger in the EAST helium refrigerator, quantitative effects of these heat losses are further discussed, in comparison with design results obtained by the common commercial software. The numerical model could be useful to evaluate and rate the heat exchanger performance under the actual cryogenic environment.

  17. Effect of heating method on stress-rupture life

    Science.gov (United States)

    Bizon, P. T.; Calfo, F. D.

    1977-01-01

    The effect of radiant(furnace), resistance(electric current), burner(hot gas stream), and a combination of resistance and burner heating on intermediate time (100 to 300 hr) stress-rupture life and reduction of area was evaluated. All heating methods were studied using the nickel-based alloy Udimet 700 while all but burner heating were evaluated with the cobalt-based alloy Mar-M 509. Limited test results of eight other superalloys were also included in this study. Resistance heated specimens had about 20 to 30 percent of the stress-rupture life of radiant heated specimens. The limited burner heating data showed about a 50 percent life reduction as compared to the radiant heated tests. A metallurgical examination gave no explanation for these reductions.

  18. Continuity-Aware Scheduling Algorithm for Scalable Video Streaming

    Directory of Open Access Journals (Sweden)

    Atinat Palawan

    2016-05-01

    Full Text Available The consumer demand for retrieving and delivering visual content through consumer electronic devices has increased rapidly in recent years. The quality of video in packet networks is susceptible to certain traffic characteristics: average bandwidth availability, loss, delay and delay variation (jitter. This paper presents a scheduling algorithm that modifies the stream of scalable video to combat jitter. The algorithm provides unequal look-ahead by safeguarding the base layer (without the need for overhead of the scalable video. The results of the experiments show that our scheduling algorithm reduces the number of frames with a violated deadline and significantly improves the continuity of the video stream without compromising the average Y Peek Signal-to-Noise Ratio (PSNR.

  19. Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options

    Science.gov (United States)

    Nelson, Kären C.; Palmer, Margaret A.; Pizzuto, James E.; Moglen, Glenn E.; Angermeier, Paul L.; Hilderbrand, Robert H.; Dettinger, Mike; Hayhoe, Katharine

    2015-01-01

    Streams collect runoff, heat, and sediment from their watersheds, making them highly vulnerable to anthropogenic disturbances such as urbanization and climate change. Forecasting the effects of these disturbances using process-based models is critical to identifying the form and magnitude of likely impacts. Here, we integrate a new biotic model with four previously developed physical models (downscaled climate projections, stream hydrology, geomorphology, and water temperature) to predict how stream fish growth and reproduction will most probably respond to shifts in climate and urbanization over the next several decades.

  20. NO reduction using sublimation of cyanuric acid

    Science.gov (United States)

    Perry, R.A.

    1996-05-21

    A method of reducing the NO content of a gas stream comprises contacting the gas stream with an amount of HNCO at a temperature effective for heat-induced decomposition of cyanuric acid, said amount and temperature being effective for the resultant lowering of the NO content of the gas stream, said cyanuric acid being particulate and having a particle size of less than 90 {micro}m. 1 fig.

  1. Designer solvents for the extraction of glycols and alcohols from aqueous streams

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.

    2013-01-01

    The separation of polar compounds from aqueous streams is one of the most energy intensive operations within the chemical industry, because of the formation of hydrogen bonds that should be broken and the high heat of vaporization of water. Important bulk chemicals like glycols and alcohols produced

  2. Conventional to Cloud: Detailed survey and comparative study of multimedia streaming rate Adaptation

    OpenAIRE

    Selvaraj Kesavan; Jayakumar J

    2014-01-01

    Infotainment and telecommunication industry is fast evolving towards personalized network connectivity and newer applications services ranging from music playback to ever changing telephony applications. Streaming is the key services which enables the users to view real time multimedia content on-the-go anywhere and everywhere. In streaming, quality of service is a major concern in the increasing network traffic and high user demand. Rate adaptation is crucial process to dynamically evaluate,...

  3. Groundwater flux estimation in streams: A thermal equilibrium approach

    Science.gov (United States)

    Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon

    2018-06-01

    Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.

  4. Damp Heat Treatment of Cu(In,GaSe2 Solar Cells with Different Sodium Content

    Directory of Open Access Journals (Sweden)

    Felix Daume

    2013-11-01

    Full Text Available Long term stability is crucial to maturing any photovoltaic technology. We have studied the influence of sodium, which plays a key role in optimizing the performance of Cu(In,GaSe2 (CIGSe solar cells, on the long-term stability of flexible CIGSe solar cells on polyimide foil. The standardized procedure of damp heat exposure (85% relative humidity at 85 °C was used to simulate aging of the unencapsulated cells in multiple time steps while they were characterized by current-voltage analysis, capacitance-voltage profiling, as well as electroluminescence imaging. By comparing the aging process to cells that were exposed to heat only, it could be confirmed that moisture plays the key role in the degradation process. We found that cells with higher sodium content suffer from a more pronounced degradation. Furthermore, the experimental results indicate the superposition of an enhancing and a deteriorating mechanism during the aging process. We propose an explanation based on the corrosion of the planar contacts of the solar cell.

  5. Neutron streaming evaluation for the DREAM fusion power reactor

    International Nuclear Information System (INIS)

    Seki, Yasushi; Nishio, Satoshi; Ueda, Shuzo; Kurihara, Ryoichi

    2000-01-01

    Aiming at high degree of safety and benign environmental effect, we have proposed a tokamak fusion reactor concept called DREAM, which stands for DRastically EAsy Maintenance Reactor. The blanket structure of the reactor is made from very low activation SiC/SiC composites and cooled by non-reactive helium gas. High net thermal efficiency of about 50% is realized by 900 C helium gas and high plant availability is possible with simple maintenance scheme. In the DREAM Reactor, neutron streaming is a big problem because cooling pipes with diameter larger than 80 cm are used for blanket heat removal. Neutron streaming through the cooling pipes could cause hot spots in the superconducting magnets adjacent to the cooling pipes to shorten the magnet lifetime or increase cryogenic cooling requirement. Neutron streaming could also activate components such as gas turbine further away from the fusion plasma. The effect of neutron streaming through the helium cooling pipes was evaluated for the two types of cooling pipe extraction scheme. The result of a preliminary calculation indicates the gas turbine activation prohibits personnel access in the case of inboard pipe extraction while with additional shielding measures, limited contact maintenance is possible in the case of outboard extraction. (author)

  6. Uranium Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana

    Energy Technology Data Exchange (ETDEWEB)

    Broxton, D.E.

    1978-02-01

    The Los Alamos Scientific Laboratory conducted a Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana from early August to mid-October of 1976. A total of 1240 water and 1933 sediment samples were collected from 1994 locations at a nominal density of one location per 10 km/sup 2/. The water samples were collected from streams, wells, and springs; sediment samples were taken at streams and springs. All samples were analyzed at Los Alamos for total uranium by fluorometry or delayed-neutron counting. The uranium content of water samples ranges from below the detection limit (less than 0.3 ppB) to 45.30 ppB and has a mean value of 1.40 ppB. The uranium content of the sediment samples ranges between 0.20 and 206.80 ppM and averages 6.12 ppM. The chosen uranium anomaly threshold value was 7 ppB for surface waters (streams), 9 ppB for groundwaters (wells and springs), and 25 ppM for all sediment samples. The study area consists of the following lithologic groups: Precambrian basement complex, Precambrian Belt metasediments, Paleozoic and Mesozoic shelf sediments, Cretaceous and early Tertiary volcanic and plutonic rocks, Laramide orogenic clastic sediments, and middle to late Tertiary volcanic rocks and intermontane basin sediments. Most of the anomalous water and sediment samples with well-developed dispersion trains occur in areas underlain by or adjacent to silicic plutonic rocks of the Idaho and Boulder batholiths. These anomalies may indicate the presence of uraniferous veins and pegmatites similar to those already known to exist in the area. Fewer anomalous water samples occur in areas underlain by Precambrian basement complex and Tertiary basin fill.

  7. Uranium Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1978-02-01

    The Los Alamos Scientific Laboratory conducted a Hydrogeochemical and Stream Sediment Reconnaissance in southwestern Montana from early August to mid-October of 1976. A total of 1240 water and 1933 sediment samples were collected from 1994 locations at a nominal density of one location per 10 km 2 . The water samples were collected from streams, wells, and springs; sediment samples were taken at streams and springs. All samples were analyzed at Los Alamos for total uranium by fluorometry or delayed-neutron counting. The uranium content of water samples ranges from below the detection limit (less than 0.3 ppB) to 45.30 ppB and has a mean value of 1.40 ppB. The uranium content of the sediment samples ranges between 0.20 and 206.80 ppM and averages 6.12 ppM. The chosen uranium anomaly threshold value was 7 ppB for surface waters (streams), 9 ppB for groundwaters (wells and springs), and 25 ppM for all sediment samples. The study area consists of the following lithologic groups: Precambrian basement complex, Precambrian Belt metasediments, Paleozoic and Mesozoic shelf sediments, Cretaceous and early Tertiary volcanic and plutonic rocks, Laramide orogenic clastic sediments, and middle to late Tertiary volcanic rocks and intermontane basin sediments. Most of the anomalous water and sediment samples with well-developed dispersion trains occur in areas underlain by or adjacent to silicic plutonic rocks of the Idaho and Boulder batholiths. These anomalies may indicate the presence of uraniferous veins and pegmatites similar to those already known to exist in the area. Fewer anomalous water samples occur in areas underlain by Precambrian basement complex and Tertiary basin fill

  8. Application of piezodetectors for diagnostics of pulsed and quasi-steady-state plasma streams

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Tereshin, V.I.; Ladygina, M.S. [NSC KIPT, Kharkov (Ukraine). Inst. of Plasma Physics

    2006-04-15

    The paper reports on studies of the plasma streams generated by two experimental devices: the quasi-steady-state plasma accelerator (QSPA) Kh-50 and the pulsed plasma gun PROSVET. The radial distributions of the plasma pressure for different times and varied distances from the accelerator output have been used for investigation of the plasma stream dynamics and study the plasma compression in the focus region for different operational regimes of plasma accelerators. In experiments for the application of pulsed plasma streams for surface modification of different industrial steels, optimal regimes of surface processing have been chosen on the basis of the plasma pressure measurements. Examples of application of the piezodetectors in simulation experiments on plasma surface interaction under high heat loads are presented.

  9. Application of piezodetectors for diagnostics of pulsed and quasi-steady-state plasma streams

    International Nuclear Information System (INIS)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Tereshin, V.I.; Ladygina, M.S.

    2006-01-01

    The paper reports on studies of the plasma streams generated by two experimental devices: the quasi-steady-state plasma accelerator (QSPA) Kh-50 and the pulsed plasma gun PROSVET. The radial distributions of the plasma pressure for different times and varied distances from the accelerator output have been used for investigation of the plasma stream dynamics and study the plasma compression in the focus region for different operational regimes of plasma accelerators. In experiments for the application of pulsed plasma streams for surface modification of different industrial steels, optimal regimes of surface processing have been chosen on the basis of the plasma pressure measurements. Examples of application of the piezodetectors in simulation experiments on plasma surface interaction under high heat loads are presented

  10. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-01-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case

  11. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Geoffrey [Indiana Univ., Bloomington, IN (United States); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), were conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report

  12. In situ changes in the moisture content of heated, welded tuff based on thermal neutron measurements

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Carlson, R.C.; Buscheck, T.A.

    1991-07-01

    Thermal neutron logs were collected to monitor changes in moisture content within a welded tuff rock mass heated from a borehole containing an electrical heater which remained energized for 195 days. Thermal neutron measurements were made in sampling boreholes before, during and after heating. The results generally corroborated our conceptual understanding of hydrothermal flow as well as most of the numerical modeling conducting for this study. Conceptual models have been developed in conjunction with the numerical model calculations to explain differences in the drying and re-wetting behavior above and below the heater. Numerical modeling indicated that the re-wetting of the dried-out zone was dominated by the binary diffusion of water vapor through fractures. Saturation gradients in the rock matrix resulted in relative humidity gradients which drove water vapor (primarily along fractures) back to the dried-out zone where it condensed along the fracture walls and was imbibed by the matrix. 4 refs., 28 figs

  13. Neural bases of imitation and pantomime in acute stroke patients: distinct streams for praxis.

    Science.gov (United States)

    Hoeren, Markus; Kümmerer, Dorothee; Bormann, Tobias; Beume, Lena; Ludwig, Vera M; Vry, Magnus-Sebastian; Mader, Irina; Rijntjes, Michel; Kaller, Christoph P; Weiller, Cornelius

    2014-10-01

    Apraxia is a cognitive disorder of skilled movements that characteristically affects the ability to imitate meaningless gestures, or to pantomime the use of tools. Despite substantial research, the neural underpinnings of imitation and pantomime have remained debated. An influential model states that higher motor functions are supported by different processing streams. A dorso-dorsal stream may mediate movements based on physical object properties, like reaching or grasping, whereas skilled tool use or pantomime rely on action representations stored within a ventro-dorsal stream. However, given variable results of past studies, the role of the two streams for imitation of meaningless gestures has remained uncertain, and the importance of the ventro-dorsal stream for pantomime of tool use has been questioned. To clarify the involvement of ventral and dorsal streams in imitation and pantomime, we performed voxel-based lesion-symptom mapping in a sample of 96 consecutive left-hemisphere stroke patients (mean age ± SD, 63.4 ± 14.8 years, 56 male). Patients were examined in the acute phase after ischaemic stroke (after a mean of 5.3, maximum 10 days) to avoid interference of brain reorganization with a reliable lesion-symptom mapping as best as possible. Patients were asked to imitate 20 meaningless hand and finger postures, and to pantomime the use of 14 common tools depicted as line drawings. Following the distinction between movement engrams and action semantics, pantomime errors were characterized as either movement or content errors, respectively. Whereas movement errors referred to incorrect spatio-temporal features of overall recognizable movements, content errors reflected an inability to associate tools with their prototypical actions. Both imitation and pantomime deficits were associated with lesions within the lateral occipitotemporal cortex, posterior inferior parietal lobule, posterior intraparietal sulcus and superior parietal lobule. However, the areas

  14. The comparative analysis of the compressible plasma streams generated in QSPA from the various gases

    International Nuclear Information System (INIS)

    Kozlov, A.N.; Drukarenko, S.P.; Seytkhalilova, E.I.; Velichkin, M.A.; Solyakov, D.G.

    2012-01-01

    The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid approach taking into account the final conductivity of medium, the heat conductivity and the effective losses of radiation energy underlie the numerical model of the two-dimensional axisymmetric plasma flows. Features of the compressible plasma streams generated from various gases are revealed.

  15. History of Rocky Flats waste streams

    International Nuclear Information System (INIS)

    Luckett, L.L.; Dickman, A.A.; Wells, C.R.; Vickery, D.J.

    1982-01-01

    An analysis of the waste streams at Rocky Flats was done to provide information for the Waste Certification program. This program has involved studying the types and amounts of retrievable transuranic (TRU) waste from Rocky Flats that is stored at the Idaho National Engineering Laboratory (INEL). The information can be used to estimate the types and amounts of waste that will need to be permanently stored in the Waste Isolation Pilot Plant (WIPP). The study covered mostly the eight-year period from June 1971 to June 1979. The types, amounts, and plutonium content of TRU waste and the areas or operations responsible for generating the waste are summarized in this waste stream history report. From the period studied, a total of 24,546,153 lbs of waste containing 211,148 g of plutonium currently occupies 709,497 cu ft of storage space at INEL

  16. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks.

    Science.gov (United States)

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN).

  17. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks

    Science.gov (United States)

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN). PMID:27907113

  18. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  19. Unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface

    Science.gov (United States)

    Dholey, S.

    2018-04-01

    In this paper, we have investigated numerically the laminar unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface in the presence of a time dependent free stream velocity which causes the unsteadiness of this flow problem. The plate is assumed to move in the same or opposite direction of the free stream velocity. The flow is therefore governed by the velocity ratio parameter λ (ratio of the plate velocity to the free stream velocity) and the unsteadiness parameter β. When the plate surface moves in the same direction of the free stream velocity (i.e., when λ > 0), the solution of this flow problem continues for any given value of β. On the other hand, when they move in opposite directions (i.e., when λ heat transfer analysis is that for a given value of λ(= 0), first the heat transfer rate increases with the increase of the Prandtl number Pr and after attaining a maximum value, it decreases and finally tends to be zero for large values of Pr depending upon the values of β > 0. On the contrary, for a given value of β(≤ 0), the rate of heat transfer increases consistently with the increase of Pr.

  20. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  1. Combined effect of heat treatment and humidity on total polyphenol content of tartary buckwheat wholeflour

    Directory of Open Access Journals (Sweden)

    Andrea BRUNORI

    2016-12-01

    Full Text Available Minor crops are gaining new interest due to the high content of bioactive compounds available in their grain and the consequent opportunity to be employed as ingredients for the production of healthy foodstuff. Tartary buckwheat (Fagopyrum tataricum Gaertn. grain is rich in flavonoids, the most important being represented by rutin, a compound possessing a high health value. When processing bakery products added with Tartary buckwheat whole flour, the key point is to prevent rutin from being hydrolysed to quercetin. In this view, a combination of heat treatment and controlled humidity level was applied for different lengths of time, in the attempt to deactivate the enzymes catalysing the reaction. Tartary buckwheat grain contains other polyphenols also capable to confer health properties. This class of compounds has been associated with the prevention of cardiovascular diseases, cancers, neurodegenerative diseases, diabetes, and osteoporosis. In this study it was observed how the physical treatments meant to preserve rutin would influence the overall content of polyphenols in Tartary buckwheat whole flour and dough.

  2. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  3. ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    I Made Oka Widyantara

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG-DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  4. Signal mediators at induction of heat resistance of wheat plantlets by short-term heating

    Directory of Open Access Journals (Sweden)

    Yu. V. Karpets

    2015-12-01

    Full Text Available The effects of functional interplay of calcium ions, reactive oxygen species (ROS and nitric oxide (NO in the cells of wheat plantlets roots (Triticum aestivum L. at the induction of their heat resistance by a short-term influence of hyperthermia (heating at the temperature of 42 °С during 1 minute have been investigated. The transitional increase of NO and H2O2 content, invoked by heating, was suppressed by the treatment of plantlets with the antagonists of calcium EGTA (chelator of exocellular calcium, lanthanum chloride (blocker of calcium channels of various types and neomycin (inhibitor of phosphatidylinositol-dependent phospholipase C. The rise of hydrogen peroxide content, caused by hardening, was partially suppressed by the action of inhibitors of nitrate reductase (sodium wolframate and NO-synthase (NG-nitro-L-arginine methyl ester – L-NAME, and the increasing of nitric oxide content was suppressed by the treatment of plants with the antioxidant ionol and with the scavenger of hydrogen peroxide (dimethylthiourea. These compounds and antagonists of calcium also partially removed the effect of the rise of plantlets’ heat resistance, invoked by hardening heating. The conclusion on calcium’s role in the activation of enzymatic systems, generating reactive oxygen species and nitric oxide, and on the functional interplay of these signal mediators at the induction of heat resistance of plantlets by hardening heating is made.

  5. Quality models for audiovisual streaming

    Science.gov (United States)

    Thang, Truong Cong; Kim, Young Suk; Kim, Cheon Seog; Ro, Yong Man

    2006-01-01

    Quality is an essential factor in multimedia communication, especially in compression and adaptation. Quality metrics can be divided into three categories: within-modality quality, cross-modality quality, and multi-modality quality. Most research has so far focused on within-modality quality. Moreover, quality is normally just considered from the perceptual perspective. In practice, content may be drastically adapted, even converted to another modality. In this case, we should consider the quality from semantic perspective as well. In this work, we investigate the multi-modality quality from the semantic perspective. To model the semantic quality, we apply the concept of "conceptual graph", which consists of semantic nodes and relations between the nodes. As an typical of multi-modality example, we focus on audiovisual streaming service. Specifically, we evaluate the amount of information conveyed by a audiovisual content where both video and audio channels may be strongly degraded, even audio are converted to text. In the experiments, we also consider the perceptual quality model of audiovisual content, so as to see the difference with semantic quality model.

