Sample records for stream flow estimation

  1. Methods for estimating low-flow statistics for Massachusetts streams (United States)

    Ries, Kernell G.; Friesz, Paul J.


    Methods and computer software are described in this report for determining flow duration, low-flow frequency statistics, and August median flows. These low-flow statistics can be estimated for unregulated streams in Massachusetts using different methods depending on whether the location of interest is at a streamgaging station, a low-flow partial-record station, or an ungaged site where no data are available. Low-flow statistics for streamgaging stations can be estimated using standard U.S. Geological Survey methods described in the report. The MOVE.1 mathematical method and a graphical correlation method can be used to estimate low-flow statistics for low-flow partial-record stations. The MOVE.1 method is recommended when the relation between measured flows at a partial-record station and daily mean flows at a nearby, hydrologically similar streamgaging station is linear, and the graphical method is recommended when the relation is curved. Equations are presented for computing the variance and equivalent years of record for estimates of low-flow statistics for low-flow partial-record stations when either a single or multiple index stations are used to determine the estimates. The drainage-area ratio method or regression equations can be used to estimate low-flow statistics for ungaged sites where no data are available. The drainage-area ratio method is generally as accurate as or more accurate than regression estimates when the drainage-area ratio for an ungaged site is between 0.3 and 1.5 times the drainage area of the index data-collection site. Regression equations were developed to estimate the natural, long-term 99-, 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent duration flows; the 7-day, 2-year and the 7-day, 10-year low flows; and the August median flow for ungaged sites in Massachusetts. Streamflow statistics and basin characteristics for 87 to 133 streamgaging stations and low-flow partial-record stations were used to develop the equations. The

  2. Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma (United States)

    Esralew, Rachel A.; Smith, S. Jerrod


    Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage

  3. Validating alternative methodologies to estimate the hydrological regime of temporary streams when flow data are unavailable (United States)

    Llorens, Pilar; Gallart, Francesc; Latron, Jérôme; Cid, Núria; Rieradevall, Maria; Prat, Narcís


    ) were examined. In this case, flow permanence metrics were estimated as the proportion of photographs presenting stream flow. Results indicate that for streams being more than 25% of the time dry, interviews systematically underestimated flow, but the qualitative information given by inhabitants was of great interest to understand river dynamics. On the other hand, the use of aerial photographs gave a good estimation of flow permanence, but the seasonality was conditioned to the capture date of the aerial photographs. For these reasons, we recommend to use both methodologies together.

  4. Stream flow - its estimation, uncertainty and interaction with groundwater and floodplains

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang

    , floodplain hydraulics and sedimentation patterns has been investigated along a restored channel section of Odense stream, Denmark. Collected samples of deposited sediment, organic matter and phosphorus on the floodplain were compared with results from a 2D dynamic flow model. Three stage dependent flow...... regimes were predicted by the flow model with shifting primary overbank flow and zones of flow confluence. These dynamic flow patterns were found to correlate with the spatial deposition of total phosphorus (11.4 g m-2), organic matter (0.65 kg m-2) and sediment (4.72 kg m-2), and zones of major total...... sediment deposition coincided with the flow confluence zones. The revealed complex spatially and temporally changing floodplain flow pattern was found to play a decisive role for the deposition processes. The interaction between stream flow and groundwater from catchment to point scale has been...

  5. Methods for estimating flow-duration curve and low-flow frequency statistics for ungaged locations on small streams in Minnesota (United States)

    Ziegeweid, Jeffrey R.; Lorenz, David L.; Sanocki, Chris A.; Czuba, Christiana R.


    Knowledge of the magnitude and frequency of low flows in streams, which are flows in a stream during prolonged dry weather, is fundamental for water-supply planning and design; waste-load allocation; reservoir storage design; and maintenance of water quality and quantity for irrigation, recreation, and wildlife conservation. This report presents the results of a statewide study for which regional regression equations were developed for estimating 13 flow-duration curve statistics and 10 low-flow frequency statistics at ungaged stream locations in Minnesota. The 13 flow-duration curve statistics estimated by regression equations include the 0.0001, 0.001, 0.02, 0.05, 0.1, 0.25, 0.50, 0.75, 0.9, 0.95, 0.99, 0.999, and 0.9999 exceedance-probability quantiles. The low-flow frequency statistics include annual and seasonal (spring, summer, fall, winter) 7-day mean low flows, seasonal 30-day mean low flows, and summer 122-day mean low flows for a recurrence interval of 10 years. Estimates of the 13 flow-duration curve statistics and the 10 low-flow frequency statistics are provided for 196 U.S. Geological Survey continuous-record streamgages using streamflow data collected through September 30, 2012.

  6. 7Q10 flows for SRS streams

    International Nuclear Information System (INIS)

    Chen, K.F.


    The Environmental Transport Group of the Environmental Technology Section was requested to predict the seven-day ten-year low flow (7Q10 flow) for the SRS streams based on historical stream flow records. Most of the historical flow records for the SRS streams include reactor coolant water discharged from the reactors and process water released from the process facilities. The most straight forward way to estimate the stream daily natural flow is to subtract the measured upstream reactor and/or facility daily effluents from the measured downstream daily flow. Unfortunately, this method does not always work, as indicated by the fact that sometimes the measured downstream volumetric flow rates are lower than the reactor effluent volumetric flow rates. For those cases that cannot be analyzed with the simple subtracting method, an alternative method was used to estimate the stream natural flows by statistically separating reactor coolant and process water flow data. The correlation between the calculated 7Q10 flows and the watershed areas for Four Mile Branch and Pen Branch agrees with that calculated by the USGS for Upper Three Runs and Lower Three Runs Creeks. The agreement between these two independent calculations lends confidence to the 7Q10 flow calculations presented in this report

  7. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey (United States)

    Watson, Kara M.; McHugh, Amy R.


    Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is

  8. Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: Chapter F in Montana StreamStats (United States)

    Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.


    The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application ( for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from

  9. Low-flow characteristics of Virginia streams (United States)

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute


    Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly

  10. Estimation of low-flow statistics at ungaged sites on streams in the Lower Hudson River Basin, New York, from data in geographic information systems (United States)

    Randall, Allan D.; Freehafer, Douglas A.


    A variety of watershed properties available in 2015 from geographic information systems were tested in regression equations to estimate two commonly used statistical indices of the low flow of streams, namely the lowest flows averaged over 7 consecutive days that have a 1 in 10 and a 1 in 2 chance of not being exceeded in any given year (7-day, 10-year and 7-day, 2-year low flows). The equations were based on streamflow measurements in 51 watersheds in the Lower Hudson River Basin of New York during the years 1958–1978, when the number of streamflow measurement sites on unregulated streams was substantially greater than in subsequent years. These low-flow indices are chiefly a function of the area of surficial sand and gravel in the watershed; more precisely, 7-day, 10-year and 7-day, 2-year low flows both increase in proportion to the area of sand and gravel deposited by glacial meltwater, whereas 7-day, 2-year low flows also increase in proportion to the area of postglacial alluvium. Both low-flow statistics are also functions of mean annual runoff (a measure of net water input to the watershed from precipitation) and area of swamps and poorly drained soils in or adjacent to surficial sand and gravel (where groundwater recharge is unlikely and riparian water loss to evapotranspiration is substantial). Small but significant refinements in estimation accuracy resulted from the inclusion of two indices of stream geometry, channel slope and length, in the regression equations. Most of the regression analysis was undertaken with the ordinary least squares method, but four equations were replicated by using weighted least squares to provide a more realistic appraisal of the precision of low-flow estimates. The most accurate estimation equations tested in this study explain nearly 84 and 87 percent of the variation in 7-day, 10-year and 7-day, 2-year low flows, respectively, with standard errors of 0.032 and 0.050 cubic feet per second per square mile. The equations

  11. Estimating annual high-flow statistics and monthly and seasonal low-flow statistics for ungaged sites on streams in Alaska and conterminous basins in Canada (United States)

    Wiley, Jeffrey B.; Curran, Janet H.


    Methods for estimating daily mean flow-duration statistics for seven regions in Alaska and low-flow frequencies for one region, southeastern Alaska, were developed from daily mean discharges for streamflow-gaging stations in Alaska and conterminous basins in Canada. The 15-, 10-, 9-, 8-, 7-, 6-, 5-, 4-, 3-, 2-, and 1-percent duration flows were computed for the October-through-September water year for 222 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the individual months of July, August, and September for 226 stations in Alaska and conterminous basins in Canada. The 98-, 95-, 90-, 85-, 80-, 70-, 60-, and 50-percent duration flows were computed for the season July-through-September for 65 stations in southeastern Alaska. The 7-day, 10-year and 7-day, 2-year low-flow frequencies for the season July-through-September were computed for 65 stations for most of southeastern Alaska. Low-flow analyses were limited to particular months or seasons in order to omit winter low flows, when ice effects reduce the quality of the records and validity of statistical assumptions. Regression equations for estimating the selected high-flow and low-flow statistics for the selected months and seasons for ungaged sites were developed from an ordinary-least-squares regression model using basin characteristics as independent variables. Drainage area and precipitation were significant explanatory variables for high flows, and drainage area, precipitation, mean basin elevation, and area of glaciers were significant explanatory variables for low flows. The estimating equations can be used at ungaged sites in Alaska and conterminous basins in Canada where streamflow regulation, streamflow diversion, urbanization, and natural damming and releasing of water do not affect the streamflow data for the given month or season. Standard errors of estimate ranged from 15 to 56 percent for high-duration flow

  12. Estimated Perennial Streams of Idaho and Related Geospatial Datasets (United States)

    Rea, Alan; Skinner, Kenneth D.


    The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of

  13. Estimation of suspended sediment flux in streams using continuous turbidity and flow data coupled with laboratory concentrations (United States)

    Jack Lewis


    The widening use of sediment surrogate measurements such as turbidity necessitates consideration of new methods for estimating sediment flux. Generally, existing methods can be simply be used in new ways. The effectiveness of a method varies according to the quality of the surrogate data and its relation to suspended sediment concentration (SSC). For this discussion,...

  14. A neural flow estimator

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur; Bruun, Erik


    This paper proposes a new way to estimate the flow in a micromechanical flow channel. A neural network is used to estimate the delay of random temperature fluctuations induced in a fluid. The design and implementation of a hardware efficient neural flow estimator is described. The system...... is implemented using switched-current technique and is capable of estimating flow in the μl/s range. The neural estimator is built around a multiplierless neural network, containing 96 synaptic weights which are updated using the LMS1-algorithm. An experimental chip has been designed that operates at 5 V...

  15. Ambient groundwater flow diminishes nitrogen cycling in streams (United States)

    Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.


    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  16. Operational Waste Stream Assumption for TSLCC Estimates

    International Nuclear Information System (INIS)

    Gillespie, S.


    This document provides the background and basis for the operational waste stream used in the 2000 Total System Life Cycle Cost (TSLCC) estimate for the Civilian Radioactive Waste Management System (CRWMS). This document has been developed in accordance with its Development Plan (CRWMS MandO 2000a), and AP-3.11Q, ''Technical Reports''

  17. Three-dimensional microbubble streaming flows (United States)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha


    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  18. Flow of a stream through a reservoir

    International Nuclear Information System (INIS)

    Sauerwein, K.


    If a reservoir is fed from a single source, which may not always be pure, the extent to which the inflowing stream mixes with the water in the reservoir is important for the quality of the water supplied by the reservoir. This question was investigated at the Lingese Reservoir, containing between one and two million cubic metres of water, in the Bergisches Land (North Rhine-Westphalia). The investigation was carried out at four different seasons so that the varying effects of the stream-water temperatures could be studied in relation to the temperature of the reservoir water. The stream was radioactively labelled at the point of inflow into the reservoir, and its flow through the reservoir was measured in length and depth from boats, by means of 1-m-long Geiger counters. In two cases the radioactivity of the outflowing water was also measured at fixed points. A considerable variety of intermixing phenomena were observed; these were mainly of limnological interest. The results of four experiments corresponding to the four different seasons are described in detail. They were as follows: (1) The mid-October experiment where the stream, with a temperature of 8.0 deg. C, was a good 5 deg. C colder than the water of the reservoir, whose temperature was almost uniform, ranging from 13.2 deg. C at the bed to 13.6 deg. C at the surface. (2) The spring experiment (second half of March), when the stream temperature was only 0.3 deg. C below that of the reservoir surface (7.8 deg. C), while the temperature of the bed was 5.8 deg. C. (3) The winter experiment (early December) where at first the temperature of the stream was approximately the same as that of the surface so that, once again, the stream at first flowed 1/2 - 1 m below the surface. During the almost wind-free night a sudden fall in temperature occurred, and the air temperature dropped from 0 deg. C to -12 deg. C. (4) The summer experiment (end of July to mid-August) when the stream was nearly 1 deg. C colder than

  19. Groundwater flux estimation in streams: A thermal equilibrium approach (United States)

    Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon


    Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.


    International Nuclear Information System (INIS)

    Fondeur, F; Michael Poirier, M; Samuel Fink, S


    Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar(reg s ign) L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring

  1. The long term response of stream flow to climatic warming in headwater streams of interior Alaska (United States)

    Jeremy B. Jones; Amanda J. Rinehart


    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  2. The effect of in-stream activities on the Njoro River, Kenya. Part I: Stream flow and chemical water quality (United States)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    For shallow streams in sub-Saharan Africa, in-stream activities could be described as the actions by people and livestock, which take place within or besides stream channels. This study examined the nature of in-stream activities along a rural stream in Kenya and established the inequality in water allocation for various livelihood needs, as well as the negative impact they have on dry weather stream flow and chemical water quality. Seven locations along the stream were studied in wet and dry weather of 2006. Enumeration consisted of making head counts of people and livestock and tallying visitors at hourly intervals from 6 a.m. to 7 p.m. To estimate water abstraction, filled containers of known volume were counted and the stream was sampled to examine the impact on water quality. Water samples were obtained upstream and downstream of in-stream activities before (6 a.m.) and during (11 a.m., 6 p.m.) activities. Samples were analyzed for suspended solids, turbidity, BOD 5, total nitrogen and total phosphorus. The daily total abstraction at the middle reaches during dry weather was 120-150 m 3 day -1. More than 60% of abstraction was done by water vendors. Vended water from the stream was sold at US 3.5-7.5 per m 3 and vendors earned between US 3-6 a day. Abstracted water contributed approximately 40-60% of the total daily consumptive water use in the riparian area during dry weather but >30% of the morning stream flow was abstracted thereby upsetting stream flow in the lower reaches. The daily total water abstraction correlated positively ( R2, 0.98) and significantly ( p < 0.05) with the daily total human visit, which was diurnally periodic with two peaks, occurring between 9 a.m. and 10 a.m. and from 4 p.m. to 5 p.m. This diurnal pattern of visits and the corresponding in-stream activities affected water quality. In particular, suspended solids, turbidity and BOD 5 levels increased significantly ( p < 0.05) downstream during in-stream activities. It was concluded

  3. Low-flow characteristics of streams in South Carolina (United States)

    Feaster, Toby D.; Guimaraes, Wladmir B.


    An ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina is important for the protection and preservation of the State’s water resources. Information concerning the low-flow characteristics of streams is especially important during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades.Between 2008 and 2016, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, updated low-flow statistics at 106 continuous-record streamgages operated by the U.S. Geological Survey for the eight major river basins in South Carolina. The low-flow frequency statistics included the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamflow-gaging station. Computations of daily mean flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance also were included.This report summarizes the findings from publications generated during the 2008 to 2016 investigations. Trend analyses for the annual minimum 7-day average flows are provided as well as trend assessments of long-term annual precipitation data. Statewide variability in the annual minimum 7-day average flow is assessed at eight long-term (record lengths from 55 to 78 years) streamgages. If previous low-flow statistics were available, comparisons with the updated annual minimum 7-day average flow, having a 10-year recurrence interval, were made. In addition, methods for estimating low-flow statistics at ungaged locations near a gaged location are described.

  4. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  5. Low-flow characteristics for selected streams in Indiana (United States)

    Fowler, Kathleen K.; Wilson, John T.


    The management and availability of Indiana’s water resources increase in importance every year. Specifically, information on low-flow characteristics of streams is essential to State water-management agencies. These agencies need low-flow information when working with issues related to irrigation, municipal and industrial water supplies, fish and wildlife protection, and the dilution of waste. Industrial, municipal, and other facilities must obtain National Pollutant Discharge Elimination System (NPDES) permits if their discharges go directly to surface waters. The Indiana Department of Environmental Management (IDEM) requires low-flow statistics in order to administer the NPDES permit program. Low-flow-frequency characteristics were computed for 272 continuous-record stations. The information includes low-flow-frequency analysis, flow-duration analysis, and harmonic mean for the continuous-record stations. For those stations affected by some form of regulation, low-flow frequency curves are based on the longest period of homogeneous record under current conditions. Low-flow-frequency values and harmonic mean flow (if sufficient data were available) were estimated for the 166 partial-record stations. Partial-record stations are ungaged sites where streamflow measurements were made at base flow.

  6. Flow-covariate prediction of stream pesticide concentrations. (United States)

    Mosquin, Paul L; Aldworth, Jeremy; Chen, Wenlin


    Potential peak functions (e.g., maximum rolling averages over a given duration) of annual pesticide concentrations in the aquatic environment are important exposure parameters (or target quantities) for ecological risk assessments. These target quantities require accurate concentration estimates on nonsampled days in a monitoring program. We examined stream flow as a covariate via universal kriging to improve predictions of maximum m-day (m = 1, 7, 14, 30, 60) rolling averages and the 95th percentiles of atrazine concentration in streams where data were collected every 7 or 14 d. The universal kriging predictions were evaluated against the target quantities calculated directly from the daily (or near daily) measured atrazine concentration at 32 sites (89 site-yr) as part of the Atrazine Ecological Monitoring Program in the US corn belt region (2008-2013) and 4 sites (62 site-yr) in Ohio by the National Center for Water Quality Research (1993-2008). Because stream flow data are strongly skewed to the right, 3 transformations of the flow covariate were considered: log transformation, short-term flow anomaly, and normalized Box-Cox transformation. The normalized Box-Cox transformation resulted in predictions of the target quantities that were comparable to those obtained from log-linear interpolation (i.e., linear interpolation on the log scale) for 7-d sampling. However, the predictions appeared to be negatively affected by variability in regression coefficient estimates across different sample realizations of the concentration time series. Therefore, revised models incorporating seasonal covariates and partially or fully constrained regression parameters were investigated, and they were found to provide much improved predictions in comparison with those from log-linear interpolation for all rolling average measures. Environ Toxicol Chem 2018;37:260-273. © 2017 SETAC. © 2017 SETAC.

  7. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms (United States)

    Jensen, C.; McGuire, K. J.


    estimate of flow duration in temporary streams, which field surveys may, otherwise, underestimate. Such continuous datasets on stream network length will allow researchers to more accurately assess the value of headwater reaches for contributions to environmental services such as aquatic habitat, hyporheic exchange, and mass fluxes of solutes.

  8. A Statistical Method to Predict Flow Permanence in Dryland Streams from Time Series of Stream Temperature

    Directory of Open Access Journals (Sweden)

    Ivan Arismendi


    Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  9. A statistical method to predict flow permanence in dryland streams from time series of stream temperature (United States)

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David


    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  10. Evidence of climate change impact on stream low flow from the tropical mountain rainforest watershed in Hainan Island, China (United States)

    Z. Zhou; Y. Ouyang; Z. Qiu; G. Zhou; M. Lin; Y. Li


    Stream low flow estimates are central to assessing climate change impact, water resource management, and ecosystem restoration. This study investigated the impacts of climate change upon stream low flows from a rainforest watershed in Jianfengling (JFL) Mountain, Hainan Island, China, using the low flow selection method as well as the frequency and probability analysis...

  11. A spatial assessment of stream-flow characteristics and hydrologic ...

    African Journals Online (AJOL)

    The global hydrologic regime has been intensively altered through activities such as dam construction, water abstraction, and inter-basin transfers. This paper uses the Range of Variability Approach (RVA) and daily stream flow records from nine gauging stations to characterize stream-flow post dam construction in the ...

  12. Coupling nutrient uptake and energy flow in headwater streams

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Fellows, Christine [Griffith University, Nathan, Queensland, Australia; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Dahm, Cliff [University of New Mexico, Albuquerque; Thomas, Steve [University of Nebraska


    Nutrient cycling and energy flow in ecosystems are tightly linked through the metabolic processes of organisms. Greater uptake of inorganic nutrients is expected to be associated with higher rates of metabolism [gross primary production (GPP) and respiration (R)], due to assimilatory demand of both autotrophs and heterotrophs. However, relationships between uptake and metabolism should vary with the relative contribution of autochthonous and allochthonous sources of organic matter. To investigate the relationship between metabolism and nutrient uptake, we used whole-stream and benthic chamber methods to measure rates of nitrate-nitrogen (NO{sub 3}-N) uptake and metabolism in four headwater streams chosen to span a range of light availability and therefore differing rates of GPP and contributions of autochthonous carbon. We coupled whole-stream metabolism with measures of NO{sub 3}-N uptake conducted repeatedly over the same stream reach during both day and night, as well as incubating benthic sediments under both light and dark conditions. NO{sub 3}-N uptake was generally greater in daylight compared to dark conditions, and although day-night differences in whole-stream uptake were not significant, light-dark differences in benthic chambers were significant at three of the four sites. Estimates of N demand indicated that assimilation by photoautotrophs could account for the majority of NO{sub 3}-N uptake at the two sites with relatively open canopies. Contrary to expectations, photoautotrophs contributed substantially to NO{sub 3}-N uptake even at the two closed-canopy sites, which had low values of GPP/R and relied heavily on allochthonous carbon to fuel R.

  13. Hydroelectric plant turbine, stream and spillway flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lampa, J.; Lemon, D.; Buermans, J. [ASL AQ Flow Inc., Sidney, BC (Canada)


    This presentation provided schematics of the turbine flow measurements and typical bulb installations at the Kootenay Canal and Wells hydroelectric power facilities in British Columbia. A typical arrangement for measuring stream flow using acoustic scintillation was also illustrated. Acoustic scintillation is portable, non-intrusive, suitable for short intakes, requires minimal maintenance and is cost effective and accurate. A comparison between current meters and acoustic scintillation was also presented. Stream flow measurement is valuable in evaluating downstream areas that are environmentally important for fish habitat. Stream flow measurement makes it possible to define circulation. The effects of any changes can be assessed by combining field measurements and numerical modelling. The presentation also demonstrated that computational fluid dynamics modelling appears promising in determining stream flow and turbulent flow at spillways. tabs., figs.

  14. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States (United States)

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell


    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  15. Robust Optical Flow Estimation

    Directory of Open Access Journals (Sweden)

    Javier Sánchez Pérez


    Full Text Available n this work, we describe an implementation of the variational method proposed by Brox etal. in 2004, which yields accurate optical flows with low running times. It has several benefitswith respect to the method of Horn and Schunck: it is more robust to the presence of outliers,produces piecewise-smooth flow fields and can cope with constant brightness changes. Thismethod relies on the brightness and gradient constancy assumptions, using the information ofthe image intensities and the image gradients to find correspondences. It also generalizes theuse of continuous L1 functionals, which help mitigate the effect of outliers and create a TotalVariation (TV regularization. Additionally, it introduces a simple temporal regularizationscheme that enforces a continuous temporal coherence of the flow fields.

  16. Methods for estimating drought streamflow probabilities for Virginia streams (United States)

    Austin, Samuel H.


    Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.

  17. Application of Integral Pumping Tests to estimate the influence of losing streams on groundwater quality (United States)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.


    Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase

  18. Dating base flow in streams using dissolved gases and diurnal temperature changes (United States)

    Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.


    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  19. Three-dimensional features on oscillating microbubbles streaming flows (United States)

    Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.


    Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.

  20. Switch of flow direction in an Antarctic ice stream. (United States)

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H


    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  1. Intelligent Flow Friction Estimation. (United States)

    Brkić, Dejan; Ćojbašić, Žarko


    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  2. Intelligent Flow Friction Estimation

    Directory of Open Access Journals (Sweden)

    Dejan Brkić


    Full Text Available Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ. In the present study, a noniterative approach using Artificial Neural Network (ANN was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re and the relative roughness of pipe (ε/D were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re and the relative roughness (ε/D ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  3. Methods to estimate historical daily streamflow for ungaged stream locations in Minnesota (United States)

    Lorenz, David L.; Ziegeweid, Jeffrey R.


    Effective and responsible management of water resources relies on a thorough understanding of the quantity and quality of available water; however, streamgages cannot be installed at every location where streamflow information is needed. Therefore, methods for estimating streamflow at ungaged stream locations need to be developed. This report presents a statewide study to develop methods to estimate the structure of historical daily streamflow at ungaged stream locations in Minnesota. Historical daily mean streamflow at ungaged locations in Minnesota can be estimated by transferring streamflow data at streamgages to the ungaged location using the QPPQ method. The QPPQ method uses flow-duration curves at an index streamgage, relying on the assumption that exceedance probabilities are equivalent between the index streamgage and the ungaged location, and estimates the flow at the ungaged location using the estimated flow-duration curve. Flow-duration curves at ungaged locations can be estimated using recently developed regression equations that have been incorporated into StreamStats (, which is a U.S. Geological Survey Web-based interactive mapping tool that can be used to obtain streamflow statistics, drainage-basin characteristics, and other information for user-selected locations on streams.

  4. Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis

    Directory of Open Access Journals (Sweden)

    Chiang Wei


    Full Text Available Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.

  5. Reverse stream flow routing by using Muskingum models

    Indian Academy of Sciences (India)

    Reverse stream flow routing is a procedure that determines the upstream hydrograph given the downstream hydrograph. This paper presents the development of methodology for Muskingum models parameter estimation for reverse stream flow routing. The standard application of the Muskingum models involves calibration ...

  6. Predicting Hyporheic Exchange of Water and Solutes in Streams on the Basis of a Priori Estimates of Stream Physical Characteristics (United States)

    Stone, S. H.; Harvey, J.; Packman, A.; Worman, A.


    source of uncertainty in predicting hyporheic exchange resulted from the lack of detailed information on streambed hydraulic conductivity. We are currently conducting additional fieldwork to improve characterization of hydraulic conductivity and evaluate temporal changes in local stream morphology, and will relate these new measurements to the results of multiple prior solute injection experiments. These methods can potentially be used to provide both a priori, order-of-magnitude prediction of hyporheic exchange and much higher-quality estimates of long-term average behavior when used in conjunction with direct observations of solute transport. In the future we intend to test the generality of our method by applying the technique in other streams with varying geomorphology and flow conditions.

  7. Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence (United States)

    Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.


    Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.

  8. Particle migration and sorting in microbubble streaming flows (United States)

    Thameem, Raqeeb; Hilgenfeldt, Sascha


    Ultrasonic driving of semicylindrical microbubbles generates strong streaming flows that are robust over a wide range of driving frequencies. We show that in microchannels, these streaming flow patterns can be combined with Poiseuille flows to achieve two distinctive, highly tunable methods for size-sensitive sorting and trapping of particles much smaller than the bubble itself. This method allows higher throughput than typical passive sorting techniques, since it does not require the inclusion of device features on the order of the particle size. We propose a simple mechanism, based on channel and flow geometry, which reliably describes and predicts the sorting behavior observed in experiment. It is also shown that an asymptotic theory that incorporates the device geometry and superimposed channel flow accurately models key flow features such as peak speeds and particle trajectories, provided it is appropriately modified to account for 3D effects caused by the axial confinement of the bubble. PMID:26958103

  9. Estimating stream discharge from a Himalayan Glacier using coupled satellite sensor data (United States)

    Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Haritashya, U. K.; Tarpanelli, A.


    The 4th IPCC report highlighted our limited understanding of Himalayan glacier behavior and contribution to the region's hydrology. Seasonal snow and glacier melt in the Himalayas are important sources of water, but estimates greatly differ about the actual contribution of melted glacier ice to stream discharge. A more comprehensive understanding of the contribution of glaciers to stream discharge is needed because streams being fed by glaciers affect the livelihoods of a large part of the world's population. Most of the streams in the Himalayas are unmonitored because in situ measurements are logistically difficult and costly. This necessitates the use of remote sensing platforms to obtain estimates of river discharge for validating hydrological models. In this study, we estimate stream discharge using cost-effective methods via repeat satellite imagery from Landsat-8 and SENTINEL-1A sensors. The methodology is based on previous studies, which show that ratio values from optical satellite bands correlate well with measured stream discharge. While similar, our methodology relies on significantly higher resolution imagery (30 m) and utilizes bands that are in the blue and near-infrared spectrum as opposed to previous studies using 250 m resolution imagery and spectral bands only in the near-infrared. Higher resolution imagery is necessary for streams where the source is a glacier's terminus because the width of the stream is often only 10s of meters. We validate our methodology using two rivers in the state of Kansas, where stream gauges are plentiful. We then apply our method to the Bhagirathi River, in the North-Central Himalayas, which is fed by the Gangotri Glacier and has a well monitored stream gauge. The analysis will later be used to couple river discharge and glacier flow and mass balance through an integrated hydrologic model in the Bhagirathi Basin.

  10. 2007 Estimated International Energy Flows

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C A; Belles, R D; Simon, A J


    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  11. StreamStats in Oklahoma - Drainage-Basin Characteristics and Peak-Flow Frequency Statistics for Ungaged Streams (United States)

    Smith, S. Jerrod; Esralew, Rachel A.


    The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the

  12. Optimized open-flow mixing: insights from microbubble streaming (United States)

    Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha


    Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.

  13. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.


    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  14. Estimating the Spatial Distribution of Groundwater Age Using Synoptic Surveys of Environmental Tracers in Streams (United States)

    Gardner, W. P.


    A model which simulates tracer concentration in surface water as a function the age distribution of groundwater discharge is used to characterize groundwater flow systems at a variety of spatial scales. We develop the theory behind the model and demonstrate its application in several groundwater systems of local to regional scale. A 1-D stream transport model, which includes: advection, dispersion, gas exchange, first-order decay and groundwater inflow is coupled a lumped parameter model that calculates the concentration of environmental tracers in discharging groundwater as a function of the groundwater residence time distribution. The lumped parameters, which describe the residence time distribution, are allowed to vary spatially, and multiple environmental tracers can be simulated. This model allows us to calculate the longitudinal profile of tracer concentration in streams as a function of the spatially variable groundwater age distribution. By fitting model results to observations of stream chemistry and discharge, we can then estimate the spatial distribution of groundwater age. The volume of groundwater discharge to streams can be estimated using a subset of environmental tracers, applied tracers, synoptic stream gauging or other methods, and the age of groundwater then estimated using the previously calculated groundwater discharge and observed environmental tracer concentrations. Synoptic surveys of SF6, CFC's, 3H and 222Rn, along with measured stream discharge are used to estimate the groundwater inflow distribution and mean age for regional scale surveys of the Berland River in west-central Alberta. We find that groundwater entering the Berland has observable age, and that the age estimated using our stream survey is of similar order to limited samples from groundwater wells in the region. Our results show that the stream can be used as an easily accessible location to constrain the regional scale spatial distribution of groundwater age.

  15. Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet (United States)

    Diercke, A.; Kuckein, C.; Verma, M.; Denker, C.


    processes, i.e., spectral line absorption and absorption by hydrogen and helium continua, respectively. The horizontal flows reach mean flow speeds of about 0.5 km s-1 for all wavelength bands. The highest horizontal flow speeds are identified in the λ171 Å band with flow speeds of up to 2.5 km s-1. The results are averaged over a time series of 90 minutes. Because the LCT sampling window has finite width, a spatial degradation cannot be avoided leading to lower estimates of the flow velocities as compared to feature tracking or Doppler measurements. The counter-streaming flows cover about 15-20% of the whole area of the EUV filament channel and are located in the central part of the spine. Conclusions: Compared to the ground-based observations, the absence of seeing effects in AIA observations reveal counter-streaming flows in the filament even with a moderate image scale of 0. ''6 pixel-1. Using a contrast enhancement technique, these flows can be detected and quantified with LCT in different wavelengths. We confirm the omnipresence of counter-streaming flows also in giant quiet-Sun filaments. A movie associated to Fig. 6 is available at http://

  16. Natural stream flow-rates measurements by tracer techniques

    International Nuclear Information System (INIS)

    Cuellar Mansilla, J.


    This paper presents the study of the precision obtained measuring the natural stream flow rates by tracer techniques, especially when the system presents a great slope and a bed constituted by large and extended particle size. The experiences were realized in laboratory pilot channels with flow-rates between 15 and 130 [1/s]; and in natural streams with flow-rates from 1 to 25 m 3 /s. Tracer used were In-133m and Br-82 for laboratory and field measurements respectively. In both cases the tracer was injected as a pulse and its dilution measured collecting samples in the measured section, at constant flow-rates, of 5[1] in laboratory experiences and 60[1] of water in field experiences. Precisions obtained at a 95% confidence level were about 2% for laboratory and 3% for field. (I.V.)

  17. Estimating autotrophic respiration in streams using daily metabolism data (United States)

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  18. Flow effects on benthic stream invertebrates and ecological processes (United States)

    Koprivsek, Maja; Brilly, Mitja


    Flow is the main abiotic factor in the streams. Flow affects the organisms in many direct and indirect ways. The organisms are directly affected by various hydrodynamic forces and mass transfer processes like drag forces, drift, shear stress, food and gases supply and washing metabolites away. Indirect effects on the organisms are determining and distribution of the particle size and structure of the substrate and determining the morphology of riverbeds. Flow does not affect only on individual organism, but also on many ecological effects. To expose just the most important: dispersal of the organisms, habitat use, resource acquisition, competition and predator-prey interactions. Stream invertebrates are adapted to the various flow conditions in many kinds of way. Some of them are avoiding the high flow with living in a hyporeic zone, while the others are adapted to flow with physical adaptations (the way of feeding, respiration, osmoregulation and resistance to draught), morphological adaptations (dorsoventrally flattened shape of organism, streamlined shape of organism, heterogeneous suckers, silk, claws, swimming hair, bristles and ballast gravel) or with behaviour. As the flow characteristics in a particular stream vary over a broad range of space and time scales, it is necessary to measure accurately the velocity in places where the organisms are present to determine the actual impact of flow on aquatic organisms. By measuring the mean flow at individual vertical in a single cross-section, we cannot get any information about the velocity situation close to the bottom of the riverbed where the stream invertebrates are living. Just measuring the velocity near the bottom is a major problem, as technologies for measuring the velocity and flow of natural watercourses is not adapted to measure so close to the bottom. New researches in the last two decades has shown that the thickness of laminar border layer of stones in the stream is only a few 100 micrometers, what

  19. Estimating wetland connectivity to streams in the Prairie Pothole Region: An isotopic and remote sensing approach (United States)

    Brooks, J. R.; Mushet, David M.; Vanderhoof, Melanie; Leibowitz, Scott G.; Neff, Brian; Christensen, J. R.; Rosenberry, Donald O.; Rugh, W. D.; Alexander, L.C.


    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding the reliance of stream flow on inputs from wetlands. We used the isotopic evaporation signal in water and remote sensing to examine wetland‐stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie‐pothole wetlands. Pipestem Creek exhibited an evaporated‐water signal that had approximately half the isotopic‐enrichment signal found in most evaporatively enriched prairie‐pothole wetlands. Groundwater adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment, indicating that enriched surface water did not contribute significantly to groundwater discharging into Pipestem Creek. The estimated surface water area necessary to generate the evaporation signal within Pipestem Creek was highly dynamic, varied primarily with the amount of discharge, and was typically greater than the immediate Pipestem Creek surface water area, indicating that surficial flow from wetlands contributed to stream flow throughout the summer. We propose a dynamic range of spilling thresholds for prairie‐pothole wetlands across the watershed allowing for wetland inputs even during low‐flow periods. Combining Landsat estimates with the isotopic approach allowed determination of potential (Landsat) and actual (isotope) contributing areas in wetland‐dominated systems. This combined approach can give insights into the changes in location and magnitude of surface water and groundwater pathways over time. This approach can be used in other areas where evaporation from wetlands results in a sufficient evaporative isotopic signal.

  20. Comparative Measurement of Stream Flow in the Ethiope River for ...

    African Journals Online (AJOL)

    This study investigates comparative measurement of stream flow in the Ethiope River for small hydropower development. Two methods – the Float and Current Meter or Bridge Broom Methods were investigated and values compared to determine best method for optimal power generation. Depth and width measurements ...

  1. Streaming: A Media Hydrography of Televisual Flows

    Directory of Open Access Journals (Sweden)

    Ghislain Thibault


    Full Text Available This paper focuses on the continuities, rather than the ruptures, between digital television and past media forms. It situates the metaphor of “streaming” in contrast to and connection with previous fluid metaphors that have been used to describe different models of media transmission. From the early use of aqueous vocabulary that shaped popular and scientific understandings of electricity transmission to the seminal studies of mass communication concerning the flows of information, images of fluidity have long shaped cultural understandings of the inner logics of media infrastructures. Building on the work of media archaeologist Erkki Huhtamo, I approach these metaphors as “recurrent topoi” in media culture.

  2. Efficient Estimation of Dynamic Density Functions with Applications in Streaming Data

    KAUST Repository

    Qahtan, Abdulhakim


    Recent advances in computing technology allow for collecting vast amount of data that arrive continuously in the form of streams. Mining data streams is challenged by the speed and volume of the arriving data. Furthermore, the underlying distribution of the data changes over the time in unpredicted scenarios. To reduce the computational cost, data streams are often studied in forms of condensed representation, e.g., Probability Density Function (PDF). This thesis aims at developing an online density estimator that builds a model called KDE-Track for characterizing the dynamic density of the data streams. KDE-Track estimates the PDF of the stream at a set of resampling points and uses interpolation to estimate the density at any given point. To reduce the interpolation error and computational complexity, we introduce adaptive resampling where more/less resampling points are used in high/low curved regions of the PDF. The PDF values at the resampling points are updated online to provide up-to-date model of the data stream. Comparing with other existing online density estimators, KDE-Track is often more accurate (as reflected by smaller error values) and more computationally efficient (as reflected by shorter running time). The anytime available PDF estimated by KDE-Track can be applied for visualizing the dynamic density of data streams, outlier detection and change detection in data streams. In this thesis work, the first application is to visualize the taxi traffic volume in New York city. Utilizing KDE-Track allows for visualizing and monitoring the traffic flow on real time without extra overhead and provides insight analysis of the pick up demand that can be utilized by service providers to improve service availability. The second application is to detect outliers in data streams from sensor networks based on the estimated PDF. The method detects outliers accurately and outperforms baseline methods designed for detecting and cleaning outliers in sensor data. The

  3. Flow Field and Acoustic Predictions for Three-Stream Jets (United States)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas


    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  4. Frequency dependence and frequency control of microbubble streaming flows (United States)

    Wang, Cheng; Rallabandi, Bhargav; Hilgenfeldt, Sascha


    Steady streaming from oscillating microbubbles is a powerful actuating mechanism in microfluidics, enjoying increased use due to its simplicity of manufacture, ease of integration, low heat generation, and unprecedented control over the flow field and particle transport. As the streaming flow patterns are caused by oscillations of microbubbles in contact with walls of the set-up, an understanding of the bubble dynamics is crucial. Here we experimentally characterize the oscillation modes and the frequency response spectrum of such cylindrical bubbles, driven by a pressure variation resulting from ultrasound in the range of 1 kHz raisebox {-.9ex{stackrel{textstyle <}{˜ }} }f raisebox {-.9ex{stackrel{textstyle <}{˜ }} } 100 kHz. We find that (i) the appearance of 2D streaming flow patterns is governed by the relative amplitudes of bubble azimuthal surface modes (normalized by the volume response), (ii) distinct, robust resonance patterns occur independent of details of the set-up, and (iii) the position and width of the resonance peaks can be understood using an asymptotic theory approach. This theory describes, for the first time, the shape oscillations of a pinned cylindrical bubble at a wall and gives insight into necessary mode couplings that shape the response spectrum. Having thus correlated relative mode strengths and observed flow patterns, we demonstrate that the performance of a bubble micromixer can be optimized by making use of such flow variations when modulating the driving frequency.

  5. Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee


    Full Text Available The popularity of multimedia streaming services via wireless networks presents major challenges in the management of network bandwidth. One challenge is to quickly and precisely estimate the available bandwidth for the decision of streaming rates of layered and scalable multimedia services. Previous studies based on wired networks are too burdensome to be applied to multimedia applications in wireless networks. In this paper, a new method, IdleGap, is suggested to estimate the available bandwidth of a wireless LAN based on the information from a low layer in the protocol stack. We use a network simulation tool, NS-2, to evaluate our new method with various ranges of cross-traffic and observation times. Our simulation results show that IdleGap accurately estimates the available bandwidth for all ranges of cross-traffic (100 Kbps ∼ 1 Mbps with a very short observation time of 10 seconds.

  6. Acoustic streaming in pulsating flows through porous media

    International Nuclear Information System (INIS)

    Valverde, J.M.; Dura'n-Olivencia, F.J.


    When a body immersed in a viscous fluid is subjected to a sound wave (or, equivalently, the body oscillates in the fluid otherwise at rest) a rotational fluid stream develops across a boundary layer nearby the fluid-body interphase. This so-called acoustic streaming phenomenon is responsible for a notable enhancement of heat, mass and momentum transfer and takes place in any process involving two phases subjected to relative oscillations. Understanding the fundamental mechanisms governing acoustic streaming in two-phase flows is of great interest for a wide range of applications such as sonoprocessed fluidized bed reactors, thermoacoustic refrigerators/engines, pulsatile flows through veins/arteries, hemodialysis devices, pipes in off-shore platforms, offshore piers, vibrating structures in the power-generating industry, lab-on-a-chip microfluidics and microgravity acoustic levitation, and solar thermal collectors to name a few. The aim of engineering studies on this vast diversity of systems is oriented towards maximizing the efficiency of each particular process. Even though practical problems are usually approached from disparate disciplines without any apparent linkage, the behavior of these systems is influenced by the same underlying physics. In general, acoustic streaming occurs within the interstices of porous media and usually in the presence of externally imposed steady fluid flows, which gives rise to important effects arising from the interference between viscous boundary layers developed around nearby solid surfaces and the nonlinear coupling between the oscillating and steady flows. This paper is mainly devoted to highlighting the fundamental physics behind acoustic streaming in porous media in order to provide a simple instrument to assess the relevance of this phenomenon in each particular application. The exact microscopic Navier-Stokes equations will be numerically solved for a simplified 2D system consisting of a regular array of oscillating

  7. Characterization and classification of invertebrates as indicators of flow permanence in headwater streams (United States)

    Headwater streams represent a large proportion of river networks and many have temporary flow. Litigation has questioned whether these streams are jurisdictional under the Clean Water Act. Our goal was to identify indicators of flow permanence by comparing invertebrate assemblage...

  8. Stochastic Modelling of Shiroro River Stream flow Process


    Musa, J. J


    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  9. Overcoming equifinality: Leveraging long time series for stream metabolism estimation (United States)

    Appling, Alison; Hall, Robert O.; Yackulic, Charles B.; Arroita, Maite


    The foundational ecosystem processes of gross primary production (GPP) and ecosystem respiration (ER) cannot be measured directly but can be modeled in aquatic ecosystems from subdaily patterns of oxygen (O2) concentrations. Because rivers and streams constantly exchange O2 with the atmosphere, models must either use empirical estimates of the gas exchange rate coefficient (K600) or solve for all three parameters (GPP, ER, and K600) simultaneously. Empirical measurements of K600 require substantial field work and can still be inaccurate. Three-parameter models have suffered from equifinality, where good fits to O2 data are achieved by many different parameter values, some unrealistic. We developed a new three-parameter, multiday model that ensures similar values for K600 among days with similar physical conditions (e.g., discharge). Our new model overcomes the equifinality problem by (1) flexibly relating K600 to discharge while permitting moderate daily deviations and (2) avoiding the oft-violated assumption that residuals in O2 predictions are uncorrelated. We implemented this hierarchical state-space model and several competitor models in an open-source R package, streamMetabolizer. We then tested the models against both simulated and field data. Our new model reduces error by as much as 70% in daily estimates of K600, GPP, and ER. Further, accuracy benefits of multiday data sets require as few as 3 days of data. This approach facilitates more accurate metabolism estimates for more streams and days, enabling researchers to better quantify carbon fluxes, compare streams by their metabolic regimes, and investigate controls on aquatic activity.

  10. Implementation of a subcanopy solar radiation model on a forested headwater basin in the Southern Appalachians to estimate riparian canopy density and stream insolation for stream temperature models (United States)

    Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.


    Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and

  11. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges (United States)

    Daya Sagar, B. S.


    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  12. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar


    Full Text Available Spatio-temporal patterns of small water bodies (SWBs under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  13. Uncertanity Analysis in Parameter Estimation of Coupled Bacteria-Sediment Fate and Transport in Streams (United States)

    Massoudieh, A.; Le, T.; Pachepsky, Y. A.


    E. coli is widely used as an fecal indicator bacteria in streams. It has been shown that the interaction between sediments and the bacteria is an important factor in determining its fate and transport in water bodies. In this presentation parameter estimation and uncertainty analysis of a mechanistic model of bacteria-sediment interaction respectively using a hybrid genetic algorithm and Makov-Chain Monte Carlo (MCMC) approach will be presented. The physically-based model considers the advective-dispersive transport of sediments as well as both free-floating and sediment-associated bacteria in the water column and also the fate and transport of bacteria in the bed sediments in a small stream. The bed sediments are treated as a distributed system which allows modeling the evolution of the vertical distribution of bacteria as a result of sedimentation and resuspension, diffusion and bioturbation in the sediments. One-dimensional St. Venant's equation is used to model flow in the stream. The model is applied to sediment and E. coli concentration data collected during a high flow event in a small stream historically receiving agricultural runoff. Measured total suspended sediments and total E. coli concentrations in the water column at three sections of the stream are used for the parameter estimation. The data on the initial distribution of E. coli in the sediments was available and was used as the initial conditions. The MCMC method is used to estimate the joint probability distribution of model parameters including sediment deposition and erosion rates, critical shear stress for deposition and erosion, attachment and detachment rate constants of E. coli to/from sediments and also the effective diffusion coefficients of E. coli in the bed sediments. The uncertainties associated with the estimated parameters are quantified via the MCMC approach and the correlation between the posterior distribution of parameters have been used to assess the model adequacy and

  14. Estimating groundwater-ephemeral stream exchange in hyper-arid environments: Field experiments and numerical simulations (United States)

    Wang, Ping; Pozdniakov, Sergey P.; Vasilevskiy, Peter Yu.


