WorldWideScience

Sample records for strategy targeting lead

  1. Isolation of radioactive thallium from lead targets

    International Nuclear Information System (INIS)

    Kozlova, M.D.; Sevast'yanova, A.S.; Malinin, A.B.; Kurenkov, N.V.

    1989-01-01

    Two methods of thallium-201 preperation from Pb-targets irradiated with protons: precipitation-extraction (1) and extraction (2) - are developed. When the target irraiated is extracted during the time necessary for bismuth-201 transformation into lead-201, lead macroquantity containing lead-201 was separated from undesirable thallium radionuclides, which are formed in direct nuclear reactions. The lead fraction was extracted to accumulate thallium-201, and it was separated from lead mocroquantity. The target was dissolved in the nitric acid. The 1st method differs from the 2nd one by the fact that before thallium-201 extraction, lead was precipitaed by the nitric acid. The 1st method permits to separate thallium-201 with chemical yield not less than 90 %, the 2nd one - ≥95 %. 2 refs

  2. Voyager 2 Neptune targeting strategy

    Science.gov (United States)

    Potts, C. L.; Francis, K.; Matousek, S. E.; Cesarone, R. J.; Gray, D. L.

    1989-01-01

    The success of the Voyager 2 flybys of Neptune and Triton depends upon the ability to correct the spacecraft's trajectory. Accurate spacecraft delivery to the desired encounter conditions will promote the maximum science return. However, Neptune's great distance causes large a priori uncertainties in Neptune and Triton ephemerides and planetary system parameters. Consequently, the 'ideal' trajectory is unknown beforehand. The targeting challenge is to utilize the gradually improving knowledge as the spacecraft approaches Neptune to meet the science objectives, but with an overriding concern for spacecraft safety and a desire to limit propellant expenditure. A unique targeting strategy has been developed in response to this challenge. Through the use of a Monte Carlo simulation, candidate strategies are evaluated by the degree to which they meet these objectives and are compared against each other in determining the targeting strategy to be adopted.

  3. Voyager 2 Uranus targeting strategy

    Science.gov (United States)

    Cesarone, R. J.; Gray, D. L.; Potts, C. L.; Francis, K.

    1986-01-01

    One of the major challenges involved in the Voyager 2 Uranus flyby is to deliver the spacecraft to an appropriate aimpoint at the optimum time, so as to maximize the science return of the mission, while yet keeping propellant expenditure low. An unusual targeting strategy has been devised to satisfy these requirements. Its complexity arises from the great distance of the planet Uranus and the limited performance capabilities of Voyager. This selected strategy is developed in relation to a set of candidate strategies, mission requirements and shifting science objectives. The analysis of these candidates is conducted via a Monte Carlo simulation, the results of which yield data for the comparative evaluation and eventual and selection of the actual targeting strategy to be employed.

  4. Lead reactor strategy economical analysis

    International Nuclear Information System (INIS)

    Ciotti, Marco

    2013-01-01

    Conclusions: • A first attempt to evaluate LFR power plant electricity production cost has been performed; • Electricity price is similar to Gen III + plants; • The estimation accuracy is probably low; • Possible costs reduction could arise from coolant characteristics that may improve safety and simplicity by design; • Accident perception, not acceptable by public opinion, may be changed with low potential energy system (non exploding coolant); • Sustainability improvement could open to a better Public acceptance, depending on us. • Problems may arise in coupling a high capital cost low fuel cost plant in a grid with large amount of intermittent sources with priority dispatch. • Lead fast reactors can compete

  5. Voyager 1 Saturn targeting strategy

    Science.gov (United States)

    Cesarone, R. J.

    1980-01-01

    A trajectory targeting strategy for the Voyager 1 Saturn encounter has been designed to accomodate predicted uncertainties in Titan's ephemeris while maximizing spacecraft safety and science return. The encounter is characterized by a close Titan flyby 18 hours prior to Saturn periapse. Retargeting of the nominal trajectory to account for late updates in Titan's estimated position can disperse the ascending node location, which is nominally situated at a radius of low expected particle density in Saturn's ring plane. The strategy utilizes a floating Titan impact vector magnitude to minimize this dispersion. Encounter trajectory characteristics and optimal tradeoffs are presented.

  6. Lead tolerance in plants: strategies for phytoremediation.

    Science.gov (United States)

    Gupta, D K; Huang, H G; Corpas, F J

    2013-04-01

    Lead (Pb) is naturally occurring element whose distribution in the environment occurs because of its extensive use in paints, petrol, explosives, sludge, and industrial wastes. In plants, Pb uptake and translocation occurs, causing toxic effects resulting in decrease of biomass production. Commonly plants may prevent the toxic effect of heavy metals by induction of various celular mechanisms such as adsorption to the cell wall, compartmentation in vacuoles, enhancement of the active efflux, or induction of higher levels of metal chelates like a protein complex (metallothioneins and phytochelatins), organic (citrates), and inorganic (sulphides) complexes. Phyotochelains (PC) are synthesized from glutathione (GSH) and such synthesis is due to transpeptidation of γ-glutamyl cysteinyl dipeptides from GSH by the action of a constitutively present enzyme, PC synthase. Phytochelatin binds to Pb ions leading to sequestration of Pb ions in plants and thus serves as an important component of the detoxification mechanism in plants. At cellular level, Pb induces accumulation of reactive oxygen species (ROS), as a result of imbalanced ROS production and ROS scavenging processes by imposing oxidative stress. ROS include superoxide radical (O2(.-)), hydrogen peroxide (H2O2) and hydroxyl radical ((·)OH), which are necessary for the correct functioning of plants; however, in excess they caused damage to biomolecules, such as membrane lipids, proteins, and nucleic acids among others. To limit the detrimental impact of Pb, efficient strategies like phytoremediation are required. In this review, it will discuss recent advancement and potential application of plants for lead removal from the environment.

  7. 40 CFR 52.58 - Control strategy: Lead.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Lead. 52.58 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.58 Control strategy: Lead. The lead plan... the lead standard throughout Alabama. The lead plan submitted by the State on October 7, 1985, and...

  8. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  9. 40 CFR 52.1375 - Control strategy: Lead.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Lead. 52.1375 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Montana § 52.1375 Control strategy: Lead. Determination—EPA has determined that the East Helena Lead nonattainment area has attained the lead national...

  10. Target marketing strategies for occupational therapy entrepreneurs.

    Science.gov (United States)

    Kautzmann, L N; Kautzmann, F N; Navarro, F H

    1989-01-01

    Understanding marketing techniques is one of the skills needed by successful entre renews. Target marketing is an effective method for occupational therapy entrepreneurs to use in determining when and where to enter the marketplace. The two components of target marketing, market segmentation and the development of marketing mix strategies for each identified market segment, are described. The Profife of Attitudes Toward Health Care (PATH) method of psychographic market segmentation of health care consumers is presented. Occupational therapy marketing mix strategies for each PATH consumer group are delineated and compatible groupings of market segments are suggested.

  11. 40 CFR 52.2236 - Control strategy; lead.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy; lead. 52.2236 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Tennessee § 52.2236 Control strategy; lead... on October 6, 1994. These revisions address the requirements necessary to change a lead nonattainment...

  12. 40 CFR 52.1681 - Control strategy: Lead.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Lead. 52.1681 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New York § 52.1681 Control strategy: Lead. As part of the attainment demonstration for lead, the State of New York has committed to rate all sources...

  13. Drug Target Interference in Immunogenicity Assays: Recommendations and Mitigation Strategies.

    Science.gov (United States)

    Zhong, Zhandong Don; Clements-Egan, Adrienne; Gorovits, Boris; Maia, Mauricio; Sumner, Giane; Theobald, Valerie; Wu, Yuling; Rajadhyaksha, Manoj

    2017-11-01

    Sensitive and specific methodology is required for the detection and characterization of anti-drug antibodies (ADAs). High-quality ADA data enables the evaluation of potential impact of ADAs on the drug pharmacokinetic profile, patient safety, and efficacious response to the drug. Immunogenicity assessments are typically initiated at early stages in preclinical studies and continue throughout the drug development program. One of the potential bioanalytical challenges encountered with ADA testing is the need to identify and mitigate the interference mediated by the presence of soluble drug target. A drug target, when present at sufficiently high circulating concentrations, can potentially interfere with the performance of ADA and neutralizing antibody (NAb) assays, leading to either false-positive or, in some cases, false-negative ADA and NAb assay results. This publication describes various mechanisms of assay interference by soluble drug target, as well as strategies to recognize and mitigate such target interference. Pertinent examples are presented to illustrate the impact of target interference on ADA and NAb assays as well as several mitigation strategies, including the use of anti-target antibodies, soluble versions of the receptors, target-binding proteins, lectins, and solid-phase removal of targets. Furthermore, recommendations for detection and mitigation of such interference in different formats of ADA and NAb assays are provided.

  14. Targeting HIV latency: pharmacologic strategies toward eradication

    Science.gov (United States)

    Xing, Sifei; Siliciano, Robert F.

    2013-01-01

    The latent reservoir for HIV-1 in resting CD4+ T cells remains a major barrier to HIV-1 eradication, even though highly active antiretroviral therapy (HAART) can successfully reduce plasma HIV-1 levels to below the detection limit of clinical assays and reverse disease progression. Proposed eradication strategies involve reactivation of this latent reservoir. Multiple mechanisms are believed to be involved in maintaining HIV-1 latency, mostly through suppression of transcription. These include cytoplasmic sequestration of host transcription factors and epigenetic modifications such as histone deacetylation, histone methylation and DNA methylation. Therefore, strategies targeting these mechanisms have been explored for reactivation of the latent reservoir. In this review, we discuss current pharmacological approaches toward eradication, focusing on small molecule latency-reversing agents, their mechanisms, advantages and limitations. PMID:23270785

  15. Measured radionuclide production from copper, gold and lead spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.; Belian, A.P. [Texas A & M Univ., College Station, TX (United States)

    1995-10-01

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A&M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets.

  16. [The development of novel tumor targeting delivery strategy].

    Science.gov (United States)

    Gao, Hui-le; Jiang, Xin-guo

    2016-02-01

    microvessels to decrease the internal fluid pressure. All these strategies could enhance the accumulation and penetration of nanoparticles into tumor, leading to a homogenous distribution of drugs in tumor. To enhance the internalization by specific cells, active targeting delivery strategies are developed. There were many surface markers, receptors or carriers overexpressed on specific kinds of cells, thus the corresponding ligands were utilized to mediate active targeting to certain cells, including tumor cells, cancer stem cells, tumor neovasculatures, tumor associated macrophages and other tumor stroma cells. Targeting more than one cell type may provide an improved antitumor effect. Although these passive and active targeting strategies all have promising outcome in the treatment of tumor, some shortages are still unaddressed, such as the specificity of responsive is not good enough, and the active targeting may be diminished by the protein corona. Thus more research is required to promote the drug delivery study.

  17. Determination of spallation residues in thin target: toward an hybrid reactor lead target simulation

    International Nuclear Information System (INIS)

    Audouin, L.; Tassan-Got, L.; Bernas, M.; Rejmund, F.; Stephan, C.; Taieb, J.; Boudard, A.; Fernandez, B.; Legrain, R.; Leray, S.; Volant, C.; Wlazlo, W.; Benlliure, J.; Casajeros, E.; Pereira, J.; Czajkowski, S.

    2001-01-01

    The production of spallation primary residual nuclei in thin target has been studied by measurement of isotopic yields distributions for several systems. Issues relevant for the design of accelerator-driven systems are presented. Monte-Carlo code abilities to reproduce data are studied in details; it is shown that calculations do not reproduce data in a satisfactory way. Future work orientations leading to an improvement of thin targets calculations and ultimately to a thick target simulation are discussed. (author)

  18. Determination of spallation residues in thin target: toward an hybrid reactor lead target simulation

    Energy Technology Data Exchange (ETDEWEB)

    Audouin, L.; Tassan-Got, L.; Bernas, M.; Rejmund, F.; Stephan, C.; Taieb, J. [Paris-11 Univ., 91- Orsay (France). Inst. de Physique Nucleaire; Enqvist, T.; Armbruster, P.; Ricciardi, M.V.; Schmidt, K.H. [GSI, Planckstrasse 1, Darmstadt (Germany); Boudard, A.; Fernandez, B.; Legrain, R.; Leray, S.; Volant, C.; Wlazlo, W. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91 - Gif sur Yvette (France); Benlliure, J.; Casajeros, E.; Pereira, J. [University of Santiago de Compostella (Spain); Czajkowski, S. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, CENBG, CNRS-IN2P3, 33 - Gradignan (France)

    2001-07-01

    The production of spallation primary residual nuclei in thin target has been studied by measurement of isotopic yields distributions for several systems. Issues relevant for the design of accelerator-driven systems are presented. Monte-Carlo code abilities to reproduce data are studied in details; it is shown that calculations do not reproduce data in a satisfactory way. Future work orientations leading to an improvement of thin targets calculations and ultimately to a thick target simulation are discussed. (author)

  19. Development strategy and targets of CGNPG

    International Nuclear Information System (INIS)

    Zan Yunlong

    2002-01-01

    The development of nuclear power industry in Guangdong results from the steady implementation of a catch-up strategy aimed at the advanced world level in the nuclear power industry. China Guangdong Nuclear Power (Holding) Co., Ltd. (CGNPC) started from Daya Bay Nuclear Power Station (GNPS). In the form of joint venture, GNPS has obtained sophisticated technology, management expertise and human resources both at home and abroad, and has successfully completed the learning curve from importing, digesting, absorbing to innovating and self-improving. Under the principle of maintaining continuous nuclear power development by reinvesting the returns on the operating nuclear power stations, the second nuclear power project, Ling Ao Nuclear Power Station (LNPS) is progressing well and preparation for the third nuclear power project is now in full swing. With a rolling-on development mechanism being established, Daya Bay has become the cradle for nuclear power development in Guangdong. In the 21 st century, CGNPC is facing new challenges and opportunity. CGNPC will uphold the principle of maintaining continuous nuclear power development by reinvesting the returns on the operating nuclear power stations, brace itself for the market competition and explore sustained development of nuclear power in China by pursuing constant innovation in technology, management, system and concept. The strategy framework for future development of CGNPC is defined as follows: - to establish three-dimension strategic targets; - to pursue two-step development with the year 2015 as the dividing point; - to promote concerted development of nuclear power, associated industries and supporting services

  20. Microbial strategy for potential lead remediation: a review study.

    Science.gov (United States)

    Pan, Xiaohong; Chen, Zhi; Li, Lan; Rao, Wenhua; Xu, Zhangyan; Guan, Xiong

    2017-02-01

    The extensive exploitation and usage of lead compounds result in severe lead(II) pollution in water and soil environments, even in agricultural land, threatening the health of animals and humans via food chains. The recovery and remediation of lead(II) from water and soil environments have been intensively concerned in recent years. Compared with the traditional physic-chemistry treatment, microbial remediation strategy is a promising alternative to remediate lead(II)-contaminated environments due to its cost-effective and environmentally-friendly properties. Various microorganisms are capable of removing or immobilizing lead(II) from water and soil environments through bioaccumulation, precipitation or accelerated transformation of lead(II) into a very stable mineral, resulting in significant effects on lead(II) mobility and bioavailability. In the present review, we investigated a wide diversity of lead(II) bioremediation induced by different microbes and its multi-mechanisms. Moreover, we also discussed the progress and limitations, summarized the common rules of lead(II)-microbe interaction, and evaluated the environmental significance of microbes in lead biogeochemistry process. In addition, we further deliberated the feasibility and potential application of microbes in developing cost-effective, eco-friendly bioremediation or long-term management strategy for lead(II) contaminated repositories.

  1. Multigas reduction strategy under climate stabilization target

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, A. [Inst. of Applied Energy, Tokyo (Japan)

    2005-07-01

    Global warming can be mitigated through the abatement of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF{sub 6}). This study argued that multiple gas reduction flexibility should be assessed when considering effective greenhouse gas (GHG) mitigation strategies. Emissions of non-CO{sub 2} GHGs were calculated endogenously using an integrated assessment model. Multigas reduction potential was measured in relation to long-term atmospheric temperature targets, and the effects on gas life as well as abatement timing uncertainty were considered in terms of cost and technological availability. The model consisted of 5 nodules which considered issues related to energy, climate, land use, macroeconomics, and environmental impacts. The time horizon of the model was 2000 to 2100. An economic utility maximization technology was used to consider global trade balances. Emissions of non-CO{sub 2} gases from specific sources was calculated by multiplying the emission factor and the endogenous parameters within the model. Results were presented for GHG emissions and concentrations in 2 simulation cases: (1) a no climate policy case (NCP); and (2) a transient temperature stabilization (TTS) case. Actions to reduce non-CO{sub 2} GHGs included activity level changes in production and consumption, and additional reductions in abatement costs without sector activity changes. Results of the study showed that reducing global dependency on fossil fuels was an effective way to reduce GHG effects from CO{sub 2}, CH{sub 4} and N{sub 2}O. Additional abatements to reduce N{sub 2}O emissions are required in the agricultural sector. Economic incentives and public outreach programs are needed to offset the high transaction costs of GHG mitigation strategies. It was concluded that both short-term and long-term policies are required to reduce GHG in all sectors. Multigas mitigation is needed to

  2. Novel strategies for ultrahigh specific activity targeted nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong

    2012-12-13

    We have developed novel strategies optimized for preparing high specific activity radiolabeled nanoparticles, targeting nuclear imaging of low abundance biomarkers. Several compounds have been labeled with F-18 and Cu-64 for radiolabeling of SCK-nanoparticles via Copper(I) catalyzed or copper-free alkyne-azide cyclolization. Novel strategies have been developed to achieve ultrahigh specific activity with administrable amount of dose for human study using copper-free chemistry. Ligands for carbonic anhydrase 12 (CA12), a low abundance extracellular biomarker for the responsiveness of breast cancer to endocrine therapie, have been labeled with F-18 and Cu-64, and one of them has been evaluated in animal models. The results of this project will lead to major improvements in the use of nanoparticles in nuclear imaging and will significantly advance their potential for detecting low abundance biomarkers of medical importance.

  3. Lead Discovery Strategies for Identification of Chlamydia pneumoniae Inhibitors

    Directory of Open Access Journals (Sweden)

    Leena Hanski

    2016-11-01

    Full Text Available Throughout its known history, the gram-negative bacterium Chlamydia pneumoniae has remained a challenging target for antibacterial chemotherapy and drug discovery. Owing to its well-known propensity for persistence and recent reports on antimicrobial resistence within closely related species, new approaches for targeting this ubiquitous human pathogen are urgently needed. In this review, we describe the strategies that have been successfully applied for the identification of nonconventional antichlamydial agents, including target-based and ligand-based virtual screening, ethnopharmacological approach and pharmacophore-based design of antimicrobial peptide-mimicking compounds. Among the antichlamydial agents identified via these strategies, most translational work has been carried out with plant phenolics. Thus, currently available data on their properties as antichlamydial agents are described, highlighting their potential mechanisms of action. In this context, the role of mitogen-activated protein kinase activation in the intracellular growth and survival of C. pneumoniae is discussed. Owing to the complex and often complementary pathways applied by C. pneumoniae in the different stages of its life cycle, multitargeted therapy approaches are expected to provide better tools for antichlamydial therapy than agents with a single molecular target.

  4. Lead Discovery Strategies for Identification of Chlamydia pneumoniae Inhibitors.

    Science.gov (United States)

    Hanski, Leena; Vuorela, Pia

    2016-11-28

    Throughout its known history, the gram-negative bacterium Chlamydia pneumoniae has remained a challenging target for antibacterial chemotherapy and drug discovery. Owing to its well-known propensity for persistence and recent reports on antimicrobial resistence within closely related species, new approaches for targeting this ubiquitous human pathogen are urgently needed. In this review, we describe the strategies that have been successfully applied for the identification of nonconventional antichlamydial agents, including target-based and ligand-based virtual screening, ethnopharmacological approach and pharmacophore-based design of antimicrobial peptide-mimicking compounds. Among the antichlamydial agents identified via these strategies, most translational work has been carried out with plant phenolics. Thus, currently available data on their properties as antichlamydial agents are described, highlighting their potential mechanisms of action. In this context, the role of mitogen-activated protein kinase activation in the intracellular growth and survival of C . pneumoniae is discussed. Owing to the complex and often complementary pathways applied by C. pneumoniae in the different stages of its life cycle, multitargeted therapy approaches are expected to provide better tools for antichlamydial therapy than agents with a single molecular target.

  5. Targeting the endocannabinoid system : future therapeutic strategies

    NARCIS (Netherlands)

    Aizpurua-Olaizola, Oier; Elezgarai, Izaskun; Rico-Barrio, Irantzu; Zarandona, Iratxe; Etxebarria, Nestor; Usobiaga, Aresatz

    2017-01-01

    The endocannabinoid system (ECS) is involved in many physiological regulation pathways in the human body, which makes this system the target of many drugs and therapies. In this review, we highlight the latest studies regarding the role of the ECS and the drugs that target it, with a particular

  6. Student Target Marketing Strategies for Universities

    Science.gov (United States)

    Lewison, Dale M.; Hawes, Jon M.

    2007-01-01

    As colleges and universities adopt marketing orientations to an ever-increasing extent, the relative merits of mass marketing and target marketing must also be explored. Researchers identify buyer types as potential students focused on quality, value or economy. On the other axis, learner types are described as those who focus on career,…

  7. Chemotherapeutic targets in parasites: contemporary strategies

    National Research Council Canada - National Science Library

    Mansour, Tag E; Mansour, Joan MacKinnon

    2002-01-01

    ... identify effective antiparasitic agents. An introduction to the early development of parasite chemotherapy is followed by an overview of biophysical techniques and genomic and proteomic analyses. Several chapters are devoted to specific types of chemotherapeutic agents and their targets in malaria, trypanosomes, leishmania, and amitochondrial...

  8. Space based lidar shot pattern targeting strategies for small targets such as streams

    Science.gov (United States)

    Spiers, Gary D.

    2001-01-01

    An analysis of the effectiveness of four different types of lidar shot distribution is conducted to determine which is best for concentrating shots in a given location. A simple preemptive targeting strategy is found to work as adequately as a more involved dynamic strategy for most target sizes considered.

  9. STRATEGI SEGMENTING, TARGETING, POSITIONING SERTA STRATEGI HARGA PADA PERUSAHAAN KECAP BLEKOK DI CILACAP

    OpenAIRE

    Wijaya, Hari; Sirine, Hani

    2017-01-01

    To win the market competition, companies must have segmenting, targeting, positioning strategy and pricing strategy. This study aims to determine segmenting, targeting, positioning strategy as well as the company's pricing strategies on Kecap Blekok Company in Cilacap. Methods of data collection in this study using interviews and documentation. The analysis technique used is descriptive analysis techniques. The results showed market segment of Kecap Blekok Company is the lower middle class, t...

  10. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation.

    Science.gov (United States)

    Zheng, Jing; Tan, Chunyan; Xue, Pengcheng; Cao, Jiakun; Liu, Feng; Tan, Ying; Jiang, Yuyang

    2016-02-19

    Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A potential target for organophosphate insecticides leading to spermatotoxicity.

    Science.gov (United States)

    Suzuki, Himiko; Tomizawa, Motohiro; Ito, Yuki; Abe, Keisuke; Noro, Yuki; Kamijima, Michihiro

    2013-10-16

    Organophosphate (OP) insecticides as an anticholinesterase also act on the diverse serine hydrolase targets, thereby revealing secondary or unexpected toxic effects including male reproductive toxicity. The present investigation detects a possible target molecule(s) for OP-induced spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) from a chemical standpoint. The activity-based protein profiling (ABPP) approach with a phosphonofluoridate fluorescent probe pinpointed the molecular target for fenitrothion (FNT, a major OP insecticide) oxon (bioactive metabolite of FNT) in the mouse testicular membrane proteome, i.e., FNT oxon phosphorylates the fatty acid amide hydrolase (FAAH), which plays pivotal roles in spermatogenesis and sperm motility acquirement. Subsequently, mice were treated orally with vehicle or FNT for 10 days, and FAAH activity in testis or epididymis cauda was markedly reduced by the subacute exposure. ABPP analysis revealed that FAAH was selectively inhibited among the FNT-treated testicular membrane proteome. Accordingly, FAAH is a potential target for OP-elicited spermatotoxicity.

  12. Factors leading to inflation targeting : The impact of adoption

    NARCIS (Netherlands)

    Samarina, Anna; Sturm, Jan-Egbert

    2013-01-01

    This paper examines how the analysis of inflation targeting (IT) adoption is affected by allowing for a structural change after adoption, using panel probit models for 60 countries over the period 1985-2008. Our findings suggest that there is a structural change after IT adoption. Including the

  13. Factors leading to inflation targeting - the impact of adoption

    NARCIS (Netherlands)

    Samarina, Anna; Sturm, Jan-Egbert

    2013-01-01

    This paper examines how the analysis of inflation targeting (IT) adoption is affected by the choice of the analyzed period. We test whether country characteristics influence the decision to apply IT differently before and after its adoption, using panel probit models for 60 countries over the period

  14. 77 FR 16796 - Lead Requirements for Lead-Based Paint Activities in Target Housing and Child-Occupied Facilities...

    Science.gov (United States)

    2012-03-22

    ... document announces the receipt of Arkansas's rules established pursuant to its new 2011 statutory authority... program accreditation requirements, and work practice standards for lead-based paint activities in target...-based paint program and passed a new statute establishing a State lead-based paint program and changing...

  15. Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy

    NARCIS (Netherlands)

    Clar, Julie; Gri, Blandine; Calderaro, Julien; Birling, Marie-Christine; Herault, Yann; Smit, G. Peter A.; Mithieux, Gilles; Rajas, Fabienne

    2014-01-01

    Renal failure is a major complication that arises with aging in glycogen storage disease type 1a and type 1b patients. In the kidneys, glucose-6 phosphatase catalytic subunit (encoded by G6pc) deficiency leads to the accumulation of glycogen, an effect resulting in marked nephromegaly and

  16. A Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets.

    Science.gov (United States)

    Wasko, Michael J; Pellegrene, Kendy A; Madura, Jeffry D; Surratt, Christopher K

    2015-01-01

    Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacological screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening (VS), which employs computer models of the target protein to narrow the search for possible leads. A variant of VS is fragment-based drug design (FBDD), an emerging in silico lead discovery method that introduces low-molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for "growing" the lead candidate. Current efforts in virtual FBDD within central nervous system (CNS) targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor-binding pocket using the fragment as a scaffold. This process not only places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies.

  17. A role for fragment-based drug design in developing novel lead compounds for central nervous system targets

    Directory of Open Access Journals (Sweden)

    Michael J. Wasko

    2015-09-01

    Full Text Available Hundreds of millions of U.S. dollars are invested in the research and development of a single drug. Lead compound development is an area ripe for new design strategies. Therapeutic lead candidates have been traditionally found using high-throughput in vitro pharmacologic screening, a costly method for assaying thousands of compounds. This approach has recently been augmented by virtual screening, which employs computer models of the target protein to narrow the search for possible leads. A variant of virtual screening is fragment-based drug design, an emerging in silico lead discovery method that introduces low molecular weight fragments, rather than intact compounds, into the binding pocket of the receptor model. These fragments serve as starting points for growing the lead candidate. Current efforts in virtual fragment-based drug design within central nervous system (CNS targets are reviewed, as is a recent rule-based optimization strategy in which new molecules are generated within a 3D receptor binding pocket using the fragment as a scaffold. This process places special emphasis on creating synthesizable molecules but also exposes computational questions worth addressing. Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic lead discovery and optimization that can be applied to CNS targets to augment current design strategies.

  18. Targeting mitochondrial respiration as a therapeutic strategy for cervical cancer.

    Science.gov (United States)

    Tian, Shenglan; Chen, Heng; Tan, Wei

    2018-05-23

    Targeting mitochondrial respiration has been documented as an effective therapeutic strategy in cancer. However, the impact of mitochondrial respiration inhibition on cervical cancer cells are not well elucidated. Using a panel of cervical cancer cell lines, we show that an existing drug atovaquone is active against the cervical cancer cells with high profiling of mitochondrial biogenesis. Atovaquone inhibited proliferation and induced apoptosis with varying efficacy among cervical cancer cell lines regardless of HPV infection, cellular origin and their sensitivity to paclitaxel. We further demonstrated that atovaquone acts on cervical cancer cells via inhibiting mitochondrial respiration. In particular, atovaquone specifically inhibited mitochondrial complex III but not I, II or IV activity, leading to respiration inhibition and energy crisis. Importantly, we found that the different sensitivity of cervical cancer cell lines to atovaquone were due to their differential level of mitochondrial biogenesis and dependency to mitochondrial respiration. In addition, we demonstrated that the in vitro observations were translatable to in vivo cervical cancer xenograft mouse model. Our findings suggest that the mitochondrial biogenesis varies among patients with cervical cancer. Our work also suggests that atovaquone is a useful addition to cervical cancer treatment, particularly to those with high dependency on mitochondrial respiration. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Improved targeted immunization strategies based on two rounds of selection

    Science.gov (United States)

    Xia, Ling-Ling; Song, Yu-Rong; Li, Chan-Chan; Jiang, Guo-Ping

    2018-04-01

    In the case of high degree targeted immunization where the number of vaccine is limited, when more than one node associated with the same degree meets the requirement of high degree centrality, how can we choose a certain number of nodes from those nodes, so that the number of immunized nodes will not exceed the limit? In this paper, we introduce a new idea derived from the selection process of second-round exam to solve this problem and then propose three improved targeted immunization strategies. In these proposed strategies, the immunized nodes are selected through two rounds of selection, where we increase the quotas of first-round selection according the evaluation criterion of degree centrality and then consider another characteristic parameter of node, such as node's clustering coefficient, betweenness and closeness, to help choose targeted nodes in the second-round selection. To validate the effectiveness of the proposed strategies, we compare them with the degree immunizations including the high degree targeted and the high degree adaptive immunizations using two metrics: the size of the largest connected component of immunized network and the number of infected nodes. Simulation results demonstrate that the proposed strategies based on two rounds of sorting are effective for heterogeneous networks and their immunization effects are better than that of the degree immunizations.

  20. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    Science.gov (United States)

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  1. Therapeutic targeting strategies using endogenous cells and proteins.

    Science.gov (United States)

    Parayath, Neha N; Amiji, Mansoor M

    2017-07-28

    Targeted drug delivery has become extremely important in enhancing efficacy and reducing the toxicity of therapeutics in the treatment of various disease conditions. Current approaches include passive targeting, which relies on naturally occurring differences between healthy and diseased tissues, and active targeting, which utilizes various ligands that can recognize targets expressed preferentially at the diseased site. Clinical translation of these mechanisms faces many challenges including the immunogenic and toxic effects of these non-natural systems. Thus, use of endogenous targeting systems is increasingly gaining momentum. This review is focused on strategies for employing endogenous moieties, which could serve as safe and efficient carriers for targeted drug delivery. The first part of the review involves cells and cellular components as endogenous carriers for therapeutics in multiple disease states, while the second part discusses the use of endogenous plasma components as endogenous carriers. Further understanding of the biological tropism with cells and proteins and the newer generation of delivery strategies that exploits these endogenous approaches promises to provide better solutions for site-specific delivery and could further facilitate clinical translations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The space distribution of neutrons generated in massive lead target by relativistic nuclear beam

    International Nuclear Information System (INIS)

    Chultem, D.; Damdinsuren, Ts.; Enkh-Gin, L.; Lomova, L.; Perelygin, V.; Tolstov, K.

    1993-01-01

    The present paper is devoted to implementation of solid state nuclear track detectors in the research of the neutron generation in extended lead spallation target. Measured neutrons space distribution inside the lead target and neutron distribution in the thick water moderator are assessed. (Author)

  3. Preventive strike vs. false targets and protection in defense strategy

    International Nuclear Information System (INIS)

    Levitin, Gregory; Hausken, Kjell

    2011-01-01

    A defender allocates its resource between defending an object passively and striking preventively against an attacker seeking to destroy the object. With no preventive strike the defender distributes its entire resource between deploying false targets, which the attacker cannot distinguish from the genuine object, and protecting the object. If the defender strikes preventively, the attacker's vulnerability depends on its protection and on the defender's resource allocated to the strike. If the attacker survives, the object's vulnerability depends on the attacker's revenge attack resource allocated to the attacked object. The optimal defense resource distribution between striking preventively, deploying the false targets and protecting the object is analyzed. Two cases of the attacker strategy are considered: when the attacker attacks all of the targets and when it chooses a number of targets to attack. An optimization model is presented for making a decision about the efficiency of the preventive strike based on the estimated attack probability, dependent on a variety of model parameters.

  4. Stakeholder analysis and mapping as targeted communication strategy.

    Science.gov (United States)

    Shirey, Maria R

    2012-09-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author highlights the importance of stakeholder theory and discusses how to apply the theory to conduct a stakeholder analysis. This article also provides an explanation of how to use related stakeholder mapping techniques with targeted communication strategies.

  5. Neutron production in interactions of relativistic protons and deuterons with lead targets

    International Nuclear Information System (INIS)

    Yurevich, V.I.; Amelin, N.S.; Yakovlev, R.M.; Nikolaev, V.A.; Lyapin, V.G.; Tsvetkov, I.O.

    2005-01-01

    Results on the neutron double-differential cross sections and yields obtained in the time-of-flight measurements with different lead targets and beams of protons and deuterons at an energy of about 2 GeV are discussed. The neutron spatial-energy distribution for an extended lead target was studied by the threshold detector method in the energy range of protons and deuterons 1-3.7 GeV. A dependence of the mean neutron multiplicity, energy of neutrons, and process of neutron multiplication in lead on the target dimension, and the type and energy of the beam particle is analyzed. (author)

  6. Designing a Knowledge Mobilization Strategy: Leading through Influence

    Science.gov (United States)

    Reid, Steven

    2015-01-01

    As district leaders consider professional learning opportunities for educators, mobilizing new thought and actions across an entire system is a vexing challenge. Classroom-based learning may unfortunately be viewed as juxtaposed to district-based learning. It becomes essential for district leaders to develop knowledge mobilization strategies which…

  7. Leading School Change: Nine Strategies to Bring Everybody on Board

    Science.gov (United States)

    Whitaker, Todd

    2010-01-01

    Make positive and immediate changes in your school with the support of your entire staff. New from acclaimed speaker and bestselling author Todd Whitaker ("What Great Teachers Do Differently, Dealing with Difficult Parents"), Leading School Change provides principals, assistant principals, district superintendents, and other educators with…

  8. 90 deg.Neutron emission from high energy protons and lead ions on a thin lead target

    CERN Document Server

    Agosteo, S; Foglio-Para, A; Mitaroff, W A; Silari, Marco; Ulrici, L

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: sup 2 sup 0 sup 8 Pb sup 8 sup 2 sup + lead ions at 40 GeV/c per nucleon and 158 GeV/c per nucleon, and 40 GeV/c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90 deg.with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that--for such high energy heavy ion beams--a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0...

  9. Design strategies for self-assembly of discrete targets

    International Nuclear Information System (INIS)

    Madge, Jim; Miller, Mark A.