  6. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  7. Practical design of a heat exchanger for dilution refrigeration. 1

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y; Fujii, G; Nagano, H [Tokyo Univ. (Japan). Inst. for Solid State Physics

    1978-02-01

    A compact heat exchanger for a dilution refrigerator with a high thermal efficiency is presented. Discrete heat exchangers with by-pass channels were used to decrease the flow impedance. This heat exchanger was designed so that the thermal conductance of liquid along the stream was greatly reduced. The effective thickness of the sponge material in the heat exchanger and mixer is also discussed. The obtained minimum temperatures of 12 mK was very close to the designed value of 10.8 mK. Moreover a rapid response was obtained. This is attributed to the small liquid volume of the heat exchanger.

  8. STEGANOGRAPHY USAGE TO CONTROL MULTIMEDIA STREAM

    Directory of Open Access Journals (Sweden)

    Grzegorz Koziel

    2014-03-01

    Full Text Available In the paper, a proposal of new application for steganography is presented. It is possible to use steganographic techniques to control multimedia stream playback. Special control markers can be included in the sound signal and the player can detect markers and modify the playback parameters according to the hidden instructions. This solution allows for remembering user preferences within the audio track as well as allowing for preparation of various versions of the same content at the production level.

  9. Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

    1998-01-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  10. Anomalous conductivity and electron heating in a plasma unstable to the two-stream instability

    International Nuclear Information System (INIS)

    Clark, W.H.M.; Hamberger, S.M.

    1979-01-01

    An experiment to excite the electron-ion two-stream instability in a cylindrical Q-machine plasma column is described. The mechanism for establishing a large pulsed electron drift velocity in the plasma by applying a potential difference between the end electrodes is discussed. The pulsed current-voltage characteristic of the plasma column and the temporal evolution of the electron density, drift velocity and thermal velocity are measured. In contrast with the behaviour of some computer simulations of the two-stream instability, the plasma exhibits a constant conductivity and the electron thermal velocity increases to values far in excess of the drift velocity. The electrical dissipation is consistent with the increase of the electron thermal energy, both indicating an anomalous conductivity of the same order as an empirical scaling found in earlier experiments on a toroidal discharge. (author)

  11. What Is Heat? Inquiry regarding the Science of Heat

    Science.gov (United States)

    Rascoe, Barbara

    2010-01-01

    This lab activity uses inquiry to help students define heat. It is generic in that it can be used to introduce a plethora of science content across middle and high school grade levels and across science disciplines that include biology, Earth and space science, and physical science. Even though heat is a universal science phenomenon that is…

  12. Minimizing the impact of delay on live SVC-based HTTP adaptive streaming services

    OpenAIRE

    Bouten, Niels; Latré, Steven; Famaey, Jeroen; Van Leekwijck, W; De Turck, Filip

    2013-01-01

    HTTP Adaptive Streaming (HAS) is becoming the de-facto standard for Over-The-Top video streaming services. Video content is temporally split into segments which are offered at multiple qualities to the clients. These clients autonomously select the quality layer matching the current state of the network through a quality selection heuristic. Recently, academia and industry have begun evaluating the feasibility of adopting layered video coding for HAS. Instead of downloading one file for a cer...

  13. Development of heat resistant concrete and its application to concrete casks. Improvement of neutron shielding performance of concrete in high temperature environment

    International Nuclear Information System (INIS)

    Owaki, Eiji; Hata, Akihito; Sugihara, Yutaka; Shimojo, Jun; Taniuchi, Hiroaki; Mantani, Kenichi

    2003-01-01

    Heat resistant concrete with hydrogen, which is able to shield neutron at more than 100degC, was developed. Using this new type concrete, a safety concrete cask having the same concept of metal casks was designed and produced. The new type cask omitted the inhalation and exhaust vent of the conventional type concrete casks. The new concrete consists of Portland cement added calcium hydroxide, iron powder and iron fiber. It showed 2.17 g/cm 3 density, 10.8 mass% water content, 1.4 W/(m·K) thermal conductivity at 150degC. Increasing of heat resistance made possible to produce the perfect sealing type structure, which had high shielding performance of radiation no consideration for streaming of radiation. Moreover, a monitor of sealing can be set. General view of concrete casks, outer view of 1/3 scaled model, cask storage system in the world, properties of new developed heat resistant concrete, results of shielding calculation are contained. (S.Y.)

  14. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  15. An economic analysis of online streaming: How the music industry can generate revenues from cloud computing

    OpenAIRE

    Thomes, Tim Paul

    2011-01-01

    This paper investigates the upcoming business model of online streaming services allowing music consumers either to subscribe to a service which provides free-of-charge access to streaming music and which is funded by advertising, or to pay a monthly flat fee in order to get ad-free access to the content of the service accompanied with additional benefits. Both businesses will be launched by a single provider of streaming music. By imposing a two-sided market model on the one hand combined wi...

  16. Can air temperature be used to project influences of climate change on stream temperature?

    Science.gov (United States)

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  17. The Midwest Stream Quality Assessment—Influences of human activities on streams

    Science.gov (United States)

    Van Metre, Peter C.; Mahler, Barbara J.; Carlisle, Daren M.; Coles, James F.

    2018-04-16

    Healthy streams and the fish and other organisms that live in them contribute to our quality of life. Extensive modification of the landscape in the Midwestern United States, however, has profoundly affected the condition of streams. Row crops and pavement have replaced grasslands and woodlands, streams have been straightened, and wetlands and fields have been drained. Runoff from agricultural and urban land brings sediment and chemicals to streams. What is the chemical, physical, and biological condition of Midwestern streams? Which physical and chemical stressors are adversely affecting biological communities, what are their origins, and how might we lessen or avoid their adverse effects?In 2013, the U.S. Geological Survey (USGS) conducted the Midwest Stream Quality Assessment to evaluate how human activities affect the biological condition of Midwestern streams. In collaboration with the U.S. Environmental Protection Agency National Rivers and Streams Assessment, the USGS sampled 100 streams, chosen to be representative of the different types of watersheds in the region. Biological condition was evaluated based on the number and diversity of fish, algae, and invertebrates in the streams. Changes to the physical habitat and chemical characteristics of the streams—“stressors”—were assessed, and their relation to landscape factors and biological condition was explored by using mathematical models. The data and models help us to better understand how the human activities on the landscape are affecting streams in the region.

  18. Evolution of Summer Ocean Mixed Layer Heat Content and Ocean/Ice Fluxes in the Arctic Ocean During the Last Decade

    Science.gov (United States)

    Stanton, T. P.; Shaw, W. J.

    2014-12-01

    Since 2002, a series of 28 Autonomous Ocean Flux Buoys have been deployed in the Beaufort Sea and from the North Pole Environmental Observatory. These long-term ice-deployed instrument systems primarily measure vertical turbulent fluxes of heat, salt and momentum at a depth of 2 - 6 m below the ocean/ice interface, while concurrently measuring current profile every 2m down to approximately 40-50m depth, within the seasonal pycnocline. Additional sensors have been added to measure local ice melt rates acoustically, and finescale thermal structure from the eddy correlation flux sensor up into the ice to resolve summer near-surface heating. The AOFB buoys have typically been co-located with Ice Tethered Profilers, that measure the upper ocean T/S structure and ice mass balance instruments. Comparisons of near-surface heat fluxes, heat content and vertical structure over the last decade will be made for buoys in the Beaufort Sea and Transpolar Drift between the North Pole and Spitzbergen. The effects of enhanced basal melting from ice/albedo feedbacks can be clearly seen in the low ice concentration summer conditions found more recently in the Beaufort Sea, while there are less pronounced effects of enhanced summer surface heating in the higher ice concentrations still found in the transpolar drift.

  19. Layer-based buffer aware rate adaptation design for SHVC video streaming

    Science.gov (United States)

    Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan

    2016-09-01

    This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.

  20. Technique for producing a continuous interference-free stream of Argon-41 in air

    International Nuclear Information System (INIS)

    Tseng, T.-T.; Jester, W.A.

    1984-01-01

    A monitoring system was developed for the detection of 131 I in the presence of orders of magnitude higher concentrations of radioactive noble gas. During the course of this work, a technique was developed for producing a continuous air stream of 41 Ar required for testing this concept. The 41 Ar stream is produced by the neutron activation of air using a research reactor. The 41 Ar content of the air stream can be varied by many orders of magnitude by varying the reactor power level and the rate at which the air is pumped through a vertically positioned tube in or in front of the reactor. It was found that the neutrons also activate other air constituents, producing undesirable interference radionuclides. Selective filtering techniques have therefore been developed to remove these interference radionuclides from the 41 Ar air stream

  1. EFFECTS OF HEAT STRESS ON BLOOD ACID-BASE BALANCE AND MINERAL CONTENT IN GUINEA FOWLS WHEN DRINKING WATER TREATED WITH MAGNETIC FIELD WAS USED

    Directory of Open Access Journals (Sweden)

    Beata GŁOWIŃSKA

    2011-01-01

    Full Text Available The purpose of the study was to examine the effect of 24-hour heat stress on blood acid-base balance parameters and mineral content in guinea fowls when drinking water treated with magnetic field was used. The maximum environmental temperature at the end of the present experiment was 32oC. The relative humidity was maintained at 55% (±2. Blood samples were collected from birds three times: in the 1st, 12th and 24th hour of stress. Exposure to heat stress significantly increased blood bicarbonate ion concentration (HCO3 -, content of buffer alkali (BB and decreased shortage of alkali (BE but only in the 12th hour of stress. In the level of oxygen pressure (pO2 and percentage of oxygen content (O2sat in the 12th and 24th hour of the experiment statistically high significant decrease occurred. In consequence of high environmental temperature the statistically significant decrease of sodium was found. No changes in the level of potassium and chlorine ions in guinea fowls watered magnetized water occurred.

  2. Dynamic Programming Optimization of Multi-rate Multicast Video-Streaming Services

    Directory of Open Access Journals (Sweden)

    Nestor Michael Caños Tiglao

    2010-06-01

    Full Text Available In large scale IP Television (IPTV and Mobile TV distributions, the video signal is typically encoded and transmitted using several quality streams, over IP Multicast channels, to several groups of receivers, which are classified in terms of their reception rate. As the number of video streams is usually constrained by both the number of TV channels and the maximum capacity of the content distribution network, it is necessary to find the selection of video stream transmission rates that maximizes the overall user satisfaction. In order to efficiently solve this problem, this paper proposes the Dynamic Programming Multi-rate Optimization (DPMO algorithm. The latter was comparatively evaluated considering several user distributions, featuring different access rate patterns. The experimental results reveal that DPMO is significantly more efficient than exhaustive search, while presenting slightly higher execution times than the non-optimal Multi-rate Step Search (MSS algorithm.

  3. Investigation of Hypersonic Laminar Heating Augmentation in the Stagnation Region

    Science.gov (United States)

    Marineau, Eric C.; Lewis, Daniel R.; Smith, Michael S.; Lafferty, John F.; White, Molly E.; Amar, Adam J.

    2012-01-01

    Laminar stagnation region heating augmentation is investigated in the AEDC Tunnel 9 at Mach 10 by performing high frequency surface pressure and heat transfer measurements on the Orion CEV capsule at zero degree angle-of-attack for unit Reynolds numbers between 0.5 and 15 million per foot. Heating augmentation increases with Reynolds number, but is also model size dependent as it is absent on a 1.25-inch diameter model at Reynolds numbers where it reaches up to 15% on a 7-inch model. Heat transfer space-time correlations on the 7-inch model show that disturbances convect at the boundary layer edge velocity and that the streamwise integral scale increases with distance. Therefore, vorticity amplification due to stretching and piling-up in the stagnation region appears to be responsible for the stagnation point heating augmentation on the larger model. This assumption is reinforced by the f(exp -11/3) dependence of the surface pressure spectrum compared to the f(exp -1) dependence in the free stream. Vorticity amplification does not occur on the 1.25- inch model because the disturbances are too large. Improved free stream fluctuation measurements will be required to determine if significant vorticity is present upstream or mostly generated behind the bow shock.

  4. Analysis of hydraulic characteristics for stream diversion in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jin; Jun, Kye-Won [Chungbuk National University, Cheongju(Korea)

    2001-10-31

    This study is the analysis of hydraulic characteristics for stream diversion reach by numerical model test. Through it we can provide the basis data in flood, and in grasping stream flow characteristics. Analysis of hydraulic characteristics in Seoknam stream were implemented by using computer model HEC-RAS(one-dimensional model) and RMA2(two-dimensional finite element model). As a result we became to know that RMA2 to simulate left, main channel, right in stream is more effective method in analysing flow in channel bends, steep slope, complex bed form effect stream flow characteristics, than HEC-RAS. (author). 13 refs., 3 tabs., 5 figs.

  5. Acetyl salicylic acid and 24-epibrassinolide attenuate decline in photosynthesis, chlorophyll contents and membrane thermo- stability in tomato (lycopersicon esculentum mill.) under heat stress

    International Nuclear Information System (INIS)

    Khan, A.R.; Hui, C.Z.; Ghazanfar, B.

    2015-01-01

    The effect of exogenous application of varying levels of 24-epibrassinolide (0.75, 1.5 and 3 micro M) and acetyl salicylic acid (0.25, 0.75 and 1.25 micro M) for induction of heat tolerance in terms of their effect on photosynthesis, chlorophyll content, membrane integrity and survival in four weeks old tomato (cultivar: Mei Jie Lo) seedlings under high temperature stress (46 degree C/4 h daily) for 21 days was investigated. The daily heat stress treatment had deleterious effects on seedlings but chemical treatments significantly reduced the magnitude of losses to different extents. 24-epibrassinolide (3 micro M) was over all the best treatment to improve survival (86.11%), photosynthesis (39.4%) and chlorophyll contents (26.12%) accompanied with initiation of flower buds and improved vegetative growth. Whereas acetyl salicylic acid (1.25 mM) best improved photosynthetic activity (40.6%) as compared to the untreated heat stressed control seedlings. Moreover, 3 micro M 24-epibrassinolide and 0.75 micro M acetyl salicylic acid reduced cell membrane injury to 8.3 and 6.9% respectively as compared with 22.4% in heat stressed control seedlings. However lower doses of acetyl salicylic acid (0.25 and 0.75 micro M) had slight (5.6 and 12.8%) inhibition effect on the photosynthesis than the heat stressed controls. Overall both acetyl salicylic acid and 24-epibrassinolide up regulated basal heat tolerance in tomato seedlings and studied concentrations demonstrated signature affect upon different parameters. Thus both chemical agents can be potential candidates for further investigations for exogenous application aiming at extension of tomato growth season in summer. (author)

  6. Development of a gas fired Vuilleumier heat pump for residential heating

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    1989-01-01

    A natural gas-driven heat pump based on the Vuilleumier principle has been developed for use in single-family houses. The pump has a heat output of 7.5 kW at a coefficient of performance of 1.62 based on the lower heat content of the gas fuel. The heat pump uses helium as working fluid at 20 MPa...... mean pressure, and it is designed as a semihermetic unit. A crank mechanism distinguished by very small loads on the piston rings was developed. The advantages and disadvantages of the Vuilleumier principle for heat-driven heat pumps are discussed. Results of the extensive experimental work...... are presented. A new 20 kW Vuilleumier heat pump is briefly described...

  7. The metaphors we stream by: Making sense of music streaming

    OpenAIRE

    Hagen, Anja Nylund

    2016-01-01

    In Norway music-streaming services have become mainstream in everyday music listening. This paper examines how 12 heavy streaming users make sense of their experiences with Spotify and WiMP Music (now Tidal). The analysis relies on a mixed-method qualitative study, combining music-diary self-reports, online observation of streaming accounts, Facebook and last.fm scrobble-logs, and in-depth interviews. By drawing on existing metaphors of Internet experiences we demonstrate that music-streaming...

  8. Heat integration in processes with diverse production lines: A comprehensive framework and an application in food industry

    International Nuclear Information System (INIS)

    Miah, J.H.; Griffiths, A.; McNeill, R.; Poonaji, I.; Martin, R.; Yang, A.; Morse, S.

    2014-01-01

    Highlights: • A new practical heat integration framework was developed for complex and diverse production lines. • Heat recovery was maximised by direct and indirect heat integration at zonal and factory levels. • A novel approach to stream data extraction was proposed to account for both stream capacity and availability. • A case study was carried out on a multi-product confectionery factory. - Abstract: Heat integration is a key measure to improving energy efficiency and maximising heat recovery. Since the advent of Pinch analysis in the 1980s, direct and indirect integration approaches have developed in separate domains with very few examples where both approaches are utilised together to maximise heat recovery. This paper presents a novel decision-making framework for heat integration in complex and diverse production lines, with the aim to provide the user with a step-by-step guide to evaluate all heat recovery opportunities through a combination of direct and indirect heat integration. This framework involves analysis at both the zonal level and the factory level. The proposed framework was applied to a case study based on a confectionery factory in the UK that manufactured multiple products across a diverse range of food technologies. It demonstrates that the framework can effectively identify the significant streams to be considered in the heat integration analysis, and address practical factors such as diverse production times, geographical proximity, and potential of compromise to product quality when the direct and indirect heat integration opportunities are proposed and assessed both within and between production zones. This practical framework has the potential to benefit the wider food industry and beyond

  9. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta).

    Science.gov (United States)

    Luo, Qijun; Zhu, Zhenggang; Zhu, Zhujun; Yang, Rui; Qian, Feijian; Chen, Haimin; Yan, Xiaojun

    2014-01-01

    Pyropia has a unique heteromorphic life cycle with alternation stages between thallus and conchocelis, which lives at different water temperatures in different seasons. To better understand the different adaptation strategies for temperature stress, we tried to observe comparative biochemical changes of Pyropia haitanensis based on a short term heat shock model. The results showed that: (1) At normal temperature, free-living conchocelis contains significantly higher levels of H2O2, fatty acid-derived volatiles, the copy number of Phrboh and Phhsp70 genes,the activities of NADPH oxidase and floridoside than those in thallus. The released H2O2 and NADPH oxidase activity of conchocelis were more than 7 times higher than those of thallus. The copy number of Phrboh in conchocelis was 32 times that in thallus. (2) After experiencing heat shock at 35°C for 30 min, the H2O2 contents, the mRNA levels of Phrboh and Phhsp70, NADPH oxidase activity and the floridoside content in thallus were all significantly increased. The mRNA levels of Phrboh increased 5.78 times in 5 min, NADPH oxidase activity increased 8.45 times in 20 min. (3) Whereas, in conchocelis, the changes in fatty acids and their down-stream volatiles predominated, significantly increasing levels of saturated fatty acids and decreasing levels of polyunsaturated fatty acids occurred, and the 8-carbon volatiles were accumulated. However, the changes in H2O2 content and expression of oxidant-related genes and enzymatic activity were not obvious. Overall, these results indicate that conchocelis maintains a high level of active protective apparatus to endure its survival at high temperature, while thallus exhibit typical stress responses to heat shock. It is concluded that Pyropia haitanensis has evolved a delicate strategy for temperature adaptation for its heteromorphic life cycle.

  10. Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta.