    Surface water infiltration from ephemeral dryland streams is particularly important in hyporheic exchange and biogeochemical processes in arid and semi-arid regions. However, streamflow transmission losses can vary significantly, partly due to spatiotemporal variations in streambed permeability. To extend our understanding of changes in streambed hydraulic properties, field investigations of streambed hydraulic conductivity were conducted in an ephemeral dryland stream in north-western China during high and low streamflow periods. Additionally, streamflow transmission losses were numerically estimated using combined stream and groundwater hydraulic head data and stream and streambed temperature data. An analysis of slug test data at two different river flow stages (one test was performed at a low river stage with clean water and the other at a high river stage with muddy water) suggested that sedimentation from fine-grained particles, i.e., physical clogging processes, likely led to a reduction in streambed hydraulic properties. To account for the effects of streambed clogging on changes in hydraulic properties, an iteratively increasing total hydraulic resistance during the slug test was considered to correct the estimation of streambed hydraulic conductivity. The stream and streambed temperature can also greatly influence the hydraulic properties of the streambed. One-dimensional coupled water and heat flux modelling with HYDRUS-1D was used to quantify the effects of seasonal changes in stream and streambed temperature on streamflow losses. During the period from 6 August 2014 to 4 June 2015, the total infiltration estimated using temperature-dependent hydraulic conductivity accounted for approximately 88% of that using temperature-independent hydraulic conductivity. Streambed clogging processes associated with fine particle settling/wash up cycles during flow events, and seasonal changes in streamflow temperature are two considerable factors that affect water

  15. Stream temperature estimated in situ from thermal-infrared images: best estimate and uncertainty

    International Nuclear Information System (INIS)

    Iezzi, F; Todisco, M T


    The paper aims to show a technique to estimate in situ the stream temperature from thermal-infrared images deepening its best estimate and uncertainty. Stream temperature is an important indicator of water quality and nowadays its assessment is important particularly for thermal pollution monitoring in water bodies. Stream temperature changes are especially due to the anthropogenic heat input from urban wastewater and from water used as a coolant by power plants and industrial manufacturers. The stream temperatures assessment using ordinary techniques (e.g. appropriate thermometers) is limited by sparse sampling in space due to a spatial discretization necessarily punctual. Latest and most advanced techniques assess the stream temperature using thermal-infrared remote sensing based on thermal imagers placed usually on aircrafts or using satellite images. These techniques assess only the surface water temperature and they are suitable to detect the temperature of vast water bodies but do not allow a detailed and precise surface water temperature assessment in limited areas of the water body. The technique shown in this research is based on the assessment of thermal-infrared images obtained in situ via portable thermal imager. As in all thermographic techniques, also in this technique, it is possible to estimate only the surface water temperature. A stream with the presence of a discharge of urban wastewater is proposed as case study to validate the technique and to show its application limits. Since the technique analyzes limited areas in extension of the water body, it allows a detailed and precise assessment of the water temperature. In general, the punctual and average stream temperatures are respectively uncorrected and corrected. An appropriate statistical method that minimizes the errors in the average stream temperature is proposed. The correct measurement of this temperature through the assessment of thermal- infrared images obtained in situ via portable

  16. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies (United States)

    Wagner, Brian J.; Harvey, Judson W.


    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute

  17. Shock formation and structure in magnetic reconnection with a streaming flow. (United States)

    Wu, Liangneng; Ma, Zhiwei; Zhang, Haowei


    The features of magnetic reconnection with a streaming flow have been investigated on the basis of compressible resistive magnetohydrodynamic (MHD) model. The super-Alfvenic streaming flow largely enhances magnetic reconnection. The maximum reconnection rate is almost four times larger with super-Alfvenic streaming flow than sub-Alfvénic streaming flow. In the nonlinear stage, it is found that there is a pair of shocks observed in the inflow region, which are manifested to be slow shocks for sub-Alfvénic streaming flow, and fast shocks for super-Alfvénic streaming flow. The quasi-period oscillation of reconnection rates in the decaying phase for super-Alfvénic streaming flow is resulted from the different drifting velocities of the shock and the X point.

  18. An Assessment of Mean Areal Precipitation Methods on Simulated Stream Flow: A SWAT Model Performance Assessment

    Directory of Open Access Journals (Sweden)

    Sean Zeiger


    Full Text Available Accurate mean areal precipitation (MAP estimates are essential input forcings for hydrologic models. However, the selection of the most accurate method to estimate MAP can be daunting because there are numerous methods to choose from (e.g., proximate gauge, direct weighted average, surface-fitting, and remotely sensed methods. Multiple methods (n = 19 were used to estimate MAP with precipitation data from 11 distributed monitoring sites, and 4 remotely sensed data sets. Each method was validated against the hydrologic model simulated stream flow using the Soil and Water Assessment Tool (SWAT. SWAT was validated using a split-site method and the observed stream flow data from five nested-scale gauging sites in a mixed-land-use watershed of the central USA. Cross-validation results showed the error associated with surface-fitting and remotely sensed methods ranging from −4.5 to −5.1%, and −9.8 to −14.7%, respectively. Split-site validation results showed the percent bias (PBIAS values that ranged from −4.5 to −160%. Second order polynomial functions especially overestimated precipitation and subsequent stream flow simulations (PBIAS = −160 in the headwaters. The results indicated that using an inverse-distance weighted, linear polynomial interpolation or multiquadric function method to estimate MAP may improve SWAT model simulations. Collectively, the results highlight the importance of spatially distributed observed hydroclimate data for precipitation and subsequent steam flow estimations. The MAP methods demonstrated in the current work can be used to reduce hydrologic model uncertainty caused by watershed physiographic differences.

  19. Groundwater flow and mixing in a wetland–stream system

    DEFF Research Database (Denmark)

    Karan, Sachin; Engesgaard, Peter Knudegaard; Zibar, Majken Caroline Looms


    steady-state groundwater model that was calibrated against average head observations. The model results were tested against groundwater fluxes determined from streambed temperature measurements. Discharge varied up to one order of magnitude across the stream and the model was successful in capturing...... in the top of the aquifer and immediately underneath the streambed no NO3- was detected deeper within the aquifer. An inverse relationship between NO3- and SO42- suggests that pyrite oxidation takes place in the deeper parts of the aquifer. Simulated flow path lines showed very different origins for deeper...

  20. Stream biofilm responses to flow intermittency: from cells to ecosystems

    Directory of Open Access Journals (Sweden)

    Sergi eSabater


    Full Text Available Temporary streams are characterized by the alternation of dry and wet hydrological phases, creating both a harsh environment for the biota as well as a high diversity of opportunities for adaptation. These systems are eminently microbial-based during several of these hydrological phases, and those growing on all solid substrata (biofilms accordingly change their physical structure and community composition. Biofilms experience large decreases on cell densities and biomass, both of bacteria and algae, during dryness. Algal and bacterial communities show remarkable decreases in their diversity, at least locally (at the habitat scale. Biofilms also respond with significant physiological plasticity to each of the hydrological changes. The decreasing humidity of the substrata through the drying process, and the changing quantity and quality of organic matter and nutrients available in the stream during that process, causes unequal responses on the biofilm bacteria and algae. Biofilm algae are affected faster than bacteria by the hydric stress, and as a result the ecosystem respiration resists longer than gross primary production to the increasing duration of flow intermittency. This response implies enhancing ecosystem heterotrophy, a pattern that can be exacerbated in temporary streams suffering of longer dry periods under global change.

  1. The impact of Indian Ocean high pressure system on rainfall and stream flow

    International Nuclear Information System (INIS)

    Rehman, S.; Nasir, H.; Zia, S.S.; Ansari, W.A.; Salam, K.; Tayyab, N.


    Centre of Action approach is very useful in getting insight of rainfall and stream flow variability of specific region. Hameed et al. showed that Inter-annual variability of Gulf Stream north wall is influenced by low Icelandic pressure system and has more statistically significant correlation than North Atlantic Oscillation (NAO) with longitude of Icelandic low. This study also aims to explore possible relationships between rainfall and stream flow in Collie river catchment in Southwest Western Australia (SWWA) with Indian Ocean high pressure dynamics. The relationship between rainfall and stream flow with Indian Ocean high pressure system have been investigated using correlation analysis for early winter season (MJJA), lag correlation for MJJA versus SOND rainfall and stream flow are also calculated and found significant at 95% confidence level. By investigating the relationship between COA indices with rainfall and stream flow over the period 1976-2008, significant correlations suggests that rainfall and stream flow in Collie river basin is strongly influenced by COA indices. Multiple correlations between rainfall and stream flow with Indian Ocean high pressure (IOHPS and IOHLN) is 0.7 and 0.6 respectively. Centers of Action (COA) indices explain 51% and 36% of rainfall and stream flow respectively. The correlation between rainfall and stream flow with IOHPS is -0.4 and -0.3 whereas, with IOHLN is -0.47 and -0.52 respectively. (author)

  2. Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams (United States)

    Watson, Kara M.; Schopp, Robert D.


    Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed

  3. Hankin and Reeves' approach to estimating fish abundance in small streams: limitations and alternatives (United States)

    William L. Thompson


    Hankin and Reeves' (1988) approach to estimating fish abundance in small streams has been applied in stream fish studies across North America. However, their population estimator relies on two key assumptions: (1) removal estimates are equal to the true numbers of fish, and (2) removal estimates are highly correlated with snorkel counts within a subset of sampled...

  4. Groundwater, springs, and stream flow generation in an alpine meadow of a tropical glacierized catchment (United States)

    Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.


    Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by

  5. Riparian indicators of flow frequency in a tropical montante stream network (United States)

    Andrew S. Pike; Frederick N. Scatena


    Many field indicators have been used to approximate the magnitude and frequency of flows in a variety of streams and rivers, yet due to a scarcity of long-term flow records in tropical mountain streams, little to no work has been done to establish such relationships between field features and the flow regime in these environments. Furthermore, the transition between...

  6. Toward Design Guidelines for Stream Restoration Structures: Measuring and Modeling Unsteady Turbulent Flows in Natural Streams with Complex Hydraulic Structures (United States)

    Lightbody, A.; Sotiropoulos, F.; Kang, S.; Diplas, P.


    Despite their widespread application to prevent lateral river migration, stabilize banks, and promote aquatic habitat, shallow transverse flow training structures such as rock vanes and stream barbs lack quantitative design guidelines. Due to the lack of fundamental knowledge about the interaction of the flow field with the sediment bed, existing engineering standards are typically based on various subjective criteria or on cross-sectionally-averaged shear stresses rather than local values. Here, we examine the performance and stability of in-stream structures within a field-scale single-threaded sand-bed meandering stream channel in the newly developed Outdoor StreamLab (OSL) at the St. Anthony Falls Laboratory (SAFL). Before and after the installation of a rock vane along the outer bank of the middle meander bend, high-resolution topography data were obtained for the entire 50-m-long reach at 1-cm spatial scale in the horizontal and sub-millimeter spatial scale in the vertical. In addition, detailed measurements of flow and turbulence were obtained using acoustic Doppler velocimetry at twelve cross-sections focused on the vicinity of the structure. Measurements were repeated at a range of extreme events, including in-bank flows with an approximate flow rate of 44 L/s (1.4 cfs) and bankfull floods with an approximate flow rate of 280 L/s (10 cfs). Under both flow rates, the structure reduced near-bank shear stresses and resulted in both a deeper thalweg and near-bank aggradation. The resulting comprehensive dataset has been used to validate a large eddy simulation carried out by SAFL’s computational fluid dynamics model, the Virtual StreamLab (VSL). This versatile computational framework is able to efficiently simulate 3D unsteady turbulent flows in natural streams with complex in-stream structures and as a result holds promise for the development of much-needed quantitative design guidelines.

  7. Estimation of river and stream temperature trends under haphazard sampling (United States)

    Gray, Brian R.; Lyubchich, Vyacheslav; Gel, Yulia R.; Rogala, James T.; Robertson, Dale M.; Wei, Xiaoqiao


    Long-term temporal trends in water temperature in rivers and streams are typically estimated under the assumption of evenly-spaced space-time measurements. However, sampling times and dates associated with historical water temperature datasets and some sampling designs may be haphazard. As a result, trends in temperature may be confounded with trends in time or space of sampling which, in turn, may yield biased trend estimators and thus unreliable conclusions. We address this concern using multilevel (hierarchical) linear models, where time effects are allowed to vary randomly by day and date effects by year. We evaluate the proposed approach by Monte Carlo simulations with imbalance, sparse data and confounding by trend in time and date of sampling. Simulation results indicate unbiased trend estimators while results from a case study of temperature data from the Illinois River, USA conform to river thermal assumptions. We also propose a new nonparametric bootstrap inference on multilevel models that allows for a relatively flexible and distribution-free quantification of uncertainties. The proposed multilevel modeling approach may be elaborated to accommodate nonlinearities within days and years when sampling times or dates typically span temperature extremes.

  8. Linear growth rates of resistive tearing modes with sub-Alfvénic streaming flow

    International Nuclear Information System (INIS)

    Wu, L. N.; Ma, Z. W.


    The tearing instability with sub-Alfvénic streaming flow along the external magnetic field is investigated using resistive MHD simulation. It is found that the growth rate of the tearing mode instability is larger than that without the streaming flow. With the streaming flow, there exist two Alfvén resonance layers near the central current sheet. The larger perturbation of the magnetic field in two closer Alfvén resonance layers could lead to formation of the observed cone structure and can largely enhance the development of the tearing mode for a narrower streaming flow. For a broader streaming flow, a larger separation of Alfvén resonance layers reduces the magnetic reconnection. The linear growth rate decreases with increase of the streaming flow thickness. The growth rate of the tearing instability also depends on the plasma beta (β). When the streaming flow is embedded in the current sheet, the growth rate increases with β if β  s , but decreases if β > β s . The existence of the specific value β s can be attributed to competition between the suppressing effect of β and the enhancing effect of the streaming flow on the magnetic reconnection. The critical value β s increases with increase of the streaming flow strength

  9. Effective number of breeders provides a link between interannual variation in stream flow and individual reproductive contribution in a stream salmonid. (United States)

    Whiteley, Andrew R; Coombs, Jason A; Cembrola, Matthew; O'Donnell, Matthew J; Hudy, Mark; Nislow, Keith H; Letcher, Benjamin H


    The effective number of breeders that give rise to a cohort (N(b)) is a promising metric for genetic monitoring of species with overlapping generations; however, more work is needed to understand factors that contribute to variation in this measure in natural populations. We tested hypotheses related to interannual variation in N(b) in two long-term studies of brook trout populations. We found no supporting evidence for our initial hypothesis that N^(b) reflects N^(c) (defined as the number of adults in a population at the time of reproduction). N^(b) was stable relative to N^(C) and did not follow trends in abundance (one stream negative, the other positive). We used stream flow estimates to test the alternative hypothesis that environmental factors constrain N(b). We observed an intermediate optimum autumn stream flow for both N^(b) (R(2) = 0.73, P = 0.02) and full-sibling family evenness (R(2) = 0.77, P = 0.01) in one population and a negative correlation between autumn stream flow and full-sib family evenness in the other population (r = -0.95, P = 0.02). Evidence for greater reproductive skew at the lowest and highest autumn flow was consistent with suboptimal conditions at flow extremes. A series of additional tests provided no supporting evidence for a related hypothesis that density-dependent reproductive success was responsible for the lack of relationship between N(b) and N(C) (so-called genetic compensation). This work provides evidence that N(b) is a useful metric of population-specific individual reproductive contribution for genetic monitoring across populations and the link we provide between stream flow and N(b) could be used to help predict population resilience to environmental change. © 2015 John Wiley & Sons Ltd.

  10. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.


    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  11. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution (United States)

    Rice, Jacelyn; Westerhoff, Paul


    Wastewater discharges from publicly owned treatment works are a significant source of endocrine disruptors and other contaminants to the aquatic environment in the US. Although remaining pollutants in wastewater pose environmental risks, treated wastewater is also a primary source of stream flow, which in turn is critical in maintaining many aquatic and riparian wildlife habitats. Here we calculate the dilution factor--the ratio of flow in the stream receiving discharge to the flow of wastewater discharge--for over 14,000 receiving streams in the continental US using streamflow observations and a spatially explicit watershed-scale hydraulic model. We found that wastewater discharges make up more than 50% of in-stream flow for over 900 streams. However, in 1,049 streams that experienced exceptional low-flow conditions, the dilution factors in 635 of those streams fell so low during those conditions that the safety threshold for concentrations of one endocrine disrupting compound was exceeded, and in roughly a third of those streams, the threshold was exceeded for two compounds. We suggest that streams are vulnerable to public wastewater discharge of contaminants under low-flow conditions, at a time when wastewater discharges are likely to be most important for maintaining stream flow for smaller sized river systems.

  12. Estimation of stream conditions in tributaries of the Klamath River, northern California (United States)

    Manhard, Christopher V.; Som, Nicholas A.; Jones, Edward C.; Perry, Russell W.


    Because of their critical ecological role, stream temperature and discharge are requisite inputs for models of salmonid population dynamics. Coho Salmon inhabiting the Klamath Basin spend much of their freshwater life cycle inhabiting tributaries, but environmental data are often absent or only seasonally available at these locations. To address this information gap, we constructed daily averaged water temperature models that used simulated meteorological data to estimate daily tributary temperatures, and we used flow differentials recorded on the mainstem Klamath River to estimate daily tributary discharge. Observed temperature data were available for fourteen of the major salmon bearing tributaries, which enabled estimation of tributary-specific model parameters at those locations. Water temperature data from six mid-Klamath Basin tributaries were used to estimate a global set of parameters for predicting water temperatures in the remaining tributaries. The resulting parameter sets were used to simulate water temperatures for each of 75 tributaries from 1980-2015. Goodness-of-fit statistics computed from a cross-validation analysis demonstrated a high precision of the tributary-specific models in predicting temperature in unobserved years and of the global model in predicting temperatures in unobserved streams. Klamath River discharge has been monitored by four gages that broadly intersperse the 292 kilometers from the Iron Gate Dam to the Klamath River mouth. These gages defined the upstream and downstream margins of three reaches. Daily discharge of tributaries within a reach was estimated from 1980-2015 based on drainage-area proportionate allocations of the discharge differential between the upstream and downstream margin. Comparisons with measured discharge on Indian Creek, a moderate-sized tributary with naturally regulated flows, revealed that the estimates effectively approximated both the variability and magnitude of discharge.

  13. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models (United States)

    Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.


    phosphorus model include discharges for municipal wastewater-treatment facilities and pulp and paper facilities, developed land area, agricultural area, and forested area. For total phosphorus, loss rates were significant for reservoirs with surface areas of 10 square kilometers or less, and in streams with flows less than or equal to 2.83 cubic meters per second. Applications of SPARROW for evaluating nutrient loading in New England waters include estimates of the spatial distributions of total nitrogen and phosphorus yields, sources of the nutrients, and the potential for delivery of those yields to receiving waters. This information can be used to (1) predict ranges in nutrient levels in surface waters, (2) identify the environmental variables that are statistically significant predictors of nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.

  14. Aquatic insect emergence from headwater streams flowing through regeneration and mature forests in western Oregon (United States)

    Robert Progar; Andrew R. Moldenke


    We examined the effect of canopy cover on adult aquatic insect emergence by collecting bi-weekly samples from twelve headwater stream reaches flowing either under a mature conifer canopy or streams flowing through ten-year-old regeneration in western Oregon from February to November 1997. Density and biomass generally followed a bimodal curve with peaks during early...

  15. Application of support vector regression (SVR) for stream flow prediction on the Amazon basin

    CSIR Research Space (South Africa)

    Du Toit, Melise


    Full Text Available regression technique is used in this study to analyse historical stream flow occurrences and predict stream flow values for the Amazon basin. Up to twelve month predictions are made and the coefficient of determination and root-mean-square error are used...

  16. Flow behaviour, suspended sediment transport and transmission losses in a small (sub-bank-full) flow event in an Australian desert stream (United States)

    Dunkerley, David; Brown, Kate


    The behaviour of a discrete sub-bank-full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank-full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank-full stage, and be higher in both sub-bank-full and overbank flows. Factors contributing to enhanced flow loss in the sub-bank-full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments.

  17. Microsphere estimates of blood flow: Methodological considerations

    International Nuclear Information System (INIS)

    von Ritter, C.; Hinder, R.A.; Womack, W.; Bauerfeind, P.; Fimmel, C.J.; Kvietys, P.R.; Granger, D.N.; Blum, A.L.


    The microsphere technique is a standard method for measuring blood flow in experimental animals. Sporadic reports have appeared outlining the limitations of this method. In this study the authors have systematically assessed the effect of blood withdrawals for reference sampling, microsphere numbers, and anesthesia on blood flow estimates using radioactive microspheres in dogs. Experiments were performed on 18 conscious and 12 anesthetized dogs. Four blood flow estimates were performed over 120 min using 1 x 10 6 microspheres each time. The effects of excessive numbers of microspheres pentobarbital sodium anesthesia, and replacement of volume loss for reference samples with dextran 70 were assessed. In both conscious and anesthetized dogs a progressive decrease in gastric mucosal blood flow and cardiac output was observed over 120 min. This was also observed in the pancreas in conscious dogs. The major factor responsible for these changes was the volume loss due to the reference sample withdrawals. Replacement of the withdrawn blood with dextran 70 led to stable blood flows to all organs. The injection of excessive numbers of microspheres did not modify hemodynamics to a greater extent than did the injection of 4 million microspheres. Anesthesia exerted no influence on blood flow other than raising coronary flow. The authors conclude that although blood flow to the gastric mucosa and the pancreas is sensitive to the minor hemodynamic changes associated with the microsphere technique, replacement of volume loss for reference samples ensures stable blood flow to all organs over a 120-min period

  18. Statistically extracted fundamental watershed variables for estimating the loads of total nitrogen in small streams (United States)

    Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia


    Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (monitoring may be beneficial.

  19. The Effects of the Impedance of the Flow Source on the Design of Tidal Stream Generators (United States)

    Salter, S.


    The maximum performance of a wind turbine is set by the well-known Betz limit. If the designer of a wind turbine uses too fast a rotation, too large a blade chord or too high an angle of blade pitch, the air flow can take an easier path over or around the rotor. Most estimates of the tidal stream resource use equations borrowed from wind and would be reasonably accurate for a single unit. But water cannot flow through the seabed or over rotors which reach to the surface. If contra-rotating, vertical-axis turbines with a rectangular flow-window are placed close to one another and reach from the surface close to the seabed, the leakage path is blocked and they become more like turbines in a closed duct. Instead of an equation with area times velocity-cubed we should use the first power of volume flow rate though the rotor times the pressure difference across it. A long channel with a rough bed will already be losing lots of energy and will behave more like a high impedance flow. Attempts to block it with closely-packed turbines will increase the head across the turbines with only a small effect on flow rate. The same thing will occur if a close-packed line of turbines is built out to sea from a headland. It is necessary to understand the impedance of the flow source all the way out to mid-ocean. In deep seas where the current velocities at the seabed are too slow to disturb the ooze the friction coefficients will be similar to those of gloss paint, perhaps 0.0025. But the higher velocities in shallow water will remove ooze and quite large sediments leaving rough, bare rock and leading to higher friction-coefficients. Energy dissipation will be set by the higher friction coefficients and the cube of the higher velocities. The presence of turbines will reduce seabed losses and about one third of the present loss can be converted to electricity. The velocity reduction would be about 10%. In many sites the energy output will be far higher than the wind turbine equations

  20. Trail Creek II: Modeling Flow and E. Coli Concentrations in a Small Urban Stream using SWAT (United States)

    Radcliffe, D. E.; Saintil, T.


    Pathogens are one of the leading causes of stream and river impairment in the State of Georgia. The common presence of fecal bacteria is driven by several factors including rapid population growth stressing pre-existing and ageing infrastructure, urbanization and poor planning, increase percent imperviousness, urban runoff, municipal discharges, sewage, pet/wildlife waste and leaky septic tanks. The Trail Creek watershed, located in Athens-Clarke County, Georgia covers about 33 km2. Stream segments within Trail Creek violate the GA standard due to high levels of fecal coliform bacteria. In this study, the Soil and Water Assessment Tool (SWAT) modeling software was used to predict E. coli bacteria concentrations during baseflow and stormflow. Census data from the county was used for human and animal population estimates and the Fecal Indicator Tool to generate the number of colony forming units of E. Coli for each source. The model was calibrated at a daily time step with one year of monitored streamflow and E. coli bacteria data using SWAT-CUP and the SUFI2 algorithm. To simulate leaking sewer lines, we added point sources in the five subbasins in the SWAT model with the greatest length of sewer line within 50 m of the stream. The flow in the point sources were set to 5% of the stream flow and the bacteria count set to that of raw sewage (30,000 cfu/100 mL). The calibrated model showed that the average load during 2003-2013 at the watershed outlet was 13 million cfu per month. Using the calibrated model, we simulated scenarios that assumed leaking sewers were repaired in one of the five subbasins with point sources. The reduction ranged from 10 to 46%, with the largest reduction in subbasin in the downtown area. Future modeling work will focus on the use of green infrastructure to address sources of bacteria.

  1. Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms. (United States)

    Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf


    Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Techniques for estimating flood-depth frequency relations for streams in West Virginia (United States)

    Wiley, J.B.


    Multiple regression analyses are applied to data from 119 U.S. Geological Survey streamflow stations to develop equations that estimate baseline depth (depth of 50% flow duration) and 100-yr flood depth on unregulated streams in West Virginia. Drainage basin characteristics determined from the 100-yr flood depth analysis were used to develop 2-, 10-, 25-, 50-, and 500-yr regional flood depth equations. Two regions with distinct baseline depth equations and three regions with distinct flood depth equations are delineated. Drainage area is the most significant independent variable found in the central and northern areas of the state where mean basin elevation also is significant. The equations are applicable to any unregulated site in West Virginia where values of independent variables are within the range evaluated for the region. Examples of inapplicable sites include those in reaches below dams, within and directly upstream from bridge or culvert constrictions, within encroached reaches, in karst areas, and where streams flow through lakes or swamps. (Author 's abstract)

  3. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    P. Gao


    Full Text Available Reduced stream flow and increased sediment discharge are a major concern in the Yellow River basin of China, which supplies water for agriculture, industry and the growing populations located along the river. Similar concerns exist in the Wei River basin, which is the largest tributary of the Yellow River basin and comprises the highly eroded Loess Plateau. Better understanding of the drivers of stream flow and sediment discharge dynamics in the Wei River basin is needed for development of effective management strategies for the region and entire Yellow River basin. In this regard we analysed long-term trends for water and sediment discharge during the flood season in the Wei River basin, China. Stream flow and sediment discharge data for 1932 to 2008 from existing hydrological stations located in two subcatchments and at two points in the Wei River were analysed. Precipitation and air temperature data were analysed from corresponding meteorological stations. We identified change-points or transition years for the trends by the Pettitt method and, using double mass curves, we diagnosed whether they were caused by precipitation changes, human intervention, or both. We found significant decreasing trends for stream flow and sediment discharge during the flood season in both subcatchments and in the Wei River itself. Change-point analyses further revealed that transition years existed and that rapid decline in stream flow began in 1968 (P P P P P < 0.05, respectively. The impact of precipitation or human activity on the reduction amount after the transition years was estimated by double mass curves of precipitation vs. stream flow (sediment. For reductions in stream flow and sediment discharge, the contribution rate of human activity was found to be 82.80 and 95.56%, respectively, and was significantly stronger than the contribution rate of precipitation. This evidence clearly suggests that, in the absence of significant decreases in precipitation

  4. Magnitude of flood flows for selected annual exceedance probabilities for streams in Massachusetts (United States)

    Zarriello, Phillip J.


    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Transportation, determined the magnitude of flood flows at selected annual exceedance prob­abilities (AEPs) at streamgages in Massachusetts and from these data developed equations for estimating flood flows at ungaged locations in the State. Flood magnitudes were deter­mined for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs at 220 streamgages, 125 of which are in Massachusetts and 95 are in the adjacent States of Connecticut, New Hamp­shire, New York, Rhode Island, and Vermont. AEP flood flows were computed for streamgages using the expected moments algorithm weighted with a recently computed regional skew­ness coefficient for New England.Regional regression equations were developed to estimate the magnitude of floods for selected AEP flows at ungaged sites from 199 selected streamgages and for 60 potential explanatory basin characteristics. AEP flows for 21 of the 125 streamgages in Massachusetts were not used in the final regional regression analysis, primarily because of regulation or redundancy. The final regression equations used general­ized least squares methods to account for streamgage record length and correlation. Drainage area, mean basin elevation, and basin storage explained 86 to 93 percent of the variance in flood magnitude from the 50- to 0.2-percent AEPs, respec­tively. The estimates of AEP flows at streamgages can be improved by using a weighted estimate that is based on the magnitude of the flood and associated uncertainty from the at-site analysis and the regional regression equations. Weighting procedures for estimating AEP flows at an ungaged site on a gaged stream also are provided that improve estimates of flood flows at the ungaged site when hydrologic characteristics do not abruptly change.Urbanization expressed as the percentage of imperviousness provided some explanatory power in the regional regression; however, it was not statistically

  5. Testing a community water supply well located near a stream for susceptibility to stream contamination and low-flows. (United States)

    Stewart-Maddox, N. S.; Tysor, E. H.; Swanson, J.; Degon, A.; Howard, J.; Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.; Newman, B. D.


    A community well is the primary water supply to the town of El Rito. This small rural town in is located in a semi-arid, mountainous portion of northern New Mexico where water is scarce. The well is 72 meters from a nearby intermittent stream. Initial tritium sampling suggests a groundwater connection between the stream and well. The community is concerned with the sustainability and future quality of the well water. If this well is as tightly connected to the stream as the tritium data suggests, then the well is potentially at risk due to upstream contamination and the impacts of extended drought. To examine this, we observed the well over a two-week period performing pump and recovery tests, electrical resistivity surveys, and physical observations of the nearby stream. We also collected general chemistry, stable isotope and radon samples from the well and stream. Despite the large well diameter, our pump test data exhibited behavior similar to a Theis curve, but the rate of drawdown decreased below the Theis curve late in the test. This decrease suggests that the aquifer is being recharged, possibly through delayed yield, upwelling of groundwater, or from the stream. The delayed yield hypothesis is supported by our electrical resistivity surveys, which shows very little change in the saturated zone over the course of the pump test, and by low values of pump-test estimated aquifer storativity. Observations of the nearby stream showed no change in stream-water level throughout the pump test. Together this data suggests that the interaction between the stream and the well is low, but recharge could be occurring through other mechanisms such as delayed yield. Additional pump tests of longer duration are required to determine the exact nature of the aquifer and its communication with the well.

  6. Increasing synchrony of high temperature and low flow in western North American streams: Double trouble for coldwater biota? (United States)

    Ivan Arismendi; Mohammad Safeeq; Sherri L. Johnson; Jason B Dunham; Roy Haggerty


    Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (Tmax_w) and stream flow minima (Qmin) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and...

  7. Effects of chronic pollution and water flow intermittency on stream biofilms biodegradation capacity. (United States)

    Rožman, Marko; Acuña, Vicenç; Petrović, Mira


    A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Notes on the Vegetation of the Fast-flowing Streams in Peninsular Thailand, the Tropical Mainland of South East Asia

    Directory of Open Access Journals (Sweden)

    Milica Stankovic


    Full Text Available The species composition and structure of the plant communities along and in the fast-flowing streams on different bedrock types of the tropical mainland South-East Asia were investigated. The study was carried out in Peninsular Thailand, on the Nakhon Si Thammarat mountain range. A total number of 14 plots were placed within the five selected streams where vascular plants species had been collected, starting from November 2010 until July 2012. The estimation of the species was calculated by computer program EstimateS, and in order to distinguish plant communities, a cluster analysis was performed. A total number of 109 species of vascular plants has been recorded, with 59 species in the granite and 60 in the calcareous bedrock streams. There were four types of plant communities that had were categorized; of which three types occurred in the granitic bedrock streams and the other could be seen exclusively in the calcareous bedrock. It is convinced that the types of the bedrock as well as the topographic features of the streams might have major impact on the characterization of the plant communities.

  9. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis. (United States)

    Ouyang, Ying; Parajuli, Prem B; Li, Yide; Leininger, Theodor D; Feng, Gary


    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values. Published by Elsevier Ltd.

  10. Strong enhancement of streaming current power by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.


    We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system

  11. Low-flow characteristics of streams in the Puget Sound region, Washington (United States)

    Hidaka, F.T.


    Periods of low streamflow are usually the most critical factor in relation to most water uses. The purpose of this report is to present data on low-flow characteristics of streams in the Puget Sound region, Washington, and to briefly explain some of the factors that influence low flow in the various basins. Presented are data on low-flow frequencies of streams in the Puget Sound region, as gathered at 150 gaging stations. Four indexes were computed from the flow-flow-frequency curves and were used as a basis to compare the low-flow characteristics of the streams. The indexes are the (1) low-flow-yield index, expressed in unit runoff per square mile; (2) base-flow index, or the ratio of the median 7-day low flow to the average discharge; (3) slope index, or slope of annual 7-day low-flow-frequency curve; and (4) spacing index, or spread between the 7-day and 183-day low-flow-frequency curves. The indexes showed a wide variation between streams due to the complex interrelation between climate, topography, and geology. The largest low-flow-yield indexes determined--greater than 1.5 cfs (cubic feet per second) per square mile--were for streams that head at high altitudes in the Cascade and Olympic Mountains and have their sources at glaciers. The smallest low-flow-yield indexes--less than 0.5 cfs per square mile--were for the small streams that drain the lowlands adjacent to Puget Sound. Indexes between the two extremes were for nonglacial streams that head at fairly high altitudes in areas of abundant precipitation. The base-flow index has variations that can be attributed to a basin's hydrogeology, with very little influence from climate. The largest base-flow indexes were obtained for streams draining permeable unconsolidated glacial and alluvial sediments in parts of the lowlands adjacent to Puget Sound. Large volume of ground water in these materials sustain flows during late summer. The smallest indexes were computed for streams draining areas underlain by

  12. Short-term stream flow forecasting at Australian river sites using data-driven regression techniques

    CSIR Research Space (South Africa)

    Steyn, Melise


    Full Text Available This study proposes a computationally efficient solution to stream flow forecasting for river basins where historical time series data are available. Two data-driven modeling techniques are investigated, namely support vector regression...

  13. Effective information flow through efficient supply chain management - Value stream mapping approach Case Outokumpu Tornio Works


    Juvonen, Piia


    ABSTRACT Juvonen, Piia Suvi Päivikki 2012. Effective information flow through efficient supply chain management -Value stream mapping approach - Case Outokumpu Tornio Works. Master`s Thesis. Kemi-Tornio University of Applied Sciences. Business and Culture. Pages 63. Appendices 2. The general aim of this thesis is to explore effective information flow through efficient supply chain management by following one of the lean management principles, value stream mapping. The specific research...

  14. Efficient Estimation of Dynamic Density Functions with Applications in Streaming Data

    KAUST Repository

    Qahtan, Abdulhakim Ali Ali


    application is to detect outliers in data streams from sensor networks based on the estimated PDF. The method detects outliers accurately and outperforms baseline methods designed for detecting and cleaning outliers in sensor data. The third application


    Directory of Open Access Journals (Sweden)

    C. Vogel


    Full Text Available Quantitative measurements of glacier flow over time are an important ingredient for glaciological research, for example to determine the mass balances and the evolution of glaciers. Measuring glacier flow in multi-temporal images involves the estimation of a dense set of corresponding points, which in turn define the flow vectors. Furthermore glaciers exhibit rather difficult radiometry, since their surface usually contains homogeneous areas as well as weak texture and contrast. To date glacier flow is usually observed by manually measuring a sparse set of correspondences, which is labor-intensive and often yields rather irregular point distributions, with the associated problems of interpolating over large areas. In the present work we propose to densely compute motion vectors at every pixel, by using recent robust methods for optic flow computation. Determining the optic flow, i.e. the dense deformation field between two images of a dynamic scene, has been a classic, long-standing research problem in computer vision and image processing. Sophisticated methods exist to optimally balance data fidelity with smoothness of the motion field. Depending on the strength of the local image gradients these methods yield a smooth trade-off between matching and interpolation, thereby avoiding the somewhat arbitrary decision which discrete anchor points to measure, while at the same time mitigating the problem of gross matching errors. We evaluate our method by comparing with manually measured point wise ground truth.

  16. Directional Transverse Oscillation Vector Flow Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt


    A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. In Directional Transverse Oscillation (DTO) a normal focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound...... beam to increase the amount of data for vector velocity estimation. The approach is self-calibrating as the lateral oscillation period is estimated from the directional signal through a Fourier transform to yield quantitative velocity results over a large range of depths. The approach was extensively...... simulated using Field IIpro and implemented on the experimental SARUS scanner in connection with a BK Medical 8820e convex array transducer. Velocity estimates for DTO are found for beam-to-flow angles of 60, 75, and 90, and vessel depths from 24 to 156 mm. Using 16 emissions the Standard Deviation (SD...

  17. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming. (United States)

    Collins, David J; Khoo, Bee Luan; Ma, Zhichao; Winkler, Andreas; Weser, Robert; Schmidt, Hagen; Han, Jongyoon; Ai, Ye


    Acoustic streaming has emerged as a promising technique for refined microscale manipulation, where strong rotational flow can give rise to particle and cell capture. In contrast to hydrodynamically generated vortices, acoustic streaming is rapidly tunable, highly scalable and requires no external pressure source. Though streaming is typically ignored or minimized in most acoustofluidic systems that utilize other acoustofluidic effects, we maximize the effect of acoustic streaming in a continuous flow using a high-frequency (381 MHz), narrow-beam focused surface acoustic wave. This results in rapid fluid streaming, with velocities orders of magnitude greater than that of the lateral flow, to generate fluid vortices that extend the entire width of a 400 μm wide microfluidic channel. We characterize the forces relevant for vortex formation in a combined streaming/lateral flow system, and use these acoustic streaming vortices to selectively capture 2 μm from a mixed suspension with 1 μm particles and human breast adenocarcinoma cells (MDA-231) from red blood cells.

  18. Application of Genetic Programing to Develop a Modular Model for the Simulation of Stream Flow Time Series (United States)

    Meshgi, A.; Babovic, V.; Chui, T. F. M.; Schmitter, P.


    Developing reliable methods to estimate stream flow has been a subject of interest due to its importance in planning, design and management of water resources within a basin. Machine learning tools such as Artificial Neural Network (ANN) and Genetic Programming (GP) have been widely applied for rainfall-runoff modeling as they require less computational time as compared to physically-based models. As GP is able to generate a function with understandable structure, it may offer advantages over other data driven techniques and therefore has been used in different studies to generate rainfall-runoff functions. However, to date, proposed formulations only contain rainfall and/or streamflow data and consequently are local and cannot be generalized and adopted in other catchments which have different physical characteristics. This study investigated the capability of GP in developing a physically interpretable model with understandable structure to simulate stream flow based on hydrological parameters (e.g. precipitation) and catchment conditions (e.g., initial groundwater table elevation and area of the catchment) by following a modular approach. The modular model resulted in two sub-models where the baseflow was first predicted and the direct runoff was then estimated for a semi-urban catchment in Singapore. The simulated results matched very well with observed data in both the training and the testing of data sets, giving NSEs of 0.97 and 0.96 respectively demonstrated the successful estimation of stream flow using the modular model derived in this study. The results of this study indicate that GP is an effective tool in developing a physically interpretable model with understandable structure to simulate stream flow that can be transferred to other catchments.

  19. Relation of streams, lakes, and wetlands to groundwater flow systems (United States)

    Winter, Thomas C.

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus

  20. KDE-Track: An Efficient Dynamic Density Estimator for Data Streams

    KAUST Repository

    Qahtan, Abdulhakim Ali Ali; Wang, Suojin; Zhang, Xiangliang


    Recent developments in sensors, global positioning system devices and smart phones have increased the availability of spatiotemporal data streams. Developing models for mining such streams is challenged by the huge amount of data that cannot be stored in the memory, the high arrival speed and the dynamic changes in the data distribution. Density estimation is an important technique in stream mining for a wide variety of applications. The construction of kernel density estimators is well studied and documented. However, existing techniques are either expensive or inaccurate and unable to capture the changes in the data distribution. In this paper, we present a method called KDE-Track to estimate the density of spatiotemporal data streams. KDE-Track can efficiently estimate the density function with linear time complexity using interpolation on a kernel model, which is incrementally updated upon the arrival of new samples from the stream. We also propose an accurate and efficient method for selecting the bandwidth value for the kernel density estimator, which increases its accuracy significantly. Both theoretical analysis and experimental validation show that KDE-Track outperforms a set of baseline methods on the estimation accuracy and computing time of complex density structures in data streams.

  1. KDE-Track: An Efficient Dynamic Density Estimator for Data Streams

    KAUST Repository

    Qahtan, Abdulhakim Ali Ali


    Recent developments in sensors, global positioning system devices and smart phones have increased the availability of spatiotemporal data streams. Developing models for mining such streams is challenged by the huge amount of data that cannot be stored in the memory, the high arrival speed and the dynamic changes in the data distribution. Density estimation is an important technique in stream mining for a wide variety of applications. The construction of kernel density estimators is well studied and documented. However, existing techniques are either expensive or inaccurate and unable to capture the changes in the data distribution. In this paper, we present a method called KDE-Track to estimate the density of spatiotemporal data streams. KDE-Track can efficiently estimate the density function with linear time complexity using interpolation on a kernel model, which is incrementally updated upon the arrival of new samples from the stream. We also propose an accurate and efficient method for selecting the bandwidth value for the kernel density estimator, which increases its accuracy significantly. Both theoretical analysis and experimental validation show that KDE-Track outperforms a set of baseline methods on the estimation accuracy and computing time of complex density structures in data streams.

  2. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows (United States)

    Branco, Paulo; Santos, José M.; Katopodis, Christos; Pinheiro, António; Ferreira, Maria T.


    Fish are particularly sensitive to connectivity loss as their ability to reach spawning grounds is seriously affected. The most common way to circumvent a barrier to longitudinal connectivity, and to mitigate its impacts, is to implement a fish passage device. However, these structures are often non-effective for species with different morphological and ecological characteristics so there is a need to determine optimum dimensioning values and hydraulic parameters. The aim of this work is to study the behaviour and performance of two species with different ecological characteristics (Iberian barbel Luciobarbus bocagei–bottom oriented, and Iberian chub Squalius pyrenaicus–water column) in a full-scale experimental pool-type fishway that offers two different flow regimes–plunging and streaming. Results showed that both species passed through the surface notch more readily during streaming flow than during plunging flow. The surface oriented species used the surface notch more readily in streaming flow, and both species were more successful in moving upstream in streaming flow than in plunging flow. Streaming flow enhances upstream movement of both species, and seems the most suitable for fishways in river systems where a wide range of fish morpho-ecological traits are found. PMID:23741465

  3. Laser streaming: Turning a laser beam into a flow of liquid. (United States)

    Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming


    Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.

  4. Impact of lateral flow on the transition from connected to disconnected stream-aquifer systems (United States)

    Xian, Yang; Jin, Menggui; Liu, Yanfeng; Si, Aonan


    Understanding the mechanisms by which stream water infiltrates through streambeds to recharge groundwater systems is essential to sustainable management of scarce water resources in arid and semi-arid areas. An inverted water table (IWT) can develop under a stream in response to the desaturation between the stream and underlying aquifer as the system changes from a connected to disconnected status. However, previous studies have suggested that the IWT can only occur at the bottom of a low permeability streambed in which only the vertical flow between the stream and groundwater during disconnection was assumed. In the present study, numerical simulations revealed that the lateral flow induced by capillarity or heterogeneity also plays an essential role on interactions between streams and aquifers. Three pathways were identified for the transition from connection to disconnection in homogenous systems; notably, the lowest point of an IWT can develop not only at the bottom of the streambed but also within the streambed or the aquifer in response to the initial desaturation at, above, or below the interface between the streambed and aquifer (IBSA), respectively. A sensitivity analysis indicated that in wide streams, the lowest point of an IWT only occurs at the bottom of the streambed; however, for a stream half width of 1 m above a 6 m thick sandy loam streambed, the lowest point occurs in the streambed as stream depth is less than 0.5 m. This critical stream depth increases with streambed thickness and decreases with stream width. Thus, in narrow streams the lowest point can also develop in a thick streambed under a shallow stream. In narrow streams, the lowest point also forms in the aquifer if the ratio of the hydraulic conductivity of the streambed to that of the aquifer is greater than the ratio of the streambed thickness to the sum of the stream depth and the streambed thickness; correspondingly, the streambed is thin but relatively permeable and the stream is

  5. Altered stream-flow regimes and invasive plant species: The Tamarix case (United States)

    Stromberg, J.C.; Lite, S.J.; Marler, R.; Paradzick, C.; Shafroth, P.B.; Shorrock, D.; White, J.M.; White, M.S.


    Aim: To test the hypothesis that anthropogenic alteration of stream-flow regimes is a key driver of compositional shifts from native to introduced riparian plant species. Location: The arid south-western United States; 24 river reaches in the Gila and Lower Colorado drainage basins of Arizona. Methods: We compared the abundance of three dominant woody riparian taxa (native Populus fremontii and Salix gooddingii, and introduced Tamarix) between river reaches that varied in stream-flow permanence (perennial vs. intermittent), presence or absence of an upstream flow-regulating dam, and presence or absence of municipal effluent as a stream water source. Results: Populus and Salix were the dominant pioneer trees along the reaches with perennial flow and a natural flood regime. In contrast, Tamarix had high abundance (patch area and basal area) along reaches with intermittent stream flows (caused by natural and cultural factors), as well as those with dam-regulated flows. Main conclusions: Stream-flow regimes are strong determinants of riparian vegetation structure, and hydrological alterations can drive dominance shifts to introduced species that have an adaptive suite of traits. Deep alluvial groundwater on intermittent rivers favours the deep-rooted, stress-adapted Tamarix over the shallower-rooted and more competitive Populus and Salix. On flow-regulated rivers, shifts in flood timing favour the reproductively opportunistic Tamarix over Populus and Salix, both of which have narrow germination windows. The prevailing hydrological conditions thus favour a new dominant pioneer species in the riparian corridors of the American Southwest. These results reaffirm the importance of reinstating stream-flow regimes (inclusive of groundwater flows) for re-establishing the native pioneer trees as the dominant forest type. ?? 2007 The Authors Journal compilation ?? 2007 Blackwell Publishing Ltd.

  6. Shade and flow effects on ammonia retention in macrophyte-rich streams: implications for water quality

    International Nuclear Information System (INIS)

    Wilcock, Robert J.; Scarsbrook, Mike R.; Cooke, James G.; Costley, Kerry J.; Nagels, John W.