    2015-01-01

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority

  10. Why Leading Consumer Product Companies Develop Proactive Chemical Management Strategies

    Science.gov (United States)

    Scruggs, Caroline E.; Van Buren, Harry J.

    2014-01-01

    Scholars have studied the various pressures that companies face related to socially responsible behavior when stakeholders know the particular social issues under consideration. Many have examined social responsibility in the context of environmental responsibility and the general approaches companies take regarding environmental management. The issue of currently unregulated, but potentially hazardous, chemicals in consumer products is not well understood by the general public, but a number of proactive consumer product companies have voluntarily adopted strategies to minimize use of such chemicals. These companies are exceeding regulatory requirements by restricting from their products chemicals that could harm human or environmental health, despite the fact that these actions are costly. They do not usually advertise the details of their strategies to end consumers. This article uses interviews with senior environmental directors of 20 multinational consumer product companies to investigate why these companies engage in voluntary chemicals management. The authors conclude that the most significant reasons are to achieve a competitive advantage and stay ahead of regulations, manage relationships and maintain legitimacy with stakeholders, and put managerial values into practice. Many of the characteristics related to the case of chemicals management are extendable to other areas of stakeholder management in which risks to stakeholders are either unknown or poorly understood. PMID:27471326

  11. Why Leading Consumer Product Companies Develop Proactive Chemical Management Strategies.

    Science.gov (United States)

    Scruggs, Caroline E; Van Buren, Harry J

    2016-05-01

    Scholars have studied the various pressures that companies face related to socially responsible behavior when stakeholders know the particular social issues under consideration. Many have examined social responsibility in the context of environmental responsibility and the general approaches companies take regarding environmental management. The issue of currently unregulated, but potentially hazardous, chemicals in consumer products is not well understood by the general public, but a number of proactive consumer product companies have voluntarily adopted strategies to minimize use of such chemicals. These companies are exceeding regulatory requirements by restricting from their products chemicals that could harm human or environmental health, despite the fact that these actions are costly. They do not usually advertise the details of their strategies to end consumers. This article uses interviews with senior environmental directors of 20 multinational consumer product companies to investigate why these companies engage in voluntary chemicals management. The authors conclude that the most significant reasons are to achieve a competitive advantage and stay ahead of regulations, manage relationships and maintain legitimacy with stakeholders, and put managerial values into practice. Many of the characteristics related to the case of chemicals management are extendable to other areas of stakeholder management in which risks to stakeholders are either unknown or poorly understood.

  12. UK is leading the way with clear strategy for nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Kraev, Kamen [NucNet, The Independent Global Nuclear News Agency, Brussels (Belgium)

    2018-01-15

    The UK is Europe's most prominent leader in nuclear development because of the government's clear strategy of supporting nuclear energy as part of its future energy mix, a senior official from US-based nuclear equipment manufacturer Westinghouse Electric Company said. Mr Kirst told that the UK government's decision to support the financing of new energy projects, including nuclear, by way of a contract for difference scheme was a breakthrough. Additionally potential for nuclear development in other EU member states is possible in Poland and the Czech Republic where also new nuclear capacities are possible. Potential exists also in non-EU countries like Turkey and the Ukraine.

  13. UK is leading the way with clear strategy for nuclear

    International Nuclear Information System (INIS)

    Kraev, Kamen

    2018-01-01

    The UK is Europe's most prominent leader in nuclear development because of the government's clear strategy of supporting nuclear energy as part of its future energy mix, a senior official from US-based nuclear equipment manufacturer Westinghouse Electric Company said. Mr Kirst told that the UK government's decision to support the financing of new energy projects, including nuclear, by way of a contract for difference scheme was a breakthrough. Additionally potential for nuclear development in other EU member states is possible in Poland and the Czech Republic where also new nuclear capacities are possible. Potential exists also in non-EU countries like Turkey and the Ukraine.

  14. Feature Extraction and Selection Strategies for Automated Target Recognition

    Science.gov (United States)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  15. Leading clinical handover improvement: a change strategy to implement best practices in the acute care setting.

    Science.gov (United States)

    Clarke, Christina M; Persaud, Drepaul David

    2011-03-01

    Many contemporary acute care facilities lack safe and effective clinical handover practices resulting in patient transitions that are vulnerable to discontinuities in care, medical errors, and adverse patient safety events. This article is intended to supplement existing handover improvement literature by providing practical guidance for leaders and managers who are seeking to improve the safety and the effectiveness of clinical handovers in the acute care setting. A 4-stage change model has been applied to guide the application of strategies for handover improvement. Change management and quality improvement principles, as well as concepts drawn from safety science and high-reliability organizations, were applied to inform strategies. A model for handover improvement respecting handover complexity is presented. Strategies targeted to stages of change include the following: 1. Enhancing awareness of handover problems and opportunities with the support of strategic directions, accountability, end user involvement, and problem complexity recognition. 2. Identifying solutions by applying and adapting best practices in local contexts. 3. Implementing locally adapted best practices supported by communication, documentation, and training. 4. Institutionalizing practice changes through integration, monitoring, and active dissemination. Finally, continued evaluation at every stage is essential. Although gaps in handover process and function knowledge remain, efforts to improve handover safety and effectiveness are still possible. Continued evaluation is critical in building this understanding and to ensure that practice changes lead to improvements in patient safety, organizational effectiveness, and patient and provider satisfaction. Through handover knowledge building, fundamental changes in handover policies and practices may be possible.

  16. Status and future application of pilot lead-bismuth target circuit TC-1 for ADS

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, S.; Leonchuk, M.; Orlov, Y.; Pankratov, D.; Reshetnikova, O.; Suvorov, G.; Zabudko, A. [Institute for Physics and Power Engineering, Obninsk (Russian Federation); Stepanov, V.; Klimov, N. [Experimental and Design Organization, Gidropress, Podolsk (Russian Federation); Hechanova, A.; Ma, J. [Nevada Univ., Las Vegas, NV (United States); Li, N. [Los Alamos National Lab., NM (United States); Gudowski, W. [International Science and Technology Center, Moscow (Russian Federation)

    2007-07-01

    A complicated evolution, status and future application of the pilot molten lead-bismuth target circuit of 1 MW proton beam power (TC-1) as an important part of a target-blanket accelerator driven system (ADS), that has been developed, created and twice tested under the auspice of the International Science and Technology Center (ISTC), is analyzed. The target complex TC-1 is a circulation lead-bismuth loop whose beam window is made of ferritic steel EP-823 (this steel was used in the past as material of fuel rods cladding in reactors cooled with lead-bismuth). At present TC-1 is operating at coolant temperature up to 300 C degrees and will be used to study different issues linked to the use of lead-bismuth: -) interaction with air, water and hydrogen, -) different regimes of flow, -) corrosion, -) filtering, or -) slag formation.

  17. Leading a multigenerational workforce: strategies for attracting and retaining millennials.

    Science.gov (United States)

    Cahill, Terrence F; Sedrak, Mona

    2012-01-01

    Over the past several years, leaders in healthcare have noticed an increase in generational tension among employees, most often focused on the attitudes and behaviors of the arriving millennials (generation Y). While these employee relations issues were a nuisance, they rarely rose to the level of a priority demanding leadership intervention. Some leaders, in fact, hoped that the issues would resolve themselves as these young employees settled in and learned that they had to demonstrate new behaviors to be successful in the workplace. Most organizations adopted this wait-and-see attitude. Not so today. As the boomer generation has begun its exodus from the workplace, organizations are increasingly looking at the millennials as not a problem but a solution to the workplace manpower transition that is under way. Our problem is that we don't yet know how best to lead such a diverse, multigenerational workforce. This article examines the generational topic and provides advice concerning a variety of changes that leaders may implement to advance their organization's ability to attract and to retain the millennials.

  18. Strategies For Human Exploration Leading To Human Colonization of Space

    Science.gov (United States)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  19. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    Science.gov (United States)

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  20. Evaluation of targeted influenza vaccination strategies via population modeling.

    Directory of Open Access Journals (Sweden)

    John Glasser

    Full Text Available BACKGROUND: Because they can generate comparable predictions, mathematical models are ideal tools for evaluating alternative drug or vaccine allocation strategies. To remain credible, however, results must be consistent. Authors of a recent assessment of possible influenza vaccination strategies conclude that older children, adolescents, and young adults are the optimal targets, no matter the objective, and argue for vaccinating them. Authors of two earlier studies concluded, respectively, that optimal targets depend on objectives and cautioned against changing policy. Which should we believe? METHODS AND FINDINGS: In matrices whose elements are contacts between persons by age, the main diagonal always predominates, reflecting contacts between contemporaries. Indirect effects (e.g., impacts of vaccinating one group on morbidity or mortality in others result from off-diagonal elements. Mixing matrices based on periods in proximity with others have greater sub- and super-diagonals, reflecting contacts between parents and children, and other off-diagonal elements (reflecting, e.g., age-independent contacts among co-workers, than those based on face-to-face conversations. To assess the impact of targeted vaccination, we used a time-usage study's mixing matrix and allowed vaccine efficacy to vary with age. And we derived mortality rates either by dividing observed deaths attributed to pneumonia and influenza by average annual cases from a demographically-realistic SEIRS model or by multiplying those rates by ratios of (versus adding to them differences between pandemic and pre-pandemic mortalities. CONCLUSIONS: In our simulations, vaccinating older children, adolescents, and young adults averts the most cases, but vaccinating either younger children and older adults or young adults averts the most deaths, depending on the age distribution of mortality. These results are consistent with those of the earlier studies.

  1. Inverse targeting —An effective immunization strategy

    Science.gov (United States)

    Schneider, C. M.; Mihaljev, T.; Herrmann, H. J.

    2012-05-01

    We propose a new method to immunize populations or computer networks against epidemics which is more efficient than any continuous immunization method considered before. The novelty of our method resides in the way of determining the immunization targets. First we identify those individuals or computers that contribute the least to the disease spreading measured through their contribution to the size of the largest connected cluster in the social or a computer network. The immunization process follows the list of identified individuals or computers in inverse order, immunizing first those which are most relevant for the epidemic spreading. We have applied our immunization strategy to several model networks and two real networks, the Internet and the collaboration network of high-energy physicists. We find that our new immunization strategy is in the case of model networks up to 14%, and for real networks up to 33% more efficient than immunizing dynamically the most connected nodes in a network. Our strategy is also numerically efficient and can therefore be applied to large systems.

  2. A compound chimeric antigen receptor strategy for targeting multiple myeloma.

    Science.gov (United States)

    Chen, K H; Wada, M; Pinz, K G; Liu, H; Shuai, X; Chen, X; Yan, L E; Petrov, J C; Salman, H; Senzel, L; Leung, E L H; Jiang, X; Ma, Y

    2018-02-01

    Current clinical outcomes using chimeric-antigen receptors (CARs) against multiple myeloma show promise in the eradication of bulk disease. However, these anti-BCMA (CD269) CARs observe relapse as a common phenomenon after treatment due to the reemergence of either antigen-positive or -negative cells. Hence, the development of improvements in CAR design to target antigen loss and increase effector cell persistency represents a critical need. Here, we report on the anti-tumor activity of a CAR T-cell possessing two complete and independent CAR receptors against the multiple myeloma antigens BCMA and CS1. We determined that the resulting compound CAR (cCAR) T-cell possesses consistent, potent and directed cytotoxicity against each target antigen population. Using multiple mouse models of myeloma and mixed cell populations, we are further able to show superior in vivo survival by directed cytotoxicity against multiple populations compared to a single-expressing CAR T-cell. These findings indicate that compound targeting of BCMA and CS1 on myeloma cells can potentially be an effective strategy for augmenting the response against myeloma bulk disease and for initiation of broader coverage CAR therapy.

  3. Emerging Therapeutic Strategies for Targeting Chronic Myeloid Leukemia Stem Cells

    Directory of Open Access Journals (Sweden)

    Ahmad Hamad

    2013-01-01

    Full Text Available Chronic myeloid leukemia (CML is a clonal myeloproliferative disorder. Current targeted therapies designed to inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein have made a significant breakthrough in the treatment of CML patients. However, CML remains a chronic disease that a patient must manage for life. Although tyrosine kinase inhibitors (TKI therapy has completely transformed the prognosis of CML, it has made the therapeutic management more complex. The interruption of TKI treatment results in early disease progression because it does not eliminate quiescent CML stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML to achieve a permanent cure, and to allow TKI interruption. This review summarizes recent research done on alternative targeted therapies with a particular focus on some important signaling pathways (such as Alox5, Hedgehog, Wnt/b-catenin, autophagy, and PML that have the potential to target CML stem cells and potentially provide cure for CML.

  4. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy.

    Science.gov (United States)

    Shayestehpour, Mohammad; Moghim, Sharareh; Salimi, Vahid; Jalilvand, Somayeh; Yavarian, Jila; Romani, Bizhan; Mokhtari-Azad, Talat

    2017-08-15

    MicroRNA-targeting strategy is a promising approach that enables oncolytic viruses to replicate in tumor cells but not in normal cells. In this study, we targeted adenoviral replication toward breast cancer cells by inserting ten complementary binding sites for miR-145-5p downstream of E1A gene. In addition, we evaluated the effect of increasing miR-145 binding sites on inhibition of virus replication. Ad5-control and adenoviruses carrying five or ten copies of miR145-5p target sites (Ad5-5miR145T, Ad5-10miR145T) were generated and inoculated into MDA-MB-453, BT-20, MCF-7 breast cancer cell lines and human mammary epithelial cells (HMEpC). Titer of Ad5-10miR145T in HMEpC was significantly lower than Ad5-control titer. Difference between the titer of these two viruses at 12, 24, 36, and 48h after infection was 1.25, 2.96, 3.06, and 3.77 log TCID 50 . No significant difference was observed between the titer of both adenoviruses in MDA-MB-453, BT-20 and MCF-7 cells. The infectious titer of adenovirus containing 10 miR-145 binding sites in HMEpC cells at 24, 36, and 48h post-infection was 1.7, 2.08, and 4-fold, respectively, lower than the titer of adenovirus carrying 5 miR-145 targets. Our results suggest that miR-145-targeting strategy provides selectivity for adenovirus replication in breast cancer cells. Increasing the number of miRNA binding sites within the adenoviral genome confers more selectivity for viral replication in cancer cells. Copyright © 2017. Published by Elsevier B.V.

  5. Isotopically tailored lead target with reduced polonium and bismuth radio-waste

    International Nuclear Information System (INIS)

    Khorasanov, G.L.; Ivanov, A.P.; Lunev, V.P.; Blokhin, A.I.

    2002-01-01

    Residual activity of a lead target after 1 year irradiation with a high power, 0.8 GeV*30 mA, proton beam is studied. It is concluded that the main radiotoxicity of irradiated lead is connected with bismuth isotope, Bi-207, which is produced in natural lead, mix of several stable isotopes, via (p,2n) reaction with Pb-208 nuclei. It is proposed to use, as a target material, lead enriched with another stable isotope, Pb-206, in order to reduce producing Bi-207 and Po-210. Estimation of charges for obtaining large quantities of lead-206 is also given. Accumulation of hazardous radionuclides, Bi-207, Bi-208, and Po-210, in natural lead to be used as a coolant in future fast reactors and accelerator driven reactors is predicted. In accelerator driven systems a large portion of Bi-207 can be produced via Pb-208(p,2n)Bi-207 reaction in a target of natural lead (Pb-208/Pb-207/Pb-206/Pb-204=52.35/22.08/24.14/1.42 %). A new isotopically tailored coolant-converter for ADS consisting of lead isotope, Pb-206, is proposed. By using this material, it is possible to reduce essentially the production of the most radio-toxic isotopes of Bi and Po and to avoid disposing the large amounts of lead. To provide the future fast reactors and accelerator driven systems with low-activation coolant - converter, the new technology of obtaining the large amounts of natural lead enriched with lead isotope, Pb-206, should be developed. (authors)

  6. A safe strategy to decrease fetal lead exposure in a woman with chronic intoxication.

    Science.gov (United States)

    Leiba, Adi; Hu, Howard; Zheng, Amin; Kales, Stefanos N

    2010-08-01

    During pregnancy skeletal lead is mobilized by maternal bone turnover and can threaten fetal development. The exact strategy suggested to women of childbearing age, who were chronically exposed to lead, and, thus, have high bone lead burden, is not well established. We describe 4 years of follow-up of a 29-year-old woman with chronic lead intoxication. We (a) advised her to delay conception until 'toxicological clearance', (b) treated her with multiple courses of lead chelator, DMSA, and (c) prescribed oral calcium. Patient had low blood lead and protoporphyrin level during pregnancy until delivery. Delaying conception, lead chelation, and calcium supplementation can decrease fetal exposure.

  7. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    Science.gov (United States)

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  8. Mass Media Strategies Targeting High Sensation Seekers: What Works and Why

    Science.gov (United States)

    Stephenson, Michael T.

    2003-01-01

    Objectives: To examine strategies for using the mass media effectively in drug prevention campaigns targeting high sensation seekers. Methods: Both experimental lab and field studies were used to develop a comprehensive audience segmentation strategy targeting high sensation seekers. Results: A 4-pronged targeting strategy employed in an…

  9. 78 FR 14121 - Notice of Availability of Funds and Solicitation for Grant Applications for Strategies Targeting...

    Science.gov (United States)

    2013-03-04

    ... Solicitation for Grant Applications for Strategies Targeting Characteristics Common to Female Ex-Offenders... will be targeted to females, but must also be open to eligible male ex-offenders. Strategies Targeting... period of performance. These grants will include an integrated strategy of recruitment and assessment...

  10. Multistage Targeting Strategy Using Magnetic Composite Nanoparticles for Synergism of Photothermal Therapy and Chemotherapy.

    Science.gov (United States)

    Wang, Yi; Wei, Guoqing; Zhang, Xiaobin; Huang, Xuehui; Zhao, Jingya; Guo, Xing; Zhou, Shaobing

    2018-03-01

    Mitochondrial-targeting therapy is an emerging strategy for enhanced cancer treatment. In the present study, a multistage targeting strategy using doxorubicin-loaded magnetic composite nanoparticles is developed for enhanced efficacy of photothermal and chemical therapy. The nanoparticles with a core-shell-SS-shell architecture are composed of a core of Fe 3 O 4 colloidal nanocrystal clusters, an inner shell of polydopamine (PDA) functionalized with triphenylphosphonium (TPP), and an outer shell of methoxy poly(ethylene glycol) linked to the PDA by disulfide bonds. The magnetic core can increase the accumulation of nanoparticles at the tumor site for the first stage of tumor tissue targeting. After the nanoparticles enter the tumor cells, the second stage of mitochondrial targeting is realized as the mPEG shell is detached from the nanoparticles by redox responsiveness to expose the TPP. Using near-infrared light irradiation at the tumor site, a photothermal effect is generated from the PDA photosensitizer, leading to a dramatic decrease in mitochondrial membrane potential. Simultaneously, the loaded doxorubicin can rapidly enter the mitochondria and subsequently damage the mitochondrial DNA, resulting in cell apoptosis. Thus, the synergism of photothermal therapy and chemotherapy targeting the mitochondria significantly enhances the cancer treatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Assistant in design of tissue targeting leads with radio-combinatorial screening vivo

    International Nuclear Information System (INIS)

    Liu Ciyi; Zeng Jun; Xie Wenhui; Hu Silong; Jin Muxiu

    2004-01-01

    The diagnostic and therapeutic efficiency of drug depends highly on the drug distribution in target tissues (tumor for example) both specifically and accumulatively. We report here a powerful approach in design of tissue targeting leads with the assistant of radio-combinatorial screening technique developed in our laboratory. Methods: The C-terminal amide tripeptide libraries were synthesized on Rink Amide-MBHA resin in the OXX aO1OXaO1O2O positional scanning format and iterative protoco. A technetium (V) oxo core[(TcO)3+] was bound to the N4-triligands of tripeptide libraries via four deprotonated anfide nitrogen atoms to form a structure of 99Tcm-tripeptoid libraries. The radio-combinatorial screening (RCS) in vivo was then carried out after SD rats and A549 tumor bearing mice received i.v. with 99Tcm-tripeptoid libraries. Results: Signals of tissue distribution and metabolism of libraries were recorded by g counting or imaging. From library of 8,000 99Tcm-tripeptoid members, the tissue targeting leads had been identified by RCS. Those included 99Tcm-DSG (RES), 99Tcm-VAA, and 99Tcm-VIG that had specific tissue targeting in kidney, stomach, and liver respectively. The percent injected dose per gram tissue (%ID/g) of 99Tcm labeled leads in their target tissues was highly structure-dependent The discovery of 99Tcm-VAA and 99Tcm-VIG indicates that side chain methyl at positionl and 2 are crucial for stomach and liver accumulating 99Tcm-tripeptoids. In the case of kidney targeting, Ser in the position 2 and 3 is crucial for 99Tcm-tripeptoids renal excretion and accumulation characteristics respectively. Conclusion: RCS in vivo is a powerful tool for design of tissue targeting leads. (authors)

  12. Targeted intervention strategies to optimise diversion of BMW in the Dublin, Ireland region

    International Nuclear Information System (INIS)

    Purcell, M.; Magette, W.L.

    2011-01-01

    Highlights: → Previous research indicates that targeted strategies designed for specific areas should lead to improved diversion. → Survey responses and GIS model predictions from previous research were the basis for goal setting. → Then logic modelling and behavioural research were employed to develop site-specific management intervention strategies. → Waste management initiatives can be tailored to specific needs of areas rather than one size fits all means currently used. - Abstract: Urgent transformation is required in Ireland to divert biodegradable municipal waste (BMW) from landfill and prevent increases in overall waste generation. When BMW is optimally managed, it becomes a resource with value instead of an unwanted by-product requiring disposal. An analysis of survey responses from commercial and residential sectors for the Dublin region in previous research by the authors proved that attitudes towards and behaviour regarding municipal solid waste is spatially variable. This finding indicates that targeted intervention strategies designed for specific geographic areas should lead to improved diversion rates of BMW from landfill, a requirement of the Landfill Directive 1999/31/EC. In the research described in this paper, survey responses and GIS model predictions from previous research were the basis for goal setting, after which logic modelling and behavioural research were employed to develop site-specific waste management intervention strategies. The main strategies devised include (a) roll out of the Brown Bin (Organics) Collection and Community Workshops in Dun Laoghaire Rathdown, (b) initiation of a Community Composting Project in Dublin City (c) implementation of a Waste Promotion and Motivation Scheme in South Dublin (d) development and distribution of a Waste Booklet to promote waste reduction activities in Fingal (e) region wide distribution of a Waste Booklet to the commercial sector and (f) Greening Irish Pubs Initiative. Each of these

  13. Proton-beam window design for a transmutation facility operating with a liquid lead target

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, C.; Lypsch, F.; Lizana, P. [Institute for Safety Research and Reactor Technology, Juelich (Germany)] [and others

    1995-10-01

    The proton beam target of an accelerator-driven transmutation facility can be designed as a vertical liquid lead column. To prevent lead vapor from entering the accelerator vacuum, a proton-beam window has to separate the area above the lead surface from the accelerator tube. Two radiation-cooled design alternatives have been investigated which should withstand a proton beam of 1.6 GeV and 25 mA. Temperature calculations based on energy deposition calculations with the Monte Carlo code HETC, stability analysis and spallation-induced damage calculations have been performed showing the applicability of both designs.

  14. Targeting autophagy in cancer management – strategies and developments

    International Nuclear Information System (INIS)

    Ozpolat, Bulent; Benbrook, Doris M

    2015-01-01

    Autophagy is a highly regulated catabolic process involving lysosomal degradation of intracellular components, damaged organelles, misfolded proteins, and toxic aggregates, reducing oxidative stress and protecting cells from damage. The process is also induced in response to various conditions, including nutrient deprivation, metabolic stress, hypoxia, anticancer therapeutics, and radiation therapy to adapt cellular conditions for survival. Autophagy can function as a tumor suppressor mechanism in normal cells and dysregulation of this process (ie, monoallelic Beclin-1 deletion) may lead to malignant transformation and carcinogenesis. In tumors, autophagy is thought to promote tumor growth and progression by helping cells to adapt and survive in metabolically-challenged and harsh tumor microenvironments (ie, hypoxia and acidity). Recent in vitro and in vivo studies in preclinical models suggested that modulation of autophagy can be used as a therapeutic modality to enhance the efficacy of conventional therapies, including chemo and radiation therapy. Currently, more than 30 clinical trials are investigating the effects of autophagy inhibition in combination with cytotoxic chemotherapies and targeted agents in various cancers. In this review, we will discuss the role, molecular mechanism, and regulation of autophagy, while targeting this process as a novel therapeutic modality, in various cancers

  15. Neutron production in lead targets by high-energy light-mass heavy ions

    International Nuclear Information System (INIS)

    Daniehl', A.V.; Lyapin, V.S.; Tsvetkov, I.O.

    1992-01-01

    The characteristics of the time-of-flight spectrometer and the double different distributions of neutrons and secondary charged particles produced by 2 GeV protons and 1 GeVXA d,α, 6 Li and 12 C ions bombarding lead targets are described. Experimental data are compared with the results of calculations by codes SITHA. 17 refs.; 10 figs.; 1 tab

  16. Insights Into Severe Form of Dwarfism Could Lead to New Treatment Strategies

    Science.gov (United States)

    ... Spotlight on Research Insights Into Severe Form of Dwarfism Could Lead to New Treatment Strategies By Colleen ... a mutation that causes a severe form of dwarfism have led to a better understanding of the ...

  17. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    International Nuclear Information System (INIS)

    Park, J.J.; Buksa, J.J.

    1994-01-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed

  18. A comparison of information functions and search strategies for sensor planning in target classification.

    Science.gov (United States)

    Zhang, Guoxian; Ferrari, Silvia; Cai, Chenghui

    2012-02-01

    This paper investigates the comparative performance of several information-driven search strategies and decision rules using a canonical target classification problem. Five sensor models are considered: one obtained from classical estimation theory and four obtained from Bernoulli, Poisson, binomial, and mixture-of-binomial distributions. A systematic approach is presented for deriving information functions that represent the expected utility of future sensor measurements from mutual information, Rènyi divergence, Kullback-Leibler divergence, information potential, quadratic entropy, and the Cauchy-Schwarz distance. The resulting information-driven strategies are compared to direct-search, alert-confirm, task-driven (TS), and log-likelihood-ratio (LLR) search strategies. Extensive numerical simulations show that quadratic entropy typically leads to the most effective search strategy with respect to correct-classification rates. In the presence of prior information, the quadratic-entropy-driven strategy also displays the lowest rate of false alarms. However, when prior information is absent or very noisy, TS and LLR strategies achieve the lowest false-alarm rates for the Bernoulli, mixture-of-binomial, and classical sensor models.

  19. Immunotherapeutic strategies targeting Natural killer T cell responses in cancer

    Science.gov (United States)

    Shissler, Susannah C.; Bollino, Dominique R.; Tiper, Irina V.; Bates, Joshua; Derakhshandeh, Roshanak; Webb, Tonya J.

    2017-01-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T-cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where Type II cells generally suppress tumor immunity while Type I NKT cells can enhance antitumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell targeted therapies for the treatment of cancer. PMID:27393665

  20. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease.

    Science.gov (United States)

    Curry, Daniel W; Stutz, Bernardo; Andrews, Zane B; Elsworth, John D

    2018-03-26

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterized by the accumulation of intracellular α-synuclein aggregates and the degeneration of nigrostriatal dopaminergic neurons. While no treatment strategy has been proven to slow or halt the progression of the disease, there is mounting evidence from preclinical PD models that activation of 5'-AMP-activated protein kinase (AMPK) may have broad neuroprotective effects. Numerous dietary supplements and pharmaceuticals (e.g., metformin) that increase AMPK activity are available for use in humans, but clinical studies of their effects in PD patients are limited. AMPK is an evolutionarily conserved serine/threonine kinase that is activated by falling energy levels and functions to restore cellular energy balance. However, in response to certain cellular stressors, AMPK activation may exacerbate neuronal atrophy and cell death. This review describes the regulation and functions of AMPK, evaluates the controversies in the field, and assesses the potential of targeting AMPK signaling as a neuroprotective treatment for PD.

  1. Scheduling rules to achieve lead-time targets in outpatient appointment systems

    OpenAIRE

    Sivakumar, Appa Iyer; Nguyen, Thu Ba Thi; Graves, Stephen C

    2015-01-01

    This paper considers how to schedule appointments for outpatients, for a clinic that is subject to appointment lead-time targets for both new and returning patients. We develop heuristic rules, which are the exact and relaxed appointment scheduling rules, to schedule each new patient appointment (only) in light of uncertainty about future arrivals. The scheduling rules entail two decisions. First, the rules need to determine whether or not a patient's request can be accepted; then, if the req...

  2. MicroRNA-target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    He, Qiuling; Zhu, Shuijin; Zhang, Baohong

    2014-09-01

    MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.

  3. Targeted screening strategies to detect Trypanosoma cruzi infection in children.

    Directory of Open Access Journals (Sweden)

    Michael Z Levy

    2007-12-01

    Full Text Available Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy.We performed a serological survey in children 2-18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4-7.9] children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child's risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child's house. Receiver operator characteristic (ROC plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children.We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings.

  4. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Chen, Xing-miao; Chen, Han-sen; Xu, Ming-jing; Shen, Jian-gang

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.

  5. Elemental Technologies for Lead-Bismuth Spallation Target System in J-PARC

    International Nuclear Information System (INIS)

    Obayashi, H.; Yamaguchi, K.; Saito, S.; Sugawara, T.; Takei, H.; Sasa, T.

    2015-01-01

    Japan Atomic Energy Agency (JAEA) has been researching and developing an Accelerator-Driven System (ADS) as a dedicated system for the transmutation of long-lived radioactive nuclides. The ADS proposed by JAEA uses the lead-bismuth eutectic (LBE) alloy as a spallation target material and a coolant. In the various R and D for ADS, construction of the Transmutation Experimental Facility (TEF) is planned under the framework of the J-PARC project as a preceding step before the construction of demonstrative ADS. In this R and D, TEF is considered for the experimental investigation of the feasibility of the beam window, the structural materials, and to investigate the operation properties of the target system by using 400 MeV-250 kW proton beam. This target system is consisted of various elements and must be able to operate without troubles during an operation period of TEF facility. Furthermore, in the maintenance period after the operation, because the inside of a hot cell storing a target is exposed to strong radiations, all elements must be designed as remote control devices. In this study, the present conditions of the design and the result of performance test of each important elements were confirmed in the realisation of the LBE target system, such as the monitoring system of flow rate by using the ultrasonic method, the heater system with the metallic heat insulator joined to a flow channel of LBE, and the operability of remote handing. (authors)

  6. Neutron yield from thick lead target by the action of high-energy electrons

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.; Sorokin, P.V.

    1978-01-01

    The results are presented of studying the complete neutron yield from a lead target bombarded by high-energy electrons. Neutrons were recorded by the method of radio-active indicators. The dependence of the neutron yield on the target thickness varying from 0.2 to 8 cm was obtained at the energies of electrons of 230 and 1200 MeV. The neutron yield for the given energies with the target of 6 cm in thickness is in the range of saturation and is 0.1 +-0.03 and 0.65+-0.22 (neutr./MeV.el.), respectively. The neutron angular distributions were measured for different thicknesses of targets at the 201, 230 and 1200 MeV electrons. Within the error limits the angular distributions are isotropic. The dependence of neutron yield on the electron energy was examined for a 3 cm thick target. In the energy range of 100-1200 MeV these values are related by a linear dependence with the proportionality coefficient C=3x10 -4 (neutr./MeV.el.)

  7. Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2017-12-01

    Full Text Available The cooling efficiency of natural draft dry cooling system (NDDCS are vulnerable to ambient winds, so the implementation of measures against the wind effects is of great importance. This work presents the combined air leading strategies to recover the flow and heat transfer performances of NDDCS. Following the energy balance among the exhaust steam, circulating water, and cooling air, numerical models of natural draft dry cooling systems with the combined air leading strategies are developed. The cooling air streamlines, volume effectiveness, thermal efficiency and outlet water temperature for each cooling delta of the large-scale heat exchanger are obtained. The overall volume effectiveness, average outlet water temperature of NDDCS and steam turbine back pressure are calculated. The results show that with the air leading strategies inside or outside the dry-cooling tower, the thermo-flow performances of natural draft dry cooling system are improved under all wind conditions. The combined inner and outer air leading strategies are superior to other single strategy in the performance recovery, thus can be recommended for NDDCS in power generating units.

  8. Lead generation strategy as a multichannel mechanism of growth of a modern enterprise

    Directory of Open Access Journals (Sweden)

    Łukowski Wojciech

    2016-09-01

    Full Text Available Lead generation strategy describes the marketing process of involvement and capture of interest in a product or service which is aimed at developing sales plans and, as a consequence, soliciting new clients. Lead generation is becoming an increasingly popular demand-generating strategy, which – through its multichannelled dissemination of the generated message – gives it a much greater reach. Lead generation assists organisations in achieving a greater brand awareness, building relationships and attracting more potential clients to fill their sales pipeline. The primary purpose of this publication is identifying the possibilities that the implementation of lead generation strategies provides to modern enterprises. It discusses the key aspects of this issue, demonstrating how the significance of organisations change, how their value effectively increases as a result of the implementation of tools furnished by processes that form an integral part of lead generation. The article defines the factors and processes that affect the effective course of actions undertaken within lead generation campaigns.

  9. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes.

    Science.gov (United States)

    Dias, David M; Ciulli, Alessio

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a pivotal method for structure-based and fragment-based lead discovery because it is one of the most robust techniques to provide information on protein structure, dynamics and interaction at an atomic level in solution. Nowadays, in most ligand screening cascades, NMR-based methods are applied to identify and structurally validate small molecule binding. These can be high-throughput and are often used synergistically with other biophysical assays. Here, we describe current state-of-the-art in the portfolio of available NMR-based experiments that are used to aid early-stage lead discovery. We then focus on multi-protein complexes as targets and how NMR spectroscopy allows studying of interactions within the high molecular weight assemblies that make up a vast fraction of the yet untargeted proteome. Finally, we give our perspective on how currently available methods could build an improved strategy for drug discovery against such challenging targets. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Post-targeting strategy for ready-to-use targeted nanodelivery post cargo loading.

    Science.gov (United States)

    Zhu, J Y; Hu, J J; Zhang, M K; Yu, W Y; Zheng, D W; Wang, X Q; Feng, J; Zhang, X Z

    2017-12-14

    Based on boronate formation, this study reports a post-targeting methodology capable of readily installing versatile targeting modules onto a cargo-loaded nanoplatform in aqueous mediums. This permits the targeted nanodelivery of broad-spectrum therapeutics (drug/gene) in a ready-to-use manner while overcoming the PEGylation-dilemma that frequently occurs in conventional targeting approaches.