    Directory of Open Access Journals (Sweden)

    Qijun Luo

    Full Text Available Pyropia has a unique heteromorphic life cycle with alternation stages between thallus and conchocelis, which lives at different water temperatures in different seasons. To better understand the different adaptation strategies for temperature stress, we tried to observe comparative biochemical changes of Pyropia haitanensis based on a short term heat shock model. The results showed that: (1 At normal temperature, free-living conchocelis contains significantly higher levels of H2O2, fatty acid-derived volatiles, the copy number of Phrboh and Phhsp70 genes,the activities of NADPH oxidase and floridoside than those in thallus. The released H2O2 and NADPH oxidase activity of conchocelis were more than 7 times higher than those of thallus. The copy number of Phrboh in conchocelis was 32 times that in thallus. (2 After experiencing heat shock at 35°C for 30 min, the H2O2 contents, the mRNA levels of Phrboh and Phhsp70, NADPH oxidase activity and the floridoside content in thallus were all significantly increased. The mRNA levels of Phrboh increased 5.78 times in 5 min, NADPH oxidase activity increased 8.45 times in 20 min. (3 Whereas, in conchocelis, the changes in fatty acids and their down-stream volatiles predominated, significantly increasing levels of saturated fatty acids and decreasing levels of polyunsaturated fatty acids occurred, and the 8-carbon volatiles were accumulated. However, the changes in H2O2 content and expression of oxidant-related genes and enzymatic activity were not obvious. Overall, these results indicate that conchocelis maintains a high level of active protective apparatus to endure its survival at high temperature, while thallus exhibit typical stress responses to heat shock. It is concluded that Pyropia haitanensis has evolved a delicate strategy for temperature adaptation for its heteromorphic life cycle.

  11. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge

    Science.gov (United States)

    Constantz, Jim; Thomas, Carole L.; Zellweger, Gary W.

    1994-01-01

    We demonstrate that for losing reaches with significant diurnal variations in stream temperature, the effect of stream temperature on streambed seepage is a major factor contributing to reduced afternoon streamflows. An explanation is based on the effect of stream temperature on the hydraulic conductivity of the streambed, which can be expected to double in the 0° to 25°C temperature range. Results are presented for field experiments in which stream discharge and temperature were continuously measured for several days over losing reaches at St. Kevin Gulch, Colorado, and Tijeras Arroyo, New Mexico. At St. Kevin Gulch in July 1991, the diurnal stream temperature in the 160-m study reach ranged from about 4° to 18°C, discharges ranged from 10 to 18 L/s, and streamflow loss in the study reach ranged from 2.7 to 3.7 L/s. On the basis of measured stream temperature variations, the predicted change in conductivity was about 38%; the measured change in stream loss was about 26%, suggesting that streambed temperature varied less than the stream temperature. At Tijeras Arroyo in May 1992, diurnal stream temperature in the 655-m study reach ranged from about 10° to 25°C and discharge ranged from 25 to 55 L/s. Streamflow loss was converted to infiltration rates by factoring in the changing stream reach surface area and streamflow losses due to evaporation rates as measured in a hemispherical evaporation chamber. Infiltration rates ranged from about 0.7 to 2.0 m/d, depending on time and location. Based on measured stream temperature variations, the predicted change in conductivity was 29%; the measured change in infiltration was also about 27%. This suggests that high infiltration rates cause rapid convection of heat to the streambed. Evapotranspiration losses were estimated for the reach and adjacent flood plain within the arroyo. On the basis of these estimates, only about 5% of flow loss was consumed via stream evaporation and stream-side evapotranspiration

  12. Acoustic streaming in pulsating flows through porous media

    International Nuclear Information System (INIS)

    Valverde, J.M.; Dura'n-Olivencia, F.J.

    2014-01-01

    When a body immersed in a viscous fluid is subjected to a sound wave (or, equivalently, the body oscillates in the fluid otherwise at rest) a rotational fluid stream develops across a boundary layer nearby the fluid-body interphase. This so-called acoustic streaming phenomenon is responsible for a notable enhancement of heat, mass and momentum transfer and takes place in any process involving two phases subjected to relative oscillations. Understanding the fundamental mechanisms governing acoustic streaming in two-phase flows is of great interest for a wide range of applications such as sonoprocessed fluidized bed reactors, thermoacoustic refrigerators/engines, pulsatile flows through veins/arteries, hemodialysis devices, pipes in off-shore platforms, offshore piers, vibrating structures in the power-generating industry, lab-on-a-chip microfluidics and microgravity acoustic levitation, and solar thermal collectors to name a few. The aim of engineering studies on this vast diversity of systems is oriented towards maximizing the efficiency of each particular process. Even though practical problems are usually approached from disparate disciplines without any apparent linkage, the behavior of these systems is influenced by the same underlying physics. In general, acoustic streaming occurs within the interstices of porous media and usually in the presence of externally imposed steady fluid flows, which gives rise to important effects arising from the interference between viscous boundary layers developed around nearby solid surfaces and the nonlinear coupling between the oscillating and steady flows. This paper is mainly devoted to highlighting the fundamental physics behind acoustic streaming in porous media in order to provide a simple instrument to assess the relevance of this phenomenon in each particular application. The exact microscopic Navier-Stokes equations will be numerically solved for a simplified 2D system consisting of a regular array of oscillating

  13. Spray process for the recovery of CO.sub.2 from a gas stream and a related apparatus

    Science.gov (United States)

    Soloveichik, Grigorii Lev; Perry, Robert James; Wood, Benjamin Rue; Genovese, Sarah Elizabeth

    2014-02-11

    A method for recovering carbon dioxide (CO.sub.2) from a gas stream is disclosed. The method includes the step of reacting CO.sub.2 in the gas stream with fine droplets of a liquid absorbent, so as to form a solid material in which the CO.sub.2 is bound. The solid material is then transported to a desorption site, where it is heated, to release substantially pure CO.sub.2 gas. The CO.sub.2 gas can then be collected and used or transported in any desired way. A related apparatus for recovering carbon dioxide (CO.sub.2) from a gas stream is also described herein.

  14. Effects of heat-moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: moisture and length of heating.

    Science.gov (United States)

    Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong

    2015-04-15

    Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Heat transfer rate within non-spherical thick grains

    Directory of Open Access Journals (Sweden)

    Huchet Florian

    2017-01-01

    Full Text Available The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  16. Heat transfer rate within non-spherical thick grains

    Science.gov (United States)

    Huchet, Florian; Richard, Patrick; Joniot, Jules; Le Guen, Laurédan

    2017-06-01

    The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  17. ANOTHER LOOK AT THE EASTERN BANDED STRUCTURE: A STELLAR DEBRIS STREAM AND A POSSIBLE PROGENITOR

    International Nuclear Information System (INIS)

    Grillmair, C. J.

    2011-01-01

    Using the Sloan Digital Sky Survey Data Release 7, we re-examine the Eastern Banded Structure (EBS), a stellar debris stream first discovered in Data Release 5 and more recently detected in velocity space by Schlaufman et al. The visible portion of the stream is 18 0 long, lying roughly in the Galactic Anticenter direction and extending from Hydra to Cancer. At an estimated distance of 9.7 kpc, the stream is ∼170 pc across on the sky. The curvature of the stream implies a fairly eccentric box orbit that passes close to both the Galactic center and to the Sun, making it dynamically distinct from the nearby Monoceros, Anticenter, and GD-1 streams. Within the stream is a relatively strong, 2 0 -wide concentration of stars with a very similar color-magnitude distribution that we designate Hydra I. Given its prominence within the stream and its unusual morphology, we suggest that Hydra I is the last vestige of EBS's progenitor, possibly already unbound or in the final throes of tidal dissolution. Though both Hydra I and the EBS have a relatively high-velocity dispersion, given the comparatively narrow width of the stream and the high frequency of encounters with the bulge and massive constituents of the disk that such an eccentric orbit would entail, we suggest that the progenitor was likely a globular cluster and that both it and the stream have undergone significant heating over time.

  18. Supercritical heat transfer in an annular channel with external heating

    International Nuclear Information System (INIS)

    Remizov, O.V.; Gal'chenko, Eh.F.; Shurkin, N.G.; Sergeev, V.V.

    1980-01-01

    Results are presented of experimental studies of the burnout heat transfer in a 32x28x3000 mm annular channel with a uniform distribution of a heat flow at pressures of 6.9-19.6 MPa and mass rates of 350-1000 kg/m 2 xs. The heating is electrical, external, one-sided. It is shown that dependencies of the heat-transfer coefficient on rated parameters in the annular channel and tube are similar. An empirical equation has been obtained for the calculation of the burnout heat transfer in the annual channels with external heating in the following range: pressure, 6.9 -13.7 MPa; mass rate 350-700 kg/m 2 xs, and steam content ranging from Xsub(crit) to 1

  19. The Heat of Combustion of Tobacco and Carbon Oxide Formation

    Directory of Open Access Journals (Sweden)

    Norman AB

    2014-12-01

    Full Text Available Recent studies demonstrated a relationship between mass burn rates of straight-grade cigarettes and heats of combustion of the tobacco materials. In the present work, relationships between measured heats of combustion and elemental composition of the tobacco materials were further analyzed. Heats of combustion measured in oxygen were directly correlated with the carbon and hydrogen content of the tobacco materials tested. Ash content of the materials was inversely related to the heats of combustion. The water insoluble residues from exhaustively extracted tobacco materials showed higher heats of combustion and higher carbon content than the non-extracted materials, confirming a direct relationship between carbon content and heat of combustion. A value for the heat of formation of tobacco was estimated (1175 cal/g from the heat of combustion data and elemental analysis results. The estimated value for heat of formation of tobacco appears to be constant regardless of the material type. Heat values measured in air were uniformly lower than the combustion heats in oxygen, suggesting formation of CO and other reaction products. Gases produced during bomb calorimetry experiments with five tobacco materials were analyzed for CO and CO2 content. When the materials were burned in oxygen, no CO was found in the gases produced. Measured heats of combustion matched estimates based on CO2 found in the gas and conversion of the sample hydrogen content to water. Materials burned in air produced CO2 (56% to 77% of the sample carbon content and appreciable amounts of CO (7% to 16% of the sample carbon content. Unburned residue containing carbon and hydrogen was found in the air combustion experiments. Estimated heat values based on amounts of CO and CO2 found in the gas and water formed from the hydrogen lost during combustion in air were higher than the measured values. These observations indicate formation of products containing hydrogen when the materials

  20. Effect of silicon contents on the microstructures and mechanical properties of heat affected zones for 9Cr2WVTa steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Lu, Shanping, E-mail: shplu@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Rong, Lijian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Li, Dianzhong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China)

    2016-03-15

    The weldability of 9Cr2WVTa steels with silicon content varying from 0.30 wt.% to 1.36 wt.% was studied to meet the requirement of Generation-Ⅳ nuclear reactor. Samples of enlarged HAZs were fabricated by a thermal-mechanical simulator based on the simulation and measurement of non-equilibrium phase transformation. The content of δ-ferrite in the HAZs increased with the silicon content and the peak temperature of welding thermal cycle. The impact toughness in the HAZs decreased in different degrees when the δ-ferrite exhibits stripe (lower than 4.82%) or blocky types (higher than 4.82%). Post weld heat treatment (PWHT) has a significant role on improving the toughness. Adding silicon content increased the volume of δ-ferrite and therefore, decreased the tensile strength of the HAZs for 9Cr2WVTa steels. Silicon also as solid solution strengthening element increased the tensile strength. The 9Cr2WVTa steel has good weldability when the silicon content is lower than 0.60 wt.%. - Highlights: • The weldability of 9Cr2WVTa steel with different silicon contents was studied. • The impact toughness decreased in different degrees owing to the δ-ferrite. • PWHT has a significant role on improving the impact toughness. • The 9Cr2WVTa steel with silicon content not exceeding 0.60 wt.% has good weldability.

  1. RF-driven ion source with a back-streaming electron dump

    Science.gov (United States)

    Kwan, Joe; Ji, Qing

    2014-05-20

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heating of the window, which due to said heating, might otherwise cause window damage.

  2. Process for heating coal-oil slurries

    Science.gov (United States)

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  3. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    Science.gov (United States)

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  4. Application of MPEG-7 descriptors for content-based indexing of sports videos

    Science.gov (United States)

    Hoeynck, Michael; Auweiler, Thorsten; Ohm, Jens-Rainer

    2003-06-01

    The amount of multimedia data available worldwide is increasing every day. There is a vital need to annotate multimedia data in order to allow universal content access and to provide content-based search-and-retrieval functionalities. Since supervised video annotation can be time consuming, an automatic solution is appreciated. We review recent approaches to content-based indexing and annotation of videos for different kind of sports, and present our application for the automatic annotation of equestrian sports videos. Thereby, we especially concentrate on MPEG-7 based feature extraction and content description. We apply different visual descriptors for cut detection. Further, we extract the temporal positions of single obstacles on the course by analyzing MPEG-7 edge information and taking specific domain knowledge into account. Having determined single shot positions as well as the visual highlights, the information is jointly stored together with additional textual information in an MPEG-7 description scheme. Using this information, we generate content summaries which can be utilized in a user front-end in order to provide content-based access to the video stream, but further content-based queries and navigation on a video-on-demand streaming server.

  5. Plasma behavior during energetic electron streaming events: Further evidence for substorm-associated magnetic reconnection

    International Nuclear Information System (INIS)

    Bieber, J.W.; Stone, E.C.; Hones, E.W. Jr.; Baker, D.N.; Bame, S.J.

    1982-01-01

    A recent study showed that streaming energetic (>200 keV) electrons in Earth's magnetotail are statistically associated with southward magnetic fields and with enhancements of the AE index. It is shown here that the streaming electrons characteristically are preceded by aapprox.15 minute period of tailward plasma flow and followed by a dropout of the plasma sheet, thus demonstrating a clear statistical association between substorms and the classical signatures of magnetic reconnection and plasmoid formation. Additionally, a brief upward surge of mean electron energy preceded plasma dropout in several of the events studied, providing direct evidence of localized, reconnection-associated heating processes

  6. Liquid praseodymium heat content by levitation calorimetry. [Sample size 0. 5 - 1. 5g; 1460 to 2289/sup 0/K

    Energy Technology Data Exchange (ETDEWEB)

    Stretz, L.A.; Bautista, R.G.

    1976-01-01

    The high-temperature heat content of liquid praseodymium was measured experimentally by the levitation calorimetry technique. The samples, ranging in size from 0.5 to 1.5 g, were simultaneously levitated and heated by a radiofrequency generator in an argon-helium mixture prior to being dropped into a conventional copper block drop calorimeter. Corrections were made for the convection and radiation losses during the fall of the sample from the levitation chamber into the calorimeter. The praseodymium data, from 1460 to 2289K, were fitted by the following equation where the indicated errors represent the average deviation of the experimental value from the value predicted by the equation: H/sub T/ - H/sub 298/./sub 15/ = (41.57 +- 0.29) (T - 1208) + (41733 +- 197) J/mol. (auth)

  7. Combining multiple approaches and optimized data resolution for an improved understanding of stream temperature dynamics of a forested headwater basin in the Southern Appalachians

    Science.gov (United States)

    Belica, L.; Mitasova, H.; Caldwell, P.; McCarter, J. B.; Nelson, S. A. C.

    2017-12-01

    Thermal regimes of forested headwater streams continue to be an area of active research as climatic, hydrologic, and land cover changes can influence water temperature, a key aspect of aquatic ecosystems. Widespread monitoring of stream temperatures have provided an important data source, yielding insights on the temporal and spatial patterns and the underlying processes that influence stream temperature. However, small forested streams remain challenging to model due to the high spatial and temporal variability of stream temperatures and the climatic and hydrologic conditions that drive them. Technological advances and increased computational power continue to provide new tools and measurement methods and have allowed spatially explicit analyses of dynamic natural systems at greater temporal resolutions than previously possible. With the goal of understanding how current stream temperature patterns and processes may respond to changing landcover and hydroclimatoligical conditions, we combined high-resolution, spatially explicit geospatial modeling with deterministic heat flux modeling approaches using data sources that ranged from traditional hydrological and climatological measurements to emerging remote sensing techniques. Initial analyses of stream temperature monitoring data revealed that high temporal resolution (5 minutes) and measurement resolutions (guide field data collection for further heat flux modeling. By integrating multiple approaches and optimizing data resolution for the processes being investigated, small, but ecologically significant differences in stream thermal regimes were revealed. In this case, multi-approach research contributed to the identification of the dominant mechanisms driving stream temperature in the study area and advanced our understanding of the current thermal fluxes and how they may change as environmental conditions change in the future.

  8. Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment

    Science.gov (United States)

    Lieder, Ernestine; Weiler, Markus; Blume, Theresa

    2017-04-01

    Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing

  9. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  10. Stream Crossings

    Data.gov (United States)

    Vermont Center for Geographic Information — Physical measurements and attributes of stream crossing structures and adjacent stream reaches which are used to provide a relative rating of aquatic organism...

  11. Electromechanical Assessment of Human Knee Articular Cartilage with Compression-Induced Streaming Potentials.

    Science.gov (United States)

    Becher, Christoph; Ricklefs, Marcel; Willbold, Elmar; Hurschler, Christof; Abedian, Reza

    2016-01-01

    To assess the electromechanical properties of human knee articular cartilage with compression-induced streaming potentials for reliability among users and correlation with macroscopic and histological evaluation tools and sulfated glycosaminoglycan (sGAG) content. Streaming potentials are induced in cartilage in response to loading when mobile positive ions in the interstitial fluid temporarily move away from negatively charged proteoglycans. Streaming potential integrals (SPIs) were measured with an indentation probe on femoral condyles of 10 human knee specimens according to a standardized location scheme. Interobserver reliability was measured using an interclass correlation coefficient (ICC). The learning curves of 3 observers were evaluated by regression analysis. At each SPI measurement location the degradation level of the tissue was determined by means of the International Cartilage Repair Society (ICRS) score, Mankin score, and sGAG content. The computed ICC was 0.77 (0.70-0.83) indicating good to excellent linear agreement of SPI values among the 3 users. A significant positive linear correlation of the learning index values was observed for 2 of the 3 users. Statistically significant negative correlations between SPI and both ICRS and Mankin scores were observed (r = 0.502, P < 0.001, and r = 0.255, P = 0.02, respectively). No correlation was observed between SPI and sGAG content (r = 0.004, P = 0.973). SPI values may be used as a quantitative means of cartilage evaluation with sufficient reliability among users. Due to the significant learning curve, adequate training should be absolved before routine use of the technique.

  12. A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents

    Science.gov (United States)

    Mahan, Brandon; Moynier, Frédéric; Beck, Pierre; Pringle, Emily A.; Siebert, Julien

    2018-01-01

    Carbonaceous chondrites (CCs) may have been the carriers of water, volatile and moderately volatile elements to Earth. Investigating the abundances of these elements, their relative volatility, and isotopes of state-change tracer elements such as Zn, and linking these observations to water contents, provide vital information on the processes that govern the abundances and isotopic signatures of these species in CCs and other planetary bodies. Here we report Zn isotopic data for 28 CCs (20 CM, 6 CR, 1 C2-ung, and 1 CV3), as well as trace element data for Zn, In, Sn, Tl, Pb, and Bi in 16 samples (8 CM, 6 CR, 1 C2-ung, and 1 CV3), that display a range of elemental abundances from case-normative to intensely depleted. We use these data, water content data from literature and Zn isotopes to investigate volatile depletions and to discern between closed and open system heating. Trace element data have been used to construct relative volatility scales among the elements for the CM and CR chondrites. From least volatile to most, the scale in CM chondrites is Pb-Sn-Bi-In-Zn-Tl, and for CR chondrites it is Tl-Zn-Sn-Pb-Bi-In. These observations suggest that heated CM and CR chondrites underwent volatile loss under different conditions to one another and to that of the solar nebula, e.g. differing oxygen fugacities. Furthermore, the most water and volatile depleted samples are highly enriched in the heavy isotopes of Zn. Taken together, these lines of evidence strongly indicate that heated CM and CR chondrites incurred open system heating, stripping them of water and volatiles concomitantly, during post-accretionary shock impact(s).

  13. Alternative Procedure of Heat Integration Tehnique Election between Two Unit Processes to Improve Energy Saving

    Science.gov (United States)

    Santi, S. S.; Renanto; Altway, A.