    Controlled releases of NH 4 -N and conservative tracers (Br - and Cl - ) to five reaches of four streams with contrasting macrophyte communities have shown differing retentions, largely as a result of the way plants interact with stream flow and velocity. First-order constants (k) were 1.0-4.8 d -1 and retention of NH 4 -N was 6-71% of amounts added to each reach. Distance travelled before a 50% reduction in concentration was achieved were 40-450 m in three streams under low-flow conditions, and 2400-3800 m at higher flows. Retention (%) of NH 4 -N can be approximated by a simple function of travel time and k, highlighting the importance of the relationship between macrophytes and stream velocity on nutrient processing. This finding has significant management implications, particularly with respect to restoration of riparian shade. Small streams with predominantly marginal emergent plants are likely to have improved retention of NH 4 -N as a result of shading or other means of reducing plant biomass. Streams dominated by submerged macrophytes will have impaired NH 4 -N retention if plant biomass is reduced because of reduced contact times between NH 4 -N molecules and reactive sites. In these conditions water resource managers should utilise riparian shading in concert with unshaded vegetated reaches to achieve a balance between enhanced in-stream habitat and nutrient processing capacity

  7. Estimating Discharge and Nonpoint Source Nitrate Loading to Streams From Three End-Member Pathways Using High-Frequency Water Quality Data (United States)

    Miller, Matthew P.; Tesoriero, Anthony J.; Hood, Krista; Terziotti, Silvia; Wolock, David M.


    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency nitrate data to estimate time-variable nitrate loads from chemically dilute quick flow, chemically concentrated quick flow, and slowflow groundwater end-member pathways for periods of up to 2 years in a groundwater-dominated and a quick-flow-dominated stream in central Wisconsin, using only streamflow and in-stream water quality data. The dilute and concentrated quick flow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quick flow contributed less than 5% of the nitrate load at both sites, whereas 89 ± 8% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84 ± 25% of the nitrate load at the quick-flow-dominated stream was from concentrated quick flow. Concentrated quick flow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to nonpoint source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  8. A regional classification of unregulated stream flows: spatial resolution and hierarchical frameworks. (United States)

    Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff; Emmaneul A. Firmpong


    River regulation has resulted in substantial losses in habitat connectivity, biodiversity and ecosystem services. River managers are faced with a growing need to protect the key aspects of the natural flow regime. A practical approach to providing environmental flow standards is to create a regional framework by classifying unregulated streams into groups of similar...

  9. Stream biofilm responses to flow intermittency: from cells to ecosystems


    Sergi eSabater; Sergi eSabater; Xisca eTimoner; Carles eBorrego; Carles eBorrego; Vicenç eAcuña


    Temporary streams are characterized by the alternation of dry and wet hydrological phases, creating both a harsh environment for the biota as well as a high diversity of opportunities for adaptation. These systems are eminently microbial-based during several of these hydrological phases, and those growing on all solid substrata (biofilms) accordingly change their physical structure and community composition. Biofilms experience large decreases on cell densities and biomass, both of bacteria a...

  10. Stream Biofilm Responses to Flow Intermittency: From Cells to Ecosystems


    Sabater, Sergi; Timoner, Xisca; Borrego, Carles; Acuña, Vicenç


    Temporary streams are characterized by the alternation of dry and wet hydrological phases, creating both a harsh environment for the biota as well as a high diversity of opportunities for adaptation. These systems are mainly microbial-based during several of these hydrological phases, and those growing on all solid substrata (biofilms) accordingly change their physical structure and community composition. Biofilms experience large decreases in cell densities and biomass, both of bacteria and ...

  11. Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts (United States)

    Bent, Gardner C.; Waite, Andrew M.


    variable in estimating these bankfull characteristics. The use of drainage area as an explanatory variable is also the most commonly published method for estimating these bankfull characteristics. Regional curves (graphic plots) of bankfull channel geometry and discharge by drainage area are presented. The regional curves are based on the simple regression equations and can be used to estimate bankfull characteristics from drainage area. Multiple regression analysis, which includes basin characteristics in addition to drainage area, also was used to develop equations. Variability in bankfull width, mean depth, cross-sectional area, and discharge was more fully explained by the multiple regression equations that include mean-basin slope and drainage area than was explained by equations based on drainage area alone. The Massachusetts regional curves and equations developed in this study are similar, in terms of values of slopes and intercepts, to those developed for other parts of the northeastern United States. Limitations associated with site selection and development of the equations resulted in some constraints for the application of equations and regional curves presented in this report. The curves and equations are applicable to stream sites that have (1) less than about 25 percent of their drainage basin area occupied by urban land use (commercial, industrial, transportation, and high-density residential), (2) little to no streamflow regulation, especially from flood-control structures, (3) drainage basin areas greater than 0.60 mi2 and less than 329 mi2, and (4) a mean basin slope greater than 2.2 percent and less than 23.9 percent. The equations may not be applicable where streams flow through extensive wetlands. The equations also may not apply in areas of Cape Cod and the Islands and the area of southeastern Massachusetts close to Cape Cod with extensive areas of coarse-grained glacial deposits where none of the study sites are located. Regardless of the setting

  12. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cid, N., E-mail: [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Verkaik, I. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); García-Roger, E.M. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València (Spain); Rieradevall, M.; Bonada, N. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain); Sánchez-Montoya, M.M. [Department of Ecology and Hydrology, Regional Campus of International Excellence “Campus Mare Nostrum”—University of Murcia (Spain); Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin (Germany); Gómez, R.; Suárez, M.L.; Vidal-Abarca, M.R. [Department of Ecology and Hydrology, Regional Campus of International Excellence “Campus Mare Nostrum”—University of Murcia (Spain); Demartini, D.; Buffagni, A.; Erba, S. [Instituto di Ricerca Sulle Acque (CNR-IRSA) (Italy); Karaouzas, I.; Skoulikidis, N. [Hellenic Center for Marine Research (HCMR) (Greece); Prat, N. [Grup de Recerca “Freshwater Ecology and Management (FEM)”, Departament d' Ecologia, Universitat de Barcelona, Catalonia (Spain)


    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. - Highlights: • The effect of flow connectivity on macroinvertebrate

  13. Pesticide load dynamics during stormwater flow events in Mediterranean coastal streams: Alexander stream case study. (United States)

    Topaz, Tom; Egozi, Roey; Eshel, Gil; Chefetz, Benny


    Cultivated land is a major source of pesticides, which are transported with the runoff water and eroded soil during rainfall events and pollute riverine and estuarine environments. Common ecotoxicological assessments of riverine systems are mainly based on water sampling and analysis of only the dissolved phase, and address a single pesticide's toxicological impact under laboratory conditions. A clear overview of mixtures of pesticides in the adsorbed and dissolved phases is missing, and therefore the full ecotoxicological impact is not fully addressed. The aim of this study was to characterize and quantify pesticide concentrations in both suspended sediment and dissolved phases, to provide a better understanding of pesticide-load dynamics during storm events in coastal streams in a Mediterranean climate. High-resolution sampling campaigns of seven flood events were conducted during two rainy seasons in Alexander stream, Israel. Samples of suspended sediments were separated from the solution and both media were analyzed separately for 250 pesticides. A total of 63 pesticides were detected; 18 and 16 pesticides were found solely in the suspended sediments and solution, respectively. Significant differences were observed among the pesticide groups: only 7% of herbicide, 20% of fungicide and 42% of insecticide load was transported with the suspended sediments. However, in both dissolved and adsorbed phases, a mix of pesticides was found which were graded from "mobile" to "non-mobile" with varied distribution coefficients. Diuron, and tebuconazole were frequently found in large quantities in both phases. Whereas insecticide and fungicide transport is likely governed by application time and method, the governing factor for herbicide load was the magnitude of the stream discharge. The results show a complex dynamic of pesticide load affected by excessive use of pesticides, which should be taken into consideration when designing projects to monitor riverine and estuarine

  14. Size-selective sorting in bubble streaming flows: Particle migration on fast time scales (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha


    Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  15. Estimation of preferred water flow parameters for four species of ...

    African Journals Online (AJOL)

    Blackfly larvae typically occur in fast-flowing riffle sections of rivers, with different blackfly species showing preferences for different hydraulic conditions. Very little quantitative data exist on hydraulic conditions linked to the blackfly species occurring in South African streams. Stones-in-current biotopes (i.e. fast riffle flows over ...

  16. Scaling measurements of metabolism in stream ecosystems: challenges and approaches to estimating reaeration (United States)

    Bowden, W. B.; Parker, S.; Song, C.


    Stream ecologists have used various formulations of an oxygen budget approach as a surrogate to measure "whole-stream metabolism" (WSM) of carbon in rivers and streams. Improvements in sensor technologies that provide reliable, high-frequency measurements of dissolved oxygen concentrations in adverse field conditions has made it much easier to acquire the basic data needed to estimate WSM in remote locations over long periods (weeks to months). However, accurate estimates of WSM require reliable measurements or estimates of the reaeration coefficient (k). Small errors in estimates of k can lead to large errors in estimates of gross ecosystem production and ecosystem respiration and so the magnitude of the biological flux of CO2 to or from streams. This is an especially challenging problem in unproductive, oligotrophic streams. Unfortunately, current methods to measure reaeration directly (gas evasion) are expensive, labor-intensive, and time-consuming. As a consequence, there is a substantial mismatch between the time steps at which we can measure reaeration versus most of the other variables required to calculate WSM. As a part of the NSF Arctic Long-Term Ecological Research Project we have refined methods to measure WSM in Arctic streams and found a good relationship between measured k values and those calculated by the Energy Dissipation Model (EDM). Other researchers have also noted that this equation works well for both low- and high-order streams. The EDM is dependent on stream slope (relatively constant) and velocity (which is related to discharge or stage). These variables are easy to measure and can be used to estimate k a high frequency (minutes) over large areas (river networks). As a key part of the NSF MacroSystems Biology SCALER project we calculated WSM for multiple reaches in nested stream networks in six biomes across the United States and Australia. We calculated k by EDM and fitted k via a Bayesian model for WSM. The relationships between

  17. Estimating stream discharge using stage and multi-level acoustic Doppler velocimetry

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering

    than traditional stage-discharge methods. In this presentation we shall present results from a study where, at two sites in Denmark, the stream velocity field has been mapped by the use of three Acoustic Doppler Velocity Meter (ADVM) instruments. The ADVM instruments are mounted in three different......For temperate region countries with small or moderately sized streams, such as those in Denmark, seasonal weed growth imposes a significant temporal change of the stage-discharge relation. In the past such problems were often avoided by using hydraulic structures, however, firm ecology based...... in the Northern part of Europe may further violate a stable relation between stage and discharge in streams. Extreme high flow situations cause abrupt rise in stage, and consequently weed can be partly uprooted and partly bend down along the bed, thereby changing the conveyance of the stream. In addition, extreme...

  18. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Netrananda; Yamashiki, Yosuke; Takara, Kaoru [Kyoto University, Disaster Prevention Research Institute, Innovative Disaster Prevention Technology and Policy Research Laboratory, Gokasho, Uji City, Kyoto (Japan); Behera, Swadhin K. [JAMSTEC, Research Institute for Global Change, Yokohama, Kanagawa (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan); Yamagata, Toshio [University of Tokyo, School of Science, Bunkyo-ku, Tokyo (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan)


    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Nina conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Nino Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Nino events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Nino for September-November season only. (orig.)

  19. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia (United States)

    Sahu, Netrananda; Behera, Swadhin K.; Yamashiki, Yosuke; Takara, Kaoru; Yamagata, Toshio


    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Niña conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Niño Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Niño events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Niño for September-November season only.

  20. Differential geometric structures of stream functions: incompressible two-dimensional flow and curvatures

    International Nuclear Information System (INIS)

    Yamasaki, K; Iwayama, T; Yajima, T


    The Okubo-Weiss field, frequently used for partitioning incompressible two-dimensional (2D) fluids into coherent and incoherent regions, corresponds to the Gaussian curvature of the stream function. Therefore, we consider the differential geometric structures of stream functions and calculate the Gaussian curvatures of some basic flows. We find the following. (I) The vorticity corresponds to the mean curvature of the stream function. Thus, the stream-function surface for an irrotational flow and that for a parallel shear flow correspond to the minimal surface and a developable surface, respectively. (II) The relationship between the coherency and the magnitude of the vorticity is interpreted by the curvatures. (III) Using the Gaussian curvature, stability of single and double point vortex streets is analyzed. The results of this analysis are compared with the well-known linear stability analysis. (IV) Conformal mapping in fluid mechanics is the physical expression of the geometric fact that the sign of the Gaussian curvature does not change in conformal mapping. These findings suggest that the curvatures of stream functions are useful for understanding the geometric structure of an incompressible 2D flow.

  1. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003 (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.


    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  2. Impact of meander geometry and stream flow events on residence times and solute transport in the intra-meander flow (United States)

    Nasir Mahmood, Muhammad; Schmidt, Christian; Trauth, Nico


    Stream morphological features, in combination with hydrological variability play a key role in water and solute exchange across surface and subsurface waters. Meanders are prominent morphological features within stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange within the intra-meander region. This hyporheic flow is characterized by considerably prolonged flow paths and residence times (RT) compared to smaller scales of hyporheic exchange. In this study we examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady state and transient flow conditions. We developed a number of artificial meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander. Three dimensional steady state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region. The meandering stream was implemented in the model by adjusting the top layers of the modelling domain to the streambed elevation and assigning linearly decreasing head boundary conditions to the streambed cells. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. The transient stream discharge was simulated for a number of discharge events of variable duration and peak height using the surface water model HEC-RAS. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. A solute concentration source was added in the

  3. Estimation of nitrate in aqueous discharge streams in presence of other anionic species

    International Nuclear Information System (INIS)

    Dhara, Amrita; Sonar, N.L.; Valsala, T.P.; Vishwaraj, I.


    In the PUREX process the spent fuel is dissolved in concentrated nitric acid for the recovery of U and Pu using 30% TBP solvent system. The added nitrates are reporting in the waste streams of reprocessing plant. In view of the environmental concern for nitrate discharges, it is essential to monitor the nitrate content in the radioactive waste streams. An analytical method based on nitration of salicylic acid in acidic medium was studied for its applicability in the estimation of nitrate in radioactive waste containing various other anions. The yellow colored complex formed absorbs at 410 nm in alkaline media. Interference of various anionic species like sulphide, chloride, ferrocyanide, phosphate etc present in different waste streams on the estimation of nitrate was studied. Nitrate could be estimated in radioactive waste in presence of other anionic species within an error of less than 6%. (author)

  4. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang


    Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. (general)

  5. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    International Nuclear Information System (INIS)

    Cochran, H.D. Jr.


    An improved method of monitoring the mass flow rate of a substance entering a coherent fluid stream is described. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance

  6. Numerical and experimental modelling of back stream flow during close-coupled gas atomization


    Motaman, S; Mullis, AM; Borman, DJ; Cochrane, RF; McCarthy, IN


    This paper reports the numerical and experimental investigation into the effects of different gas jet mis-match angles (for an external melt nozzle wall) on the back-stream flow in close coupled gas atomization. The Pulse Laser Imaging (PLI) technique was applied for visualising the back-stream melt flow phenomena with an analogue water atomizer and the associated PLI images compared with numerical results. In the investigation a Convergent–Divergent (C–D) discrete gas jet die at five differe...

  7. Comparison of groundwater recharge estimation techniques in an alluvial aquifer system with an intermittent/ephemeral stream (Queensland, Australia) (United States)

    King, Adam C.; Raiber, Matthias; Cox, Malcolm E.; Cendón, Dioni I.


    This study demonstrates the importance of the conceptual hydrogeological model for the estimation of groundwater recharge rates in an alluvial system interconnected with an ephemeral or intermittent stream in south-east Queensland, Australia. The losing/gaining condition of these streams is typically subject to temporal and spatial variability, and knowledge of these hydrological processes is critical for the interpretation of recharge estimates. Recharge rate estimates of 76-182 mm/year were determined using the water budget method. The water budget method provides useful broad approximations of recharge and discharge fluxes. The chloride mass balance (CMB) method and the tritium method were used on 17 and 13 sites respectively, yielding recharge rates of 1-43 mm/year (CMB) and 4-553 mm/year (tritium method). However, the conceptual hydrogeological model confirms that the results from the CMB method at some sites are not applicable in this setting because of overland flow and channel leakage. The tritium method was appropriate here and could be applied to other alluvial systems, provided that channel leakage and diffuse infiltration of rainfall can be accurately estimated. The water-table fluctuation (WTF) method was also applied to data from 16 bores; recharge estimates ranged from 0 to 721 mm/year. The WTF method was not suitable where bank storage processes occurred.

  8. Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations. (United States)

    Ben Simon, Rose; Bernard, Stéphane; Meurville, Charles; Rebour, Vincent


    This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow-through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream-aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow-through streams. © 2015, National Ground Water Association.

  9. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014 (United States)

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.


    concurrently with fish released upstream of the dam using identical tagging methods. Tagging and release events were conducted to target a range of flow conditions indicative of flows observed during the typical migration period (March-May) for juvenile spring Chinook salmon in the Yakima River. Three, five and four separate upstream releases were conducted in 2012, 2013, and 2014 respectively, and at least 43 fish were released alive on each occasion. The release sample sizes in 2014 were much larger (~130) compared to previous years for the purpose of increasing precision of survival estimates across the range of flows tested. Migration movements of radio-tagged spring Chinook salmon smolts were monitored with an array of telemetry receiver stations (fixed sites) that extended 208 rkm downstream from the forebay of Roza Dam to the mouth of the Yakima River. Fixed monitoring sites included the forebay of Roza Dam (rkm 208), the tailrace of Roza Dam (rkm 207.9), the mouth of Wenas Creek (rkm 199.2), the mouth of the Naches River (two sites, rkm 189.4), Sunnyside Dam (two sites, rkm 169.1), Prosser Dam (rkm 77.2), and the mouth of the Yakima River (two sites, rkm2 3). This array segregated the study area into four discrete reaches in which survival of tagged fish was estimated. Aerial and underwater antennas were also used to monitor tagged fish at Roza Dam. Aerial antennas were located in the forebay, on the East gate, on the West gate, and in the tailrace of Roza Dam. Underwater antennas were located in the fish bypass, upstream of the East gate, and upstream of the West gate to collect route-specific passage data for tagged fish. Additional years of data collection and analysis could alter or improve our understanding of the influence of flow and other environmental factors on smolt survival in the Yakima River. Nevertheless, during 2012-2014, yearling hatchery Chinook salmon smolt emigration survival was significantly associated with stream flow in the

  10. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model. (United States)

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan


    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Estimating occurrence and detection probabilities for stream-breeding salamanders in the Gulf Coastal Plain (United States)

    Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.


    Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.

  12. Modelling mean transit time of stream base flow during tropical cyclone rainstorm in a steep relief forested catchment (United States)

    Lee, Jun-Yi; Huang, -Chuan, Jr.


    Mean transit time (MTT) is one of the of fundamental catchment descriptors to advance understanding on hydrological, ecological, and biogeochemical processes and improve water resources management. However, there were few documented the base flow partitioning (BFP) and mean transit time within a mountainous catchment in typhoon alley. We used a unique data set of 18O isotope and conductivity composition of rainfall (136 mm to 778 mm) and streamflow water samples collected for 14 tropical cyclone events (during 2011 to 2015) in a steep relief forested catchment (Pinglin, in northern Taiwan). A lumped hydrological model, HBV, considering dispersion model transit time distribution was used to estimate total flow, base flow, and MTT of stream base flow. Linear regression between MTT and hydrometric (precipitation intensity and antecedent precipitation index) variables were used to explore controls on MTT variation. Results revealed that both the simulation performance of total flow and base flow were satisfactory, and the Nash-Sutcliffe model efficiency coefficient of total flow and base flow was 0.848 and 0.732, respectively. The event magnitude increased with the decrease of estimated MTTs. Meanwhile, the estimated MTTs varied 4-21 days with the increase of BFP between 63-92%. The negative correlation between event magnitude and MTT and BFP showed the forcing controls the MTT and BFP. Besides, a negative relationship between MTT and the antecedent precipitation index was also found. In other words, wetter antecedent moisture content more rapidly active the fast flow paths. This approach is well suited for constraining process-based modeling in a range of high precipitation intensity and steep relief forested environments.

  13. Predicting the natural flow regime: Models for assessing hydrological alteration in streams (United States)

    Carlisle, D.M.; Falcone, J.; Wolock, D.M.; Meador, M.R.; Norris, R.H.


    Understanding the extent to which natural streamflow characteristics have been altered is an important consideration for ecological assessments of streams. Assessing hydrologic condition requires that we quantify the attributes of the flow regime that would be expected in the absence of anthropogenic modifications. The objective of this study was to evaluate whether selected streamflow characteristics could be predicted at regional and national scales using geospatial data. Long-term, gaged river basins distributed throughout the contiguous US that had streamflow characteristics representing least disturbed or near pristine conditions were identified. Thirteen metrics of the magnitude, frequency, duration, timing and rate of change of streamflow were calculated using a 20-50 year period of record for each site. We used random forests (RF), a robust statistical modelling approach, to develop models that predicted the value for each streamflow metric using natural watershed characteristics. We compared the performance (i.e. bias and precision) of national- and regional-scale predictive models to that of models based on landscape classifications, including major river basins, ecoregions and hydrologic landscape regions (HLR). For all hydrologic metrics, landscape stratification models produced estimates that were less biased and more precise than a null model that accounted for no natural variability. Predictive models at the national and regional scale performed equally well, and substantially improved predictions of all hydrologic metrics relative to landscape stratification models. Prediction error rates ranged from 15 to 40%, but were 25% for most metrics. We selected three gaged, non-reference sites to illustrate how predictive models could be used to assess hydrologic condition. These examples show how the models accurately estimate predisturbance conditions and are sensitive to changes in streamflow variability associated with long-term land-use change. We also

  14. Estimation of unaltered daily mean streamflow at ungaged streams of New York, excluding Long Island, water years 1961-2010 (United States)

    Gazoorian, Christopher L.


    The lakes, rivers, and streams of New York State provide an essential water resource for the State. The information provided by time series hydrologic data is essential to understanding ways to promote healthy instream ecology and to strengthen the scientific basis for sound water management decision making in New York. The U.S. Geological Survey, in cooperation with The Nature Conservancy and the New York State Energy Research and Development Authority, has developed the New York Streamflow Estimation Tool to estimate a daily mean hydrograph for the period from October 1, 1960, to September 30, 2010, at ungaged locations across the State. The New York Streamflow Estimation Tool produces a complete estimated daily mean time series from which daily flow statistics can be estimated. In addition, the New York Streamflow Estimation Tool provides a means for quantitative flow assessments at ungaged locations that can be used to address the objectives of the Clean Water Act—to restore and maintain the chemical, physical, and biological integrity of the Nation’s waters.

  15. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus


    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  16. Interaction of counter-streaming plasma flows in dipole magnetic field


    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Prokopov, P A; Boyarintsev, E L; Zakharov, Yu P; Ponomarenko, A G


    Transient interaction of counter-streaming super-sonic plasma flows in dipole magnetic dipole is studied in laboratory experiment. First quasi-stationary flow is produced by teta-pinch and forms a magnetosphere around the magnetic dipole while laser beams focused at the surface of the dipole cover launch second explosive plasma expanding from inner dipole region outward. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. ...

  17. Effect of β-PVDF Piezoelectric Transducers’ Positioning on the Acoustic Streaming Flows

    Directory of Open Access Journals (Sweden)

    Susana O. Catarino


    Full Text Available This paper reports the numerical and experimental analysis of the acoustic streaming effect in a fluidic domain. The actuation of a piezoelectric transducer generates acoustic waves that propagate to the fluids, generating pressure gradients that induce the flow. The number and positioning of the transducers affect the pressure gradients and, consequently, the resultant flow profile. Two actuation conditions were considered: (1 acoustic streaming generated by a 28 μm thick β-poly(vinylidene fluoride (β-PVDF piezoelectric transducer placed asymmetrically relative to the fluidic domain and (2 acoustic streaming generated by two 28 μm thick β-PVDF piezoelectric transducers placed perpendicularly to each other. The transducers were fixed to the lower left corner of a poly(methyl methacrylate (PMMAcuvette and were actuated with a 24 Vpp and 34.2 MHz sinusoidal voltage. The results show that the number of transducers and their positioning affects the shape and number of recirculation areas in the acoustic streaming flows. The obtained global flows show great potential for mixing and pumping, being an alternative to the previous geometries studied by the authors, namely, a single transducer placed symmetrically under a fluidic domain.

  18. Flow characterization temporary streams : using the model SIMGRO for the Evrotas basin, Greece

    NARCIS (Netherlands)

    Vernooij, M.G.M.; Querner, E.P.; Jacobs, C.; Froebrich, J.


    Tools were developed to quantify space–time development of different flow phases on a river basin scale. Such information is needed for the WFD. The spatial development of temporary streams was investigated in the Evrotas basin, Greece. We used the regional hydrological model SIMGRO in a GIS

  19. Prediction of the impacts of climate changes on the stream flow of ...

    African Journals Online (AJOL)

    Abstract. Soil and Water Assessment Tool, (SWAT) model was used to predict the impacts of Climate Change on Ajali River watershed, Aguobu-Umumba, Ezeagu, Enugu State, Nigeria. The model was first used to simulate stream flow using observed data. After model run, parameterization, sensitivity analysis, the monthly ...

  20. Climate and Land-Cover Change Impacts on Stream Flow in the Southwest U.S. (United States)

    Vegetation change in arid and semi-arid climatic regions of the American West are a primary concern in sustaining key ecosystem services such as clean, reliable water sources for multiple uses. Land cover and climate change impacts on stream flow were investigated in a southeast ...

  1. Free-stream turbulence effects on the flow around an S809 wind turbine airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Nieves, Sheilla; Maldonado, Victor; Lebron, Jose [Rensselaer Polytechnic Institute, Troy, NY (United States); Kang, Hyung-Suk [United States Naval Academy, Annapolis, MD (United States); Meneveau, Charles [Johns Hopkins Univ., Baltimore, MD (United States); Castillo, Luciano [Texas Tech Univ., Lubbock, TX (United States)


    Two-dimensional Particle Image Velocimetry (2-D PIV) measurements were performed to study the effect of free-stream turbulence on the flow around a smooth and rough surface airfoil, specifically under stall conditions. A 0.25-m chord model with an S809 profile, common for horizontal-axis wind turbine applications, was tested at a wind tunnel speed of 10 m/s, resulting in Reynolds numbers based on the chord of Re{sub c} {approx} 182,000 and turbulence intensity levels of up to 6.14%. Results indicate that when the flow is fully attached, turbulence significantly decreases aerodynamic efficiency (from L/D {approx} 4.894 to L/D {approx} 0.908). On the contrary, when the flow is mostly stalled, the effect is reversed and aerodynamic performance is slightly improved (from L/D {approx} 1.696 to L/D {approx} 1.787). Analysis of the mean flow over the suction surface shows that, contrary to what is expected, free-stream turbulence is actually advancing separation, particularly when the turbulent scales in the free-stream are of the same order as the chord. This is a result of the complex dynamics between the boundary layer scales and the free-stream turbulence length scales when relatively high levels of active-grid generated turbulence are present. (orig.)

  2. Technical Note: A comparison of two empirical approaches to estimate in-stream net nutrient uptake (United States)

    von Schiller, D.; Bernal, S.; Martí, E.


    To establish the relevance of in-stream processes on nutrient export at catchment scale it is important to accurately estimate whole-reach net nutrient uptake rates that consider both uptake and release processes. Two empirical approaches have been used in the literature to estimate these rates: (a) the mass balance approach, which considers changes in ambient nutrient loads corrected by groundwater inputs between two stream locations separated by a certain distance, and (b) the spiralling approach, which is based on the patterns of longitudinal variation in ambient nutrient concentrations along a reach following the nutrient spiralling concept. In this study, we compared the estimates of in-stream net nutrient uptake rates of nitrate (NO3) and ammonium (NH4) and the associated uncertainty obtained with these two approaches at different ambient conditions using a data set of monthly samplings in two contrasting stream reaches during two hydrological years. Overall, the rates calculated with the mass balance approach tended to be higher than those calculated with the spiralling approach only at high ambient nitrogen (N) concentrations. Uncertainty associated with these estimates also differed between both approaches, especially for NH4 due to the general lack of significant longitudinal patterns in concentration. The advantages and disadvantages of each of the approaches are discussed.

  3. Flowing water affects fish fast-starts: escape performance of the Hawaiian stream goby, Sicyopterus stimpsoni. (United States)

    Diamond, Kelly M; Schoenfuss, Heiko L; Walker, Jeffrey A; Blob, Richard W


    Experimental measurements of escape performance in fishes have typically been conducted in still water; however, many fishes inhabit environments with flow that could impact escape behavior. We examined the influences of flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni In nature, these fish must escape ambush predation while moving through streams with high-velocity flow. We measured the escape performance of juvenile gobies while exposing them to a range of water velocities encountered in natural streams and stimulating fish from three different directions. Frequency of response across treatments indicated strong effects of flow conditions and attack direction. Juvenile S. stimpsoni had uniformly high response rates for attacks from a caudal direction (opposite flow); however, response rates for attacks from a cranial direction (matching flow) decreased dramatically as flow speed increased. Mechanical stimuli produced by predators attacking in the same direction as flow might be masked by the flow environment, impairing the ability of prey to detect attacks. Thus, the likelihood of successful escape performance in fishes can depend critically on environmental context. © 2016. Published by The Company of Biologists Ltd.

  4. Physical cleaning by bubbly streaming flow in an ultrasound field (United States)

    Yamashita, Tatsuya; Ando, Keita


    Low-intensity ultrasonic cleaning with gas-supersaturated water is a promising method of physical cleaning without erosion; we are able to trigger cavitation bubble nucleation by weak ultrasound under gas supersaturation and thus clean material surfaces by mild bubble dynamics. Here, we perform particle image velocimetry (PIV) measurement of liquid flow and cavitation bubble translation in an ultrasonic cleaning bath driven at 28 kHz and then relate it to cleaning tests using glass slides at which silica particles are attached. The ultrasound pressure amplitude at the cleaning spot is set at 1.4 atm. We select the supersaturation level of dissolved oxygen (DO) as a parameter and control it by oxygen microbubble aeration. It follows from the PIV measurement that the liquid flow is enhanced by the cavitation bubble translation driven by acoustic radiation force; this trend becomes clearer when the bubbles appear more densely as the DO supersaturation increases. In the cleaning tests, the cleaned areas appear as straight streaks. This suggests that physical cleaning is achieved mainly by cavitation bubbles that translate in ultrasound fields.

  5. Development and Application of Flow Duration Curves for Stream Restoration (United States)


    hydrograph (TNC 2009). Colorado State University’s GeoTools offers an FDC computation focusing on the geomorphic implications of hydrology (Bledsoe...calibrated regional equations, and continuous hydrologic modeling . Table 1 presents a summary of methods for estimating FDCs in ungaged basins...Statistical Techniques LeBoutillier and Waylan (1993) Use of lognormal, gamma, generalized extreme value, and mixed lognormal distributions to model


    DEFF Research Database (Denmark)

    Godsk, Mikkel

    This paper presents a flexible model, ‘STREAM’, for transforming higher science education into blended and online learning. The model is inspired by ideas of active and collaborative learning and builds on feedback strategies well-known from Just-in-Time Teaching, Flipped Classroom, and Peer...... Instruction. The aim of the model is to provide both a concrete and comprehensible design toolkit for adopting and implementing educational technologies in higher science teaching practice and at the same time comply with diverse ambitions. As opposed to the above-mentioned feedback strategies, the STREAM...... model supports a relatively diverse use of educational technologies and may also be used to transform teaching into completely online learning. So far both teachers and educational developers have positively received the model and the initial design experiences show promise....

  7. Estimation of Centers and Stagnation points in optical flow fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus


    In a topological sense fluid flows are characterised by their stagnation points. Given a temporal sequence of images of fluids we will consider the application of local polynomials to the estimation of smooth fluid flow fields. The normal flow at intensity contours is estimated from the local dis...

  8. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: an isotopic approach. (United States)

    Jeelani, Gh; Shah, Rouf A; Jacob, Noble; Deshpande, Rajendrakumar D


    Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5-66 %) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (∼51 %) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5 %). However, the monthly contribution of glacier melt to stream flow reaches up to 19 % in September during years of less persistent snow pack.

  9. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin. (United States)

    Cid, N; Verkaik, I; García-Roger, E M; Rieradevall, M; Bonada, N; Sánchez-Montoya, M M; Gómez, R; Suárez, M L; Vidal-Abarca, M R; Demartini, D; Buffagni, A; Erba, S; Karaouzas, I; Skoulikidis, N; Prat, N


    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Stream Flow Prediction by Remote Sensing and Genetic Programming (United States)

    Chang, Ni-Bin


    A genetic programming (GP)-based, nonlinear modeling structure relates soil moisture with synthetic-aperture-radar (SAR) images to present representative soil moisture estimates at the watershed scale. Surface soil moisture measurement is difficult to obtain over a large area due to a variety of soil permeability values and soil textures. Point measurements can be used on a small-scale area, but it is impossible to acquire such information effectively in large-scale watersheds. This model exhibits the capacity to assimilate SAR images and relevant geoenvironmental parameters to measure soil moisture.

  11. Estimation of Dense Image Flow Fields in Fluids

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær

    or an estimate there-of is known. Estimated flow fields in weather satellite imagery might also be used on an operational basis as inputs to short-term weather prediction. In this article we describe a method for the estimation of dense flow fields. Local measurements of motion are obtained by analysis...

  12. Estimation of Dense Image Flow Fields in Fluids

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær


    or an estimate there-of is known. Estimated flow fields in weather satellite imagery might also be used on an operational basis as inputs to short-term weather prediction. In this article we describe a method for the estimation of dense flow fields. Local measurements of motion are obtained by analysis...

  13. Interactions between hyporheic flow produced by stream meanders, bars, and dunes (United States)

    Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.


    Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.

  14. Improving AVSWAT Stream Flow Simulation by Incorporating Groundwater Recharge Prediction in the Upstream Lesti Watershed, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Christina Rahayuningtyas


    Full Text Available The upstream Lesti watershed is one of the major watersheds of East Java in Indonesia, covering about 38093 hectares. Although there are enough water resources to meet current demands in the basin, many challenges including high spatial and temporal variability in precipitation from year to year exist. It is essential to understand how the climatic condition affects Lesti River stream flow in each sub basin. This study investigated the applicability of using the Soil and Water Assessment Tool (SWAT with the incorporation of groundwater recharge prediction in stream flow simulation in the upstream Lesti watershed. Four observation wells in the upstream Lesti watershed were used to evaluate the seasonal and annual variations in the water level and estimate the groundwater recharge in the deep aquifer. The results show that annual water level rise was within the 2800 - 5700 mm range in 2007, 3900 - 4700 mm in 2008, 3200 - 5100 mm in 2009, and 2800 - 4600 mm in 2010. Based on the specific yield and the measured water level rise, the area-weighted groundwater predictions at the watershed outlet are 736, 820.9, 786.7, 306.4 mm in 2007, 2008, 2009, and 2010, respectively. The consistency test reveals that the R-square statistical value is greater than 0.7, and the DV (% ranged from 32 - 55.3% in 2007 - 2010. Overall, the SWAT model performs better in the wet season flow simulation than the dry season. It is suggested that the SWAT model needs to be improved for stream flow simulation in tropical regions.

  15. Changes in Stream Flow and Their Relationships with Climatic Variations and Anthropogenic Activities in the Poyang Lake Basin, China

    Directory of Open Access Journals (Sweden)

    Chaojun Gu


    Full Text Available The Poyang Lake Basin has been suffering from severe water problems such as floods and droughts. This has led to great adverse impacts on local ecosystems and water resource utilization. It is therefore important to understand stream flow changes and their driving factors. In this paper, the dynamics of stream flow and precipitation in the Poyang Lake Basin between 1961 and 2012 were evaluated with the Mann–Kendall test, Theil–Sen approaches, Pettitt test, and Pearson’s correlation. Stream flow was measured at the outlets of five major tributaries of Poyang Lake, while precipitation was recorded by fourteen meteorological stations located within the Poyang Lake Basin. Results showed that annual stream flow of all tributaries and the precipitation over the study area had insignificant (P > 0.1 temporal trends and change points, while significant trends and shifts were found in monthly scale. Stream flow concentration indices (SCI at Waizhou, Meigang, and Wanjiabu stations showed significant (P < 0.05 decreasing trends with change points emerging in 1984 at Waizhou and 1978 at Wanjiabu, while there was no significant temporal trend and change point detected for the precipitation concentration indices (PCI. Correlation analysis indicated that area-average stream flow was closely related to area-average precipitation, but area-average SCI was insignificantly correlated with area-average PCI after change point (1984. El Niño/Southern Oscillation (ENSO had greater impacts on stream flow than other climate indices, and La Niña events played a more important role in stream flow changes than EI Niño. Human activities, particularly in terms of reservoir constructions, largely altered the intra-annual distribution of stream flow but its effects on the amount of stream flow were relatively low. Results of this study provided a useful reference to regional water resource management and the prevention of flood and drought disasters.

  16. Stream habitat analysis using the instream flow incremental methodology (United States)

    Bovee, Ken D.; Lamb, Berton L.; Bartholow, John M.; Stalnaker, Clair B.; Taylor, Jonathan; Henriksen, Jim


    This document describes the Instream Flow Methodology in its entirety. This also is to serve as a comprehensive introductory textbook on IFIM for training courses as it contains the most complete and comprehensive description of IFIM in existence today. This should also serve as an official guide to IFIM in publication to counteract the misconceptions about the methodology that have pervaded the professional literature since the mid-1980's as this describes IFIM as it is envisioned by its developers. The document is aimed at the decisionmakers of management and allocation of natural resources in providing them an overview; and to those who design and implement studies to inform the decisionmakers. There should be enough background on model concepts, data requirements, calibration techniques, and quality assurance to help the technical user design and implement a cost-effective application of IFIM that will provide policy-relevant information. Some of the chapters deal with basic organization of IFIM, procedural sequence of applying IFIM starting with problem identification, study planning and implementation, and problem resolution.

  17. Viscous Potential Flow Analysis of Electroaerodynamic Instability of a Liquid Sheet Sprayed with an Air Stream

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Awasthi


    Full Text Available The instability of a thin sheet of viscous and dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field has been carried out using viscous potential flow theory. It is observed that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, viscosity ratio of two fluids, the electric field, and the dielectric constant values. Liquid viscosity has stabilizing effect in the stability analysis, while air viscosity has destabilizing effect.

  18. Ptaquiloside from bracken in stream water at base flow and during storm events

    DEFF Research Database (Denmark)

    Clauson-Kaas, Frederik; Ramwell, Carmel; Hansen, Hans Chr. Bruun


    not decrease over the course of the event. In the stream, the throughfall contribution to PTA cannot be separated from a possible below-ground input from litter, rhizomes and soil. Catchment-specific factors such as the soil pH, topography, hydrology, and bracken coverage will evidently affect the level of PTA...... rainfall and PTA concentration in the stream, with a reproducible time lag of approx. 1 h from onset of rain to elevated concentrations, and returning rather quickly (about 2 h) to base flow concentration levels. The concentration of PTA behaved similar to an inert tracer (Cl(-)) in the pulse experiment...

  19. Estimating construction and demolition debris generation using a materials flow analysis approach. (United States)

    Cochran, K M; Townsend, T G


    The magnitude and composition of a region's construction and demolition (C&D) debris should be understood when developing rules, policies and strategies for managing this segment of the solid waste stream. In the US, several national estimates have been conducted using a weight-per-construction-area approximation; national estimates using alternative procedures such as those used for other segments of the solid waste stream have not been reported for C&D debris. This paper presents an evaluation of a materials flow analysis (MFA) approach for estimating C&D debris generation and composition for a large region (the US). The consumption of construction materials in the US and typical waste factors used for construction materials purchasing were used to estimate the mass of solid waste generated as a result of construction activities. Debris from demolition activities was predicted from various historical construction materials consumption data and estimates of average service lives of the materials. The MFA approach estimated that approximately 610-78 × 10(6)Mg of C&D debris was generated in 2002. This predicted mass exceeds previous estimates using other C&D debris predictive methodologies and reflects the large waste stream that exists. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method (United States)

    Somogyi, Andy; Tagg, Randall


    We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.

  1. Impact of sampling strategy on stream load estimates in till landscape of the Midwest (United States)

    Vidon, P.; Hubbard, L.E.; Soyeux, E.


    Accurately estimating various solute loads in streams during storms is critical to accurately determine maximum daily loads for regulatory purposes. This study investigates the impact of sampling strategy on solute load estimates in streams in the US Midwest. Three different solute types (nitrate, magnesium, and dissolved organic carbon (DOC)) and three sampling strategies are assessed. Regardless of the method, the average error on nitrate loads is higher than for magnesium or DOC loads, and all three methods generally underestimate DOC loads and overestimate magnesium loads. Increasing sampling frequency only slightly improves the accuracy of solute load estimates but generally improves the precision of load calculations. This type of investigation is critical for water management and environmental assessment so error on solute load calculations can be taken into account by landscape managers, and sampling strategies optimized as a function of monitoring objectives. ?? 2008 Springer Science+Business Media B.V.

  2. Basin Visual Estimation Technique (BVET) and Representative Reach Approaches to Wadeable Stream Surveys: Methodological Limitations and Future Directions (United States)

    Lance R. Williams; Melvin L. Warren; Susan B. Adams; Joseph L. Arvai; Christopher M. Taylor


    Basin Visual Estimation Techniques (BVET) are used to estimate abundance for fish populations in small streams. With BVET, independent samples are drawn from natural habitat units in the stream rather than sampling "representative reaches." This sampling protocol provides an alternative to traditional reach-level surveys, which are criticized for their lack...

  3. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Base Flow Index (United States)

    This dataset represents the base flow index values within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Source_Information). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The bfi (%) was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  4. Uncertainty of solute flux estimation in ungauged small streams: potential implications for input-output nutrient mass balances at stream reach scale

    Directory of Open Access Journals (Sweden)

    A. Butturini


    Full Text Available Input-output mass balances within stream reaches provide in situ estimates of stream nutrient retention/release under a wide spectrum of hydrological conditions. Providing good estimates of the mass balances for nutrients depends on precise hydrological monitoring and good chemical characterisation of stream water at the input and output ends of the stream reach. There is a need to optimise the hydrological monitoring and the frequencies of water sampling to yield precise annual mass balances, so as to avoid undue cost - high resolution monitoring and subsequent chemical analysis can be labour intensive and costly. In this paper, simulation exercises were performed using a data set created to represent the instantaneous discharge and solute dynamics at the input and output ends of a model stream reach during a one year period. At the output end, stream discharge and water chemistry were monitored continuously, while the input end was assumed to be ungauged; water sampling frequency was changed arbitrarily. Instantaneous discharge at the ungauged sampling point was estimated with an empirical power model linking the discharge to the catchment area (Hooper, 1986. The model thus substitutes for the additional gauge station. Simulations showed that 10 days was the longest chemical sampling interval which could provide reach annual mass balances of acceptable precision. Presently, the relationship between discharge and catchment area is usually assumed to be linear but simulations indicate that small departures from the linearity of this relationship could cause dramatic changes in the mass balance estimations.

  5. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows (United States)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro


    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  6. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams (United States)

    Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.


    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  7. An evaluation of the relations between flow regime components, stream characteristics, species traits and meta-demographic rates of warmwater stream fishes: Implications for aquatic resource management (United States)

    Peterson, James T.; Shea, C.P.


    Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species-specific demographic rates. A more cost-effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta-demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta-demographic rates were influenced by streamflows, particularly short-term (10-day) flows. Flow effects on meta-demographic rates also varied with stream size, channel morphology, and fish species traits. Small-bodied species with generalized life-history characteristics were more resilient to flow variability than large-bodied species with specialized life-history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  8. Estimation of traveltime and longitudinal dispersion in streams in West Virginia (United States)

    Wiley, Jeffrey B.; Messinger, Terence


    Traveltime and dispersion data are important for understanding and responding to spills of contaminants in waterways. The U.S. Geological Survey (USGS), in cooperation with West Virginia Bureau for Public Health, Office of Environmental Health Services, compiled and evaluated traveltime and longitudinal dispersion data representative of many West Virginia waterways. Traveltime and dispersion data were not available for streams in the northwestern part of the State. Compiled data were compared with estimates determined from national equations previously published by the USGS. The evaluation summarized procedures and examples for estimating traveltime and dispersion on streams in West Virginia. National equations developed by the USGS can be used to predict traveltime and dispersion for streams located in West Virginia, but the predictions will be less accurate than those made with graphical interpolation between measurements. National equations for peak concentration, velocity of the peak concentration, and traveltime of the leading edge had root mean square errors (RMSE) of 0.426 log units (127 percent), 0.505 feet per second (ft/s), and 3.78 hours (h). West Virginia data fit the national equations for peak concentration, velocity of the peak concentration, and traveltime of the leading edge with RMSE of 0.139 log units (38 percent), 0.630 ft/s, and 3.38 h, respectively. The national equation for maximum possible velocity of the peak concentration exceeded 99 percent and 100 percent of observed values from the national data set and West Virginia-only data set, respectively. No RMSE was reported for time of passage of a dye cloud, as estimated using the national equation; however, the estimates made using the national equations had a root mean square error of 3.82 h when compared to data gathered for this study. Traveltime and dispersion estimates can be made from the plots of traveltime as a function of streamflow and location for streams with plots available, but

  9. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows. (United States)

    Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M


    The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions

  10. The Influence of Flow and Bed Slope on Gas Transfer in Steep Streams and Their Implications for Evasion of CO2 (United States)

    Maurice, L.; Rawlins, B. G.; Farr, G.; Bell, R.; Gooddy, D. C.


    The evasion of greenhouse gases (including CO2, CH4, and N2O) from streams and rivers to the atmosphere is an important process in global biogeochemical cycles, but our understanding of gas transfer in steep (>10%) streams, and under varying flows, is limited. We investigated gas transfer using combined tracer injections of SF6 and salt. We used a novel experimental design in which we compared four very steep (18.4-29.4%) and four moderately steep (3.7-7.6%) streams and conducted tests in each stream under low flow conditions and during a high-discharge event. Most dissolved gas evaded over short distances ( 100 and 200-400 m, respectively), so accurate estimates of evasion fluxes will require sampling of dissolved gases at these scales to account for local sources. We calculated CO2 gas transfer coefficients (KCO2) and found statistically significant differences between larger KCO2 values for steeper (mean 0.465 min-1) streams compared to those with shallower slopes (mean 0.109 min-1). Variations in flow had an even greater influence. KCO2 was substantially larger under high (mean 0.497 min-1) compared to low flow conditions (mean 0.077 min-1). We developed a statistical model to predict KCO2 using values of streambed slope × discharge which accounted for 94% of the variation. We show that two models using slope and velocity developed by Raymond et al. (2012) for streams and rivers with shallower slopes also provide reasonable estimates of our CO2 gas transfer velocities (kCO2; m d-1). We developed a robust field protocol which could be applied in future studies.