  11. Antigen-targeting strategies using single-domain antibody fragments

    NARCIS (Netherlands)

    Duarte, Joao Nuno Silva

    2017-01-01

    Antibodies display high selectivity and affinity and have been the preferred platform for antigen targeting. Despite the development of antigen-delivery systems that enable T cell activation, targeting approaches that enhance antibody responses need improvement. This need specially applies to poorly

  12. Conceptual design and testing strategy of a dual functional lithium-lead test blanket module in ITER and EAST

    International Nuclear Information System (INIS)

    Wu, Y.

    2007-01-01

    A dual functional lithium-lead (DFLL) test blanket module (TBM) concept has been proposed for testing in the International Thermonuclear Experimental Reactor (ITER) and the Experimental Advanced Superconducting Tokamak (EAST) in China to demonstrate the technologies of the liquid lithium-lead breeder blankets with emphasis on the balance between the risks and the potential attractiveness of blanket technology development. The design of DFLL-TBM concept has the flexibility of testing both the helium-cooled quasi-static lithium-lead (SLL) blanket concept and the He/PbLi dual-cooled lithium-lead (DLL) blanket concept. This paper presents an effective testing strategy proposed to achieve the testing target of SLL and DLL DEMO blankets relevant conditions, which includes three parts: materials R and D and small-scale out-of-pile mockups testing in loops, middle-scale TBMs pre-testing in EAST and full-scale consecutive TBMs testing corresponding to different operation phases of ITER during the first 10 years. The design of the DFLL-TBM concept and the testing strategy ability to test TBMs for both blanket concepts in sequence and or in parallel for both ITER and EAST are discussed

  13. A General Strategy for Targeting Drugs to Bone.

    Science.gov (United States)

    Jahnke, Wolfgang; Bold, Guido; Marzinzik, Andreas L; Ofner, Silvio; Pellé, Xavier; Cotesta, Simona; Bourgier, Emmanuelle; Lehmann, Sylvie; Henry, Chrystelle; Hemmig, René; Stauffer, Frédéric; Hartwieg, J Constanze D; Green, Jonathan R; Rondeau, Jean-Michel

    2015-11-23

    Targeting drugs to their desired site of action can increase their safety and efficacy. Bisphosphonates are prototypical examples of drugs targeted to bone. However, bisphosphonate bone affinity is often considered too strong and cannot be significantly modulated without losing activity on the enzymatic target, farnesyl pyrophosphate synthase (FPPS). Furthermore, bisphosphonate bone affinity comes at the expense of very low and variable oral bioavailability. FPPS inhibitors were developed with a monophosphonate as a bone-affinity tag that confers moderate affinity to bone, which can furthermore be tuned to the desired level, and the relationship between structure and bone affinity was evaluated by using an NMR-based bone-binding assay. The concept of targeting drugs to bone with moderate affinity, while retaining oral bioavailability, has broad application to a variety of other bone-targeted drugs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Naturally Inspired Peptide Leads: Alanine Scanning Reveals an Actin-Targeting Thiazole Analogue of Bisebromoamide.

    Science.gov (United States)

    Johnston, Heather J; Boys, Sarah K; Makda, Ashraff; Carragher, Neil O; Hulme, Alison N

    2016-09-02

    Systematic alanine scanning of the linear peptide bisebromoamide (BBA), isolated from a marine cyanobacterium, was enabled by solid-phase peptide synthesis of thiazole analogues. The analogues have comparable cytotoxicity (nanomolar) to that of BBA, and cellular morphology assays indicated that they target the actin cytoskeleton. Pathway inhibition in human colon tumour (HCT116) cells was explored by reverse phase protein array (RPPA) analysis, which showed a dose-dependent response in IRS-1 expression. Alanine scanning reveals a structural dependence to the cytotoxicity, actin targeting and pathway inhibition, and allows a new readily synthesised lead to be proposed. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Next-to leading order analysis of target mass corrections to structure functions and asymmetries

    International Nuclear Information System (INIS)

    Brady, L.T.; Accardi, A.; Hobbs, T.J.; Melnitchouk, W.

    2011-01-01

    We perform a comprehensive analysis of target mass corrections (TMCs) to spin-averaged structure functions and asymmetries at next-to-leading order. Several different prescriptions for TMCs are considered, including the operator product expansion, and various approximations to it, collinear factorization, and xi-scaling. We assess the impact of each of these on a number of observables, such as the neutron to proton F 2 structure function ratio, and parity-violating electron scattering asymmetries for protons and deuterons which are sensitive to gamma-Z interference effects. The corrections from higher order radiative and nuclear effects on the parity-violating deuteron asymmetry are also quantified.

  16. Leading the 21st-century academic library successful strategies for envisioning and realizing preferred futures

    CERN Document Server

    Eden, Bradford Lee

    2015-01-01

    Leading the 21st Century Academic Library: Successful Strategies for Envisioning and Realizing Preferred Futures will explore the new roles and directions academic libraries are taking in the 21st century as a consequence of visionary leadership in exploring diverse futures.

  17. Diagnostic imaging strategy for MDCT- or MRI-detected breast lesions: use of targeted sonography

    International Nuclear Information System (INIS)

    Nakano, Satoko; Ohtsuka, Masahiko; Mibu, Akemi; Karikomi, Masato; Sakata, Hitomi; Yamamoto, Masahiro

    2012-01-01

    Leading-edge technology such as magnetic resonance imaging (MRI) or computed tomography (CT) often reveals mammographically and ultrasonographically occult lesions. MRI is a well-documented, effective tool to evaluate these lesions; however, the detection rate of targeted sonography varies for MRI detected lesions, and its significance is not well established in diagnostic strategy of MRI detected lesions. We assessed the utility of targeted sonography for multidetector-row CT (MDCT)- or MRI-detected lesions in practice. We retrospectively reviewed 695 patients with newly diagnosed breast cancer who were candidates for breast conserving surgery and underwent MDCT or MRI in our hospital between January 2004 and March 2011. Targeted sonography was performed in all MDCT- or MRI-detected lesions followed by imaging-guided biopsy. Patient background, histopathology features and the sizes of the lesions were compared among benign, malignant and follow-up groups. Of the 695 patients, 61 lesions in 56 patients were detected by MDCT or MRI. The MDCT- or MRI-detected lesions were identified by targeted sonography in 58 out of 61 lesions (95.1%). Patients with pathological diagnoses were significantly older and more likely to be postmenopausal than the follow-up patients. Pathological diagnosis proved to be benign in 20 cases and malignant in 25. The remaining 16 lesions have been followed up. Lesion size and shape were not significantly different among the benign, malignant and follow-up groups. Approximately 95% of MDCT- or MRI-detected lesions were identified by targeted sonography, and nearly half of these lesions were pathologically proven malignancies in this study. Targeted sonography is a useful modality for MDCT- or MRI-detected breast lesions

  18. Neutron production from 158 GeV/c per nucleon lead ions on thin copper and lead targets in the angular range 30-135 deg

    CERN Document Server

    Agosteo, S; Foglio-Para, A; Gini, L; Mitaroff, W A; Silari, Marco; Ulrici, L

    2002-01-01

    The neutron emission from 5, 10 and 20 mm thick lead and 10 and 20 mm thick copper targets bombarded by a lead ion beam with momentum of 158 GeV/c per nucleon were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident ion on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg. with respect to beam direction. Monte Carlo simulations with the FLUKA code were performed to establish a guess spectrum for the unfolding of the experimental data. The results have shown that, lacking Monte Carlo radiation transport codes dealing with ions with masses larger than 1 amu, a reasonable prediction can be carried out by scaling the result of a Monte Carlo calculation for protons by the projectile mass number to the power of 0.85-0.95 for a lead target and 0.88-1.03 for a copper target.

  19. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor

    Science.gov (United States)

    Keane, Maureen; Deyo, Steve; Abosch, Aviva; Bajwa, Jawad A.; Johnson, Matthew D.

    2012-08-01

    Deep brain stimulation (DBS) in the ventral intermediate nucleus of thalamus (Vim) is known to exert a therapeutic effect on postural and kinetic tremor in patients with essential tremor (ET). For DBS leads implanted near the caudal border of Vim, however, there is an increased likelihood that one will also induce paresthesia side-effects by stimulating neurons within the sensory pathway of the ventral caudal (Vc) nucleus of thalamus. The aim of this computational study was to (1) investigate the neuronal pathways modulated by therapeutic, sub-therapeutic and paresthesia-inducing DBS settings in three patients with ET and (2) determine how much better an outcome could have been achieved had these patients been implanted with a DBS lead containing directionally segmented electrodes (dDBS). Multi-compartment neuron models of the thalamocortical, cerebellothalamic and medial lemniscal pathways were first simulated in the context of patient-specific anatomies, lead placements and programming parameters from three ET patients who had been implanted with Medtronic 3389 DBS leads. The models showed that in these patients, complete suppression of tremor was associated most closely with activating an average of 62% of the cerebellothalamic afferent input into Vim (n = 10), while persistent paresthesias were associated with activating 35% of the medial lemniscal tract input into Vc thalamus (n = 12). The dDBS lead design demonstrated superior targeting of the cerebello-thalamo-cortical pathway, especially in cases of misaligned DBS leads. Given the close proximity of Vim to Vc thalamus, the models suggest that dDBS will enable clinicians to more effectively sculpt current through and around thalamus in order to achieve a more consistent therapeutic effect without inducing side-effects.

  20. Development strategy and conceptual design of China Lead-based Research Reactor

    International Nuclear Information System (INIS)

    Wu, Yican; Bai, Yunqing; Song, Yong; Huang, Qunying; Zhao, Zhumin; Hu, Liqin

    2016-01-01

    Highlights: • China LEAd-based Reactor (CLEAR) proposed by Institute of Nuclear Energy Safety Technology (INEST) is selected as the ADS reference reactor. • The Chinese ADS development program consists of three stages, and during the first stage, a 10 MW th lead-based research reactor named CLEAR-I will be built with subcritical and critical dual-mode operation capability for validation of ADS transmutation system and lead cooled fast reactor technology. • Major design principles of CLEAR-I are oriented at technology feasibility, safety reliability, experiment flexibility and technology continuity. Followed by the development strategy and design principles, CLEAR-I design options and conceptual design scenarios are presented. - Abstract: Chinese Academy of Sciences (CAS) launched an engineering project to develop an Accelerator Driven System (ADS) for nuclear waste transmutation since 2011, and China LEAd-based Reactor (CLEAR) proposed by Institute of Nuclear Energy Safety Technology (INEST) is selected as the ADS reference reactor. In this paper, the development strategy and conceptual design of China Lead-based Research Reactor are proposed. The Chinese ADS development program consists of three stages, and during the first stage, a 10 MW th lead-based research reactor named CLEAR-I will be built with subcritical and critical dual-mode operation capability for validation of ADS transmutation system and lead cooled fast reactor technology. Major design principles of CLEAR-I are oriented at technology feasibility, safety reliability, experiment flexibility and technology continuity. Followed by the development strategy and design principles, CLEAR-I design options and conceptual design scenarios are presented.

  1. Advances in targeting strategies for nanoparticles in cancer imaging and therapy.

    Science.gov (United States)

    Yhee, Ji Young; Lee, Sangmin; Kim, Kwangmeyung

    2014-11-21

    In the last decade, nanoparticles have offered great advances in diagnostic imaging and targeted drug delivery. In particular, nanoparticles have provided remarkable progress in cancer imaging and therapy based on materials science and biochemical engineering technology. Researchers constantly attempted to develop the nanoparticles which can deliver drugs more specifically to cancer cells, and these efforts brought the advances in the targeting strategy of nanoparticles. This minireview will discuss the progress in targeting strategies for nanoparticles focused on the recent innovative work for nanomedicine.

  2. Biomaterial-mediated strategies targeting vascularization for bone repair.

    Science.gov (United States)

    García, José R; García, Andrés J

    2016-04-01

    Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.

  3. THE STRATEGY OF DIRECT INFLATION TARGETING – EPERIENCES OF THE COUNTRIES OF MIDDLE-EAST EUROPE

    OpenAIRE

    Dorota Zbierzchowska

    2009-01-01

    This paper aims at presenting theoretical assumptions of the strategy of direct inflation targeting as well as profits and potential threats stemming from the acceptance of that strategy. Empirical analysis compares the results of implementation of the BCI strategy in the Central and Eastern European countries (Poland, Czech Republic, Romania, Slovakia, Hungary).

  4. A comparison of prostate tumor targeting strategies using magnetic resonance imaging-targeted, transrectal ultrasound-guided fusion biopsy.

    Science.gov (United States)

    Martin, Peter R; Cool, Derek W; Fenster, Aaron; Ward, Aaron D

    2018-03-01

    Magnetic resonance imaging (MRI)-targeted, three-dimensional (3D) transrectal ultrasound (TRUS)-guided prostate biopsy aims to reduce the 21-47% false-negative rate of clinical two-dimensional (2D) TRUS-guided systematic biopsy, but continues to yield false-negative results. This may be improved via needle target optimization, accounting for guidance system errors and image registration errors. As an initial step toward the goal of optimized prostate biopsy targeting, we investigated how needle delivery error impacts tumor sampling probability for two targeting strategies. We obtained MRI and 3D TRUS images from 49 patients. A radiologist and radiology resident assessed these MR images and contoured 81 suspicious regions, yielding tumor surfaces that were registered to 3D TRUS. The biopsy system's root-mean-squared needle delivery error (RMSE) and systematic error were modeled using an isotropic 3D Gaussian distribution. We investigated two different prostate tumor-targeting strategies using (a) the tumor's centroid and (b) a ring in the lateral-elevational plane. For each simulation, targets were spaced at equal arc lengths on a ring with radius equal to the systematic error magnitude. A total of 1000 biopsy simulations were conducted for each tumor, with RMSE and systematic error magnitudes ranging from 1 to 6 mm. The difference in median tumor sampling probability and probability of obtaining a 50% core involvement was determined for ring vs centroid targeting. Our simulation results indicate that ring targeting outperformed centroid targeting in situations where systematic error exceeds RMSE. In these instances, we observed statistically significant differences showing 1-32% improvement in sampling probability due to ring targeting. Likewise, we observed statistically significant differences showing 1-39% improvement in 50% core involvement probability due to ring targeting. Our results suggest that the optimal targeting scheme for prostate biopsy depends on

  5. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    Science.gov (United States)

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-05-01

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin α v β 3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  6. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Science.gov (United States)

    2010-07-01

    ... of experience in a related field (e.g., lead, asbestos, environmental remediation work, or... at least 3 years of experience in a related field (e.g., lead, asbestos, environmental remediation... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745...

  7. Proposed national strategies for the prevention of leading work-related diseases and injuries. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Preliminary strategies developed at the National Symposium on the Prevention of Leading Work Related Diseases and Injuries, held in Atlanta, Georgia on May 1 to 3, 1985 were revised, elaborated, and further developed. Strategies were developed for the prevention of occupational lung diseases, musculoskeletal injuries, occupational cancers, severe occupational traumatic injuries, and occupational cardiovascular diseases. Lung diseases considered included silicosis, asbestosis, lung cancer mesothelioma, coal workers' pneumoconiosis, byssinosis, occupational asthma, hypersensitivity pneumonitis, asphyxiation, irritation, pulmonary edema, brucellosis, psitticosis, anthrax, mycobacterioses, histoplasmosis, aspergillosis, and coccidioidomycosis. Occupational cancers were discussed as they occur in the lung, pleura, peritoneum, bladder, kidneys, blood, nasal cavity, skin, nasal sinuses, and liver.

  8. Targeting Millennials: Social Media Strategies within Higher Education

    Science.gov (United States)

    Sessa, Whitney L.

    2015-01-01

    Using a quantitative survey method with an online questionnaire as the data collection tool, the author surveyed 189 social media managers working at American Higher Education institutions to identify forms of social media in use, along with the most popular strategies that colleges and universities use with Facebook.

  9. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    Science.gov (United States)

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  10. Pneumococcal vaccine targeting strategy for older adults: customized risk profiling.

    Science.gov (United States)

    Balicer, Ran D; Cohen, Chandra J; Leibowitz, Morton; Feldman, Becca S; Brufman, Ilan; Roberts, Craig; Hoshen, Moshe

    2014-02-12

    Current pneumococcal vaccine campaigns take a broad, primarily age-based approach to immunization targeting, overlooking many clinical and administrative considerations necessary in disease prevention and resource planning for specific patient populations. We aim to demonstrate the utility of a population-specific predictive model for hospital-treated pneumonia to direct effective vaccine targeting. Data was extracted for 1,053,435 members of an Israeli HMO, age 50 and older, during the study period 2008-2010. We developed and validated a logistic regression model to predict hospital-treated pneumonia using training and test samples, including a set of standard and population-specific risk factors. The model's predictive value was tested for prospectively identifying cases of pneumonia and invasive pneumococcal disease (IPD), and was compared to the existing international paradigm for patient immunization targeting. In a multivariate regression, age, co-morbidity burden and previous pneumonia events were most strongly positively associated with hospital-treated pneumonia. The model predicting hospital-treated pneumonia yielded a c-statistic of 0.80. Utilizing the predictive model, the top 17% highest-risk within the study validation population were targeted to detect 54% of those members who were subsequently treated for hospitalized pneumonia in the follow up period. The high-risk population identified through this model included 46% of the follow-up year's IPD cases, and 27% of community-treated pneumonia cases. These outcomes were compared with international guidelines for risk for pneumococcal diseases that accurately identified only 35% of hospitalized pneumonia, 41% of IPD cases and 21% of community-treated pneumonia. We demonstrate that a customized model for vaccine targeting performs better than international guidelines, and therefore, risk modeling may allow for more precise vaccine targeting and resource allocation than current national and international

  11. Targeting oncogenic Myc as a strategy for cancer treatment.

    Science.gov (United States)

    Chen, Hui; Liu, Hudan; Qing, Guoliang

    2018-01-01

    The MYC family oncogene is deregulated in >50% of human cancers, and this deregulation is frequently associated with poor prognosis and unfavorable patient survival. Myc has a central role in almost every aspect of the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. Although Myc inhibition would be a powerful approach for the treatment of many types of cancers, direct targeting of Myc has been a challenge for decades owing to its "undruggable" protein structure. Hence, alternatives to Myc blockade have been widely explored to achieve desirable anti-tumor effects, including Myc/Max complex disruption, MYC transcription and/or translation inhibition, and Myc destabilization as well as the synthetic lethality associated with Myc overexpression. In this review, we summarize the latest advances in targeting oncogenic Myc, particularly for cancer therapeutic purposes.

  12. Exploration of novel strategies to enhance monoclonal antibodies targeting

    International Nuclear Information System (INIS)

    Khawli, L.A.; Epstein, A.L.

    1997-01-01

    This paper highlights the major obstacles and prospects of antibody targeting for the radio imaging and therapy of human malignant lymphomas and more challenging solid tumors. To improve the therapeutic potential of monoclonal antibodies, the authors have focused their attention on the development of new and successful methods to augment antibody uptake in the tumor. These approaches include the use of radiolabeled streptavidin to target biotinylated monoclonal antibodies already bound to tumor, pretreatment with vasoactive immunoconjugates, and the use of chemically modified antibodies. Because of the promising preclinical data obtained with these three newer approaches, plans are underway to test them in the clinic. More generally, these approaches are applicable to the use of other monoclonal antibody/tumor systems for the diagnosis and therapy of human cancers and related diseases

  13. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease

    Science.gov (United States)

    Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter

    2016-01-01

    Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799

  14. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    Science.gov (United States)

    Arrabito, L.; Bozza, C.; Buontempo, S.; Consiglio, L.; Cozzi, M.; D'Ambrosio, N.; DeLellis, G.; DeSerio, M.; Di Capua, F.; Di Ferdinando, D.; Di Marco, N.; Ereditato, A.; Esposito, L. S.; Fini, R. A.; Giacomelli, G.; Giorgini, M.; Grella, G.; Ieva, M.; Janicsko Csathy, J.; Juget, F.; Kreslo, I.; Laktineh, I.; Manai, K.; Mandrioli, G.; Marotta, A.; Migliozzi, P.; Monacelli, P.; Moser, U.; Muciaccia, M. T.; Pastore, A.; Patrizii, L.; Petukhov, Y.; Pistillo, C.; Pozzato, M.; Romano, G.; Rosa, G.; Russo, A.; Savvinov, N.; Schembri, A.; Scotto Lavina, L.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Strolin, P.; Tioukov, V.; Waelchli, T.

    2007-05-01

    The OPERA experiment, designed to conclusively prove the existence of νμ→ντ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ντ's in the CNGS νμ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ~20 cm2/h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA.

  15. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    International Nuclear Information System (INIS)

    Arrabito, L; Bozza, C; Buontempo, S

    2007-01-01

    The OPERA experiment, designed to conclusively prove the existence of ν μ →ν τ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ν τ 's in the CNGS ν μ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ∼20 cm 2 /h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA

  16. New emissions targeting strategy for site utility of process industries

    International Nuclear Information System (INIS)

    Manesh, Mohamamd Hasan Khoshgoftar; Amidpour, Majid; Hamedi, Mohammad Hosein; Abadi, Sajad Khamis; Ghalami, Hooman

    2013-01-01

    A new procedure for environmental targeting of co-generation system is presented. The proposed method is based on the concepts of pinch technology for total site targeting of fuel, power, steam, environmental impacts and total annualized cost with considering emissions taxes. This approach provides a consistent, general procedure for determining mass flow rates and efficiencies of the applied turbines. This algorithm utilizes the relationship of entropy with enthalpy and isentropic efficiency. Also, the life cycle assessment (LCA) as a well-known tool for analyzing environmental impacts on a wide perspective with reference to a product system and the related environmental and economic impacts have been applied. In this regard, a damage-oriented impact analysis method based on Eco-indicator 99 and footprints analysis was considered. In addition, the present work demonstrates the effect of including both sensible and latent heating of steam in the extended Site Utility Grand Composite Curve (ESUGCC). It is shown that including sensible heating allows for better thermal matching between the processes. Furthermore, the other representation YSUGCC as the other form of Site Utility Grand Composite has been proposed. Two case studies were used to illustrate the usefulness of the new environmental targeting method

  17. Integrative biology approach identifies cytokine targeting strategies for psoriasis.

    Science.gov (United States)

    Perera, Gayathri K; Ainali, Chrysanthi; Semenova, Ekaterina; Hundhausen, Christian; Barinaga, Guillermo; Kassen, Deepika; Williams, Andrew E; Mirza, Muddassar M; Balazs, Mercedesz; Wang, Xiaoting; Rodriguez, Robert Sanchez; Alendar, Andrej; Barker, Jonathan; Tsoka, Sophia; Ouyang, Wenjun; Nestle, Frank O

    2014-02-12

    Cytokines are critical checkpoints of inflammation. The treatment of human autoimmune disease has been revolutionized by targeting inflammatory cytokines as key drivers of disease pathogenesis. Despite this, there exist numerous pitfalls when translating preclinical data into the clinic. We developed an integrative biology approach combining human disease transcriptome data sets with clinically relevant in vivo models in an attempt to bridge this translational gap. We chose interleukin-22 (IL-22) as a model cytokine because of its potentially important proinflammatory role in epithelial tissues. Injection of IL-22 into normal human skin grafts produced marked inflammatory skin changes resembling human psoriasis. Injection of anti-IL-22 monoclonal antibody in a human xenotransplant model of psoriasis, developed specifically to test potential therapeutic candidates, efficiently blocked skin inflammation. Bioinformatic analysis integrating both the IL-22 and anti-IL-22 cytokine transcriptomes and mapping them onto a psoriasis disease gene coexpression network identified key cytokine-dependent hub genes. Using knockout mice and small-molecule blockade, we show that one of these hub genes, the so far unexplored serine/threonine kinase PIM1, is a critical checkpoint for human skin inflammation and potential future therapeutic target in psoriasis. Using in silico integration of human data sets and biological models, we were able to identify a new target in the treatment of psoriasis.

  18. Fragile X and autism: Intertwined at the molecular level leading to targeted treatments

    Directory of Open Access Journals (Sweden)

    Hagerman Randi

    2010-09-01

    Full Text Available Abstract Fragile X syndrome (FXS is caused by an expanded CGG repeat (> 200 repeats in the 5' untranslated portion of the fragile mental retardation 1 gene (FMR1, leading to deficiency or absence of the FMR1 protein (FMRP. FMRP is an RNA carrier protein that controls the translation of several other genes that regulate synaptic development and plasticity. Autism occurs in approximately 30% of FXS cases, and pervasive developmental disorder, not otherwise specified (PDD-NOS occurs in an additional 30% of cases. Premutation repeat expansions (55 to 200 CGG repeats may also give rise to autism spectrum disorders (ASD, including both autism and PDD-NOS, through a different molecular mechanism that involves a direct toxic effect of the expanded CGG repeat FMR1 mRNA. RNA toxicity can also lead to aging effects including tremor, ataxia and cognitive decline, termed fragile X-associated tremor ataxia syndrome (FXTAS, in premutation carriers in late life. In studies of mice bearing premutation expansions, there is evidence of early postnatal neuronal cell toxicity, presenting as reduced cell longevity, decreased dendritic arborization and altered synaptic morphology. There is also evidence of mitochondrial dysfunction in premutation carriers. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in autism without fragile X mutations. Research regarding dysregulation of neurotransmitter systems in FXS, including the metabotropic glutamate receptor (mGluR1/5 pathway and γ aminobutyric acid (GABAA pathways, have led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism.

  19. Lead-Bismuth Eutectic cooled experimental Accelerator Driven System. Windowless target unit thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Bianchi, F.; Ferri, R.; Moreau, V.

    2004-01-01

    A main concern related to the peaceful use of nuclear energy is the safe management of nuclear wastes, with particular attention to long-lived fission products. An increasing attention has recently been addressed to transmutation systems (Accelerator Driven System: ADS) able to 'burn' the actinides and some of the long-lived fission products (High-Level Waste: HLW), transforming them in short or medium-lived wastes that may be easier managed and stored in the geological disposal, with the consequent easier acceptability by population. An ADS consists of a subcritical-core coupled with an accelerator by means of a target. This paper deals with the thermal-hydraulic analysis, performed with STAR-CD and RELAP5 codes for the windowless target unit of Lead-Bismuth Eutectic (LBE) cooled experimental ADS (XADS), both to assess its behaviour during operational and accident sequences and to provide input data for the thermal-mechanical analyses. It also reports a description of modifications properly implemented in the codes used for the assessment of this kind of plants. (author)

  20. High-temperature gas-cooled reactor steam cycle/cogeneration: lead project strategy plan

    International Nuclear Information System (INIS)

    1982-07-01

    The strategy, contained herein, for developing the HTGR system and introducing it into the energy marketplace is based on using the most developed technology path to establish a HTGR-Steam Cycle/Cogeneration (SC/C) Lead Project. Given the status of the HTGR-SC/C technology, a Lead Plant could be completed and operational by the mid 1990s. While there is remaining design and technology development that must be accomplished to fulfill technical and licensing requirements for a Lead Project commitment, the major barriers to the realization a HTGR-SC/C Lead Project are institutional in nature, e.g. budget priorities and constraints, cost/risk sharing between the public and private sector, Project organization and management, and Project financing. These problems are further complicated by the overall pervading issues of economic and regulatory instability that presently confront the utility and nuclear industries. This document addresses the major institutional issues associated with the HTGR-SC/C Lead Project and provides a starting point for discussions between prospective Lead Project participants toward the realization of such a Project

  1. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    Science.gov (United States)

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  2. Targeting Nucleophosmin 1 Represents a Rational Strategy for Radiation Sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Sekhar, Konjeti R. [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Benamar, Mouadh [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Venkateswaran, Amudhan; Sasi, Soumya [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Penthala, Narsimha R.; Crooks, Peter A. [Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Hann, Stephen R. [Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Geng, Ling [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States); Balusu, Ramesh [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (United States); Abbas, Tarek [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Freeman, Michael L., E-mail: michael.freeman@vanderbilt.edu [Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee (United States)

    2014-08-01

    Purpose: To test the hypothesis that small molecule targeting of nucleophosmin 1 (NPM1) represents a rational approach for radiosensitization. Methods and Materials: Wilde-type and NPM1-deficient mouse embryo fibroblasts (MEFs) were used to determine whether radiosensitization produced by the small molecule YTR107 was NPM1 dependent. The stress response to ionizing radiation was assessed by quantifying pNPM1, γH2AX, and Rad51 foci, neutral comet tail moment, and colony formation. NPM1 levels in a human-derived non-small-cell lung cancer (NSCLC) tissue microarray (TMA) were determined by immunohistochemistry. YTR107-mediated radiosensitization was assessed in NSCLC cell lines and xenografts. Results: Use of NPM1-null MEFs demonstrated that NPM1 is critical for DNA double- strand break (DSB) repair, that loss of NPM1 increases radiation sensitivity, and that YTR107-mediated radiosensitization is NPM1 dependent. YTR107 was shown to inhibit NPM1 oligomerization and impair formation of pNPM1 irradiation-induced foci that colocalized with γH2AX foci. Analysis of the TMA demonstrated that NPM1 is overexpressed in subsets of NSCLC. YTR107 inhibited DNA DSB repair and radiosensitized NSCLC lines and xenografts. Conclusions: These data demonstrate that YTR107-mediated targeting of NPM1 impairs DNA DSB repair, an event that increases radiation sensitivity.

  3. Targeting Nucleophosmin 1 Represents a Rational Strategy for Radiation Sensitization

    International Nuclear Information System (INIS)

    Sekhar, Konjeti R.; Benamar, Mouadh; Venkateswaran, Amudhan; Sasi, Soumya; Penthala, Narsimha R.; Crooks, Peter A.; Hann, Stephen R.; Geng, Ling; Balusu, Ramesh; Abbas, Tarek; Freeman, Michael L.

    2014-01-01

    Purpose: To test the hypothesis that small molecule targeting of nucleophosmin 1 (NPM1) represents a rational approach for radiosensitization. Methods and Materials: Wilde-type and NPM1-deficient mouse embryo fibroblasts (MEFs) were used to determine whether radiosensitization produced by the small molecule YTR107 was NPM1 dependent. The stress response to ionizing radiation was assessed by quantifying pNPM1, γH2AX, and Rad51 foci, neutral comet tail moment, and colony formation. NPM1 levels in a human-derived non-small-cell lung cancer (NSCLC) tissue microarray (TMA) were determined by immunohistochemistry. YTR107-mediated radiosensitization was assessed in NSCLC cell lines and xenografts. Results: Use of NPM1-null MEFs demonstrated that NPM1 is critical for DNA double- strand break (DSB) repair, that loss of NPM1 increases radiation sensitivity, and that YTR107-mediated radiosensitization is NPM1 dependent. YTR107 was shown to inhibit NPM1 oligomerization and impair formation of pNPM1 irradiation-induced foci that colocalized with γH2AX foci. Analysis of the TMA demonstrated that NPM1 is overexpressed in subsets of NSCLC. YTR107 inhibited DNA DSB repair and radiosensitized NSCLC lines and xenografts. Conclusions: These data demonstrate that YTR107-mediated targeting of NPM1 impairs DNA DSB repair, an event that increases radiation sensitivity

  4. A Tryptoline Ring-Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine.

    Science.gov (United States)

    Paciaroni, Nicholas G; Ratnayake, Ranjala; Matthews, James H; Norwood, Verrill M; Arnold, Austin C; Dang, Long H; Luesch, Hendrik; Huigens, Robert W

    2017-03-28

    High-throughput screening (HTS) is the primary driver to current drug-discovery efforts. New therapeutic agents that enter the market are a direct reflection of the structurally simple compounds that make up screening libraries. Unlike medically relevant natural products (e.g., morphine), small molecules currently being screened have a low fraction of sp 3 character and few, if any, stereogenic centers. Although simple compounds have been useful in drugging certain biological targets (e.g., protein kinases), more sophisticated targets (e.g., transcription factors) have largely evaded the discovery of new clinical agents from screening collections. Herein, a tryptoline ring-distortion strategy is described that enables the rapid synthesis of 70 complex and diverse compounds from yohimbine (1); an indole alkaloid. The compounds that were synthesized had architecturally complex and unique scaffolds, unlike 1 and other scaffolds. These compounds were subjected to phenotypic screens and reporter gene assays, leading to the identification of new compounds that possessed various biological activities, including antiproliferative activities against cancer cells with functional hypoxia-inducible factors, nitric oxide inhibition, and inhibition and activation of the antioxidant response element. This tryptoline ring-distortion strategy can begin to address diversity problems in screening libraries, while occupying biologically relevant chemical space in areas critical to human health. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 2'-Hydroxyflavanone: A novel strategy for targeting breast cancer.

    Science.gov (United States)

    Singhal, Jyotsana; Nagaprashantha, Lokesh; Chikara, Shireen; Awasthi, Sanjay; Horne, David; Singhal, Sharad S

    2017-09-26

    Breast cancer is the most common cancer in women that is driven by cross-talk with hormonal and cellular signaling pathways. The natural phytochemicals, due to broad-spectrum anti-inflammatory and anti-cancerous properties, present with novel opportunities for targeting breast cancer. Intake of citrus fruits is known to reduce the risk for incidence of breast cancer. Hence, we tested the efficacy of citrus flavonoid 2'-hydroxyflavanone (2HF) in breast cancer. 2HF inhibited survival, clonogenic ability, cell cycle progression and induced apoptosis in breast cancer cells. 2HF also decreased VEGF levels and inhibited migratory capacity of breast cancer cells. Administration of 2HF led to regression of triple-negative MDA-MB-231 tumors in the mice xenograft model. 2HF decreased the levels of RLIP76 both in vitro studies and in vivo MDA-MB-231 xenograft model of breast cancer. Western blot and histopathological analyses of resected tumors showed a decline in the levels of survival and proliferation markers Ki67, pAkt, survivin, and cell cycle proteins CDK4 and cyclin B1. 2HF treatment led to inhibition of angiogenesis as determined by decreased VEGF levels in vitro and angiogenesis marker CD31 in vivo . 2HF reversed the pro-/anti-apoptotic ratio of BAX/BCL-2 by decreasing anti-apoptotic protein BCL-2 and increasing pro-apoptotic proteins BAX and BIM in vivo . 2HF also decreased the mesenchymal markers vimentin and fibronectin along with causing a parallel increase in pro-differentiation protein E-cadherin. Collectively, the ability of 2HF to decrease RLIP76, VEGF and regulate critical proliferative, apoptotic and differentiation proteins together provides strong rationale to further develop 2HF based interventions for targeting breast cancer.

  6. Insights on ornithine decarboxylase silencing as a potential strategy for targeting retinoblastoma.

    Science.gov (United States)

    Muthukumaran, Sivashanmugam; Bhuvanasundar, Renganathan; Umashankar, Vetrivel; Sulochana, K N

    2018-02-01

    Ornithine Decarboxylase (ODC) is a key enzyme involved in polyamine synthesis and is reported to be up regulated in several cancers. However, the effect of ODC gene silencing in retinoblastoma is to be understood for utilization in therapeutic applications. Hence, in this study, a novel siRNA (small interference RNA) targeting ODC was designed and validated in Human Y79 retinoblastoma cells for its effects on intracellular polyamine levels, Matrix Metalloproteinase 2 & 9 activity and Cell cycle. The designed siRNA showed efficient silencing of ODC mRNA expression and protein levels in Y79 cells. It also showed significant reduction of intracellular polyamine levels and altered levels of oncogenic LIN28b expression. By this study, a regulatory loop is proposed, wherein, ODC silencing in Y79 cells to result in decreased polyamine levels, thereby, leading to altered protein levels of Lin28b, MMP-2 and MMP-9, which falls in line with earlier studies in neuroblastoma. Thus, by this study, we propose ODC silencing as a prospective strategy for targeting retinoblastoma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets

    Science.gov (United States)

    Safi, Sher Zaman; Kumar, Selva; Ismail, Ikram Shah Bin

    2014-01-01

    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors. PMID:25105142

  8. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    Science.gov (United States)

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  9. Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C.