    2018-01-01

    The energy use system in a production process, in this case heat exchangers networks (HENs), is one element that plays a role in the smoothness and sustainability of the industry itself. Optimizing Heat Exchanger Networks (HENs) from process streams can have a major effect on the economic value of an industry as a whole. So the solving of design problems with heat integration becomes an important requirement. In a plant, heat integration can be carried out internally or in combination between process units. However, steps in the determination of suitable heat integration techniques require long calculations and require a long time. In this paper, we propose an alternative step in determining heat integration technique by investigating 6 hypothetical units using Pinch Analysis approach with objective function energy target and total annual cost target. The six hypothetical units consist of units A, B, C, D, E, and F, where each unit has the location of different process streams to the temperature pinch. The result is a potential heat integration (ΔH’) formula that can trim conventional steps from 7 steps to just 3 steps. While the determination of the preferred heat integration technique is to calculate the potential of heat integration (ΔH’) between the hypothetical process units. Completion of calculation using matlab language programming.

  14. Plasma heating by relativistic electron beams: correlations between experiment and theory

    International Nuclear Information System (INIS)

    Thode, L.E.; Godfrey, B.B.

    1975-01-01

    The streaming instability is the primary heating mechanism in most, if not all, experiments in which the beam is injected into partially or fully ionized gas. In plasma heating experiments, the relativistic beam must traverse an anode foil before interacting with the plasma. The linear theory for such a scattered beam is discussed, including a criterion for the onset of the kinetic interaction. A nonlinear model of the two-stream instability for a scattered beam is developed. Using this model, data from ten experiments are unfolded to obtain the following correlations: (i) for a fixed anode foil, the dependence of the plasma heating on the beam-to-plasma density ratio is due to anode foil scattering, (ii) for a fixed beam-to-plasma density ratio, the predicted change in the magnitude of plasma heating as a function of the anode foil is in agreement with experiment, and (iii) the plasma heating tentatively appears to be proportional to the beam kinetic energy density and beam pulse length. For a fixed anode foil, theory also predicts that the energy deposition is improved by increasing the beam electron energy γmc 2 . Presently, no experiment has been performed to confirm this aspect of the theory

  15. Identification and annotation of erotic film based on content analysis

    Science.gov (United States)

    Wang, Donghui; Zhu, Miaoliang; Yuan, Xin; Qian, Hui

    2005-02-01

    The paper brings forward a new method for identifying and annotating erotic films based on content analysis. First, the film is decomposed to video and audio stream. Then, the video stream is segmented into shots and key frames are extracted from each shot. We filter the shots that include potential erotic content by finding the nude human body in key frames. A Gaussian model in YCbCr color space for detecting skin region is presented. An external polygon that covered the skin regions is used for the approximation of the human body. Last, we give the degree of the nudity by calculating the ratio of skin area to whole body area with weighted parameters. The result of the experiment shows the effectiveness of our method.

  16. MODELING OF CONVECTIVE STREAMS IN PNEUMOBASIC OBJECTS (Part 2

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available The article presents modeling for investigation of aerodynamic processes on area sections (including a group of complex constructional works for different regimes of drop and wind streams  and  temperature  conditions  and  in  complex  constructional  works  (for  different regimes of heating and ventilation. There were developed different programs for innovation problems solution in the field of heat and mass exchange in three-dimensional space of pres- sures-speeds-temperatures of оbjects.The field of uses of pneumobasic objects: construction and roof of tennis courts, hockey pitches, swimming pools , and also exhibitions’ buildings, circus buildings, cafes, aqua parks, studios, mobile objects of medical purposes, hangars, garages, construction sites, service sta- tions and etc. Advantages of such objects are the possibility and simplicity of multiple instal- lation and demolition works. Their large-scale implementation is determined by temperature- moisture conditions under the shells.Analytical and calculating researches, real researches of thermodynamic parameters of heat and mass exchange, multifactorial processes of air in pneumobasic objects, their shells in a wide range of climatic parameters of air (January – December in the Republic of Belarus, in many geographical latitudes of many countries have shown that the limit of the possibility of optimizing wind loads, heat flow, acoustic effects is infinite (sports, residential, industrial, warehouse, the military-technical units (tanks, airplanes, etc.. In modeling of convective flows in pneumobasic objects (part 1 there are processes with higher dynamic parameters of the air flow for the characteristic pneumobasic object, carried out the calculation of the velocity field, temperature, pressure at the speed of access of air through the inflow holes up to 5 m/sec at the moments of times (20, 100, 200, 400 sec. The calculation was performed using the developed mathematical

  17. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  18. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats...... and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled...... along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored...

  19. StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.

    Science.gov (United States)

    Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei

    2017-10-18

    Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present Stream

  20. A systematic method to customize an efficient organic Rankine cycle (ORC) to recover waste heat in refineries

    International Nuclear Information System (INIS)

    Yu, Haoshui; Feng, Xiao; Wang, Yufei; Biegler, Lorenz T.; Eason, John

    2016-01-01

    Highlights: • Multiple waste heat streams in refinery are recovered for an ORC using a hot water intermediate. • WHCC and GCC are used to identify opportunities to save utility and/or upgrade waste heat. • The methods consider the interaction between the HEN and ORC in an integrated manner. - Abstract: Organic Rankine cycles (ORCs) convert low temperature waste heat into power. When there are multiple waste heat sources in a refinery, operability and safety considerations may make it more practical to use hot water as the medium to recover waste heat. The hot water stream can then release the heat to the organic working fluid in an ORC system. In this paper, how to customize an efficient ORC for a heat exchanger network (HEN) to optimally recover multiple strands of waste heat is investigated. Because the heat exchanger network structure, the hot water loop, and ORC system interact with each other, the coordination and synthesis of these systems ought to be considered simultaneously to maximize the energy performance. A methodology is proposed using the waste heat composite curve (WHCC) and grand composite curve (GCC) to diagnose inefficiencies in an existing heat exchanger network. In addition, the WHCC can be used to solve the problem of the tradeoff between waste heat quality and quantity recovered with an intermediate stream. WHCCs are classified into two types, and procedures for designing the recovery network for each type are presented while considering the interaction with working fluid selection. The methods proposed in this paper can help engineers diagnose problems with the original heat exchanger network, and determine the flowrate of hot water, the structure of the waste heat recovery network, the best working fluid and the operating conditions of ORC system in an integrated manner. The ideas are applied to an illustrative case study in collaboration with Sinopec. The case study shows the effectiveness of this method and compares different

  1. A novel NGL (natural gas liquid) recovery process based on self-heat recuperation

    International Nuclear Information System (INIS)

    Van Duc Long, Nguyen; Lee, Moonyong

    2013-01-01

    This study examined an innovative self-heat-recuperation technology that circulates latent and sensible heat in the thermal process and applied it to the NGL (natural gas liquid) recovery process. A CGCC (column grand composite curve) was used to assess the thermodynamic feasibility of implementing the heat pump system and self-heat-recuperation technology into a conventional distillation column. The proposed distillation based on self-heat recuperation reduced the energy consumption dramatically by compressing the effluent stream, whose temperature was increased to provide the minimum temperature difference for the heat exchanger, and circulating the stream heat in the process. According to a simulation of the proposed sequence, up to 73.43 and 83.48% of the condenser and reboiler energy, respectively, were saved compared to a conventional column. This study also proposes heat integration to improve the performance of self-heat recuperation. The results showed that the modified sequence saves up 64.35, 100.00 and 31.60% of the condenser energy requirements, reboiler energy requirements and OP (operating cost), respectively, compared to a classical heat pump system, and 90.24, 100.00, and 67.19%, respectively, compared to a conventional column. The use of these sequences to retrofit a distillation column to save energy was also considered. - Highlights: • Innovative self-heat-recuperation technology that circulates latent and sensible heat. • A CGCC (column grand composite curve) is used to assess the thermodynamic feasibility. • The proposed sequence saves up 67.19% of the OP (operating cost). • The proposed sequences can be used to retrofit a distillation column to save energy

  2. CFD simulation of air to air enthalpy heat exchanger

    International Nuclear Information System (INIS)

    Al-Waked, Rafat; Nasif, Mohammad Shakir; Morrison, Graham; Behnia, Masud

    2013-01-01

    Highlights: • A CFD model capable of modelling conjugate heat and mass transfer processes. • A mesh independence studies and a CFD model validation have been conducted. • Effects of flow direction on the effectiveness have been examined. • Performance parameters were sensible and latent effectiveness and pressure drop. - Abstract: A CFD model which supports conjugate heat and mass transfer problem representation across the membrane of air-to-air energy recovery heat exchangers has been developed. The model consists of one flow passage for the hot stream and another for the adjacent cold stream. Only half of each flow passage volume has been modelled on each side of the membrane surface. Three dimensional, steady state and laminar flow studies have been conducted using a commercial CFD package. The volumetric species transport model has been adopted to describe the H 2 O and air gas mixtures. Mesh dependency has been examined and followed by validation of the CFD model against published data. Furthermore, effects of flow direction at the inlet of the heat exchanger on its thermal effectiveness have been investigated. Simulation results are presented and analysed in terms of sensible effectiveness, latent effectiveness and pressure drop across the membrane heat exchanger. Results have shown that counter-flow configuration has greater sensitivity to the mesh centre perpendicular distance from the membrane when compared to the other two flow configurations (cross-/parallel-flow). However, the lateral mesh element length has shown minimal effect on the thermal effectiveness of the enthalpy heat exchanger. For the quasi-flow heat exchanger, a perpendicular flow direction to the inlets has been found to produce a higher performance in contrast to the non-perpendicular flow

  3. Short-term memory for scenes with affective content

    OpenAIRE

    Maljkovic, Vera; Martini, Paolo

    2005-01-01

    The emotional content of visual images can be parameterized along two dimensions: valence (pleasantness) and arousal (intensity of emotion). In this study we ask how these distinct emotional dimensions affect the short-term memory of human observers viewing a rapid stream of images and trying to remember their content. We show that valence and arousal modulate short-term memory as independent factors. Arousal influences dramatically the average speed of data accumulation in memory: Higher aro...

  4. Response of Earth and Venus ionospheres to corotating solar wind stream of 3 July 1979

    International Nuclear Information System (INIS)

    Taylor, H.A. Jr.

    1985-01-01

    Corotating solar wind streams emanating from stable coronal structures provide an unique opportunity to compare the response of planetary ionospheres to the energy conveyed in the streams. For recurrent solar conditions the 'signal' propagating outward along spiral paths in interplanetary space can at times exhibit rather similar content at quite different downstream locations in the ecliptic plane. Using solar wind measurements from plasma detectors on ISEE-3, Pioneer Venus Orbiter (PVO) and Helios-A, as well as in-situ ion composition measurements from Bennett Ion Mass Spectrometers on the Atmosphere Explorer-E and PVO spacecraft, corotating stream interactions are examined at Earth and Venus. (Auth.)

  5. Improving the performance of booster heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Zühlsdorf, B.; Meesenburg, W.; Ommen, T. S.

    2018-01-01

    Abstract This study demonstrated an increase in the thermodynamic performance of a booster heat pump, which was achieved by choosing the working fluid among pure and mixed fluids. The booster heat pump was integrated in an ultra-low-temperature district heating network with a forward temperature...... of 40 °C to produce domestic hot water, by heating part of the forward stream to 60 °C, while cooling the remaining part to the return temperature of 25 °C. The screening of working fluids considered 18 pure working fluids and all possible binary mixtures of these fluids. The most promising solutions...... heat supply system while being economically competitive to pure fluids....

  6. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter

    International Nuclear Information System (INIS)

    Sato, Kazutoshi; Inoue, Jun; Watanabe, Masahiro

    2014-01-01

    Abnormal sea-ice retreat over the Barents Sea during early winter has been considered a leading driver of recent midlatitude severe winters over Eurasia. However, causal relationships between such retreat and the atmospheric circulation anomalies remains uncertain. Using a reanalysis dataset, we found that poleward shift of a sea surface temperature front over the Gulf Stream likely induces warm southerly advection and consequent sea-ice decline over the Barents Sea sector, and a cold anomaly over Eurasia via planetary waves triggered over the Gulf Stream region. The above mechanism is supported by the steady atmospheric response to the diabatic heating anomalies over the Gulf Stream region obtained with a linear baroclinic model. The remote atmospheric response from the Gulf Stream would be amplified over the Barents Sea region via interacting with sea-ice anomaly, promoting the warm Arctic and cold Eurasian pattern. (letter)

  7. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  8. Pilot-Streaming: Design Considerations for a Stream Processing Framework for High-Performance Computing

    OpenAIRE

    Andre Luckow; Peter Kasson; Shantenu Jha

    2016-01-01

    This White Paper (submitted to STREAM 2016) identifies an approach to integrate streaming data with HPC resources. The paper outlines the design of Pilot-Streaming, which extends the concept of Pilot-abstraction to streaming real-time data.

  9. Impact of Seasonal Heat Accumulation on Operation of Geothermal Heat Pump System with Vertical Ground Heat Exchanger

    Science.gov (United States)

    Timofeev, D. V.; Malyavina, E. G.

    2017-11-01

    The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.

  10. Recent developments in nucleonic control systems and on-stream analysers for the mineral and coal industries

    International Nuclear Information System (INIS)

    Mathew, P.J.

    1994-01-01

    Some recent developments in industrial nuclear gauging in Australia are briefly reviewed. Quality control, process control and automation in the mineral and coal industries are based on measurements of the composition and flows of critical process stream. Australia's vast mineral wealth and its importance to the national economy has resulted in CSIRO (Commonwealth Scientific and Industrial Research Organisation) successfully developing and commercializing a variety of nucleonic gauges to meet the needs of the mineral and coal industries. These include gauges for on-line determination of the ash content of coal on conveyor belts, the ash content of solids of weight fraction of coal in slurries, on-stream determination of iron, alumina and manganese in iron ore, bulk analysis of raw feed limestone in the cement industry, and gauges for the measurement of level, moisture, and interfaces. A variety of gauges based on natural radioactivity have also been developed. Instruments based on natural gamma radiation are relatively inexpensive, and free of artificial radiation sources. An on-stream analyser based on natural gamma ray activity has been developed for monitoring the soil content of sugar cane. Significant benefits accrued to industry in using nucleonic gauges are briefly discussed. (author). 18 refs., 8 figs

  11. Heat damaged forages: effects on forage energy content

    Science.gov (United States)

    Traditionally, educational materials describing the effects of heat damage within baled hays have focused on reduced bioavailability of crude protein as a result of Maillard reactions. These reactions are not simple, but actually occur in complex, multi-step pathways. Typically, the initial step inv...

  12. Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R

    Directory of Open Access Journals (Sweden)

    Michael Hahsler

    2017-02-01

    Full Text Available In recent years, data streams have become an increasingly important area of research for the computer science, database and statistics communities. Data streams are ordered and potentially unbounded sequences of data points created by a typically non-stationary data generating process. Common data mining tasks associated with data streams include clustering, classification and frequent pattern mining. New algorithms for these types of data are proposed regularly and it is important to evaluate them thoroughly under standardized conditions. In this paper we introduce stream, a research tool that includes modeling and simulating data streams as well as an extensible framework for implementing, interfacing and experimenting with algorithms for various data stream mining tasks. The main advantage of stream is that it seamlessly integrates with the large existing infrastructure provided by R. In addition to data handling, plotting and easy scripting capabilities, R also provides many existing algorithms and enables users to interface code written in many programming languages popular among data mining researchers (e.g., C/C++, Java and Python. In this paper we describe the architecture of stream and focus on its use for data stream clustering research. stream was implemented with extensibility in mind and will be extended in the future to cover additional data stream mining tasks like classification and frequent pattern mining.

  13. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    Energy Technology Data Exchange (ETDEWEB)

    Weisbrod, Kirk Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clark, David Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.

  14. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    International Nuclear Information System (INIS)

    Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John; Clark, David Lewis

    2016-01-01

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.

  15. Overview of gap streaming experiments for ITER at JAERI/FNS

    International Nuclear Information System (INIS)

    Konno, Ch.; Maekawa, F.; Oyama, Y.; Uno, Y.; Kasugai, Y.; Wada, M.; Maekawa, H.; Ikeda, Y.

    1998-01-01

    Gap streaming experiments were performed by using a D-T neutron source, FNS, at Japan Atomic Energy Research Institute as a part of an ITER/EDA R and D Task (T-218), in order to investigate the influence of neutron streaming due to gap between shielding blanket modules in ITER. The direct gap increased 14-MeV neutron flux by 20 times at the cavity center and rear surface of the experimental assembly, while the offset gap increased by 3 times. On the other hand the increase of neutrons below 1 MeV and gamma-rays was less than a few tens % even for the direct gap assemblies. This result suggests that gap streaming has a large influence on helium production and radiation damage sensitive to high energy neutrons rather than on gamma heating. Calculated values agreed within ±30 % with most of the experimental data. This result demonstrates that the MCNP code with the FENDL/E-1.1 and JENDL Fusion File cross section libraries can be used with reliance for shield designs of ITER for configuration with gap if the geometry is modeled precisely. (authors)

  16. Innovation in radioactive wastewater-stream management. Pt. 1

    International Nuclear Information System (INIS)

    Karameldin, A.

    2002-01-01

    Recently an invention of a system for volume reduction of the wastewater streams present in SDTs has been achieved. This system substantially utilized the air conditioning and ventilation techniques in water transfer from the wastewater to air. This process is promoted by a mutual heating and humidification of a compressed dry air introduced through SDTs (or in another tank). From the probable release of radioactive nuclides point of view, the analysis of the evaporation of waste streams present in SDTs have been indicated that the proposed optimal evaporating temperature is round 75 C. The design curve of the daily volumetric reduction of the wastewater streams versus the necessary volumetric airflow rates at different operating temperature has been achieved. The evaporating temperature varied from 40 C to 95 C with a step of 5 C. The obtained curve illustrates that the required volumetric airflow rate utilized to evaporate one m 3 /day (when maintaining SDTs at the temperature 75 C) is less than 90 m 3 /h. The assessments of the obtained curve have been indicated that this system is feasible and viable, economic and has no secondary waste residuals. Recently, an experimental facility proposed to be constructed to obtain the optimal operating parameters of the system, regarding to the probable emissions of the radioactive nuclides within the permissible release limits. (authors)

  17. Distribution of temperature and moisture content fields in a rectangular beet pulp particle during convection drying

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2018-01-01

    Full Text Available The mathematical model describing distribution of fields of temperatures and moisture contents in a particle of a squared beet press at convective drying is given. As the initial equations the differential equations of material and thermal balances in which transfer of warmth and weight is caused by phase transformations have been accepted. The algorithm of the numerical solution of a non-stationary regional problem of heat conductivity with variable heat and mass transfer coefficients of the dried-up product, boundary and entry conditions and also phase transition with mobile limit of the section of phases is developed for the solution of mathematical model. At the same time the initial system of the equations is given to a dimensionless look. For the solution of a problem of non-stationary heat conductivity the zone method of calculation of temperature fields when drying a beet press is used. Process of drying broke into some time intervals. Within each interval geometrical form of a particle, its density, heatphysical and mass-exchanged characteristics; initial distribution of temperature and moisture content on particle volume and also density of a mass and thermal stream with the evaporated moisture are constant. The zone method of the solution of a problem of the non-stationary three-dimensional equation of heat conductivity for a parallelepiped taking into account internal sources of warmth has been checked on experimental data of stationary drying of a beet press with use of basic data. For realization of a zone method dependences of change of the linear size of a particle of a beet press on spatial coordinate x and its moisture content in the course of drying are received. At constant values of moisture content and the sizes of the party of the dried-up particle on each step the method of a machine experiment has found the current values of coefficient of phase transformation on condition of the maximum rapprochement of settlement and

  18. Benthic invertebrate fauna, small streams

    Science.gov (United States)

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  19. Heat exchanger for coal gasification process

    Science.gov (United States)

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  20. Inventory of miscellaneous streams

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-09-01

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column

  1. The empirical potential of live streaming beyond cognitive psychology

    Directory of Open Access Journals (Sweden)

    Alexander Nicolai Wendt

    2017-03-01

    Full Text Available Empirical methods of self-description, think aloud protocols and introspection have been extensively criticized or neglected in behaviorist and cognitivist psychology. Their methodological value has been fundamentally questioned since there apparently is no suficient proof for their validity. However, the major arguments against self-description can be critically reviewed by theoretical psychology. This way, these methods’ empirical value can be redeemed. Furthermore, self-descriptive methods can be updated by the use of contemporary media technology. In order to support the promising perspectives for future empirical research in the field of cognitive psychology, Live Streaming is proposed as a viable data source. Introducing this new paradigm, this paper presents some of the formal constituents and accessible contents of Live Streaming, and relates them to established forms of empirical research. By its structure and established usage, Live Streaming bears remarkable resemblances to the traditional methods of self-description, yet it also adds fruitful new features of use. On the basis of its qualities, the possible benefits that appear to be feasible in comparison with the traditional methods of self-description are elaborated, such as Live Streaming’s ecological validity. Ultimately, controversial theoretical concepts, such as those in phenomenology and cultural-historical psychology, are adopted to sketch further potential benefits of the utility of Live Streaming in current psychology debates.