  11. A Streaming Algorithm for Online Estimation of Temporal and Spatial Extent of Delays

    Directory of Open Access Journals (Sweden)

    Kittipong Hiriotappa


    Full Text Available Knowing traffic congestion and its impact on travel time in advance is vital for proactive travel planning as well as advanced traffic management. This paper proposes a streaming algorithm to estimate temporal and spatial extent of delays online which can be deployed with roadside sensors. First, the proposed algorithm uses streaming input from individual sensors to detect a deviation from normal traffic patterns, referred to as anomalies, which is used as an early indication of delay occurrence. Then, a group of consecutive sensors that detect anomalies are used to temporally and spatially estimate extent of delay associated with the detected anomalies. Performance evaluations are conducted using a real-world data set collected by roadside sensors in Bangkok, Thailand, and the NGSIM data set collected in California, USA. Using NGSIM data, it is shown qualitatively that the proposed algorithm can detect consecutive occurrences of shockwaves and estimate their associated delays. Then, using a data set from Thailand, it is shown quantitatively that the proposed algorithm can detect and estimate delays associated with both recurring congestion and incident-induced nonrecurring congestion. The proposed algorithm also outperforms the previously proposed streaming algorithm.

  12. Type and timing of stream flow changes in urbanizing watersheds in the Eastern U.S.

    Directory of Open Access Journals (Sweden)

    Kristina G. Hopkins


    Full Text Available Abstract Linking the type and timing of hydrologic changes with patterns of urban growth is essential to identifying the underlying mechanisms that drive declines in urban aquatic ecosystems. In six urbanizing watersheds surrounding three U.S. cities (Baltimore, MD, Boston, MA, and Pittsburgh, PA, we reconstructed the history of development patterns since 1900 and assessed the magnitude and timing of stream flow changes during watershed development. Development reconstructions indicated that the majority of watershed development occurred during a period of peak population growth, typically between 1950 and 1970. Stream flow records indicated significant increases in annual frequency of high-flow events in all six watersheds and increases in annual runoff efficiency in five watersheds. Annual development intensity during the peak growth period had the strongest association with the magnitude of changes in high-flow frequency from the pre- to post-development periods. Results suggest the timing of the peak growth period is particularly important to understanding hydrologic changes, because it can set the type of stormwater infrastructure installed within a watershed. In three watersheds there was a rapid (∼10-15 years shift toward more frequent high-flow events, and in four watersheds there was a shift toward higher runoff efficiency. Breakpoint analyses indicated these shifts occurred between 1969 and 1976 for high-flow frequency and between 1962 and 1984 for runoff efficiency. Results indicated that the timing of high-flow changes were mainly driven by the development trajectory of each watershed, whereas the timing of runoff-efficiency changes were driven by a combination of development trajectories and extreme weather events. Our results underscore the need to refine the causes of urban stream degradation to incorporate the impact of gradual versus rapid urbanization on hydrologic changes and aquatic ecosystem function, as well as to

  13. Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania (United States)

    Brush, Lucien M.


    The hydraulic, basin, and geologic characteristics of 16 selected streams in central Pennsylvania were measured for the purpose of studying the relations among these general characteristics and their process of development. The basic parameters which were measured include bankfull width and depth, channel slope, bed material size and shape, length of stream from drainage divide, and size of drainage area. The kinds of bedrock over which the streams flow were noted. In these streams the bankfull channel is filled by flows approximating the 2.3-year flood. By measuring the breadth and mean depth of the channel, it was possible to compute the bankfull mean velocity for each of the 119 sampling stations. These data were then used to compute the downstream changes in hydraulic geometry of the streams studied. This method has been called an indirect computation of the hydraulic geometry. The results obtained by the indirect method are similar to those of the direct method of other workers. The basins were studied by examining the relations of drainage area, discharge, and length of stream from drainage divide. For the streams investigated, excellent correlations were found to exist between drainage area and the 2.3-year flood, as well as between length of stream from the basin divide and drainage area. From these correlations it is possible to predict the discharge for the 2.3-year flood at any arbitrary point along the length of the stream. The long, intermediate, and short axes of pebbles sampled from the bed of the stream were recorded to study both size and sphericity changes along individual streams and among the streams studied. No systematic downstream changes in sphericity were found. Particle size changes are erratic and show no consistent relation to channel slope. Particle size decreases downstream in many streams but remains constant or increases in others. Addition of material by tributaries is one factor affecting particle size and another is the parent

  14. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004 (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.


    estimated for each study site using regional regression equations. This report describes Physical Habitat Simulation System modeling results for bull trout, Chinook salmon, and steelhead trout during summer streamflows. Habitat/discharge relations were summarized for adult and spawning life stages at each study site. Adult fish passage and discharge relations were evaluated at specific transects identified as a potential low-streamflow passage barrier at each study site. Continuous summer water temperature data for selected study sites were summarized and compared with Idaho Water Quality Standards and various water temperature requirements of targeted fish species. Continuous summer water temperature data recorded in 2003 and streamflow relations were evaluated for Fourth of July Creek using the Stream Segment Temperature model that simulates mean and maximum daily water temperatures with changes in streamflow. Results of these habitat studies can be used to prioritize and direct cost-effective actions to improve fish habitat for ESA-listed anadromous and native fish species in the basin. These actions may include acquiring water during critical low-flow periods by leasing or modifying irrigation delivery systems to minimize out-of-stream diversions.

  15. Acoustically Induced Streaming Flows near a Model Cod Otolith and their Potential Implications for Fish Hearing

    Energy Technology Data Exchange (ETDEWEB)

    Kotas, Charlotte W [ORNL; Rogers, Peter [Georgia Institute of Technology; Yoda, Minami [Georgia Institute of Technology


    The ears of fishes are remarkable sensors for the small acoustic disturbances associated with underwater sound. For example, each ear of the Atlantic cod (Gadus morhua) has three dense bony bodies (otoliths) surrounded by fluid and tissue, and detects sounds at frequencies from 30 to 500 Hz. Atlantic cod have also been shown to localize sounds. However, how their ears perform these functions is not fully understood. Steady streaming, or time-independent, flows near a 350% scale model Atlantic cod otolith immersed in a viscous fluid were studied to determine if these fluid flows contain acoustically relevant information that could be detected by the ear s sensory hair cells. The otolith was oscillated sinusoidally at various orientations at frequencies of 8 24 Hz, corresponding to an actual frequency range of 280 830 Hz. Phaselocked particle pathline visualizations of the resulting flows give velocity, vorticity, and rate of strain fields over a single plane of this mainly two-dimensional flow. Although the streaming flows contain acoustically relevant information, the displacements due to these flows are likely too small to explain Atlantic cod hearing abilities near threshold. The results, however, may suggest a possible mechanism for detection of ultrasound in some fish species.

  16. The effects of human land use on flow regime and water chemistry of headwater streams in the highlands of Chiapas

    Directory of Open Access Journals (Sweden)

    Castillo M.M.


    Full Text Available We studied the effects of land use changes on flow regime and water chemistry of headwater streams in the highlands of Chiapas, a region in southern Mexico that has experienced high rates of deforestation in the last decades. Samples for water chemistry were collected and discharge was measured between September 2007 and August 2008 at eight streams that differed in the land uses of their riparian and catchment areas, including streams draining protected forested areas. Streams with high forest cover (>70% in their catchments maintained flow through the year. Streams draining more disturbed catchments exhibited reduced or no flow for 4 − 6 months during the dry season. Nitrate concentrations were lower at streams draining forested catchments while highest concentrations were measured where conventional agriculture covered a high proportion of the catchment and riparian zone. Highest phosphorus concentrations occurred at the catchment where poultry manure was applied as fertilizer. Differences between forest streams and those draining disturbed areas were correlated with the proportion of forest and agriculture in the riparian zone. Variation in stream variables among sampling dates was lower at the forest sites than at the more disturbed study streams. Conversion of forest into agriculture and urban areas is affecting flow regime and increasing nutrient concentrations, although the magnitude of the impacts are influenced by the type of agricultural practices and the alteration of the riparian zone.

  17. A review of lot streaming in a flow shop environment with makespan criteria

    Directory of Open Access Journals (Sweden)

    Pedro Gómez-Gasquet


    Full Text Available Purpose: This paper reviews current literature and contributes a set of findings that capture the current state-of-the-art of the topic of lot streaming in a flow-shop. Design/methodology/approach: A literature review to capture, classify and summarize the main body of knowledge on lot streaming in a flow-shop with makespan criteria and, translate this into a form that is readily accessible to researchers and practitioners in the more mainstream production scheduling community. Findings and Originality/value: The existing knowledge base is somewhat fragmented. This is a relatively unexplored topic within mainstream operations management research and one which could provide rich opportunities for further exploration. Originality/value: This paper sets out to review current literature, from an advanced production scheduling perspective, and contributes a set of findings that capture the current state-of-the-art of this topic.

  18. Effects of Urbanization on the Flow Regimes of Semi-Arid Southern California Streams (United States)

    Hawley, R. J.; Bledsoe, B. P.; Stein, E. D.


    Stream channel erosion and associated habitat degradation are pervasive in streams draining urban areas in the southwestern US. The prevalence of these impacts results from the inherent sensitivity of streams in semi-arid climates to changes in flow and sediment regimes, and past inattention to management of geomorphically effective flows. Addressing this issue is difficult due to the lack of data linking ranges of flow (from small to large runoff events) to geomorphic channel response. Forty-three U. S. Geological Survey gages with record lengths greater than ~15 yrs and watershed areas less than ~250 square kilometers were used to empirically model the effects of urbanization on streams in southern California. The watersheds spanned a gradient of urban development and ranged from 0 to 23% total impervious area in 2001. With little flow control at the subdivision scale to date, most impervious area in the region is relatively well-connected to surface-drainage networks. Consequently, total impervious area was an effective surrogate for urbanization, and emerged as a significant (p approach expands on previous scaling procedures to produce histogram-style cumulative flow duration graphs for ungaged sites based on urbanization extent and other watershed descriptors. Urbanization resulted in proportionally-longer durations of all geomorphically-effective flows, with a more pronounced effect on the durations of moderate flows. For example, an average watershed from the study domain with ~20% imperviousness could experience five times as many days of mean daily flows on the order of 100 cfs (3 cubic meters per second) and approximately three times as many days on the order of 1,000 cfs (30 cubic meters per second) relative to the undeveloped setting. Increased duration of sediment-transporting flows is a primary driver of accelerated changes in channel form that are often concurrent with urbanization throughout southern California, particularly in unconfined, fine

  19. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams (United States)

    Cervania, A.; Knack, I. M. W.


    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  20. Artificial intelligence based models for stream-flow forecasting: 2000-2015 (United States)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba


    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.


    International Nuclear Information System (INIS)

    Shen, Yuandeng; Liu, Yu; Xu, Zhi; Liu, Zhong; Liu, Ying D.; Chen, P. F.; Su, Jiangtao


    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends

  2. Estimating the Heading Direction Using Normal Flow (United States)


    understood (Faugeras and Maybank 1990), 3 Kinetic Stabilization under the assumption that optic flow or correspon- dence is known with some uncertainty...accelerometers can achieve very It can easily be shown (Koenderink and van Doom high accuracy, the same is not true for inexpensive 1975; Maybank 1985... Maybank . ’Motion from point matches: Multi- just don’t compute normal flow there (see Section 6). plicity of solutions". Int’l J. Computer Vision 4

  3. Changing numbers of spawning cutthroat trout in tributary streams of Yellowstone Lake and estimates of grizzly bears visiting streams from DNA (United States)

    Haroldson, M.A.; Gunther, K.A.; Reinhart, Daniel P.; Podruzny, S.R.; Cegelski, C.; Waits, L.; Wyman, T.C.; Smith, J.


    Spawning Yellowstone cutthroat trout (Oncorhynchus clarki) provide a source of highly digestible energy for grizzly bears (Ursus arctos) that visit tributary streams to Yellowstone Lake during the spring and early summer. During 1985–87, research documented grizzly bears fishing on 61% of the 124 tributary streams to the lake. Using track measurements, it was estimated that a minimum of 44 grizzly bears fished those streams annually. During 1994, non-native lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake. Lake trout are efficient predators and have the potential to reduce the native cutthroat population and negatively impact terrestrial predators that use cutthroat trout as a food resource. In 1997, we began sampling a subset of streams (n = 25) from areas of Yellowstone Lake surveyed during the previous study to determine if changes in spawner numbers or bear use had occurred. Comparisons of peak numbers and duration suggested a considerable decline between study periods in streams in the West Thumb area of the lake. The apparent decline may be due to predation by lake trout. Indices of bear use also declined on West Thumb area streams. We used DNA from hair collected near spawning streams to estimate the minimum number of bears visiting the vicinity of spawning streams. Seventy-four individual bears were identified from 429 hair samples. The annual number of individuals detected ranged from 15 in 1997 to 33 in 2000. Seventy percent of genotypes identified were represented by more than 1 sample, but only 31% of bears were documented more than 1 year of the study. Sixty-two (84%) bears were only documented in 1 segment of the lake, whereas 12 (16%) were found in 2–3 lake segments. Twenty-seven bears were identified from hair collected at multiple streams. One bear was identified on 6 streams in 2 segments of the lake and during 3 years of the study. We used encounter histories derived from DNA and the Jolly-Seber procedure in Program MARK

  4. Estimating the consequences of significant fracture flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.; Wilson, M.L.; Lauffer, F.C.


    In this paper a simple model is proposed for investigating the possibility of significant fracture flow at Yucca Mountain, Nevada. The model allows an estimate of the number of flowing fractures at Yucca Mountain based on the size of the fractures and the yearly volume of infiltrating water. Given the number of flowing fractures, the number of waste containers they contact is estimated by a geometric argument. Preliminary results indicate that the larger the flowing fractures, the lower the releases of radionuclides. Also, even with significant fracture flow, releases could be well below the limits set by the Environmental Protection Agency

  5. Estimating the consequences of significant fracture flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.; Wilson, M.L.; Lauffer, F.C.


    A simple model is proposed for investigating the possibility of significant fracture flow at Yucca Mountain, Nevada. The model allows an estimate of the number of flowing fractures at Yucca Mountain based on the size of the fractures and the yearly volume of infiltrating water. Given the number of flowing fractures, the number of waste containers they contact is estimated by a geometric argument. Preliminary results indicate that the larger the flowing fractures, the lower the releases of radionuclides. Also, even with significant fracture flow, releases could be well below the limits set by the Environmental Protection Agency

  6. Turbulent Mixing of Primary and Secondary Flow Streams in a Rocket-Based Combined Cycle Engine (United States)

    Cramer, J. M.; Greene, M. U.; Pal, S.; Santoro, R. J.; Turner, Jim (Technical Monitor)


    This viewgraph presentation gives an overview of the turbulent mixing of primary and secondary flow streams in a rocket-based combined cycle (RBCC) engine. A significant RBCC ejector mode database has been generated, detailing single and twin thruster configurations and global and local measurements. On-going analysis and correlation efforts include Marshall Space Flight Center computational fluid dynamics modeling and turbulent shear layer analysis. Potential follow-on activities include detailed measurements of air flow static pressure and velocity profiles, investigations into other thruster spacing configurations, performing a fundamental shear layer mixing study, and demonstrating single-shot Raman measurements.

  7. Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows (United States)

    Kumar, Haribalan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long


    Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan–Carpenter (KC) number. PMID:21580803

  8. Effects of flow intermittency and pharmaceutical exposure on the structure and metabolism of stream biofilms. (United States)

    Corcoll, Natàlia; Casellas, Maria; Huerta, Belinda; Guasch, Helena; Acuña, Vicenç; Rodríguez-Mozaz, Sara; Serra-Compte, Albert; Barceló, Damià; Sabater, Sergi


    Increasing concentrations of pharmaceutical compounds occur in many rivers, but their environmental risk remains poorly studied in stream biofilms. Flow intermittency shapes the structure and functions of ecosystems, and may enhance their sensitivity to toxicants. This study evaluates the effects of a long-term exposure of biofilm communities to a mixture of pharmaceutical compounds at environmental concentrations on biofilm bioaccumulation capacity, the structure and metabolic processes of algae and bacteria communities, and how their potential effects were enhanced or not by the occurrence of flow intermittency. To assess the interaction between those two stressors, an experiment with artificial streams was performed. Stream biofilms were exposed to a mixture of pharmaceuticals, as well as to a short period of flow intermittency. Results indicate that biofilms were negatively affected by pharmaceuticals. The algal biomass and taxa richness decreased and unicellular green algae relatively increased. The structure of the bacterial (based on denaturing gradient gel electrophoresis of amplified 16S rRNA genes) changed and showed a reduction of the operational taxonomic units (OTUs) richness. Exposed biofilms showed higher rates of metabolic processes, such as primary production and community respiration, attributed to pharmaceuticals stimulated an increase of green algae and heterotrophs, respectively. Flow intermittency modulated the effects of chemicals on natural communities. The algal community became more sensitive to short-term exposure of pharmaceuticals (lower EC50 value) when exposed to water intermittency, indicating cumulative effects between the two assessed stressors. In contrast to algae, the bacterial community became less sensitive to short-term exposure of pharmaceuticals (higher EC50) when exposed to water intermittency, indicating co-tolerance phenomena. According to the observed effects, the environmental risk of pharmaceuticals in nature is high

  9. Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA. (United States)

    Steven M. Wondzell


    Stream-tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach-integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS-P. Transient...

  10. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats. (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F


    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  11. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers (United States)

    Lin, Chao-Chih; Chang, Ya-Chi; Yeh, Hund-Der


    Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007). The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR) from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007).

  12. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers

    Directory of Open Access Journals (Sweden)

    C.-C. Lin


    Full Text Available Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007. The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007.

  13. Whole-stream metabolism of a perennial spring-fed aufeis field in Alaska, with coincident surface and subsurface flow (United States)

    Hendrickson, P. J.; Gooseff, M. N.; Huryn, A. D.


    Aufeis (icings or naleds) are seasonal arctic and sub-arctic features that accumulate through repeated overflow and freeze events of river or spring discharge. Aufeis fields, defined as the substrate on which aufeis form and the overlaying ice, have been studied to mitigate impacts on engineering structures; however, ecological characteristics and functions of aufeis fields are poorly understood. The perennial springs that supply warm water to aufeis fields create unique fluvial habitats, and are thought to act as winter and summer oases for biota. To investigate ecosystem function, we measured whole-stream metabolism at the Kuparuk River Aufeis (North Slope, AK), a large ( 5 km2) field composed of cobble substrate and predominately subsurface flow dynamics. The single-station open channel diel oxygen method was utilized at several dissolved oxygen (DO) stations located within and downstream of the aufeis field. DO loggers were installed in August 2016, and data downloaded summer 2017. Daily ecosystem respiration (ER), gross primary production (GPP) and reaeration rates were modeled using BASE, a package freely available in the open-source software R. Preliminary results support net heterotrophy during a two-week period of DO measurements in the fall season when minimum ice extent is observed. GPP, ER, and net metabolism are greater at the upstream reach near the spring source (P/R = 0.53), and decrease as flow moves downstream. As flow exits the aufeis field, surface and subsurface flow are incorporated into the metabolism model, and indicate the stream system becomes dependent on autochthonous production (P/R = 0.91). Current work is directed towards spring and summer discharge and metabolic parameter estimation, which is associated with maximum ice extent and rapid melting of the aufeis feature.

  14. Validation of abundance estimates from mark-recapture and removal techniques for rainbow trout captured by electrofishing in small streams (United States)

    Amanda E. Rosenberger; Jason B. Dunham


    Estimation of fish abundance in streams using the removal model or the Lincoln–Peterson mark–recapture model is a common practice in fisheries. These models produce misleading results if their assumptions are violated. We evaluated the assumptions of these two models via electrofishing of rainbow trout Oncorhynchus mykiss in central Idaho streams....

  15. Experimental investigation of transverse flow estimation using transverse oscillation

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt


    Conventional ultrasound scanners can only display the blood velocity component parallel to the ultrasound beam. Introducing a laterally oscillating field gives signals from which the transverse velocity component can be estimated using 2:1 parallel receive beamformers. To yield the performance...... perpendicular to the ultrasound beam. The velocity profile of the blood is parabolic, and the speed of the blood in the center of the vessel is 1.1 m/s. An extended autocorrelation algorithm is used for velocity estimation for 310 trials, each containing 32 beamformed signals. The velocity can be estimated.......0% and the relative mean standard deviation is found to be 9.8%. With the Compuflow 1000 programmable flow pump a color flow mode image is produced of the experimental setup for a parabolic flow. Also the flow of the human femoralis is reproduced and it is found that the characteristics of the flow can be estimated....

  16. Hankin and Reeves' approach to estimating fish abundance in small streams: limitations and potential options; TOPICAL

    International Nuclear Information System (INIS)

    Thompson, William L.


    Hankin and Reeves' (1988) approach to estimating fish abundance in small streams has been applied in stream-fish studies across North America. However, as with any method of population estimation, there are important assumptions that must be met for estimates to be minimally biased and reasonably precise. Consequently, I investigated effects of various levels of departure from these assumptions via simulation based on results from an example application in Hankin and Reeves (1988) and a spatially clustered population. Coverage of 95% confidence intervals averaged about 5% less than nominal when removal estimates equaled true numbers within sampling units, but averaged 62% - 86% less than nominal when they did not, with the exception where detection probabilities of individuals were and gt;0.85 and constant across sampling units (95% confidence interval coverage= 90%). True total abundances averaged far (20% - 41%) below the lower confidence limit when not included within intervals, which implies large negative bias. Further, average coefficient of variation was about 1.5 times higher when removal estimates did not equal true numbers within sampling units (C(bar V)0.27[SE= 0.0004]) than when they did (C(bar V)= 0.19[SE= 0.0002]). A potential modification to Hankin and Reeves' approach is to include environmental covariates that affect detection rates of fish into the removal model or other mark-recapture model. A potential alternative is to use snorkeling in combination with line transect sampling to estimate fish densities. Regardless of the method of population estimation, a pilot study should be conducted to validate the enumeration method, which requires a known (or nearly so) population of fish to serve as a benchmark to evaluate bias and precision of population estimates

  17. Linking stream flow and groundwater to avian habitat in a desert riparian system. (United States)

    Merritt, David M; Bateman, Heather L


    Increasing human populations have resulted in aggressive water development in arid regions. This development typically results in altered stream flow regimes, reduced annual flow volumes, changes in fluvial disturbance regimes, changes in groundwater levels, and subsequent shifts in ecological patterns and processes. Balancing human demands for water with environmental requirements to maintain functioning ecosystems requires quantitative linkages between water in streams and ecosystem attributes. Streams in the Sonoran Desert provide important habitat for vertebrate species, including resident and migratory birds. Habitat structure, food, and nest-building materials, which are concentrated in riparian areas, are provided directly or indirectly by vegetation. We measured riparian vegetation, groundwater and surface water, habitat structure, and bird occurrence along Cherry Creek, a perennial tributary of the Salt River in central Arizona, USA. The purpose of this work was to develop an integrated model of groundwater-vegetation-habitat structure and bird occurrence by: (1) characterizing structural and provisioning attributes of riparian vegetation through developing a bird habitat index (BHI), (2) validating the utility of our BHI through relating it to measured bird community composition, (3) determining the riparian plant species that best explain the variability in BHI, (4) developing predictive models that link important riparian species to fluvial disturbance and groundwater availability along an arid-land stream, and (5) simulating the effects of changes in flow regime and groundwater levels and determining their consequences for riparian bird communities. Riparian forest and shrubland vegetation cover types were correctly classified in 83% of observations as a function of fluvial disturbance and depth to water table. Groundwater decline and decreased magnitude of fluvial disturbance caused significant shifts in riparian cover types from riparian forest to

  18. Continental slope sea level and flow variability induced by lateral movements of the Gulf Stream in the Middle Atlantic Bight (United States)

    Böhm, E.; Hopkins, T. S.; Pietrafesa, L. J.; Churchill, J. H.


    As described by [Csanady, G.T., Hamilton, P., 1988. Circulation of slope water. Continental Shelf Research 8, 565-624], the flow regime over the slope of the southern Middle Atlantic Bight (MAB) includes a current reversal in which southwestward flow over the upper and middle slope becomes entrained in the northeastward current adjacent to the Gulf Stream. In this paper we use satellite-derived data to quantify how lateral motions of the Gulf Stream impact this current system. In our analysis, the Gulf Stream’s thermal front is delineated using a two-year time series of sea surface temperature derived from NOAA/AVHRR satellite data. Lateral motions of the Gulf Stream are represented in terms of temporal variations of the area, east of 73°W, between the Gulf Stream thermal front and the shelf edge. Variations of slope water flow within this area are represented by anomalies of geostrophic velocity as derived from the time series of the sea level anomaly determined from TOPEX/POSEIDON satellite altimeter data. A strong statistical relationship is found between Gulf Stream displacements and parabathic flow over the continental slope. It is such that the southwestward flow over the slope is accelerated when the Gulf Stream is relatively far from the shelf edge, and is decelerated (and perhaps even reversed) when the Gulf Stream is close to the shelf edge. This relationship between Gulf Stream displacements and parabathic flow is also observed in numerical simulations produced by the Miami Isopycnic Coordinate Model. In qualitative terms, it is consistent with the notion that when the Gulf Stream is closer to the 200-m isobath, it is capable of entraining a larger fraction of shelf water masses. Alternatively, when the Gulf Stream is far from the shelf-break, more water is advected into the MAB slope region from the northeast. Analysis of the diabathic flow indicates that much of the cross-slope transport by which the southwestward flow entering the study region is

  19. The conversion of grasslands to forests in Southern South America: Shifting evapotranspiration, stream flow and groundwater dynamics (United States)

    Jobbagy, E. G.; Nosetto, M. D.; Pineiro, G.; Farley, K. A.; Palmer, S. M.; Jackson, R. B.


    Vegetation changes, particularly those involving transitions between tree- and grass-dominated systems, often modify evaporation as a result of plant-mediated shifts in moisture access and demand. The establishment of tree plantations (fast growing eucalypts and pines) on native grasslands is emerging as a major land-use change, particularly in the Southern Hemisphere, where cheap land and labor, public subsidies, and prospective C sequestration rewards provide converging incentives. What are the hydrological consequences of grassland afforestation? How are crucial ecosystem services such as fresh water supply and hydrological regulation being affected? We explore these questions focusing on a) evapotranspiration, b) stream flow, and c) groundwater recharge-discharge patterns across a network of paired stands and small watershed occupied by native grassland and tree plantation in Argentina and Uruguay. Radiometric information obtained from Landsat satellite images was used to estimate daily evapotranspiration in >100 tree plantations and grasslands stands in the humid plains of the Uruguay River (mean annual precipitation, MAP= 1350 mm). In spite of their lower albedo, tree plantations were 0.5 C° cooler than grasslands. Energy balance calculations suggested 80% higher evapotranspiration in afforested plots with relative differences becoming larger during dry periods. Seasonal stream flow measurements in twelve paired watershed (50-500 Ha) in the hills of Comechingones (MAP= 800 mm) and Minas (MAP= 1200 mm) showed declining water yields following afforestation. Preliminary data in Cordoba showed four-fold reductions of base flow in the dry season and two-fold reductions of peak flow after storms. A network of twenty paired grassland-plantation stands covering a broad range of sediment textures in the Pampas (MAP= 1000 mm, typical groundwater depth= 1-5 m) showed increased groundwater salinity in afforested stands (plantation:grassland salinity ratio = 1.2, 10, and

  20. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005 (United States)

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.


    addition, natural summer streamflows were estimated for each study site using regional regression equations. This report describes PHABSIM modeling results for bull trout, Chinook salmon, and steelhead trout during summer streamflows. Habitat/discharge relations were summarized for adult and spawning life stages at each study site. In addition, streamflow needs for riffle dwelling invertebrate taxa (Ephemeroptera, Plecoptera, and Trichoptera) are presented. Adult fish passage and discharge relations were evaluated at specific transects that were identified as potential low-streamflow passage barriers at each study site. Continuous summer water temperature data for selected study sites were summarized and compared with Idaho Water Quality Standards and various water temperature requirements of targeted fish species. Results of these habitat studies can be used to prioritize and direct cost-effective actions to improve fish habitat for ESA-listed anadromous and native fish species in the basin. These actions may include acquiring water during critical low-flow periods by leasing or modifying irrigation delivery systems to minimize out-of-stream diversions.

  1. Preliminary evaluation of vector flow and spectral velocity estimation

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    Spectral estimation is considered as the golden standard in ultrasound velocity estimation. For spectral velocity estimation the blood flow angle is set by the ultrasound operator. Vector flow provides temporal and spatial estimates of the blood flow angle and velocity. A comparison of vector flow...... line covering the vessel diameter. A commercial ultrasound scanner (ProFocus 2202, BK Medical, Denmark) and a 7.6 MHz linear transducer was used (8670, BK Medical). The mean vector blood flow angle estimations were calculated {52(18);55(23);60(16)}°. For comparison the fixed angles for spectral...... estimation were obtained {52;56;52}°. The mean vector velocity estimates at PS {76(15);95(17);77(16)}cm/s and at end diastole (ED) {17(6);18(6);24(6)}cm/s were calculated. For comparison spectral velocity estimates at PS {77;110;76}cm/s and ED {18;18;20}cm/s were obtained. The mean vector angle estimates...

  2. Estimating benthic secondary production from aquatic insect emergence in streams affected by mountaintop removal coal mining, West Virginia USA (United States)

    Mountaintop removal and valley fill (MTR/VF) coal mining recountours the Appalachian landscape, buries headwater stream channels, and degrades downstream water quality. The goal of this study was to compare benthic community production estimates, based on seasonal insect emergen...

  3. A continuous-flow system for measuring in vitro oxygen and nitrogen metabolism in separated stream communities

    DEFF Research Database (Denmark)

    Prahl, C.; Jeppesen, E.; Sand-Jensen, Kaj


    on the stream bank, consists of several macrophyte and sediment chambers equipped with a double-flow system that ensures an internal water velocity close to that in the stream and which, by continuously renewing the water, mimics diel fluctuation in stream temperature and water chemistry. Water temperature...... production and dark respiration occurred at similar rates (6-7g O2 m-2 day-1), net balance being about zero. Inorganic nitrogen was consumed both by the sediment and to a greater extent by the macrophytes, the diel average consumption being 1g N m-2 day-1. 3. The sum of the activity in the macrophyte...... and sediment chambers corresponded to the overall activity of the stream section as determined by upstream/downstream mass balance. This indicates that the results obtained with the continuous-flow chambers realistically describe the oxygen and the nitrogen metabolism of the stream....

  4. Dense Descriptors for Optical Flow Estimation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ahmadreza Baghaie


    Full Text Available Estimating the displacements of intensity patterns between sequential frames is a very well-studied problem, which is usually referred to as optical flow estimation. The first assumption among many of the methods in the field is the brightness constancy during movements of pixels between frames. This assumption is proven to be not true in general, and therefore, the use of photometric invariant constraints has been studied in the past. One other solution can be sought by use of structural descriptors rather than pixels for estimating the optical flow. Unlike sparse feature detection/description techniques and since the problem of optical flow estimation tries to find a dense flow field, a dense structural representation of individual pixels and their neighbors is computed and then used for matching and optical flow estimation. Here, a comparative study is carried out by extending the framework of SIFT-flow to include more dense descriptors, and comprehensive comparisons are given. Overall, the work can be considered as a baseline for stimulating more interest in the use of dense descriptors for optical flow estimation.

  5. Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H.J. Andrews Experimental Forest, Oregon, USA. (United States)

    Justin K. Anderson; Steven M. Wondzell; Michael N. Gooseff; Roy. Haggerty


    There is a need to identify measurable characteristics of stream channel morphology that vary predictably throughout stream networks and that influence patterns of hyporheic exchange flow in mountain streams. In this paper we characterize stream longitudinal profiles according to channel unit spacing and the concavity of the water surface profile. We demonstrate that...

  6. Spatio-temporal variability of land use/land cover change (LULCC within the Huron River: Effects on stream flows

    Directory of Open Access Journals (Sweden)

    Cheyenne Lei

    Full Text Available We investigated possible influences of land use/land cover change (LULCC and precipitation on spatiotemporal changes in extreme stream flows within the watershed of the Huron River Basin during the summer seasons from 1992 to 2011. Within the basin, the urban landscape increased from 8% to 16% during the study period, while forest and agricultural lands declined by 7%. There was an increase in landscape heterogeneity within the watershed that varied from 1.21% in 1992 to 1.34% in 2011, with agricultural practices and forest regions competing due to the expansion of varying intensities of urban development. Normalized stream discharge from multiple subwatersheds increased over time, with an average increase from 0.21 m3 s−1 m to 1.64 m3 s−1 m over the study period. Land use and precipitation affected stream discharge, with increasing urban development exhibiting a 37% chance of affecting extreme stream flows within the watershed. More importantly, much of the precipitation observed within the watershed temporally affected stream discharge based on expansion of urban settlement within the basin. This caused a higher likelihood of flashiness, as runoff is more concentrated and stream flow became more variable. We concluded that, within the watersheds of the Huron River, LULCC is the major determinant of increased stream flow and potential flooding. Keywords: Urbanization, Land use, Land cover, Climate, Hydrology, ArcGIS, FRAGSTATS

  7. Three-Dimensional Numerical Modelling of Flow and Sediment Transport for Field Scale Application of Stream Barbs at Sawmill Creek, Ottawa (United States)

    Jamieson, E. C.; Rennie, C. D.; Townsend, R. D.


    towards the centre of the channel, away from the outside bank. Sawmill Creek has the added complexity of having predominately clay bed and banks. The erosional behaviour of cohesive sediments such as clay is difficult to model correctly, due to the complex site-specific physio- chemical properties of clay particles. Following the construction of the proposed barbs at our field test site this summer (2009), and data collection the following spring and summer, we hope to advance the current knowledge of cohesive sediment transport processes in a complicated three-dimensional turbulent flow field. For the present modelling effort, erodibility of the consolidated clay bed and bank material was estimated based on establishing an entrainment threshold at near-bankfull conditions. The focus of this research is on (i) the unique site conditions and environmental protection requirements, (ii) design methodology, and (iii) results of the numerical simulation. The three-dimensional numerical model was capable of reproducing the expected distribution of secondary flow in a channel bend, the unique three- dimensional flow field resulting from a series of submerged structures and the associated patterns of soil erosion and deposition. The numerical modelling also demonstrated to be a useful tool for optimizing barb design for stream bank protection at the proposed field test site. Modelling results confirmed that in the vicinity of the barbs, the addition of the proposed barb layout achieved substantial reduction in erosion (up to 98 %), bed shear stress (up to 59 %) and streamwise velocity (up to 51 %).

  8. Development of flow injection analysis technique for uranium estimation

    International Nuclear Information System (INIS)

    Paranjape, A.H.; Pandit, S.S.; Shinde, S.S.; Ramanujam, A.; Dhumwad, R.K.


    Flow injection analysis is increasingly used as a process control analytical technique in many industries. It involves injection of the sample at a constant rate into a steady flowing stream of reagent and passing this mixture through a suitable detector. This paper describes the development of such a system for the analysis of uranium (VI) and (IV) and its gross gamma activity. It is amenable for on-line or automated off-line monitoring of uranium and its activity in process streams. The sample injection port is suitable for automated injection of radioactive samples. The performance of the system has been tested for the colorimetric response of U(VI) samples at 410 nm in the range of 35 to 360mg/ml in nitric acid medium using Metrohm 662 Photometer and a recorder as detector assembly. The precision of the method is found to be better than +/- 0.5%. This technique with certain modifications is used for the analysis of U(VI) in the range 0.1-3mg/ailq. by alcoholic thiocynate procedure within +/- 1.5% precision. Similarly the precision for the determination of U(IV) in the range 15-120 mg at 650 nm is found to be better than 5%. With NaI well-type detector in the flow line, the gross gamma counting of the solution under flow is found to be within a precision of +/- 5%. (author). 4 refs., 2 figs., 1 tab

  9. Estimates of gradient Richardson numbers from vertically smoothed data in the Gulf Stream region

    Directory of Open Access Journals (Sweden)

    Paul van Gastel


    Full Text Available We use several hydrographic and velocity sections crossing the Gulf Stream to examine how the gradient Richardson number, Ri, is modified due to both vertical smoothing of the hydrographic and/or velocity fields and the assumption of parallel or geostrophic flow. Vertical smoothing of the original (25 m interval velocity field leads to a substantial increase in the Ri mean value, of the same order as the smoothing factor, while its standard deviation remains approximately constant. This contrasts with very minor changes in the distribution of the Ri values due to vertical smoothing of the density field over similar lengths. Mean geostrophic Ri values remain always above the actual unsmoothed Ri values, commonly one to two orders of magnitude larger, but the standard deviation is typically a factor of five larger in geostrophic than in actual Ri values. At high vertical wavenumbers (length scales below 3 m the geostrophic shear only leads to near critical conditions in already rather mixed regions. At these scales, hence, the major contributor to shear mixing is likely to come from the interaction of the background flow with internal waves. At low vertical wavenumbers (scales above 25 m the ageostrophic motions provide the main source for shear, with cross-stream movements having a minor but non-negligible contribution. These large-scale motions may be associated with local accelerations taking place during frontogenetic phases of meanders.

  10. Evidence for deep sub-surface flow routing in forested upland Wales: implications for contaminant transport and stream flow generation

    Directory of Open Access Journals (Sweden)

    A. H. Haria


    Full Text Available Upland streamflow generation has traditionally been modelled as a simple rainfall-runoff mechanism. However, recent hydrochemical studies conducted in upland Wales have highlighted the potentially important role of bedrock groundwater in streamflow generation processes. To investigate these processes, a detailed and novel field study was established in the riparian zone and lower hillslopes of the Hafren catchment at Plynlimon, mid-Wales. Results from this study showed groundwater near the river behaving in a complex and most likely confined manner within depth-specific horizons. Rapid responses to rainfall in all boreholes at the study site indicated rapid recharge pathways further upslope. The different flow pathways and travel times influenced the chemical character of groundwaters with depth. Groundwaters were shown to discharge into the stream from the fractured bedrock. A lateral rapid flow horizon was also identified as a fast flow pathway immediately below the soils. This highlighted a mechanism whereby rising groundwater may pick up chemical constituents from the lower soils and transfer them quickly to the stream channel. Restrictions in this horizon resulted in groundwater upwelling into the soils at some locations indicating soil water to be sourced from both rising groundwater and rainfall. The role of bedrock groundwater in upland streamflow generation is far more complicated than previously considered, particularly with respect to residence times and flow pathways. Hence, water quality models in upland catchments that do not take account of the bedrock geology and the groundwater interactions therein will be seriously flawed. Keywords: bedrock, groundwater, Hafren, hillslope hydrology, Plynlimon, recharge, soil water, streamflow generation

  11. Robust estimates of environmental effects on population vital rates: an integrated capture–recapture model of seasonal brook trout growth, survival and movement in a stream network (United States)

    Letcher, Benjamin H.; Schueller, Paul; Bassar, Ronald D.; Nislow, Keith H.; Coombs, Jason A.; Sakrejda, Krzysztof; Morrissey, Michael; Sigourney, Douglas B.; Whiteley, Andrew R.; O'Donnell, Matthew J.; Dubreuil, Todd L.


    Modelling the effects of environmental change on populations is a key challenge for ecologists, particularly as the pace of change increases. Currently, modelling efforts are limited by difficulties in establishing robust relationships between environmental drivers and population responses.We developed an integrated capture–recapture state-space model to estimate the effects of two key environmental drivers (stream flow and temperature) on demographic rates (body growth, movement and survival) using a long-term (11 years), high-resolution (individually tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a stream network. Our integrated model provides an effective context within which to estimate environmental driver effects because it takes full advantage of data by estimating (latent) state values for missing observations, because it propagates uncertainty among model components and because it accounts for the major demographic rates and interactions that contribute to annual survival.We found that stream flow and temperature had strong effects on brook trout demography. Some effects, such as reduction in survival associated with low stream flow and high temperature during the summer season, were consistent across sites and age classes, suggesting that they may serve as robust indicators of vulnerability to environmental change. Other survival effects varied across ages, sites and seasons, indicating that flow and temperature may not be the primary drivers of survival in those cases. Flow and temperature also affected body growth rates; these responses were consistent across sites but differed dramatically between age classes and seasons. Finally, we found that tributary and mainstem sites responded differently to variation in flow and temperature.Annual survival (combination of survival and body growth across seasons) was insensitive to body growth and was most sensitive to flow (positive) and temperature (negative

  12. Estimating energy fluxes within the stream-aquifer interface of the Avenelles basin (United States)

    Berrhouma, Asma; Rivière, Agnès; Goblet, Patrick; Cucchi, Karina; Rubin, Yoram; Baudin, Aurélien; Ansart, Patrick; Flipo, Nicolas


    The understanding of water temperature evolution and its associated energy fluxes is important to follow the aquatic habitats evolution and to predict future modifications induced by climate change. The spatio-temporal energy balance dynamics within the stream-aquifer interface is complex because of the multitude of physical, morphological and meteorological parameters on which it depends. This critical interface is involving numerous physical and bio-geochemical processes which are taking place at different time and spatial scales. The energy balance estimation at this interface depends mainly on the direction, magnitude and variability of water exchanges and the temporal variation of river and aquifer temperatures as well as the thermal porous media properties. In this work, a combined numerical and experimental approach is used to study the temporal and spatial evolution of the energy budget along 6 km of the stream network of the Avenelles watershed. With an area of 46 km2, the Avenelles watershed is located 70 km east from Paris. The Avenelles river presents different types of connectivity with the underlying aquifers. Five Local Monitoring Stations (LOMOS) have been deployed along the hydraulic corridor to monitor the water and thermal exchanges between the stream and aquifer over years, based on continuous pressure and temperature measurements in the river, the hyporheic zone (HZ) and the underlying aquifer. A 2D finite element thermo-hydrogeological model (METIS) coupled with a parameters screening script is used to determine the hydrogeological and thermal properties of the HZ and of the underlying aquifers by inversion at five LOMOS. Once the local models are calibrated, water and heat fluxes through the stream - aquifer interface are assessed over years (2012-2015) along the stream network. This work offers a new understanding of the stream-aquifer interface functioning, shifting from a pure hydrological characterizing toward a more subtle view that


    Directory of Open Access Journals (Sweden)



    Full Text Available Hydraulic effects on the vegetation behavior and on its habitat region against flood flow in the urban streams were analysed in this paper. Vegetation behavior was classified into stable, recovered, damaged and swept away stages. Criteria between recovered and damaged status were determined by the bending angle of the aquatic plants. Aquatic plants whose bending angle is lower than 30~50 degree is recovered, but they were damaged and cannot be recovered when the bending angle is higher than 30~50 degree. Phragmites japonica was inhabited in the hydraulic condition of high Froude number which shows that it was inhabited in the upstream reaches. Phragmites communis was inhabited in the relatively low Froude number compared with Phragmites japonica. This shows that it was inhabited in the downstream reaches. Persicaria blumei was found in the relatively wide range of flow velocity and flow depth, which shows that it was inhabited in the middle and downstream reaches. Criterion on the vegetation behavior of Persicaria thunbergii was not clear, which implies that it may be affected by the flow turbulence rather than flow velocity and flow depth.

  14. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes

    DEFF Research Database (Denmark)

    Goyenola, Guillermo; Meerhoff, Marianna; Teixeira-de Mello, Franco


    Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns and the pe......Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns...... applied two alternative nutrient sampling programs (high-frequency composite sampling and low-frequency instantaneous-grab sampling) and estimated the contribution derived from point and diffuse sources fitting a source apportionment model. We expected to detect a pattern of higher total and particulate...... program to estimate P exports in flashy streams compared to the less variable streams. We also found signs of interaction between climate/hydrology and land use intensity, in particular in the presence of point sources of P, leading to a bias towards underestimation of P in hydrologically stable streams...

  15. Estimation of Flood-Frequency Discharges for Rural, Unregulated Streams in West Virginia (United States)

    Wiley, Jeffrey B.; Atkins, John T.


    Flood-frequency discharges were determined for 290 streamgage stations having a minimum of 9 years of record in West Virginia and surrounding states through the 2006 or 2007 water year. No trend was determined in the annual peaks used to calculate the flood-frequency discharges. Multiple and simple least-squares regression equations for the 100-year (1-percent annual-occurrence probability) flood discharge with independent variables that describe the basin characteristics were developed for 290 streamgage stations in West Virginia and adjacent states. The regression residuals for the models were evaluated and used to define three regions of the State, designated as Eastern Panhandle, Central Mountains, and Western Plateaus. Exploratory data analysis procedures identified 44 streamgage stations that were excluded from the development of regression equations representative of rural, unregulated streams in West Virginia. Regional equations for the 1.1-, 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year flood discharges were determined by generalized least-squares regression using data from the remaining 246 streamgage stations. Drainage area was the only significant independent variable determined for all equations in all regions. Procedures developed to estimate flood-frequency discharges on ungaged streams were based on (1) regional equations and (2) drainage-area ratios between gaged and ungaged locations on the same stream. The procedures are applicable only to rural, unregulated streams within the boundaries of West Virginia that have drainage areas within the limits of the stations used to develop the regional equations (from 0.21 to 1,461 square miles in the Eastern Panhandle, from 0.10 to 1,619 square miles in the Central Mountains, and from 0.13 to 1,516 square miles in the Western Plateaus). The accuracy of the equations is quantified by measuring the average prediction error (from 21.7 to 56.3 percent) and equivalent years of record (from 2.0 to 70

  16. Development and Application of Watershed Regressions for Pesticides (WARP) for Estimating Atrazine Concentration Distributions in Streams (United States)

    Larson, Steven J.; Crawford, Charles G.; Gilliom, Robert J.


    Regression models were developed for predicting atrazine concentration distributions in rivers and streams, using the Watershed Regressions for Pesticides (WARP) methodology. Separate regression equations were derived for each of nine percentiles of the annual distribution of atrazine concentrations and for the annual time-weighted mean atrazine concentration. In addition, seasonal models were developed for two specific periods of the year--the high season, when the highest atrazine concentrations are expected in streams, and the low season, when concentrations are expected to be low or undetectable. Various nationally available watershed parameters were used as explanatory variables, including atrazine use intensity, soil characteristics, hydrologic parameters, climate and weather variables, land use, and agricultural management practices. Concentration data from 112 river and stream stations sampled as part of the U.S. Geological Survey's National Water-Quality Assessment and National Stream Quality Accounting Network Programs were used for computing the concentration percentiles and mean concentrations used as the response variables in regression models. Tobit regression methods, using maximum likelihood estimation, were used for developing the models because some of the concentration values used for the response variables were censored (reported as less than a detection threshold). Data from 26 stations not used for model development were used for model validation. The annual models accounted for 62 to 77 percent of the variability in concentrations among the 112 model development stations. Atrazine use intensity (the amount of atrazine used in the watershed divided by watershed area) was the most important explanatory variable in all models, but additional watershed parameters significantly increased the amount of variability explained by the models. Predicted concentrations from all 10 models were within a factor of 10 of the observed concentrations at most

  17. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part I: isocratic operation. (United States)

    Williams, P Stephen


    Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation.