    Science.gov (United States)

    Lamontagne Boulet, Maxime; Isabelle, Charles; Guay, Isabelle; Brouillette, Eric; Langlois, Jean-Philippe; Jacques, Pierre-Étienne; Rodrigue, Sébastien; Brzezinski, Ryszard; Beauregard, Pascale B; Bouarab, Kamal; Boyapelly, Kumaraswamy; Boudreault, Pierre-Luc; Marsault, Éric; Malouin, François

    2018-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of deadly hospital-acquired infections. The discovery of anti- Staphylococcus antibiotics and new classes of drugs not susceptible to the mechanisms of resistance shared among bacteria is imperative. We recently showed that tomatidine (TO), a steroidal alkaloid from solanaceous plants, possesses potent antibacterial activity against S. aureus small-colony variants (SCVs), the notoriously persistent form of this bacterium that has been associated with recurrence of infections. Here, using genomic analysis of in vitro -generated TO-resistant S. aureus strains to identify mutations in genes involved in resistance, we identified the bacterial ATP synthase as the cellular target. Sequence alignments were performed to highlight the modified sequences, and the structural consequences of the mutations were evaluated in structural models. Overexpression of the atpE gene in S. aureus SCVs or introducing the mutation found in the atpE gene of one of the high-level TO-resistant S. aureus mutants into the Bacillus subtilis atpE gene provided resistance to TO and further validated the identity of the cellular target. FC04-100, a TO derivative which also possesses activity against non-SCV strains, prevents high-level resistance development in prototypic strains and limits the level of resistance observed in SCVs. An ATP synthesis assay allowed the observation of a correlation between antibiotic potency and ATP synthase inhibition. The selectivity index (inhibition of ATP production by mitochondria versus that of bacterial ATP synthase) is estimated to be >10 5 -fold for FC04-100. Copyright © 2018 American Society for Microbiology.

  10. Targeting endoplasmic reticulum and/or mitochondrial Ca2+ fluxes as therapeutic strategy for HCV infection

    Science.gov (United States)

    Scrima, Rosella; Piccoli, Claudia; Moradpour, Darius; Capitanio, Nazzareno

    2018-03-01

    Chronic hepatitis C is characterized by metabolic disorders and by a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that can in the long term lead to liver cirrhosis and hepatocellular carcinoma. Several lines of evidence suggest that mitochondrial dysfunctions play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins also localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory and need to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems. In the past decade we have been proposing a temporal sequence of events in the HCV-infected cell whereby the primary alteration is localized at the mitochondria-associated ER membranes and causes release of Ca2+ from the ER, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen and nitrogen species and a progressive metabolic adaptive response consisting in decreased oxidative phosphorylation and enhanced aerobic glycolysis and lipogenesis. Here we resume the major results provided by our group in the context of HCV-mediated alterations of the cellular inter-compartmental calcium flux homeostasis and present new evidence suggesting targeting of ER and/or mitochondrial calcium transporters as a novel therapeutic strategy.

  11. Targeting Endoplasmic Reticulum and/or Mitochondrial Ca2+ Fluxes as Therapeutic Strategy for HCV Infection.

    Science.gov (United States)

    Scrima, Rosella; Piccoli, Claudia; Moradpour, Darius; Capitanio, Nazzareno

    2018-01-01

    Chronic hepatitis C is characterized by metabolic disorders and by a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that can in the long term lead to liver cirrhosis and hepatocellular carcinoma. Several lines of evidence suggest that mitochondrial dysfunctions play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins also localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory and need to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems. In the past decade we have been proposing a temporal sequence of events in the HCV-infected cell whereby the primary alteration is localized at the mitochondria-associated ER membranes and causes release of Ca 2+ from the ER, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen and nitrogen species and a progressive metabolic adaptive response consisting in decreased oxidative phosphorylation and enhanced aerobic glycolysis and lipogenesis. Here we resume the major results provided by our group in the context of HCV-mediated alterations of the cellular inter-compartmental calcium flux homeostasis and present new evidence suggesting targeting of ER and/or mitochondrial calcium transporters as a novel therapeutic strategy.

  12. Three Target Sectors for a European Investment Strategy

    International Nuclear Information System (INIS)

    Janin, Lionel; Douillard, Pierre

    2014-11-01

    While the president of the European Commission is getting ready to present the 'Juncker package' announced in July 2014, to revive activity in Europe through investment, what are the sectors in which these investments may be concentrated? The overall analysis of investment gaps in the euro zone has confirmed the requirement for a European macro-economic revival effort that involves investment, public or private, undertaken very quickly, even though this diagnosis varies depending on the country. The drivers of a European investment strategy are fiscal, regulatory and financial and are based on the selection of projects for the future. This third 'Note d'analyse' addresses the topic of investment potential in three key sectors: transport, energy and the digital sector, for which the amount of additional investment could reach euro 120 billion per year and thus, over three years, be higher than the forecasts in the Juncker plan. This maximalist amount mainly corresponds to the implementation of an ambitious energy-climate policy. Given current budgetary constraints, carefully selecting the desired investments, for which their social utility must be validated, is imperative: socioeconomic evaluation is the appropriate approach, particularly for taking into account the environmental externalities that now justify significant investments in the ecological transition. (authors)

  13. Fast reactor development strategy targets study in China

    International Nuclear Information System (INIS)

    Xu Mi

    2008-01-01

    China is a big developing Country who needs a huge energy resources and a rapid growing rate. Considering energy resources limited and environment issues it is sure that the nuclear energy will be becoming one of the main energy resources. The Government has decided to develop the nuclear power capacity to 40 GW in 2020. It is envisaged that it will reach to 240 GW in 2050. It is stimulate us to consider conscientiously the development of the fast breeder reactor's and related closed nuclear fuel cycle by the limitation of Uranium resources and uncertainties of international Uranium market. Followings are the proposed strategic targets of fast reactor development in China. (1) To realize the operation of commercial fast breeder reactors with an unit size of 800-900 MWe and one site-multi reactors in 2030. (2) To develop the nuclear power capacity to 240 GW in 2050. (3) To replace step by step the fossil fuel utilization in large scale by nuclear energy beyond 2050. (authors)

  14. Amixicile, a novel strategy for targeting oral anaerobic pathogens.

    Science.gov (United States)

    Hutcherson, Justin A; Sinclair, Kathryn M; Belvin, Benjamin R; Gui, Qin; Hoffman, Paul S; Lewis, Janina P

    2017-09-05

    The oral microflora is composed of both health-promoting as well as disease-initiating bacteria. Many of the disease-initiating bacteria are anaerobic and include organisms such as Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Tannerella forsythia. Here we investigated a novel therapeutic, amixicile, that targets pyruvate:ferredoxin oxidoreductase (PFOR), a major metabolic enzyme involved in energy generation through oxidative decarboxylation of pyruvate. PFOR is present in these anaerobic pathogenic bacteria and thus we hypothesized that amixicile would effectively inhibit their growth. In general, PFOR is present in all obligate anaerobic bacteria, while oral commensal aerobes, including aerotolerant ones, such as Streptococcus gordonii, use pyruvate dehydrogenase to decarboxylate pyruvate. Accordingly, we observed that growth of the PFOR-containing anaerobic periodontal pathogens, grown in both monospecies as well as multispecies broth cultures was inhibited in a dose-dependent manner while that of S. gordonii was unaffected. Furthermore, we also show that amixicile is effective against these pathogens grown as monospecies and multispecies biofilms. Finally, amixicile is the first selective therapeutic agent active against bacteria internalized by host cells. Together, the results show that amixicile is an effective inhibitor of oral anaerobic bacteria and as such, is a good candidate for treatment of periodontal diseases.

  15. New strategy of cancer therapy by targeting the hypoxic circumstances

    International Nuclear Information System (INIS)

    Yasui, Hironobu; Yamamori, Tohru; Meike, Shunsuke; Eitaki, Masato; Kuwabara, Mikinori; Inanami, Osamu; Iizuka, Daisuke

    2010-01-01

    Described are studies on the sensitization of tumor cells in hypoxic circumstances (known as radio-resistant cells) by authors' recent molecular targeting to adaptive response as well as by the usual agents like nitro-imidazole compounds, and on the intermittent hypoxia, a new topic in this field. The hypoxia-inducible factor-1 (HIF-1) is a transcriptional factor and has been known to activate its many downstream genes to cause adoptive response of hypoxic cells. Authors have studied the anti-tumor and radiation sensitizing effects of ethynyl-cytidine (EC) which is found to suppress RNA synthesis through cytidine kinase (CK) inhibition, and the compound is of specificity to tumor cells as they have 5-10 times higher CK activity than normal cells. Authors have also found that EC is of the sensitizing efficacy to normoxic and hypoxic cells by enhancing the radiation-induced apoptosis essentially through inhibition of HIF-1 expression. Intermittent hypoxia in the tumor which has characteristic abnormal vascular morphology and function, occurs by the transient reduction of blood flow and occlusion of vessels in the tissue within minute to hour time cycles. Little is known about the regional hypoxic region and its distribution in the tumor due to difficulty of their detection and quantification. For this, authors have measured the temporal changes of oxygen levels in the mouse tumor with triaryl methyl radical, an oxygen-sensitive contrast compound continuously injected, by microwave-pulsed electron spin resonance imaging (EPRI). By superimposing the EPRI and T2-weighted MRI, the oxymetric imaging is possible in the tumor, which reveals the difference of oxygen level variation depending on the cell type and tissue size. Findings in the field are expected to give important information for more effective cancer therapy and its prognostic prediction in future. (T.T.)

  16. Strategies for marketing your company as a takeover target

    International Nuclear Information System (INIS)

    Currie, G.

    1998-01-01

    Recently, there has been a growing number of takeovers in the petroleum industry. The reasons behind such transactions were discussed and seven moves (or deadly sins) which guarantee that a company becomes a takeover target were presented. The seven 'sins' are: (1) drill as many dry holes as possible, (2) promise more production or cash flow than can be delivered, (3) make acquisitions close to the top of the market, (4) issue shares regularly, (5) borrow heavily, and/or issue high yield private placement debt, (6) commit the company to a single commodity or market, and (7) when things go wrong, keep the bad news to yourself, hoping that nobody will notice. Any of these moves are likely to be immediately reflected in stock prices. Four quantitative measures used to value producers' stocks were summarized, i.e. : (1) price/cash flow, (2) price/net asset value, (3) market value of reserves, and (4) market value of production. Steps to follow in responding to a takeover were also described. Lessons to be learned from actual takeovers that occurred during the past couple of years were briefly reviewed. In the author's view, there are far too many acquisitions in the petroleum industry, and the best that can be said for them is that they are the market's way of rationalizing under performing management teams. In some cases acquisition may be a reflection of management's impatience to grow more quickly, without realizing that at some sizes it becomes difficult to sustain a producer in Western Canada. The best defence against a takeover is to run a company with growing production, a competitive cost structure, a good balance sheet, and a shareholder-responsive management team. 2 tabs

  17. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Science.gov (United States)

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  18. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Riaz

    2018-01-01

    Full Text Available Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed.

  19. Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod.

    Science.gov (United States)

    Zhao, Ruifang; Han, Xuexiang; Li, Yiye; Wang, Hai; Ji, Tianjiao; Zhao, Yuliang; Nie, Guangjun

    2017-08-22

    Pancreatic cancer, one of the leading causes of cancer-related mortality, is characterized by desmoplasia and hypovascular cancerous tissue, with a 5 year survival rate of targeting (mediated by photothermal effect and molecular receptor binding) and photothermal treatment-enhanced gemcitabine chemotherapy, under mild near-infrared laser irradiation condition. GNRS significantly improved gemcitabine penetration and accumulation in tumor tissues, thus destroying the dense stroma barrier of pancreatic cancer and reinforcing chemosensitivity in mice. Our current findings strongly support the notion that further development of this integrated plasmonic photothermal strategy may represent a promising translational nanoformulation for effective treatment of pancreatic cancer with integral cascade tumor targeting strategy and enhanced drug delivery efficacy.

  20. Targeting poverty : lessons from monitoring Ireland's National Anti-Poverty Strategy

    OpenAIRE

    Layte, Richard; Nolan, Brian; Whelan, Christopher T.

    2000-01-01

    In 1997 the Irish government adopted the National Anti-Poverty Strategy (NAPS), a global target for the reduction of poverty which illuminates a range of issues relating to official poverty targets. The Irish target is framed in terms of a relative poverty measure incorporating both relative income and direct measures of deprivation based on data on the extent of poverty from 1994. Since 1994 Ireland has experienced an unprecedented period of economic growth that makes it particularly importa...

  1. Surface-Assisted Self-Assembly Strategies Leading to Supramolecular Hydrogels.

    Science.gov (United States)

    Vigier-Carrière, Cécile; Boulmedais, Fouzia; Schaaf, Pierre; Jierry, Loïc

    2018-02-05

    Localized molecular self-assembly processes leading to the growth of nanostructures exclusively from the surface of a material is one of the great challenges in surface chemistry. In the last decade, several works have been reported on the ability of modified or unmodified surfaces to manage the self-assembly of low-molecular-weight hydrogelators (LMWH) resulting in localized supramolecular hydrogel coatings mainly based on nanofiber architectures. This Minireview highlights all strategies that have emerged recently to initiate and localize LMWH supramolecular hydrogel formation, their related fundamental issues and applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Insights into Integrated Lead Generation and Target Identification in Malaria and Tuberculosis Drug Discovery.

    Science.gov (United States)

    Okombo, John; Chibale, Kelly

    2017-07-18

    New, safe and effective drugs are urgently needed to treat and control malaria and tuberculosis, which affect millions of people annually. However, financial return on investment in the poor settings where these diseases are mostly prevalent is very minimal to support market-driven drug discovery and development. Moreover, the imminent loss of therapeutic lifespan of existing therapies due to evolution and spread of drug resistance further compounds the urgency to identify novel effective drugs. However, the advent of new public-private partnerships focused on tropical diseases and the recent release of large data sets by pharmaceutical companies on antimalarial and antituberculosis compounds derived from phenotypic whole cell high throughput screening have spurred renewed interest and opened new frontiers in malaria and tuberculosis drug discovery. This Account recaps the existing challenges facing antimalarial and antituberculosis drug discovery, including limitations associated with experimental animal models as well as biological complexities intrinsic to the causative pathogens. We enlist various highlights from a body of work within our research group aimed at identifying and characterizing new chemical leads, and navigating these challenges to contribute toward the global drug discovery and development pipeline in malaria and tuberculosis. We describe a catalogue of in-house efforts toward deriving safe and efficacious preclinical drug development candidates via cell-based medicinal chemistry optimization of phenotypic whole-cell medium and high throughput screening hits sourced from various small molecule chemical libraries. We also provide an appraisal of target-based screening, as invoked in our laboratory for mechanistic evaluation of the hits generated, with particular focus on the enzymes within the de novo pyrimidine biosynthetic and hemoglobin degradation pathways, the latter constituting a heme detoxification process and an associated cysteine

  3. A pre-protective strategy for precise tumor targeting and efficient photodynamic therapy with a switchable DNA/upconversion nanocomposite.

    Science.gov (United States)

    Yu, Zhengze; Ge, Yegang; Sun, Qiaoqiao; Pan, Wei; Wan, Xiuyan; Li, Na; Tang, Bo

    2018-04-14

    Tumor-specific targeting based on folic acid (FA) is one of the most common and significant approaches in cancer therapy. However, the expression of folate receptors (FRs) in normal tissues will lead to unexpected targeting and unsatisfactory therapeutic effect. To address this issue, we develop a pre-protective strategy for precise tumor targeting and efficient photodynamic therapy (PDT) using a switchable DNA/upconversion nanocomposite, which can be triggered in the acidic tumor microenvironment. The DNA/upconversion nanocomposite is composed of polyacrylic acid (PAA) coated upconversion nanoparticles (UCNPs), the surface of which is modified using FA and chlorin e6 (Ce6) functionalized DNA sequences with different lengths. Initially, FA on the shorter DNA was protected by a longer DNA to prevent the bonding to FRs on normal cells. Once reaching the acidic tumor microenvironment, C base-rich longer DNA forms a C-quadruplex, resulting in the exposure of the FA groups and the bonding of FA and FRs on cancer cell membranes to achieve precise targeting. Simultaneously, the photosensitizer chlorin e6 (Ce6) gets close to the surface of UCNPs, enabling the excitation of Ce6 to generate singlet oxygen ( 1 O 2 ) under near infrared light via Förster resonance energy transfer (FRET). In vivo experiments indicated that higher tumor targeting efficiency was achieved and the tumor growth was greatly inhibited through the pre-protective strategy.

  4. Do characteristics of a stationary obstacle lead to adjustments in obstacle stepping strategies?

    Science.gov (United States)

    Worden, Timothy A; De Jong, Audrey F; Vallis, Lori Ann

    2016-01-01

    Navigating cluttered and complex environments increases the risk of falling. To decrease this risk, it is important to understand the influence of obstacle visual cues on stepping parameters, however the specific obstacle characteristics that have the greatest influence on avoidance strategies is still under debate. The purpose of the current work is to provide further insight on the relationship between obstacle appearance in the environment and modulation of stepping parameters. Healthy young adults (N=8) first stepped over an obstacle with one visible top edge ("floating"; 8 trials) followed by trials where experimenters randomly altered the location of a ground reference object to one of 7 different positions (8 trials per location), which ranged from 6cm in front of, directly under, or up to 6cm behind the floating obstacle (at 2cm intervals). Mean take-off and landing distance as well as minimum foot clearance values were unchanged across different positions of the ground reference object; a consistent stepping trajectory was observed for all experimental conditions. Contrary to our hypotheses, results of this study indicate that ground based visual cues are not essential for the planning of stepping and clearance strategies. The simultaneous presentation of both floating and ground based objects may have provided critical information that lead to the adoption of a consistent strategy for clearing the top edge of the obstacle. The invariant foot placement observed here may be an appropriate stepping strategy for young adults, however this may not be the case across the lifespan or in special populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A multidimensional strategy to detect polypharmacological targets in the absence of structural and sequence homology.

    Science.gov (United States)

    Durrant, Jacob D; Amaro, Rommie E; Xie, Lei; Urbaniak, Michael D; Ferguson, Michael A J; Haapalainen, Antti; Chen, Zhijun; Di Guilmi, Anne Marie; Wunder, Frank; Bourne, Philip E; McCammon, J Andrew

    2010-01-22

    Conventional drug design embraces the "one gene, one drug, one disease" philosophy. Polypharmacology, which focuses on multi-target drugs, has emerged as a new paradigm in drug discovery. The rational design of drugs that act via polypharmacological mechanisms can produce compounds that exhibit increased therapeutic potency and against which resistance is less likely to develop. Additionally, identifying multiple protein targets is also critical for side-effect prediction. One third of potential therapeutic compounds fail in clinical trials or are later removed from the market due to unacceptable side effects often caused by off-target binding. In the current work, we introduce a multidimensional strategy for the identification of secondary targets of known small-molecule inhibitors in the absence of global structural and sequence homology with the primary target protein. To demonstrate the utility of the strategy, we identify several targets of 4,5-dihydroxy-3-(1-naphthyldiazenyl)-2,7-naphthalenedisulfonic acid, a known micromolar inhibitor of Trypanosoma brucei RNA editing ligase 1. As it is capable of identifying potential secondary targets, the strategy described here may play a useful role in future efforts to reduce drug side effects and/or to increase polypharmacology.

  6. Measurement of the Neutron Component in a Shower Generated in a Lead Target by Relativistic Nuclear Beam

    International Nuclear Information System (INIS)

    Chultehm, D.; Damdinsurehn, Ts.; D'yachenko, V.M.; Ehnkhzhin, L.; Lomova, L.A.; Perelygin, V.P.; Tolstov, K.D.

    1994-01-01

    The present paper describes a method of determining the total number of neutrons generated in an extended lead target by relativistic nuclei and protons. It is shown that 101±20 neutrons per proton are produced in the target with the volume of 50x50x80 cm 3 at 3.65 GeV energy of protons. 11 refs., 14 figs., 1 tab

  7. Incorporation of aptamers in the terminal loop of shRNAs yields an effective and novel combinatorial targeting strategy.

    Science.gov (United States)

    Pang, Ka Ming; Castanotto, Daniela; Li, Haitang; Scherer, Lisa; Rossi, John J

    2018-01-09

    Gene therapy by engineering patient's own blood cells to confer HIV resistance can potentially lead to a functional cure for AIDS. Toward this goal, we have previously developed an anti-HIV lentivirus vector that deploys a combination of shRNA, ribozyme and RNA decoy. To further improve this therapeutic vector against viral escape, we sought an additional reagent to target HIV integrase. Here, we report the development of a new strategy for selection and expression of aptamer for gene therapy. We developed a SELEX protocol (multi-tag SELEX) for selecting RNA aptamers against proteins with low solubility or stability, such as integrase. More importantly, we expressed these aptamers in vivo by incorporating them in the terminal loop of shRNAs. This novel strategy allowed efficient expression of the shRNA-aptamer fusions that targeted RNAs and proteins simultaneously. Expressed shRNA-aptamer fusions targeting HIV integrase or reverse transcriptase inhibited HIV replication in cell cultures. Viral inhibition was further enhanced by combining an anti-integrase aptamer with an anti-HIV Tat-Rev shRNA. This construct exhibited efficacy comparable to that of integrase inhibitor Raltegravir. Our strategy for the selection and expression of RNA aptamers can potentially extend to other gene therapy applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Sex-Specificity of Oxidative Stress in Newborns Leading to a Personalized Antioxidant Nutritive Strategy

    Directory of Open Access Journals (Sweden)

    Jean-Claude Lavoie

    2018-03-01

    Full Text Available Oxidative stress is a critical process that triggers several diseases observed in premature infants. Growing recognition of the detriment of oxidative stress in newborns warrants the use of an antioxidant strategy that is likely to be nutritional in order to restore redox homeostasis. It appears essential to have a personalized approach that will take into account the age of gestation at birth and the sex of the infant. However, the link between sex and oxidative stress remains unclear. The aim of this study was to find a common denominator explaining the discrepancy between studies related to sex-specific effects of oxidative stress. Results highlight a specificity of sex in the levels of oxidative stress markers linked to the metabolism of glutathione, as measured in the intracellular compartments. Levels of all sex-dependent oxidative stress markers are greater and markers associated to a better antioxidant defense are lower in boys compared to girls during the neonatal period. This sex-specific discrepancy is likely to be related to estrogen metabolism, which is more active in baby-girls and promotes the activation of glutathione metabolism. Conclusion: our observations suggest that nutritive antioxidant strategies need to target glutathione metabolism and, therefore, should be personalized considering, among others, the sex specificity.

  9. Sex-Specificity of Oxidative Stress in Newborns Leading to a Personalized Antioxidant Nutritive Strategy.

    Science.gov (United States)

    Lavoie, Jean-Claude; Tremblay, André

    2018-03-27

    Oxidative stress is a critical process that triggers several diseases observed in premature infants. Growing recognition of the detriment of oxidative stress in newborns warrants the use of an antioxidant strategy that is likely to be nutritional in order to restore redox homeostasis. It appears essential to have a personalized approach that will take into account the age of gestation at birth and the sex of the infant. However, the link between sex and oxidative stress remains unclear. The aim of this study was to find a common denominator explaining the discrepancy between studies related to sex-specific effects of oxidative stress. Results highlight a specificity of sex in the levels of oxidative stress markers linked to the metabolism of glutathione, as measured in the intracellular compartments. Levels of all sex-dependent oxidative stress markers are greater and markers associated to a better antioxidant defense are lower in boys compared to girls during the neonatal period. This sex-specific discrepancy is likely to be related to estrogen metabolism, which is more active in baby-girls and promotes the activation of glutathione metabolism. our observations suggest that nutritive antioxidant strategies need to target glutathione metabolism and, therefore, should be personalized considering, among others, the sex specificity.

  10. Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization.

    Science.gov (United States)

    Wang, Sheng; Huang, Peng; Chen, Xiaoyuan

    2016-09-01

    Targeted delivery of therapeutic agents is an important way to improve the therapeutic index and reduce side effects. To design nanoparticles for targeted delivery, both enhanced tumor tissue accumulation/retention and enhanced cellular internalization should be considered simultaneously. So far, there have been very few nanoparticles with immutable structures that can achieve this goal efficiently. Hierarchical targeting, a novel targeting strategy based on stimuli responsiveness, shows good potential to enhance both tumor tissue accumulation/retention and cellular internalization. Here, the recent design and development of hierarchical targeting nanoplatforms, based on changeable particle sizes, switchable surface charges and activatable surface ligands, will be introduced. In general, the targeting moieties in these nanoplatforms are not activated during blood circulation for efficient tumor tissue accumulation, but re-activated by certain internal or external stimuli in the tumor microenvironment for enhanced cellular internalization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Can investments in health systems strategies lead to changes in immunization coverage?

    Science.gov (United States)

    Brenzel, Logan

    2014-04-01

    National immunization programs in developing countries have made major strides to immunize the world's children, increasing full coverage to 83% of children. However, the World Health Organization estimates that 22 million children less than five years of age are left unvaccinated, and coverage levels have been plateauing for nearly a decade. This paper describes the evidence on factors contributing to low vaccination uptake, and describes the connection between these factors and the documented strategies and interventions that can lead to changes in immunization outcomes. The author suggests that investments in these areas may contribute more effectively to immunization coverage and also have positive spill-over benefits for health systems. The paper concludes that while some good quality evidence exists of what works and may contribute to immunization outcomes, the quality of evidence needs to improve and major gaps need to be addressed.

  12. Core--strategy leading to high reversible hydrogen storage capacity for NaBH4.

    Science.gov (United States)

    Christian, Meganne L; Aguey-Zinsou, Kondo-François

    2012-09-25

    Owing to its high storage capacity (10.8 mass %), sodium borohydride (NaBH(4)) is a promising hydrogen storage material. However, the temperature for hydrogen release is high (>500 °C), and reversibility of the release is unachievable under reasonable conditions. Herein, we demonstrate the potential of a novel strategy leading to high and stable hydrogen absorption/desorption cycling for NaBH(4) under mild pressure conditions (4 MPa). By an antisolvent precipitation method, the size of NaBH(4) particles was restricted to a few nanometers (hydrogen at 400 °C. Further encapsulation of these nanoparticles upon reaction of nickel chloride at their surface allowed the synthesis of a core--shell nanostructure, NaBH(4)@Ni, and this provided a route for (a) the effective nanoconfinement of the melted NaBH(4) core and its dehydrogenation products, and (b) reversibility and fast kinetics owing to short diffusion lengths, the unstable nature of nickel borohydride, and possible modification of reaction paths. Hence at 350 °C, a reversible and steady hydrogen capacity of 5 mass % was achieved for NaBH(4)@Ni; 80% of the hydrogen could be desorbed or absorbed in less than 60 min, and full capacity was reached within 5 h. To the best of our knowledge, this is the first time that such performances have been achieved with NaBH(4). This demonstrates the potential of the strategy in leading to major advancements in the design of effective hydrogen storage materials from pristine borohydrides.

  13. Nonrandom Intrafraction Target Motions and General Strategy for Correction of Spine Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Ma Lijun; Sahgal, Arjun; Hossain, Sabbir; Chuang, Cynthia; Descovich, Martina; Huang, Kim; Gottschalk, Alex; Larson, David A.

    2009-01-01

    Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case, time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.

  14. Comparison of provider and plan-based targeting strategies for disease management.

    Science.gov (United States)

    Annis, Ann M; Holtrop, Jodi Summers; Tao, Min; Chang, Hsiu-Ching; Luo, Zhehui

    2015-05-01

    We aimed to describe and contrast the targeting methods and engagement outcomes for health plan-delivered disease management with those of a provider-delivered care management program. Health plan epidemiologists partnered with university health services researchers to conduct a quasi-experimental, mixed-methods study of a 2-year pilot. We used semi-structured interviews to assess the characteristics of program-targeting strategies, and calculated target and engagement rates from clinical encounter data. Five physician organizations (POs) with 51 participating practices implemented care management. Health plan member lists were sent monthly to the practices to accept patients, and then the practices sent back data reports regarding targeting and engagement in care management. Among patients accepted by the POs, we compared those who were targeted and engaged by POs with those who met health plan targeting criteria. The health plan's targeting process combined claims algorithms and employer group preferences to identify candidates for disease management; on the other hand, several different factors influenced PO practices' targeting approaches, including clinical and personal knowledge of the patients, health assessment information, and availability of disease-relevant programs. Practices targeted a higher percentage of patients for care management than the health plan (38% vs 16%), where only 7% of these patients met the targeting criteria of both. Practices engaged a higher percentage of their targeted patients than the health plan (50% vs 13%). The health plan's claims-driven targeting approach and the clinically based strategies of practices both provide advantages; an optimal model may be to combine the strengths of each approach to maximize benefits in care management.

  15. A Convenient Cas9-based Conditional Knockout Strategy for Simultaneously Targeting Multiple Genes in Mouse.

    Science.gov (United States)

    Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S

    2017-03-31

    The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.

  16. A strategy for actualization of active targeting nanomedicine practically functioning in a living body.

    Science.gov (United States)

    Lee, Kyoung Jin; Shin, Seol Hwa; Lee, Jae Hee; Ju, Eun Jin; Park, Yun-Yong; Hwang, Jung Jin; Suh, Young-Ah; Hong, Seung-Mo; Jang, Se Jin; Lee, Jung Shin; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2017-10-01

    Designing nanocarriers with active targeting has been increasingly emphasized as for an ideal delivery mechanism of anti-cancer therapeutic agents, but the actualization has been constrained by lack of reliable strategy ultimately applicable. Here, we designed and verified a strategy to achieve active targeting nanomedicine that works in a living body, utilizing animal models bearing a patient's tumor tissue and subjected to the same treatments that would be used in the clinic. The concept for this strategy was that a novel peptide probe and its counterpart protein, which responded to a therapy, were identified, and then the inherent ability of the peptide to target the designated tumor protein was used for active targeting in vivo. An initial dose of ionizing radiation was locally delivered to the gastric cancer (GC) tumor of a patient-derived xenograft mouse model, and phage-displayed peptide library was intravenously injected. The peptides tightly bound to the tumor were recovered, and the counterpart protein was subsequently identified. Peptide-conjugated liposomal drug showed dramatically improved therapeutic efficacy and possibility of diagnostic imaging with radiation. These results strongly suggested the potential of our strategy to achieve in vivo functional active targeting and to be applied clinically for human cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Performance and strategy comparisons of human listeners and logistic regression in discriminating underwater targets.

    Science.gov (United States)

    Yang, Lixue; Chen, Kean

    2015-11-01

    To improve the design of underwater target recognition systems based on auditory perception, this study compared human listeners with automatic classifiers. Performances measures and strategies in three discrimination experiments, including discriminations between man-made and natural targets, between ships and submarines, and among three types of ships, were used. In the experiments, the subjects were asked to assign a score to each sound based on how confident they were about the category to which it belonged, and logistic regression, which represents linear discriminative models, also completed three similar tasks by utilizing many auditory features. The results indicated that the performances of logistic regression improved as the ratio between inter- and intra-class differences became larger, whereas the performances of the human subjects were limited by their unfamiliarity with the targets. Logistic regression performed better than the human subjects in all tasks but the discrimination between man-made and natural targets, and the strategies employed by excellent human subjects were similar to that of logistic regression. Logistic regression and several human subjects demonstrated similar performances when discriminating man-made and natural targets, but in this case, their strategies were not similar. An appropriate fusion of their strategies led to further improvement in recognition accuracy.

  18. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics.

    Science.gov (United States)

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian

    2015-08-01

    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  19. Analisis Strategi Segmenting, Targeting Dan Positioning Pada Perushaan Asuransi Pt.(persero) Jiwasraya, Pekanbaru

    OpenAIRE

    Sihotang, Jon Predianto; Karneli, Okta

    2017-01-01

    This research aims to identify and analyze the strategy of segmenting, targeting and positioning on the insurance company PT.(Persero) Asuransi Jiwasraya, Pekanbaru. In last 5 (five) years, the company experienced with unstable marketing. And the author believes that the trouble sits inside the marketing strategies that are not running well. The data had gained directly from the key informans by interviewing process in having accurate informations.The method of this research was used descript...

  20. The design of a lead-bismuth target system with a dual injection tube

    International Nuclear Information System (INIS)

    Cho, C.H.; Kim, Y.; Song, T.Y.; Park, W.S.

    2005-01-01

    A spallation target system is a key component to be developed for an accelerator driven system (ADS). It is known that a 15 ∼ 25 MW spallation target is required for a practical 1000 MWth ADS. The design of a 20 MW spallation target is very challenging because more than 60% of the beam power is deposited as heat in a small volume of the target system. In the present work, a numerical design study was performed to obtain the optimal design parameters for a 20 MW spallation target for a 1000 MW ADS. A dual injection tube was proposed for the reduction of the LBE flow rate at the target channel. The results of the present study show that a 30 cm wide proton beam with a uniform beam distribution should be adopted for the spallation target of a 20 MW power. When the dual LBE injection tube is employed, the LBE flow rate could be reduced by a factor of 4 without reducing the maximum allowable beam current. (authors)

  1. Creation of Novel Cores for β-Secretase (BACE-1) Inhibitors: A Multiparameter Lead Generation Strategy.

    Science.gov (United States)

    Viklund, Jenny; Kolmodin, Karin; Nordvall, Gunnar; Swahn, Britt-Marie; Svensson, Mats; Gravenfors, Ylva; Rahm, Fredrik

    2014-04-10

    In order to find optimal core structures as starting points for lead optimization, a multiparameter lead generation workflow was designed with the goal of finding BACE-1 inhibitors as a treatment for Alzheimer's disease. De novo design of core fragments was connected with three predictive in silico models addressing target affinity, permeability, and hERG activity, in order to guide synthesis. Taking advantage of an additive SAR, the prioritized cores were decorated with a few, well-characterized substituents from known BACE-1 inhibitors in order to allow for core-to-core comparisons. Prediction methods and analyses of how physicochemical properties of the core structures correlate to in vitro data are described. The syntheses and in vitro data of the test compounds are reported in a separate paper by Ginman et al. [J. Med. Chem. 2013, 56, 4181-4205]. The affinity predictions are described in detail by Roos et al. [J. Chem. Inf. 2014, DOI: 10.1021/ci400374z].