  2. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    International Nuclear Information System (INIS)

    Cochran, H.D. Jr.

    1978-01-01

    An improved method of monitoring the mass flow rate of a substance entering a coherent fluid stream is described. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance

  3. Time-Based Data Streams: Fundamental Concepts for a Data Resource for Streams

    Energy Technology Data Exchange (ETDEWEB)

    Beth A. Plale

    2009-10-10

    Real time data, which we call data streams, are readings from instruments, environmental, bodily or building sensors that are generated at regular intervals and often, due to their volume, need to be processed in real time. Often a single pass is all that can be made on the data, and a decision to discard or keep the instance is made on the spot. Too, the stream is for all practical purposes indefinite, so decisions must be made on incomplete knowledge. This notion of data streams has a different set of issues from a file, for instance, that is byte streamed to a reader. The file is finite, so the byte stream is becomes a processing convenience more than a fundamentally different kind of data. Through the duration of the project we examined three aspects of streaming data: the first, techniques to handle streaming data in a distributed system organized as a collection of web services, the second, the notion of the dashboard and real time controllable analysis constructs in the context of the Fermi Tevatron Beam Position Monitor, and third and finally, we examined provenance collection of stream processing such as might occur as raw observational data flows from the source and undergoes correction, cleaning, and quality control. The impact of this work is severalfold. We were one of the first to advocate that streams had little value unless aggregated, and that notion is now gaining general acceptance. We were one of the first groups to grapple with the notion of provenance of stream data also.

  4. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  5. A Contents Encryption Mechanism Using Reused Key in IPTV

    Science.gov (United States)

    Jeong, Yoon-Su; Kim, Yong-Tae; Cho, Young-Bok; Lee, Ki-Jeong; Park, Gil-Cheol; Lee, Sang-Ho

    Recently IPTV is being spotlighted as a new stream service to stably provide video, audio and control signals to subscribers through the application of IP protocol. However, the IPTV system is facing more security threats than the traditional TV. This study proposes a multicasting encryption mechanism for secure transmission of the contents of IPTV by which the content provider encrypts their contents and send the encrypted contents and the key used for encryption of the contents to the user. In order to reduce the time and cost of Head-End, the proposed mechanism encrypts the media contents at the Head-End, embeds the code of the IPTV terminal used at the Head-End in the media contents for user tracking, and performs desynchronization for protection of the media contents from various attacks.

  6. SPATIO-TEMPORAL VARIATIONS IN MACROINVERTEBRATE ASSEMBLAGES OF NEW CALEDONIAN STREAMS.

    Directory of Open Access Journals (Sweden)

    MARY N. J.

    2002-01-01

    Full Text Available Forty-one sites located on 14 New Caledonian streams were surveyed four times between October 1996 and October 1997 in order to examine the spatial and temporal changes in the structure of the benthic macroinvertebrate communities. About 250 000 invertebrates representing 167 taxa were collected in the streams. Seventy-five percent of identified taxa and 67% of individuals were insects. Major spatial and temporal changes in the composition of the fauna were detected by multivariate analyses (ordination and classification. Overall, the number of individuals was significantly higher in the dry season (October than in the wetter seasons (January and June. However, a low temporal variability was detected in the structure of benthic communities during the sampling period. A cluster analysis based on taxonomic composition separated five groups of sites in relation with rock type, land use, and geographic characteristics. Several metrics (total invertebrate density, taxon richness, relative abundance of major invertebrate groups, diversity indices were used to characterize each group of sites. Forested streams, where the highest specific diversity occurred, represented the most speciose habitat for benthic fauna. A less rich and abundant fauna occurred in streams draining ultramafic rocks probably because of their low content in food resources and organic matter.

  7. Thermometry, calorimetry, and mean body temperature during heat stress.

    Science.gov (United States)

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  8. An Efficient Resource Management System for a Streaming Media Distribution Network

    Science.gov (United States)

    Cahill, Adrian J.; Sreenan, Cormac J.

    2006-01-01

    This paper examines the design and evaluation of a TV on Demand (TVoD) system, consisting of a globally accessible storage architecture where all TV content broadcast over a period of time is made available for streaming. The proposed architecture consists of idle Internet Service Provider (ISP) servers that can be rented and released dynamically…

  9. Scenario driven data modelling: a method for integrating diverse sources of data and data streams

    Science.gov (United States)

    2011-01-01

    Background Biology is rapidly becoming a data intensive, data-driven science. It is essential that data is represented and connected in ways that best represent its full conceptual content and allows both automated integration and data driven decision-making. Recent advancements in distributed multi-relational directed graphs, implemented in the form of the Semantic Web make it possible to deal with complicated heterogeneous data in new and interesting ways. Results This paper presents a new approach, scenario driven data modelling (SDDM), that integrates multi-relational directed graphs with data streams. SDDM can be applied to virtually any data integration challenge with widely divergent types of data and data streams. In this work, we explored integrating genetics data with reports from traditional media. SDDM was applied to the New Delhi metallo-beta-lactamase gene (NDM-1), an emerging global health threat. The SDDM process constructed a scenario, created a RDF multi-relational directed graph that linked diverse types of data to the Semantic Web, implemented RDF conversion tools (RDFizers) to bring content into the Sematic Web, identified data streams and analytical routines to analyse those streams, and identified user requirements and graph traversals to meet end-user requirements. Conclusions We provided an example where SDDM was applied to a complex data integration challenge. The process created a model of the emerging NDM-1 health threat, identified and filled gaps in that model, and constructed reliable software that monitored data streams based on the scenario derived multi-relational directed graph. The SDDM process significantly reduced the software requirements phase by letting the scenario and resulting multi-relational directed graph define what is possible and then set the scope of the user requirements. Approaches like SDDM will be critical to the future of data intensive, data-driven science because they automate the process of converting

  10. A Numerical Examination of the Long-Term Coherency of Meteoroid Streams in Near-Earth Orbit

    Science.gov (United States)

    Grazier, K. R.; Lipschutz, M. E.

    2000-05-01

    The statement that some small bodies in the Solar System--asteroids, comets, meteors (of cometary origin)--travel in co-orbital streams, would be accepted by planetary scientists without argument. After all, streams have been observed of fragments of at least one comet (Scotti and Melosh, 1993; Weaver et al., 1993), asteroids (Drummond, 1991; Rabinowitz et al., 1993; Binzel and Xu, 1993) and meteoroids of asteroidal origin, like Innisfree (Halliday et al., 1990; cf. Drummond, 1991). Whether members of a stream can be recognized from compositional studies of meteorites recovered on Earth and linked to a common source is more controversial since such linkage would imply variations in the Earth's sampling of extraterrestrial material that persist for tens of Myr. The dates of fall of H chondrites show that many - including Clusters in May, 1855-1895, September, 1812-1831 and Sept.-Oct., 1843-1992 -- apparently derive from specific meteoroids (Lipschutz et al., 1997). Contents of highly volatile elements in these 3 Clusters (selected by one criterion, fall circumstances), when analyzed using multivariate statistical techniques demonstrate that members of each Cluster (i.e. stream) are recognizable by a totally different characteristic criterion: a thermal history distinguishable from those of random H chondrite falls (cf. Lipschutz et al., 1997, for specific references). Antarctic H chondrites with terrestrial ages 50 Myr (Michlovich et al., 1995) also show this. Metallographic and thermoluminescence data for these H chondrites also reflect their thermal histories, and support the existence of such meteoroid streams (Sears et al., 1991; Benoit and Sears, 1993), but cosmogenic noble gas contents do not (Loeken et al., 1993; Schultz and Weber, 1996). Important unanswered orbital dynamic questions are how long a meteoroid stream should be recognizable and what dynamic conditions are implied by Clusters, whose members have cosmic ray exposure ages of some Myr. To begin to

  11. Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers

    Science.gov (United States)

    Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.

    2015-01-01

    The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…

  12. Harmonic analyses of stream temperatures in the Upper Colorado River Basin

    Science.gov (United States)

    Steele, T.D.

    1985-01-01

    Harmonic analyses were made for available daily water-temperature records for 36 measurement sites on major streams in the Upper Colorado River Basin and for 14 measurement sites on streams in the Piceance structural basin. Generally (88 percent of the station years analyzed), more than 80 percent of the annual variability of temperatures of streams in the Upper Colorado River Basin was explained by the simple-harmonic function. Significant trends were determined for 6 of the 26 site records having 8 years or more record. In most cases, these trends resulted from construction and operation of upstream surface-water impoundments occurring during the period of record. Regional analysis of water-temperature characteristics at the 14 streamflow sites in the Piceance structural basin indicated similarities in water-temperature characteristics for a small range of measurement-site elevations. Evaluation of information content of the daily records indicated that less-than-daily measurement intervals should be considered, resulting in substantial savings in measurement and data-processing costs. (USGS)

  13. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  14. Stream systems.

    Science.gov (United States)

    Jack E. Williams; Gordon H. Reeves

    2006-01-01

    Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...

  15. A stream sediment orientation programme for Uranium in the Alligator River Province, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Gingrich, J.E.; Foy, M.F.

    1977-01-01

    Sediments samples were collected from streams draining the Koongarra uranium deposit and the small uranium mines in the South Alligator Valley. Determinations for U, Cu and Pb on various size fractions taken from each of these samples indicated that the best results were obtained for U from the minus 200-mesh fraction, but the train from the Koongarra ore deposit was very short. Cu and Pb were not found to be very useful as indicator elements for U. Alpha-track films were used to determine the Rn content of each sample and the ratio of alpha-track film reading to U content was found to define anomalous drainage areas around the mineralization in the Koongarra area. The areas so defined were of sufficient magnitude to be defined in a reconnaissance stream sediment programme

  16. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    Science.gov (United States)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  17. Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture.

    Science.gov (United States)

    Ganguly, Sujoy; Williams, Lucy S; Palacios, Isabel M; Goldstein, Raymond E

    2012-09-18

    Cells can localize molecules asymmetrically through the combined action of cytoplasmic streaming, which circulates their fluid contents, and specific anchoring mechanisms. Streaming also contributes to the distribution of nutrients and organelles such as chloroplasts in plants, the asymmetric position of the meiotic spindle in mammalian embryos, and the developmental potential of the zygote, yet little is known quantitatively about the relationship between streaming and the motor activity which drives it. Here we use Particle Image Velocimetry to quantify the statistical properties of Kinesin-dependent streaming during mid-oogenesis in Drosophila. We find that streaming can be used to detect subtle changes in Kinesin activity and that the flows reflect the architecture of the microtubule cytoskeleton. Furthermore, based on characterization of the rheology of the cytoplasm in vivo, we establish estimates of the number of Kinesins required to drive the observed streaming. Using this in vivo data as the basis of a model for transport, we suggest that the disordered character of transport at mid-oogenesis, as revealed by streaming, is an important component of the localization dynamics of the body plan determinant oskar mRNA.

  18. Ocean carbon and heat variability in an Earth System Model

    Science.gov (United States)

    Thomas, J. L.; Waugh, D.; Gnanadesikan, A.

    2016-12-01

    Ocean carbon and heat content are very important for regulating global climate. Furthermore, due to lack of observations and dependence on parameterizations, there has been little consensus in the modeling community on the magnitude of realistic ocean carbon and heat content variability, particularly in the Southern Ocean. We assess the differences between global oceanic heat and carbon content variability in GFDL ESM2Mc using a 500-year, pre-industrial control simulation. The global carbon and heat content are directly out of phase with each other; however, in the Southern Ocean the heat and carbon content are in phase. The global heat mutli-decadal variability is primarily explained by variability in the tropics and mid-latitudes, while the variability in global carbon content is primarily explained by Southern Ocean variability. In order to test the robustness of this relationship, we use three additional pre-industrial control simulations using different mesoscale mixing parameterizations. Three pre-industrial control simulations are conducted with the along-isopycnal diffusion coefficient (Aredi) set to constant values of 400, 800 (control) and 2400 m2 s-1. These values for Aredi are within the range of parameter settings commonly used in modeling groups. Finally, one pre-industrial control simulation is conducted where the minimum in the Gent-McWilliams parameterization closure scheme (AGM) increased to 600 m2 s-1. We find that the different simulations have very different multi-decadal variability, especially in the Weddell Sea where the characteristics of deep convection are drastically changed. While the temporal frequency and amplitude global heat and carbon content changes significantly, the overall spatial pattern of variability remains unchanged between the simulations.

  19. The Consequences of Unpredictable Development of Economic Conditions on Heat Exchanger Network Configurations and Economic Results

    DEFF Research Database (Denmark)

    Mou, C.; Qvale, Einar Bjørn

    2002-01-01

    streams. The primary objective of the present work was to gain an understanding of the influence of dramatic economic changes on heat exchanger network (HEN) configurations, their profitability and how an existing HEN could restrict future possibilities of heat recovery. HENs were designed to maximise...

  20. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.

    Science.gov (United States)

    Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery

    2009-06-01

    For geological sequestration of carbon dioxide (CO2) separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This study estimated the flue gas impurities to be included in the CO2 stream separated from a CO2 control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO2) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO2 and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO2 could be included in the separated CO2 stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO2 of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO2 concentration below 40 ppmw in the separated CO2 stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO2 streams. In addition to SO2, mercury, and other impurities in separated CO2 streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning

  1. Optimization criteria for low temperature waste heat utilization

    International Nuclear Information System (INIS)

    Kranebitter, F.

    1977-01-01

    A special case in this field is the utilization of very low temperature waste heat. The temperature level under consideration in this paper is in the range between the body temperature of human beings and their environment. The waste heat from power generation and industrial processes is also considered. Thermal energy conversion will be mainly accomplished by heat cycles where discharged waste heat is reverse proportional to the upper cycle temperature. Limiting this upper cycle temperature by technological reasons the optimization of the heat cycle will depend on the nature of the cycle itself and specially on the temperature selected for the heat discharge. The waste heat discharge is typical for the different kinds of heat cycles and the paper presents the four most important of them. Feasible heat transfer methods and their economic evaluations are discussed and the distillation processes will be the basis for further considerations. The waste heat utilization for distillation purposes could be realized by three different cycles, the open cycle, the closed cycle and the multy cycle. Resulting problems as deaeration of large water streams and removal of the dissolved gases and their solutions are also discussed. (M.S.)

  2. The influence of riparian woodland on the spatial and temporal variability of stream water temperatures in an upland salmon stream

    Directory of Open Access Journals (Sweden)

    I. A. Malcolm

    2004-01-01

    Full Text Available The spatio-temporal variability of stream water temperatures was investigated at six locations on the Girnock Burn (30km2 catchment, Cairngorms, Scotland over three hydrological years between 1998 and 2002. The key site-specific factors affecting the hydrology and climatology of the sampling points were investigated as a basis for physical process inference. Particular emphasis was placed on assessing the effects of riparian forest in the lower catchment versus the heather moorland riparian zones that are spatially dominant in the upper catchment. The findings were related to river heat budget studies that provided process detail. Gross changes in stream temperature were affected by the annual cycle of incoming solar radiation and seasonal changes in hydrological and climatological conditions. Inter-annual variation in these controlling variables resulted in inter-annual variability in thermal regime. However, more subtle inter-site differences reflected the impact of site-specific characteristics on various components of the river energy budget. Inter-site variability was most apparent at shorter time scales, during the summer months and for higher stream temperatures. Riparian woodland in the lower catchment had a substantial impact on thermal regime, reducing diel variability (over a period of 24 hours and temperature extremes. Observed inter-site differences are likely to have a substantial effect on freshwater ecology in general and salmonid fish in particular. Keywords: temperature, thermal regime, forest, salmon, hydrology, Girnock Burn, Cairngorm

  3. PROXY-BASED PATCHING STREAM TRANSMISSION STRATEGY IN MOBILE STREAMING MEDIA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liao Jianxin; Lei Zhengxiong; Ma Xutao; Zhu Xiaomin

    2006-01-01

    A mobile transmission strategy, PMPatching (Proxy-based Mobile Patching) transmission strategy is proposed, it applies to the proxy-based mobile streaming media system in Wideband Code Division Multiple Access (WCDMA) network. Performance of the whole system can be improved by using patching stream to transmit anterior part of the suffix that had been played back, and by batching all the demands for the suffix arrived in prefix period and patching stream transmission threshold period. Experimental results show that this strategy can efficiently reduce average network transmission cost and number of channels consumed in central streaming media server.

  4. Experimental investigation of thermal conduction and related phenomena in a laser heated plasma

    International Nuclear Information System (INIS)

    Gray, D.R.

    1979-02-01

    Thermal conduction in plasmas is of major importance especially in controlled nuclear fusion studies. Direct measurements are rare. When the temperature gradient in a plasma becomes large enough classical thermal conduction (Heat flux q = -kΔT) no longer applies and it is thought that q is limited to some fraction of the free streaming limit qsub(m). The main experiment is the heating of a z-pinch plasma by a fast rising, intense carbon dioxide laser pulse. Electron temperature and density in time and space are diagnosed by ruby laser scattering. The profiles obtained were consistent with a flux limited to approximately 3% of the free streaming limit. Ion acoustic turbulence is observed along the temperature gradient. It is shown that the observed turbulence level is consistent with the heat flux limitation. At electron densities > 10 17 cm -3 backscattered light is observed from the plasma whose growth rate implies that it is Brillouin scattered. (author)

  5. Effect of whole cottonseed, plus lanolin heat-treated whole ...

    African Journals Online (AJOL)

    Milk protein content or yield was not affected by any of the treatments. ... The higher (P < 0.01) C18:2 content of milk fat on the HWCS Eeatment indicated that heat fteatment ... where heat-treated soybeans were compared with raw soy- beans ...

  6. High frequency parametric wave phenomena and plasma heating: a review

    International Nuclear Information System (INIS)

    Porkolab, M.

    1975-11-01

    A survey of parametric instabilities in plasma, and associated particle heating, is presented. A brief summary of linear theory is given. The physical mechanism of decay instability, the purely growing mode (oscillating two-stream instability) and soliton and density cavity formation is presented. Effects of density gradients are discussed. Possible nonlinear saturation mechanisms are pointed out. Experimental evidence for the existence of parametric instabilities in both unmagnetized and magnetized plasmas is reviewed in some detail. Experimental observation of plasma heating associated with the presence of parametric instabilities is demonstrated by a number of examples. Possible application of these phenomena to heating of pellets by lasers and heating of magnetically confined fusion plasmas by high power microwave sources is discussed

  7. Research status and evaluation system of heat source evaluation method for central heating

    Science.gov (United States)

    Sun, Yutong; Qi, Junfeng; Cao, Yi

    2018-02-01

    The central heating boiler room is a regional heat source heating center. It is also a kind of the urban environment pollution, it is an important section of building energy efficiency. This article through to the evaluation method of central heating boiler room and overviews of the researches during domestic and overseas, summarized the main influence factors affecting energy consumption of industrial boiler under the condition of stable operation. According to the principle of establishing evaluation index system. We can find that is great significance in energy saving and environmental protection for the content of the evaluation index system of the centralized heating system.