  18. Parameter estimation of an ARMA model for river flow forecasting using goal programming (United States)

    Mohammadi, Kourosh; Eslami, H. R.; Kahawita, Rene


    SummaryRiver flow forecasting constitutes one of the most important applications in hydrology. Several methods have been developed for this purpose and one of the most famous techniques is the Auto regressive moving average (ARMA) model. In the research reported here, the goal was to minimize the error for a specific season of the year as well as for the complete series. Goal programming (GP) was used to estimate the ARMA model parameters. Shaloo Bridge station on the Karun River with 68 years of observed stream flow data was selected to evaluate the performance of the proposed method. The results when compared with the usual method of maximum likelihood estimation were favorable with respect to the new proposed algorithm.

  19. Multiphase flow parameter estimation based on laser scattering (United States)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.


    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.

  20. Multiphase flow parameter estimation based on laser scattering

    International Nuclear Information System (INIS)

    Vendruscolo, Tiago P; Fischer, Robert; Martelli, Cicero; Da Silva, Marco J; Rodrigues, Rômulo L P; Morales, Rigoberto E M


    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time. (paper)

  1. Real-Time Earthquake Intensity Estimation Using Streaming Data Analysis of Social and Physical Sensors (United States)

    Kropivnitskaya, Yelena; Tiampo, Kristy F.; Qin, Jinhui; Bauer, Michael A.


    Earthquake intensity is one of the key components of the decision-making process for disaster response and emergency services. Accurate and rapid intensity calculations can help to reduce total loss and the number of casualties after an earthquake. Modern intensity assessment procedures handle a variety of information sources, which can be divided into two main categories. The first type of data is that derived from physical sensors, such as seismographs and accelerometers, while the second type consists of data obtained from social sensors, such as witness observations of the consequences of the earthquake itself. Estimation approaches using additional data sources or that combine sources from both data types tend to increase intensity uncertainty due to human factors and inadequate procedures for temporal and spatial estimation, resulting in precision errors in both time and space. Here we present a processing approach for the real-time analysis of streams of data from both source types. The physical sensor data is acquired from the U.S. Geological Survey (USGS) seismic network in California and the social sensor data is based on Twitter user observations. First, empirical relationships between tweet rate and observed Modified Mercalli Intensity (MMI) are developed using data from the M6.0 South Napa, CAF earthquake that occurred on August 24, 2014. Second, the streams of both data types are analyzed together in simulated real-time to produce one intensity map. The second implementation is based on IBM InfoSphere Streams, a cloud platform for real-time analytics of big data. To handle large processing workloads for data from various sources, it is deployed and run on a cloud-based cluster of virtual machines. We compare the quality and evolution of intensity maps from different data sources over 10-min time intervals immediately following the earthquake. Results from the joint analysis shows that it provides more complete coverage, with better accuracy and higher

  2. Velocity estimation using synthetic aperture imaging [blood flow

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt


    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully...

  3. An In-vivo investigation of transverse flow estimation

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt


    , and 1.4 seconds of data is acquired. Using 2 parallel receive beamformers a transverse oscillation is introduced with an oscillation period 1.2 mm. The velocity estimation is performed using an extended autocorrelation algorithm. The volume flow can be estimated with a relative standard deviation of 13...

  4. Simulated responses of streams and ponds to groundwater withdrawals and wastewater return flows in southeastern Massachusetts (United States)

    Carlson, Carl S.; Walter, Donald A.; Barbaro, Jeffrey R.


    Water use, such as withdrawals, wastewater return flows, and interbasin transfers, can alter streamflow regimes, water quality, and the integrity of aquatic habitat and affect the availability of water for human and ecosystem needs. To provide the information needed to determine alteration of streamflows and pond water levels in southeastern Massachusetts, existing groundwater models of the Plymouth-Carver region and western (Sagamore flow lens) and eastern (Monomoy flow lens) Cape Cod were used to delineate subbasins and simulate long-term average and average monthly streamflows and pond levels for a series of water-use conditions. Model simulations were used to determine the extent to which streamflows and pond levels were altered by comparing simulated streamflows and pond levels under predevelopment conditions with streamflows and pond levels under pumping only and pumping with wastewater return flow conditions. The pumping and wastewater return flow rates used in this study are the same as those used in previously published U.S. Geological Survey studies in southeastern Massachusetts and represent the period from 2000 to 2005. Streamflow alteration for the nontidal portions of streams in southeastern Massachusetts was evaluated within and at the downstream outlets of 78 groundwater subbasins delineated for this study. Evaluation of streamflow alteration at subbasin outlets is consistent with the approach used by the U.S. Geological Survey for the topographically derived subbasins in the rest of Massachusetts.

  5. Multinomial N-mixture models improve the applicability of electrofishing for developing population estimates of stream-dwelling Smallmouth Bass (United States)

    Mollenhauer, Robert; Brewer, Shannon K.


    Failure to account for variable detection across survey conditions constrains progressive stream ecology and can lead to erroneous stream fish management and conservation decisions. In addition to variable detection’s confounding long-term stream fish population trends, reliable abundance estimates across a wide range of survey conditions are fundamental to establishing species–environment relationships. Despite major advancements in accounting for variable detection when surveying animal populations, these approaches remain largely ignored by stream fish scientists, and CPUE remains the most common metric used by researchers and managers. One notable advancement for addressing the challenges of variable detection is the multinomial N-mixture model. Multinomial N-mixture models use a flexible hierarchical framework to model the detection process across sites as a function of covariates; they also accommodate common fisheries survey methods, such as removal and capture–recapture. Effective monitoring of stream-dwelling Smallmouth Bass Micropterus dolomieu populations has long been challenging; therefore, our objective was to examine the use of multinomial N-mixture models to improve the applicability of electrofishing for estimating absolute abundance. We sampled Smallmouth Bass populations by using tow-barge electrofishing across a range of environmental conditions in streams of the Ozark Highlands ecoregion. Using an information-theoretic approach, we identified effort, water clarity, wetted channel width, and water depth as covariates that were related to variable Smallmouth Bass electrofishing detection. Smallmouth Bass abundance estimates derived from our top model consistently agreed with baseline estimates obtained via snorkel surveys. Additionally, confidence intervals from the multinomial N-mixture models were consistently more precise than those of unbiased Petersen capture–recapture estimates due to the dependency among data sets in the

  6. Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool-riffle channels (United States)

    Daniele Tonina; John M. Buffington


    Hyporheic flow results from the interaction between streamflow and channel morphology and is an important component of stream ecosystems because it enhances water and solute exchange between the river and its bed. Hyporheic flow in pool-riffle channels is particularly complex because of three-dimensional topography that spans a range of partially to fully submerged...

  7. Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin – Ethiopia

    Directory of Open Access Journals (Sweden)

    T. H. M. Rientjes


    Full Text Available In this study we evaluated changes in land cover and rainfall in the Upper Gilgel Abbay catchment in the Upper Blue Nile basin and how changes affected stream flow in terms of annual flow, high flows and low flows. Land cover change assessment was through classification analysis of remote sensing based land cover data while assessments on rainfall and stream flow data are by statistical analysis. Results of the supervised land cover classification analysis indicated that 50.9 % and 16.7 % of the catchment area was covered by forest in 1973 and 2001, respectively. This significant decrease in forest cover is mainly due to expansion of agricultural land.

    By use of a change detection procedure, three periods were identified for which changes in rainfall and stream flow were analyzed. Rainfall was analyzed at monthly base by use of the Mann-Kendall test statistic and results indicated a statistically significant, decreasing trend for most months of the year. However, for the wet season months of June, July and August rainfall has increased. In the period 1973–2005, the annual flow of the catchment decreased by 12.1 %. Low flow and high flow at daily base were analyzed by a low flow and a high flow index that is based on a 95 % and 5 % exceedance probability. Results of the low flow index indicated decreases of 18.1 % and 66.6 % for the periods 1982–2000 and 2001–2005 respectively. Results of high flows indicated an increase of 7.6 % and 46.6 % for the same periods. In this study it is concluded that over the period 1973–2005 stream flow has changed in the Gilgel Abbay catchment by changes in land cover and changes in rainfall.

  8. Data adaptive estimation of transversal blood flow velocities

    DEFF Research Database (Denmark)

    Pirnia, E.; Jakobsson, A.; Gudmundson, E.


    the transversal blood flow. In this paper, we propose a novel data-adaptive blood flow estimator exploiting this modulation scheme. Using realistic Field II simulations, the proposed estimator is shown to achieve a notable performance improvement as compared to current state-of-the-art techniques.......The examination of blood flow inside the body may yield important information about vascular anomalies, such as possible indications of, for example, stenosis. Current Medical ultrasound systems suffer from only allowing for measuring the blood flow velocity along the direction of irradiation......, posing natural difficulties due to the complex behaviour of blood flow, and due to the natural orientation of most blood vessels. Recently, a transversal modulation scheme was introduced to induce also an oscillation along the transversal direction, thereby allowing for the measurement of also...

  9. Joule heating induced stream broadening in free-flow zone electrophoresis. (United States)

    Dutta, Debashis


    The use of an electric field in free-flow zone electrophoresis (FFZE) automatically leads to Joule heating yielding a higher temperature at the center of the separation chamber relative to that around the channel walls. For small amounts of heat generated, this thermal effect introduces a variation in the equilibrium position of the analyte molecules due to the dependence of liquid viscosity and analyte diffusivity on temperature leading to a modification in the position of the analyte stream as well as the zone width. In this article, an analytic theory is presented to quantitate such effects of Joule heating on FFZE assays in the limit of small temperature differentials across the channel gap yielding a closed form expression for the stream position and zone variance under equilibrium conditions. A method-of-moments approach is employed to develop this analytic theory, which is further validated with numerical solutions of the governing equations. Interestingly, the noted analyses predict that Joule heating can drift the location of the analyte stream either way of its equilibrium position realized in the absence of any temperature rise in the system, and also tends to reduce zone dispersion. The extent of these modifications, however, is governed by the electric field induced temperature rise and three Péclet numbers evaluated based on the axial pressure-driven flow, transverse electroosmotic and electrophoretic solute velocities in the separation chamber. Monte Carlo simulations of the FFZE system further establish a time and a length scale over which the results from the analytic theory are valid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Saeed Jamali


    Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.

  11. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. (United States)

    Headland, Sarah E; Jones, Hefin R; D'Sa, Adelina S V; Perretti, Mauro; Norling, Lucy V


    Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStream(X) Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStream(X) could be used effectively to advance this scientific field.

  12. Effect of Free Stream Turbulence on the Flow-Induced Background Noise of In-Flow Microphones (United States)

    Allen, Christopher S.; Olson, Lawrence E. (Technical Monitor)


    When making noise measurements of sound sources in flow using microphones immersed in an air stream or wind tunnel, the factor limiting the dynamic range of the measurement is, in many cases, the noise caused by the flow over the microphone. To lower this self-noise, and to protect the microphone diaphragm, an aerodynamic microphone forebody is usually mounted on the tip of the omnidirectional microphone. The microphone probe is then pointed into the wind stream. Even with a microphone forebody, however, the self-noise persists, prompting further research in the area of microphone forebody design for flow-induced self-noise reduction. The magnitude and frequency characteristics of in-flow microphone probe self-noise is dependent upon the exterior shape of the probe and on the level of turbulence in the onset flow, among other things. Several recent studies present new designs for microphone forebodies, some showing the forbodies' self-noise characteristics when used in a given facility. However, these self-noise characteristics may change when the probes are used in different facilities. The present paper will present results of an experimental investigation to determine an empirical relationship between flow turbulence and self-noise levels for several microphone forebody shapes as a function of frequency. As a result, the microphone probe self-noise for these probes will be known as a function of freestream turbulence, and knowing the freestream turbulence spectra for a given facility, the probe self-noise can be predicted. Flow-induced microphone self-noise is believed to be related to the freestream. turbulence by three separate mechanisms. The first mechanism is produced by large scale, as compared to the probe size, turbulence which appears to the probe as a variation in the angle of attack of the freestream. flow. This apparent angle of attack variation causes the pressure along the probe surface to fluctuate, and at the location of the sensor orifice this

  13. Radiotelemetry to estimate stream life of adult chum salmon in the McNeil River, Alaska (United States)

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.


    Estimating salmon escapement is one of the fundamental steps in managing salmon populations. The area-under-the-curve (AUC) method is commonly used to convert periodic aerial survey counts into annual salmon escapement indices. The AUC requires obtaining accurate estimates of stream life (SL) for target species. Traditional methods for estimating SL (e.g., mark–recapture) are not feasible for many populations. Our objective in this study was to determine the average SL of chum salmon Oncorhynchus keta in the McNeil River, Alaska, through radiotelemetry. During the 2005 and 2006 runs, 155 chum salmon were fitted with mortality-indicating radio tags as they entered the McNeil River and tracked until they died. A combination of remote data loggers, aerial surveys, and foot surveys were used to determine the location of fish and provide an estimate of time of death. Higher predation resulted in tagged fish below McNeil Falls having a significantly shorter SL (12.6 d) than those above (21.9 d). The streamwide average SL (13.8 d) for chum salmon at the McNeil River was lower than the regionwide value (17.5 d) previously used to generate AUC indices of chum salmon escapement for the McNeil River. We conclude that radiotelemetry is an effective tool for estimating SL in rivers not well suited to other methods.

  14. Construction of estimated flow- and load-duration curves for Kentucky using the Water Availability Tool for Environmental Resources (WATER) (United States)

    Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.


    Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.

  15. Estimation of flow rates through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Collier, R.P.; Norris, D.M.


    Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flow rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate

  16. Source modulation-correlation measurement for fissile mass flow in gas or liquid fissile streams

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; March-Leuba, J.A.; Valentine, T.E.; Abston, R.A.; Mattingly, J.K.; Mullens, J.A.


    The method of monitoring fissile mass flow on all three legs of a blending point, where the input is high-enriched uranium (HEU) and low-enriched uranium (LEU) and the product is PEU, can yield the fissile stream velocity and, with calibration, the [sup235]U content. The product of velocity and content integrated over the pipe gives the fissile mass flow in each leg. Also, the ratio of fissile contents in each pipe: HEU/LEU, HEU/PEU, and PEU/LEU, are obtained. By modulating the source on the input HEU pipe differently from that on the output pipe, the HEU gas can be tracked through the blend point. This method can be useful for monitoring flow velocity, fissile content, and fissile mass flow in HEU blenddown of UF[sub 6] if the pressures are high enough to contain some of the induced fission products. This method can also be used to monitor transfer of fissile liquids and other gases and liquids that emit radiation delayed from particle capture. These preliminary experiments with the Oak Ridge apparatus show that the method will work and the modeling is adequate

  17. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow. (United States)

    Song, Hongjun; Wang, Yi; Pant, Kapil


    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  18. Coded Ultrasound for Blood Flow Estimation Using Subband Processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael Bachamnn


    the excitation signal is broadband and has good spatial resolution after pulse compression. This means that time can be saved by using the same data for B-mode imaging and blood flow estimation. Two different coding schemes are used in this paper, Barker codes and Golay codes. The performance of the codes......This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded...... signals are used to increase SNR, followed by subband processing. The received broadband signal is filtered using a set of narrow-band filters. Estimating the velocity in each of the bands and averaging the results yields better performance compared with what would be possible when transmitting a narrow...

  19. Incorporating episodicity into estimates of Critical Loads for juvenile salmonids in Scottish streams

    Directory of Open Access Journals (Sweden)

    E. E. Bridcut


    Full Text Available Critical Load (CL methodology is currently used throughout Europe to assess the risks of ecological damage due to sulphur and nitrogen emissions. Critical acid neutralising capacity (ANCCRIT is used in CL estimates for freshwater systems as a surrogate for biological damage. Although UK CL maps presently use an ANC value of 0 μeq l-1, this value has been based largely on Norwegian lake studies, in which brown trout is chosen as a representative indicator organism. In this study, an ANC value specific for brown trout in Scottish streams was determined and issues were addressed such as salmon and trout sensitivity in streams, episodicity, afforestation and complicating factors such as dissolved organic carbon (DOC and labile aluminium (Al-L. Catchments with significant forest cover were selected to provide fishless sites and to provide catchment comparisons in unpolluted areas. Chemical factors were the primary determinant with land use a secondary determinant of the distribution of salmonid populations at the twenty-six study sites. ANC explained more variance in brown trout density than pH. The most significant index of episodicity was percent of time spent below an ANC of 0 μeq l-1. An ANCCRIT value of 39 μeq l-1 was obtained based on a 50% probability of brown trout occurrence. The use of this revised ANCCRIT value in the CL equation improved the relationship between trout status and exceedance of CLs. Uncertainties associated with variations in Al-L at any fixed ANCCRIT, particularly within forested catchments, and the role of DOC in modifying the toxicity of Al-L are discussed. Keywords: Critical Load, Critical acid neutralising capacity, brown trout, episodes, streams

  20. Ultrasonic 3-D Vector Flow Method for Quantitative In Vivo Peak Velocity and Flow Rate Estimation

    DEFF Research Database (Denmark)

    Holbek, Simon; Ewertsen, Caroline; Bouzari, Hamed


    Current clinical ultrasound (US) systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the transverse oscillation method, a 32×32 element matrix array, and the experimental US scanner SARUS is presented...... is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom ( ∅=8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow-rig compared...

  1. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements. (United States)

    Das, Siddhartha; Chakraborty, Suman


    In this article, we investigate the implications of ionic conductivity variations within the electrical double layer (EDL) on the streaming potential estimation in pressure-driven fluidic transport through narrow confinements. Unlike the traditional considerations, we do not affix the ionic conductivities apriori by employing preset values of dimensionless parameters (such as the Dukhin number) to estimate the streaming potential. Rather, utilizing the Gouy-Chapman-Grahame model for estimating the electric potential and charge density distribution within the Stern layer, we first quantify the Stern layer electrical conductivity as a function of the zeta potential and other pertinent parameters quantifying the interaction of the ionic species with the charged surface. Next, by invoking the Boltzmann model for cationic and anionic distribution within the diffuse layer, we obtain the diffuse layer electrical conductivity. On the basis of these two different conductivities pertaining to the two different portions of the EDL as well as the bulk conductivity, we define two separate Dukhin numbers that turn out to be functions of the dimensionless zeta potential and the channel height to Debye length ratio. We derive analytical expressions for the streaming potential as a function of the fundamental governing parameters, considering the above. The results reveal interesting and significant deviations between the streaming potential predictions from the present considerations against the corresponding predictions from the classical considerations in which electrochemically consistent estimates of variable EDL conductivity are not traditionally accounted for. In particular, it is revealed that the variations of streaming potential with zeta potential are primarily determined by the competing effects of EDL electromigration and ionic advection. Over low and high zeta potential regimes, the Stern layer and diffuse layer conductivities predominantly dictate the streaming

  2. A novel analytical solution for estimating aquifer properties within a horizontally anisotropic aquifer bounded by a stream (United States)

    Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.


    Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to

  3. Fine particle retention within stream storage areas at base flow and in response to a storm event (United States)

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, Judson


    Fine particles (1–100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  4. Fine particle retention within stream storage areas at base flow and in response to a storm event (United States)

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, J. W.


    Fine particles (1-100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  5. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben


    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  6. Estimating the Natural Flow Regime of Rivers With Long-Standing Development: The Northern Branch of the Rio Grande (United States)

    Blythe, Todd L.; Schmidt, John C.


    An estimate of a river's natural flow regime is useful for water resource planning and ecosystem rehabilitation by providing insight into the predisturbance form and function of a river. The natural flow regime of most rivers has been perturbed by development during the 20th century and in some cases, before stream gaging began. The temporal resolution of natural flows estimated using traditional methods is typically not sufficient to evaluate cues that drive native ecosystem function. Additionally, these traditional methods are watershed specific and require large amounts of data to produce accurate results. We present a mass balance method that estimates natural flows at daily time step resolution for the northern branch of the Rio Grande, upstream from the Rio Conchos, that relies only on easily obtained streamflow data. Using an analytical change point method, we identified periods of the measured flow regime during the 20th century for comparison with the estimated natural flows. Our results highlight the significant deviation from natural conditions that occurred during the 20th century. The total annual flow of the northern branch is 95% lower than it would be in the absence of human use. The current 2 year flood has decreased by more than 60%, is shorter in duration, and peaks later in the year. When compared to unregulated flows estimated using traditional mass balance accounting methods, our approach provides similar results.

  7. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt


    )-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...... has been compared to the cross-correlation (CC) estimator and the previously developed maximum likelihood estimator (MLE). The results show that the CMLE can handle a larger velocity search range and is capable of estimating even low velocity levels from tissue motion. The CC and the MLE produce...... for the CC and the MLE. When the velocity search range is set to twice the limit of the CC and the MLE, the number of incorrect velocity estimates are 0, 19.1, and 7.2% for the CMLE, CC, and MLE, respectively. The ability to handle a larger search range and estimating low velocity levels was confirmed...

  8. Estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina (United States)

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis


    Reliable estimates of the magnitude and frequency of floods are essential for such things as the design of transportation and water-conveyance structures, Flood Insurance Studies, and flood-plain management. The flood-frequency estimates are particularly important in densely populated urban areas. A multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The multistate approach has the advantage over a single state approach of increasing the number of stations available for analysis, expanding the geographical coverage that would allow for application of regional regression equations across state boundaries, and building on a previous flood-frequency investigation of rural streamflow-gaging stations (streamgages) in the Southeastern United States. In addition, streamgages from the inner Coastal Plain of New Jersey were included in the analysis. Generalized least-squares regression techniques were used to generate predictive equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability flows for urban and small, rural ungaged basins for three hydrologic regions; the Piedmont-Ridge and Valley, Sand Hills, and Coastal Plain. Incorporation of urban streamgages from New Jersey also allowed for the expansion of the applicability of the predictive equations in the Coastal Plain from 2.1 to 53.5 square miles. Explanatory variables in the regression equations included drainage area (DA) and percent of impervious area (IA) for the Piedmont-Ridge and Valley region; DA and percent of developed land for the Sand Hills; and DA, IA, and 24-hour, 50-year maximum precipitation for the Coastal Plain. An application spreadsheet also was developed that can be used to compute the flood-frequency estimates along with the 95-percent prediction

  9. Comparison of Firefly algorithm and Artificial Immune System algorithm for lot streaming in -machine flow shop scheduling

    Directory of Open Access Journals (Sweden)

    G. Vijay Chakaravarthy


    Full Text Available Lot streaming is a technique used to split the processing of lots into several sublots (transfer batches to allow the overlapping of operations in a multistage manufacturing systems thereby shortening the production time (makespan. The objective of this paper is to minimize the makespan and total flow time of -job, -machine lot streaming problem in a flow shop with equal and variable size sublots and also to determine the optimal sublot size. In recent times researchers are concentrating and applying intelligent heuristics to solve flow shop problems with lot streaming. In this research, Firefly Algorithm (FA and Artificial Immune System (AIS algorithms are used to solve the problem. The results obtained by the proposed algorithms are also compared with the performance of other worked out traditional heuristics. The computational results shows that the identified algorithms are more efficient, effective and better than the algorithms already tested for this problem.

  10. Instream flow assessment of streams draining the Arbuckle-Simpson Aquifer (United States)

    Seilheimer, Titus S.; Fisher, William L.


    The availability of high quality water is critical to both humans and ecosystems. A recent proposal was made by rapidly expanding municipalities in central Oklahoma to begin transferring groundwater from the Arbuckle-Simpson aquifer, a sensitive sole-source aquifer in south-central Oklahoma. Concerned citizens and municipalities living on and getting their drinking water from the Arbuckle-Simpson lobbied the legislature to pass a temporary moratorium on groundwater transfer to allow for a comprehensive study of the aquifer and its ecosystems. We conducted an instream flow assessment using Physical Habitat Simulation (PHABSIM) on springs and streams with four spring-dependent species: two minnows, southern redbelly dace (Phoxinus erthyrogaster) and redspot chub (Nocomis asper); and two darters, least darter (Etheostoma microperca) and orangethroat darter (Etheostoma spectabile). Spring habitats are unique compared to other river habitats because they have constant flow and temperature, small and isolated habitat patches, and a general lack of predators. Our study sites included two spring-fed streams, one larger stream with high groundwater inputs, and a river with both groundwater and surface water inputs that is adjacent to the small spring-fed streams. These habitats meet the criteria for groundwater dependent ecosystems because they would not exist without the surface expression of groundwater. A total of 99 transects in all four sites were surveyed for channel elevation, and three sets of water surface elevation and water velocity were measured. Habitat suitability criteria were derived for the species at each site using nonparametric confidence limits based on underwater observations made by snorkelers. Simulations of flow were focused on declines in discharge, which is the expected effect of the proposed groundwater diversion. Our results show that only a small proportion of the total available area in each habitat is considered to be preferred habitat

  11. Effects of soil data resolution on SWAT model stream flow and water quality predictions. (United States)

    Geza, Mengistu; McCray, John E


    The prediction accuracy of agricultural nonpoint source pollution models such as Soil and Water Assessment Tool (SWAT) depends on how well model input spatial parameters describe the characteristics of the watershed. The objective of this study was to assess the effects of different soil data resolutions on stream flow, sediment and nutrient predictions when used as input for SWAT. SWAT model predictions were compared for the two US Department of Agriculture soil databases with different resolution, namely the State Soil Geographic database (STATSGO) and the Soil Survey Geographic database (SSURGO). Same number of sub-basins was used in the watershed delineation. However, the number of HRUs generated when STATSGO and SSURGO soil data were used is 261 and 1301, respectively. SSURGO, with the highest spatial resolution, has 51 unique soil types in the watershed distributed in 1301 HRUs, while STATSGO has only three distributed in 261 HRUS. As a result of low resolution STATSGO assigns a single classification to areas that may have different soil types if SSURGO were used. SSURGO included Hydrologic Response Units (HRUs) with soil types that were generalized to one soil group in STATSGO. The difference in the number and size of HRUs also has an effect on sediment yield parameters (slope and slope length). Thus, as a result of the discrepancies in soil type and size of HRUs stream flow predicted was higher when SSURGO was used compared to STATSGO. SSURGO predicted less stream loading than STATSGO in terms of sediment and sediment-attached nutrients components, and vice versa for dissolved nutrients. When compared to mean daily measured flow, STATSGO performed better relative to SSURGO before calibration. SSURGO provided better results after calibration as evaluated by R(2) value (0.74 compared to 0.61 for STATSGO) and the Nash-Sutcliffe coefficient of Efficiency (NSE) values (0.70 and 0.61 for SSURGO and STATSGO, respectively) although both are in the same satisfactory


    Directory of Open Access Journals (Sweden)

    Magdalena TUTAK


    Full Text Available Flow of ventilation air stream through the dog heading with a fire centre is the flow with complex character, during which as a result of emission of fire gases into the mining atmosphere, there occur to disturbances of its flow. In the paper there is presented a numerical analysis of an influence of exogenous fire in a dog heading, on the parameters of the ventilation air stream flowing through this heading. Modeling tests were carried out with a use of ANSYS software, basing on the Finite Volume Method. For the made assumptions, there were determined physical parameters of air stream flowing through the heading with a fire centre, and also changes in mass fraction of gases in this stream during its flow through the analyzed heading: oxygen, carbon monoxide and carbon dioxide. As a result of performed analysis over the fire centre, the local increase of velocity and temperature and violent decrease of static pressure were recorded. Model of heading presented in the paper gives possibilities for development, and then the analysis of more complicated problems in a range of ventilation of mining headings.

  13. Influence of urbanization pattern on stream flow of a peri-urban catchment under Mediterranean climate (United States)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.


    control streamflow particularly during dry periods. Winter runoff was 2-4 times higher than total river flow in the summer dry season in highly urbanized areas, but was 21-fold higher in winter in the least urbanized sub-catchment, denoting greater flow connectivity enhanced by increased soil moisture. Although impermeable surfaces are prone to generate overland flow, the proximity to the stream network is an important parameter determining their hydrological impacts. During the monitoring period, the enlargement of 2% of the urban area at downslope locations in the Covões sub-catchment, led to a 6% increase in the runoff coefficient. In contrast, the urban area increase from 9 to 25% mainly in upslope parts of the Quinta sub-catchment did not increase the peak streamflow due to downslope infiltration and surface retention opportunities. Despite impermeable surfaces enhance overland flow, some urban features (e.g. walls and road embankments) promote surface water retention. The presence of artificial drainage systems, on the other hand, enhances flow connectivity, leading to increasing peak flow and quicker response times (~10 minutes versus 40-50 minutes) as in the Covões sub-catchment. Urbanization impact on streamflow responses may be minimized through planning the land-use mosaic so as to maximize infiltration opportunities. Knowledge of the influence of distinct urban mosaics on flow connectivity and stream discharge is therefore important to landscape managers and should guide urban planning in order to minimize flood hazards.

  14. Estimation of zirconium in various process streams in molten salt electrorefining process

    International Nuclear Information System (INIS)

    Suganthi, S.; Vandarkuzhali, S.; Venkatesh, P.; Prabhakara Reddy, B.; Nagarajan, K.


    Molten salt electrorefining process is a non-aqueous pyrochemical process suitable for reprocessing spent metallic fuel. In this process the spent fuel is taken at the anode and the fuel elements are selectively electrotransported to a suitable cathode (either a solid steel cathode or liquid cadmium cathode) using molten LiCl-KCI as electrolyte. We have demonstrated electrorefining of UZr alloy at engineering scale level. 1 Kg U-6%Zr alloy was taken at the anode and pure uranium was recovered at a steel cathode using molten LiCIKCI-5%UCI 3 as electrolyte at 773 K. In this paper we present the method of dissolution, sample preparation and estimation of zirconium in various process streams in the electrorefining experiments carried out in our laboratory

  15. Optical flow estimation on image sequences with differently exposed frames (United States)

    Bengtsson, Tomas; McKelvey, Tomas; Lindström, Konstantin


    Optical flow (OF) methods are used to estimate dense motion information between consecutive frames in image sequences. In addition to the specific OF estimation method itself, the quality of the input image sequence is of crucial importance to the quality of the resulting flow estimates. For instance, lack of texture in image frames caused by saturation of the camera sensor during exposure can significantly deteriorate the performance. An approach to avoid this negative effect is to use different camera settings when capturing the individual frames. We provide a framework for OF estimation on such sequences that contain differently exposed frames. Information from multiple frames are combined into a total cost functional such that the lack of an active data term for saturated image areas is avoided. Experimental results demonstrate that using alternate camera settings to capture the full dynamic range of an underlying scene can clearly improve the quality of flow estimates. When saturation of image data is significant, the proposed methods show superior performance in terms of lower endpoint errors of the flow vectors compared to a set of baseline methods. Furthermore, we provide some qualitative examples of how and when our method should be used.

  16. Removal of Contaminants from Waste Streams at Gas Evolving Flow-Through Porous Electrodes

    International Nuclear Information System (INIS)

    Mahmoud Saleh, M.


    Electrochemical techniques have been used for the removal of inorganic and organic toxic materials from industrial waste streams. One of the most important branch of these electrochemical techniques is the flow-through porous electrode. Such systems allow for the continuous operation and hence continuous removal of the contaminants from waste streams at high rates and high efficiency. However, when there is an evolution of gas bubbles with the removal process, the treatment process needs a much different treatment of both the design and the mathematical treatment of the such these systems. The evolving gas bubbles within the electrode decrease the pore electrolyte conductivity of the porous electrodes, decrease the efficiency and make the current more non-uniform. This cause the under utilization of the reaction area and finally make the electrode inoperable. In this work the harmful effects of the gas bubbles on the performance of the porous electrode will be modeled. The model accounts for the effects of kinetic, mass transfer and gas bubbles resistance on the overall performance of the electrode. This will help in optimizing the operating conditions and the cell design

  17. A numerical study of a turbulent axisymmetric jet emerging in a co-flowing stream

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Houda, E-mail: mahhouda2003@yahoo.f [Unite de thermique et thermodynamique des procedes industriels, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5020 Monastir (Tunisia); Kriaa, Wassim; Mhiri, Hatem [Unite de thermique et thermodynamique des procedes industriels, Ecole Nationale d' Ingenieurs de Monastir, route de Ouardanine, 5020 Monastir (Tunisia); Palec, Georges Le; Bournot, Philippe [IUSTI, UMR CNRS 6595, 5 Rue Enrico Fermi, Technopole de Chateau-Gombert, 13013 Marseille (France)


    In this work, we propose a numerical study of an axisymmetric turbulent jet discharging into co-flowing stream with different velocities ratios ranging between 0 and {infinity}. The standard k-{epsilon} model and the RSM model were applied in this study. The numerical resolution of the governing equations was carried out using two computed codes: the first is a personal code and the second is a commercial CFD code FLUENT 6.2. These two codes are based on a finite volume method. The present predictions are compared with the experimental data. The results show that the two turbulence models are valid to predict the average and turbulent flow sizes. Also, the effect of the velocities ratios on the flow structure was examined. For R{sub u} > 1, it is noted the appearance of the fall velocity zone due to the presence of a trough low pressure. This fall velocity becomes increasingly intense according to R{sub u} and changes into a recirculation zone for R{sub u} {>=} 4.5. This zone is larger and approaches more the nozzle injection when R{sub u} increases.

  18. Estimation of mussel population response to hydrologic alteration in a southeastern U.S. stream (United States)

    Peterson, J.T.; Wisniewski, J.M.; Shea, C.P.; Rhett, Jackson C.


    The southeastern United States has experienced severe, recurrent drought, rapid human population growth, and increasing agricultural irrigation during recent decades, resulting in greater demand for the water resources. During the same time period, freshwater mussels (Unioniformes) in the region have experienced substantial population declines. Consequently, there is growing interest in determining how mussel population declines are related to activities associated with water resource development. Determining the causes of mussel population declines requires, in part, an understanding of the factors influencing mussel population dynamics. We developed Pradel reverse-time, tag-recapture models to estimate survival, recruitment, and population growth rates for three federally endangered mussel species in the Apalachicola- Chattahoochee-Flint River Basin, Georgia. The models were parameterized using mussel tag-recapture data collected over five consecutive years from Sawhatchee Creek, located in southwestern Georgia. Model estimates indicated that mussel survival was strongly and negatively related to high flows during the summer, whereas recruitment was strongly and positively related to flows during the spring and summer. Using these models, we simulated mussel population dynamics under historic (1940-1969) and current (1980-2008) flow regimes and under increasing levels of water use to evaluate the relative effectiveness of alternative minimum flow regulations. The simulations indicated that the probability of simulated mussel population extinction was at least 8 times greater under current hydrologic regimes. In addition, simulations of mussel extinction under varying levels of water use indicated that the relative risk of extinction increased with increased water use across a range of minimum flow regulations. The simulation results also indicated that our estimates of the effects of water use on mussel extinction were influenced by the assumptions about the

  19. The multi-stream flows and the dynamics of the cosmic web

    International Nuclear Information System (INIS)

    Shandarin, Sergei F.


    A new numerical technique to identify the cosmic web is proposed. It is based on locating multi-stream flows, i.e. the places where the velocity field is multi-valued. The method is local in Eulerian space, simple and computationally efficient. This technique uses the velocities of particles and thus takes into account the dynamical information. This is in contrast with the majority of standard methods that use the coordinates of particles only. Two quantities are computed in every mesh cell: the mean and variance of the velocity field. Ideally in the cells where the velocity is single-valued the variance must be equal to zero exactly, therefore the cells with non-zero variance are identified as multi-stream flows. The technique has been tested in the Zel'dovich approximation and in the N-body simulation of the ΛCDM model. The effect of numerical noise is discussed. The web identified by the new method has been compared with the web identified by the standard technique using only the particle coordinates. The comparison has shown overall similarity of two webs as expected, however they by no means are identical. For example, the isocontours of the corresponding fields have significantly different shapes and some density peaks of similar heights exhibit significant differences in the velocity variance and vice versa. This suggests that the density and velocity variance have a significant degree of independence. The shape of the two-dimensional pdf of density and velocity variance confirms this proposition. Thus, we conclude that the dynamical information probed by this technique introduces an additional dimension into analysis of the web

  20. The multi-stream flows and the dynamics of the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Shandarin, Sergei F., E-mail: [Department of Physics and Astronomy, University of Kansas, 10082 Malott Hall, 1251 Wescoe Hall Dr, Lawrence, Kansas, 66045 (United States)


    A new numerical technique to identify the cosmic web is proposed. It is based on locating multi-stream flows, i.e. the places where the velocity field is multi-valued. The method is local in Eulerian space, simple and computationally efficient. This technique uses the velocities of particles and thus takes into account the dynamical information. This is in contrast with the majority of standard methods that use the coordinates of particles only. Two quantities are computed in every mesh cell: the mean and variance of the velocity field. Ideally in the cells where the velocity is single-valued the variance must be equal to zero exactly, therefore the cells with non-zero variance are identified as multi-stream flows. The technique has been tested in the Zel'dovich approximation and in the N-body simulation of the ΛCDM model. The effect of numerical noise is discussed. The web identified by the new method has been compared with the web identified by the standard technique using only the particle coordinates. The comparison has shown overall similarity of two webs as expected, however they by no means are identical. For example, the isocontours of the corresponding fields have significantly different shapes and some density peaks of similar heights exhibit significant differences in the velocity variance and vice versa. This suggests that the density and velocity variance have a significant degree of independence. The shape of the two-dimensional pdf of density and velocity variance confirms this proposition. Thus, we conclude that the dynamical information probed by this technique introduces an additional dimension into analysis of the web.

  1. Assessing Ecological Flow Needs and Risks for Springs and Baseflow Streams With Growth and Climate Change (United States)

    Springer, A. E.; Stevens, L. E.


    Ecological flow needs assessments are beginning to become an important part of regulated river management, but are more challenging for unregulated rivers. Water needs for ecosystems are greater than just consumptive use by riparian and aquatic vegetation and include the magnitude, frequency, duration and timing of flows and the depth and annual fluctuations of groundwater levels of baseflow supported streams. An ecological flow needs assessment was adapted and applied to an unregulated, baseflow dependent river in the arid to semi-arid Southwestern U.S. A separate process was developed to determine groundwater sources potentially at risk from climate, land management, or groundwater use changes in a large regional groundwater basin in the same semi-arid region. In 2007 and 2008, workshops with ecological, cultural, and physical experts from agencies, universities, tribes, and other organizations were convened. Flow-ecology response functions were developed with either conceptual or actual information for a baseflow dependent river, and scoring systems were developed to assign values to categories of risks to groundwater sources in a large groundwater basin. A reduction of baseflow to the river was predicted to lead to a decline in cottonwood and willow tree abundance, decreases in riparian forest diversity, and increases in non-native tree species, such as tamarisk. These types of forest vegetation changes would likely cause reductions or loss of some bird species. Loss of riffle habitat through declines in groundwater discharge and the associated river levels would likely lead to declines in native fish and amphibian species. A research agenda was developed to develop techniques to monitor, assess and hopefully better manage the aquifers supporting the baseflow dependent river to prevent potential threshold responses of the ecosystems. The scoring system for categories of risk was applied to four systems (aquifers, springs, standing water bodies, and streams) in

  2. Streaming flows produced by oscillating interface of magnetic fluid adsorbed on a permanent magnet in alternating magnetic field (United States)

    Sudo, S.; Ito, M.; Ishimoto, Y.; Nix, S.


    This paper describes microstreaming flows generated by oscillating interface of magnetic fluid adsorbed on a circular cylindrical permanent magnet in alternating magnetic field. The interface of magnetic fluid adsorbed on the NdFeB magnet responds to the external alternating magnetic flied as harmonic oscillation. The directions of alternating magnetic field are parallel and antiparallel to the magnetic field of permanent magnet. The oscillation of magnetic fluid interface generates streaming flow around the magnet-magnetic fluid element in water. Microstreaming flows are observed with a high-speed video camera analysis system. The flow pattern generated by magnetic fluid motion depends on the Keulegan-Carpenter number and the Reynolds number.

  3. Automated methodology for estimating waste streams generated from decommissioning contaminated facilities

    International Nuclear Information System (INIS)

    Toth, J.J.; King, D.A.; Humphreys, K.K.; Haffner, D.R.


    As part of the DOE Programmatic Environmental Impact Statement (PEIS), a viable way to determine aggregate waste volumes, cost, and direct labor hours for decommissioning and decontaminating facilities is required. In this paper, a methodology is provided for determining waste streams, cost and direct labor hours from remediation of contaminated facilities. The method is developed utilizing U.S. facility remediation data and information from several decommissioning programs, including reactor decommissioning projects. The method provides for rapid, consistent analysis for many facility types. Three remediation scenarios are considered for facility D ampersand D: unrestricted land use, semi-restricted land use, and restricted land use. Unrestricted land use involves removing radioactive components, decontaminating the building surfaces, and demolishing the remaining structure. Semi-restricted land use involves removing transuranic contamination and immobilizing the contamination on-site. Restricted land use involves removing the transuranic contamination and leaving the building standing. In both semi-restricted and restricted land use scenarios, verification of containment with environmental monitoring is required. To use the methodology, facilities are placed in a building category depending upon the level of contamination, construction design, and function of the building. Unit volume and unit area waste generation factors are used to calculate waste volumes and estimate the amount of waste generated in each of the following classifications: low-level, transuranic, and hazardous waste. Unit factors for cost and labor hours are also applied to the result to estimate D ampersand D cost and labor hours

  4. Feasibility of using acoustic velocity meters for estimating highly organic suspended-solids concentrations in streams (United States)

    Patino, Eduardo


    A field experiment was conducted at the Levee 4 canal site below control structure G-88 in the Everglades agricultural area in northwestern Broward County, Florida, to study the relation of acoustic attenuation to suspended-solids concentrations. Acoustic velocity meter and temperature data were obtained with concurrent water samples analyzed for suspended-solids concentrations. Two separate acoustic velocity meter frequencies were used, 200 and 500 kilohertz, to determine the sensitivity of acoustic attenuation to frequency for the measured suspended-solids concentration range. Suspended-solids concentrations for water samples collected at the Levee 4 canal site from July 1993 to September 1994 ranged from 22 to 1,058 milligrams per liter, and organic content ranged from about 30 to 93 percent. Regression analyses showed that attenuation data from the acoustic velocity meter (automatic gain control) and temperature data alone do not provide enough information to adequately describe the concentrations of suspended solids. However, if velocity is also included as one of the independent variables in the regression model, a satisfactory correlation can be obtained. Thus, it is feasible to use acoustic velocity meter instrumentation to estimate suspended-solids concentrations in streams, even when suspended solids are primarily composed of organic material. Using the most comprehensive data set available for the study (500 kiloherz data), the best fit regression model produces a standard error of 69.7 milligrams per liter, with actual errors ranging from 2 to 128 milligrams per liter. Both acoustic velocity meter transmission frequencies of 200 and 500 hilohertz produced similar results, suggesting that transducers of either frequency could be used to collect attenuation data at the study site. Results indicate that calibration will be required for each acoustic velocity meter system to the unique suspended-solids regime existing at each site. More robust solutions may

  5. Variability, trends, and teleconnections of stream flows with large-scale climate signals in the Omo-Ghibe River Basin, Ethiopia. (United States)

    Degefu, Mekonnen Adnew; Bewket, Woldeamlak


    This study assesses variability, trends, and teleconnections of stream flow with large-scale climate signals (global sea surface temperatures (SSTs)) for the Omo-Ghibe River Basin of Ethiopia. Fourteen hydrological indices of variability and extremes were defined from daily stream flow data series and analyzed for two common periods, which are 1972-2006 for 5 stations and 1982-2006 for 15 stations. The Mann-Kendall's test was used to detect trends at 0.05 significance level, and simple correlation analysis was applied to evaluate associations between the selected stream flow indices and SSTs. We found weak and mixed (upward and downward) trend signals for annual and wet (Kiremt) season flows. Indices generated for high-flow (flood) magnitudes showed the same weak trend signals. However, trend tests for flood frequencies and low-flow magnitudes showed little evidences of increasing change. It was also found that El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are the major anomalies affecting stream flow variability in the Omo-Ghibe Basin. The strongest associations are observed between ENSO/Niño3.4 and the stream flow in August and September, mean Kiremt flow (July-September), and flood frequency (peak over threshold on average three peaks per year (POT3_Fre)). The findings of this study provide a general overview on the long-term stream flow variability and predictability of stream flows for the Omo-Ghibe River Basin.

  6. Impacts of Rainfall Variability, Land Use and Land Cover Change on Stream Flow of the Black Volta Basin, West Africa

    Directory of Open Access Journals (Sweden)

    Komlavi Akpoti


    Full Text Available Potential implications of rainfall variability along with Land Use and Land Cover Change (LULC on stream flow have been assessed in the Black Volta basin using the SWAT model. The spatio-temporal variability of rainfall over the Black Volta was assessed using the Mann-Kendall monotonic trend test and the Sen’s slope for the period 1976–2011. The statistics of the trend test showed that 61.4% of the rain gauges presented an increased precipitation trend whereas the rest of the stations showed a decreased trend. However, the test performed at the 95% confidence interval level showed that the detected trends in the rainfall data were not statistically significant. Land use trends between the year 2000 and 2013 show that within thirteen years, land use classes like bare land, urban areas, water bodies, agricultural lands, deciduous forests and evergreen forests have increased respectively by 67.06%, 33.22%, 7.62%, 29.66%, 60.18%, and 38.38%. Only grass land has decreased by 44.54% within this period. Changes in seasonal stream flow due to LULC were assessed by defining dry and wet seasons. The results showed that from year 2000 to year 2013, the dry season discharge has increased by 6% whereas the discharge of wet season has increased by 1%. The changes in stream flows components such us surface run-off (SURF_Q, lateral flow (LAT_Q and ground water contribution to stream flow (GW_Q and also on evapotranspiration (ET changes due to LULC was evaluated. The results showed that between the year 2000 and 2013, SURF_Q and LAT_Q have respectively increased by 27% and 19% while GW_Q has decreased by 6% while ET has increased by 4.59%. The resultant effects are that the water yield to stream flow has increased by 4%.