  2. Hydrogen isotope double differential production cross sections induced by 62.7 MeV neutrons on a lead target

    International Nuclear Information System (INIS)

    Kerveno, M.; Haddad, F.; Eudes, Ph.; Kirchner, T.; Lebrun, C.; Slypen, I.; Meulders, J.P.; Le Brun, C.; Lecolley, F.R.; Lecolley, J.F.; Louvel, M.; Lefebvres, F.; Hilaire, S.; Koning, A.J.

    2002-01-01

    Double differential hydrogen isotope production cross sections have been extracted in 62.7 MeV neutron induced reactions on a lead target. The angular distribution was measured at eight angles from 20 deg. to 160 deg. allowing the extraction of angle-differential, energy differential, and total production cross sections. A first set of comparisons with several theoretical calculations is also presented

  3. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    LENUS (Irish Health Repository)

    Toomey, David

    2009-01-01

    BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins\\/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and\\/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY\\/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i) homologous to previously crystallized proteins or (ii) targets of known drugs, but are (iii) not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS\\/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under \\'change-of-application\\' patents.

  4. Genomes2Drugs: identifies target proteins and lead drugs from proteome data.

    Directory of Open Access Journals (Sweden)

    David Toomey

    Full Text Available BACKGROUND: Genome sequencing and bioinformatics have provided the full hypothetical proteome of many pathogenic organisms. Advances in microarray and mass spectrometry have also yielded large output datasets of possible target proteins/genes. However, the challenge remains to identify new targets for drug discovery from this wealth of information. Further analysis includes bioinformatics and/or molecular biology tools to validate the findings. This is time consuming and expensive, and could fail to yield novel drugs if protein purification and crystallography is impossible. To pre-empt this, a researcher may want to rapidly filter the output datasets for proteins that show good homology to proteins that have already been structurally characterised or proteins that are already targets for known drugs. Critically, those researchers developing novel antibiotics need to select out the proteins that show close homology to any human proteins, as future inhibitors are likely to cross-react with the host protein, causing off-target toxicity effects later in clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: To solve many of these issues, we have developed a free online resource called Genomes2Drugs which ranks sequences to identify proteins that are (i homologous to previously crystallized proteins or (ii targets of known drugs, but are (iii not homologous to human proteins. When tested using the Plasmodium falciparum malarial genome the program correctly enriched the ranked list of proteins with known drug target proteins. CONCLUSIONS/SIGNIFICANCE: Genomes2Drugs rapidly identifies proteins that are likely to succeed in drug discovery pipelines. This free online resource helps in the identification of potential drug targets. Importantly, the program further highlights proteins that are likely to be inhibited by FDA-approved drugs. These drugs can then be rapidly moved into Phase IV clinical studies under 'change-of-application' patents.

  5. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.

    Science.gov (United States)

    Ojha, Tarun; Pathak, Vertika; Shi, Yang; Hennink, Wim E; Moonen, Chrit T W; Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2017-09-15

    The performance of nanomedicine formulations depends on the Enhanced Permeability and Retention (EPR) effect. Prototypic nanomedicine-based drug delivery systems, such as liposomes, polymers and micelles, aim to exploit the EPR effect to accumulate at pathological sites, to thereby improve the balance between drug efficacy and toxicity. Thus far, however, tumor-targeted nanomedicines have not yet managed to achieve convincing therapeutic results, at least not in large cohorts of patients. This is likely mostly due to high inter- and intra-patient heterogeneity in EPR. Besides developing (imaging) biomarkers to monitor and predict EPR, another strategy to address this heterogeneity is the establishment of vessel modulation strategies to homogenize and improve EPR. Over the years, several pharmacological and physical co-treatments have been evaluated to improve EPR-mediated tumor targeting. These include pharmacological strategies, such as vessel permeabilization, normalization, disruption and promotion, as well as physical EPR enhancement via hyperthermia, radiotherapy, sonoporation and phototherapy. In the present manuscript, we summarize exemplary studies showing that pharmacological and physical vessel modulation strategies can be used to improve tumor-targeted drug delivery, and we discuss how these advanced combination regimens can be optimally employed to enhance the (pre-) clinical performance of tumor-targeted nanomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Translation Strategies from Target Culture Perspective: An Analysis of English and Chinese Brands Names

    Directory of Open Access Journals (Sweden)

    Hong Shi

    2017-03-01

    Full Text Available As a crucial communication material, the brand name exhibits its growing importance in the worldwide communication. It is a special text with a strong function and a clear persuasive purpose. This paper aims to explore the translation strategy and methods of English brand names from the perspective of culture. According to Skopostheorie, the prime principle determining any translation process is the purpose of the overall translational action. The translation methods should be based on the text’s function and the target culture. This paper is a tentative study of the guiding strategy and possible methods used in English brand names translation by analyzing the Chinese and English brand names, and how they fulfill the function of promoting products and enhancing the cultural exchange in the hope of offering a new perspective in the brand name translation practice. The study used the Skopostheorie as the guiding theory and strategy to analyze English brand names, which were selected from the brand names database “brandirectory”. It is found that the translation should follow the target-culture oriented strategy to conform to the habitual use of target language, social culture and aesthetics in target market.

  7. Total fragmentation cross section of 158A GeV lead projectiles in Cu target

    International Nuclear Information System (INIS)

    Mukhtar Ahmed Rana; Shahid Manzoor

    2008-01-01

    Total fragmentation cross section for the reaction 158A Pb ions + Cu target is measured using the most sensitive track detector CR-39. Measured values are compared with calculations. Exposures of target-detector stack with 158A Pb projectiles are made at CERN-SPS beam facility. Results of calibration of CR-39 detector in a charge region (63≤Z≤83) are also reported, which can be used for high energy particle identification using CR-39 and in determination of partial charge changing cross sections. The charge resolution σ Z achieved by this technique is about 0.2e. A systematic dependence of total fragmentation cross section on target properties is revealed and the corresponding results are presented. (authors)

  8. Total Fragmentation Cross Section of 158A GeV Lead Projectiles in Cu Target

    International Nuclear Information System (INIS)

    Rana, Mukhtar Ahmed

    2008-01-01

    Total fragmentation cross section for the reaction 158 A Pb ions + Cu target is measured using the most sensitive track detector CR-39. Measured values are compared with calculations. Exposures of target-detector stack with 158A Pb projectiles are made at CERN-SPS beam facility. Results of calibration of CR-39 detector in a charge region (63 ≤ Z ≤ 83) are also reported, which can be used for high energy particle identification using CR-39 and in determination of partial charge changing cross sections. The charge resolution σ z achieved by this technique is about 0.2e. A systematic dependence of total fragmentation cross section on target properties is revealed and the corresponding results are presented. (nuclear physics)

  9. Thermal-hydraulics investigations for the Liquid Lead-Bismuth Target of the SINQ spallation source

    International Nuclear Information System (INIS)

    Sigg, B.; Dury, T.; Hudina, M.; Smith, B.

    1991-01-01

    The paper contains a discussion of the thermal-hydraulic problems of the target which require detailed analysis by means of a two- or three-dimensional space- and in part also time-dependent fluid dynamics code. There follows a short description of the general-purpose code ASTEC, which is being used for these investigations, and examples of the target modelling, including results. The final part of the paper is devoted to a short discussion of experiments against which this application of the code has to be validated. (author)

  10. Soil intervention as a strategy for lead exposure prevention: The New Orleans lead-safe childcare playground project

    Energy Technology Data Exchange (ETDEWEB)

    Mielke, Howard W., E-mail: howard.mielke@gmail.com [Department of Chemistry, Tulane University, New Orleans, LA 70118 (United States); Center for Bioenvironmental Research at Tulane and Xavier Universities, 1430 Tulane Avenue SL-3, New Orleans, LA 70112 (United States); Covington, Tina P. [Charity School of Nursing, Delgado Community College, New Orleans, LA 70112-1397 (United States); College of Nursing, University of South Alabama, Doctor of Nursing Practice Program (student), Mobile AL 36688-0002 (United States); Mielke, Paul W. [Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877 (United States); Wolman, Fredericka J. [Director of Pediatrics, Department of Children and Families, State of Connecticut, Hartford, CT 06473 (United States); Powell, Eric T.; Gonzales, Chris R. [Lead Lab, Inc., New Orleans, LA 70179-1125 (United States)

    2011-08-15

    The feasibility of reducing children's exposure to lead (Pb) polluted soil in New Orleans is tested. Childcare centers (median = 48 children) are often located in former residences. The extent of soil Pb was determined by selecting centers in both the core and outlying areas. The initial 558 mg/kg median soil Pb (range 14-3692 mg/kg) decreased to median 4.1 mg/kg (range 2.2-26.1 mg/kg) after intervention with geotextile covered by 15 cm of river alluvium. Pb loading decreased from a median of 4887 {mu}g/m{sup 2} (454 {mu}g/ft{sup 2}) range 603-56650 {mu}g/m{sup 2} (56-5263 {mu}g/ft{sup 2}) to a median of 398 {mu}g/m{sup 2} (37 {mu}g/ft{sup 2}) range 86-980 {mu}g/m{sup 2} (8-91 {mu}g/ft{sup 2}). Multi-Response Permutation Procedures indicate similar (P-values = 0.160-0.231) soil Pb at childcare centers compared to soil Pb of nearby residential communities. At {approx}$100 per child, soil Pb and surface loading were reduced within hours, advancing an upstream intervention conceptualization about Pb exposure prevention. - Highlights: > Upstream thinking refers to attending to causative agents that affect outcomes. > New Orleans has a high density soil Pb map of all residential communities. > Many childcare centers are located in Pb polluted residential communities. > Evaluation of childcare center playground soils substantiated severe Pb pollution. > Pursuing upstream thinking, low Pb soil was put on playgrounds to protect children. - Within hours, at a cost of about U.S. $100 (2010) per child, it is feasible to transform exterior play areas at childcare centers from Pb contaminated to Pb-safe with a large margin of safety.

  11. Molecular strategies targeting the host component of cancer to enhance tumor response to radiation therapy

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Huamani, Jessica; Fu, Allie; Hallahan, Dennis E.

    2006-01-01

    The tumor microenvironment, in particular, the tumor vasculature, as an important target for the cytotoxic effects of radiation therapy is an established paradigm for cancer therapy. We review the evidence that the phosphoinositide 3-kinase (PI3K)/Akt pathway is activated in endothelial cells exposed to ionizing radiation (IR) and is a molecular target for the development of novel radiation sensitizing agents. On the basis of this premise, several promising preclinical studies that targeted the inhibition of the PI3K/Akt activation as a potential method of sensitizing the tumor vasculature to the cytotoxic effects of IR have been conducted. An innovative strategy to guide cytotoxic therapy in tumors treated with radiation and PI3K/Akt inhibitors is presented. The evidence supports a need for further investigation of combined-modality therapy that involves radiation therapy and inhibitors of PI3K/Akt pathway as a promising strategy for improving the treatment of patients with cancer

  12. Constructed wetlands targeting nitrogen removal in agricultural drainage discharge – a subcatchment scale mitigation strategy

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Hoffmann, Carl Christian; Bruun, Jacob Druedahl

    analysis of variable mitigation strategies and cost-efficiency analysis reveals that even at low to moderate yearly N removal efficiencies (20-25% N removal efficiency) CWs targeting drainage water are highly efficient and cost-efficient measures. Thus, although challenges remain regarding site......-specific documentations, CWs targeting drainage discharge has been included as new mitigation strategy in the Danish environmental regulation....... of recipients, drainage water nutrient loads have a major impact on water quality, and end-of-pipe drainage filter solution may offer the benefits of a targeted measure. This calls for a paradigm shift towards the development of new, cost-efficient technologies to mitigate site-specific nutrient losses...

  13. Tumor initiating cells and chemoresistance: which is the best strategy to target colon cancer stem cells?

    Science.gov (United States)

    Paldino, Emanuela; Tesori, Valentina; Casalbore, Patrizia; Gasbarrini, Antonio; Puglisi, Maria Ausiliatrice

    2014-01-01

    There is an emerging body of evidence that chemoresistance and minimal residual disease result from selective resistance of a cell subpopulation from the original tumor that is molecularly and phenotypically distinct. These cells are called "cancer stem cells" (CSCs). In this review, we analyze the potential targeting strategies for eradicating CSCs specifically in order to develop more effective therapeutic strategies for metastatic colon cancer. These include induction of terminal epithelial differentiation of CSCs or targeting some genes expressed only in CSCs and involved in self-renewal and chemoresistance. Ideal targets could be cell regulators that simultaneously control the stemness and the resistance of CSCs. Another important aspect of cancer biology, which can also be harnessed to create novel broad-spectrum anticancer agents, is the Warburg effect, also known as aerobic glycolysis. Actually, little is yet known with regard to the metabolism of CSCs population, leaving an exciting unstudied avenue in the dawn of the emerging field of metabolomics.

  14. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    Science.gov (United States)

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  15. Protein Targeting: ER Leads the Way to the Inner Nuclear Envelope.

    Science.gov (United States)

    Blackstone, Craig

    2017-12-04

    Efficient targeting of newly synthesized membrane proteins from the endoplasmic reticulum to the inner nuclear membrane depends on nucleotide hydrolysis. A new study shows that this dependence reflects critical actions of the atlastin family of GTPases in maintaining the morphology of the endoplasmic reticulum network. Published by Elsevier Ltd.

  16. A strategy to objectively evaluate the necessity of correcting detected target deviations in image guided radiotherapy

    International Nuclear Information System (INIS)

    Yue, Ning J.; Kim, Sung; Jabbour, Salma; Narra, Venkat; Haffty, Bruce G.

    2007-01-01

    Image guided radiotherapy technologies are being increasingly utilized in the treatment of various cancers. These technologies have enhanced the ability to detect temporal and spatial deviations of the target volume relative to planned radiation beams. Correcting these detected deviations may, in principle, improve the accuracy of dose delivery to the target. However, in many situations, a clinical decision has to be made as to whether it is necessary to correct some of the deviations since the relevant dosimetric impact may or may not be significant, and the corresponding corrective action may be either impractical or time consuming. Ideally this decision should be based on objective and reproducible criteria rather than subjective judgment. In this study, a strategy is proposed for the objective evaluation of the necessity of deviation correction during the treatment verification process. At the treatment stage, without any alteration from the planned beams, the treatment beams should provide the desired dose coverage to the geometric volume identical to the planning target volume (PTV). Given this fact, the planned dose distribution and PTV geometry were used to compute the dose coverage and PTV enclosure of the clinical target volume (CTV) that was detected from imaging during the treatment setup verification. The spatial differences between the detected CTV and the planning CTV are essentially the target deviations. The extent of the PTV enclosure of the detected CTV as well as its dose coverage were used as criteria to evaluate the necessity of correcting any of the target deviations. This strategy, in principle, should be applicable to any type of target deviations, including both target deformable and positional changes and should be independent of how the deviations are detected. The proposed strategy was used on two clinical prostate cancer cases. In both cases, gold markers were implanted inside the prostate for the purpose of treatment setup

  17. Dual-acting of Hybrid Compounds - A New Dawn in the Discovery of Multi-target Drugs: Lead Generation Approaches.

    Science.gov (United States)

    Abdolmaleki, Azizeh; Ghasemi, Jahan B

    2017-01-01

    Finding high quality beginning compounds is a critical job at the start of the lead generation stage for multi-target drug discovery (MTDD). Designing hybrid compounds as selective multitarget chemical entity is a challenge, opportunity, and new idea to better act against specific multiple targets. One hybrid molecule is formed by two (or more) pharmacophore group's participation. So, these new compounds often exhibit two or more activities going about as multi-target drugs (mtdrugs) and may have superior safety or efficacy. Application of integrating a range of information and sophisticated new in silico, bioinformatics, structural biology, pharmacogenomics methods may be useful to discover/design, and synthesis of the new hybrid molecules. In this regard, many rational and screening approaches have followed by medicinal chemists for the lead generation in MTDD. Here, we review some popular lead generation approaches that have been used for designing multiple ligands (DMLs). This paper focuses on dual- acting chemical entities that incorporate a part of two drugs or bioactive compounds to compose hybrid molecules. Also, it presents some of key concepts and limitations/strengths of lead generation methods by comparing combination framework method with screening approaches. Besides, a number of examples to represent applications of hybrid molecules in the drug discovery are included. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2004-07-14

    The structural genomics project is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy which is medically and biologically relevant, of good value, and tractable. As an option to consider, we present the Pfam5000 strategy, which involves selecting the 5000 most important families from the Pfam database as sources for targets. We compare the Pfam5000 strategy to several other proposed strategies that would require similar numbers of targets. These include including complete solution of several small to moderately sized bacterial proteomes, partial coverage of the human proteome, and random selection of approximately 5000 targets from sequenced genomes. We measure the impact that successful implementation of these strategies would have upon structural interpretation of the proteins in Swiss-Prot, TrEMBL, and 131 complete proteomes (including 10 of eukaryotes) from the Proteome Analysis database at EBI. Solving the structures of proteins from the 5000 largest Pfam families would allow accurate fold assignment for approximately 68 percent of all prokaryotic proteins (covering 59 percent of residues) and 61 percent of eukaryotic proteins (40 percent of residues). More fine-grained coverage which would allow accurate modeling of these proteins would require an order of magnitude more targets. The Pfam5000 strategy may be modified in several ways, for example to focus on larger families, bacterial sequences, or eukaryotic sequences; as long as secondary consideration is given to large families within Pfam, coverage results vary only slightly. In contrast, focusing structural genomics on a single tractable genome would have only a limited impact in structural knowledge of other proteomes: a significant fraction (about 30-40 percent of the proteins, and 40-60 percent of the residues) of each proteome is classified in small

  19. Tumor Specific Detection of an Optically Targeted Antibody Combined with a Quencher-conjugated Neutravidin “Quencher-Chaser”: A Dual “Quench and Chase” Strategy to Improve Target to Non-target Ratios for Molecular Imaging of Cancer

    Science.gov (United States)

    Ogawa, Mikako; Kosaka, Nobuyuki; Choyke, Peter L; Kobayashi, Hisataka

    2009-01-01

    In vivo molecular cancer imaging with monoclonal antibodies has great potential not only for cancer detection but also for cancer characterization. However, the prolonged retention of intravenously injected antibody in the blood causes low target tumor-to-background ratio (TBR). Avidin has been used as a “chase” to clear the unbound, circulating biotinylated antibody and decrease the background signal. Here, we utilize a combined approach of a Fluorescence Resonance Energy Transfer (FRET) quenched antibody with an “avidin chase” to increase TBR. Trastuzumab, a humanized monoclonal antibody against human epidermal growth factor receptor type 2 (HER2), was biotinylated and conjugated with the near-infrared (NIR) fluorophore Alexa680 to synthesize Tra-Alexa680-biotin. Next, the FRET quencher, QSY-21, was conjugated to avidin, neutravidin (nAv) or streptavidin (sAv), thus creating Av-QSY21, nAv-QSY21 or sAv-QSY21 as “chasers”. The fluorescence was quenched in vitro by binding Tra-Alexa680-biotin to Av-QSY21, nAv-QSY21 or sAv-QSY21. To evaluate if the injection of quencher-conjugated avidin-derivatives can improve target TBR by using a dual “quench and chase” strategy, both target (3T3/HER2+) and non-target (Balb3T3/ZsGreen) tumor bearing mice were employed. The “FRET quench” effect induced by all the QSY21 avidin-based conjugates reduced but did not totally eliminate background signal from the blood pool. The addition of nAv-QSY21 administration increased target TBR mainly due to the “chase” effect where unbound conjugated antibody was preferentially cleared to the liver. The relatively slow clearance of unbound nAv-QSY21 leads to further reductions in background signal by leaking out of the vascular space and binding to unbound antibodies in the extravascular space of tumors resulting in decreased non-target tumor-to-background ratios but increased target TBR due to the “FRET quench” effect because target-bound antibodies were internalized

  20. Influence of different moderator materials on characteristics of neutron fluxes generated under irradiation of lead target with proton beams

    International Nuclear Information System (INIS)

    Sosnin, A.N.; Polanski, A.; Petrochenkov, S.A.

    2002-01-01

    Neutron fields generated in extended heavy (Z ≥ 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (diam. 8 cm x 20 cm or diam. 8 cm x 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin

  1. Influence of Different Moderator Materials on Characteristics of Neutron Fluxes Generated under Irradiation of Lead Target with Proton Beams

    CERN Document Server

    Sosnin, A N; Polanski, A; Petrochenkov, S A; Golovatyuk, V M; Krivopustov, M I; Bamblevski, V P; Westmeier, W; Odoj, R; Brandt, R; Robotham, H; Hashemi-Nezhad, S R; Zamani-Valassiadou, M

    2002-01-01

    Neutron fields generated in extended heavy (Z\\geq 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (\\varnothing 8 cm\\times 20 cm or \\varnothing 8cm\\times 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared in the present work. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin.

  2. The Lead Ion accelerating facility and the relative experimental program at CERN SPS fixed target

    International Nuclear Information System (INIS)

    Riccati, L.

    1995-01-01

    The status of the lead beam construction and commissioning is reviewed. A very wide experimental program with heavy nuclei was approved at the CERN SPS for a dedicated study of ultrarelativistic nucleus-nucleus collisions. An arbitrary and very short summary of the advantages and motivations for the use of heavier nuclei in the quark-gluon plasma search will be presented. ((orig.))

  3. Minimizing driver errors: examining factors leading to failed target tracking and detection.

    Science.gov (United States)

    2013-06-01

    Driving a motor vehicle is a common practice for many individuals. Although driving becomes : repetitive and a very habitual task, errors can occur that lead to accidents. One factor that can be a : cause for such errors is a lapse in attention or a ...

  4. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    Science.gov (United States)

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  5. Perspectives of 99mTc chemistry and radiopharmacy: strategies, building blocks and targets

    International Nuclear Information System (INIS)

    Alberto, R.

    2007-01-01

    Technetium chemistry, both fundamental and applied are required to a larger extent in order to keep the essential role of this element in radiopharmacy alive. After an introduction, highlighting the situation in general from research and market aspects, new strategies will be proposed in which technetium and rhenium play an essential role which can not be taken over by other radionuclides such as 11 C or 18 F. Furthermore, currently available and potential future building blocks in technetium chemistry and their relationship to the new strategies as well as characteristics of new precursors will be discussed and compared to each other. Targets and targeting molecules, again in the context of strategies unique for technetium (and rhenium) are in the focus of the last part. With respect of retaining a unique role, it is obvious that any future technetium or rhenium labelled biomolecule should have potential to therapy or be applied in the immediate context of therapy, as e.g. for the early assessment of success in chemotherapy. All these aspects emphasize a role of inorganic technetium chemistry which goes far beyond simple labelling strategies. To underline the importance of fundamental chemistry, we will present and discuss some examples with nuclear targeting agents, amino acids and vitamin B12. (author)

  6. Evaluating system reliability and targeted hardening strategies of power distribution systems subjected to hurricanes

    International Nuclear Information System (INIS)

    Salman, Abdullahi M.; Li, Yue; Stewart, Mark G.

    2015-01-01

    Over the years, power distribution systems have been vulnerable to extensive damage from hurricanes which can cause power outage resulting in millions of dollars of economic losses and restoration costs. Most of the outage is as a result of failure of distribution support structures. Over the years, various methods of strengthening distribution systems have been proposed and studied. Some of these methods, such as undergrounding of the system, have been shown to be unjustified from an economic point of view. A potential cost-effective strategy is targeted hardening of the system. This, however, requires a method of determining critical parts of a system that when strengthened, will have greater impact on reliability. This paper presents a framework for studying the effectiveness of targeted hardening strategies on power distribution systems subjected to hurricanes. The framework includes a methodology for evaluating system reliability that relates failure of poles and power delivery, determination of critical parts of a system, hurricane hazard analysis, and consideration of decay of distribution poles. The framework also incorporates cost analysis that considers economic losses due to power outage. A notional power distribution system is used to demonstrate the framework by evaluating and comparing the effectiveness of three hardening measures. - Highlight: • Risk assessment of power distribution systems subjected to hurricanes is carried out. • Framework for studying effectiveness of targeted hardening strategies is presented. • A system reliability method is proposed. • Targeted hardening is cost effective for existing systems. • Economic losses due to power outage should be considered for cost analysis.

  7. Optimal strategies for controlling riverine tsetse flies using targets: a modelling study.

    Directory of Open Access Journals (Sweden)

    Glyn A Vale

    2015-03-01

    Full Text Available Tsetse flies occur in much of sub-Saharan Africa where they transmit the trypanosomes that cause the diseases of sleeping sickness in humans and nagana in livestock. One of the most economical and effective methods of tsetse control is the use of insecticide-treated screens, called targets, that simulate hosts. Targets have been ~1 m2, but recently it was shown that those tsetse that occupy riverine situations, and which are the main vectors of sleeping sickness, respond well to targets only ~0.06 m2. The cheapness of these tiny targets suggests the need to reconsider what intensity and duration of target deployments comprise the most cost-effective strategy in various riverine habitats.A deterministic model, written in Excel spreadsheets and managed by Visual Basic for Applications, simulated the births, deaths and movement of tsetse confined to a strip of riverine vegetation composed of segments of habitat in which the tsetse population was either self-sustaining, or not sustainable unless supplemented by immigrants. Results suggested that in many situations the use of tiny targets at high density for just a few months per year would be the most cost-effective strategy for rapidly reducing tsetse densities by the ~90% expected to have a great impact on the incidence of sleeping sickness. Local elimination of tsetse becomes feasible when targets are deployed in isolated situations, or where the only invasion occurs from populations that are not self-sustaining.Seasonal use of tiny targets deserves field trials. The ability to recognise habitat that contains tsetse populations which are not self-sustaining could improve the planning of all methods of tsetse control, against any species, in riverine, savannah or forest situations. Criteria to assist such recognition are suggested.

  8. Studies on neutron production in the interaction of 7.4 GeV protons with extended lead target

    CERN Document Server

    Hashemi-Nezhad, S R; Ochs, M; Wan, J S; Schmidt, T; Langrock, E J; Vater, P; Adam, J; Bamblevskij, V P; Bradnova, V; Gelovani, L K; Kalinnikov, V K; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Perelygin, V P; Pronskikh, V S; Stegailov, V I; Tsoupko-Sitnikov, V M; Modolo, G; Odoj, R; Phlippen, P W; Adloff, J C; Debeauvais, M; Zamani-Valassiadou, M; Dwivedi, K K; Wilson, B

    1999-01-01

    A cylindrical lead target of diameter 8 cm and length 20 cm was irradiated with 7.4 GeV protons along the axis of the cylinder. The lead target was surrounded with a paraffin layer of thickness 6 cm to moderate the neutrons produced in p + Pb reactions. The spatial distribution of the slow and fast neutrons on different surfaces of the moderator were determined using LR 115 2B detectors (through sup 1 sup 0 B(n,alpha) sup 7 Li reactions) and CR39 detectors (through proton recoils) respectively. Such results can be valuable in the studies and design of Accelerator Driven Subcritical Nuclear Reactors and Nuclear Waste Incinerators.

  9. Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting.

    Science.gov (United States)

    Lin, Ran; Zhang, Pengcheng; Cheetham, Andrew G; Walston, Jeremy; Abadir, Peter; Cui, Honggang

    2015-01-21

    Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

  10. Nonspecific Organelle-Targeting Strategy with Core-Shell Nanoparticles of Varied Lipid Components/Ratios.

    Science.gov (United States)

    Zhang, Lu; Sun, Jiashu; Wang, Yilian; Wang, Jiancheng; Shi, Xinghua; Hu, Guoqing

    2016-07-19

    We report a nonspecific organelle-targeting strategy through one-step microfluidic fabrication and screening of a library of surface charge- and lipid components/ratios-varied lipid shell-polymer core nanoparticles. Different from the common strategy relying on the use of organelle-targeted moieties conjugated onto the surface of nanoparticles, here, we program the distribution of hybrid nanoparticles in lysosomes or mitochondria by tuning the lipid components/ratios in shell. Hybrid nanoparticles with 60% 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 20% 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) can intracellularly target mitochondria in both in vitro and in vivo models. While replacing DOPE with the same amount of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the nanoparticles do not show mitochondrial targeting, indicating an incremental effect of cationic and fusogenic lipids on lysosomal escape which is further studied by molecular dynamics simulations. This work unveils the lipid-regulated subcellular distribution of hybrid nanoparticles in which target moieties and complex synthetic steps are avoided.

  11. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

    Science.gov (United States)

    Puvanakrishnan, Priyaveena; Park, Jaesook; Chatterjee, Deyali; Krishnan, Sunil; Tunnell, James W

    2012-01-01

    Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle's geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.

  12. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    Science.gov (United States)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  13. Measurement of Gas and Volatile Elements Production Cross Section in a Molten Lead-Bismuth Target

    CERN Multimedia

    2002-01-01

    MEGAPIE is a project for a 1 MW liquid PbBi spallation source, to be built at the SINQ facility at the Paul Scherrer Institut, which will be an important step in the roadmap towards the demonstration of the ADS concept and high power molten metal targets in general. In the design and construction of such a challenging project it is extremely important to evaluate the amount and type of gas and volatile elements which will be produced, for a reliable and safe operation of the experiment. Both stable (H, $^{4}$He and other noble gases) and radioactive isotopes are of interest. Currently, different design options are under consideration to deal with the gas produced during operation. \\\\ For a correct estimation of the production cross sections, a measurement with a liquid PbBi target and a proton beam of energy close to the one of MEGAPIE (575 MeV) is necessary. We would like to use the ISOLDE facility, which offers the unique opportunity via its mass spectrometric analysis of the elements present in the gas pha...

  14. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  15. Maneuver Analysis and Targeting Strategy for the Stardust Re-Entry Capsule

    Science.gov (United States)

    Helfrich, Cliff; Bhat, Ramachand S.; Kangas, Julie A.; Wilson, Roby S.; Wong, Mau C.; Potts, Christopher L.; Williams, Kenneth E.

    2006-01-01

    The Stardust Sample Return Capsule (SRC) returned to Earth on January 15, 2006 after seven years of collecting interstellar and comet particles over three heliocentric revolutions, as shown in Figure 1. The SRC was carried on board the Stardust spacecraft, as shown in Figure 2. Because the spacecraft was built with unbalanced thrusters, turns and attitude control maintenance resulted in undesirable delta-v being imparted to the trajectory. As a result, a carefully planned maneuver strategy was devised to accurately target the Stardust capsule to the Utah Test and Training Range (UTTR). This paper provides an overview of the Stardust spacecraft and mission and describes the maneuver strategy that was employed to achieve the stringent targeting requirements for landing in Utah. In addition, an overview of Stardust maneuver analysis tools and techniques will also be presented.

  16. Advisory group meeting on design and performance of reactor and subcritical blanket systems with lead and lead-bismuth as coolant and/or target material. Working material

    International Nuclear Information System (INIS)

    2001-01-01

    The purpose of the IAEA Advisory Group Meeting (AGM) on Design and Performance of Reactor and Sub-critical Blanket Systems with Lead and Lead-Bismuth as Coolant and/or Target Material was to provide a forum for international information exchange on all the topics relevant to Pb and Pb/Bi cooled critical and sub-critical reactors. In addition, the AGM aimed at: (1) finding ways and means to improve international co-ordination efforts in this area; (2) obtaining advice from the Member States with regard to the activities to be implemented in this area by the IAEA, in order to best meet their needs; and (3) laying out the plans for an effective co-ordination and support of the R and D activities in this area. The AGM stressed that nuclear energy is a realistic solution to satisfy the energy demand, considering the limited resources of fossil fuel, its uneven distribution in the world and the impact of its use on the planet, and taking into account the expected doubling of the world population in the 21st century and tripling of the electricity demand (especially in the developing countries). However, the AGM concluded that the development of an innovative nuclear technology meeting the following requirements must be pursued: (a) deterministic exclusion of any severe accident; (b) proliferation resistance; (c) cost competitiveness with alternative energy sources; (d) sustainable fuel supply; and (e) solution of the radioactive waste management problem

  17. How genetic testing can lead to targeted management of XIAP deficiency-related inflammatory bowel disease

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; LaCasse, Eric Charles

    2017-01-01

    infections, such as Epstein-Barr virus (EBV). Children with XIAP-related XLP-2 may present with either familial hemophagocytic lymphohistiocytosis, often triggered in response to EBV infection, or with a treatment-refractory severe pediatric form of inflammatory bowel disease (IBD) that might be diagnosed...... treatment history and patient morbidity/mortality since its original identification in 2006. Since XLP-2 is rare, cases are probably undergiagnosed or misdiagnosed. Consideration of XLP-2 in children with severe symptoms of IBD can prevent serious morbidities and mortality, avoid unnecessary procedures......, and expedite specific targeted therapy.Genet Med advance online publication 14 July 2016Genetics in Medicine (2016); doi:10.1038/gim.2016.82....

  18. Mis-targeting of the mitochondrial protein LIPT2 leads to apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Emanuele Bernardinelli

    Full Text Available Lipoyl(Octanoyl Transferase 2 (LIPT2 is a protein involved in the post-translational modification of key energy metabolism enzymes in humans. Defects of lipoic acid synthesis and transfer start to emerge as causes of fatal or severe early-onset disease. We show that the first 31 amino acids of the N-terminus of LIPT2 represent a mitochondrial targeting sequence and inhibition of the transit of LIPT2 to the mitochondrion results in apoptotic cell death associated with activation of the apoptotic volume decrease (AVD current in normotonic conditions, as well as over-activation of the swelling-activated chloride current (IClswell, mitochondrial membrane potential collapse, caspase-3 cleavage and nuclear DNA fragmentation. The findings presented here may help elucidate the molecular mechanisms underlying derangements of lipoic acid biosynthesis.