  8. Evaluation of the streaming-matrix method for discrete-ordinates duct-streaming calculations

    International Nuclear Information System (INIS)

    Clark, B.A.; Urban, W.T.; Dudziak, D.J.

    1983-01-01

    A new deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) is applied to two realistic duct-shielding problems. The results are compared to standard discrete-ordinates and Monte Carlo calculations. The SMHM shows promise as an alternative deterministic streaming method to standard discrete-ordinates

  9. Wurf.it: A Network Coding Reliable Multicast Content Streaming Solution

    DEFF Research Database (Denmark)

    Hernandez, Nestor; Pihl, Jeppe; Heide, Janus

    demonstrator consists of stored simulations with ns-3 in a laptop and a Wurf.it implementation within a WiFi network. For the implementation, a video content from a mobile camera is distributed with low delay using SCORE to a set of heterogenous receivers (e.g. dierent platforms). Use cases of Wurf.it are mild...

  10. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  11. Stream temperature estimated in situ from thermal-infrared images: best estimate and uncertainty

    International Nuclear Information System (INIS)

    Iezzi, F; Todisco, M T

    2015-01-01

    The paper aims to show a technique to estimate in situ the stream temperature from thermal-infrared images deepening its best estimate and uncertainty. Stream temperature is an important indicator of water quality and nowadays its assessment is important particularly for thermal pollution monitoring in water bodies. Stream temperature changes are especially due to the anthropogenic heat input from urban wastewater and from water used as a coolant by power plants and industrial manufacturers. The stream temperatures assessment using ordinary techniques (e.g. appropriate thermometers) is limited by sparse sampling in space due to a spatial discretization necessarily punctual. Latest and most advanced techniques assess the stream temperature using thermal-infrared remote sensing based on thermal imagers placed usually on aircrafts or using satellite images. These techniques assess only the surface water temperature and they are suitable to detect the temperature of vast water bodies but do not allow a detailed and precise surface water temperature assessment in limited areas of the water body. The technique shown in this research is based on the assessment of thermal-infrared images obtained in situ via portable thermal imager. As in all thermographic techniques, also in this technique, it is possible to estimate only the surface water temperature. A stream with the presence of a discharge of urban wastewater is proposed as case study to validate the technique and to show its application limits. Since the technique analyzes limited areas in extension of the water body, it allows a detailed and precise assessment of the water temperature. In general, the punctual and average stream temperatures are respectively uncorrected and corrected. An appropriate statistical method that minimizes the errors in the average stream temperature is proposed. The correct measurement of this temperature through the assessment of thermal- infrared images obtained in situ via portable

  12. Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams

    DEFF Research Database (Denmark)

    Nimptsch, Jorge; Woelfl, Stefan; Osorio, Sebastian

    2015-01-01

    Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradabilit...

  13. Auxiliary heat exchanger for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Ecker, H.; Gasch, K.; Lischer, R.; Spilker, H.

    1978-01-01

    The proposal concerns the design configuration of the individual components of a heat exchanger with circular cross-section, being placed within a lined pod of the concrete shell of the pressure vessel. The heat exchanger has got a vertical cooler installed below the circulator. The components are arranged in such manner that the access to the pipe lines for in-service inspections is assured. Uniform velocity distribution of the gas streaming into the cooler from below is to be achieved. (GL) 891 GL/GL 892 MKO [de

  14. Heating of Solar Wind Ions via Cyclotron Resonance

    Science.gov (United States)

    Navarro, R.; Moya, P. S.; Figueroa-Vinas, A.; Munoz, V.; Valdivia, J. A.

    2017-12-01

    Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently deviate from thermal equilibrium in the form of relative streaming between species components, temperature anisotropy, etc. These non-thermal features represent a source of free energy for the excitation of kinetic instabilities and fluctuations in the plasma. In this regard, it is believed that plasma particles can be heated, through a second order Fermi acceleration process, by multiple resonances with unstable counter-propagating field-aligned Ion-cyclotron waves. For multi-species plasmas, several collective wave modes participate in this process. In this work, we test this model by studying the percentage of ions that resonate with the waves modes described by the proper kinetic multi-species dispersion relation in a solar-wind-like plasma composed of electrons, protons, and alpha particles. Numerical results are compared with WIND spacecraft data to test its relevance for the existence of thresholds for the preferential perpendicular heating of He+2 ions as observed in the solar wind fast streams.

  15. Accumulation of anthropogenic radionuclides in crops in conditions of water stream and classical hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Mayrapetyan, Khachatur; Hovsepyan, Albert; Daryadar, Mahsa; Alexanyan, Julietta; Tovmasyan, Anahit; Ghalachyan, Laura; Tadevosyan, Anna; Mayrapetyan, Stepan [Institute of Hydroponics Problems, NAS, Noragyugh 108, 0082, Yerevan (Armenia)

    2014-07-01

    Natural and artificial radionuclides (RN) dangerous for health are emitted into ecosystems because of human anthropogenic activities in the field of nuclear energetics. Biologically artificial RN {sup 90}Sr(T{sub 1/2}=28,6 years) and {sup 137}Cs (T{sub 1/2}=30,1 years)are very dangerous. Therefore obtaining radio-ecologically safe raw material of high quality is a very urgent problem now. Taking into account the above mentioned, in order to obtain ecologically safe raw material we carried out comparative radiochemical investigations on essential oil and medicinal plants peppermint(Mentha piperita L.) and sweet basil (Ocimum basilicum L.) grown in new water-stream (continuous, gully, cylindrical) and classical hydroponics, with the aim of revealing accumulation peculiarities of {sup 90}Sr and {sup 137}Cs. The results of experiments have shown that in classical hydroponics peppermint and sweet basil exceeded the same indices of water-stream hydroponics with {sup 90}Sr and {sup 137}Cs content 1,1-1,2; 1,2-1,3 and 1,5-1,8; 1,4-1,8 times, respectively. Moreover, sweet basil exceeded peppermint in water-stream hydroponics {sup 90}Sr 1,3-1,6; {sup 137}Cs 1,2-1,4 times and in classical hydroponics {sup 90}Sr 1,6; {sup 137}Cs 1,2 times. The content of controlled artificial RN in raw material did not exceed the allowed concentration limit (ACL). New water-stream hydroponics system worked out in Institute of Hydroponics Problems is a radio-ecologically more profitable method for producing raw material than classical hydroponics. At the same time water-stream hydroponics system in comparison with classical hydroponics promoted productivity (dry raw material) increase of peppermint and sweet basil 1,1-1,4 times. (authors)

  16. Consequences of variation in stream-landscape connections for stream nitrate retention and export

    Science.gov (United States)

    Handler, A. M.; Helton, A. M.; Grimm, N. B.

    2017-12-01

    Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work

  17. A city scale study on the effects of intensive groundwater heat pump systems on heavy metal contents in groundwater.

    Science.gov (United States)

    García-Gil, Alejandro; Epting, Jannis; Garrido, Eduardo; Vázquez-Suñé, Enric; Lázaro, Jesús Mateo; Sánchez Navarro, José Ángel; Huggenberger, P; Calvo, Miguel Ángel Marazuela

    2016-12-01

    As a result of the increasing use of shallow geothermal resources, hydraulic, thermal and chemical impacts affecting groundwater quality can be observed with ever increasing frequency (Possemiers et al., 2014). To overcome the uncertainty associated with chemical impacts, a city scale study on the effects of intensive geothermal resource use by groundwater heat pump systems on groundwater quality, with special emphasis on heavy metal contents was performed. Statistical analysis of geochemical data obtained from several field campaigns has allowed studying the spatiotemporal relationship between temperature anomalies in the aquifer and trace element composition of groundwater. The relationship between temperature and the concentrations of trace elements resulted in weak correlations, indicating that temperature changes are not the driving factor in enhancing heavy metal contaminations. Regression models established for these correlations showed a very low reactivity or response of heavy metal contents to temperature changes. The change rates of heavy metal contents with respect to temperature changes obtained indicate a low risk of exceeding quality threshold values by means of the exploitation regimes used, neither producing nor enhancing contamination significantly. However, modification of pH, redox potential, electrical conductivity, dissolved oxygen and alkalinity correlated with the concentrations of heavy metals. In this case, the change rates of heavy metal contents are higher, with a greater risk of exceeding threshold values. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  19. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    International Nuclear Information System (INIS)

    De Bruin, D.

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab

  20. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    Energy Technology Data Exchange (ETDEWEB)

    De Bruin, D

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab.

  1. Energy and cost savings potential of oscillating heat pipes for waste heat recovery ventilation

    Directory of Open Access Journals (Sweden)

    Govinda Mahajan

    2017-11-01

    Full Text Available The feasibility of using finned oscillating heat pipes (OHPs for heat exchange between counter-flowing air streams in HVAC air systems (i.e., outdoor and exhaust air flows, along with the associated cost savings in typical North American climates, is investigated. For a prescribed temperature difference and volumetric flow rate of air, rudimentary design parameters for a viable OHP Heat Recovery Ventilator (OHP-HRV were determined using the ε-NTU (effectiveness-Number of Transfer Unit method. The two-phase heat transfer within the OHP-HRV is modeled via effective evaporation/condensation heat transfer coefficients, while the latent heat transfer required to initiate OHP operation via boiling and evaporation is also considered. Results suggest that an OHP-HRV can possess a reasonable pressure drop (5 kW. The proposed OHP-HRV can possess an effectiveness near 0.5 and can pre-cool/heat HVAC air by >5°C. Potential energy and cost savings associated with using an OHP-HRV were estimated for commercial building envelopes in various regions of the United States. It is found that the proposed OHP-HRV can save more than $2500 annually in cities that have continental climatic conditions, such as Chicago and Denver, and for the selected locations the average yearly cost savings per building is found to be on-the-order of $700. Overall, the OHP-HRV shows potential in effectively reducing energy consumption and the operational cost of air handling units in buildings.

  2. A morphological comparison of narrow, low-gradient streams traversing wetland environments to alluvial streams.

    Science.gov (United States)

    Jurmu, Michael C

    2002-12-01

    Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.

  3. Effectiveness of stream-sediment sampling along the Rio Ojo Caliente, New Mexico

    International Nuclear Information System (INIS)

    Wenrich-Verbeek, K.J.

    1977-01-01

    During 1976 a detailed geochemical study was conducted of the water and stream sediments in the tributaries of the Rio Ojo Caliente above the USGS gaging station 4 km below La Madera to determine: (1) the source of the anomaly in the water and (2) why the stream sediment samples did not contain a corresponding anomaly. The low uranium content of the stream sediments from these high uranium waters can be explained by (1) the presence of a ground water source for the uranium and (2) insufficient time for the uranium in the water to be adsorbed onto the sediments. Although a stream sediment anomaly in the streams containing high uranium waters can not be established with a size fraction less than 150 μm, enough uranium has been adsorbed by the fine fraction that a small local anomaly can be outlined using only the fraction size less than 90 μm. Thus, because adsorption appears to be a major control on the uranium in the fine fraction and detrital minerals control the uranium in the coarse fraction, if it is assumed that buried deposits are of prime importance because most surface deposits have been recognized, then sampling should be restricted to the fine fraction (less than 90 μm). Nevertheless, in a case where ground water is the contributing source for uranium, as was shown above by the low anomalous uranium values, even in the fine fraction, stream sediment sampling alone is not an effective technique for detecting uranium anomalies. This emphasizes the necessity of water sampling in conjunction with stream-sediment sampling

  4. Analysis and Implementation of Gossip-Based P2P Streaming with Distributed Incentive Mechanisms for Peer Cooperation

    Directory of Open Access Journals (Sweden)

    Sachin Agarwal

    2007-10-01

    Full Text Available Peer-to-peer (P2P systems are becoming a popular means of streaming audio and video content but they are prone to bandwidth starvation if selfish peers do not contribute bandwidth to other peers. We prove that an incentive mechanism can be created for a live streaming P2P protocol while preserving the asymptotic properties of randomized gossip-based streaming. In order to show the utility of our result, we adapt a distributed incentive scheme from P2P file storage literature to the live streaming scenario. We provide simulation results that confirm the ability to achieve a constant download rate (in time, per peer that is needed for streaming applications on peers. The incentive scheme fairly differentiates peers' download rates according to the amount of useful bandwidth they contribute back to the P2P system, thus creating a powerful quality-of-service incentive for peers to contribute bandwidth to other peers. We propose a functional architecture and protocol format for a gossip-based streaming system with incentive mechanisms, and present evaluation data from a real implementation of a P2P streaming application.

  5. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, R.; Ghosh, P.; Chowdhury, K. [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur (India)

    2012-07-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  6. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    International Nuclear Information System (INIS)

    Dutta, R.; Ghosh, P.; Chowdhury, K.

    2012-01-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  7. InSTREAM: the individual-based stream trout research and environmental assessment model

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  8. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinver...

  9. Modeling the dynamic operation of a small fin plate heat exchanger – parametric analysis

    Directory of Open Access Journals (Sweden)

    Motyliński Konrad

    2015-09-01

    Full Text Available Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700–900 °C is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the

  10. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Science.gov (United States)

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  11. Design study of plastic film heat exchanger

    Science.gov (United States)

    Guyer, E. C.; Brownell, D. L.

    1986-02-01

    This report presents the results of an effort to develop and design a unique thermoplastic film heat exchanger for use in an industrial heat pump evaporator system and other energy recovery applications. The concept for the exchanger is that of individual heat exchange elements formed by two adjoining and freely hanging plastic films. Liquid flows downward in a regulated fashion between the films due to the balance of hydrostatic and frictional forces. The fluid stream on the outside of film may be a free-falling liquid film, a condensing gas, or a noncondensing gas. The flow and structural principles are similar to those embodied in an earlier heat exchange system developed for use in waste water treatment systems (Sanderson). The design allows for high heat transfer rates while working within the thermal and structural limitations of thermoplastic materials. The potential of this new heat exchanger design lies in the relatively low cost of plastic film and the high inherent corrosion and fouling resistance. This report addresses the selection of materials, the potential heat transf er performance, the mechanical design and operation of a unit applied in a low pressure steam recovery system, and the expected selling price in comparison to conventional metallic shell and tube heat exchangers.

  12. Stream periphyton responses to mesocosm treatments of ...

    Science.gov (United States)

    A stream mesocosm experiment was designed to compare biotic responses among streams exposed to an equal excess specific conductivity target of 850 µS/cm relative to a control that was set for 200 µS/cm and three treatments comprised of different major ion contents. Each treatment and the control was replicated 4 times at the mesocosm scale (16 mesocosms total). The treatments were based on dosing the background mesocosm water, a continuous flow-through mixture of natural river water and reverse osmosis treated water, with stock salt solutions prepared from 1) a mixture of sodium chloride and calcium chloride (Na/Cl chloride), 2) sodium bicarbonate, and 3) magnesium sulfate. The realized average specific conductance over the first 28d of continuous dosing was 827, 829, and 847 µS/cm, for the chloride, bicarbonate, and sulfate based treatments, respectively, and did not differ significantly. The controls averaged 183 µS/cm. Here we focus on comparing stream periphyton communities across treatments based on measurements obtained from a Pulse-Amplitude Modulated (PAM) fluorometer. The fluorometer is used in situ and with built in algorithms distributes the total aerial algal biomass (µg/cm2) of the periphyton among cyanobacteria, diatoms, and green algae. A measurement is recorded in a matter of seconds and, therefore, many different locations can be measured with in each mesocosm at a high return frequency. Eight locations within each of the 1 m2 (0.3 m W x 3

  13. Remote-Handled Transuranic Content Codes

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2006-12-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  14. A Statistical Method to Predict Flow Permanence in Dryland Streams from Time Series of Stream Temperature

    Directory of Open Access Journals (Sweden)

    Ivan Arismendi

    2017-12-01

    Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  15. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    Science.gov (United States)

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  16. Record Desktop Activity as Streaming Videos for Asynchronous, Video-Based Collaborative Learning.

    Science.gov (United States)

    Chang, Chih-Kai

    As Web-based courses using videos have become popular in recent years, the issue of managing audiovisual aids has become noteworthy. The contents of audiovisual aids may include a lecture, an interview, a featurette, an experiment, etc. The audiovisual aids of Web-based courses are transformed into the streaming format that can make the quality of…

  17. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data.

    Science.gov (United States)

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev

    2017-06-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.

  18. Estimation of nitrate in aqueous discharge streams in presence of other anionic species

    International Nuclear Information System (INIS)

    Dhara, Amrita; Sonar, N.L.; Valsala, T.P.; Vishwaraj, I.

    2017-01-01

    In the PUREX process the spent fuel is dissolved in concentrated nitric acid for the recovery of U and Pu using 30% TBP solvent system. The added nitrates are reporting in the waste streams of reprocessing plant. In view of the environmental concern for nitrate discharges, it is essential to monitor the nitrate content in the radioactive waste streams. An analytical method based on nitration of salicylic acid in acidic medium was studied for its applicability in the estimation of nitrate in radioactive waste containing various other anions. The yellow colored complex formed absorbs at 410 nm in alkaline media. Interference of various anionic species like sulphide, chloride, ferrocyanide, phosphate etc present in different waste streams on the estimation of nitrate was studied. Nitrate could be estimated in radioactive waste in presence of other anionic species within an error of less than 6%. (author)

  19. Streaming Media in an Uncertain Legal Environment: A Model Policy and Best Practices for Academic Libraries

    Directory of Open Access Journals (Sweden)

    Tina M Adams

    2018-02-01

    Full Text Available As VCRs and DVD players become obsolete, online course offerings increase, and flipped pedagogy becomes ubiquitous, academic librarians are frequently confronted with requests from instructors for streaming media. The authors of this article describe the reasoning for and process by which a policy and best practices to manage streaming media requests were developed at a large public university. This policy is guided by the principles set forth in U.S. Copyright Act’s fair use doctrine (17 U.S.C. § 107 and ARL’s Code of Best Practices in Fair Use for Academic and Research Libraries (2012. The policy also includes a workflow for delivering streaming, ADA-compliant video content that cannot be licensed via conventional library means. Moreover, the comparative costs of purchasing subscription video collections versus licensing individual streaming videos at George Mason University are provided for the fiscal years 2013 through 2016.

  20. Productivity of Stream Definitions

    NARCIS (Netherlands)

    Endrullis, Jörg; Grabmayer, Clemens; Hendriks, Dimitri; Isihara, Ariya; Klop, Jan

    2007-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continuously in such a way that a uniquely determined stream is obtained as the limit. Whereas productivity is undecidable

  1. Productivity of stream definitions

    NARCIS (Netherlands)

    Endrullis, J.; Grabmayer, C.A.; Hendriks, D.; Isihara, A.; Klop, J.W.

    2008-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continually in such a way that a uniquely determined stream in constructor normal form is obtained as the limit. Whereas

  2. Effects of forest harvesting on summer stream temperatures in New Brunswick, Canada: an inter-catchment, multiple-year comparison

    Directory of Open Access Journals (Sweden)

    C. P.-A. Bourque

    2001-01-01

    Full Text Available This paper presents a pre- and post-harvest comparison of stream temperatures collected in five neighbouring streams (sub-catchments over a period of five years (1994-1998. The aim of the study was to determine whether land cover changes from clear cutting in areas outside forest buffer zones (applied to streams >0.5 m wide might contribute to an increase in summer mean stream temperatures in buffered streams downslope by infusion of warmed surface and sub-surface water into the streams. Specific relationships were observed in all five forest streams investigated. To assist in the analysis, several spatially-relevant variables, such as land cover change, mid-summer potential solar radiation, flow accumulation, stream location and slope of the land were determined, in part, from existing aerial photographs, GIS-archived forest inventory data and a digital terrain model of the study area. Spatial calculations of insolation levels for July 15th were used as an index of mid-summer solar heating across sub-catchments. Analysis indicated that prior to the 1995 harvest, differences in stream temperature could be attributed to (i topographic position and catchment-to-sun orientation, (ii the level of cutting that occurred in the upper catchment prior to the start of the study, and (iii the average slope within harvested areas. Compared to the pre-harvest mean stream temperatures in 1994, mean temperatures in the three streams downslope from the 1995 harvest areas increased by 0.3 to 0.7°C (representing a 4-8% increase; p-value of normalised temperatures Keywords: terrain attributes, solar radiation, land cover, forest buffers, New Brunswick regulations, spatial modelling, DEM, forest covertypes

  3. Process for carbonizing hard-to-heat bituminous material like shale

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K

    1921-11-29

    A process is described for carbonizing bituminous material, like shale, with the production of sufficient heat for carbonization by burning a part of the bitumen itself by means of a gas stream going in a circuit, to which oxygen in regulated amounts is admitted. It is characterized by the fact that the gas stream already cooled for detarring before its re-entrance into the carbonization chamber is mixed in the inlet channels with an amount of oxygen (air or other free oxygen containing gases), that without sintering or melting of the residue it is burned and the carbonization is carried out evenly.