  7. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    International Nuclear Information System (INIS)

    Wissink, Jan G.; Rodi, Wolfgang


    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  8. Validation of abundance estimates from mark–recapture and removal techniques for rainbow trout captured by electrofishing in small streams (United States)

    Rosenberger, Amanda E.; Dunham, Jason B.


    Estimation of fish abundance in streams using the removal model or the Lincoln - Peterson mark - recapture model is a common practice in fisheries. These models produce misleading results if their assumptions are violated. We evaluated the assumptions of these two models via electrofishing of rainbow trout Oncorhynchus mykiss in central Idaho streams. For one-, two-, three-, and four-pass sampling effort in closed sites, we evaluated the influences of fish size and habitat characteristics on sampling efficiency and the accuracy of removal abundance estimates. We also examined the use of models to generate unbiased estimates of fish abundance through adjustment of total catch or biased removal estimates. Our results suggested that the assumptions of the mark - recapture model were satisfied and that abundance estimates based on this approach were unbiased. In contrast, the removal model assumptions were not met. Decreasing sampling efficiencies over removal passes resulted in underestimated population sizes and overestimates of sampling efficiency. This bias decreased, but was not eliminated, with increased sampling effort. Biased removal estimates based on different levels of effort were highly correlated with each other but were less correlated with unbiased mark - recapture estimates. Stream size decreased sampling efficiency, and stream size and instream wood increased the negative bias of removal estimates. We found that reliable estimates of population abundance could be obtained from models of sampling efficiency for different levels of effort. Validation of abundance estimates requires extra attention to routine sampling considerations but can help fisheries biologists avoid pitfalls associated with biased data and facilitate standardized comparisons among studies that employ different sampling methods.

  9. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina (United States)

    Watershed land use and topographic variability influence stream low flows, yet their interactions and relative influence remain unresolved. Our objective was to assess the relative influences of land use and watershed geomorphic characteristics on low flow variability in the sour...

  10. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.


    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  11. Computed statistics at streamgages, and methods for estimating low-flow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri (United States)

    Southard, Rodney E.


    The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical

  12. Effects of watershed land use and geomorphology on stream low flows during severe drought conditions in the southern Blue Ridge Mountains, Georgia and North Carolina, United States (United States)

    Katie Price; C. Jackson; Albert Parker; Trond Reitan; John Dowd; Mike Cyterski


    Land use and physiographic variability influence stream low flows, yet their interactions and relative influence remain unresolved. Our objective was to assess the influence of land use and watershed geomorphic characteristics on low-flow variability in the southern Blue Ridge Mountains of North Carolina and Georgia. Ten minute interval discharge data for 35 streams (...

  13. Methods for estimating annual exceedance-probability discharges and largest recorded floods for unregulated streams in rural Missouri. (United States)


    Regression analysis techniques were used to develop a : set of equations for rural ungaged stream sites for estimating : discharges with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent : annual exceedance probabilities, which are equivalent to : ann...

  14. Persistent effects of wildfire and debris flows on the invertebrate prey base of rainbow trout in Idaho streams (United States)

    Rosenberger, A.E.; Dunham, J.B.; Buffington, J.M.; Wipfli, M.S.


    Wildfire and debris flows are important physical and ecological drivers in headwater streams of western North America. Past research has primarily examined short-term effects of these disturbances; less is known about longer-term impacts. We investigated wildfire effects on the invertebrate prey base for drift-feeding rainbow trout (Oncorhynchus mykiss, Walbaum) in Idaho headwater streams a decade after wildfire. Three stream types with different disturbance histories were examined: 1) unburned, 2) burned, and 3) burned followed by debris flows that reset channel morphology and riparian vegetation. The quantity of macroinvertebrate drift (biomass density) was more variable within than among disturbance categories. Average body weight and taxonomic richness of drift were significantly related to water temperature and influenced by disturbance history. During the autumn sampling period, the amount of terrestrial insects in rainbow trout diets varied with disturbance history and the amount of overhead canopy along the stream banks. Results indicate that there are detectable changes to macroinvertebrate drift and trout diet a decade after wildfire, and that these responses are better correlated with specific characteristics of the stream (water temperature, canopy cover) than with broad disturbance classes.

  15. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael bachmann


    This paper further investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband...... coded signals are used to increase SNR, followed by sub-band processing. The received broadband signal, is filtered using a set of narrow-band filters. Estimating the velocity in each of the bands and averaging the results yields better performance compared to what would be possible when transmitting...... a narrow-band pulse directly. Also, the spatial resolution of the narrow-band pulse would be too poor for brightness-mode (B-mode) imaging and additional transmissions would be required to update the B-mode image. In the described approach, there is no need for additional transmissions, because...

  16. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA. (United States)

    Zeiger, Sean J; Hubbart, Jason A


    There is an ongoing need to validate the accuracy of predictive model simulated pollutant yields, particularly from multiple-land-use (i.e. forested, agricultural, and urban) watersheds. However, there are seldom sufficient observed data sets available that supply requisite spatial and temporal resolution and coupled multi-parameter constituents for rigorous model performance assessment. Four years of hydroclimate and water quality data were used to validate SWAT model estimates of monthly stream flow, suspended sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen from 5 nested-scale gauging sites located in a multiple-land-use watershed of the central USA. The uncalibrated SWAT model satisfactorily simulated monthly stream flow with Nash-Sutcliffe efficiency (NSE) values ranging from 0.50 near the headwaters, to 0.75 near the watershed outlet. However, the uncalibrated model did not accurately simulate monthly sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen with NSE valuesSWAT model to multiple gauging sites within the watershed improved estimates of monthly stream flow (NSE=0.83), sediment (NSE=0.78), total phosphorus (NSE=0.81), nitrate (NSE=0.90), and total inorganic nitrogen (NSE=0.86). However, NSE values were model performance decreased for sediment, nitrate, and total inorganic nitrogen during the validation period with NSE valuesSWAT model to multiple gauging sites and provide guidance to SWAT model (or similar models) users wishing to improve model performance at multiple scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming

    International Nuclear Information System (INIS)

    Aoki, Shigehisa; Ikeda, Satoshi; Takezawa, Toshiaki; Kishi, Tomoya; Makino, Junichi; Uchihashi, Kazuyoshi; Matsunobu, Aki; Noguchi, Mitsuru; Sugihara, Hajime; Toda, Shuji


    Highlights: ► Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. ► Fluid streaming is a potent factor for peritoneal fibrosis in PD. ► We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. ► A history of fluid streaming exposure promoted mesothelial proliferative activity. ► We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial–mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed. The present findings show that fluid flow stress exerts a prolonged bioactive effect on mesothelial cells after termination

  18. Estimating magnitude and frequency of peak discharges for rural, unregulated, streams in West Virginia (United States)

    Wiley, J.B.; Atkins, John T.; Tasker, Gary D.


    Multiple and simple least-squares regression models for the log10-transformed 100-year discharge with independent variables describing the basin characteristics (log10-transformed and untransformed) for 267 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions of the State, designated East, North, and South. Exploratory data analysis procedures identified 31 gaging stations at which discharges are different than would be expected for West Virginia. Regional equations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak discharges were determined by generalized least-squares regression using data from 236 gaging stations. Log10-transformed drainage area was the most significant independent variable for all regions.Equations developed in this study are applicable only to rural, unregulated, streams within the boundaries of West Virginia. The accuracy of estimating equations is quantified by measuring the average prediction error (from 27.7 to 44.7 percent) and equivalent years of record (from 1.6 to 20.0 years).

  19. Using propensity scores to estimate the effects of insecticides on stream invertebrates from observational data (United States)

    Lester L. Yuan,; Amina I. Pollard,; Carlisle, Daren M.


    Analyses of observational data can provide insights into relationships between environmental conditions and biological responses across a broader range of natural conditions than experimental studies, potentially complementing insights gained from experiments. However, observational data must be analyzed carefully to minimize the likelihood that confounding variables bias observed relationships. Propensity scores provide a robust approach for controlling for the effects of measured confounding variables when analyzing observational data. Here, we use propensity scores to estimate changes in mean invertebrate taxon richness in streams that have experienced insecticide concentrations that exceed aquatic life use benchmark concentrations. A simple comparison of richness in sites exposed to elevated insecticides with those that were not exposed suggests that exposed sites had on average 6.8 fewer taxa compared to unexposed sites. The presence of potential confounding variables makes it difficult to assert a causal relationship from this simple comparison. After controlling for confounding factors using propensity scores, the difference in richness between exposed and unexposed sites was reduced to 4.1 taxa, a difference that was still statistically significant. Because the propensity score analysis controlled for the effects of a wide variety of possible confounding variables, we infer that the change in richness observed in the propensity score analysis was likely caused by insecticide exposure.

  20. Landscape Characteristics and Variations in Longitudinal Stream Flow Contribution in two Headwater Semi-Arid Mountain Watersheds (United States)

    Shakespeare, B.; Gooseff, M. N.


    Understanding what role particular catchment attributes (slope, aspect, landcover, and contributing area) play in the contribution of stream flow is important for land management decisions, especially in the semi-arid western areas of the United States. Our study site is paired small catchments (approximately 9 and 11 km2) in the headwaters of the Weber drainage basin in Northern Utah. These catchments are surrounded by Wasatch formation with loamy textured soils. One catchment is predominantly underlain by quartzite while the other catchment is mostly underlain by limestone. We measured lateral flow gains every 200 to 400 meters using salt dilution gauging techniques throughout the ~5 km long streams. These measurements were taken synoptically 3 times during the seasonal discharge recession (summer 2005). The flows ranged spatially from 4 L s-1 to 55 L s-1 and varied temporally by as much as 50% when comparing the same reaches. Using GIS software, landscape analysis of slope, aspect, contributing area, topographic convergence, riparian and hillslope area, and landcover was performed for each of the delineated stream reach contributing areas. The results were tested for correlations between lateral flow gains measured in the field and different landscape characteristics. Each of the synoptic events was compared with each other to explore effects of seasonal recession on the relationships between flow gain and landscape characteristics.

  1. Hydrological modeling of stream flow in small Mediterranean dams and impact of climate change : case study of wadi Rmel catchment (United States)

    Habaieb, Hamadi; Hermassi, Taoufik; Moncef Masmoudi, Mohamed; Ben Mechlia, Nétij


    Northern Tunisia is characterized by a semi-arid climate with an irregular and high spatial variability of rainfall. This situation is expected to aggravate under the expected increase of temperature and modification of rainfall regime predicted by most climate models for the Mediterranean region. Water is a major limiting factor for agriculture in Tunisia and mobilization of surface water resources is approaching its maximum. Dams are installed on almost all large watersheds and concerned also medium size and small ones. Hydrological functioning of such structures and their capacity to satisfy user's demand under the changing climate will be addressed using simple models and results will be discussed in this paper. The small catchment of Wadi Rmel is considered here for methodological development. This watershed (675 Km2) is situated in North-East Tunisia with average annual rainfall of 420 mm and was equipped in 1998 with a small dam. Data on rainfall collected at 12 rainfall stations during the period 1908 - 2012 are analyzed and used to build a coherent series of monthly rainfalls and spatially averaged on the watershed by the Thiessen method. In a second step, rainfall-runoff modeling was used to estimate runoff and water budget of the dam. Tow rainfall-runoff models GR2M and SWAT were considered and evaluated when using i) the rainfall observed at the dam and ii) the average rainfall on the watershed. The observed and simulated level in the dam were compared for both models and situations. Results showed that taking into account the spatial distribution of rainfall improved the simulation of stream flows and that SWAT model performs better than GR2M. The use of such models to make prediction of stream flow using downscaled climatic data from GCM will be discussed. Analysis of the results considering tow standardized sets of future greenhouse gas emissions used by the General Circulation Models for the IPCC 5th approximation RCP4.5 and RCP8.5 and three future

  2. Free stream turbulence and density ratio effects on the interaction region of a jet in a cross flow (United States)

    Wark, C. E.; Foss, J. F.


    Jets of low temperature air are introduced into the aft sections of gas turbine combustors for the purpose of cooling the high temperature gases and quenching the combustion reactions. Research studies, motivated by this complex flow field, have been executed by introducing a heated jet into the cross stream of a wind tunnel. The investigation by Kamotani and Greber stands as a prime example of such investigations and it serves as the principal reference for the present study. The low disturbance level of the cross stream, in their study and in similar research investigations, is compatible with an interest in identifying the basic features of this flow field. The influence of the prototypes' strongly disturbed cross flow is not, however, made apparent in these prior investigations.

  3. Sensitivity analysis of a pulse nutrient addition technique for estimating nutrient uptake in large streams (United States)

    Laurence Lin; J.R. Webster


    The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...

  4. Geomorphic, flood, and groundwater-flow characteristics of Bayfield Peninsula streams, Wisconsin, and implications for brook-trout habitat (United States)

    Fitzpatrick, Faith A.; Peppler, Marie C.; Saad, David A.; Pratt, Dennis M.; Lenz, Bernard N.


    In 2002–03, the U.S. Geological Survey conducted a study of the geomorphic, flood, and groundwater-flow characteristics of five Bayfield Peninsula streams, Wisconsin (Cranberry River, Bark River, Raspberry River, Sioux River, and Whittlesey Creek) to determine the physical limitations for brook-trout habitat. The goals of the study were threefold: (1) to describe geomorphic characteristics and processes, (2) to determine how land-cover characteristics affect flood peaks, and (3) to determine how regional groundwater flow patterns affect base flow.

  5. Users Manual for the Geospatial Stream Flow Model (GeoSFM) (United States)

    Artan, Guleid A.; Asante, Kwabena; Smith, Jodie; Pervez, Md Shahriar; Entenmann, Debbie; Verdin, James P.; Rowland, James


    The monitoring of wide-area hydrologic events requires the manipulation of large amounts of geospatial and time series data into concise information products that characterize the location and magnitude of the event. To perform these manipulations, scientists at the U.S. Geological Survey Center for Earth Resources Observation and Science (EROS), with the cooperation of the U.S. Agency for International Development, Office of Foreign Disaster Assistance (USAID/OFDA), have implemented a hydrologic modeling system. The system includes a data assimilation component to generate data for a Geospatial Stream Flow Model (GeoSFM) that can be run operationally to identify and map wide-area streamflow anomalies. GeoSFM integrates a geographical information system (GIS) for geospatial preprocessing and postprocessing tasks and hydrologic modeling routines implemented as dynamically linked libraries (DLLs) for time series manipulations. Model results include maps that depicting the status of streamflow and soil water conditions. This Users Manual provides step-by-step instructions for running the model and for downloading and processing the input data required for initial model parameterization and daily operation.

  6. Stream flow regime of springs in the Mantiqueira Mountain Range region, Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Alisson Souza de Oliveira


    Full Text Available The stream flow regime of four springs located in the Mantiqueira Mountain Range region (MG was evaluated and correlated to the respective recharge area, relief characteristics, land cover and physical and hydrologic soil characteristics. The streamflow regime was characterized by monitoring of discharges, calculating the surface runoff and specific discharge and by modeling the discharge over the recession period using the Maillet method. As all recharge areas have similar relief the effect of it on the streamflow was not possible to identify. Analysis included determining the effect of drainage area size, soil characteristics and land cover on the indicators of the streamflow regime. Size of the recharge area had a positive influence on the indicators mean discharge and surface runoff volume and on the regulation of the streamflow regime (springs L4 and L1. The spring under the smallest area of influence provided the worst results for the above mentioned indicators (spring L3. The effect of forest cover (natural and planted, associated with soil characteristics, was evidenced by the indicators surface runoff (in depth and specific yield, both independent of the recharge area size (springs L4 and L2. The interaction of area size, soil characteristics and forest cover (natural and planted provided the best results for all indicators of streamflow regime in the springs studied in the Mantiqueira Mountain Range (spring L4.

  7. Monocular distance estimation from optic flow during active landing maneuvers

    International Nuclear Information System (INIS)

    Van Breugel, Floris; Morgansen, Kristi; Dickinson, Michael H


    Vision is arguably the most widely used sensor for position and velocity estimation in animals, and it is increasingly used in robotic systems as well. Many animals use stereopsis and object recognition in order to make a true estimate of distance. For a tiny insect such as a fruit fly or honeybee, however, these methods fall short. Instead, an insect must rely on calculations of optic flow, which can provide a measure of the ratio of velocity to distance, but not either parameter independently. Nevertheless, flies and other insects are adept at landing on a variety of substrates, a behavior that inherently requires some form of distance estimation in order to trigger distance-appropriate motor actions such as deceleration or leg extension. Previous studies have shown that these behaviors are indeed under visual control, raising the question: how does an insect estimate distance solely using optic flow? In this paper we use a nonlinear control theoretic approach to propose a solution for this problem. Our algorithm takes advantage of visually controlled landing trajectories that have been observed in flies and honeybees. Finally, we implement our algorithm, which we term dynamic peering, using a camera mounted to a linear stage to demonstrate its real-world feasibility. (paper)

  8. Improving chemical species tomography of turbulent flows using covariance estimation. (United States)

    Grauer, Samuel J; Hadwin, Paul J; Daun, Kyle J


    Chemical species tomography (CST) experiments can be divided into limited-data and full-rank cases. Both require solving ill-posed inverse problems, and thus the measurement data must be supplemented with prior information to carry out reconstructions. The Bayesian framework formalizes the role of additive information, expressed as the mean and covariance of a joint-normal prior probability density function. We present techniques for estimating the spatial covariance of a flow under limited-data and full-rank conditions. Our results show that incorporating a covariance estimate into CST reconstruction via a Bayesian prior increases the accuracy of instantaneous estimates. Improvements are especially dramatic in real-time limited-data CST, which is directly applicable to many industrially relevant experiments.

  9. Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, S. [Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111 (Iran, Islamic Republic of); Dehghan, M. [Department of Mechanical Engineering, Semnan University, P.O. Box: 35196-45399, Semnan (Iran, Islamic Republic of); Ellahi, R., E-mail: [Department of Mathematics and Statistics, FBAS, IIUI, 44000 Islamabad (Pakistan); Department of Mechanical Engineering, Bourns Hall, University of California, Riverside, CA 92521 (United States); Riaz, M. [Department of QEC, National Defense University, E-9 Sector, 44000 Islamabad (Pakistan); Jamal-Abad, M.T. [Department of Mechanical Engineering, Semnan University, P.O. Box: 35196-45399, Semnan (Iran, Islamic Republic of)


    A mathematical model for two-dimensional fluid flow under the influence of stream wise transverse magnetic fields in laminar regime is simulated in this study. Heat transfer past a square diamond shaped porous obstacle is also taken into account. The attention is focused to investigate the effects of intensity and direction of magnetic field, Darcy and Reynolds numbers on the mechanism of convective heat transfer and flow structures. The Darcy–Brinkman–Forchheimer model along with the Maxwell equations is used. The nonlinear coupled equations using a finite volume approach (FVA) are solved numerically. The calculations are performed for different governing parameters such as Reynolds number, Nusselt number, Stuart number and Prandtl Number. The physical interpretation of velocity and isothermal contours is assigned through graphs. It is shown that the effects of a transverse magnetic field on flow behavior and heat transfer mechanism are more than that of the stream wise magnetic field. The configuration of streamlines and vorticity contours phenomena are also presented for porous diamond obstacle. Comparison of the numerical solutions with existing literature is also made. - Highlights: • This paper analyses two-dimensional fluid flow under the influence of stream wise transverse magnetic field. • Heat transfer past a square diamond shaped porous obstacle is taken into account. • The Darcy–Brinkman–Forchheimer model is used. • Finite volume approach is used to find numerical solutions. • The configuration of streamlines and vorticity contours phenomena are presented through graphs.

  10. Discharge estimation combining flow routing and occasional measurements of velocity

    Directory of Open Access Journals (Sweden)

    G. Corato


    Full Text Available A new procedure is proposed for estimating river discharge hydrographs during flood events, using only water level data at a single gauged site, as well as 1-D shallow water modelling and occasional maximum surface flow velocity measurements. One-dimensional diffusive hydraulic model is used for routing the recorded stage hydrograph in the channel reach considering zero-diffusion downstream boundary condition. Based on synthetic tests concerning a broad prismatic channel, the "suitable" reach length is chosen in order to minimize the effect of the approximated downstream boundary condition on the estimation of the upstream discharge hydrograph. The Manning's roughness coefficient is calibrated by using occasional instantaneous surface velocity measurements during the rising limb of flood that are used to estimate instantaneous discharges by adopting, in the flow area, a two-dimensional velocity distribution model. Several historical events recorded in three gauged sites along the upper Tiber River, wherein reliable rating curves are available, have been used for the validation. The outcomes of the analysis can be summarized as follows: (1 the criterion adopted for selecting the "suitable" channel length based on synthetic test studies has proved to be reliable for field applications to three gauged sites. Indeed, for each event a downstream reach length not more than 500 m is found to be sufficient, for a good performances of the hydraulic model, thereby enabling the drastic reduction of river cross-sections data; (2 the procedure for Manning's roughness coefficient calibration allowed for high performance in discharge estimation just considering the observed water levels and occasional measurements of maximum surface flow velocity during the rising limb of flood. Indeed, errors in the peak discharge magnitude, for the optimal calibration, were found not exceeding 5% for all events observed in the three investigated gauged sections, while the

  11. A Stream Tilling Approach to Surface Area Estimation for Large Scale Spatial Data in a Shared Memory System

    Directory of Open Access Journals (Sweden)

    Liu Jiping


    Full Text Available Surface area estimation is a widely used tool for resource evaluation in the physical world. When processing large scale spatial data, the input/output (I/O can easily become the bottleneck in parallelizing the algorithm due to the limited physical memory resources and the very slow disk transfer rate. In this paper, we proposed a stream tilling approach to surface area estimation that first decomposed a spatial data set into tiles with topological expansions. With these tiles, the one-to-one mapping relationship between the input and the computing process was broken. Then, we realized a streaming framework towards the scheduling of the I/O processes and computing units. Herein, each computing unit encapsulated a same copy of the estimation algorithm, and multiple asynchronous computing units could work individually in parallel. Finally, the performed experiment demonstrated that our stream tilling estimation can efficiently alleviate the heavy pressures from the I/O-bound work, and the measured speedup after being optimized have greatly outperformed the directly parallel versions in shared memory systems with multi-core processors.

  12. Influence of Flow Velocity on Tsunami Loss Estimation

    Directory of Open Access Journals (Sweden)

    Jie Song


    Full Text Available Inundation depth is commonly used as an intensity measure in tsunami fragility analysis. However, inundation depth cannot be taken as the sole representation of tsunami impact on structures, especially when structural damage is caused by hydrodynamic and debris impact forces that are mainly determined by flow velocity. To reflect the influence of flow velocity in addition to inundation depth in tsunami risk assessment, a tsunami loss estimation method that adopts both inundation depth and flow velocity (i.e., bivariate intensity measures in evaluating tsunami damage is developed. To consider a wide range of possible tsunami inundation scenarios, Monte Carlo-based tsunami simulations are performed using stochastic earthquake slip distributions derived from a spectral synthesis method and probabilistic scaling relationships of earthquake source parameters. By focusing on Sendai (plain coast and Onagawa (ria coast in the Miyagi Prefecture of Japan in a case study, the stochastic tsunami loss is evaluated by total economic loss and its spatial distribution at different scales. The results indicate that tsunami loss prediction is highly sensitive to modelling resolution and inclusion of flow velocity for buildings located less than 1 km from the sea for Sendai and Onagawa of Miyagi Prefecture.

  13. Error estimation for CFD aeroheating prediction under rarefied flow condition (United States)

    Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian


    Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.

  14. Load estimation from planar PIV measurement in vortex dominated flows (United States)

    McClure, Jeffrey; Yarusevych, Serhiy


    Control volume-based loading estimates are employed on experimental and synthetic numerical planar Particle Image Velocimetry (PIV) data of a stationary cylinder and a cylinder undergoing one degree-of-freedom (1DOF) Vortex Induced Vibration (VIV). The results reveal the necessity of including out of plane terms, identified from a general formulation of the control volume momentum balance, when evaluating loads from planar measurements in three-dimensional flows. Reynolds stresses from out of plane fluctuations are shown to be significant for both instantaneous and mean force estimates when the control volume encompasses vortex dominated regions. For planar measurement, invoking a divergence-free assumption allows accurate estimation of half the identified terms. Towards evaluating the fidelity of PIV-based loading estimates for obtaining the forcing function unobtrusively in VIV experiments, the accuracy of the control volume-based loading methodology is evaluated using the numerical data with synthetically generated experimental PIV error, and a comparison is made between experimental PIV-based estimates and simultaneous force balance measurements.

  15. Estimating the State of Aerodynamic Flows in the Presence of Modeling Errors (United States)

    da Silva, Andre F. C.; Colonius, Tim


    The ensemble Kalman filter (EnKF) has been proven to be successful in fields such as meteorology, in which high-dimensional nonlinear systems render classical estimation techniques impractical. When the model used to forecast state evolution misrepresents important aspects of the true dynamics, estimator performance may degrade. In this work, parametrization and state augmentation are used to track misspecified boundary conditions (e.g., free stream perturbations). The resolution error is modeled as a Gaussian-distributed random variable with the mean (bias) and variance to be determined. The dynamics of the flow past a NACA 0009 airfoil at high angles of attack and moderate Reynolds number is represented by a Navier-Stokes equations solver with immersed boundaries capabilities. The pressure distribution on the airfoil or the velocity field in the wake, both randomized by synthetic noise, are sampled as measurement data and incorporated into the estimated state and bias following Kalman's analysis scheme. Insights about how to specify the modeling error covariance matrix and its impact on the estimator performance are conveyed. This work has been supported in part by a Grant from AFOSR (FA9550-14-1-0328) with Dr. Douglas Smith as program manager, and by a Science without Borders scholarship from the Ministry of Education of Brazil (Capes Foundation - BEX 12966/13-4).

  16. Base flow-driven shifts in tropical stream temperature regimes across a mean annual rainfall gradient (United States)

    Ayron M. Strauch; Richard A. MacKenzie; Ralph W. Tingley


    Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage...

  17. Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok


    Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.

  18. Numerical study of unsteady MHD oblique stagnation point flow and heat transfer due to an oscillating stream (United States)

    Javed, T.; Ghaffari, A.; Ahmad, H.


    The unsteady stagnation point flow impinging obliquely on a flat plate in presence of a uniform applied magnetic field due to an oscillating stream has been studied. The governing partial differential equations are transformed into dimensionless form and the stream function is expressed in terms of Hiemenz and tangential components. The dimensionless partial differential equations are solved numerically by using well-known implicit finite difference scheme named as Keller-box method. The obtained results are compared with those available in the literature. It is observed that the results are in excellent agreement with the previous studies. The effects of pertinent parameters involved in the problem namely magnetic parameter, Prandtl number and impinging angle on flow and heat transfer characteristics are illustrated through graphs. It is observed that the influence of magnetic field strength increases the fluid velocity and by the increase of obliqueness parameter, the skin friction increases.

  19. Mapping of road-salt-contaminated groundwater discharge and estimation of chloride load to a small stream in southern New Hampshire, USA (United States)

    Harte, P.T.; Trowbridge, P.R.


    Concentrations of chloride in excess of State of New Hampshire water-quality standards (230 mg/l) have been measured in watersheds adjacent to an interstate highway (I-93) in southern New Hampshire. A proposed widening plan for I-93 has raised concerns over further increases in chloride. As part of this effort, road-salt-contaminated groundwater discharge was mapped with terrain electrical conductivity (EC) electromagnetic (EM) methods in the fall of 2006 to identify potential sources of chloride during base-flow conditions to a small stream, Policy Brook. Three different EM meters were used to measure different depths below the streambed (ranging from 0 to 3 m). Results from the three meters showed similar patterns and identified several reaches where high EC groundwater may have been discharging. Based on the delineation of high (up to 350 mmhos/m) apparent terrain EC, seven-streambed piezometers were installed to sample shallow groundwater. Locations with high specific conductance in shallow groundwater (up to 2630 mmhos/m) generally matched locations with high streambed (shallow subsurface) terrain EC. A regression equation was used to convert the terrain EC of the streambed to an equivalent chloride concentration in shallow groundwater unique for this site. Utilizing the regression equation and estimates of onedimensional Darcian flow through the streambed, a maximum potential groundwater chloride load was estimated at 188 Mg of chloride per year. Changes in chloride concentration in stream water during streamflow recessions showed a linear response that indicates the dominant process affecting chloride is advective flow of chloride-enriched groundwater discharge. Published in 2010 by John Wiley & Sons, Ltd.

  20. Case Study: On Objective Functions for the Peak Flow Calibration and for the Representative Parameter Estimation of the Basin

    Directory of Open Access Journals (Sweden)

    Jungwook Kim


    Full Text Available The objective function is usually used for verification of the optimization process between observed and simulated flows for the parameter estimation of rainfall–runoff model. However, it does not focus on peak flow and on representative parameter for various rain storm events of the basin, but it can estimate the optimal parameters by minimizing the overall error of observed and simulated flows. Therefore, the aim of this study is to suggest the objective functions that can fit peak flow in hydrograph and estimate the representative parameter of the basin for the events. The Streamflow Synthesis And Reservoir Regulation (SSARR model was employed to perform flood runoff simulation for the Mihocheon stream basin in Geum River, Korea. Optimization was conducted using three calibration methods: genetic algorithm, pattern search, and the Shuffled Complex Evolution method developed at the University of Arizona (SCE-UA. Two objective functions of the Sum of Squared of Residual (SSR and the Weighted Sum of Squared of Residual (WSSR suggested in this study for peak flow optimization were applied. Since the parameters estimated using a single rain storm event do not represent the parameters for various rain storms in the basin, we used the representative objective function that can minimize the sum of objective functions of the events. Six rain storm events were used for the parameter estimation. Four events were used for the calibration and the other two for validation; then, the results by SSR and WSSR were compared. Flow runoff simulation was carried out based on the proposed objective functions, and the objective function of WSSR was found to be more useful than that of SSR in the simulation of peak flow runoff. Representative parameters that minimize the objective function for each of the four rain storm events were estimated. The calibrated observed and simulated flow runoff hydrographs obtained from applying the estimated representative

  1. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line. (United States)

    DeVries, Levi; Lagor, Francis D; Lei, Hong; Tan, Xiaobo; Paley, Derek A


    Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure approximate pressure gradients, whereas superficial neuromasts measure local flow velocities. By employing an artificial lateral line, the performance of underwater sensing and navigation strategies is improved in dark, cluttered, or murky environments where traditional sensing modalities may be hindered. This paper presents estimation and control strategies enabling an airfoil-shaped unmanned underwater vehicle to assimilate measurements from a bio-inspired, multi-modal artificial lateral line and estimate flow properties for feedback control. We utilize potential flow theory to model the fluid flow past a foil in a uniform flow and in the presence of an upstream obstacle. We derive theoretically justified nonlinear estimation strategies to estimate the free stream flowspeed, angle of attack, and the relative position of an upstream obstacle. The feedback control strategy uses the estimated flow properties to execute bio-inspired behaviors including rheotaxis (the tendency of fish to orient upstream) and station-holding (the tendency of fish to position behind an upstream obstacle). A robotic prototype outfitted with a multi-modal artificial lateral line composed of ionic polymer metal composite and embedded pressure sensors experimentally demonstrates the distributed flow sensing and closed-loop control strategies.

  2. Evaluation of spatial plan in controlling stream flow rate in Wakung Watershed, Pemalang, Central Java, Indonesia (United States)

    Anwar, Y.; Setyasih, I.; Setiawan, M. A.; Christanto, N.


    Evaluation study for such a regional spatial plan (RTRW) in Indonesia has not been evaluated for its effectiveness in controlling the surface run off that contributed to streamflow. This necessity can be accomplishsed by applying a modeling approach, such as Soil Water Assessment Tool (SWAT). The objectives of this research are 1) to simulate the streamflow of Wakung watershed based on actual landuse, 2) to predict streamflow of Wakung watershed based on RTRW, and 3) to evaluate the effectiveness of the RTRW of Pemalang District in controling streamflow rate at Wakung Watershed. ArcSWAT model was used to determine the erosion rate prediction. The model was then calibrated by using SWATCUP. Model performance were tested by using R2 and ENS. The calibration and validation results showed that R2 and ENS (monthly) > 0.5. The result of SWAT simulation in Wakung sub-watershed reaching 161 - 4950 m3/s/years for W-A scenario (actual landuse and weather data of 2013), for scenario W-R (RTRW and weather data of 2013), 330 - 4919 m3/s/year. The comparison between actual and spatial plan land use data for stream flow is showing that the W-A scenario is lower than the W-R scenario in 19 sub watersheds. This is because there are many plans for adding land use for urban and intensive horticulture land in areas with steep slopes (> 25%). This condition is caused by the demands of fulfilling the needs of settlement and food for people in the Wakung watershed.

  3. Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks

    Directory of Open Access Journals (Sweden)

    Hakan Tongal


    Full Text Available This paper evaluates the forecasting performance of two nonlinear models, k-nearest neighbor (kNN and feed-forward neural networks (FFNN, using stream flow data of the Kızılırmak River, the longest river in Turkey. For the kNN model, the required parameters are delay time, number of nearest neigh- bors and embedding dimension. The optimal delay time was obtained with the mutual information function; the number of nearest neighbors was obtained with the optimization process that minimi- zes RMSE as a function of the neighbor number and the embedding dimension was obtained with the correlation dimension method. The correlation dimension of the Kızılırmak River was d = 2.702, which was used in forming the input structure of the FFNN. The nearest integer above the correlation dimension (i.e., 3 provided the minimal number of required variables to characterize the system, and the maximum number of required variables was obtained with the nearest integer above the value 2d + 1 (Takens, 1981 (i.e., 7. Two FFNN models were developed that incorporate 3 and 7 lagged discharge values and the predicted performance compared to that of the kNN model. The results showed that the kNN model was superior to the FFNN model in stream flow forecasting. However, as a result from the kNN model structure, the model failed in the prediction of peak values. Additionally, it was found that the correlation dimension (if it existed could successfully be used in time series where the determina- tion of the input structure is difficult because of high inter-dependency, as in stream flow time series.  Resumen Este trabajo evalúa el desempeño de pronóstico de dos modelos no lineares, de método de clasificación no paramétrico kNN y de redes neuronales con alimentación avanzada (FNNN, usando datos de flujo del río Kizilirmak, el mayor de Turquía. Para el modelo kNN, los parámetros requeridos son tiempo de retraso, número de vecindarios cercanos y dimensión de

  4. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation (United States)

    Holmquist, Jeffrey G.; Waddle, Terry J.


    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  5. Investigation of technology for the monitoring of UF6 mass flow in UF6 streams diluted with H2

    International Nuclear Information System (INIS)

    Baker, O.J.; Cooley, J.N.; Hewgley, W.A.; Moran, B.W.; Swindle, D.W. Jr.


    The applicability, availability, and effectiveness of gas flow meters are assessed as a means for verifying the mass flows of pure UF 6 streams diluted with a carrier gas. The initial survey identified the orifice, pitot tube, thermal, vortex shedding, and vortex precession (swirl) meters as promising for the intended use. Subsequent assessments of these flow meters revealed that two - the orifice meter and the pitot tube meter - are the best choices for the proposed applications: the first is recommended for low velocity gas, small diameter piping; the latter, for high velocity gas, large diameter piping. Final selection of the gas flow meters should be based on test loop evaluations in which the proposed meters are subjected to gas flows, temperatures, and pressures representative of those expected in service. Known instruments are evaluated that may be applicable to the measurement of uranium or UF 6 concentration in a UF 6 - H 2 process stream at an aerodynamic enrichment plant. Of the six procedures evaluated, four have been used for process monitoring in a UF 6 environment: gas mass spectrometry, infrared-ultraviolet-visible spectrophotometry, gas chromatography, and acoustic gas analysis. The remaining two procedures, laser fluorimetry and atomic absorption spectroscopy, would require significant development work before they could be used for process monitoring. Infrared-ultravioloet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement

  6. stochastic estimation of transmissivity fields conditioned to flow connectivity data (United States)

    Freixas, Genis; Fernàndez-Garcia, Daniel; Sanchez-vila, Xavier


    Most methods for hydraulic parameter interpretation rely on a number of simplifications regarding the homogeneity of the underlying porous media. This way, the actual heterogeneity of any natural parameter, such as transmissivity, is transferred to the estimated in a way heavily dependent on the interpretation method used. An example is a pumping test, in most cases interpreted by means of the Cooper-Jacob method, which implicitly assumes a homogeneous isotropic confined aquifer. It was shown that the estimates obtained from this method when applied to a real site are not local values, but still have a physical meaning; the estimated transmissivity is equal to the effective transmissivity characteristic of the regional scale, while the log-ratio of the estimated storage coefficient with respect to the actual real value (assumed constant), indicated by , is an indicator of flow connectivity, representative of the scale given by the distance between the pumping and the observation wells. In this work we propose a methodology to use together with actual measurements of the log transmissivity at selected points to obtain a map of the best local transmissivity estimates using cokriging. Since the interpolation involves two variables measured at different support scales, a critical point is the estimation of the covariance and crosscovariance matrices, involving some quadratures that are obtained using some simplified approach. The method was applied to a synthetic field displaying statistical anisotropy, showing that the use of connectivity indicators mixed with the local values provide a better representation of the local value map, in particular regarding the enhanced representation of the continuity of structures corresponding to either high or low values.

  7. Using SWAT-MODFLOW to simulate groundwater flow and groundwater-surface water interactions in an intensively irrigated stream-aquifer system (United States)

    Wei, X.; Bailey, R. T.


    Agricultural irrigated watersheds in semi-arid regions face challenges such as waterlogging, high soil salinity, reduced crop yield, and leaching of chemical species due to extreme shallow water tables resulting from long-term intensive irrigation. Hydrologic models can be used to evaluate the impact of land management practices on water yields and groundwater-surface water interactions in such regions. In this study, the newly developed SWAT-MODFLOW, a coupled surface/subsurface hydrologic model, is applied to a 950 km2 watershed in the Lower Arkansas River Valley (southeastern Colorado). The model accounts for the influence of canal diversions, irrigation applications, groundwater pumping, and earth canal seepage losses. The model provides a detailed description of surface and subsurface flow processes, thereby enabling detailed description of watershed processes such as runoff, infiltration, in-streamflow, three-dimensional groundwater flow in a heterogeneous aquifer system with sources and sinks (e.g. pumping, seepage to subsurface drains), and spatially-variable surface and groundwater exchange. The model was calibrated and tested against stream discharge from 5 stream gauges in the Arkansas River and its tributaries, groundwater levels from 70 observation wells, and evapotranspiration (ET) data estimated from satellite (ReSET) data during the 1999 to 2007 period. Since the water-use patterns within the study area are typical of many other irrigated river valleys in the United States and elsewhere, this modeling approach is transferable to other regions.

  8. Intercomparison of principal hydrometric instruments; Third phase, Evaluation of ultrasonic velocity meters for flow measurement in streams, canals, and estuaries (United States)

    Melching, Charles S.; Meno, Michael W.


    As part of the World Meteorological Organization (WMO) project Intercomparison of Principal Hydrometric Instruments, Third Phase, a questionnaire was prepared by the U.S. Geological Survey (USGS) on the application of Ultrasonic Velocity Meters (UVM's) for flowmeasurement in streams, canals, and estuaries. In 1996, this questionnaire was distributed internationally by the WMO and USGS, and distributed within the United States by the USGS. Completed questionnaires were returned by 26 agencies in 7 countries (Canada, France, Germany, The Netherlands, Switzerland, the United Kingdom, and the United States). The completed questionnaires described geometric and streamflow conditions, system configurations, and reasons for applying UVM systems for 260 sites, thus providing information on the applicability of UVM systems throughout the world. The completed questionnaires also provided information on operational issues such as (1) methods used to determine and verify UVM ratings, (2) methods used to determine the mean flow velocity for UVM systems, (3) operational reliability of UVM systems, (4) methods to estimate missing data, (5) common problems with UVM systems and guidelines to mitigate these problems, and (6) personnel training issues. The completed questionnaires also described a few unique or novel applications of UVM systems. In addition to summarizing the completed questionnaires, this report includes a brief overview of UVM application and operation, and a short summary of current (1998) information from UVM system manufacturers regarding system cost and capabilities. On the basis of the information from the completed questionnaires and provided by the manufacturers, the general applicability of UVM systems is discussed. In the finalisation of this report the financial support provided by the US National Committee for Scientific Hydrology is gratefully acknowledged.

  9. Application of HEC-RAS water quality model to estimate contaminant spreading in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Halaj, Peter; Bárek, Viliam; Halajová, Anna Báreková; Halajová, Denisa [Slovak University of Agriculture in Nitra, Nitra (Slovakia)


    The paper presents study of some aspects of HEC-RAS water quality model connected to simulation of contaminant transport in small stream. Authors mainly focused on one of the key tasks in process of pollutant transport modelling in streams - determination of the dispersion characteristics represented by longitudinal dispersion coefficient D. Different theoretical and empirical formulas have been proposed for D value determination and they have revealed that the coefficient is variable parameter that depends on hydraulic and morphometric characteristics of the stream reaches. Authors compare the results of several methods of coefficient D assessment, assuming experimental data obtained by tracer studies and compare them with results optimized by HEC-RAS water quality model. The analyses of tracer study and computation outputs allow us to outline the important aspects of longitudinal dispersion coefficient set up in process of the HEC-RAS model use. Key words: longitudinal dispersion coefficient, HEC-RAS, water quality modeling.

  10. Effects of land use and sample location on nitrate-stream flow hysteresis descriptors during storm events (United States)

    Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.


    The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.

  11. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow (United States)

    Lipovsky, B.; Dunham, E. M.


    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  12. Source Estimation for the Damped Wave Equation Using Modulating Functions Method: Application to the Estimation of the Cerebral Blood Flow

    KAUST Repository

    Asiri, Sharefa M.; Laleg-Kirati, Taous-Meriem


    In this paper, a method based on modulating functions is proposed to estimate the Cerebral Blood Flow (CBF). The problem is written in an input estimation problem for a damped wave equation which is used to model the spatiotemporal variations

  13. Cash flows: The Gap Between Reported and Estimated Operating Cash Flow Elements

    Directory of Open Access Journals (Sweden)

    Mark Hughes


    Full Text Available The FASB and the IASB recently released a joint Discussion Paper “Preliminary Views on FinancialStatement Presentation” (International Accounting Standards Board 2008, which contains a major proposalrequiring companies to report operating cash flows using the direct method and it also requires that theindirect method of calculating operating cash flows be disclosed in the notes. This is a departure from currentrules and has generated considerable debate among respondents’ comment letters on the Discussion Paper.This paper adds to this debate by providing some evidence as to the size of the gap users confront when usingthe indirect method to estimate the major operating cash flow elements, such as cash collected fromcustomers and cash paid to suppliers. Using a sample of Australian companies which reported operating cashflows using the direct method, and presented the indirect method in the notes, we find significant differencesbetween reported and estimated figures for both cash collected from customers and cash paid to suppliers.These findings support the discussion paper’s proposal that companies be required to report cash flows usingboth the direct and indirect methods.

  14. The online performance estimation framework: heterogeneous ensemble learning for data streams

    NARCIS (Netherlands)

    van Rijn, J.N.; Holmes, G.; Pfahringer, B.; Vanschoren, J.


    Ensembles of classifiers are among the best performing classifiers available in many data mining applications, including the mining of data streams. Rather than training one classifier, multiple classifiers are trained, and their predictions are combined according to a given voting schedule. An

  15. Method for Modeling High-Temporal-Resolution Stream Inflows in a Long-Term ParFlow.CLM Simulation (United States)

    Miller, G. R.; Merket, C.


    Traditional hydrologic modeling has compartmentalized the water cycle into distinct components (e.g. rainfall-runoff, river routing, or groundwater flow models). An integrated, process-based modeling framework assesses two or more of these components simultaneously, reducing the error associated with approximated boundary conditions. One integrated model, ParFlow.CLM, offers the advantage of parallel computing, but it lacks any mechanism for incorporating time-varying streamflow as an upstream boundary condition. Here, we present a generalized method for applying transient streamflow at an upstream boundary in ParFlow.CLM. Downstream flow values are compared to predictions by traditional runoff and routing methods as implemented in HEC-HMS. Additionally, we define a model spin-up process which includes initialization of steady-state streamflow. The upstream inflow method was successfully tested on two domains - one synthetic tilted V catchment and an idealized small stream catchment in the Brazos River Basin. The stream in the idealized domain is gaged at the upstream and downstream boundaries. Both tests assumed a homogeneous subsurface so that the efficacy of the transient streamflow method could be evaluated with minimal complications by groundwater interactions. In the tilted V catchment, spin-up criteria were achieved within 6 model years. A 25 x 25 x 66 cell model grid was run at a computational efficiency of values early in the simulation.

  16. Curvilinear immersed-boundary method for simulating unsteady flows in shallow natural streams with arbitrarily complex obstacles (United States)

    Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis


    Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.

  17. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Waqas Rehan


    Full Text Available Wireless sensor networks (WSNs have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM, that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI and the average of the link quality indicator (LQI of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC algorithm in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC algorithm, that can perform channel quality estimation on the basis of both current and past values of channel rank estimation

  18. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks. (United States)

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz


    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end

  19. Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin (United States)

    P.B. Parajuli; P. Jayakody; G.F. Sassenrath; Y. Ouyang


    This study evaluated climate change impacts on stream flow, crop and sediment yields from three differ-ent tillage systems (conventional, reduced 1–close to conservation, and reduced 2–close to no-till), in theBig Sunflower River Watershed (BSRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) modelwas applied to the BSRW using observed stream flow and crop...

  20. Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed

    Directory of Open Access Journals (Sweden)

    Miroslaw-Swiatek Dorota


    Full Text Available Effects of cypress knee roughness on flow resistance and discharge estimates of the Turkey Creek watershed. In this study effects of cypress knees as vegetation resistance factor on Turkey Creek watershed discharge calculation were analyzed. The Turkey Creek watershed is a 3rd order stream system draining an approximate area of 5,240 ha. It is located at 33°08' N latitude and 79°47' W longitude, approximately 60 km north-west of City of Charleston in South Carolina (USA. Turkey Creek (WS 78 is typical of other watersheds in the south Atlantic coastal plain. In the case of Turkey Creek watershed, one of the main channels and riparian floodplain vegetation contains cypress trees. Cypress trees live in moist or swampy regions along the Atlantic coastal plain. The cypress trees are characterized by the unique root system called knees that appear just above the water line, up to 1.2 m above water surface. This study is conducted to examine the effects of roughness of cypress knee as related to its shape (diameter and height on discharge estimates of the Turkey Creek watershed. Hydraulic characteristics of the cypress knees were determined by field inventory in selected cross-section along the main stream channel. The Pasche method was used to calculate the total Darcy–Weisbach friction factor in discharge capacity calculation of the study watershed. The results of this study show that the effect of vegetation shape in the Pasche approach is significant. If the variability of vegetation stem diameter is taken into consideration in the calculations, an increase by 10–32% in the values of friction coefficients occurs.