  19. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems

    Science.gov (United States)

    Kydd, Janel; Jadia, Rahul; Velpurisiva, Praveena; Gad, Aniket; Paliwal, Shailee; Rai, Prakash

    2017-01-01

    Cancer cells have characteristics of acquired and intrinsic resistances to chemotherapy treatment—due to the hostile tumor microenvironment—that create a significant challenge for effective therapeutic regimens. Multidrug resistance, collateral toxicity to normal cells, and detrimental systemic side effects present significant obstacles, necessitating alternative and safer treatment strategies. Traditional administration of chemotherapeutics has demonstrated minimal success due to the non-specificity of action, uptake and rapid clearance by the immune system, and subsequent metabolic alteration and poor tumor penetration. Nanomedicine can provide a more effective approach to targeting cancer by focusing on the vascular, tissue, and cellular characteristics that are unique to solid tumors. Targeted methods of treatment using nanoparticles can decrease the likelihood of resistant clonal populations of cancerous cells. Dual encapsulation of chemotherapeutic drug allows simultaneous targeting of more than one characteristic of the tumor. Several first-generation, non-targeted nanomedicines have received clinical approval starting with Doxil® in 1995. However, more than two decades later, second-generation or targeted nanomedicines have yet to be approved for treatment despite promising results in pre-clinical studies. This review highlights recent studies using targeted nanoparticles for cancer treatment focusing on approaches that target either the tumor vasculature (referred to as ‘vascular targeting’), the tumor microenvironment (‘tissue targeting’) or the individual cancer cells (‘cellular targeting’). Recent studies combining these different targeting methods are also discussed in this review. Finally, this review summarizes some of the reasons for the lack of clinical success in the field of targeted nanomedicines. PMID:29036899

  20. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Janel Kydd

    2017-10-01

    Full Text Available Cancer cells have characteristics of acquired and intrinsic resistances to chemotherapy treatment—due to the hostile tumor microenvironment—that create a significant challenge for effective therapeutic regimens. Multidrug resistance, collateral toxicity to normal cells, and detrimental systemic side effects present significant obstacles, necessitating alternative and safer treatment strategies. Traditional administration of chemotherapeutics has demonstrated minimal success due to the non-specificity of action, uptake and rapid clearance by the immune system, and subsequent metabolic alteration and poor tumor penetration. Nanomedicine can provide a more effective approach to targeting cancer by focusing on the vascular, tissue, and cellular characteristics that are unique to solid tumors. Targeted methods of treatment using nanoparticles can decrease the likelihood of resistant clonal populations of cancerous cells. Dual encapsulation of chemotherapeutic drug allows simultaneous targeting of more than one characteristic of the tumor. Several first-generation, non-targeted nanomedicines have received clinical approval starting with Doxil® in 1995. However, more than two decades later, second-generation or targeted nanomedicines have yet to be approved for treatment despite promising results in pre-clinical studies. This review highlights recent studies using targeted nanoparticles for cancer treatment focusing on approaches that target either the tumor vasculature (referred to as ‘vascular targeting’, the tumor microenvironment (‘tissue targeting’ or the individual cancer cells (‘cellular targeting’. Recent studies combining these different targeting methods are also discussed in this review. Finally, this review summarizes some of the reasons for the lack of clinical success in the field of targeted nanomedicines.

  1. Nanomedicine strategies for sustained, controlled, and targeted treatment of cancer stem cells of the digestive system.

    Science.gov (United States)

    Xie, Fang-Yuan; Xu, Wei-Heng; Yin, Chuan; Zhang, Guo-Qing; Zhong, Yan-Qiang; Gao, Jie

    2016-10-15

    Cancer stem cells (CSCs) constitute a small proportion of the cancer cells that have self-renewal capacity and tumor-initiating ability. They have been identified in a variety of tumors, including tumors of the digestive system. CSCs exhibit some unique characteristics, which are responsible for cancer metastasis and recurrence. Consequently, the development of effective therapeutic strategies against CSCs plays a key role in increasing the efficacy of cancer therapy. Several potential approaches to target CSCs of the digestive system have been explored, including targeting CSC surface markers and signaling pathways, inducing the differentiation of CSCs, altering the tumor microenvironment or niche, and inhibiting ATP-driven efflux transporters. However, conventional therapies may not successfully eradicate CSCs owing to various problems, including poor solubility, stability, rapid clearance, poor cellular uptake, and unacceptable cytotoxicity. Nanomedicine strategies, which include drug, gene, targeted, and combinational delivery, could solve these problems and significantly improve the therapeutic index. This review briefly summarizes the ongoing development of strategies and nanomedicine-based therapies against CSCs of the digestive system.

  2. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice

    DEFF Research Database (Denmark)

    Xu, T; Bianco, P; Fisher, L W

    1998-01-01

    The resilience and strength of bone is due to the orderly mineralization of a specialized extracellular matrix (ECM) composed of type I collagen (90%) and a host of non-collagenous proteins that are, in general, also found in other tissues. Biglycan (encoded by the gene Bgn) is an ECM proteoglycan...... apparently normal at birth, these mice display a phenotype characterized by a reduced growth rate and decreased bone mass due to the absence of Bgn. To our knowledge, this is the first report in which deficiency of a non-collagenous ECM protein leads to a skeletal phenotype that is marked by low bone mass...... that becomes more obvious with age. These mice may serve as an animal model to study the role of ECM proteins in osteoporosis....

  3. Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling.

    Directory of Open Access Journals (Sweden)

    Lotta Berg

    Full Text Available Acetylcholinesterase (AChE is an essential enzyme that terminates cholinergic transmission by rapid hydrolysis of the neurotransmitter acetylcholine. Compounds inhibiting this enzyme can be used (inter alia to treat cholinergic deficiencies (e.g. in Alzheimer's disease, but may also act as dangerous toxins (e.g. nerve agents such as sarin. Treatment of nerve agent poisoning involves use of antidotes, small molecules capable of reactivating AChE. We have screened a collection of organic molecules to assess their ability to inhibit the enzymatic activity of AChE, aiming to find lead compounds for further optimization leading to drugs with increased efficacy and/or decreased side effects. 124 inhibitors were discovered, with considerable chemical diversity regarding size, polarity, flexibility and charge distribution. An extensive structure determination campaign resulted in a set of crystal structures of protein-ligand complexes. Overall, the ligands have substantial interactions with the peripheral anionic site of AChE, and the majority form additional interactions with the catalytic site (CAS. Reproduction of the bioactive conformation of six of the ligands using molecular docking simulations required modification of the default parameter settings of the docking software. The results show that docking-assisted structure-based design of AChE inhibitors is challenging and requires crystallographic support to obtain reliable results, at least with currently available software. The complex formed between C5685 and Mus musculus AChE (C5685•mAChE is a representative structure for the general binding mode of the determined structures. The CAS binding part of C5685 could not be structurally determined due to a disordered electron density map and the developed docking protocol was used to predict the binding modes of this part of the molecule. We believe that chemical modifications of our discovered inhibitors, biochemical and biophysical

  4. Does the Fit Between Competitive Strategy and Administrative Mechanisms Lead to Superior Performance?

    OpenAIRE

    Barth, Henrik

    2000-01-01

    At least two different administrative mechanisms are available for the small business manager to develop and pursue a competitive strategy. One refers to managerial skills needed to implement and follow the competitive strategy chosen by the firm. The other refers to the design of organisation structure i.e. how job tasks are divided, grouped and coordinated. This paper argues that the fit between the competitive strategy followed by a firm and the utilisation of the administrative mechanisms...

  5. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor.

    Science.gov (United States)

    Manjappa, Arehalli S; Chaudhari, Kiran R; Venkataraju, Makam P; Dantuluri, Prudhviraju; Nanda, Biswarup; Sidda, Chennakesavulu; Sawant, Krutika K; Murthy, Rayasa S Ramachandra

    2011-02-28

    A great deal of effort has been made over the years to develop liposomes that have targeting vectors (oligosaccharides, peptides, proteins and vitamins) attached to the bilayer surface. Most studies have focused on antibody conjugates since procedures for producing highly specific monoclonal antibodies are well established. Antibody conjugated liposomes have recently attracted a great deal of interest, principally because of their potential use as targeted drug delivery systems and in diagnostic applications. A number of methods have been reported for coupling antibodies to the surface of stealth liposomes. The objective of this review is to enumerate various strategies which are employed in the modification and conjugation of antibodies to the surface of stealth liposomes. This review also describes various derivatization techniques of lipids prior and after their use in the preparation of liposomes. The use of single chain variable fragments and affibodies as targeting ligands in the preparation of immunoliposomes is also discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Mature Epitope Density - A strategy for target selection based on immunoinformatics and exported prokaryotic proteins

    DEFF Research Database (Denmark)

    Santos, Anderson R; Pereira, Vanessa Bastos; Barbosa, Eudes

    2013-01-01

    . However, currently available tools do not account for the concentration of epitope products in the mature protein product and its relation to the reliability of target selection. RESULTS: We developed a computational strategy based on measuring the epitope's concentration in the mature protein, called...... Mature Epitope Density (MED). Our method, though simple, is capable of identifying promising vaccine targets. Our online software implementation provides a computationally light and reliable analysis of bacterial exoproteins and their potential for vaccines or diagnosis projects against pathogenic...... proteins were confirmed as related. There was no experimental evidence of antigenic or pathogenic contributions for three of the highest MED-scored Mtb proteins. Hence, these three proteins could represent novel putative vaccine and drug targets for Mtb. A web version of MED is publicly available online...

  7. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    Science.gov (United States)

    Moffat, Christopher; Buckland, Stephen T.; Samson, Andrew J.; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A.; Huang, Jeffrey T.-J.; Connolly, Christopher N.

    2016-04-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.

  8. ISSUES IN ACHIEVING TARGETED FUNDING FOR LEADING SCIENTISTS AND SCIENTIFIC COMMUNITIES USING INDEXES OF PUBLICATION ACTIVITY

    Directory of Open Access Journals (Sweden)

    N. G. Kurakova

    2015-01-01

    Full Text Available In order to increase the competitiveness of the Russian scientific-technological complex in the global environment, it is planned to increase competition through State funding, spent on research and development. This will allow the focus of investment resources on the most perspective ideas and projects of the most efficient scientists, communities and organisations. The article suggests that we will witness the widening of competitive forms of funding against the simultaneous and gradual cuts in the share of financing through State contracts.One of the key criteria for evaluating the competency of team leaders and research applicants for State funding are measuring those who have «achieved high scientific results in concrete field of science», as a scientometric indicator, characterising their publication activity and citation rating.The article provides evidence showing that evaluation of individual scientists and whole scientific communities based on their publication activity indicators and impact is limited and challenges the ability for targeted funding and transparency in the selection process for executive projects.

  9. Review and research analysis of computational target methods using BioRuby and in silico screening of herbal lead compounds against pancreatic cancer using R programming.

    Science.gov (United States)

    Jayadeepa, R M; Ray, Ankita; Naik, Dhaval; Sanyal, Debendra Nath; Shah, Disha

    2014-01-01

    Plants and their natural components sophisticated with the cornerstone of traditional conventional medicinal system throughout the globe for many years and extend to furnish mankind with latest remedies. Natural Products act as lead molecules for the synthesis of various potent drugs. In the current research a study is conducted on herbal small molecule and their potential binding chemical affinity to the effect or molecules of major diseases such as pancreatic cancer. Clinical studies demonstrate correlation between Cyclin- Dependent Kinase 4 (CDK4) and malignant progression of Pancreatic Cancer. Using Bioruby Gem's we were able to analyze better characteristics of the target protein. VegaZZ and NAMD were used to minimize the energy of the target protein. Therefore identification of effective, well- tolerated targets was analyzed. Further the target protein was subjected to docking with the anti cancer inhibitors which represents a rational chemo preventive strategy using AutoDock Vina. Later using the dock score top ranked phytochemicals were analyzed for Toxicity Analysis. Using the BioRuby gem we were able to measure the distance between the amino acid. Various R scripting libraries were used to hunt the best leads, as in this case the phytochemicals. Phytochemicals such as Wedelolactones and Catechin were analyzed computationally. This study has presented the various effects of naturally occurring anti pancreatic cancer compounds Catechin, Wedelolactones that inhibits Cyclin Dependent Kinase 4. The study results reveal that compounds use less binding energy to CDK4 and inhibit its activity. Future investigation of other various wet lab studies such as cell line studies will confirm results of these two herbal chemical formulations potential ones for treating Pancreatic Cancer.

  10. The n-by-T Target Discharge Strategy for Inpatient Units.

    Science.gov (United States)

    Parikh, Pratik J; Ballester, Nicholas; Ramsey, Kylie; Kong, Nan; Pook, Nancy

    2017-07-01

    Ineffective inpatient discharge planning often causes discharge delays and upstream boarding. While an optimal discharge strategy that works across all units at a hospital is likely difficult to identify and implement, a strategy that provides a reasonable target to the discharge team appears feasible. We used observational and retrospective data from an inpatient trauma unit at a Level 2 trauma center in the Midwest US. Our proposed novel n-by-T strategy-discharge n patients by the Tth hour-was evaluated using a validated simulation model. Outcome measures included 2 measures: time-based (mean discharge completion and upstream boarding times) and capacity-based (increase in annual inpatient and upstream bed hours). Data from the pilot implementation of a 2-by-12 strategy at the unit was obtained and analyzed. The model suggested that the 1-by-T and 2-by-T strategies could advance the mean completion times by over 1.38 and 2.72 h, respectively (for 10 AM ≤ T ≤ noon, occupancy rate = 85%); the corresponding mean boarding time reductions were nearly 11% and 15%. These strategies could increase the availability of annual inpatient and upstream bed hours by at least 2,469 and 500, respectively. At 100% occupancy rate, the hospital-favored 2-by-12 strategy reduced the mean boarding time by 26.1%. A pilot implementation of the 2-by-12 strategy at the unit corroborated with the model findings: a 1.98-h advancement in completion times (Pstrategies, such as the n-by-T, can help substantially reduce discharge lateness and upstream boarding, especially during high unit occupancy. To sustain implementation, necessary commitment from the unit staff and physicians is vital, and may require some training.

  11. The Existing Drug Vorinostat as a New Lead Against Cryptosporidiosis by Targeting the Parasite Histone Deacetylases.

    Science.gov (United States)

    Guo, Fengguang; Zhang, Haili; McNair, Nina N; Mead, Jan R; Zhu, Guan

    2018-03-13

    Cryptosporidiosis affects all human populations, but can be much more severe or life-threatening in children and individuals with weak or weakened immune systems. However, current options to treat cryptosporidiosis are limited. An in vitro phenotypic screening assay was employed to screen 1200 existing drugs for their anticryptosporidial activity and to determine the inhibitory kinetics of top hits. Selected top hits were further evaluated in mice. The action of the lead compound vorinostat on the parasite histone deacetylase (HDAC) was biochemically validated. Fifteen compounds exhibited anticryptosporidial activity at nanomolar level in vitro. Among them, the histone deacetylase (HDAC) inhibitor vorinostat retained outstanding efficacy in vitro (half maximal effective concentration, EC50 = 203 nM) and in an interleukin 12 knockout mouse model (50% inhibition dose = 7.5 mg/kg). Vorinostat was effective on various parasite developmental stages and could irreversibly kill the parasite. Vorinostat was highly effective against the parasite native HDAC enzymes (half maximal inhibitory concentration, IC50 = 90.0 nM) and a recombinant Cryptosporidium parvum HDAC (the inhibitor constant, Ki = 123.0 nM). These findings suggest the potential for repurposing of vorinostat to treat cryptosporidiosis, and imply that the parasite HDAC can be explored for developing more selective anticryptosporidial therapeutics.

  12. On the use of lead/tin alloys as target material for the production of spallation neutrons

    International Nuclear Information System (INIS)

    Atchison, F.; Baumann, P.; Brys, T.; Daum, M.; Egorov, A.; Fierlinger, P.; Fuchs, P.; Henneck, R.; Joray, St.; Keil, R.; Kirch, K.; Krutova, R.; Kuehne, G.; Lebedev, V.T.; Obermeier, H.; Orlova, D.N.; Perret, Ch.; Pichlmaier, A.; Richard, Ph.; Serebrov, A.; Thies, S.

    2005-01-01

    We have examined the suitability of lead (Pb)/tin (Sn) alloys with atomic ratios between 4:1 and 12:1 for use as a spallation target material for the PSI spallation ultracold neutron source. The measured corrosion rate with distilled water, R c -5 cm/year, is more than a factor of 80, less than for normal Pb; this corrosion rate is satisfactory. Microscopic investigations of the surface after the exposure to water revealed no visual changes. Small angle neutron scattering showed that the alloy is mechanically stable under thermal cycling. An experimental simulation of a water-cooled spallation neutron target made of Pb/Sn pebbles with a filling factor of 60% was investigated; the pulsed proton beam was simulated using hot and cold water in the target 'cooling' circuit. With realistic operational parameters for the cooling circuit, serious deformation of the PbSn pebbles occurred which finally blocked the cooling circuit. The Pb/Sn alloys solve the corrosion problem but its mechanical properties are inadequate leading to too short a lifetime to be practical in the PSI spallation source

  13. Multimodal Nanomedicine Strategies for Targeting Cancer Cells as well as Cancer Stem Cell Signalling Mechanisms.

    Science.gov (United States)

    Kanwar, Jagat R; Samarasinghe, Rasika M; Kamalapuram, Sishir K; Kanwar, Rupinder K

    2017-01-01

    Increasing evidence suggests that stem cells, a small population of cells with unique selfrenewable and tumour regenerative capacity, are aiding tumour re-growth and multidrug resistance. Conventional therapies are highly ineffective at eliminating these cells leading to relapse of disease and formation of chemoresistance tumours. Cancer and stem cells targeted therapies that utilizes nanotherapeutics to delivery anti-cancer drugs to specific sites are continuously investigated. This review focuses on recent research using nanomedicine and targeting entities to eliminate cancer cells and cancer stem cells. Current nanotherapeutics in clinical trials along with more recent publications on targeted therapies are addressed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors

    Directory of Open Access Journals (Sweden)

    Andrew H. Baker

    2010-10-01

    Full Text Available Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX, which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs. These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon, pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies, can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX, or alternatively, through the use of polymer

  15. Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells.

    Science.gov (United States)

    Silva, Luisa H A; Cruz, Fernanda F; Morales, Marcelo M; Weiss, Daniel J; Rocco, Patricia R M

    2017-03-09

    Mesenchymal stromal cells (MSCs) have been extensively investigated in the field of regenerative medicine. It is known that the success of MSC-based therapies depends primarily on effective cell delivery to the target site where they will secrete vesicles and soluble factors with immunomodulatory and potentially reparative properties. However, some lesions are located in sites that are difficult to access, such as the heart, spinal cord, and joints. Additionally, low MSC retention at target sites makes cell therapy short-lasting and, therefore, less effective. In this context, the magnetic targeting technique has emerged as a new strategy to aid delivery, increase retention, and enhance the effects of MSCs. This approach uses magnetic nanoparticles to magnetize MSCs and static magnetic fields to guide them in vivo, thus promoting more focused, effective, and lasting retention of MSCs at the target site. In the present review, we discuss the magnetic targeting technique, its principles, and the materials most commonly used; we also discuss its potential for MSC enhancement, and safety concerns that should be addressed before it can be applied in clinical practice.

  16. Fragmentation cross sections of relativistic 8436Kr and 10947Ag nuclei in targets from hydrogen to lead

    International Nuclear Information System (INIS)

    Nilsen, B.S.; Waddington, C.J.; Cummings, J.R.; Garrard, T.L.; Klarmann, J.

    1995-01-01

    With the addition of krypton and silver projectiles we have extended our previous studies of the fragmentation of heavy relativistic nuclei in targets ranging in mass from hydrogen to lead. These projectiles were studied at a number of discrete energies between 450 and 1500A MeV. The total and partial charge-changing cross sections were determined for each energy, target, and projectile, and the values compared with previous predictions. A new parametrization of the dependence of the total charge-changing cross sections on the target and projectile is introduced, based on nuclear charge radii derived from electron scattering. We have also parametrized the energy dependence of the total cross sections over the range of energies studied. New parameters were found for a previous representation of the partial charge-changing cross sections in hydrogen and a new parametrization has been introduced for the nonhydrogen targets. The evidence that limiting fragmentation has been attained for these relatively light projectile nuclei at Bevalac energies is shown to be inconclusive, and further measurements at higher energies will be needed to address this question

  17. Examining the fragmentation of 158 A GeV lead ions on copper target: Charge-changing cross sections

    International Nuclear Information System (INIS)

    Rana, Mukhtar Ahmed; Manzoor, Shahid

    2008-01-01

    A stack of plastic CR-39 Track Detectors were exposed to 158 A GeV 207 Pb ions at the CERN-SPS beam facility. The exposure of stack was performed at normal incidence with a fluence of about 1500ions/cm 2 . The total number of lead ions in each spill was about 7.8x10 4 with eight spills on each stack. For the stack with the Cu target, the lengths of etched cones on one face of the CR-39 detectors (before and after the target) were measured. Using these measurements and charge identification methodology in CR-39 track detectors, total and partial charge changing cross sections of 158 A GeV Pb 82+ ions on Cu and CR-39 targets are determined in the charge region 63≤Z≤82. The possibilities of presence and absence of odd-even effect in measured partial charge changing cross sections of 158 A GeV Pb ions for Cu and CR-39 targets are described. The charge resolution (σ Z ) achieved in the present experiment is ∼0.18e-0.21e. The analysis of discrepancies between our experimental results and other published results for the identical reaction is also presented

  18. Examining the fragmentation of 158 A GeV lead ions on copper target: Charge-changing cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Mukhtar Ahmed [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)], E-mail: marana@alumni.nus.edu.sg; Manzoor, Shahid [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2008-09-15

    A stack of plastic CR-39 Track Detectors were exposed to 158 A GeV {sup 207}Pb ions at the CERN-SPS beam facility. The exposure of stack was performed at normal incidence with a fluence of about 1500ions/cm{sup 2}. The total number of lead ions in each spill was about 7.8x10{sup 4} with eight spills on each stack. For the stack with the Cu target, the lengths of etched cones on one face of the CR-39 detectors (before and after the target) were measured. Using these measurements and charge identification methodology in CR-39 track detectors, total and partial charge changing cross sections of 158 A GeV Pb{sup 82+} ions on Cu and CR-39 targets are determined in the charge region 63{<=}Z{<=}82. The possibilities of presence and absence of odd-even effect in measured partial charge changing cross sections of 158 A GeV Pb ions for Cu and CR-39 targets are described. The charge resolution ({sigma}{sub Z}) achieved in the present experiment is {approx}0.18e-0.21e. The analysis of discrepancies between our experimental results and other published results for the identical reaction is also presented.

  19. Strategies for systemic radiotherapy of micrometastases using antibody-targeted 131I.

    Science.gov (United States)

    Wheldon, T E; O'Donoghue, J A; Hilditch, T E; Barrett, A

    1988-02-01

    A simple analysis is developed to evaluate the likely effectiveness of treatment of micrometastases by antibody-targeted 131I. Account is taken of the low levels of tumour uptake of antibody-conjugated 131I presently achievable and of the "energy wastage" in targeting microscopic tumours with a radionuclide whose disintegration energy is widely dissipated. The analysis shows that only modest doses can be delivered to micrometastases when total body dose is restricted to levels which allow recovery of bone marrow. Much higher doses could be delivered to micrometastases when bone marrow rescue is used. A rationale is presented for targeted systemic radiotherapy used in combination with external beam total body irradiation (TBI) and bone marrow rescue. This has some practical advantages. The effect of the targeted component is to impose a biological non-uniformity on the total body dose distribution with regions of high tumour cell density receiving higher doses. Where targeting results in high doses to particular normal organs (e.g. liver, kidney) the total dose to these organs could be kept within tolerable limits by appropriate shielding of the external beam radiation component of the treatment. Greater levels of tumour cell kill should be achievable by the combination regime without any increase in normal tissue damage over that inflicted by conventional TBI. The predicted superiority of the combination regime is especially marked for tumours just below the threshold for detectability (e.g. approximately 1 mm-1 cm diameter). This approach has the advantage that targeted radiotherapy provides only a proportion of the total body dose, most of which is given by a familiar technique. The proportion of dose given by the targeted component could be increased as experience is gained. The predicted superiority of the combination strategy should be experimentally testable using laboratory animals. Clinical applications should be cautiously approached, with due regard to

  20. A strategy to correct for intrafraction target translation in conformal prostate radiotherapy: Simulation results

    International Nuclear Information System (INIS)

    Keall, P. J.; Lauve, A. D.; Hagan, M. P.; Siebers, J. V.

    2007-01-01

    A strategy is proposed in which intrafraction internal target translation is corrected for by repositioning the multileaf collimator position aperture to conform to the new target pose in the beam projection, and the beam monitor units are adjusted to account for the change in the geometric relationship between the target and the beam. The purpose of this study was to investigate the dosimetric stability of the prostate and critical structures in the presence of internal target translation using the dynamic compensation strategy. Twenty-five previously treated prostate cancer patients were replanned using a four-field conformal technique to deliver 72 Gy to 95% of the planning target volume (PTV). Internal translation was introduced by displacing the prostate PTV (no rotation or deformation was considered). Thirty-six randomly selected isotropic displacements of magnitude 0.5, 1.0, 1.5 and 2.0 cm were sampled for each patient, for a total of 3600 errors. Due to their anatomic relation to the prostate, the rectum and bladder contours were also moved with the same magnitude and direction as the prostate. The dynamic compensation strategy was used to correct each of these errors by conforming the beam apertures to the new target pose and adjusting the monitor units using inverse-square and off-axis factor corrections. The dynamic compensation strategy plans were then compared to the original treatment plans via dose-volume histogram (DVH) analysis. Changes of more than 5% of the prescription dose (3.6 Gy) were deemed clinically significant. Compared to the original treatment plans, the dynamic compensation strategy produced small discrepancies in isodose distributions and DVH analyses for all structures considered apart from the femoral heads. These differences increased with the magnitude of the internal motion. Coverage of the PTV was excellent: D 5 , D 95 , and D mean were not increased or decreased by more than 5% of the prescription dose for any of the 3600

  1. Spallation Neutron Spectrum on a Massive Lead/Paraffin Target Irradiated with 1 GeV Protons

    CERN Document Server

    Adam, J; Barashenkov, V S; Brandt, R; Golovatiouk, V M; Kalinnikov, V G; Katovsky, K; Krivopustov, M I; Kumar, V; Kumawat, H; Odoj, R; Pronskikh, V S; Solnyshkin, A A; Stegailov, V I; Tsoupko-Sitnikov, V M; Westmeier, W

    2004-01-01

    The spectra of gamma-ray emitted by decaying residual nuclei, produced by spallation neutrons with (n, xn), (n,xnyp), (n,p), (n,gamma) reactions in activation threshold detectors - namely, ^{209}Bi, ^{197}Au, ^{59}Co, ^{115}In, ^{232}Th, were measured in the Laboratory of Nuclear Problems (LNP), JINR, Dubna, Russia. Spallation neutrons were generated by bombarding a 20 cm long cylindrical lead target, 8 cm in diameter, surrounded by a 6 cm thick layer of paraffin moderator, with a 1 GeV proton beam from the Nuclotron accelerator. Reaction rates and spallation neutron spectrum were measured and compared with CASCADE code calculations.

  2. An Energy-Efficient Sleep Strategy for Target Tracking Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juan FENG

    2014-02-01

    Full Text Available Energy efficiency is very important for sensor networks since sensor nodes have limited energy supply from battery. So far, many researches have been focused on this issue, while less emphasis was placed on the optimal sleep time of each node. This paper proposed an adaptive energy conservation strategy for target tracking based on a grid network structure, where each node autonomously determines when and if to sleep. It allows sensor nodes far away from targets to sleep to save energy and guarantee the tracking accuracy. The proposed approach extend network lifetime by adopting an adaptive sleep scheduling scheme that combines the local power management (PM and the adaptive coordinate PM strategies to schedule the activities of sensor nodes. And each node can choose an optimal sleep time so as to make system adaptive and energy-efficient. We show the performance of our approach in terms of energy drop, comparing it to a naive approach, dynamic PM with fixed sleep time and the coordinate PM strategies. From the experimental results, it is readily seen that the efficiency of the proposed approach.

  3. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.

    Science.gov (United States)

    Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D

    2018-02-15

    Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Tumor Initiating Cells and Chemoresistance: Which Is the Best Strategy to Target Colon Cancer Stem Cells?

    Directory of Open Access Journals (Sweden)

    Emanuela Paldino

    2014-01-01

    Full Text Available There is an emerging body of evidence that chemoresistance and minimal residual disease result from selective resistance of a cell subpopulation from the original tumor that is molecularly and phenotypically distinct. These cells are called “cancer stem cells” (CSCs. In this review, we analyze the potential targeting strategies for eradicating CSCs specifically in order to develop more effective therapeutic strategies for metastatic colon cancer. These include induction of terminal epithelial differentiation of CSCs or targeting some genes expressed only in CSCs and involved in self-renewal and chemoresistance. Ideal targets could be cell regulators that simultaneously control the stemness and the resistance of CSCs. Another important aspect of cancer biology, which can also be harnessed to create novel broad-spectrum anticancer agents, is the Warburg effect, also known as aerobic glycolysis. Actually, little is yet known with regard to the metabolism of CSCs population, leaving an exciting unstudied avenue in the dawn of the emerging field of metabolomics.

  5. Comparison of Deep Brain Stimulation Lead Targeting Accuracy and Procedure Duration between 1.5- and 3-Tesla Interventional Magnetic Resonance Imaging Systems: An Initial 12-Month Experience.

    Science.gov (United States)

    Southwell, Derek G; Narvid, Jared A; Martin, Alastair J; Qasim, Salman E; Starr, Philip A; Larson, Paul S

    2016-01-01

    Interventional magnetic resonance imaging (iMRI) allows deep brain stimulator lead placement under general anesthesia. While the accuracy of lead targeting has been described for iMRI systems utilizing 1.5-tesla magnets, a similar assessment of 3-tesla iMRI procedures has not been performed. To compare targeting accuracy, the number of lead targeting attempts, and surgical duration between procedures performed on 1.5- and 3-tesla iMRI systems. Radial targeting error, the number of targeting attempts, and procedure duration were compared between surgeries performed on 1.5- and 3-tesla iMRI systems (SmartFrame and ClearPoint systems). During the first year of operation of each system, 26 consecutive leads were implanted using the 1.5-tesla system, and 23 consecutive leads were implanted using the 3-tesla system. There was no significant difference in radial error (Mann-Whitney test, p = 0.26), number of lead placements that required multiple targeting attempts (Fisher's exact test, p = 0.59), or bilateral procedure durations between surgeries performed with the two systems (p = 0.15). Accurate DBS lead targeting can be achieved with iMRI systems utilizing either 1.5- or 3-tesla magnets. The use of a 3-tesla magnet, however, offers improved visualization of the target structures and allows comparable accuracy and efficiency of placement at the selected targets. © 2016 S. Karger AG, Basel.

  6. Tumor trailing strategy for intensity-modulated radiation therapy of moving targets

    International Nuclear Information System (INIS)

    Trofimov, Alexei; Vrancic, Christian; Chan, Timothy C. Y.; Sharp, Gregory C.; Bortfeld, Thomas

    2008-01-01

    Internal organ motion during the course of radiation therapy of cancer affects the distribution of the delivered dose and, generally, reduces its conformality to the targeted volume. Previously proposed approaches aimed at mitigating the effect of internal motion in intensity-modulated radiation therapy (IMRT) included expansion of the target margins, motion-correlated delivery (e.g., respiratory gating, tumor tracking), and adaptive treatment plan optimization employing a probabilistic description of motion. We describe and test the tumor trailing strategy, which utilizes the synergy of motion-adaptive treatment planning and delivery methods. We regard the (rigid) target motion as a superposition of a relatively fast cyclic component (e.g., respiratory) and slow aperiodic trends (e.g., the drift of exhalation baseline). In the trailing approach, these two components of motion are decoupled and dealt with separately. Real-time motion monitoring is employed to identify the 'slow' shifts, which are then corrected by applying setup adjustments. The delivery does not track the target position exactly, but trails the systematic trend due to the delay between the time a shift occurs, is reliably detected, and, subsequently, corrected. The ''fast'' cyclic motion is accounted for with a robust motion-adaptive treatment planning, which allows for variability in motion parameters (e.g., mean and extrema of the tidal volume, variable period of respiration, and expiratory duration). Motion-surrogate data from gated IMRT treatments were used to provide probability distribution data for motion-adaptive planning and to test algorithms that identified systematic trends in the character of motion. Sample IMRT fields were delivered on a clinical linear accelerator to a programmable moving phantom. Dose measurements were performed with a commercial two-dimensional ion-chamber array. The results indicate that by reducing intrafractional motion variability, the trailing strategy

  7. SU-E-T-500: Dose Escalation Strategy for Lung Cancer Patients Using a Biologically- Guided Target Definition

    International Nuclear Information System (INIS)

    Shusharina, N; Khan, F; Choi, N; Sharp, G

    2014-01-01

    Purpose: Dose escalation strategy for lung cancer patients can lead to late symptoms such as pneumonitis and cardiac injury. We propose a strategy to increase radiation dose for improving local tumor control while simultaneously striving to minimize the injury of organs at risk (OAR). Our strategy is based on defining a small, biologically-guided target volume for receiving additional radiation dose. Methods: 106 patients with lung cancer treated with radiotherapy were selected for patients diagnosed with stage II and III disease. Previous research has shown that 50% of the maximum SUV threshold in FDG-PET imaging is appropriate for delineation of the most aggressive part of a tumor. After PET- and CT-derived targets were contoured, an IMRT treatment plan was designed to deliver 60 Gy to the GTV as delineated on a 4D CT (Plan 1). A second plan was designed with additional dose of 18 Gy to the PET-derived volume (Plan 2). A composite plan was generated by the addition of Plan 1 and Plan 2. Results: Plan 1 was compared to the composite plan and increases in OAR dose were assessed. For seven patients on average, lung V5 was increased by 1.4% and V20 by 4.2% for ipsilateral lung and by 13.5% and 7% for contralateral lung. For total lung, V5 and V20 were increased by 4.5% and 4.8% respectively. Mean lung dose was increased by 9.7% for the total lung. The maximum dose to the spinal cord increased by 16% on average. For the heart, V20 increased by 4.2% and V40 by 5.2%. Conclusion: It seems feasible that an additional 18 Gy of radiation dose can be delivered to FDG PET-derived subvolume of the CT-based GTV of the primary tumor without significant increase in total dose to the critical organs such as lungs, spinal cord and heart

  8. SU-E-T-500: Dose Escalation Strategy for Lung Cancer Patients Using a Biologically- Guided Target Definition

    Energy Technology Data Exchange (ETDEWEB)

    Shusharina, N; Khan, F; Choi, N; Sharp, G [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: Dose escalation strategy for lung cancer patients can lead to late symptoms such as pneumonitis and cardiac injury. We propose a strategy to increase radiation dose for improving local tumor control while simultaneously striving to minimize the injury of organs at risk (OAR). Our strategy is based on defining a small, biologically-guided target volume for receiving additional radiation dose. Methods: 106 patients with lung cancer treated with radiotherapy were selected for patients diagnosed with stage II and III disease. Previous research has shown that 50% of the maximum SUV threshold in FDG-PET imaging is appropriate for delineation of the most aggressive part of a tumor. After PET- and CT-derived targets were contoured, an IMRT treatment plan was designed to deliver 60 Gy to the GTV as delineated on a 4D CT (Plan 1). A second plan was designed with additional dose of 18 Gy to the PET-derived volume (Plan 2). A composite plan was generated by the addition of Plan 1 and Plan 2. Results: Plan 1 was compared to the composite plan and increases in OAR dose were assessed. For seven patients on average, lung V5 was increased by 1.4% and V20 by 4.2% for ipsilateral lung and by 13.5% and 7% for contralateral lung. For total lung, V5 and V20 were increased by 4.5% and 4.8% respectively. Mean lung dose was increased by 9.7% for the total lung. The maximum dose to the spinal cord increased by 16% on average. For the heart, V20 increased by 4.2% and V40 by 5.2%. Conclusion: It seems feasible that an additional 18 Gy of radiation dose can be delivered to FDG PET-derived subvolume of the CT-based GTV of the primary tumor without significant increase in total dose to the critical organs such as lungs, spinal cord and heart.

  9. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: Toward a novel active targeting strategy in breast cancer therapy.