  4. Supersonic Combustion of Hydrogen Jets System in Hypersonic Stream

    International Nuclear Information System (INIS)

    Zhapbasbaev, U.K.; Makashev, E.P.

    2003-01-01

    The data of calculated theoretical investigations of diffusive combustion of plane supersonic hydrogen jets in hypersonic stream received with Navier-Stokes parabola equations closed by one-para metrical (k-l) model of turbulence and multiply staged mechanism of hydrogen oxidation are given. Combustion mechanisms depending on the operating parameters are discussing. The influences of air stream composition and ways off fuel feed to the length of ignition delay and level quantity of hydrogen bum-out have been defined. The calculated theoretical results of investigations permit to make the next conclusions: 1. The diffusive combustion of the system of plane supersonic hydrogen jets in hypersonic flow happens in the cellular structures with alternation zones of intensive running of chemical reactions with their inhibition zones. 2. Gas dynamic and heat Mach waves cause a large - scale viscous formation intensifying mixing of fuel with oxidizer. 3. The system ignition of plane supersonic hydrogen jets in hypersonic airy co-flow happens with the formation of normal flame front of hydrogen airy mixture with transition to the diffusive combustion. 4. The presence of active particles in the flow composition initiates the ignition of hydrogen - airy mixture, provides the intensive running of chemical reactions and shortens the length of ignition delay. 5. The supersonic combustion of hydrogel-airy mixture is characterized by two zones: the intensive chemical reactions with an active energy heat release is occurring in the first zone and in the second - a slow hydrogen combustion limited by the mixing of fuel with oxidizer. (author)

  5. Estimating the Heat of Formation of Foodstuffs and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, Alan K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-11-23

    Calorie estimates for expressing the energy content of food are common, however they are inadequate for the purpose of estimating the chemically defined heat of formation of foodstuffs for two reasons. First, they assume utilization factors by the body.1,2,3 Second, they are usually based on average values for their components. The best way to solve this problem would be to measure the heat of combustion of each material of interest. The heat of formation can then be calculated from the elemental composition and the heats of formation of CO2, H2O, and SO2. However, heats of combustion are not always available. Sometimes elemental analysis only is available, or in other cases, a breakdown into protein, carbohydrates, and lipids. A simple way is needed to calculate the heat of formation from various sorts of data commonly available. This report presents improved correlations for relating the heats of combustion and formation to the elemental composition, moisture content, and ash content. The correlations are also able to calculate heats of combustion of carbohydrates, proteins, and lipids individually, including how they depend on elemental composition. The starting point for these correlations are relationships commonly used to estimate the heat of combustion of fossil fuels, and they have been modified slightly to agree better with the ranges of chemical structures found in foodstuffs and biomass.

  6. Auxiliary units for refining of high nitrogen content oils: Premium II refinery case

    Energy Technology Data Exchange (ETDEWEB)

    Nicolato, Paolo Contim; Pinotti, Rafael [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    PETROBRAS is constantly investing on its refining park in order to increase the production of clean and stable fuels and to be capable to process heavier oils with high contaminants content. Sulfur and nitrogen are the main heteroatoms present in petroleum. They are responsible for some undesirable fuels properties like corrosivity and instability, and also emit pollutants when burnt. Hydrotreating and hydrocracking processes are designed to remove these contaminants and adjust other fuel properties, generating, as byproduct, sour gases and sour water streams rich in H{sub 2}S and NH{sub 3}, which are usually sent to Sour Water Treatment Units and Sulfur Recovery Units. The regeneration of the amine used for the light streams treatment, as fuel gas and LPG, also generates sour gas streams that must be also sent to Sulfur Recovery Units. As the ammonia content in the sour streams increases, some design parameters must be adjusted to avoid increasing the Refinery emissions. Sulfur Recovery Units must provide proper NH3 destruction. Sour Water Treatment must have a proper segregation between H{sub 2}S and ammonia streams, whenever desirable. Amine Regeneration Systems must have an efficient procedure to avoid the ammonia concentration in the amine solution. This paper presents some solutions usually applied to the Petroleum Industry and analyses some aspects related to Premium II Refinery Project and how its design will help the Brazilian refining park to meet future environmental regulation and market demands. (author)

  7. Effect of heating system using a geothermal heat pump on the production performance and housing environment of broiler chickens.

    Science.gov (United States)

    Choi, H C; Salim, H M; Akter, N; Na, J C; Kang, H K; Kim, M J; Kim, D W; Bang, H T; Chae, H S; Suh, O S

    2012-02-01

    A geothermal heat pump (GHP) is a potential heat source for the economic heating of broiler houses with optimum production performance. An investigation was conducted to evaluate the effect of a heating system using a GHP on production performance and housing environment of broiler chickens. A comparative analysis was also performed between the GHP system and a conventional heating system that used diesel for fuel. In total, 34,000 one-day-old straight run broiler chicks were assigned to 2 broiler houses with 5 replicates in each (3,400 birds/replicate pen) for 35 d. Oxygen(,) CO(2), and NH(3) concentrations in the broiler house, energy consumption and cost of heating, and production performance of broilers were evaluated. Results showed that the final BW gain significantly (P heating system did not affect the mortality of chicks during the first 4 wk of the experimental period, but the mortality markedly increased in the conventional broiler house during the last wk of the experiment. Oxygen content in the broiler house during the experimental period was not affected by the heating system, but the CO(2) and NH(3) contents significantly increased (P heating the GHP house was significantly lower (P heating system for broiler chickens.

  8. Streams and their future inhabitants

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Friberg, Nikolai

    2006-01-01

    In this fi nal chapter we look ahead and address four questions: How do we improve stream management? What are the likely developments in the biological quality of streams? In which areas is knowledge on stream ecology insuffi cient? What can streams offer children of today and adults of tomorrow?...

  9. Salamander occupancy in headwater stream networks

    Science.gov (United States)

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  10. The thermo-mechanical behaviour of W-Cu metal matrix composites for fusion heat sink applications: The influence of the Cu content

    Science.gov (United States)

    Tejado, E.; Müller, A. v.; You, J.-H.; Pastor, J. Y.

    2018-01-01

    Copper and its alloys are used as heat sink materials for next generation fusion devices and will be joined to tungsten as an armour material. However, the joint of W and Cu experiences high thermal stresses when exposed to high heat loads so an interlayer material could effectively ensure the lifetime of the component by reducing the thermal mismatch. Many researchers have published results on the production of W-Cu composites aiming attention at its thermal conductivity; nevertheless, the mechanical performance of these composites remains poor. This paper reports the characterization of the thermo-mechanical behaviour of W-Cu composites produced via a liquid Cu melt infiltration of porous W preform. This technique was applied to produce composites with 15, 30 and 40 wt% Cu. The microstructure, thermal properties, and mechanical performance were investigated and measured from RT to 800 °C. The results demonstrated that high densification and superior mechanical properties can indeed be achieved via this manufacturing route. The mechanical properties (elastic modulus, fracture toughness, and strength) of the composites show a certain dependency on the Cu content; fracture mode shifts from the dominantly brittle fracture of W particles with constrained deformation of the Cu phase at low Cu content to the predominance of the ductile fracture of Cu when its ratio is higher. Though strong degradation is observed at 800 °C, the mechanical properties at operational temperatures, i.e. below 350 °C, remain rather high-even better than W/Cu materials reported previously. In addition, we demonstrated that the elastic modulus, and therefore the coefficient of thermal expansion, can be tailored via control of the W skeleton's porosity. As a result, the W-Cu composites presented here would successfully drive away heat produced in the fusion chamber avoiding the mismatch between materials while contributing to the structural support of the system.

  11. Effects of intense agricultural practices on heterotrophic processes in streams

    Energy Technology Data Exchange (ETDEWEB)

    Piscart, Christophe [Universite Claude Bernard Lyon 1 - Laboratoire d' Ecologie des Hydrosystemes Fluviaux - UMR CNRS 5023 - Campus Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Universite de Rennes 1 - UMR CNRS ECOBIO 6553 - Campus Beaulieu, 263 Av. du General Leclerc, 35042 Rennes Cedex (France)], E-mail: christophe.piscart@univ-lyon1.fr; Genoel, Romuald [Universite de Rennes 1 - UMR CNRS ECOBIO 6553 - Campus Beaulieu, 263 Av. du General Leclerc, 35042 Rennes Cedex (France); Doledec, Sylvain [Universite Claude Bernard Lyon 1 - Laboratoire d' Ecologie des Hydrosystemes Fluviaux - UMR CNRS 5023 - Campus Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Chauvet, Eric [Universite Paul Sabatier de Toulouse - Laboratoire EcoLab - UMR CNRS 5245, 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Marmonier, Pierre [Universite Claude Bernard Lyon 1 - Laboratoire d' Ecologie des Hydrosystemes Fluviaux - UMR CNRS 5023 - Campus Doua, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Universite de Rennes 1 - UMR CNRS ECOBIO 6553 - Campus Beaulieu, 263 Av. du General Leclerc, 35042 Rennes Cedex (France)

    2009-03-15

    In developed countries, changes in agriculture practices have greatly accelerated the degradation of the landscape and the functioning of adjacent aquatic ecosystems. Such alteration can in turn impair the services provided by aquatic ecosystems, namely the decomposition of organic matter, a key process in most small streams. To study this alteration, we recorded three measures of heterotrophic activity corresponding to microbial hydrolasic activity (FDA hydrolysis) and leaf litter breakdown rates with (k{sub c}) and without invertebrates (k{sub f}) along a gradient of contrasted agricultural pressures. Hydrolasic activity and k{sub f} reflect local/microhabitat conditions (i.e. nutrient concentrations and organic matter content of the sediment) but not land use while k{sub c} reflects land-use conditions. k{sub c}, which is positively correlated with the biomass of Gammaridae, significantly decreased with increasing agricultural pressure, contrary to the taxonomic richness and biomass of Trichoptera and Plecoptera. Gammaridae may thus be considered a key species for organic matter recycling in agriculture-impacted streams. - This study highlights the consequences of intensive agricultural practices on heterotrophic processes in streams along a strong gradient of perturbation.

  12. Simulation of heat storages and associated heat budgets in the Pacific Ocean: 2. Interdecadal timescale

    Science.gov (United States)

    Auad, Guillermo; Miller, Arthur J.; White, Warren B.

    1998-11-01

    We use a primitive equation isopycnal model of the Pacific Ocean to simulate and diagnose the anomalous heat balance on interdecadal timescales associated with heat storage changes observed from 1970-1988 in the expendable bathythermograph (XBT) data set. Given the smallness of the interdecadal signals compared to the El Niño-Southern Oscillation (ENSO) signal, the agreement between model and observations is remarkably good. The total anomalous heat balance is made up of two parts, the diabatic part (from the model temperature equation) and the adiabatic part (from the model mass conservation equation) due to thermocline heave. We therefore describe our analysis of both the total and diabatic anomalous heat balances in four areas of the tropical and subtropical North Pacific Ocean in the upper 400 m. The interdecadal total (diabatic plus adiabatic) heat balance in the North Pacific Ocean is characterized by a complicated interplay of different physical processes, especially revealed in basin-scale averages of the heat budget components that have comparable amounts of variance. In smaller subregions, simpler balances hold. For example, in the western equatorial Pacific (area 1) the total heat content tendency term is nearly zero, so that a simple balance exists between surface heat flux, vertical heat transport, and horizontal mixing. In the western subtropical Pacific the total heat content tendency balances the three-dimensional divergence of the heat flux. We speculate that this complexity is indicative of multiple physical mechanisms involved in the generation of North Pacific interdecadal variability. The diabatic heat balance north of 24°N, a region of special interest to The World Ocean Circulation Experiment (WOCE), can be simplified to a balance between the tendency term, surface heat flux, and meridional advection, the last term dominated by anomalous advection of mean temperature gradients. For the western equatorial region the diabatic heat content

  13. Stream hydraulics and temperature determine the metabolism of geothermal Icelandic streams

    Directory of Open Access Journals (Sweden)

    Demars B. O.L.

    2011-07-01

    Full Text Available Stream ecosystem metabolism plays a critical role in planetary biogeochemical cycling. Stream benthic habitat complexity and the available surface area for microbes relative to the free-flowing water volume are thought to be important determinants of ecosystem metabolism. Unfortunately, the engineered deepening and straightening of streams for drainage purposes could compromise stream natural services. Stream channel complexity may be quantitatively expressed with hydraulic parameters such as water transient storage, storage residence time, and water spiralling length. The temperature dependence of whole stream ecosystem respiration (ER, gross primary productivity (GPP and net ecosystem production (NEP = GPP − ER has recently been evaluated with a “natural experiment” in Icelandic geothermal streams along a 5–25 °C temperature gradient. There remained, however, a substantial amount of unexplained variability in the statistical models, which may be explained by hydraulic parameters found to be unrelated to temperature. We also specifically tested the additional and predicted synergistic effects of water transient storage and temperature on ER, using novel, more accurate, methods. Both ER and GPP were highly related to water transient storage (or water spiralling length but not to the storage residence time. While there was an additional effect of water transient storage and temperature on ER (r2 = 0.57; P = 0.015, GPP was more related to water transient storage than temperature. The predicted synergistic effect could not be confirmed, most likely due to data limitation. Our interpretation, based on causal statistical modelling, is that the metabolic balance of streams (NEP was primarily determined by the temperature dependence of respiration. Further field and experimental work is required to test the predicted synergistic effect on ER. Meanwhile, since higher metabolic activities allow for higher pollutant degradation or uptake

  14. After-heat removing device in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, K [Nippon Atomic Industry Group Co. Ltd., Tokyo

    1977-01-14

    Purpose: To prevent water hammer in a BWR type reactor or the like by moving water in pipe lines having stagnant portions in an after-heat removing device. Constitution: To a reactor container, is provided a recycling pump which constitutes a closed loop type recycling system in a nuclear power plant together with a pressure vessel and pipe lines. A pump and a heat exchanger are provided outside of the reactor container and they are connected to up- and down-streams of the recycling pump to form an after-heat removing device in the plant. Upon shutdown of the nuclear power plant, since water in the stagnant portion flows to the intake port of the recycling pump and water from the reactor is spontaneously supplemented thereafter to the stagnant portion, neither pressurized water nor heated steam is generated and thus water hammer is prevented.

  15. The consideration of dynamics and control in the design of heat exchanger networks

    International Nuclear Information System (INIS)

    Reimann, K.A.

    1986-03-01

    The heat exchanger network method is a way of abstracting the enthalpy and heat flows from the blueprints of a planned or existing processing plant. It enables a systematic design of a plant-wide heat recovery system which is optimal with regard to energy costs, capital costs and operational requirements. A heat exchanger network is a representation of all heat transfer relations between hot process streams and cold process streams within a plant. During the past ten years, the optimal design of heat exchanger networks (i.e. the optimal arrangement of heat transfer relations within a plant) has developed into a field of research of its own. Both, static methods ('interaction analysis') and dynamic methods ('process reaction curve analysis') from control theory have been used to explore the new field of heat exchanger network dynamics. As a major tool, an interactive, portable computer program for network simulation and controllability assessment has been developed (it is available as a design tool within the frame of the International Energy Agency). Based on the well-understood global parameters: effectiveness and NTU, which follow from the network design, some straightforward methods covering the following topics are presented: - 'paths' for control and disturbance signal transfer across the network, - locations of control bypasses around heat exchangers, and their capacity of emitting control signals or absorbing disturbances, - influence of the equipment besides the heat exchangers (which can be regarded as 'surrounding' the network, thus forming an 'associated' network). It has been found that networks which are designed according to the 'pinch-based' method have a potential for good controllability. It is shown how, using the freedoms given in the 'pinch-based' design and the above-mentioned methods, that potential is put into effect. (author)

  16. RH-TRU Waste Content Codes

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2007-07-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  17. Unprecedented 2015/2016 Indo-Pacific Heat Transfer Speeds Up Tropical Pacific Heat Recharge

    Science.gov (United States)

    Mayer, Michael; Alonso Balmaseda, Magdalena; Haimberger, Leopold

    2018-04-01

    El Niño events are characterized by anomalously warm tropical Pacific surface waters and concurrent ocean heat discharge, a precursor of subsequent cold La Niña conditions. Here we show that El Niño 2015/2016 departed from this norm: despite extreme peak surface temperatures, tropical Pacific (30°N-30°S) upper ocean heat content increased by 9.6 ± 1.7 ZJ (1 ZJ = 1021 J), in stark contrast to the previous strong El Niño in 1997/1998 (-11.5 ± 2.9 ZJ). Unprecedented reduction of Indonesian Throughflow volume and heat transport played a key role in the anomalous 2015/2016 event. We argue that this anomaly is linked with the previously documented intensified warming and associated rising sea levels in the Indian Ocean during the last decade. Additionally, increased absorption of solar radiation acted to dampen Pacific ocean heat content discharge. These results explain the weak and short-lived La Niña conditions in 2016/2017 and indicate the need for realistic representation of Indo-Pacific energy transfers for skillful seasonal-to-decadal predictions.

  18. Jet stream wind power as a renewable energy resource: little power, big impacts

    Directory of Open Access Journals (Sweden)

    L. M. Miller

    2011-11-01

    climatic impacts due to a substantial increase of heat transport across the jet streams in the upper atmosphere. This results in upper atmospheric temperature differences of >20 °C, greater atmospheric stability, substantial reduction in synoptic activity, and substantial differences in surface climate. We conclude that jet stream wind power does not have the potential to become a significant source of renewable energy.

  19. The effect of aluminum content on phase constitution and heat treatment behavior of Ti-Cr-Al alloys for healthcare application

    International Nuclear Information System (INIS)

    Sugano, Daisuke; Ikeda, Masahiko

    2005-01-01

    As life expectancy steadily increases, developing reliable functional materials for healthcare applications gains importance. Titanium and its alloys, while attractive for such applications, are expensive. The present investigation suggests that it may be possible to reduce costs by using new, low-cost beta Ti alloys. To assess their reliability, the heat treatment behavior of beta Ti alloys, Ti-7 mass% Cr with varying Al content (0%, 1.5%, 3.0% and 4.5%), was investigated through electrical resistivity and Vickers hardness measurements. In the Ti-7Cr-0Al alloy quenched from 1173 K, only the beta phase was identified by X-ray diffraction (XRD). In Ti-7Cr-1.5 to 4.5 Al alloys, XRD detected both beta and orthorhombic martensite. On isochronal heat treatment behavior of Ti-7Cr-3.0, 4.5 Al alloys, resistivity at liquid nitrogen temperature and resistivity ratio increased between 423 and 523 K.These increases are due to reverse transformation of orthorhombic martensite to the metastable beta phase

  20. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  1. Whole planet cooling and the radiogenic heat source contents of the earth and moon

    International Nuclear Information System (INIS)

    Schubert, G.; Stevenson, D.