  1. Hankin and Reeves' Approach to Estimating Fish Abundance in Small Streams : Limitations and Potential Options.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, William L. [Bonneville Power Administration, Portland, OR (US). Environment, Fish and Wildlife


    Hankin and Reeves' (1988) approach to estimating fish abundance in small streams has been applied in stream-fish studies across North America. However, as with any method of population estimation, there are important assumptions that must be met for estimates to be minimally biased and reasonably precise. Consequently, I investigated effects of various levels of departure from these assumptions via simulation based on results from an example application in Hankin and Reeves (1988) and a spatially clustered population. Coverage of 95% confidence intervals averaged about 5% less than nominal when removal estimates equaled true numbers within sampling units, but averaged 62% - 86% less than nominal when they did not, with the exception where detection probabilities of individuals were >0.85 and constant across sampling units (95% confidence interval coverage = 90%). True total abundances averaged far (20% - 41%) below the lower confidence limit when not included within intervals, which implies large negative bias. Further, average coefficient of variation was about 1.5 times higher when removal estimates did not equal true numbers within sampling units (C{bar V} = 0.27 [SE = 0.0004]) than when they did (C{bar V} = 0.19 [SE = 0.0002]). A potential modification to Hankin and Reeves' approach is to include environmental covariates that affect detection rates of fish into the removal model or other mark-recapture model. A potential alternative is to use snorkeling in combination with line transect sampling to estimate fish densities. Regardless of the method of population estimation, a pilot study should be conducted to validate the enumeration method, which requires a known (or nearly so) population of fish to serve as a benchmark to evaluate bias and precision of population estimates.

  2. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows (United States)

    Hall, J. L.


    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  3. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011. (United States)


    The central purpose of this report is to present methods : for estimating the magnitude and frequency of floods on : urban and small, rural streams in the Southeast United States : with particular focus on Georgia, South Carolina, and North : Carolin...

  4. Estimates of interhemispheric transport of radioactive debris by the east African low-level jet stream

    International Nuclear Information System (INIS)

    Rangarajan, C.; Eapen, C.D.


    The movement of air masses across the equator by way of the east African low-level jet stream has been studied using fission products from the French nuclear tests of the South Pacific as tracers. The studies show that the transit time of air masses from Malagasy to India is 3--6 days and about 75% of the air mass on the west coast of India is from the southern hemisphere

  5. Paper-based enzymatic microfluidic fuel cell: From a two-stream flow device to a single-stream lateral flow strip (United States)

    González-Guerrero, Maria José; del Campo, F. Javier; Esquivel, Juan Pablo; Giroud, Fabien; Minteer, Shelley D.; Sabaté, Neus


    This work presents a first approach towards the development of a cost-effective enzymatic paper-based glucose/O2 microfluidic fuel cell in which fluid transport is based on capillary action. A first fuel cell configuration consists of a Y-shaped paper device with the fuel and the oxidant flowing in parallel over carbon paper electrodes modified with bioelectrocatalytic enzymes. The anode consists of a ferrocenium-based polyethyleneimine polymer linked to glucose oxidase (GOx/Fc-C6-LPEI), while the cathode contains a mixture of laccase, anthracene-modified multiwall carbon nanotubes, and tetrabutylammonium bromide-modified Nafion (MWCNTs/laccase/TBAB-Nafion). Subsequently, the Y-shaped configuration is improved to use a single solution containing both, the anolyte and the catholyte. Thus, the electrolytes pHs of the fuel and the oxidant solutions are adapted to an intermediate pH of 5.5. Finally, the fuel cell is run with this single solution obtaining a maximum open circuit of 0.55 ± 0.04 V and a maximum current and power density of 225 ± 17 μA cm-2 and 24 ± 5 μW cm-2, respectively. Hence, a power source closer to a commercial application (similar to conventional lateral flow test strips) is developed and successfully operated. This system can be used to supply the energy required to power microelectronics demanding low power consumption.

  6. Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events

    Directory of Open Access Journals (Sweden)

    B. Zhang


    Full Text Available Subsurface lateral flow from agricultural hillslopes is often overlooked compared with overland flow and tile drain flow, partly due to the difficulties in monitoring and quantifying. The objectives of this study were to examine how subsurface lateral flow generated through soil pedons from cropped hillslopes and to quantify its contribution to nitrate loading in the streams through an agricultural catchment in the subtropical region of China. Profiles of soil water potential along hillslopes and stream hydro-chemographs in a trenched stream below a cropped hillslope and at the catchment outlet were simultaneously recorded during two rainstorm events. The dynamics of soil water potential showed positive matrix soil water potential over impermeable soil layer at 0.6 to 1.50 m depths during and after the storms, indicating soil water saturation and drainage processes along the hillslopes irrespective of land uses. The hydro-chemographs in the streams, one trenched below a cropped hillslope and one at the catchment outlet, showed that the concentrations of particulate nitrogen and phosphorus corresponded well to stream flow during the storm, while the nitrate concentration increased on the recession limbs of the hydrographs after the end of the storm. All the synchronous data revealed that nitrate was delivered from the cropped hillslope through subsurface lateral flow to the streams during and after the end of the rainstorms. A chemical mixing model based on electricity conductivity (EC and H+ concentration was successfully established, particularly for the trenched stream. The results showed that the subsurface lateral flow accounted for 29% to 45% of total stream flow in the trenched stream, responsible for 86% of total NO3-N loss (or 26% of total N loss, and for 5.7% to 7.3% of total stream flow at the catchment outlet, responsible for about 69% of total NO3-N loss (or 28% of total N

  7. The Massachusetts Sustainable-Yield Estimator: A decision-support tool to assess water availability at ungaged stream locations in Massachusetts (United States)

    Archfield, Stacey A.; Vogel, Richard M.; Steeves, Peter A.; Brandt, Sara L.; Weiskel, Peter K.; Garabedian, Stephen P.


    Federal, State and local water-resource managers require a variety of data and modeling tools to better understand water resources. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a statewide, interactive decision-support tool to meet this need. The decision-support tool, referred to as the Massachusetts Sustainable-Yield Estimator (MA SYE) provides screening-level estimates of the sustainable yield of a basin, defined as the difference between the unregulated streamflow and some user-specified quantity of water that must remain in the stream to support such functions as recreational activities or aquatic habitat. The MA SYE tool was designed, in part, because the quantity of surface water available in a basin is a time-varying quantity subject to competing demands for water. To compute sustainable yield, the MA SYE tool estimates a daily time series of unregulated, daily mean streamflow for a 44-year period of record spanning October 1, 1960, through September 30, 2004. Selected streamflow quantiles from an unregulated, daily flow-duration curve are estimated by solving six regression equations that are a function of physical and climate basin characteristics at an ungaged site on a stream of interest. Streamflow is then interpolated between the estimated quantiles to obtain a continuous daily flow-duration curve. A time series of unregulated daily streamflow subsequently is created by transferring the timing of the daily streamflow at a reference streamgage to the ungaged site by equating exceedence probabilities of contemporaneous flow at the two locations. One of 66 reference streamgages is selected by kriging, a geostatistical method, which is used to map the spatial relation among correlations between the time series of the logarithm of daily streamflows at each reference streamgage and the ungaged site. Estimated unregulated, daily mean streamflows show good agreement with observed

  8. A Novel Analytical Solution for Estimating Aquifer Properties and Predicting Stream Depletion Rates by Pumping from a Horizontally Anisotropic Aquifer (United States)

    Huang, Y.; Zhan, H.; Knappett, P.


    Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and managers to exploit groundwater resource reasonably while protecting stream ecosystem.

  9. Flow level performance approximations for elastic traffic integrated with prioritized stream traffic

    NARCIS (Netherlands)

    Malhotra, R.; Berg, J.L. van den


    Almost all traffic in todays networks can be classified as being either stream or elastic. The support of these two traffic types is possible either with a Differentiated (DiffServ) or an Integrated Services (IntServ) architecture. However, both DiffServ and IntServ rely on efficient scheduling

  10. Robust Detection and Visualization of Jet-Stream Core Lines in Atmospheric Flow. (United States)

    Kern, Michael; Hewson, Tim; Sadlo, Filip; Westermann, Rudiger; Rautenhaus, Marc


    Jet-streams, their core lines and their role in atmospheric dynamics have been subject to considerable meteorological research since the first half of the twentieth century. Yet, until today no consistent automated feature detection approach has been proposed to identify jet-stream core lines from 3D wind fields. Such 3D core lines can facilitate meteorological analyses previously not possible. Although jet-stream cores can be manually analyzed by meteorologists in 2D as height ridges in the wind speed field, to the best of our knowledge no automated ridge detection approach has been applied to jet-stream core detection. In this work, we -a team of visualization scientists and meteorologists-propose a method that exploits directional information in the wind field to extract core lines in a robust and numerically less involved manner than traditional 3D ridge detection. For the first time, we apply the extracted 3D core lines to meteorological analysis, considering real-world case studies and demonstrating our method's benefits for weather forecasting and meteorological research.

  11. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams (United States)

    Stephen F. Jane; Taylor M. Wilcox; Kevin S. McKelvey; Michael K. Young; Michael K. Schwartz; Winsor H. Lowe; Benjamin H. Letcher; Andrew R. Whiteley


    Environmental DNA (eDNA) detection has emerged as a powerful tool for monitoring aquatic organisms, but much remains unknown about the dynamics of aquatic eDNA over a range of environmental conditions. DNA concentrations in streams and rivers will depend not only on the equilibrium between DNA entering the water and DNA leaving the system through degradation, but also...

  12. Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions

    Directory of Open Access Journals (Sweden)

    R. Kandasamy


    Full Text Available The objective of the present work was to investigate theoretically the effect of single walled carbon nanotubes (SWCNTs in the presence of water and seawater with variable stream condition due to solar radiation energy. The conclusion is drawn that the flow motion and the temperature field for SWCNTs in the presence of base fluid are significantly influenced by magnetic field, convective radiation and thermal stratification. Thermal boundary layer of SWCNTs-water is compared to that of Cu-water, absorbs the incident solar radiation and transits it to the working fluid by convection.

  13. Experimental analysis of flow of ductile cast iron in stream lined gating systems

    DEFF Research Database (Denmark)

    Skov-Hansen, Søren Peter; Tiedje, Niels Skat


    Streamlined gating systems have been developed for production of high integrity ductile cast iron parts. Flow of ductile cast iron in streamlined gating systems was studied in glass fronted sand moulds where flow in the gating system and casting was recorded by a digital video camera. These results...... show how the quality of pouring, design of ingates, design of bends and flow over cores influence melt flow and act to determine the quality of the castings....

  14. Influences of high-flow events on a stream channel altered by construction of a highway bridge: A case study (United States)

    Hedrick, Lara B.; Welsh, Stuart A.; Anderson, James T.


    Impacts of highway construction on streams in the central Appalachians are a growing concern as new roads are created to promote tourism and economic development in the area. Alterations to the streambed of a first-order stream, Sauerkraut Run, Hardy County, WV, during construction of a highway overpass included placement and removal of a temporary culvert, straightening and regrading of a section of stream channel, and armourment of a bank with a reinforced gravel berm. We surveyed longitudinal profiles and cross sections in a reference reach and the altered reach of Sauerkraut Run from 2003 through 2007 to measure physical changes in the streambed. During the four-year period, three high-flow events changed the streambed downstream of construction including channel widening and aggradation and then degradation of the streambed. Upstream of construction, at a reinforced gravel berm, bank erosion was documented. The reference section remained relatively unchanged. Knowledge gained by documenting channel changes in response to natural and anthropogenic variables can be useful for managers and engineers involved in highway construction projects.

  15. Low-flow frequency and flow-duration characteristics of selected streams in Alabama through March 2014 (United States)

    Feaster, Toby D.; Lee, Kathyrn G.


    Low-flow statistics are needed by water-resource engineers, planners, and managers to protect and manage the water resources of Alabama. The accuracy of these statistics is influenced by such factors as length of record and specific hydrologic conditions measured in those records. As such, it is generally recommended that flow statistics be updated about every 10 years to provide improved and representative low-flow characteristics. The previous investigation of low-flow characteristics for Alabama included data through September 1990. Since that time, Alabama has experienced several historic droughts highlighting the need to update the low-flow characteristics at U.S. Geological Survey streamgaging stations. Consequently, this investigation was undertaken in cooperation with a number of State and local agencies to update low-flow frequency and flow-duration statistics at 210 continuous-record streamgaging stations in Alabama and 67 stations from basins that are shared with surrounding States. The flow characteristics were computed on the basis of available data through March 2014.

  16. GAGES: A stream gage database for evaluating natural and alteredflow conditions in the conterminous United States (United States)

    Falcone, James A.; Carlisle, Daren M.; Wolock, David M.; Meador, Michael R.


    Stream flow is a controlling element in the ecology of rivers and streams. Knowledge of the natural flow regime facilitates the assessment of whether specific hydrologic attributes have been altered by humans in a particular stream and the establishment of specific goals for stream-flow restoration. Because most streams are ungaged or have been altered by human influences, characterizing the natural flow regime is often only possible by estimating flow characteristics based on nearby stream gages of reference quality, i.e., gaged locations that are least disturbed by human influences. The ability to evaluate natural stream flow, that which is not altered by human activities, would be enhanced by the existence of a nationally consistent and up-to-date database of gages in relatively undisturbed watersheds.

  17. Unsteady flow around a two-dimensional section of a vertical axis turbine for tidal stream energy conversion

    Directory of Open Access Journals (Sweden)

    Hyun Ju Jung


    Full Text Available The two-dimensional unsteady flow around a vertical axis turbine for tidal stream energy conversion was investigated using a computational fluid dynamics tool solving the Reynolds-Averaged Navier-Stokes equations. The geometry of the turbine blade section was NACA653-018 airfoil. The computational analysis was done at several different angles of attack and the results were compared with the corresponding experimental data for validation and calibration. Simulations were then carried out for the two-dimensional cross section of a vertical axis turbine. The simulation results demonstrated the usefulness of the method for the typical unsteady flows around vertical axis turbines. The optimum turbine efficiency was achieved for carefully selected combinations of the number of blades and tip speed ratios.

  18. Effects of Watershed Land Use and Geomorphology on Stream Low Flows During Severe Drought Conditions in the Southern Blue Ridge Mountains, Georgia and North Carolina, United States (United States)

    Land use and physiographic variability influence stream low flows, yet their interactions and relative influence remain unresolved. Our objective was to assess the influence of land use and watershed geomorphic characteristics on low-flow variability in the southern Blue Ridge Mo...

  19. Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming

    DEFF Research Database (Denmark)

    Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf


    The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953......-dimensional simulations of standing waves have also been made by application of a general purpose Navier-Stokes solver. The results agree well with those obtained by the boundary layer analysis. Wave reflection from a plane sloping wall is also investigated by using the same numerical model and by physical laboratory...

  20. Carcinogenic ptaquiloside in stream water at base flow and during storm events

    DEFF Research Database (Denmark)

    Strobel, Bjarne W.; Clauson-Kaas, Frederik; Hansen, Hans Chr. Bruun


    identified, of which the compound ptaquiloside (PTA) is the most abundant. Ptaquiloside has been shown to be highly water soluble, leachable from bracken fronds and litter, and present in the soil below bracken stands. During storm events throughfall from the bracken canopy was collected as well. Stream...... water samples were taken as grab samples, while throughfall accumulated in glass jars set out below the canopy. Field blanks and fortified lab controls were included to ensure reliability of the analysis. Ptaquiloside concentrations were determined using LC-MS/MS after a clean-up using solid phase...... extraction. Results showed that PTA levels in the stream were highly dependent on precipitation, and was rising considerably during rain events, peaking at 2.28 μg/L, before quickly (conservation...

  1. Estimating preferential flow in karstic aquifers using statistical mixed models. (United States)

    Anaya, Angel A; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J; Meeker, John D; Alshawabkeh, Akram N


    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study. © 2013, National Ground Water Association.

  2. A millennium-length reconstruction of Bear River stream flow, Utah (United States)

    R. J. DeRose; M. F. Bekker; S.-Y. Wang; B. M. Buckley; R. K. Kjelgren; T. Bardsley; T. M. Rittenour; E. B. Allen


    The Bear River contributes more water to the eastern Great Basin than any other river system. It is also the most significant source of water for the burgeoning Wasatch Front metropolitan area in northern Utah. Despite its importance for water resources for the region’s agricultural, urban, and wildlife needs, our understanding of the variability of Bear River’s stream...

  3. The mass flow and proposed management of bisphenol A in selected Norwegian waste streams. (United States)

    Arp, Hans Peter H; Morin, Nicolas A O; Hale, Sarah E; Okkenhaug, Gudny; Breivik, Knut; Sparrevik, Magnus


    Current initiatives for waste-handling in a circular economy favor prevention and recycling over incineration or landfilling. However, the impact of such a transition on environmental emissions of contaminants like bisphenol A (BPA) during waste-handling is not fully understood. To address this, a material flow analysis (MFA) was constructed for selected waste categories in Norway, for which the amount recycled is expected to increase in the future; glass, vehicle, electronic, plastic and combustible waste. Combined, 92tons/y of BPA are disposed of via these waste categories in Norway, with 98.5% associated with plastic and electronic waste. During the model year 2011, the MFA showed that BPA in these waste categories was destroyed through incineration (60%), exported for recycling into new products (35%), stored in landfills (4%) or released into the environment (1%). Landfilling led to the greatest environmental emissions (up to 13% of landfilled BPA), and incinerating the smallest (0.001% of incinerated BPA). From modelling different waste management scenarios, the most effective way to reduce BPA emissions are to incinerate BPA-containing waste and avoid landfilling it. A comparison of environmental and human BPA concentrations with CoZMoMAN exposure model estimations suggested that waste emissions are an insignificant regional source. Nevertheless, from monitoring studies, landfill emissions can be a substantial local source of BPA. Regarding the transition to a circular economy, it is clear that disposing of less BPA-containing waste and less landfilling would lead to lower environmental emissions, but several uncertainties remain regarding emissions of BPA during recycling, particularly for paper and plastics. Future research should focus on the fate of BPA, as well as BPA alternatives, in emerging reuse and recycling processes, as part of the transition to a circular economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Spatially-Distributed Stream Flow and Nutrient Dynamics Simulations Using the Component-Based AgroEcoSystem-Watershed (AgES-W) Model (United States)

    Ascough, J. C.; David, O.; Heathman, G. C.; Smith, D. R.; Green, T. R.; Krause, P.; Kipka, H.; Fink, M.


    The Object Modeling System 3 (OMS3), currently being developed by the USDA-ARS Agricultural Systems Research Unit and Colorado State University (Fort Collins, CO), provides a component-based environmental modeling framework which allows the implementation of single- or multi-process modules that can be developed and applied as custom-tailored model configurations. OMS3 as a “lightweight” modeling framework contains four primary foundations: modeling resources (e.g., components) annotated with modeling metadata; domain specific knowledge bases and ontologies; tools for calibration, sensitivity analysis, and model optimization; and methods for model integration and performance scalability. The core is able to manage modeling resources and development tools for model and simulation creation, execution, evaluation, and documentation. OMS3 is based on the Java platform but is highly interoperable with C, C++, and FORTRAN on all major operating systems and architectures. The ARS Conservation Effects Assessment Project (CEAP) Watershed Assessment Study (WAS) Project Plan provides detailed descriptions of ongoing research studies at 14 benchmark watersheds in the United States. In order to satisfy the requirements of CEAP WAS Objective 5 (“develop and verify regional watershed models that quantify environmental outcomes of conservation practices in major agricultural regions”), a new watershed model development approach was initiated to take advantage of OMS3 modeling framework capabilities. Specific objectives of this study were to: 1) disaggregate and refactor various agroecosystem models (e.g., J2K-S, SWAT, WEPP) and implement hydrological, N dynamics, and crop growth science components under OMS3, 2) assemble a new modular watershed scale model for fully-distributed transfer of water and N loading between land units and stream channels, and 3) evaluate the accuracy and applicability of the modular watershed model for estimating stream flow and N dynamics. The

  5. Persistent Tracers of Historic Ice Flow in Glacial Stratigraphy near Kamb Ice Stream, West Antarctica


    Holschuh, Nicholas; Christianson, Knut; Conway, Howard; Jacobel, Robert W.; Welch, Brian C.


    Variations in properties controlling ice flow (e.g., topography, accumulation rate, basal friction) are recorded by structures in glacial stratigraphy. When anomalies that disturb the stratigraphy are fixed in space, the structures they produce advect away from the source, and can be used to trace flow pathways and reconstruct ice-flow patterns of the past. Here we provide an example of one of these persistent tracers: a prominent unconformity in the glacial layering that originates at Mt. Re...

  6. Developing a planning model to estimate future cash flows. (United States)

    Barenbaum, L; Monahan, T F


    Financial managers are discovering that net income and other traditional measures of cash flow may not provide them with the flexibility needed for comprehensive internal planning and control. By using a discretionary cash flow model, financial managers have a forecasting tool that can help them measure anticipated cash flows, and make better decisions concerning financing alternatives, capital expansion, and performance appraisal.

  7. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad; Hoteit, Ibrahim; Valstar, Johan R.


    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data

  8. Hyporheic Exchange Flows and Biogeochemical Patterns near a Meandering Stream: East Fork of the Jemez River, Valles Caldera National Preserve, New Mexico (United States)

    Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.


    A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed

  9. A service and value based approach to estimating environmental flows

    DEFF Research Database (Denmark)

    Korsgaard, Louise; Jensen, R.A.; Jønch-Clausen, Torkil


    at filling that gap by presenting a new environmental flows assessment approach that explicitly links environmental flows to (socio)-economic values by focusing on ecosystem services. This Service Provision Index (SPI) approach is a novel contribution to the existing field of environmental flows assessment...... of sustaining ecosystems but also a matter of supporting humankind/livelihoods. One reason for the marginalisation of environmental flows is the lack of operational methods to demonstrate the inherently multi-disciplinary link between environmental flows, ecosystem services and economic value. This paper aims...

  10. Do analysts disclose cash flow forecasts with earnings estimates when earnings quality is low?


    Bilinski, P.


    Cash flows are incrementally useful to earnings in security valuation mainly when earnings quality is low. This suggests that when earnings quality decreases, analysts will be more likely to supplement their earnings forecasts with cash flow estimates. Contrary to this prediction, we find that analysts do not disclose cash flow forecasts when the quality of earnings is low. This is because cash flow forecast accuracy depends on the accuracy of the accrual estimates and the precision of accrua...

  11. Evaluating Use of Environmental Flows to Aerate Streams by Modelling the Counterfactual Case (United States)

    Stewardson, Michael J.; Skinner, Dominic


    This paper evaluates an experimental environmental flow manipulation by modeling the counterfactual case that no environmental flow was applied. This is an alternate approach to evaluating the effect of an environmental flow intervention when a before-after or control-impact comparison is not possible. In this case, the flow manipulation is a minimum flow designed to prevent hypoxia in a weir on the low-gradient Broken Creek in south-eastern Australia. At low flows, low reaeration rates and high respiration rates associated with elevated organic matter loading in the weir pool can lead to a decline in dissolved oxygen concentrations with adverse consequences both for water chemistry and aquatic biota. Using a one dimensional oxygen balance model fitted to field measurements, this paper demonstrates that increased flow leads to increases in reaeration rates, presumably because of enhanced turbulence and hence mixing in the surface layers. By comparing the observed dissolved oxygen levels with the modeled counterfactual case, we show that the environmental flow was effective in preventing hypoxia.

  12. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values to predict stream temperature (United States)

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to...

  13. Projected effects of Climate-change-induced flow alterations on stream macroinvertebrate abundances. (United States)

    Kakouei, Karan; Kiesel, Jens; Domisch, Sami; Irving, Katie S; Jähnig, Sonja C; Kail, Jochem


    Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species' response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower-mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present-day gauging data. Species' abundances were predicted for three periods: (1) baseline (1998-2017), (2) horizon 2050 (2046-2065) and (3) horizon 2090 (2080-2099) based on these empirical relationships and using high-resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low-flow conditions, leading to decreased abundances of species up to -42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower-mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate-change impacts on species

  14. Impact of climate change on the stream flow of the lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling

    Directory of Open Access Journals (Sweden)

    A. K. Gain


    Full Text Available Climate change is likely to have significant effects on the hydrology. The Ganges-Brahmaputra river basin is one of the most vulnerable areas in the world as it is subject to the combined effects of glacier melt, extreme monsoon rainfall and sea level rise. To what extent climate change will impact river flow in the Brahmaputra basin is yet unclear, as climate model studies show ambiguous results. In this study we investigate the effect of climate change on both low and high flows of the lower Brahmaputra. We apply a novel method of discharge-weighted ensemble modeling using model outputs from a global hydrological models forced with 12 different global climate models (GCMs. Our analysis shows that only a limited number of GCMs are required to reconstruct observed discharge. Based on the GCM outputs and long-term records of observed flow at Bahadurabad station, our method results in a multi-model weighted ensemble of transient stream flow for the period 1961–2100. Using the constructed transients, we subsequently project future trends in low and high river flow. The analysis shows that extreme low flow conditions are likely to occur less frequent in the future. However a very strong increase in peak flows is projected, which may, in combination with projected sea level change, have devastating effects for Bangladesh. The methods presented in this study are more widely applicable, in that existing multi-model streamflow simulations from global hydrological models can be weighted against observed streamflow data to assess at first order the effects of climate change for specific river basins.

  15. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationship (United States)

    Evans, C.; Davies, T.D.; Murdoch, Peter S.


    Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the

  16. Assessing roadway contributions to stormwater flows, concentrations, and loads with the StreamStats application (United States)

    Stonewall, Adam; Granato, Gregory E.; Haluska, Tana L.


    The Oregon Department of Transportation (ODOT) and other state departments of transportation need quantitative information about the percentages of different land cover categories above any given stream crossing in the state to assess and address roadway contributions to water-quality impairments and resulting total maximum daily loads. The U.S. Geological Survey, in cooperation with ODOT and the FHWA, added roadway and land cover information to the online StreamStats application to facilitate analysis of stormwater runoff contributions from different land covers. Analysis of 25 delineated basins with drainage areas of about 100 mi2 indicates the diversity of land covers in the Willamette Valley, Oregon. On average, agricultural, developed, and undeveloped land covers comprise 15%, 2.3%, and 82% of these basin areas. On average, these basins contained about 10 mi of state highways and 222 mi of non-state roads. The Stochastic Empirical Loading and Dilution Model was used with available water-quality data to simulate long-term yields of total phosphorus from highways, non-highway roadways, and agricultural, developed, and undeveloped areas. These yields were applied to land cover areas obtained from StreamStats for the Willamette River above Wilsonville, Oregon. This analysis indicated that highway yields were larger than yields from other land covers because highway runoff concentrations were higher than other land covers and the highway is fully impervious. However, the total highway area was a fraction of the other land covers. Accordingly, highway runoff mitigation measures can be effective for managing water quality locally, they may have limited effect on achieving basin-wide stormwater reduction goals.

  17. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points. (United States)

    Li, Chenhui; Baciu, George; Han, Yu


    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  18. sedFlow – a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams

    Directory of Open Access Journals (Sweden)

    F. U. M. Heimann


    floods. The model is intended for temporal scales from the individual event (several hours to few days up to longer-term evolution of stream channels (several years. The envisaged spatial scale covers complete catchments at a spatial discretisation of several tens of metres to a few hundreds of metres. sedFlow can deal with the effects of streambeds that slope uphill in a downstream direction and uses recently proposed and tested approaches for quantifying macro-roughness effects in steep channels. sedFlow offers different options for bedload transport equations, flow-resistance relationships and other elements which can be selected to fit the current application in a particular catchment. Local grain-size distributions are dynamically adjusted according to the transport dynamics of each grain-size fraction. sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The high simulation speed allows for simulations of several years, which can be used, e.g., to assess the long-term impact of river engineering works or climate change effects. In combination with the straightforward pre- and postprocessing, the fast calculations facilitate efficient workflows for the simulation of individual flood events, because the modeller gets the immediate results as direct feedback to the selected parameter inputs. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (GPL ( Examples of the application of sedFlow are given in a companion article by Heimann et al. (2015.

  19. Endothelial shear stress estimation in the human carotid artery based on Womersley versus Poiseuille flow

    NARCIS (Netherlands)

    Schwarz, Janina C. V.; Duivenvoorden, Raphaël; Nederveen, Aart J.; Stroes, Erik S. G.; VanBavel, Ed


    Endothelial shear stress (ESS) dynamics are a major determinant of atherosclerosis development. The frequently used Poiseuille method to estimate ESS dynamics has important limitations. Therefore, we investigated whether Womersley flow may provide a better alternative for estimation of ESS while

  20. Collaborative Approaches to Flow Restoration in Intermittent Salmon-Bearing Streams: Salmon Creek, CA, USA

    Directory of Open Access Journals (Sweden)

    Cleo Woelfle-Erskine


    Full Text Available In Mediterranean-climate regions of California and southern Oregon, juvenile salmon depend on groundwater aquifers to sustain their tributary habitats through the dry summers. Along California’s North Coast streams, private property regimes on land have created commons tragedies in groundwater and salmon fisheries, both classic examples of commons that are often governed collectively and sustainably by their users. Understanding the linkages between salmon and groundwater is one major focus of salmon recovery and climate change adaptation planning in central California and increasingly throughout the Pacific Northwest. In this paper, I use extended field interviews and participant-observation in field ecology campaigns and regulatory forums to explore how, in one water-scarce, salmon-bearing watershed on California’s central coast, collaborators are synthesizing agency and landowner data on groundwater and salmon management. I focus on three projects undertaken by citizen scientists in collaboration with me and Gold Ridge Resource Conservation District staff: salmonid censuses, mapping of wet and dry stream reaches and well monitoring. I find that collaborative research initiated by local residents and agency personnel has, in some cases, created a new sense of ecological possibility in the region. I also consider some limitations of this collaborations, namely the lack of engagement with indigenous Pomo and Miwok tribal members, with the Confederated Tribes of Graton Rancheria and with farmworkers and other marginalized residents, and suggest strategies for deepening environmental justice commitments in future collaborative work.

  1. Estimation of friction loss under forced flow pulsations in a channel with discrete roughness elements (United States)

    Davletshin, I. A.; Dushina, O. A.; Mikheev, N. I.; Kolchin, S. A.


    The pulsating flow in a circular channel with semicircular annular ribs as discrete roughness elements has been studied experimentally. Air flow under atmospheric conditions at the channel inlet has been considered. Steady and pulsating air flow has been studied under different frequencies and amplitudes of forced pulsations generated by periodic blockage of the channel cross section by a rotating flap. Flow resistance in pulsating regimes has been estimated from the average static pressure drop. The resistance values attained twice the steady flow ones.

  2. PIV measurements of acoustic and flow-induced vibration in main stream lines

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji


    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. In this study, flow-induced acoustic resonances of piping systems containing closed side-branches were investigated experimentally. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the pressure at the downstream side opening of the cavity by microphone and to visualize the fluid flow in the cross-section by using PIV. High-time-resolved PIV has a possibility to analyze the velocity field and the relation between sound propagation and flow field. The fluid flows at different points in the cavity interact with some phase differences and the relation can be clarified. (author)

  3. Estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology (United States)

    Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.


    The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.

  4. Methods for estimating annual exceedance-probability streamflows for streams in Kansas based on data through water year 2015 (United States)

    Painter, Colin C.; Heimann, David C.; Lanning-Rush, Jennifer L.


    A study was done by the U.S. Geological Survey in cooperation with the Kansas Department of Transportation and the Federal Emergency Management Agency to develop regression models to estimate peak streamflows of annual exceedance probabilities of 50, 20, 10, 4, 2, 1, 0.5, and 0.2 percent at ungaged locations in Kansas. Peak streamflow frequency statistics from selected streamgages were related to contributing drainage area and average precipitation using generalized least-squares regression analysis. The peak streamflow statistics were derived from 151 streamgages with at least 25 years of streamflow data through 2015. The developed equations can be used to predict peak streamflow magnitude and frequency within two hydrologic regions that were defined based on the effects of irrigation. The equations developed in this report are applicable to streams in Kansas that are not substantially affected by regulation, surface-water diversions, or urbanization. The equations are intended for use for streams with contributing drainage areas ranging from 0.17 to 14,901 square miles in the nonirrigation effects region and, 1.02 to 3,555 square miles in the irrigation-affected region, corresponding to the range of drainage areas of the streamgages used in the development of the regional equations.

  5. Environmental DNA method for estimating salamander distribution in headwater streams, and a comparison of water sampling methods. (United States)

    Katano, Izumi; Harada, Ken; Doi, Hideyuki; Souma, Rio; Minamoto, Toshifumi


    Environmental DNA (eDNA) has recently been used for detecting the distribution of macroorganisms in various aquatic habitats. In this study, we applied an eDNA method to estimate the distribution of the Japanese clawed salamander, Onychodactylus japonicus, in headwater streams. Additionally, we compared the detection of eDNA and hand-capturing methods used for determining the distribution of O. japonicus. For eDNA detection, we designed a qPCR primer/probe set for O. japonicus using the 12S rRNA region. We detected the eDNA of O. japonicus at all sites (with the exception of one), where we also observed them by hand-capturing. Additionally, we detected eDNA at two sites where we were unable to observe individuals using the hand-capturing method. Moreover, we found that eDNA concentrations and detection rates of the two water sampling areas (stream surface and under stones) were not significantly different, although the eDNA concentration in the water under stones was more varied than that on the surface. We, therefore, conclude that eDNA methods could be used to determine the distribution of macroorganisms inhabiting headwater systems by using samples collected from the surface of the water.

  6. Pitot pressure measurements in flow fields behind circular-arc nozzles with exhaust jets at subsonic free-stream Mach numbers. [langley 16 foot transonic tunnel (United States)

    Mason, M. L.; Putnam, L. E.


    The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.

  7. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage (United States)

    Turnbull, S. J.


    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week

  8. Hydrogeological approach to the regional analysis of low flow in medium and small streams of the hilly and mountainous areas of Serbia

    Directory of Open Access Journals (Sweden)

    Nikić Zoran


    Full Text Available During the long rainless spells of the dry season, flows in medium and small streams get reduced to what is generally known as "low flow". For ungauged streams, the controlling "low flows" are determined using the regional analysis method. In the presently described exploration, the method applied was based on the assumption that dry weather discharges in medium and small rivers depended on the hydrogeological conditions. The controlling effect of hydrogeology on the natural low flow in medium and small streams of the hilly and mountainous part of Serbia was analyzed applying the theory of multiple linear regression. The thirty-day minimum mean 80 and 95 per cent exceedance flows were taken for dependent variables, and quantified hydrogeological elements as independent variables. The analysis covered streams that had small or medium size catchment areas. The treated example encompassed sixty-one gauged catchments. The resulting regional relations for the thirty day minimum mean 80 and 95 per cent exceedance flows are presented in this paper. The quality of the established relation was controlled by relevant statistic tests.

  9. Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator (United States)

    Hasegawa, Koji; Abe, Yutaka; Kaneko, Akiko; Yamamoto, Yuji; Aoki, Kazuyoshi


    The purpose of the study is to experimentally investigate flow fields generated by an acoustic levitator. This flow field has been observed using flow visualization, PIV method. In the absent of a drop, the flow field was strongly influenced by sound pressure level (SPL). In light of the interfacial stability of a levitated drop, SPL was set at 161-163 [dB] in our experiments. In the case of any levitated drop at a pressure node of a standing wave, the toroidal vortices were appeared around a drop and clearly observed the flow fields around the drop by PIV measurement. It is found that the toroidal vortices around a levitated drop were strongly affected by the viscosity of a drop. For more detailed research, experiments in the reduced gravity were conducted with aircraft parabolic flights. By comparison with experimental results in the earth and reduced gravity, it is also indicated that the configuration of the external flow field around a drop is most likely to be affected by a position of a drop as well.

  10. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi


    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  11. Improved flow velocity estimates from moving-boat ADCP measurements

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.


    Acoustic Doppler current profilers (ADCPs) are the current standard for flow measurements in large-scale open water systems. Existing techniques to process vessel-mounted ADCP data assume homogeneous or linearly changing flow between the acoustic beams. This assumption is likely to fail but is

  12. Estimating daily flow duration curves from monthly streamflow data

    CSIR Research Space (South Africa)

    Smakhtin, VU


    Full Text Available The paper describes two techniques by which to establish 1-day (1d) flow duration curves at an ungauged site where only a simulated or calculated monthly flow time series is available. Both methods employ the straightforward relationships between...

  13. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011 (United States)

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis


    Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the

  14. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin. (United States)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo


    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  15. Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV). (United States)

    Koch, Jon D; Jaramillo, David E; DiVito, Enrico; Peters, Ove A


    This study aimed to compare fluid movements generated from photon-induced photoacoustic streaming (PIPS) and passive ultrasonic irrigation (PUI). Particle Image Velocimetry (PIV) was performed using 6-μm melamine spheres in water. Measurement areas were 3-mm-long sections of the canal in the coronal, midroot and apical regions for PIPS (erbium/yttrium-aluminium garnet (Er:YAG) laser set at 15 Hz with 20 mJ), or passive ultrasonic irrigation (PUI, non-cutting insert at 30% unit power) was performed in simulated root canals prepared to an apical size #30/0.04 taper. Fluid movement was analysed directly subjacent to the apical ends of ultrasonic insert or fiber optic tips as well as at midroot and apically. During PUI, measured average velocities were around 0.03 m/s in the immediate vicinity of the sides and tip of the ultrasonic file. Speeds decayed to non-measureable values at a distance of about 2 mm from the sides and tip. During PIPS, typical average speeds were about ten times higher than those measured for PUI, and they were measured throughout the length of the canal, at distances up to 20 mm away. PIPS caused higher average fluid speeds when compared to PUI, both close and distant from the instrument. The findings of this study could be relevant to the debriding and disinfecting stage of endodontic therapy. Irrigation enhancement beyond needle irrigation is relevant to more effectively eradicate microorganisms from root canal systems. PIPS may be an alternative approach due to its ability to create high streaming velocities further away from the activation source compared to ultrasonic activation.

  16. Regional Relations in Bankfull Channel Characteristics determined from flow measurements at selected stream-gaging stations in West Virginia, 1911-2002 (United States)

    Messinger, Terence; Wiley, Jeffrey B.


    Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be

  17. Optic Flow Based State Estimation for an Indoor Micro Air Vehicle

    NARCIS (Netherlands)

    Verveld, M.J.; Chu, Q.P.; De Wagter, C.; Mulder, J.A.


    This work addresses the problem of indoor state estimation for autonomous flying vehicles with an optic flow approach. The paper discusses a sensor configuration using six optic flow sensors of the computer mouse type augmented by a three-axis accelerometer to estimate velocity, rotation, attitude

  18. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan


    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  19. Synthesis of a parallel data stream processor from data flow process networks

    NARCIS (Netherlands)

    Zissulescu-Ianculescu, Claudiu


    In this talk, we address the problem of synthesizing Process Network specifications to FPGA execution platforms. The process networks we consider are special cases of Kahn Process Networks. We call them COMPAAN Data Flow Process Networks (CDFPN) because they are provided by a translator called the

  20. Investigation of Relationship Between Hydrologic Processes of Precipitation, Evaporation and Stream Flow Using Linear Time Series Models (Case study: Western Basins of Lake Urmia

    Directory of Open Access Journals (Sweden)

    M. Moravej


    Full Text Available Introduction: Studying the hydrological cycle, especially in large scales such as water catchments, is difficult and complicated despite the fact that the numbers of hydrological components are limited. This complexity rises from complex interactions between hydrological components and environment. Recognition, determination and modeling of all interactive processes are needed to address this issue, but it's not feasible for dealing with practical engineering problems. So, it is more convenient to consider hydrological components as stochastic phenomenon, and use stochastic models for modeling them. Stochastic simulation of time series models related to water resources, particularly hydrologic time series, have been widely used in recent decades in order to solve issues pertaining planning and management of water resource systems. In this study time series models fitted to the precipitation, evaporation and stream flow series separately and the relationships between stream flow and precipitation processes are investigated. In fact, the three mentioned processes should be modeled in parallel to each other in order to acquire a comprehensive vision of hydrological conditions in the region. Moreover, the relationship between the hydrologic processes has been mostly studied with respect to their trends. It is desirable to investigate the relationship between trends of hydrological processes and climate change, while the relationship of the models has not been taken into consideration. The main objective of this study is to investigate the relationship between hydrological processes and their effects on each other and the selected models. Material and Method: In the current study, the four sub-basins of Lake Urmia Basin namely Zolachay (A, Nazloochay (B, Shahrchay (C and Barandoozchay (D were considered. Precipitation, evaporation and stream flow time series were modeled by linear time series. Fundamental assumptions of time series analysis namely

  1. Hydrography - Streams and Shorelines (United States)

    California Natural Resource Agency — The hydrography layer consists of flowing waters (rivers and streams), standing waters (lakes and ponds), and wetlands -- both natural and manmade. Two separate...

  2. Quantifying diffuse pathways for overland flow between the roads and streams of the mountain ash forests of central Victoria Australia (United States)

    Lane, Patrick N. J.; Hairsine, Peter B.; Croke, Jacky C.; Takken, Ingrid


    Limiting connectivity between road runoff sources and stream networks is crucial for preservation of water quality in forested environments. Where flow is non-eroding, the length of hillslope available to accommodate volumes of discharged water is the key to restricting connectivity. Hairsine et al. ([2002], Hydrological Processes 16: 2311-2327) proposed a probabilistic model of diffuse overland flow that predicted the hillslope lengths required to infiltrate road discharge, based on the concept of volume to breakthrough (Vbt). This paper extends this analysis to a different forest environment with the aim of testing the portability of the Hairsine et al. ([2002]) model. The volume of flow required to travel overland to a distance of 5 and 10 m (Vbt5 and Vbt10) from drainage outlets was measured in deep, highly conductive mountain soils in the Upper Tyers catchment, Victoria, Australia. Rainfall, hydraulic conductivity and soil depths contrasted markedly with those in the Hairsine et al. ([2002]) study, and represent an extreme in Australian forests. Statistical analyses revealed the population of Vbt5 to be indistinguishable from that observed by Hairsine et al. ([2002]), indicating the model is valid for a range of forest soils. There was no significant correlation of sediment plume length with site characteristics such as slope, width of flow, or existence of incised pathways. It is suggested there are universal properties of pathways draining tracks and roads, with bioturbation acting to restore available pore spaces filled by antecedent plumes. Drain discharge design criteria may be developed for local conditions using the Hairsine et al. ([2002]) model, providing a robust tool for protection of water quality in the siting of new forest roads, and maintenance of exiting roads and tracks.

  3. Brief communication: The curious case of the large wood-laden flow event in the Pocuro stream (Chile

    Directory of Open Access Journals (Sweden)

    D. Ravazzolo


    Full Text Available Large wood transported during extreme flood events can represent a relevant additional source of hazards that should be taken into account in mountain environments. However, direct observations and monitoring of large-wood transport during floods are difficult and scarce. Here we present a video of a flood characterised by multiple phases of large-wood transport, including an initial phase of wood-laden flow rarely described in the literature. Estimations of flow velocity and transported wood volume provide a good opportunity to develop models of large-wood-congested transport.

  4. Removal of Lead Ions From Waste streams Using Flowing-Through Porous Electrodes

    International Nuclear Information System (INIS)

    El-Deab, M.S.; Saleh, M.M.; El-Anadouli, B.E.; Ateya, B.G.


    Packed bed electrodes, made of stacked screens, have been used as cathodes for the removal of lead ions from flowing alkaline electrolytes. We consider the coulombic efficiency ξ =ipb/(ipb+iH), and the collection efficiency given by ψ=i L (exp)/nFvc, where i L (exp) is the geometric limiting current for lead deposition. Two regions are defined in the current-potential relations, depending on whether hydrogen evolution does, or does not, contribute to the measured current, corresponding to ξ less than, or equal to, 100%, respectively. The geometric limiting current, i L (exp), increases with increase of v. The collection efficiency ψ increases as v decreases and/or L increases. Operating the cell at higher flow rates increases the overall coulombic efficiency, over a broader range of cell currents

  5. Estimating discharge and non-point source nitrate loading to streams from three end-member pathways using high-frequency water quality and streamflow data (United States)

    Miller, M. P.; Tesoriero, A. J.; Hood, K.; Terziotti, S.; Wolock, D.


    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency specific conductance and nitrate data to estimate time-variable watershed-scale nitrate loading from three end-member pathways - dilute quickflow, concentrated quickflow, and slowflow groundwater - to two streams in central Wisconsin. Time-variable nitrate loads from the three pathways were estimated for periods of up to two years in a groundwater-dominated and a quickflow-dominated stream, using only streamflow and in-stream water quality data. The dilute and concentrated quickflow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quickflow contributed less than 5% of the nitrate load at both sites, whereas 89±5% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84±13% of the nitrate load at the quickflow-dominated stream was from concentrated quickflow. Concentrated quickflow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to non-point source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  6. Riparian woodland encroachment following flow regulation: a comparative study of Mediterranean and Boreal streams

    Directory of Open Access Journals (Sweden)

    Dolores Bejarano M.


    Full Text Available Water development accompanying mankind development has turned rivers into endangered ecosystems. Improving the understanding of ecological responses to river management actions is a key issue for assuring sustainable water management. However, few studies have been published where ecological metrics have been quantified in response to various degrees of flow alteration. In this work, changes in natural distribution of trees and shrubs within the riparian corridor (as indicator of the ecological status of the fluvial ecosystem were quantified at multiple sites along a flow alteration gradient (as indicator of impact along two regulated river reaches, one Boreal and the other Mediterranean, each downstream of a dam. Based on the obtained relationships we evaluated differences in response trends related to local physico-climatic factors of the two biomes and regarding to differing life-forms. Woody vegetation establishment patterns represented objective indicators of ecological responses to flow alteration. We found different responses between life-forms. Both trees and shrubs migrated downwards to the channel after dam closure, but shrubs were most impacted under higher degrees of flow alteration in terms of lateral movement. In addition, our results show clear longitudinal recovery trends of natural patterns of tree and shrub distribution corresponding to a decrease in intensity of hydrologic alteration in the Boreal river. However, vegetation encroachment persisted along the entire Mediterranean study reach. This may result from a relatively low gradient of decrease of hydrologic alteration with distance from the dam, coupled with other overlapping pressures and the mediating effect of physico-climatic characteristics on vegetation responses.