    Science.gov (United States)

    Li, Lin; Di, Xingsheng; Wu, Mingrui; Sun, Zhisu; Zhong, Lu; Wang, Yongjun; Fu, Qiang; Kan, Qiming; Sun, Jin; He, Zhonggui

    2017-04-01

    Designing active targeting nanocarriers with increased cellular accumulation of chemotherapeutic agents is a promising strategy in cancer therapy. Herein, we report a novel active targeting strategy based on the large amino acid transporter 1 (LAT1) overexpressed in a variety of cancers. Glutamate was conjugated to polyoxyethylene stearate as a targeting ligand to achieve LAT1-targeting PLGA nanoparticles. The targeting efficiency of nanoparticles was investigated in HeLa and MCF-7 cells. Significant increase in cellular uptake and cytotoxicity was observed in LAT1-targeting nanoparticles compared to the unmodified ones. More interestingly, the internalized LAT1 together with targeting nanoparticles could recycle back to the cell membrane within 3 h, guaranteeing sufficient transporters on cell membrane for continuous cellular uptake. The LAT1 targeting nanoparticles exhibited better tumor accumulation and antitumor effects. These results suggested that the overexpressed LAT1 on cancer cells holds a great potential to be a high-efficiency target for the rational design of active-targeting nanosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Targeting vacuolar H+-ATPases as a new strategy against cancer.

    Science.gov (United States)

    Fais, Stefano; De Milito, Angelo; You, Haiyan; Qin, Wenxin

    2007-11-15

    Growing evidence suggests a key role of tumor acidic microenvironment in cancer development, progression, and metastasis. As a consequence, the need for compounds that specifically target the mechanism(s) responsible for the low pH of tumors is increasing. Among the key regulators of the tumor acidic microenvironment, vacuolar H(+)-ATPases (V-ATPases) play an important role. These proteins cover a number of functions in a variety of normal as well as tumor cells, in which they pump ions across the membranes. We discuss here some recent results showing that a molecular inhibition of V-ATPases by small interfering RNA in vivo as well as a pharmacologic inhibition through proton pump inhibitors led to tumor cytotoxicity and marked inhibition of human tumor growth in xenograft models. These results propose V-ATPases as a key target for new strategies in cancer treatment.

  11. An Energy-Efficient Target-Tracking Strategy for Mobile Sensor Networks.

    Science.gov (United States)

    Mahboubi, Hamid; Masoudimansour, Walid; Aghdam, Amir G; Sayrafian-Pour, Kamran

    2017-02-01

    In this paper, an energy-efficient strategy is proposed for tracking a moving target in an environment with obstacles, using a network of mobile sensors. Typically, the most dominant sources of energy consumption in a mobile sensor network are sensing, communication, and movement. The proposed algorithm first divides the field into a grid of sufficiently small cells. The grid is then represented by a graph whose edges are properly weighted to reflect the energy consumption of sensors. The proposed technique searches for near-optimal locations for the sensors in different time instants to route information from the target to destination, using a shortest path algorithm. Simulations confirm the efficacy of the proposed algorithm.

  12. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    Science.gov (United States)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  13. Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer's Disease.

    Science.gov (United States)

    Menendez-Gonzalez, Manuel; Padilla-Zambrano, Huber S; Alvarez, Gabriel; Capetillo-Zarate, Estibaliz; Tomas-Zapico, Cristina; Costa, Agustin

    2018-01-01

    Although immunotherapies against the amyloid-β (Aβ) peptide tried so date failed to prove sufficient clinical benefit, Aβ still remains the main target in Alzheimer's disease (AD). This article aims to show the rationale of a new therapeutic strategy: clearing Aβ from the CSF continuously (the "CSF-sink" therapeutic strategy). First, we describe the physiologic mechanisms of Aβ clearance and the resulting AD pathology when these mechanisms are altered. Then, we review the experiences with peripheral Aβ-immunotherapy and discuss the related hypothesis of the mechanism of action of "peripheral sink." We also present Aβ-immunotherapies acting on the CNS directly. Finally, we introduce alternative methods of removing Aβ including the "CSF-sink" therapeutic strategy. As soluble peptides are in constant equilibrium between the ISF and the CSF, altering the levels of Aβ oligomers in the CSF would also alter the levels of such proteins in the brain parenchyma. We conclude that interventions based in a "CSF-sink" of Aβ will probably produce a steady clearance of Aβ in the ISF and therefore it may represent a new therapeutic strategy in AD.

  14. Wetland management strategies lead to tradeoffs in ecological structure and function

    Directory of Open Access Journals (Sweden)

    Ariane L. Peralta

    2017-12-01

    Full Text Available Anthropogenic legacy effects often occur as a consequence of land use change or land management and can leave behind long-lasting changes to ecosystem structure and function. This legacy is described as a memory in the form of ecological structure or ecological interactions that remains at a location from a previous condition. We examined how forested floodplain restoration strategy, based on planting intensity, influenced wetland community structure and soil chemical and physical factors after 15 years. The site was divided into 15 strips, and strips were assigned to one of five restoration treatments: plantings of acorns, 2-year-old seedlings, 5-ft bareroot trees, balled and burlapped trees, and natural seed bank regeneration. Our community composition survey revealed that plots planted with bareroot or balled and burlapped trees developed closed tree canopies with little herbaceous understory, while acorn plantings and natural colonization plots developed into dense stands of the invasive species reed canary grass (RCG; 'Phalaris arundinacea'. Restoration strategy influenced bacterial community composition but to a lesser degree compared to the plant community response, and riverine hydrology and restoration strategy influenced wetland soil conditions. Soil ammonium concentrations and pH were similar across all wetland restoration treatments, while total organic carbon was highest in forest and RCG-dominated plots compared to mixed patches of trees and open areas. The differences in restoration strategy and associated economic investment resulted in ecological tradeoffs. The upfront investment in larger, more mature trees (i.e., bareroot, balled and burlapped led to floodplain forested communities, while cheaper, more passive planting strategies (i.e., seedlings, seedbank, or acorns resulted in dense stands of invasive RCG, despite the similar floodplain hydrology across all sites. Therefore, recovery of multiple ecosystem services that

  15. Progresses in optimization strategy for radiolabeled molecular probes targeting integrin αvβ3

    International Nuclear Information System (INIS)

    Chen Haojun; Wu Hua

    2012-01-01

    Tumor angiogenesis is critical in the growth, invasion and metastasis of malignant tumors. The integrins, which express on many types of tumor cells and activated vascular endothelial cells, play an important role in regulation of the tumor angiogenesis. RGD peptide, which contains Arg-Gly-Asp sequence, binds specifically to integrin α v β 3 . Therefore, the radiolabeled RGD peptides may have broad application prospects in radionuclide imaging and therapy. Major research interests include the selection of radionuclides, modification and improvement of RGD structures. In this article, we give a review on research progresses in optimization strategy for radiolabeled molecular probes targeting integrin α v β 3 . (authors)

  16. Systematic Assessment of Strategies for Lung-targeted Delivery of MicroRNA Mimics

    Science.gov (United States)

    Schlosser, Kenny; Taha, Mohamad; Stewart, Duncan J.

    2018-01-01

    There is considerable interest in the use of synthetic miRNA mimics (or inhibitors) as potential therapeutic agents in pulmonary vascular disease; however, the optimal delivery method to achieve high efficiency, selective lung targeting has not been determined. Here, we sought to investigate the relative merits of different lung-targeted strategies for delivering miRNA mimics in rats. Methods: Tissue levels of a synthetic miRNA mimic, cel-miR-39-3p (0.5 nmol in 50 µL invivofectamine/PBS vehicle) were compared in male rats (n=3 rats/method) after delivery by commonly used lung-targeting strategies including intratracheal liquid instillation (IT-L), intratracheal aerosolization with (IT-AV) or without ventilator assistance (IT-A), intranasal liquid instillation (IN-L) and intranasal aerosolization (IN-A). Intravenous (IV; via jugular vein), intraperitoneal (IP) and subcutaneous (SC) delivery served as controls. Relative levels of cel-miR-39 were quantified by RT-qPCR. Results: At 2 h post delivery, IT-L showed the highest lung mimic level, which was significantly higher than levels achieved by all other methods (from ~10- to 10,000-fold, pMimic levels remained detectable in the lung 24 h after delivery, but were 10- to 100-fold lower. The intrapulmonary distribution of cel-miR-39 was comparable when delivered as either a liquid or aerosol, with evidence of mimic distribution to both the left and right lung lobes and penetration to distal regions. All lung-targeted strategies showed lung-selective mimic uptake, with mimic levels 10- to 100-fold lower in heart and 100- to 10,000-fold lower in liver, kidney and spleen. In contrast, IV, SC and IP routes showed comparable or higher mimic levels in non-pulmonary tissues. Conclusions: miRNA uptake in the lungs differed markedly by up to 4 orders of magnitude, demonstrating that the choice of delivery strategy could have a significant impact on potential therapeutic outcomes in preclinical investigations of miRNA-based drug

  17. Mitochondria-targeting nanomedicine: An effective and potent strategy against aminoglycosides-induced ototoxicity.

    Science.gov (United States)

    Zhou, Shuang; Sun, Yanhui; Kuang, Xiao; Hou, Shanshan; Yang, YinXian; Wang, Zhenjie; Liu, Hongzhuo

    2018-04-21

    We report a proof-of-concept for the development of mitochondria-targeting nanoparticles (NPs) loaded with geranylgeranylacetone (GGA) to protect against a wide range of gentamicin-induced ototoxicity symptoms in a zebrafish model. The polymeric NPs were functionalized with a mitochondrial-homing peptide (d‑Arg‑Dmt‑Orn‑Phe‑NH 2 ) and exhibited greater mitochondrial uptake and lower gentamicin uptake in hair cells via mechanotransduction (MET) channels and tuned machinery in the hair bundle than the ordinary NPs did. Blockade of MET channels rapidly reversed this effect, indicating the reversible responses of hair cells to the targeting NPs were mediated by MET channels. Pretreatment of hair cells with mitochondria-targeting GGA-loaded NPs exhibited a superior acute or chronic protective efficacy against subsequent exposure to gentamicin compared with unmodified formulations. Mitochondrial delivery regulating the death pathway of hair cells appeared to cause the therapeutic failure of untargeted NPs. Thus, peptide-directed mitochondria-targeting NPs may represent a novel therapeutic strategy for mitochondrial dysfunction-linked diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Theoretically Based Pedagogical Strategies Leading to Deep Learning in Asynchronous Online Gerontology Courses

    Science.gov (United States)

    Majeski, Robin; Stover, Merrily

    2007-01-01

    Online learning has enjoyed increasing popularity in gerontology. This paper presents instructional strategies grounded in Fink's (2003) theory of significant learning designed for the completely asynchronous online gerontology classroom. It links these components with the development of mastery learning goals and provides specific guidelines for…

  19. Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma.

    Science.gov (United States)

    Van Goethem, Alan; Yigit, Nurten; Moreno-Smith, Myrthala; Vasudevan, Sanjeev A; Barbieri, Eveline; Speleman, Frank; Shohet, Jason; Vandesompele, Jo; Van Maerken, Tom

    2017-08-22

    Wild-type p53 tumor suppressor activity in neuroblastoma tumors is hampered by increased MDM2 activity, making selective MDM2 antagonists an attractive therapeutic strategy for this childhood malignancy. Since monotherapy in cancer is generally not providing long-lasting clinical responses, we here aimed to identify small molecule drugs that synergize with idasanutlin (RG7388). To this purpose we evaluated 15 targeted drugs in combination with idasanutlin in three p53 wild type neuroblastoma cell lines and identified the BCL2 inhibitor venetoclax (ABT-199) as a promising interaction partner. The venetoclax/idasanutlin combination was consistently found to be highly synergistic in a diverse panel of neuroblastoma cell lines, including cells with high MCL1 expression levels. A more pronounced induction of apoptosis was found to underlie the synergistic interaction, as evidenced by caspase-3/7 and cleaved PARP measurements. Mice carrying orthotopic xenografts of neuroblastoma cells treated with both idasanutlin and venetoclax had drastically lower tumor weights than mice treated with either treatment alone. In conclusion, these data strongly support the further evaluation of dual BCL2/MDM2 targeting as a therapeutic strategy in neuroblastoma.

  20. Intangible factors leading to success in research: strategy, innovation and leadership.

    Science.gov (United States)

    Hecker, Louise; Birla, Ravi K

    2008-03-01

    At the heart of research is the scientific process, which includes identifying a knowledge gap, execution of experiments, and finally, presentation of scientific data. Identifying a systematic way to undertake research is important; however, equally important are intangible factors, including strategy, innovation and leadership, in determining the outcome of any research project. These intangible factors, although often unspoken, are the essence of success in research. Strategy determines the direction of research and the ability to respond to acute changes in the field to ensure a competitive advantage. Innovation involves generating novel ideas, and at the heart of innovation is the ability to create a positive work environment. Leadership is the ability to exercise influence so as to create change; empowerment and the ability to create leaders at every level are central to effective leadership. Collectively, defining and implementing aspects of these intangible factors will strengthen any research endeavor.

  1. Lead Diversification through a Prins-Driven Macrocyclization Strategy: Application to C13-Diversified Bryostatin Analogues.

    Science.gov (United States)

    Wender, Paul A; Billingsley, Kelvin L

    2013-01-01

    The design, synthesis, and biological evaluation of a novel class of C13-diversified bryostatin analogues are described. An innovative and general strategy based on a Prins macrocyclization-nucleophilic trapping cascade was used to achieve late-stage diversification. In vitro analysis of selected library members revealed that modification at the C13 position of the bryostatin scaffold can be used as a diversification handle to regulate biological activity.

  2. Construction and applications of exon-trapping gene-targeting vectors with a novel strategy for negative selection.

    Science.gov (United States)

    Saito, Shinta; Ura, Kiyoe; Kodama, Miho; Adachi, Noritaka

    2015-06-30

    Targeted gene modification by homologous recombination provides a powerful tool for studying gene function in cells and animals. In higher eukaryotes, non-homologous integration of targeting vectors occurs several orders of magnitude more frequently than does targeted integration, making the gene-targeting technology highly inefficient. For this reason, negative-selection strategies have been employed to reduce the number of drug-resistant clones associated with non-homologous vector integration, particularly when artificial nucleases to introduce a DNA break at the target site are unavailable or undesirable. As such, an exon-trap strategy using a promoterless drug-resistance marker gene provides an effective way to counterselect non-homologous integrants. However, constructing exon-trapping targeting vectors has been a time-consuming and complicated process. By virtue of highly efficient att-mediated recombination, we successfully developed a simple and rapid method to construct plasmid-based vectors that allow for exon-trapping gene targeting. These exon-trap vectors were useful in obtaining correctly targeted clones in mouse embryonic stem cells and human HT1080 cells. Most importantly, with the use of a conditionally cytotoxic gene, we further developed a novel strategy for negative selection, thereby enhancing the efficiency of counterselection for non-homologous integration of exon-trap vectors. Our methods will greatly facilitate exon-trapping gene-targeting technologies in mammalian cells, particularly when combined with the novel negative selection strategy.

  3. Inhibition of mesothelin as a novel strategy for targeting cancer cells.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    Full Text Available Mesothelin, a differentiation antigen present in a series of malignancies such as mesothelioma, ovarian, lung and pancreatic cancer, has been studied as a marker for diagnosis and a target for immunotherapy. We, however, were interested in evaluating the effects of direct targeting of Mesothelin on the viability of cancer cells as the first step towards developing a novel therapeutic strategy. We report here that gene specific silencing for Mesothelin by distinct methods (siRNA and microRNA decreased viability of cancer cells from different origins such as mesothelioma (H2373, ovarian cancer (Skov3 and Ovcar-5 and pancreatic cancer (Miapaca2 and Panc-1. Additionally, the invasiveness of cancer cells was also significantly decreased upon such treatment. We then investigated pro-oncogenic signaling characteristics of cells upon mesothelin-silencing which revealed a significant decrease in phospho-ERK1 and PI3K/AKT activity. The molecular mechanism of reduced invasiveness was connected to the reduced expression of β-Catenin, an important marker of EMT (epithelial-mesenchymal transition. Ero1, a protein involved in clearing unfolded proteins and a member of the ER-Stress (endoplasmic reticulum-stress pathway was also markedly reduced. Furthermore, Mesothelin silencing caused a significant increase in fraction of cancer cells in S-phase. In next step, treatment of ovarian cancer cells (OVca429 with a lentivirus expressing anti-mesothelin microRNA resulted in significant loss of viability, invasiveness, and morphological alterations. Therefore, we propose the inhibition of Mesothelin as a potential novel strategy for targeting human malignancies.

  4. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration.

    Science.gov (United States)

    Yang, Fan; Ma, Hongwei; Belcher, Joshua; Butler, Michael R; Redmond, T Michael; Boye, Sanford L; Hauswirth, William W; Ding, Xi-Qin

    2016-12-01

    Recent studies have implicated thyroid hormone (TH) signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we found that antithyroid treatment preserves cones. This work investigates the significance of targeting intracellular TH components locally in the retina. The cellular TH level is mainly regulated by deiodinase iodothyronine (DIO)-2 and -3. DIO2 converts thyroxine (T4) to triiodothyronine (T3), which binds to the TH receptor, whereas DIO3 degrades T3 and T4. We examined cone survival after overexpression of DIO3 and inhibition of DIO2 and demonstrated the benefits of these manipulations. Subretinal delivery of AAV5-IRBP/GNAT2-DIO3, which directs expression of human DIO3 specifically in cones, increased cone density by 30-40% in a Rpe65 -/- mouse model of Lebers congenital amaurosis (LCA) and in a Cpfl1 mouse with Pde6c defect model of achromatopsia, compared with their respective untreated controls. Intravitreal and topical delivery of the DIO2 inhibitor iopanoic acid also significantly improved cone survival in the LCA model mice. Moreover, the expression levels of DIO2 and Slc16a2 were significantly higher in the diseased retinas, suggesting locally elevated TH signaling. We show that targeting DIOs protects cones, and intracellular inhibition of TH components locally in the retina may represent a novel strategy for retinal degeneration management.-Yang, F., Ma, H., Belcher, J., Butler, M. R., Redmond, T. M., Boye, S. L., Hauswirth, W. W., Ding, X.-Q. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration. © FASEB.

  5. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases.

    Science.gov (United States)

    Tan, Wan Shun Daniel; Liao, Wupeng; Zhou, Shuo; Mei, Dan; Wong, Wai-Shiu Fred

    2017-12-27

    The renin-angiotensin system (RAS) plays a major role in regulating electrolyte balance and blood pressure. RAS has also been implicated in the regulation of inflammation, proliferation and fibrosis in pulmonary diseases such as asthma, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and pulmonary arterial hypertension (PAH). Current therapeutics suffer from some drawbacks like steroid resistance, limited efficacies and side effects. Novel intervention is definitely needed to offer optimal therapeutic strategy and clinical outcome. This review compiles and analyses recent investigations targeting RAS for the treatment of inflammatory lung diseases. Inhibition of the upstream angiotensin (Ang) I/Ang II/angiotensin receptor type 1 (AT 1 R) pathway and activation of the downstream angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor pathway are two feasible strategies demonstrating efficacies in various pulmonary disease models. More recent studies favor the development of targeting the downstream ACE2/Ang (1-7)/Mas receptor pathway, in which diminazene aceturate, an ACE2 activator, GSK2586881, a recombinant ACE2, and AV0991, a Mas receptor agonist, showed much potential for further development. As the pathogenesis of pulmonary diseases is so complex that RAS modulation may be used alone or in combination with existing drugs like corticosteroids, pirfenidone/nintedanib or endothelin receptor antagonists for different pulmonary diseases. Personalized medicine through genetic screening and phenotyping for angiotensinogen or ACE would aid treatment especially for non-responsive patients. This review serves to provide an update on the latest development in the field of RAS targeting for pulmonary diseases, and offer some insights into future direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy.

    Science.gov (United States)

    Pergola, Carlo; Schubert, Katrin; Pace, Simona; Ziereisen, Jana; Nikels, Felix; Scherer, Olga; Hüttel, Stephan; Zahler, Stefan; Vollmar, Angelika M; Weinigel, Christina; Rummler, Silke; Müller, Rolf; Raasch, Martin; Mosig, Alexander; Koeberle, Andreas; Werz, Oliver

    2017-01-30

    Tumour-associated macrophages mainly comprise immunosuppressive M2 phenotypes that promote tumour progression besides anti-tumoural M1 subsets. Selective depletion or reprogramming of M2 may represent an innovative anti-cancer strategy. The actin cytoskeleton is central for cellular homeostasis and is targeted for anti-cancer chemotherapy. Here, we show that targeting G-actin nucleation using chondramide A (ChA) predominantly depletes human M2 while promoting the tumour-suppressive M1 phenotype. ChA reduced the viability of M2, with minor effects on M1, but increased tumour necrosis factor (TNF)α release from M1. Interestingly, ChA caused rapid disruption of dynamic F-actin filaments and polymerization of G-actin, followed by reduction of cell size, binucleation and cell division, without cellular collapse. In M1, but not in M2, ChA caused marked activation of SAPK/JNK and NFκB, with slight or no effects on Akt, STAT-1/-3, ERK-1/2, and p38 MAPK, seemingly accounting for the better survival of M1 and TNFα secretion. In a microfluidically-supported human tumour biochip model, circulating ChA-treated M1 markedly reduced tumour cell viability through enhanced release of TNFα. Together, ChA may cause an anti-tumoural microenvironment by depletion of M2 and activation of M1, suggesting induction of G-actin nucleation as potential strategy to target tumour-associated macrophages in addition to neoplastic cells.

  7. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles.

    Science.gov (United States)

    Wang, Mingxin; You, Chaoqun; Gao, Zhiguo; Wu, Hongshuai; Sun, Baiwang; Zhu, Xiaoli; Chen, Renjie

    2018-08-01

    The functionalized nanoparticles have been widely studied and reported as carriers of drug transport recently. Furthermore, many groups have focused more on developing novel and efficient treatment methods, such as photodynamic therapy and photothermal therapy, since both therapies have shown inspiring potential in the application of antitumor. The mentioned treatments exhibited the superiority of cooperative manner and showed the ability to compensate for the adverse effects caused by conventional monotherapy in proposed strategies. In view of the above descriptions, we formulated a thermosensitive drug delivery system, which achieved the enhanced delivery of cisplatin and two photosensitizers (ICG and Ce6) by dual-targeting traction. Drawing on the thin film hydration method, cisplatin and photosensitizers were encapsulated inside nanoparticles. Meanwhile, the targeting peptide cRGD and targeting molecule folate can be modified on the surface of nanoparticles to realize the active identification of tumor cells. The measurements of dynamic light scattering showed that the prepared nanoparticles had an ideal dispersibility and uniform particle size of 102.6 nm. On the basis of the results observed from confocal laser scanning microscope, the modified nanoparticles were more efficient endocytosed by MCF-7 cells as a contrast to SGC-7901 cells. Photothermal conversion-triggered drug release and photo-therapies produced a significant apoptosis rate of 85.9% on MCF-7 cells. The distinguished results made it believed that the formulated delivery system had conducted great efforts and innovations for the realization of concise collaboration and provided a promising strategy for the treatment of breast cancer.

  8. A Targeted Enrichment Strategy for Massively Parallel Sequencing of Angiosperm Plastid Genomes

    Directory of Open Access Journals (Sweden)

    Gregory W. Stull

    2013-02-01

    Full Text Available Premise of the study: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms. Methods and Results: A custom RNA probe set including the complete sequences of 22 previously sequenced eudicot plastomes was designed to facilitate hybridization-based targeted enrichment of eudicot plastid genomes. Using this probe set and an Agilent SureSelect targeted enrichment kit, we conducted an enrichment experiment including 24 angiosperms (22 eudicots, two monocots, which were subsequently sequenced on a single lane of the Illumina GAIIx with single-end, 100-bp reads. This approach yielded nearly complete to complete plastid genomes with exceptionally high coverage (mean coverage: 717×, even for the two monocots. Conclusions: Our enrichment experiment was highly successful even though many aspects of the capture process employed were suboptimal. Hence, significant improvements to this methodology are feasible. With this general approach and probe set, it should be possible to sequence more than 300 essentially complete plastid genomes in a single Illumina GAIIx lane (achieving 50× mean coverage. However, given the complications of pooling numerous samples for multiplex sequencing and the limited number of barcodes (e.g., 96 available in commercial kits, we recommend 96 samples as a current practical maximum for multiplex plastome sequencing. This high-throughput approach should facilitate large-scale plastid genome sequencing at any level of phylogenetic diversity in angiosperms.

  9. Targeting Hsp90-Cdc37: A Promising Therapeutic Strategy by Inhibiting Hsp90 Chaperone Function.

    Science.gov (United States)

    Wang, Lei; Li, Li; Gu, Kai; Xu, Xiao-Li; Sun, Yuan; You, Qi-Dong

    2017-01-01

    The Hsp90 chaperone protein regulates the folding, maturation and stability of a wide variety of oncoproteins. In recent years, many Hsp90 inhibitors have entered into the clinical trials while all of them target ATPase showing similar binding capacity and kinds of side-effects so that none have reached to the market. During the regulation progress, numerous protein- protein interactions (PPI) such as Hsp90 and client proteins or cochaperones are involved. With the Hsp90-cochaperones PPI networks being more and more clear, many cancerous proteins have been reported to be tightly correlated to Hsp90-cochaperones PPI. Among them, Hsp90-Cdc37 PPI has been widely reported to associate with numerous protein kinases, making it a novel target for the treatment of cancers. In this paper, we briefly review the strategies and modulators targeting Hsp90-Cdc37 complex including direct and indirect regulation mechanism. Through these discussions we expect to present inspirations for new insights into an alternative way to inhibit Hsp90 chaperone function. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies.

    Science.gov (United States)

    Rudomanova, Valeria; Blaxall, Burns C

    2017-08-01

    The pathologic crosstalk between the heart and kidney is known as cardiorenal syndrome (CRS). While the specific mechanisms underlying this crosstalk remain poorly understood, CRS is associated with exacerbated dysfunction of either or both organs and reduced survival. Maladaptive fibrotic remodeling is a key component of both heart and kidney failure pathogenesis and progression. G-protein coupled receptor (GPCR) signaling is a crucial regulator of cardiovascular and renal function. Chronic/pathologic GPCR signaling elicits the interaction of the G-protein Gβγ subunit with GPCR kinase 2 (GRK2), targeting the receptor for internalization, scaffolding to pathologic signals, and receptor degradation. Targeting this pathologic Gβγ-GRK2 interaction has been suggested as a possible strategy for the treatment of HF. In the current review, we discuss recent updates in understanding the role of GPCR-Gβγ-GRK2 signaling as a crucial mediator of maladaptive organ remodeling detected in HF and kidney dysfunction, with specific attention to small molecule-mediated inhibition of pathologic Gβγ-GRK2 interactions. Further, we explore the potential of GPCR-Gβγ-GRK2 signaling as a possible therapeutic target for cardiorenal pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Targeting Glutathione-S Transferase Enzymes in Musculoskeletal Sarcomas: A Promising Therapeutic Strategy

    Directory of Open Access Journals (Sweden)

    Michela Pasello

    2011-01-01

    Full Text Available Recent studies have indicated that targeting glutathione-S-transferase (GST isoenzymes may be a promising novel strategy to improve the efficacy of conventional chemotherapy in the three most common musculoskeletal tumours: osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma. By using a panel of 15 drug-sensitive and drug-resistant human osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma cell lines, the efficay of the GST-targeting agent 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthiohexanol (NBDHEX has been assessed and related to GST isoenzymes expression (namely GSTP1, GSTA1, GSTM1, and MGST. NBDHEX showed a relevant in vitro activity on all cell lines, including the drug-resistant ones and those with higher GSTs levels. The in vitro activity of NBDHEX was mostly related to cytostatic effects, with a less evident apoptotic induction. NBDHEX positively interacted with doxorubicin, vincristine, cisplatin but showed antagonistic effects with methotrexate. In vivo studies confirmed the cytostatic efficay of NBDHEX and its positive interaction with vincristine in Ewing's sarcoma cells, and also indicated a positive effect against the metastatisation of osteosarcoma cells. The whole body of evidence found in this study indicated that targeting GSTs in osteosarcoma, Ewing's sarcoma and rhabdomyosarcoma may be an interesting new therapeutic option, which can be considered for patients who are scarcely responsive to conventional regimens.

  12. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  13. Lead toxicity in rice: effects, mechanisms, and mitigation strategies--a mini review.

    Science.gov (United States)

    Ashraf, Umair; Kanu, Adam Sheka; Mo, Zhaowen; Hussain, Saddam; Anjum, Shakeel Ahmad; Khan, Imran; Abbas, Rana Nadeem; Tang, Xiangru

    2015-12-01

    Lead (Pb) is a major environmental pollutant that affects plant morpho-physiological and biochemical attributes. Its higher levels in the environment are not only toxic to human beings but also harmful for plants and soil microbes. We have reviewed the uptake, translocation, and accumulation mechanisms of Pb and its toxic effects on germination, growth, yield, nutrient relation, photosynthesis, respiration, oxidative damage, and antioxidant defense system of rice. Lead toxicity hampers rice germination, root/shoot length, growth, and final yield. It reduces nutrient uptake through roots, disrupts chloroplastic ultrastructure and cell membrane permeability, induces alterations in leaves respiratory activities, produces reactive oxygen species (ROS), and triggers some enzyme and non-enzymatic antioxidants (as defense to oxidative damage). In the end, biochar amendments and phytoremediation technologies have been proposed as soil remediation approaches for Pb tainted soils.

  14. Post-irradiation analysis of an ISOLDE lead-bismuth target: Stable and long-lived noble gas nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Leya, I., E-mail: Ingo.Leya@space.unibe.ch [University of Bern, Space Science and Planetology, Bern (Switzerland); Grimberg, A. [University of Bern, Space Science and Planetology, Bern (Switzerland); Isotope Geochemistry, ETH Zürich, Zürich (Switzerland); David, J.-C. [CEA/Saclay, Irfu/SPhN, 91191 Gif-sur-Yvette, Cedex (France); Schumann, D.; Neuhausen, J. [Paul Scherrer Institut, Villigen (Switzerland); Zanini, L. [Paul Scherrer Institut, Villigen (Switzerland); European Spallation Source ESS AB, P.O. Box 117, SE-22100 Lund (Sweden); Noah, E. [University of Geneva, Département de Physique Nucléaire et Corpusculaire, Geneve (Switzerland)

    2016-07-15

    We measured the isotopic concentrations of long-lived and stable He, Ne, Ar, Kr, and Xe isotopes in a sample from a lead-bismuth eutectic target irradiated with 1.0 and 1.4 GeV protons. Our data indicate for most noble gases nearly complete release with retention fractions in the range of percent or less. Higher retention fractions result from the decay of long-lived radioactive progenitors from groups 1, 2, or 7 of the periodic table. From the data we can calculate a retention fraction for {sup 3}H of 2–3%. For alkaline metals we find retention fractions of about 10%, 30%, and 50% for Na, Rb, and Cs, respectively. For the alkaline earth metal Ba we found complete retention. Finally, the measured Kr and Xe concentrations indicate that there was some release of the halogens Br and I during and/or after the irradiation.

  15. Innovative payer engagement strategies: will the convergence lead to better value creation in personalized medicine?

    Science.gov (United States)

    Akhmetov, Ildar; Bubnov, Rostyslav V

    2017-12-01

    As reimbursement authorities are gaining greater power to influence the prescription behavior of physicians, it remains critical for life science companies focusing on personalized medicine to develop "tailor-made" payer engagement strategies to secure reimbursement and assure timely patient access to their innovative products. Depending on the types of such engagement, pharmaceutical and diagnostic companies may benefit by obtaining access to medical and pharmacy claims data, getting invaluable upfront inputs on evidence requirements and clinical trial design, and strengthening trust by payers, therefore avoiding uncertainties with regards to pricing, reimbursement, and research and development reinvestment. This article aims to study the evolving trend of partnering among two interdependent, yet confronting, stakeholder groups-payers and producers-as well as to identify the most promising payer engagement strategies based on cocreation of value introduced by life science companies in the past few years. We analyzed the recent case studies from both therapeutic and diagnostic realms considered as the "best practices" in payer engagement. The last 5 years were a breakout period for deals between life science companies and reimbursement authorities in the area of personalized medicine with a number of felicitous collaborative practices established already, and many more yet to emerge. We suggest that there are many ways for producers and payers to collaborate throughout the product life cycle-from data exchange and scientific counseling to research collaboration aimed at reducing healthcare costs, addressing adherence issues, and diminishing risks associated with future launches. The presented case studies provide clear insights on how successful personalized medicine companies customize their state-of-the-art payer engagement strategies to ensure closer proximity with payers and establish longer-term trust-based relationships.

  16. How a simple adaptive foraging strategy can lead to emergent home ranges and increased food intake

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Teilmann, Jonas; Tougaard, Jakob

    2013-01-01

    the optimal balance between alternative movement strategies is therefore selectively advantageous. Recent theory suggests that animals are capable of switching movement mode depend- ing on heterogeneities in the landscape, and that different modes may predominate at different temporal scales. Here we develop...... that the model was indeed able to produce either stable home ranges or movement patterns that resembled those of real porpoises. It enabled animals to maximize their food intake when fine-tuning the memory parameters that controlled the relative contribution of area concentrated and random movements....

  17. Leading in the Arctic; Translating the United States Arctic Strategy into Opportunities for Peace and Stability

    Science.gov (United States)

    2015-02-16

    Elon Musk , the well-known founder of Tesla and Space-X. His life’s work focuses on developing the means to find and get to...nat_arctic_strategy.pdf 58. Elon Musk , “ Elon Musk -The man behind Tesla, Space X, Solar City…” (Filmed February 2013, TED video, 21:04. Posted March 2013) https...Exploitation. London, UK: Reaktion Books Ltd., 2012. Musk , Elon . “ Elon Musk -The man behind Tesla, Space X, Solar City…” Filmed February 2013, TED

  18. MEGAPIE analytical support task : characterization of lead-bismuth eutectic and sodium-cooled tungsten target materials for accelerator driven systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    2002-01-01

    Lead-Bismuth Eutectic and Tungsten are under consideration as target materials with high-energy protons for generating neutrons to drive actinide and fission product transmuters. A detailed characterization has been performed to study the performance of these target materials as a function of the main variables and the design selections. The characterization includes the neutron yield, the spatial energy deposition, the neutron spectrum, the beam window performance, and the target buffer impact on the target performance. The characterization has also considered high-energy deuteron particles to study the impact on the target neutronic performance. The obtained results quantify the performance of the Lead-Bismuth Eutectic and Tungsten target materials as a function of the target variables and design selections

  19. Do organic foodservice intervention strategies lead to changes in the availability of healthy options

    DEFF Research Database (Denmark)

    He, Chen; Mikkelsen, Bent Egberg

    2009-01-01

    Obesity and overweight among children and young people is increasing in most countries in Europe and as a result schools are increasingly taking a role in both food provision, in promoting healthy eating, and nutrition education of young people by implementing healthy policies. At the same time s...... Based Questionnaire. The results indicate that there is an association between organic food strategies and the availability of healthy meal options. But further studies are needed in order to understand the nature of this association.......Obesity and overweight among children and young people is increasing in most countries in Europe and as a result schools are increasingly taking a role in both food provision, in promoting healthy eating, and nutrition education of young people by implementing healthy policies. At the same time...... schools are implementing environmental friendly polices i.e. organic procurement strategies (Mu, 2008). It is therefore relevant to investigate the relationship between the different components of such interventions. This study carried out a survey in primary schools in Denmark and Norway through a Web...