    1980-01-01

    It is widely believed that the surface heat flows of the earth and moon provide good measures of the total amounts of radioactives in these bodies. Simple thermal evolution models, based on subsolidus whole mantle convection, indicate that this may not be the case. These models have been constructed assuming an initially hot state, but with a wide variety of choices for the parameters characterizing the rheology and convective vigor. All models are constrained to be consistent with present-day surface heat fluxes, and many of the terrestrial models are consistent with the mantle viscosities indicated by post-glacial rebound. For the earth the acceptable models give a radiogenic heat production that is only 65--85% of the surface heat output, the difference being due to secular cooling of the earth (about 50 0 --100 0 C per 10 9 years in the upper mantle). It is argued that the actual heat generation may be substantially less, since the models omit core heat, upward migration of heat sources, possible layering of the mantle, and deviations from steady convection. Geochemical models which are near to chondritic (apart from potassium depletion) are marginally consistent with surface heat flow. In the lunar models, heat generation is typically only 70--80% of the surface heat flow, even with allowance for the strong near-surface enhancement of radioactives. Despite the simplicity of the models the persistence of a significant difference between heat generation and heat output for a wide range of parameter choices indicates that this difference is real and should be incorporated in geochemical modeling of the planets

  2. Transition to turbulence and noise radiation in heated coaxial jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Gloor, Michael, E-mail: gloor@ifd.mavt.ethz.ch; Bühler, Stefan; Kleiser, Leonhard [Institute of Fluid Dynamics, ETH Zurich, 8092 Zurich (Switzerland)

    2016-04-15

    Laminar-turbulent transition and noise radiation of a parametrized set of subsonic coaxial jet flows with a hot primary (core) stream are investigated numerically by Large-Eddy Simulation (LES) and direct noise computation. This study extends our previous research on local linear stability of heated coaxial jet flows by analyzing the nonlinear evolution of initially laminar flows disturbed by a superposition of small-amplitude unstable eigenmodes. First, a baseline configuration is studied to shed light on the flow dynamics of coaxial jet flows. Subsequently, LESs are performed for a range of Mach and Reynolds numbers to systematically analyze the influences of the temperature and the velocity ratios between the primary and the secondary (bypass) stream. The results provide a basis for a detailed analysis of fundamental flow-acoustic phenomena in the considered heated coaxial jet flows. Increasing the primary-jet temperature leads to an increase of fluctuation levels and to an amplification of far-field noise, especially at low frequencies. Strong mixing between the cold bypass stream and the hot primary stream as well as the intermittent character of the flow field at the end of the potential core lead to a pronounced noise radiation at an aft angle of approximately 35{sup ∘}. The velocity ratio strongly affects the shear-layer development and therefore also the noise generation mechanisms. Increasing the secondary-stream velocity amplifies the dominance of outer shear-layer perturbations while the disturbance growth rates in the inner shear layer decrease. Already for r{sub mic} > 40R{sub 1}, where r{sub mic} is the distance from the end of the potential core and R{sub 1} is the core-jet radius, a perfect 1/r{sub mic} decay of the sound pressure amplitudes is observed. The potential-core length increases for higher secondary-stream velocities which leads to a shift of the center of the dominant acoustic radiation in the downstream direction.

  3. Neutron and gamma ray streaming calculations for the ETF neutral beam injectors

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.

    1981-02-01

    Two-dimensional radiation transport methods have been used to estimate the effects of neutron and gamma ray streaming on the performance of the Engineering Test Facility (ETF) neutral beam injectors. The calculations take into account the spatial, angular, and spectral distributions of the radiation entering the injector duct. The instantaneous nuclear heating rate averaged over the length of the cryopumping panel in the injector is 7.5 x 10 -3 MW/m 3 which implies a total heat load of 2.2 x 10 -4 MW. The instantaneous dose rate to the ion gun insulators was estimated to be 3200 rad/s. The radial dependence of the instantaneous dose equivalent rate in the neutral beam injector duct shield was also calculated

  4. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  5. Summarizing Audiovisual Contents of a Video Program

    Science.gov (United States)

    Gong, Yihong

    2003-12-01

    In this paper, we focus on video programs that are intended to disseminate information and knowledge such as news, documentaries, seminars, etc, and present an audiovisual summarization system that summarizes the audio and visual contents of the given video separately, and then integrating the two summaries with a partial alignment. The audio summary is created by selecting spoken sentences that best present the main content of the audio speech while the visual summary is created by eliminating duplicates/redundancies and preserving visually rich contents in the image stream. The alignment operation aims to synchronize each spoken sentence in the audio summary with its corresponding speaker's face and to preserve the rich content in the visual summary. A Bipartite Graph-based audiovisual alignment algorithm is developed to efficiently find the best alignment solution that satisfies these alignment requirements. With the proposed system, we strive to produce a video summary that: (1) provides a natural visual and audio content overview, and (2) maximizes the coverage for both audio and visual contents of the original video without having to sacrifice either of them.

  6. The kinetics of removal of heat-induced excess nuclear protein

    International Nuclear Information System (INIS)

    Roti, J.L.R.; Uygur, N.; Higashikubo, R.

    1984-01-01

    To investigate the role of protein content, temperature and heating time in the removal of heat-induced excess protein associated with the isolated nucleus, the kinetics of protein removal was monitored for 6 to 8 hours following exposure to 7 hyperthermic protocols. Four of these (47 0 C-7.5 min., 46 0 C-15 min., 45 0 C-30 min., and 44 0 C-60 min.) resulted in a nuclear protein content approximately twice that of nuclei from unheated cells (2.05 +- .14) following heat exposure. Three protocols (45 0 C-15 min., 44 0 C-30 min. and 43 0 C-60 min.) resulted in a nuclear protein content approximately 1.6 times normal (1.63 +- .12). If nuclear protein content were the only determinant in the recovery rate, then the same half time for nuclear protein removal would be expected within each group of protocols. Rate constants for nuclear protein removal were obtained by regression analysis. The half-time for nuclear protein removal increased with decreasing temperature and increasing heating time for the same nuclear protein content. This result suggests that the heating time and temperature are more of a determinant in the removal kinetics than protein content alone. Extended kinetics of recovery (to 36 hours) showed incomplete recovery and a secondary increase in protein associated with the isolated nucleus. These results were due to cell-cycle rearrangement (G/sub 2/ block) and unbalanced growth

  7. Ocean heat content variability and change in an ensemble of ocean reanalyses

    Science.gov (United States)

    Palmer, M. D.; Roberts, C. D.; Balmaseda, M.; Chang, Y.-S.; Chepurin, G.; Ferry, N.; Fujii, Y.; Good, S. A.; Guinehut, S.; Haines, K.; Hernandez, F.; Köhl, A.; Lee, T.; Martin, M. J.; Masina, S.; Masuda, S.; Peterson, K. A.; Storto, A.; Toyoda, T.; Valdivieso, M.; Vernieres, G.; Wang, O.; Xue, Y.

    2017-08-01

    Accurate knowledge of the location and magnitude of ocean heat content (OHC) variability and change is essential for understanding the processes that govern decadal variations in surface temperature, quantifying changes in the planetary energy budget, and developing constraints on the transient climate response to external forcings. We present an overview of the temporal and spatial characteristics of OHC variability and change as represented by an ensemble of dynamical and statistical ocean reanalyses (ORAs). Spatial maps of the 0-300 m layer show large regions of the Pacific and Indian Oceans where the interannual variability of the ensemble mean exceeds ensemble spread, indicating that OHC variations are well-constrained by the available observations over the period 1993-2009. At deeper levels, the ORAs are less well-constrained by observations with the largest differences across the ensemble mostly associated with areas of high eddy kinetic energy, such as the Southern Ocean and boundary current regions. Spatial patterns of OHC change for the period 1997-2009 show good agreement in the upper 300 m and are characterized by a strong dipole pattern in the Pacific Ocean. There is less agreement in the patterns of change at deeper levels, potentially linked to differences in the representation of ocean dynamics, such as water mass formation processes. However, the Atlantic and Southern Oceans are regions in which many ORAs show widespread warming below 700 m over the period 1997-2009. Annual time series of global and hemispheric OHC change for 0-700 m show the largest spread for the data sparse Southern Hemisphere and a number of ORAs seem to be subject to large initialization `shock' over the first few years. In agreement with previous studies, a number of ORAs exhibit enhanced ocean heat uptake below 300 and 700 m during the mid-1990s or early 2000s. The ORA ensemble mean (±1 standard deviation) of rolling 5-year trends in full-depth OHC shows a relatively steady

  8. Deuterium in New Zealand rivers and streams

    International Nuclear Information System (INIS)

    Stewart, M.K.; Cox, M.A.; James, M.R.; Lyon, G.

    1983-07-01

    Over 750 deuterium measurements on rivers and streams in New Zealand are reported. Monthly samples were collected for periods of several years from a number of representative rivers. These show irregular storm-to-storm as well as seasonal deuterium variations. The seasonal variations range from as low as 1 per mille for lake-fed rivers to 8-10 per mille for rivers with large spring snow-melt contributions. Variations in mean annual ΔD values are believed to reflect changes in climatic variables; the present data will be used to compare with future changes. The bulk of the data are single samples; these show a geographic variation related to the altitude, latitude and climatic character of the catchments, with the highest deuterium contents (ΔD = -20 per mille) occurring in the far north, and lowest contents (-80 per mille) in the inland Otago region. Regression equations derived for the ΔD dependence on altitude (h) and latitude (l), are ΔD = -0.0169 h - 30.2 and westerly influence. Eastern climatic zones have lower deuterium contents because of rainout effects on the axial ranges. Contours of constant

  9. Comprehensive assessments of measures mitigating heat island phenomena in urban areas; Heat shinku wo riyoshita daikibo reibo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T; Yamamoto, S; Yoshikado, H; Kondo, H; Kaneho, N; Saegusa, N; Inaba, A [National Institute for Resources and Environment, Tsukuba (Japan); Inoue, M [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    This paper describes the assessment method of measures mitigating heat island phenomena in urban areas. The heat island phenomena were classified into meso-scale with 100 km-scale, block-scale with several km-scale, and building-scale with 100 m-scale. Urban thermal environment simulation model was developed in response to each scale. For the development, regional data using aircraft and artificial satellite observations, surface observation and thermal environment observation at Shinjuku new central city of Tokyo, and artificial waste heat actual survey data in the southern Kanto district were utilized. Results of the urban thermal environment simulation were introduced as an application of this model. Temperature distributions of the heat island in the Kanto district were simulated with considering urban conditions near Tokyo and without considering it. Daily changes of wall surfaces of high buildings and road surface were calculated. Increase in the air temperature in the back stream of building roofs with increased temperature was determined. 4 figs.

  10. Percent Forest Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  11. Percent Agriculture Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  12. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thekdi, Arvind [E3M, Inc. North Potomac, MD (United States); Rogers, Benjamin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kafka, Orion L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wenning, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hot exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.

  13. Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields

    Directory of Open Access Journals (Sweden)

    Weiyu Liu

    2017-11-01

    Full Text Available In this work, we focus on investigating electrothermal flow in rotating electric fields (ROT-ETF, with primary attention paid to the horizontal traveling-wave electrothermal (TWET vortex induced at the center of the electric field. The frequency-dependent flow profiles in the microdevice are analyzed using different heat transfer models. Accordingly, we address in particular the importance of electrode cooling in ROT-ETF as metal electrodes of high thermal conductivity, while substrate material of low heat dissipation capability is employed to develop such microfluidic chips. Under this circumstance, cooling of electrode array due to external natural convection on millimeter-scale electrode pads for external wire connection occurs and makes the internal temperature maxima shift from the electrode plane to a bit of distance right above the cross-shaped interelectrode gaps, giving rise to reversal of flow rotation from a typical repulsion-type to attraction-type induction vortex, which is in good accordance with our experimental observations of co-field TWET streaming at frequencies in the order of reciprocal charge relaxation time of the bulk fluid. These results point out a way to make a correct interpretation of out-of-phase electrothermal streaming behavior, which holds great potential for handing high-conductivity analytes in modern microfluidic systems.

  14. Role of biofilms in sorptive removal of steroidal hormones and 4-nonylphenol compounds from streams

    Science.gov (United States)

    Writer, Jeffrey H.; Ryan, Joseph N.; Barber, Larry B.

    2011-01-01

    Stream biofilms play an important role in geochemical processing of organic matter and nutrients, however, the significance of this matrix in sorbing trace organic contaminants is less understood. This study focused on the role of stream biofilms in sorbing steroidal hormones and 4-nonylphenol compounds from surface waters using biofilms colonized in situ on artificial substrata and subsequently transferred to the laboratory for controlled batch sorption experiments. Steroidal hormones and 4-nonylphenol compounds readily sorb to stream biofilms as indicated by organic matter partition coefficients (Kom, L kg–1) for 17β-estradiol (102.5–2.8 L kg–1), 17α-ethynylestradiol (102.5–2.9 L kg–1), 4-nonylphenol (103.4–4.6 L kg–1), 4-nonylphenolmonoethoxylate (103.5–4.0 L kg–1), and 4-nonylphenoldiethoxylate (103.9–4.3 L kg–1). Experiments using water quality differences to induce changes in the relative composition of periphyton and heterotrophic bacteria in the stream biofilm did not significantly affect the sorptive properties of the stream biofilm, providing additional evidence that stream biofilms will sorb trace organic compounds under of variety of environmental conditions. Because sorption of the target compounds to stream biofilms was linearly correlated with organic matter content, hydrophobic partition into organic matter appears to be the dominant mechanism. An analysis of 17β-estradiol and 4-nonylphenol hydrophobic partition into water, biofilm, sediment, and dissolved organic matter matrices at mass/volume ratios typical of smaller rivers showed that the relative importance of the stream biofilm as a sorptive matrix was comparable to bed sediments. Therefore, stream biofilms play a primary role in attenuating these compounds in surface waters. Because the stream biofilm represents the base of the stream ecosystem, accumulation of steroidal hormones and 4-nonylphenol compounds in the stream biofilm may be an exposure pathway for

  15. Frequency dependence and frequency control of microbubble streaming flows

    Science.gov (United States)

    Wang, Cheng; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2013-02-01

    Steady streaming from oscillating microbubbles is a powerful actuating mechanism in microfluidics, enjoying increased use due to its simplicity of manufacture, ease of integration, low heat generation, and unprecedented control over the flow field and particle transport. As the streaming flow patterns are caused by oscillations of microbubbles in contact with walls of the set-up, an understanding of the bubble dynamics is crucial. Here we experimentally characterize the oscillation modes and the frequency response spectrum of such cylindrical bubbles, driven by a pressure variation resulting from ultrasound in the range of 1 kHz raisebox {-.9ex{stackrel{textstyle <}{˜ }} }f raisebox {-.9ex{stackrel{textstyle <}{˜ }} } 100 kHz. We find that (i) the appearance of 2D streaming flow patterns is governed by the relative amplitudes of bubble azimuthal surface modes (normalized by the volume response), (ii) distinct, robust resonance patterns occur independent of details of the set-up, and (iii) the position and width of the resonance peaks can be understood using an asymptotic theory approach. This theory describes, for the first time, the shape oscillations of a pinned cylindrical bubble at a wall and gives insight into necessary mode couplings that shape the response spectrum. Having thus correlated relative mode strengths and observed flow patterns, we demonstrate that the performance of a bubble micromixer can be optimized by making use of such flow variations when modulating the driving frequency.

  16. Fingerprint multicast in secure video streaming.

    Science.gov (United States)

    Zhao, H Vicky; Liu, K J Ray

    2006-01-01

    Digital fingerprinting is an emerging technology to protect multimedia content from illegal redistribution, where each distributed copy is labeled with unique identification information. In video streaming, huge amount of data have to be transmitted to a large number of users under stringent latency constraints, so the bandwidth-efficient distribution of uniquely fingerprinted copies is crucial. This paper investigates the secure multicast of anticollusion fingerprinted video in streaming applications and analyzes their performance. We first propose a general fingerprint multicast scheme that can be used with most spread spectrum embedding-based multimedia fingerprinting systems. To further improve the bandwidth efficiency, we explore the special structure of the fingerprint design and propose a joint fingerprint design and distribution scheme. From our simulations, the two proposed schemes can reduce the bandwidth requirement by 48% to 87%, depending on the number of users, the characteristics of video sequences, and the network and computation constraints. We also show that under the constraint that all colluders have the same probability of detection, the embedded fingerprints in the two schemes have approximately the same collusion resistance. Finally, we propose a fingerprint drift compensation scheme to improve the quality of the reconstructed sequences at the decoder's side without introducing extra communication overhead.

  17. HeatBar Final Report 2010, Basement Heat Generation and Heat Flow in the western Barents Sea - importance for hydrocarbon systems

    International Nuclear Information System (INIS)

    Pascal, Christophe; Balling, Niels; Barrere, Cecile; Davidsen, Boerre; Ebbing, Joerg; Elvebakk, Harald; Mesli, Melani; Roberts, David; Slagstad, Trond; Willemoes-Wissing, Bjoern

    2011-01-01

    The HeatBar project aimed to determine the relative proportion of heat originating in the basement of the western Barents Sea and, as such, followed the methodologies and scientific approach developed in the course of the 2005-2008 Kontiki Project. We proposed to shed new lights on the thermal state of the basins of the western Barents Sea by (1) determining the heat flow and the relative content in heat-producing elements of the basement onshore northern Norway, (2) building 3D structural models of the basement offshore based on extensive geophysical information and (3) building 3D thermal models of the basins offshore. The present report summarizes the work accomplished in the framework of the project since 2006.(Au)

  18. Morphology of a Wetland Stream

    Science.gov (United States)

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  19. A dynamic model for helium core heat exchangers

    International Nuclear Information System (INIS)

    Schiesser, W.E.; Shih, H.J.; Hartozog, D.G.; Herron, D.M.; Nahmias, D.; Stuber, W.G.; Hindmarsh, A.C.

    1990-04-01

    To meet the helium (He) requirements of the superconducting supercollider (SSC), the cryogenic plants must be able to respond to time-varying loads. Thus the design and simulation of the cryogenic plants requires dynamic models of their principal components, and in particular, the core heat exchangers. In this paper, we detail the derivation and computer implementation of a model for core heat exchangers consisting of three partial differential equations (PDES) for each fluid stream (the continuity, energy and momentum balances for the He), and one PDE for each parting sheet (the energy balance for the parting sheet metal); the PDEs have time and axial position along the exchanger as independent variables. The computer code can accommodate any number of fluid streams and parting sheets in an adiabatic group. Features of the code include: rigorous or approximate thermodynamic properties for He, upwind and downwind approximation of the PDE spatial derivatives, and sparse matrix time integration. The outputs from the code include the time-dependent axial profiles of the fluid He mass flux, density, pressure, temperature, internal energy and enthalpy. The code is written in transportable Fortran 77, and can therefore be executed on essentially any computer

  20. A dynamic model for helium core heat exchangers

    International Nuclear Information System (INIS)

    Schiesser, W.E.; Shih, H.J.; Hartzog, D.G.; Herron, D.M.; Nahmias, D.; Stuber, W.G.; Hindmarsh, A.C.

    1990-01-01

    To meet the helium (He) requirements of the superconducting supercollider (SSC), the cryogenic plants must be able to respond to time-varying loads. Thus the design and simulation of the cryogenic plants requires dynamic models of their principal components, and in particular, the core heat exchangers. In this paper, we detail the derivation and computer implementation of a model for core heat exchangers consisting of three partial differential equations (PDEs) for each fluid stream (the continuity, energy and momentum balances for the He), and one PDE for each parting sheet (the energy balance for the parting sheet metal); the PDEs have time and axial position along the exchanger as independent variables. The computer code can accommodate any number of fluid streams and parting sheets in an adiabatic group. Features of the code include: rigorous or approximate thermodynamic properties for He, upwind and downwind approximation of the PDE spatial derivatives, and sparse matrix time integration. The outputs from the code include the time-dependent axial profiles of the fluid He mass flux, density, pressure, temperature, internal energy and enthalpy. The code is written in transportable Fortran 77, and can therefore be executed on essentially any computer. 10 refs., 10 figs