  7. Radiation Effects on the Flow and Heat Transfer over a Moving Plate in a Parallel Stream

    International Nuclear Information System (INIS)

    Ishak, Anuar


    Effects of thermal radiation on the steady laminar boundary layer flow over a moving plate in a moving fluid is investigated. Under certain conditions, the present problem reduces to the classical Blasius and Sakiadis problems. It is found that dual solutions exist when the plate and the fluid move in the opposite directions. Moreover, the existence of thermal radiation is to reduce the heat transfer rate at the surface. (fundamental areas of phenomenology (including applications))

  8. Estimating flood magnitude and frequency at gaged and ungaged sites on streams in Alaska and conterminous basins in Canada, based on data through water year 2012 (United States)

    Curran, Janet H.; Barth, Nancy A.; Veilleux, Andrea G.; Ourso, Robert T.


    Estimates of the magnitude and frequency of floods are needed across Alaska for engineering design of transportation and water-conveyance structures, flood-insurance studies, flood-plain management, and other water-resource purposes. This report updates methods for estimating flood magnitude and frequency in Alaska and conterminous basins in Canada. Annual peak-flow data through water year 2012 were compiled from 387 streamgages on unregulated streams with at least 10 years of record. Flood-frequency estimates were computed for each streamgage using the Expected Moments Algorithm to fit a Pearson Type III distribution to the logarithms of annual peak flows. A multiple Grubbs-Beck test was used to identify potentially influential low floods in the time series of peak flows for censoring in the flood frequency analysis.For two new regional skew areas, flood-frequency estimates using station skew were computed for stations with at least 25 years of record for use in a Bayesian least-squares regression analysis to determine a regional skew value. The consideration of basin characteristics as explanatory variables for regional skew resulted in improvements in precision too small to warrant the additional model complexity, and a constant model was adopted. Regional Skew Area 1 in eastern-central Alaska had a regional skew of 0.54 and an average variance of prediction of 0.45, corresponding to an effective record length of 22 years. Regional Skew Area 2, encompassing coastal areas bordering the Gulf of Alaska, had a regional skew of 0.18 and an average variance of prediction of 0.12, corresponding to an effective record length of 59 years. Station flood-frequency estimates for study sites in regional skew areas were then recomputed using a weighted skew incorporating the station skew and regional skew. In a new regional skew exclusion area outside the regional skew areas, the density of long-record streamgages was too sparse for regional analysis and station skew was used

  9. A simple estimation of the renal plasma flow

    International Nuclear Information System (INIS)

    Shinpo, Takako


    The renal plasma flow was determined conventionally by the excretive ratio to urine using a 131 I-Hippuran renogram. In this report, we proposed the renal clearance, the product of the disappearance rate coefficient and the maximum counts of the bladder, for the simple quantitative value of renal plasma flow. The disappearance rate coefficient was calculated by approximating the exponential function of the initial slope from the disappearance curve of the heart. The renal clearances was compared with the renal plasma flow calculated by the conventional method. The results gave a high correlation coefficient of r = 0.91. The renal clearances can be calculated easily and it offers useful renogram information. (author)

  10. Transverse correlation: An efficient transverse flow estimator - initial results

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Henze, Lasse; Kortbek, Jacob


    , a standard deviation of 1.64% and a bias of 1.13% are obtained for a beam to flow angle of 90 degrees. Using the same setup a standard deviation of 2.21% and a bias of 1.07% are obtained for a beam to flow angle of 75 degrees. Using 20 emissions a standard deviation of 3.4% and a bias of 2.06% are obtained...... at 45 degrees. The method performs stable down to a signal-to-noise ratio of 0 dB, where a standard deviation of 5.5% and a bias of 1.2% is achieved....

  11. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo


    radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis......A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo...

  12. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado (United States)

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.


    the 25-year-recurrence, 1-hour-duration rainfall. The largest postwildfire debris-flow volumes were estimated for Carbonate Creek and Milton Creek drainage basins, for both the 5- and 25-year-recurrence, 1-hour-duration rainfalls. Results from FLO-2D modeling of the 5-year and 25-year recurrence, 1-hour rainfalls indicate that the debris flows from the four drainage basins would reach or nearly reach the Crystal River. The model estimates maximum instantaneous depths of debris-flow material during postwildfire debris flows that exceeded 5 meters in some areas, but the differences in model results between the 5-year and 25-year recurrence, 1-hour rainfalls are small. Existing stream channels or topographic flow paths likely control the distribution of debris-flow material, and the difference in estimated debris-flow volume (about 25 percent more volume for the 25-year-recurrence, 1-hour-duration rainfall compared to the 5-year-recurrence, 1-hour-duration rainfall) does not seem to substantially affect the estimated spatial distribution of debris-flow material. Historically, the Marble area has experienced periodic debris flows in the absence of wildfire. This report estimates the probability and volume of debris flow and maximum instantaneous inundation area depths after hypothetical wildfire and rainfall. This postwildfire debris-flow report does not address the current (2010) prewildfire debris-flow hazards that exist near Marble.

  13. An Application of Value Stream Mapping in Production Flow Analysis: A lean approach in An Automotive Industry

    Directory of Open Access Journals (Sweden)

    Krushnaraj Bodana


    Full Text Available Lean manufacturing deals with a manufacturing process improvement based on the fundamental goal of Toyota production system in order to minimize or eliminate waste while maximizing production flow. Today in a highly competitive local and global market, it is very much crucial to satisfy the changing demand of the customers. Thus, in today’s manufacturing industry there is an increased focus to produce the right product at right time. The prime objective of this paper to apply a significant lean manufacturing tool know as Value Stream Mapping (VSM. To fulfil this objective a fundamental principles of lean were implemented and VSM was generated to analyse the production flow at an automotive industry and improve the current operating condition to overcome the difficulties with current state of work through time study, Takt time calculation, modifying work cell layout. And based on the future state of VSM, final results showed that by implementing this lean techniques, Production Lead-time (PLT decreased from 7.6 days to 3.2 days, and the cycle time is decrease up to 73%.

  14. Laboratory study on streaming potential for exploring underground water flow; Shitsunai jikken ni yoru ryudo den`i wo mochiita mizu michi tansa no kanosei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H; Shima, H [Oyo Corp., Tokyo (Japan)


    To investigate a possibility of exploration of underground water flow as well as to grasp the underground fluid flow by measuring streaming potential at the ground surface, some experiments were conducted using a model unit by considering the difference of permeability. For this experimental unit, water is driven by adding head difference between the polyethylene vessel filled with water and the experimental water tank. The size of water tank is 350{times}160 mm with a height of 160 mm. Twenty platinum electrodes are set on the cover of water tank. Toyoura standard sand and Kanto loam were used for the experiments. For the experiments, fluid was injected in various combined models by considering the permeability, to measure the streaming potential. As a result, it was explained by the streaming potential that the fluid flows in a form of laminar flow in the experimental water tank, and that the movement of fluid in the Kanto loam is quite slow. It was also confirmed that the streaming potential method is an effective technique for grasping the movement of fluid. 3 refs., 8 figs.

  15. Remotely Sensed, catchment scale, estimations of flow resistance (United States)

    Carbonneau, P.; Dugdale, S. J.


    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  16. Assessment of the ecological impacts of macroroughness elements in stream flows (United States)

    Niayifar, Amin; Oldroyd, Holly J.; Perona, Paolo


    The environmental suitability of flow release rules is often assessed for different fish species by modeling (e.g., CASiMir and PHABSIM) Weighted Usable Area (WUA) curves. However, these models are not able to resolve the hydrodynamic at small scales, e.g. that induced by the presence of macroroughness (e.g., single stones), which yet determine relatively large wakes that may contribute significantly in terms of habitat suitability. The presence of stones generates sheltered zones (i.e., the wake), which are typically temporary stationary points for many fish species. By resting in these low velocity regions, fishes minimize energy expenditure, and can quickly move to nearby fast water to feed (Hayes and Jowett, 1994). Following the analytical model proposed by Negretti et al., (2006), we developed an analytical solution for the wake area behind the macroroughness elements. The total wake area in the river reach being monitored is a function of the streamflow, Q, and it is an actual Usable Area for fishes that can be used to correct the one computed by classic software such as PHABSIM or CASIMIR at each flow rate. By quantifying these wake areas we can therefore assess how the physical properties and number of such zones change in response to the changing hydrologic regime. In order to validate the concept, we selected a 400 meter reach from the Aare river in the center of Switzerland. The statistical distribution of macroroughness elements is obtained by taking orthorectified aerial photographs by drone surveys during low flow conditions. Then, the distribution of the wakes is obtained analytically as a derived distribution. This methodology allows to save computational costs and the time for detailed field surveys.

  17. The stream flow rate measurement using tracer techniques at the Kemubu Agricultural Development Authority (KADA), Kelantan

    International Nuclear Information System (INIS)

    Daud Mohammad; Abd Razak Hamzah; Wan Abd Aziz Wan Mohamad; Juhari Yusoff; Wan Zakaria Wan Mohd Tahir


    Measuring the flow rate of a water course is one of the basic operations in hydrology, being of general relevance to water problems and of particular importance in the planning of water control schemes. The techniques commonly used in streamflow gauging are either by a current meter of tracer dilution method. This paper describes the latter technique in which radioisotope Tc-99m was used as a tracer in streamflow measurements performed in 1983 in a few selected irrigation canals and pump house under the Kemubu Agriculture Development Authority (KADA), Kelantan. Total count technique and peak-to-peak method were adopted in this study. (author)

  18. The estimation of heavy metal concentration in FBR reprocessing solvent streams by density measurement

    International Nuclear Information System (INIS)

    Brown, M.L.; Savage, D.J.


    The application of density measurement to heavy metal monitoring in the solvent phase is described, including practical experience gained during three fast reactor fuel reprocessing campaigns. An experimental algorithm relating heavy metal concentration and sample density was generated from laboratory-measured density data, for uranyl nitrate dissolved in nitric acid loaded tri-butyl phosphate in odourless kerosene. Differences in odourless kerosene batch densities are mathematically interpolated, and the algorithm can be used to estimate heavy metal concentrations from the density to within +1.5 g/l. An Anton Paar calculating digital densimeter with remote cell operation was used for all density measurements, but the algorithm will give similar accuracy with any density measuring device capable of a precision of better than 0.0005 g/cm 3 . For plant control purposes, the algorithm was simplified using a density referencing system, whereby the density of solvent not yet loaded with heavy metal is subtracted from the sample density. This simplified algorithm compares very favourably with empirical algorithms, derived from numerical analysis of density data and chemically measured uranium and plutonium data obtained during fuel reprocessing campaigns, particularly when differences in the acidity of the solvent are considered before and after loading with heavy metal. This simplified algorithm had been successfully used for plant control of heavy metal loaded solvent during four fast reactor fuel reprocessing campaigns. (author)

  19. Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques. (United States)

    Chang, Fi-John; Chen, Pin-An; Chang, Li-Chiu; Tsai, Yu-Hsuan


    This study attempts to model the spatio-temporal dynamics of total phosphate (TP) concentrations along a river for effective hydro-environmental management. We propose a systematical modeling scheme (SMS), which is an ingenious modeling process equipped with a dynamic neural network and three refined statistical methods, for reliably predicting the TP concentrations along a river simultaneously. Two different types of artificial neural network (BPNN-static neural network; NARX network-dynamic neural network) are constructed in modeling the dynamic system. The Dahan River in Taiwan is used as a study case, where ten-year seasonal water quality data collected at seven monitoring stations along the river are used for model training and validation. Results demonstrate that the NARX network can suitably capture the important dynamic features and remarkably outperforms the BPNN model, and the SMS can effectively identify key input factors, suitably overcome data scarcity, significantly increase model reliability, satisfactorily estimate site-specific TP concentration at seven monitoring stations simultaneously, and adequately reconstruct seasonal TP data into a monthly scale. The proposed SMS can reliably model the dynamic spatio-temporal water pollution variation in a river system for missing, hazardous or costly data of interest. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Estimation of inhalation flow profile using audio-based methods to assess inhaler medication adherence (United States)

    Lacalle Muls, Helena; Costello, Richard W.; Reilly, Richard B.


    Asthma and chronic obstructive pulmonary disease (COPD) patients are required to inhale forcefully and deeply to receive medication when using a dry powder inhaler (DPI). There is a clinical need to objectively monitor the inhalation flow profile of DPIs in order to remotely monitor patient inhalation technique. Audio-based methods have been previously employed to accurately estimate flow parameters such as the peak inspiratory flow rate of inhalations, however, these methods required multiple calibration inhalation audio recordings. In this study, an audio-based method is presented that accurately estimates inhalation flow profile using only one calibration inhalation audio recording. Twenty healthy participants were asked to perform 15 inhalations through a placebo Ellipta™ DPI at a range of inspiratory flow rates. Inhalation flow signals were recorded using a pneumotachograph spirometer while inhalation audio signals were recorded simultaneously using the Inhaler Compliance Assessment device attached to the inhaler. The acoustic (amplitude) envelope was estimated from each inhalation audio signal. Using only one recording, linear and power law regression models were employed to determine which model best described the relationship between the inhalation acoustic envelope and flow signal. Each model was then employed to estimate the flow signals of the remaining 14 inhalation audio recordings. This process repeated until each of the 15 recordings were employed to calibrate single models while testing on the remaining 14 recordings. It was observed that power law models generated the highest average flow estimation accuracy across all participants (90.89±0.9% for power law models and 76.63±2.38% for linear models). The method also generated sufficient accuracy in estimating inhalation parameters such as peak inspiratory flow rate and inspiratory capacity within the presence of noise. Estimating inhaler inhalation flow profiles using audio based methods may be

  1. Generalized Skew Coefficients of Annual Peak Flows for Rural, Unregulated Streams in West Virginia (United States)

    Atkins, John T.; Wiley, Jeffrey B.; Paybins, Katherine S.


    Generalized skew was determined from analysis of records from 147 streamflow-gaging stations in or near West Virginia. The analysis followed guidelines established by the Interagency Advisory Committee on Water Data described in Bulletin 17B, except that stations having 50 or more years of record were used instead of stations with the less restrictive recommendation of 25 or more years of record. The generalized-skew analysis included contouring, averaging, and regression of station skews. The best method was considered the one with the smallest mean square error (MSE). MSE is defined as the following quantity summed and divided by the number of peaks: the square of the difference of an individual logarithm (base 10) of peak flow less the mean of all individual logarithms of peak flow. Contouring of station skews was the best method for determining generalized skew for West Virginia, with a MSE of about 0.2174. This MSE is an improvement over the MSE of about 0.3025 for the national map presented in Bulletin 17B.

  2. Estimation of roughness lengths and flow separation over compound bedforms in a natural-tidal inlet

    DEFF Research Database (Denmark)

    Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian


    was found to underestimate the length of the flow separation zone of the primary bedforms. A better estimation of the presence and shape of the flow separation zone over complex bedforms in a tidal environment still needs to be determined; in particular the relationship between flow separation zone......The hydraulic effect of asymmetric compound bedforms on tidal currents was assessed from field measurements of flow velocity in the Knudedyb tidal inlet, Denmark. Large asymmetric bedforms with smaller superimposed ones are a common feature of sandy shallow water environments and are known to act...... as hydraulic roughness elements in dependence with flow direction. The presence of a flow separation zone on the bedform lee was estimated through analysis of the measured velocity directions and the calculation of the flow separation line. The Law of the Wall was used to calculate roughness lengths and shear...

  3. Estimated probability of postwildfire debris flows in the 2012 Whitewater-Baldy Fire burn area, southwestern New Mexico (United States)

    Tillery, Anne C.; Matherne, Anne Marie; Verdin, Kristine L.


    In May and June 2012, the Whitewater-Baldy Fire burned approximately 1,200 square kilometers (300,000 acres) of the Gila National Forest, in southwestern New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 128 basins burned by the Whitewater-Baldy Fire. A pair of empirical hazard-assessment models developed by using data from recently burned basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and for selected drainage basins within the burned area. The models incorporate measures of areal burned extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. In response to the 2-year-recurrence, 30-minute-duration rainfall, modeling indicated that four basins have high probabilities of debris-flow occurrence (greater than or equal to 80 percent). For the 10-year-recurrence, 30-minute-duration rainfall, an additional 14 basins are included, and for the 25-year-recurrence, 30-minute-duration rainfall, an additional eight basins, 20 percent of the total, have high probabilities of debris-flow occurrence. In addition, probability analysis along the stream segments can identify specific reaches of greatest concern for debris flows within a basin. Basins with a high probability of debris-flow occurrence were concentrated in the west and central parts of the burned area, including tributaries to Whitewater Creek, Mineral Creek, and Willow Creek. Estimated debris-flow volumes ranged from about 3,000-4,000 cubic meters (m3) to greater than 500,000 m3 for all design storms modeled. Drainage basins with estimated volumes greater than 500,000 m3 included tributaries to Whitewater Creek, Willow

  4. A service and value based approach to estimating environmental flows

    DEFF Research Database (Denmark)

    Korsgaard, Louise; Jensen, R.A.; Jønch-Clausen, Torkil


    An important challenge of Integrated Water Resources Management (IWRM) is to balance water allocation between different users and uses. While economically and/or politically powerful users have relatively well developed methods for quantifying and justifying their water needs, this is not the case...... methodologies. The SPI approach is a pragmatic and transparent tool for incorporating ecosystems and environmental flows into the evaluation of water allocation scenarios, negotiations of trade-offs and decision-making in IWRM....

  5. 3-D Vector Flow Estimation With Row-Column-Addressed Arrays. (United States)

    Holbek, Simon; Christiansen, Thomas Lehrmann; Stuart, Matthias Bo; Beers, Christopher; Thomsen, Erik Vilain; Jensen, Jorgen Arendt


    Simulation and experimental results from 3-D vector flow estimations for a 62 + 62 2-D row-column (RC) array with integrated apodization are presented. A method for implementing a 3-D transverse oscillation (TO) velocity estimator on a 3-MHz RC array is developed and validated. First, a parametric simulation study is conducted, where flow direction, ensemble length, number of pulse cycles, steering angles, transmit/receive apodization, and TO apodization profiles and spacing are varied, to find the optimal parameter configuration. The performance of the estimator is evaluated with respect to relative mean bias ~B and mean standard deviation ~σ . Second, the optimal parameter configuration is implemented on the prototype RC probe connected to the experimental ultrasound scanner SARUS. Results from measurements conducted in a flow-rig system containing a constant laminar flow and a straight-vessel phantom with a pulsating flow are presented. Both an M-mode and a steered transmit sequence are applied. The 3-D vector flow is estimated in the flow rig for four representative flow directions. In the setup with 90° beam-to-flow angle, the relative mean bias across the entire velocity profile is (-4.7, -0.9, 0.4)% with a relative standard deviation of (8.7, 5.1, 0.8)% for ( v x , v y , v z ). The estimated peak velocity is 48.5 ± 3 cm/s giving a -3% bias. The out-of-plane velocity component perpendicular to the cross section is used to estimate volumetric flow rates in the flow rig at a 90° beam-to-flow angle. The estimated mean flow rate in this setup is 91.2 ± 3.1 L/h corresponding to a bias of -11.1%. In a pulsating flow setup, flow rate measured during five cycles is 2.3 ± 0.1 mL/stroke giving a negative 9.7% bias. It is concluded that accurate 3-D vector flow estimation can be obtained using a 2-D RC-addressed array.

  6. Estimation of local and regional components of drain - flow from an irrigated field

    International Nuclear Information System (INIS)

    Eching, S.O.; Hopmans, J.W.; Wallender, W.W.; Macyntyre, J.L.; Peters, D.


    The contribution of regional ground water and deep percolation from a furrow irrigated field to total drain flow was estimated using salt load analysis. It was found that 64% of the drain flow comes from regional ground water flow. The electrical conductivity of the drain water was highly correlated with the drain flow rate. From the field water balance with deep percolation as estimated from the salt load analysis, using yield function derived evapotranspiration, and measured changes in root zone water storage, it was shown that 14% of the crop evapotranspiration comes from ground water during the study period. 8 figs; 5 tabs; 15 refs ( Author )

  7. Modeling, Identification, Estimation, and Simulation of Urban Traffic Flow in Jakarta and Bandung

    Directory of Open Access Journals (Sweden)

    Herman Y. Sutarto


    Full Text Available This paper presents an overview of urban traffic flow from the perspective of system theory and stochastic control. The topics of modeling, identification, estimation and simulation techniques are evaluated and validated using actual traffic flow data from the city of Jakarta and Bandung, Indonesia, and synthetic data generated from traffic micro-simulator VISSIM. The results on particle filter (PF based state estimation and Expectation-Maximization (EM based parameter estimation (identification confirm the proposed model gives satisfactory results that capture the variation of urban traffic flow. The combination of the technique and the simulator platform assembles possibility to develop a real-time traffic light controller.  

  8. Source Estimation for the Damped Wave Equation Using Modulating Functions Method: Application to the Estimation of the Cerebral Blood Flow

    KAUST Repository

    Asiri, Sharefa M.


    In this paper, a method based on modulating functions is proposed to estimate the Cerebral Blood Flow (CBF). The problem is written in an input estimation problem for a damped wave equation which is used to model the spatiotemporal variations of blood mass density. The method is described and its performance is assessed through some numerical simulations. The robustness of the method in presence of noise is also studied.

  9. Thermal particle image velocity estimation of fire plume flow (United States)

    Xiangyang Zhou; Lulu Sun; Shankar Mahalingam; David R. Weise


    For the purpose of studying wildfire spread in living vegetation such as chaparral in California, a thermal particle image velocity (TPIV) algorithm for nonintrusively measuring flame gas velocities through thermal infrared (IR) imagery was developed. By tracing thermal particles in successive digital IR images, the TPIV algorithm can estimate the velocity field in a...

  10. The Stream Flow Prediction Model Using Fuzzy Inference System and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammad RezapourTabari


    Full Text Available The aim of this study is the spatial prediction runoff using hydrometric and meteorological stations data. The research shows that usually there is a certain communication between the meteorological and hydrometric data of upstream basin and runoff rates in output basin. So, if can be extracted the rules related to historical data that recorded at stations, can be easily predicted runoff amount based on data measured. Accordingly, among the tools available, the fuzzy theory (with flexibility in developing fuzzy rules can be provide the knowledge lies in the observed data to parameters prediction in real time. So, in this research the fuzzy inference system has been used for estimating runoff rates at stations located in the Taleghan river downstream using rain gage stations and hydrometric stations upstream. Because the inappropriate values associated with membership functions, the fuzzy system model can not provide correct value for the prediction. In this study, a combination of intelligence-based optimization algorithm and fuzzy theory developed to accelerate and improve modeling. The result of proposed model, optimum values to each membership function that related to dependent and independent variable extracted and based on it’s the runoff rates in rivers downstream predicted. The results of this study were shown that the high accuracy of proposed model compared with fuzzy inference system. Also based on proposed model can be more accurately the rate of runoff estimated for future conditions.

  11. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell


    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie


    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  12. Fishy Business: Response of Stream Fish Assemblages to Small Hydro-power Plant Induced Flow Alteration in the Western Ghats, Karnataka (United States)

    Rao, S. T.; Krishnaswamy, J.; Bhalla, R. S.


    Alteration of natural flow regimes is considered as a major threat to freshwater fish assemblages as it disturbs the water quality and micro-habitat features of rivers. Small hydro-power (SHP), which is being promoted as a clean and green substitute for large hydro-power generation, alters the natural flow regime of head-water streams by flow diversion and regulation. The effects of altered flow regime on tropical stream fish assemblages, driven by seasonality induced perturbations to water quality and microhabitat parameters are largely understudied. My study examined the potential consequences of flow alteration by SHPs on fish assemblages in two tributaries of the west-flowing Yettinahole River which flows through the reserved forests of Sakleshpur in the Western Ghats of Karnataka. The flow in one of the tributaries followed natural flow regime while the other comprised three regimes: a near-natural flow regime above the dam, rapidly varying discharge below the dam and a dewatered regime caused by flow diversion. The study found that the altered flow regime differed from natural flow regime in terms of water quality, microhabitat heterogeneity and fish assemblage response, each indicative of the type of flow alteration. Fish assemblage in the natural flow regime was characterized by a higher catch per site, a strong association of endemic and trophic specialist species. The flow regime above the dam was found to mimic some components of the natural flow regime, both ecological and environmental. Non endemic, generalist and pool tolerant species were associated with the dewatered regime. There was a lack of strong species-regime association and an overall low catch per site for the flow regulated regime below the dam. This study highlights the consequences of altered flows on the composition of freshwater fish assemblages and portrays the potential of freshwater fish as indicators of the degree and extent of flow alteration. The study recommends the need for

  13. Stream Flow Simulation of a Snow-Fed Mountainous Basin Using the SWAT Model (United States)

    Shukla, S.; Kansal, M. L.; Jain, S. K.


    Hydrological budget of the Satluj River (a major tributary of Indus river system) in Western Himalaya, is dominated by monsoonal rainfall and snowmelt during the non-monsoon months. The river watershed experiences extensive snowfall in the winters and snowmelt runoff substantially contributes to the streamflow of the river in the spring and summer months. In order to understand the hydrologic response of Satluj basin, hydrological modeling study is carried out using a semi distributed hydrological model Soil and Water Assessment Tool (SWAT), for the period of thirty years (1985-2014). The basic intent of this study is to derive the parameters required for runoff modeling using the geospatial database. The Sequential Uncertainty Fitting (SUFI-2) algorithm is used to calibrate and validate the model and incorporate uncertainties in the analysis. The results are validated with the observed daily streamflow data at Rampur, in terms of Nash-Sutcliffe Coefficient (NSC), R2 and Root Mean Square Error (RMSE). Further, the snowmelt-runoff mechanism is modelled by relating the temperature changes to the elevation band in the basin. The northern part of the basin and the south part of the basin on the high elevation zones have the coldest maximum temperatures that is about 7°C. It is found that the average contribution of snow and glacier runoff in the annual flow of the Satluj River at Rampur is about 66% and remaining 34% is from rainfall.

  14. Risk and size estimation of debris flow caused by storm rainfall in mountain regions

    Institute of Scientific and Technical Information of China (English)

    CHENG; Genwei


    Debris flow is a common disaster in mountain regions. The valley slope, storm rainfall and amassed sand-rock materials in a watershed may influence the types of debris flow. The bursting of debris flow is not a pure random event. Field investigations show the periodicity of its burst, but no directive evidence has been found yet. A risk definition of debris flow is proposed here based upon the accumulation and the starting conditions of loose material in channel. According to this definition, the risk of debris flow is of quasi-periodicity. A formula of risk estimation is derived. Analysis of relative factors reveals the relationship between frequency and size of debris flow. For a debris flow creek, the longer the time interval between two occurrences of debris flows is, the bigger the bursting event will be.

  15. Cross-flow filtration during the washing of a simulated radioactive waste stream

    International Nuclear Information System (INIS)



    Bechtel National, Inc. has been contracted by the Department of Energy to design a Waste Treatment and Immobilization Plant (WTP) to stabilize liquid radioactive waste that is stored at the Hanford Site as part of the River Protection Project (RPP). Because of its experience with radioactive waste stabilization, the Savannah River National Laboratory (SRNL) of the Westinghouse Savannah River Company is working with Bechtel and Washington Group International, to help design and test certain parts of the waste treatment facility. One part of the process is the separation of radioactive solids from the liquid wastes by cross-flow ultrafiltration. To test this process a cross-flow filter was used that was prototypic in porosity, length, and diameter, along with a simulated radioactive waste slurry, made to prototypically represent the chemical and physical characteristics of a Hanford waste in tank 241-AY-102/C-106. To mimic the filtration process the waste slurry undergoes several steps, including dewatering and washing. During dewatering the concentration of undissolved solids (UDS) of the simulated AY102/C106 waste is increased from 12 wt percent to at least 20 wt percent. Once at the higher concentration the waste must be washed to prepare for its eventual receipt in a High Level Radioactive Waste Melter to be vitrified. This paper describes the process of washing and filtering a batch of concentrated simulated waste in two cycles, which each containing 22 washing steps that used approximately 7.7 liters of a solution of 0.01 M NaOH per step. This will be the method used by the full-scale WTP to prepare the waste for vitrification. The first washing cycle started with the simulated waste that had a solids concentration of 20 wt percent UDS. This cycle began with a permeate filter flux of 0.015 gpm/ft2 (3.68 cm/hr) at 19.6 wt percent UDS with a density of 1.33 kg/L, and yield stress of 8.5 Pa. At the end of the 22 washing steps the permeate filter flux increased to

  16. PiSCES: Pi(scine) stream community estimation software: A tool for nationwide fish assemblage predictions (United States)

    Background/Question/Methods What species of fish might someone find in a local stream? How might that community change as a result of changes to characteristics of the stream and its watershed? PiSCES is a browser-based toolkit developed to predict a fish community for any NHD-Pl...

  17. Use of a Phase Transition Concept for Traffic Flow Condition Estimation

    Directory of Open Access Journals (Sweden)

    Larin Oleg N.


    Full Text Available The article covers the main models of traffic flow conditions, analyzes the condition estimation criteria, and provides the classification of models. The article provides the grounds for the use of the phase transition concept for traffic flow condition estimation. The models of the aggregate condition of free and congested traffic have been developed, the phase boundaries between free and congested traffic have been defined. Applicability conditions for the models of the aggregate condition of have been analyzed.

  18. Development of K-Nearest Neighbour Regression Method in Forecasting River Stream Flow

    Directory of Open Access Journals (Sweden)

    Mohammad Azmi


    Full Text Available Different statistical, non-statistical and black-box methods have been used in forecasting processes. Among statistical methods, K-nearest neighbour non-parametric regression method (K-NN due to its natural simplicity and mathematical base is one of the recommended methods for forecasting processes. In this study, K-NN method is explained completely. Besides, development and improvement approaches such as best neighbour estimation, data transformation functions, distance functions and proposed extrapolation method are described. K-NN method in company with its development approaches is used in streamflow forecasting of Zayandeh-Rud Dam upper basin. Comparing between final results of classic K-NN method and modified K-NN (number of neighbour 5, transformation function of Range Scaling, distance function of Mahanalobis and proposed extrapolation method shows that modified K-NN in criteria of goodness of fit, root mean square error, percentage of volume of error and correlation has had performance improvement 45% , 59% and 17% respectively. These results approve necessity of applying mentioned approaches to derive more accurate forecasts.

  19. Toward an enhanced Bayesian estimation framework for multiphase flow soft-sensing

    International Nuclear Information System (INIS)

    Luo, Xiaodong; Lorentzen, Rolf J; Stordal, Andreas S; Nævdal, Geir


    In this work the authors study the multiphase flow soft-sensing problem based on a previously established framework. There are three functional modules in this framework, namely, a transient well flow model that describes the response of certain physical variables in a well, for instance, temperature, velocity and pressure, to the flow rates entering and leaving the well zones; a Markov jump process that is designed to capture the potential abrupt changes in the flow rates; and an estimation method that is adopted to estimate the underlying flow rates based on the measurements from the physical sensors installed in the well. In the previous studies, the variances of the flow rates in the Markov jump process are chosen manually. To fill this gap, in the current work two automatic approaches are proposed in order to optimize the variance estimation. Through a numerical example, we show that, when the estimation framework is used in conjunction with these two proposed variance-estimation approaches, it can achieve reasonable performance in terms of matching both the measurements of the physical sensors and the true underlying flow rates. (paper)

  20. Association of HeartMate II left ventricular assist device flow estimate with thermodilution cardiac output. (United States)

    Hasin, Tal; Huebner, Marianne; Li, Zhuo; Brown, Daniel; Stulak, John M; Boilson, Barry A; Joyce, Lyle; Pereira, Naveen L; Kushwaha, Sudhir S; Park, Soon J


    Cardiac output (CO) assessment is important in treating patients with heart failure. Durable left ventricular assist devices (LVADs) provide essentially all CO. In currently used LVADs, estimated device flow is generated by a computerized algorithm. However, LVAD flow estimate may be inaccurate in tracking true CO. We correlated LVAD (HeartMate II) flow with thermodilution CO during postoperative care (day 2-10 after implant) in 81 patients (5,616 paired measurements). Left ventricular assist device flow and CO correlated with a low correlation coefficient (r = 0.42). Left ventricular assist device readings were lower than CO measurements by approximately 0.36 L/min, trending for larger difference with higher values. Left ventricular assist device flow measurements showed less temporal variability compared with CO. Grouping for simultaneous measured blood pressure (BP device flow generally trends with measured CO, but large variability exists, hence flow measures should not be assumed to equal with CO. Clinicians should take into account variables such as high CO, BP, and opening of the aortic valve when interpreting LVAD flow readout. Direct flow sensors incorporated in the LVAD system may allow for better estimation.

  1. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen


    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  2. Stream Response to an Extreme Defoliation Event (United States)

    Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.


    Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net

  3. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches (United States)

    Heisig, Paul M.


    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  4. Simulating nailfold capillaroscopy sequences to evaluate algorithms for blood flow estimation. (United States)

    Tresadern, P A; Berks, M; Murray, A K; Dinsdale, G; Taylor, C J; Herrick, A L


    The effects of systemic sclerosis (SSc)--a disease of the connective tissue causing blood flow problems that can require amputation of the fingers--can be observed indirectly by imaging the capillaries at the nailfold, though taking quantitative measures such as blood flow to diagnose the disease and monitor its progression is not easy. Optical flow algorithms may be applied, though without ground truth (i.e. known blood flow) it is hard to evaluate their accuracy. We propose an image model that generates realistic capillaroscopy videos with known flow, and use this model to quantify the effect of flow rate, cell density and contrast (among others) on estimated flow. This resource will help researchers to design systems that are robust under real-world conditions.

  5. The effect of bedload transport rates on bedform and planform morphological development in a laboratory meandering stream under varying flow conditions (United States)

    Sullivan, C.; Good, R. G. R.; Binns, A. D.


    Sediment transport processes in streams provides valuable insight into the temporal evolution of planform and bedform geometry. The majority of previous experimental research in the literature has focused on bedload transport and corresponding bedform development in rectangular, confined channels, which does not consider planform adjustment processes in streams. In contrast, research conducted with laboratory streams having movable banks can investigate planform development in addition to bedform development, which is more representative of natural streams. The goal of this research is to explore the relationship between bedload transport rates and the morphological adjustments in meandering streams. To accomplish this, a series of experimental runs were conducted in a 5.6 m by 1.9 m river basin flume at the University of Guelph to analyze the bedload impacts on bed formations and planform adjustments in response to varying flow conditions. In total, three experimental runs were conducted: two runs using steady state conditions and one run using unsteady flow conditions in the form of a symmetrical hydrograph implementing quasi steady state flow. The runs were performed in a series of time-steps in order to monitor the evolution of the stream morphology and the bedload transport rates. Structure from motion (SfM) was utilized to capture the channel morphology after each time-step, and Agisoft PhotoScan software was used to produce digital elevation models to analyze the morphological evolution of the channel with time. Bedload transport rates were quantified using a sediment catch at the end of the flume. Although total flow volumes were similar for each run, the morphological evolution and bedload transport rates in each run varied. The observed bedload transport rates from the flume are compared with existing bedload transport formulas to assess their accuracy with respect to sediment transport in unconfined meandering channels. The measured sediment transport

  6. Analysis of methods to estimate spring flows in a karst aquifer. (United States)

    Sepúlveda, Nicasio


    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer.

  7. Directional velocity estimation using focusing along the flow direction - I: Theory and simulation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt


    A new method for directional velocity estimation is presented. The method uses beamformation along the flow direction to generate data in which the correct velocity magnitude can be directly estimated from the shift in position of the received consecutive signals. The shift is found by cross-corr...

  8. Accurate Angle Estimator for High-Frame-rate 2-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Lindskov Hansen, Kristoffer


    This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using...

  9. Drivers of increased organic carbon concentrations in stream water following forest disturbance: Separating effects of changes in flow pathways and soil warming (United States)

    Schelker, J.; Grabs, T.; Bishop, K.; Laudon, H.


    disturbance such as clear-cutting has been identified as an important factor for increasing dissolved organic carbon (DOC) concentrations in boreal streams. We used a long-term data set of soil temperature, soil moisture, shallow groundwater (GW) levels, and stream DOC concentrations from three boreal first-order streams to investigate mechanisms causing these increases. Clear-cutting was found to alter soil conditions with warmer and wetter soils during summer. The application of a riparian flow concentration integration model (RIM) explained a major part of variation in stream [DOC] arising from changing flow pathways in riparian soils during the pretreatment period (r2 = 0.4-0.7), but less well after the harvest. Model residuals were sensitive to changes in soil temperature. The linear regression models for the temperature dependence of [DOC] in soils were not different in the disturbed and undisturbed catchments, whereas a nonlinear response to soil moisture was found. Overall these results suggest that the increased DOC mobilization after forest disturbance is caused by (i) increased GW levels leading to increased water fluxes in shallow flow path in riparian soils and (ii) increased soil temperature increasing the DOC availability in soils during summer. These relationships indicate that the mechanisms of DOC mobilization after forest disturbance are not different to those of undisturbed catchments, but that catchment soils respond to the higher hydro-climatic variation observed after clear-cutting. This highlights the sensitivity of boreal streams to changes in the energy and water balance, which may be altered as a result of both land management and climate change.

  10. Steady flow in a porous layer subjected to a stream uniformly injecting from a plane; Ichiyo ni men kara fukidasu nagare ni sarasareta takoshitsu sonai no teijo nagare

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, E; Horiguchi, Y; Kitazawa, K [Keio University, Tokyo (Japan). Faculty of Science and Technology


    A steady flow in an non-deformable porous layer subjected to a fluid stream is studied analytically and numerically. One side of the layer of sponge is bounded by a solid wall and the other by a layer of fluid. The fluid is injected uniformly from a plane, through which the fluid can pass, set up parallel to the sponge layer. The flow in the sponge layer is assumed to be governed by Darcy`s law. The problem considered is solved in terms of a similarity solution. The equations governing the fluid flows in both the porous layer and the fluid layer are reduced to a system of the ordinary differential equations. These equations are solved analytically for three cases ideal fluid flow, low Reynolds number flow and high Reynolds number flow. On the other hand, these equations are solved numerically for the general case by using the finite difference method. The distributions of the velocity and the pressure in both layers are found for various parameters. In particular, the speed which the fluid intrudes into the sponge layer due to the injection of the stream from the plane is found to be a function of dimensionless parameters. To find this speed is essential to the understanding of porous material. 15 refs., 9 figs.

  11. Effect of region assignment on relative renal blood flow estimates using radionuclides

    International Nuclear Information System (INIS)

    Harris, C.C.; Ford, K.K.; Coleman, R.E.; Dunnick, N.R.


    To determine the value of the initial phase of the Tc-99m DTPA renogram in the direct estimation of relative renal blood flow in dogs, the ratios of the slopes of renal time-activity curves were compared with the ratios of measured blood flow. Radionuclide results were dependent on region-of-interest (ROI) and background ROI assignment, and correlated well with measured relative flow only with a maximum renal outline region. Curve slope ratios correlated well with measured flow ratios with and without background correction, while 1- to 2-minute uptake ratios correlated well only when corrected for background

  12. Energy flow models for the estimation of technical losses in distribution network

    International Nuclear Information System (INIS)

    Au, Mau Teng; Tan, Chin Hooi


    This paper presents energy flow models developed to estimate technical losses in distribution network. Energy flow models applied in this paper is based on input energy and peak demand of distribution network, feeder length and peak demand, transformer loading capacity, and load factor. Two case studies, an urban distribution network and a rural distribution network are used to illustrate application of the energy flow models. Results on technical losses obtained for the two distribution networks are consistent and comparable to network of similar types and characteristics. Hence, the energy flow models are suitable for practical application.

  13. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements (United States)

    Morelli, Eugene A.


    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  14. Accuracy and Sources of Error for an Angle Independent Volume Flow Estimator

    DEFF Research Database (Denmark)

    Jensen, Jonas; Olesen, Jacob Bjerring; Hansen, Peter Møller


    This paper investigates sources of error for a vector velocity volume flow estimator. Quantification of the estima tor’s accuracy is performed theoretically and investigated in vivo . Womersley’s model for pulsatile flow is used to simulate velo city profiles and calculate volume flow errors....... A BK Medical UltraView 800 ultrasound scanner with a 9 MHz linear array transducer is used to obtain Vector Flow Imaging sequences of a superficial part of the fistulas. Cross-sectional diameters of each fistu la are measured on B-mode images by rotating the scan plane 90 degrees. The major axis...

  15. Surface-water quantity and quality, aquatic biology, stream geomorphology, and groundwater-flow simulation for National Guard Training Center at Fort Indiantown Gap, Pennsylvania, 2002-05 (United States)

    Langland, Michael J.; Cinotto, Peter J.; Chichester, Douglas C.; Bilger, Michael D.; Brightbill, Robin A.


    Base-line and long-term monitoring of water resources of the National Guard Training Center at Fort Indiantown Gap in south-central Pennsylvania began in 2002. Results of continuous monitoring of streamflow and turbidity and monthly and stormflow water-quality samples from two continuous-record long-term stream sites, periodic collection of water-quality samples from five miscellaneous stream sites, and annual collection of biological data from 2002 to 2005 at 27 sites are discussed. In addition, results from a stream-geomorphic analysis and classification and a regional groundwater-flow model are included. Streamflow at the facility was above normal for the 2003 through 2005 water years and extremely high-flow events occurred in 2003 and in 2004. Water-quality samples were analyzed for nutrients, sediments, metals, major ions, pesticides, volatile and semi-volatile organic compounds, and explosives. Results indicated no exceedances for any constituent (except iron) above the primary and secondary drinking-water standards or health-advisory levels set by the U.S. Environmental Protection Agency. Iron concentrations were naturally elevated in the groundwater within the watershed because of bedrock lithology. The majority of the constituents were at or below the method detection limit. Sediment loads were dominated by precipitation due to the remnants of Hurricane Ivan in September 2004. More than 60 percent of the sediment load measured during the entire study was transported past the streamgage in just 2 days during that event. Habitat and aquatic-invertebrate data were collected in the summers of 2002-05, and fish data were collected in 2004. Although 2002 was a drought year, 2003-05 were above-normal flow years. Results indicated a wide diversity in invertebrates, good numbers of taxa (distinct organisms), and on the basis of a combination of metrics, the majority of the 27 sites indicated no or slight impairment. Fish-metric data from 25 sites indicated results

  16. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values (United States)

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to an...

  17. Modeling of hyaluronan clearance with application to estimation of lymph flow

    International Nuclear Information System (INIS)

    Rössler, Andreas; Goswami, Nandu; Fink, Martin; Batzel, Jerry J


    One of the important factors in blood pressure regulation is the maintenance of the level of blood volume, which depends on several factors including the rate of lymph flow. Lymph flow can be measured directly using cannulation of lymphatic vessels, which is not clinically feasible, or indirectly by the tracer appearance rate, which is the rate at which macromolecules appear into the blood from the peritoneal cavity. However, indirect lymph flow measurements do not always provide consistent results. Through its contribution to osmotic pressure and resistance to flow, the macromolecule hyaluronan takes part in the regulation of tissue hydration and the maintenance of water and protein homeostasis. It arrives in blood plasma through lymph flow. Lymphatic hyaluronic acid (HA, hyaluronan) concentration is several times higher than that in plasma, suggesting that the lymphatic route may account for the majority of HA found in plasma. Furthermore, circulating levels of HA reflect the dynamic state between delivery to—and removal from—the bloodstream. To develop an accurate estimation of the fluid volume distribution and dynamics, the rate of lymph flow needs to be taken into account and hyaluronan could be used as a marker in estimating this flow. To examine the HA distribution and system fluid dynamics, a six-compartment model, which could reflect both the steady-state relationships and qualitative characteristics of the dynamics, was developed. This was then applied to estimate fluid shifts from the interstitial space via the lymphatic system to the plasma during different physiological stresses (orthostatic stress and the stress of ultrafiltration during dialysis). Sensitivity analysis shows that during ultrafiltration, lymph flow is a key parameter influencing the total HA level, thus suggesting that the model may find applications in addressing the problem of estimating lymph flow. Since the fluid balance between interstitium and plasma is maintained by lymph

  18. Estimated fecal coliform bacteria concentrations using near real-time continuous water-quality and streamflow data from five stream sites in Chester County, Pennsylvania, 2007–16 (United States)

    Senior, Lisa A.


    Several streams used for recreational activities, such as fishing, swimming, and boating, in Chester County, Pennsylvania, are known to have periodic elevated concentrations of fecal coliform bacteria, a type of bacteria used to indicate the potential presence of fecally related pathogens that may pose health risks to humans exposed through water contact. The availability of near real-time continuous stream discharge, turbidity, and other water-quality data for some streams in the county presents an opportunity to use surrogates to estimate near real-time concentrations of fecal coliform (FC) bacteria and thus provide some information about associated potential health risks during recreational use of streams.The U.S. Geological Survey (USGS), in cooperation with the Chester County Health Department (CCHD) and the Chester County Water Resources Authority (CCWRA), has collected discrete stream samples for analysis of FC concentrations during March–October annually at or near five gaging stations where near real-time continuous data on stream discharge, turbidity, and water temperature have been collected since 2007 (or since 2012 at 2 of the 5 stations). In 2014, the USGS, in cooperation with the CCWRA and CCHD, began to develop regression equations to estimate FC concentrations using available near real-time continuous data. Regression equations included possible explanatory variables of stream discharge, turbidity, water temperature, and seasonal factors calculated using Julian Day with base-10 logarithmic (log) transformations of selected variables.The regression equations were developed using the data from 2007 to 2015 (101–106 discrete bacteria samples per site) for three gaging stations on Brandywine Creek (West Branch Brandywine Creek at Modena, East Branch Brandywine Creek below Downingtown, and Brandywine Creek at Chadds Ford) and from 2012 to 2015 (37–38 discrete bacteria samples per site) for one station each on French Creek near Phoenixville and

  19. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad


    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the

  20. Leading-Edge Flow Sensing for Aerodynamic Parameter Estimation (United States)

    Saini, Aditya

    The identification of inflow air data quantities such as airspeed, angle of attack, and local lift coefficient on various sections of a wing or rotor blade provides the capability for load monitoring, aerodynamic diagnostics, and control on devices ranging from air vehicles to wind turbines. Real-time measurement of aerodynamic parameters during flight provides the ability to enhance aircraft operating capabilities while preventing dangerous stall situations. This thesis presents a novel Leading-Edge Flow Sensing (LEFS) algorithm for the determination of the air -data parameters using discrete surface pressures measured at a few ports in the vicinity of the leading edge of a wing or blade section. The approach approximates the leading-edge region of the airfoil as a parabola and uses pressure distribution from the exact potential-ow solution for the parabola to _t the pressures measured from the ports. Pressures sensed at five discrete locations near the leading edge of an airfoil are given as input to the algorithm to solve the model using a simple nonlinear regression. The algorithm directly computes the inflow velocity, the stagnation