  20. Customizable de novo design strategies for DOCK: Application to HIVgp41 and other therapeutic targets.

    Science.gov (United States)

    Allen, William J; Fochtman, Brian C; Balius, Trent E; Rizzo, Robert C

    2017-11-15

    De novo design can be used to explore vast areas of chemical space in computational lead discovery. As a complement to virtual screening, from-scratch construction of molecules is not limited to compounds in pre-existing vendor catalogs. Here, we present an iterative fragment growth method, integrated into the program DOCK, in which new molecules are built using rules for allowable connections based on known molecules. The method leverages DOCK's advanced scoring and pruning approaches and users can define very specific criteria in terms of properties or features to customize growth toward a particular region of chemical space. The code was validated using three increasingly difficult classes of calculations: (1) Rebuilding known X-ray ligands taken from 663 complexes using only their component parts (focused libraries), (2) construction of new ligands in 57 drug target sites using a library derived from ∼13M drug-like compounds (generic libraries), and (3) application to a challenging protein-protein interface on the viral drug target HIVgp41. The computational testing confirms that the de novo DOCK routines are robust and working as envisioned, and the compelling results highlight the potential utility for designing new molecules against a wide variety of important protein targets. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Genetic and chemical knockdown: a complementary strategy for evaluating an anti-infective target

    Directory of Open Access Journals (Sweden)

    Ramachandran V

    2013-02-01

    Full Text Available Vasanthi Ramachandran,1,* Ragini Singh,2,* Xiaoyu Yang,1 Ragadeepthi Tunduguru,1 Subrat Mohapatra,2 Swati Khandelwal,2 Sanjana Patel,2 Santanu Datta21AstraZeneca India R&D, Bangalore, India; 2Cellworks India, Bangalore, India *These authors contributed equally to this workAbstract: The equity of a drug target is principally evaluated by its genetic vulnerability with tools ranging from antisense- and microRNA-driven knockdowns to induced expression of the target protein. In order to upgrade the process of antibacterial target identification and discern its most effective type of inhibition, an in silico toolbox that evaluates its genetic and chemical vulnerability leading either to stasis or cidal outcome was constructed and validated. By precise simulation and careful experimentation using enolpyruvyl shikimate-3-phosphate synthase and its specific inhibitor glyphosate, it was shown that genetic knockdown is distinct from chemical knockdown. It was also observed that depending on the particular mechanism of inhibition, viz competitive, uncompetitive, and noncompetitive, the antimicrobial potency of an inhibitor could be orders of magnitude different. Susceptibility of Escherichia coli to glyphosate and the lack of it in Mycobacterium tuberculosis could be predicted by the in silico platform. Finally, as predicted and simulated in the in silico platform, the translation of growth inhibition to a cidal effect was able to be demonstrated experimentally by altering the carbon source from sorbitol to glucose.Keywords: knockdown, inhibition, in silico, vulnerability

  2. Spatial distribution of neutrons in paraffin moderator surrounding a lead target irradiated with protons at intermediate energies

    International Nuclear Information System (INIS)

    Adam, J.; Barabanov, M.Yu.; Bradnova, V.

    2002-01-01

    The distribution of neutrons emitted during the irradiation with 0.65, 1.0 and 1.5 GeV protons from a lead target (O / = 8 cm, l = 20 cm) and moderated by a surrounding paraffin moderator of 6 cm thick was studied with a radiochemical sensor along the beam axis on top of the moderator. Small 139 La-sensors of approximately 1 g were used to measure essentially the thermal neutron fluence at different depths near the surface: i.e., on top of the moderator, in 10 mm deep holes and in 20 mm deep holes. The reaction 139 La(n, γ) 140 La (τ 1/2 = 40.27 h) was studied using standard procedures of gamma spectroscopy and data analysis. The neutron induced activity of 140 La increases strongly with the depth of the hole inside the moderator, its activity distribution along the beam direction on top of the moderator has its maximum about 10 cm downstream the entrance of the protons into the lead and the induced activity increases about linearity with the proton energy. Some comparisons of the experimental results with model estimations based on the LAHET code are also presented. The experiments were carried out using the Nuclotron accelerator of the Laboratory of High Energies (JINR)

  3. Spatial distribution of neutrons in paraffin moderator surrounding a lead target irradiated with protons at intermediate energies

    CERN Document Server

    Adam, J; Bradnova, V

    2002-01-01

    The distribution of neutrons emitted during the irradiation with 0.65, 1.0 and 1.5 GeV protons from a lead target (O / = 8 cm, l = 20 cm) and moderated by a surrounding paraffin moderator of 6 cm thick was studied with a radiochemical sensor along the beam axis on top of the moderator. Small sup 1 sup 3 sup 9 La-sensors of approximately 1 g were used to measure essentially the thermal neutron fluence at different depths near the surface: i.e., on top of the moderator, in 10 mm deep holes and in 20 mm deep holes. The reaction sup 1 sup 3 sup 9 La(n, gamma) sup 1 sup 4 sup 0 La (tau sub 1 sub / sub 2 = 40.27 h) was studied using standard procedures of gamma spectroscopy and data analysis. The neutron induced activity of sup 1 sup 4 sup 0 La increases strongly with the depth of the hole inside the moderator, its activity distribution along the beam direction on top of the moderator has its maximum about 10 cm downstream the entrance of the protons into the lead and the induced activity increases about linearity ...

  4. Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555

    Energy Technology Data Exchange (ETDEWEB)

    Bowman-James, Kristin [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemistry

    2017-04-13

    The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hosts joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO42- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through

  5. Alternative Strategies to Achieve Cardiovascular Mortality Goals in China and India: A Microsimulation of Target- Versus Risk-Based Blood Pressure Treatment.

    Science.gov (United States)

    Basu, Sanjay; Yudkin, John S; Sussman, Jeremy B; Millett, Christopher; Hayward, Rodney A

    2016-03-01

    The World Health Organization aims to reduce mortality from chronic diseases including cardiovascular disease (CVD) by 25% by 2025. High blood pressure is a leading CVD risk factor. We sought to compare 3 strategies for treating blood pressure in China and India: a treat-to-target (TTT) strategy emphasizing lowering blood pressure to a target, a benefit-based tailored treatment (BTT) strategy emphasizing lowering CVD risk, or a hybrid strategy currently recommended by the World Health Organization. We developed a microsimulation model of adults aged 30 to 70 years in China and in India to compare the 2 treatment approaches across a 10-year policy-planning horizon. In the model, a BTT strategy treating adults with a 10-year CVD event risk of ≥ 10% used similar financial resources but averted ≈ 5 million more disability-adjusted life-years in both China and India than a TTT approach based on current US guidelines. The hybrid strategy in the current World Health Organization guidelines produced no substantial benefits over TTT. BTT was more cost-effective at $205 to $272/disability-adjusted life-year averted, which was $142 to $182 less per disability-adjusted life-year than TTT or hybrid strategies. The comparative effectiveness of BTT was robust to uncertainties in CVD risk estimation and to variations in the age range analyzed, the BTT treatment threshold, or rates of treatment access, adherence, or concurrent statin therapy. In model-based analyses, a simple BTT strategy was more effective and cost-effective than TTT or hybrid strategies in reducing mortality. © 2016 American Heart Association, Inc.

  6. Cervical Hyperostosis Leading to Dyspnea, Aspiration and Dysphagia: Strategies to Improve Patient Management

    Directory of Open Access Journals (Sweden)

    Georgios Psychogios

    2018-04-01

    Full Text Available Diffuse idiopathic skeletal hyperostosis (DISH is a rare but well known cause of dysphagia. In very few cases aspiration and dyspnea are described as a clinical manifestation. An 82-year-old man presented himself in our clinic with severe dyspnea, aspiration, and pneumonia. After performing a microlaryngoscopy an emergency tracheotomy became necessary.In laryngoscopy a severe bulging of the posterior oropharyngeal and hypopharyngeal wall was detected. The glottis area was not observable and immobilisation of the right vocal cord could be detected. The CT showed anterior osteophytes and ossification of the anterior longitudinal ligament from C2–C7. We performed a panendoscopy in order to explore the upper aerodigestive area. Postoperatively an emergency tracheotomy was needed due to the development of laryngeal edema. The osteophytes were removed in cooperation with the department of orthopaedics. Three months postoperative the patient had no dyspnea or dysphagia, so the tracheotomy could be closed.Cervical hyperostosis is commonly described in elderly patients and usually presenting without symptoms, therefore a surgical treatment is usually not necessary. Nevertheless it can lead to severe morbidity and dyspnea with airway obstruction. Therefore it is essential that cervical hyperostosis is recognized early enough and appropriate treatment is initiated. Flexible endoscopy should be preferred over direct panendoscopy because it could lead to life-threatening edema and a prophylactic tracheostomy should be strongly considered in patients that present with severe dyspnea,

  7. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    Science.gov (United States)

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy.

    Science.gov (United States)

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-16

    Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.

  9. Ionospheric Data Assimilation and Targeted Observation Strategies: Proof of Concept Analysis in a Geomagnetic Storm Event

    Science.gov (United States)

    Kostelich, Eric; Durazo, Juan; Mahalov, Alex

    2017-11-01

    The dynamics of the ionosphere involve complex interactions between the atmosphere, solar wind, cosmic radiation, and Earth's magnetic field. Geomagnetic storms arising from solar activity can perturb these dynamics sufficiently to disrupt radio and satellite communications. Efforts to predict ``space weather,'' including ionospheric dynamics, require the development of a data assimilation system that combines observing systems with appropriate forecast models. This talk will outline a proof-of-concept targeted observation strategy, consisting of the Local Ensemble Transform Kalman Filter, coupled with the Thermosphere Ionosphere Electrodynamics Global Circulation Model, to select optimal locations where additional observations can be made to improve short-term ionospheric forecasts. Initial results using data and forecasts from the geomagnetic storm of 26-27 September 2011 will be described. Work supported by the Air Force Office of Scientific Research (Grant Number FA9550-15-1-0096) and by the National Science Foundation (Grant Number DMS-0940314).

  10. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically.

    Science.gov (United States)

    Kumar, Abhay; Prasad, M N V; Sytar, Oksana

    2012-11-01

    Talinum species have been used to investigate a variety of environmental problems for e.g. determination of metal pollution index and total petroleum hydrocarbons in roadside soils, stabilization and reclamation of heavy metals (HMs) in dump sites, removal of HMs from storm water-runoff and green roof leachates. Species of Talinum are popular leaf vegetables having nutrient antinutrient properties. In this study, Talinum triangulare (Jacq.) Willd (Ceylon spinach) grown hydroponically were exposed to different concentrations of lead (Pb) (0, 0.25, 0.5, 0.75, 1.0 and 1.25 mM) to investigate the biomarkers of toxicity and tolerance mechanisms. Relative water content, cell death, photosynthetic pigments, sulphoquinovosyldiacylglycerol (SQDG), anthocyanins, α-tocopherol, malondialdehyde (MDA), reactive oxygen species (ROS) glutathione (GSH and GSSG) and elemental analysis have been investigated. The results showed that Pb in roots and shoots gradually increased as the function of Pb exposure; however Pb concentration in leaves was below detectable level. Chlorophylls and SQDG contents increased at 0.25 mM of Pb treatment in comparison to control at all treated durations, thereafter decreased. Levels of carotenoid, anthocyanins, α-tocopherol, and lipid peroxidation increased in Pb treated plants compared to control. Water content, cells death and elemental analysis suggested the damage of transport system interfering with nutrient transport causing cell death. The present study also explained that Pb imposed indirect oxidative stress in leaves is characterized by decreases in GSH/GSSG ratio with increased doses of Pb treatment. Lead-induced oxidative stress was alleviated by carotenoids, anthocyanins, α-tocopherol and glutathione suggesting that these defense responses as potential biomarkers for detecting Pb toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Exports of company: SWOT-analysis, product strategy and sales targets

    International Nuclear Information System (INIS)

    Hammer, Hele

    1998-01-01

    Despite its smallness Estonia has a good chance to enjoy a success in the international peat market, due to the favourable geographical location and well developed peat industry. There are numerous harbours, low wages and salaries, and a good educational background in Estonia. Moreover, Estonian economy is aiming at a competitive market economy. Peat exports represent a great opportunity to improve the balance of payments, create jobs, support the State through the taxes paid, meet the needs of foreign customers, earn a profit for Estonian peat companies and better Estonian standard of living. When preparing this paper, marketing textbooks and professional articles of interest were used. The working experience of one of Estonian peat companies and acquired practical knowledge have also been of help throughout the thesis. In general, it may be expected that Estonian peat exports will increase in the next few years. The Netherlands and Germany will remain the main target countries, also France, Belgium and the United Kingdom are important. The exports to Italy will, for sure, increase, to the Middle-East these will be quite likely. The Far East is also a potential market, especially Korea and Japan. Peat marketing is based on the following premises: the demand for peat is a derived demand, being dependent on that for the end-products. The number of customers is small and their decisions are rational. Estonian peat producers also have to face the fact that the production needs to be marketed mostly abroad. While considering the product strategy, the conclusion was that with peat the least cost strategy is easily applicable. Possibilities for differentiation are almost next to nothing (except in case of packaging or transportation services). Possibilities will widen when the production of potting soils is launched. Most Estonian peat firms sell peat and products thereof through foreign wholesalers, some of them render also transportation services and this is well

  12. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity

    Directory of Open Access Journals (Sweden)

    Ulrich E. Schaible

    2017-12-01

    Full Text Available The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.

  13. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons.

    Science.gov (United States)

    Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam

    2018-06-06

    Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. 40 Is the New 65? Older Adults and Niche Targeting Strategies in the Online Dating Industry

    Directory of Open Access Journals (Sweden)

    Derek Blackwell

    2016-10-01

    Full Text Available Niche dating sites have become a popular trend in the online dating industry; yet, little is known about the specialization strategies these sites use to cater to their users’ needs. Moreover, previous research alludes to the idea that many of these sites may be engaging in pseudo-individualization—a deceptive technique that creates an illusion of specialization. This study focuses on niche dating sites for older adults, one of the fastest growing niches in online dating. Through a qualitative content analysis and close reading of older-adult dating sites, I seek to determine how and to what extent online dating sites that target older adults actually customize their services to benefit this population. Three key findings emerge: (1 the use of mass segmentation, a strategy that combines elements of both mass marketing and market segmentation; (2 a strategic broadening of the boundaries of the older-adult niche; and (3 the use of deceptive advertising to attract users. These findings suggest that older-adult dating sites are, in fact, engaging in pseudo-individualization. They also highlight some of the unique aspects of online media that facilitate this practice. Implications for both online daters and site producers are discussed.

  15. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    Science.gov (United States)

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Key Triggers of Osteoclast-Related Diseases and Available Strategies for Targeted Therapies: A Review

    Directory of Open Access Journals (Sweden)

    Haidi Bi

    2017-12-01

    Full Text Available Osteoclasts, the only cells with bone resorption functions in vivo, maintain the balance of bone metabolism by cooperating with osteoblasts, which are responsible for bone formation. Excessive activity of osteoclasts causes many diseases such as osteoporosis, periprosthetic osteolysis, bone tumors, and Paget’s disease. In contrast, osteopetrosis results from osteoclast deficiency. Available strategies for combating over-activated osteoclasts and the subsequently induced diseases can be categorized into three approaches: facilitating osteoclast apoptosis, inhibiting osteoclastogenesis, and impairing bone resorption. Bisphosphonates are representative molecules that function by triggering osteoclast apoptosis. New drugs, such as tumor necrosis factor and receptor activator of nuclear factor kappa-B ligand (RANKL inhibitors (e.g., denosumab have been developed for targeting the receptor activator of nuclear factor kappa-B /RANKL/osteoprotegerin system or CSF-1/CSF-1R axis, which play critical roles in osteoclast formation. Furthermore, vacuolar (H+-ATPase inhibitors, cathepsin K inhibitors, and glucagon-like peptide 2 impair different stages of the bone resorption process. Recently, significant achievements have been made in this field. The aim of this review is to provide an updated summary of the current progress in research involving osteoclast-related diseases and of the development of targeted inhibitors of osteoclast formation.

  17. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Siegler

    2016-11-01

    Full Text Available Increasing attention has been given to the tumor microenvironment (TME, which includes cellular and structural components such as fibroblasts, immune cells, vasculature, and extracellular matrix (ECM that surround tumor sites. These components contribute to tumor growth and metastasis and are one reason why traditional chemotherapy often is insufficient to eradicate the tumor completely. Newer treatments that target aspects of the TME, such as antiangiogenic and immunostimulatory therapies, have seen limited clinical success despite promising preclinical results. This can be attributed to a number of reasons, including a lack of drug penetration deeper into the necrotic tumor core, nonspecific delivery, rapid clearance from serum, or toxic side effects at high doses. Nanoparticles offer a potential solution to all of these obstacles, and many recent studies have shown encouraging results using nanomedicine to target TME vasculature, ECM, and immune response. While few of these platforms have made it to clinical trials to date, these strategies are relatively new and may offer a way to improve the effects of anticancer therapies.

  18. Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage.

    Science.gov (United States)

    Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S

    2008-09-01

    The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.

  19. Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics

    Science.gov (United States)

    Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.

    2009-01-01

    The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504

  20. Korea's nuclear public information experiences-target groups and communication strategies

    International Nuclear Information System (INIS)

    Chung, J.K.

    1996-01-01

    Why public information activities in Korea are needed is first explained. There are three basic reasons; 1) to secure necessary sites for construction of large nuclear facilities; such as nuclear power plants, radwaste management facilities, and nuclear fuel-cycle related facilities 2) to maintain a friendly relationship between the local communities and the nuclear industries, 3) to promote better understanding about the nation's peaceful nuclear programs to the various target groups. Categorization of target groups and messages are reviewed. By whom the public information programs are implemented is also explained. An orchestrated effort together with the third communicators is stressed. Basic philosophy of nuclear public information programs is introduced. A high-profile information campaign and a low-profile information campaign are explained. Particular information strategies suitable to Korean situation as examined. In addition, the Korean general public perception on nuclear energy is briefly introduced. Also, some real insights of anti-nuclear movement in Korea together with the arguments are reviewed. In conclusion, the paper stresses that nuclear arguments became no more technical matters but almost socio-political issues. (author)

  1. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Glenn A.; Oehmen, Christopher S.

    2012-09-01

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF can be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.

  2. Modern trends in radioimmunotherapy of cancer. Pre targeting strategies for the treatment of ovarian cancer

    International Nuclear Information System (INIS)

    Mcquarrie, S.A.; Xiao, Z.; Mercer, J. R.; Suresh, M. R.

    2001-01-01

    A review of published data on some of the problems associated in treating cancer using radioimmunotherapy is presented. Potential improvements for this type of therapy using pretargeting strategies are discussed and preliminary results on a novel multistep regimen to treat human ovarian cancer are presented. A pretargeting strategy using ovarian cancer are presented. A pretargeting strategy using a biotinylated, anti-CA 125 monoclonal antibody (MAb) to attract biotinylated long-circulating liposomes to the surface of CA 125-expressing ovarian cancer cells, was employed. Confocal laser scanning microscopy and fluorescent labels were used to establish the biodistribution patterns in NIH:OVCAR-3 (CA-125 positive) and SK-OV-3 (CA-125 negative) human ovarian cancer cells. Shedding kinetics of the pretargeted stage were measured using 125 I labeled MAbs. No significant internalization of the MAb used in the pretargeting step was observed by 4 hrs. The antibody was gradually internalized starting at 6 hrs, and most of the labelled MAb was detected in cytoplasm by 24 hrs. Shedding and exocytosis of the antigen-MAb complex was not significant for up to 6-hours following administration of the iodinated MAb. Biotinylated liposomes were shown to specifically target the biotinylated MAb/streptavidin complex on the cell surface. It has been demonstrated that by a three-step pretargeting approach, biotinylated liposomes can be specifically delivered to cells pretargeted with biotinylated MAb/SAv complex. The slow internalization and shedding properties of the two MAbs are ideal for multistep pretargeting methods. A successful multistep linkage was established with the biotinylated MAb B27.1, streptavidin and biotinylated liposomes to OVCAR-3 cells, but not to SK-OV-3 cells

  3. Risk evaluation and mitigation strategies: a focus on the mammalian target of rapamycin inhibitors.

    Science.gov (United States)

    Gabardi, Steven

    2013-03-01

    To review the history of risk evaluation and mitigation strategies (REMS) with the mammalian target of rapamycin (mToR) inhibitors, evaluate their required REMS elements, and delineate the reasons for them being released from their REMS requirements. Articles were identified through a literature search of MEDLINE and EMBASE (January 2007-July 2012) using the search terms: risk evaluation and mitigation strategies, REMS, everolimus, sirolimus and organ transplant (individual organs also were searched). Information from the Federal Register, the Food and Drug Administration, and the manufacturers of the mToR inhibitors was also evaluated. REMS are strategies implemented to manage known or potential risks associated with medications and to ensure ongoing pharmacovigilance throughout the life of a pharmaceutical product. The mToR inhibitors have been associated with several potential risks, including proteinuria, graft thrombosis, and wound-healing complications. The Food and Drug Administration approved REMS programs for both sirolimus and everolimus. The manufacturers of both medications complied with the components of their approved REMS, but after less than 2 years, both medications have been relieved of their REMS obligations. The only element of the sirolimus REMS was a medication guide, whereas the everolimus REMS consisted of a medication guide and a communication plan. The sirolimus REMS was implemented more than 10 years after its initial approval by the Food and Drug Administration, but was released from its REMS requirement within 7 months of its implementation. The everolimus REMS was instituted upon initial approval and was removed approximately 2 years later. Both medications' REMS were always intended to educate health care providers and patients about the potential risks associated with this transplant immunosuppressant. Transplant practitioners should be familiar with the mToR inhibitors' associated risks and properly educate patients regarding the

  4. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    Science.gov (United States)

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American

  5. Evolution of the heteroharmonic strategy for target-range computation in the echolocation of Mormoopidae.

    Directory of Open Access Journals (Sweden)

    Emanuel C Mora

    2013-06-01

    Full Text Available Echolocating bats use the time elapsed from biosonar pulse emission to the arrival of echo (defined as echo-delay to assess target-distance. Target-distance is represented in the brain by delay-tuned neurons that are classified as either heteroharmonic or homoharmormic. Heteroharmonic neurons respond more strongly to pulse-echo pairs in which the timing of the pulse is given by the fundamental biosonar harmonic while the timing of echoes is provided by one (or several of the higher order harmonics. On the other hand, homoharmonic neurons are tuned to the echo delay between similar harmonics in the emitted pulse and echo. It is generally accepted that heteroharmonic computations are advantageous over homoharmonic computations; i.e. heteroharmonic neurons receive information from call and echo in different frequency-bands which helps to avoid jamming between pulse and echo signals. Heteroharmonic neurons have been found in two species of the family Mormoopidae (Pteronotus parnellii and Pteronotus quadridens and in Rhinolophus rouxi. Recently, it was proposed that heteroharmonic target-range computations are a primitive feature of the genus Pteronotus that was preserved in the evolution of the genus. Here we review recent findings on the evolution of echolocation in Mormoopidae, and try to link those findings to the evolution of the heteroharmonic computation strategy. We stress the hypothesis that the ability to perform heteroharmonic computations evolved separately from the ability of using long constant-frequency echolocation calls, high duty cycle echolocation and Doppler Shift Compensation. Also, we present the idea that heteroharmonic computations might have been of advantage for categorizing prey size, hunting eared insects and living in large conspecific colonies. We make five testable predictions that might help future investigations to clarify the evolution of the heteroharmonic echolocation in Mormoopidae and other families.

  6. Targeting the dopamine D3 receptor: an overview of drug design strategies.

    Science.gov (United States)

    Cortés, Antoni; Moreno, Estefanía; Rodríguez-Ruiz, Mar; Canela, Enric I; Casadó, Vicent

    2016-07-01

    Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.

  7. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers.

    Science.gov (United States)

    Islam, Nazrul; Richard, Derek

    2018-05-24

    Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Solar Geoengineering as part of an overall strategy for meeting the 1.5C Paris target

    Science.gov (United States)

    Ricke, K.; MacMartin, D. G.; Keith, D.

    2017-12-01

    If future mitigation proves insufficient to limit the rise in global mean temperature to less than 1.5C above preindustrial, it is plausible that some additional and limited deployment of solar geoengineering could reduce climate damages. That is, these approaches could eventually be considered as part of an overall strategy to manage the risks of climate change, combining emissions reduction, net-negative emissions technologies, and solar geoengineering to meet climate goals. Since few climate model simulations have considered these limited deployment scenarios, we use a climate emulator trained from GeoMIP output to assess the projected response if solar geoengineering were used to limit global mean temperature to 1.5C above preindustrial in an overshoot scenario that would otherwise peak near 3C. The resulting climate is much closer in many respects to a climate where the 1.5C target is achieved through mitigation alone than either is to the 3C climate with no geoengineering, although there are some important differences. In this limited deployment scenario, there is no "over-compensation" of global-mean precipitation changes, nor are there any regions where a majority of models project that the use of geoengineering would lead to a statistically-significant change in precipitation further away from preindustrial than would have occurred without using geoengineering. This highlights the importance of evaluating geoengineering impacts in the context of specific policy-relevant scenarios.

  9. Measurements of gas and volatile element production rates from an irradiated molten lead and lead-bismuth spallation target with proton beams of 1 and 1.4 GeV

    International Nuclear Information System (INIS)

    Tall, Y.

    2008-03-01

    The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6. EURATOM Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will carry out a first advanced design of an experimental facility to demonstrate the technical feasibility of transmutation, and will produce a conceptual design of an industrial facility dedicated to transmutation. An ADS consists of three fundamental elements: the accelerator of protons, the sub-critical core and the spallation target. SUBATECH (physique Sub-Atomique et des Technologies associees) laboratory is involved to the study of the chosen liquid lead-bismuth as a spallation ADS target. The irradiation of liquid lead-bismuth target with energetic proton beam generates in addition to neutrons, volatile and radioactive residues. In order to determine experimentally the production rates of gas and volatile elements following a spallation reaction in a lead-bismuth target, the experiment IS419 was performed at the ISOLDE facility at CERN (Centre Europeen de la Recherche Nucleaire). This experiment constitutes the frame of the thesis whose main objective is to assess and study the production and release rates of many gas and volatile element from the irradiated lead-bismuth target with an energetic proton beam. The obtained data are compared to Monte Carlo simulation code (MCNPX) results in order to test the intranuclear cascade model of Bertini and of Cugnon, and the evaporation options of Dresner and Schmidt. (author)

  10. Obesity and Type 2 Diabetes: Two Diseases with a Need for Combined Treatment Strategies - EASO Can Lead the Way

    Directory of Open Access Journals (Sweden)

    Deborah R. Leitner

    2017-10-01

    Full Text Available Obesity is a chronic metabolic disease affecting adults and children worldwide. It has become one of the leading causes of death, as obesity is known to be the main risk factor for a number of non-communicable diseases, in particular type 2 diabetes. This close relationship led to the connotation ‘diabesity', highlighting the fact that the majority of individuals with diabetes are overweight or obese. Until today the BMI is still used to classify overweight and obesity. Since reduced muscle mass is highly prevalent throughout the BMI range, the measurement of body composition is strongly recommended. Moreover, it is essential for monitoring the course of weight reduction, which is part of every effective anti-obesity treatment. Weight reduction can be achieved via different weight loss strategies, including lifestyle intervention (diet and exercise, pharmacotherapy, or bariatric surgery. However, not all of these strategies are suitable for all patients, and any further needs should be considered. Besides, attention should also be drawn to concomitant therapies. These therapies may promote additional weight gain and further trigger the deterioration of blood glucose control. Thus, therapeutic strategies are warranted, which can be easily used for the management of obese patients with type 2 diabetes to achieve their glycemic and weight loss goals.

  11. Model Penjadwalan Pengiriman Pasokan pada Strategi Multi-Supplier dengan Variasi Harga dan Lead Time untuk Permintaan Stokastik

    Directory of Open Access Journals (Sweden)

    Nur Aini Masruroh

    2015-06-01

    Full Text Available Multi-supplier is one of the strategies to minimize holding cost and average stock-out cost as long as to stabilize the supply of raw materials. The common problems that the firms may face when applying the multi-supplier strategy are determining the right schedule and quantity ordered for each supplier. Complexity of the problem increases with the facts that each supplier may have different parameters, demand is uncertain, and the firms’ constraints. Thus, this research is done to answer two main objectives: (1 to determine the optimum safety time (minimum raw material inventory to prevent the stockout due to the demand uncertainty and (2 to determine the right schedule and quantity ordered for each supplier considering the different suppliers parameters: price, lead time, and supply capacity. The problem is modeled in Mixed Integer Linear Programming with total minimum inventory cost as the objective. With the aim of testing the model, a case of multinational company that apply the multi-supplier strategy is used.

  12. Tobacco Industry Promotional Strategies Targeting American Indians/Alaska Natives and Exploiting Tribal Sovereignty.

    Science.gov (United States)

    Lempert, Lauren K; Glantz, Stanton A

    2018-03-12

    American Indians/Alaska Natives have the highest commercial tobacco use in the United States, resulting in higher tobacco-caused deaths and diseases than the general population. Some American Indians/Alaska Natives use commercial tobacco for ceremonial as well as recreational uses. Because federally-recognized Tribal lands are sovereign, they are not subject to state cigarette taxes and smokefree laws. This study analyzes tobacco industry promotional efforts specifically targeting American Indians/Alaska Natives and exploiting Tribal lands to understand appropriate policy responses in light of American Indians'/Alaska Natives' unique sovereign status and culture. We analyzed previously secret tobacco industry documents available at the Truth Tobacco Documents Library (https://industrydocuments.library.ucsf.edu/tobacco/). Tobacco companies used promotional strategies targeting American Indians/Alaska Natives and exploiting Tribal lands that leveraged the federally-recognized Tribes' unique sovereign status exempting them from state cigarette taxes and smokefree laws, and exploited some Tribes' existing traditional uses of ceremonial tobacco and poverty. Tactics included price reductions, coupons, giveaways, gaming promotions, charitable contributions and sponsorships. Additionally, tobacco companies built alliances with Tribal leaders to help improve their corporate image, advance ineffective "youth smoking prevention" programs, and defeat tobacco control policies. The industry's promotional tactics likely contribute to disparities in smoking prevalence and smoking-related diseases among American Indians//Alaska Natives. Proven policy interventions to address these disparities including tobacco price increases, cigarette taxes, comprehensive smokefree laws, and industry denormalization campaigns to reduce smoking prevalence and smoking-related disease could be considered by Tribal communities. The sovereign status of federally-recognized Tribes does not prevent them

  13. Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer.

    Science.gov (United States)

    Pandima Devi, Kasi; Rajavel, Tamilselvam; Daglia, Maria; Nabavi, Seyed Fazel; Bishayee, Anupam; Nabavi, Seyed Mohammad

    2017-10-01

    In the recent years, polyphenols have gained significant attention in scientific community owing to their potential anticancer effects against a wide range of human malignancies. Epidemiological, clinical and preclinical studies have supported that daily intake of polyphenol-rich dietary fruits have a strong co-relationship in the prevention of different types of cancer. In addition to direct antioxidant mechanisms, they also regulate several therapeutically important oncogenic signaling and transcription factors. However, after the discovery of microRNA (miRNA), numerous studies have identified that polyphenols, including epigallocatechin-3-gallate, genistein, resveratrol and curcumin exert their anticancer effects by regulating different miRNAs which are implicated in all the stages of cancer. MiRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. However, cancer associated miRNAs has emerged only in recent years to support its applications in cancer therapy. Preclinical experiments have suggested that deregulation of single miRNA is sufficient for neoplastic transformation of cells. Indeed, the widespread deregulation of several miRNA profiles of tumor and healthy tissue samples revealed the involvement of many types of miRNA in the development of numerous cancers. Hence, targeting the miRNAs using polyphenols will be a novel and promising strategy in anticancer chemotherapy. Herein, we have critically reviewed the potential applications of polyphenols on various human miRNAs, especially which are involved in oncogenic and tumor suppressor pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. IT substitution for energy leads to a resilient structure for a survival strategy of Japan's electric power industry

    International Nuclear Information System (INIS)

    Watanabe, Chihiro; Kishioka, Miharu; Carvajal, C.A.

    2005-01-01

    The dramatic surge in information technology (IT) around the world, and an evolving global economy, are subjecting firms to megacompetition. This is the case, particularly in Japan's electric power industry, where the power rate is one of the highest in the world; hence it is noted that Japan's industry has lost its price competitiveness in the world market, resulting in stagnation of production, hence leading to stagnation in power demand. In addition, an increase in trends of customer's preferences and the variety of participants in the power supply race, have put electric power companies at the mercy of customers with alternative supply sources. Given that uncertainty with respect to energy security, as well as power generation and distribution systems safety increases, as strongly cautioned by the recent blackout in the US and Canada, a dramatic conversion of existing strategies would be indispensable for electric power companies. A conversion from a high-demand-elasticity dependent, supply structure to a resilient structure is required. While the former aims at constructing a high-demand-elasticity supply structure, based on the myth of high growth of demand, the latter aims at maintaining profit, while minimizing the elasticities of factors with high uncertainty, such as energy resources and costly capital investment linked to a fluctuating power demand. This paper demonstrates the significance of IT substitution for energy through consortia structure, thereby utilizing IT spillover and leading to resilience and leveraging consortia structure as Japan's electric power industry survival strategy. An empirical analysis using Japan's nine leading electric power companies over the last quarter century has been conducted

  15. Synergistic tumor microenvironment targeting and blood-brain barrier penetration via a pH-responsive dual-ligand strategy for enhanced breast cancer and brain metastasis therapy.

    Science.gov (United States)

    Li, Man; Shi, Kairong; Tang, Xian; Wei, Jiaojie; Cun, Xingli; Long, Yang; Zhang, Zhirong; He, Qin

    2018-05-22

    Cancer associated fibroblasts (CAFs) which shape the tumor microenvironment (TME) and the presence of blood brain barrier (BBB) remain great challenges in targeting breast cancer and its brain metastasis. Herein, we reported a strategy using PTX-loaded liposome co-modified with acid-cleavable folic acid (FA) and BBB transmigrating cell penetrating peptide dNP2 peptide (cFd-Lip/PTX) for enhanced delivery to orthotopic breast cancer and its brain metastasis. Compared with single ligand or non-cleavable Fd modified liposomes, cFd-Lip exhibited synergistic TME targeting and BBB transmigration. Moreover, upon arrival at the TME, the acid-cleavable cFd-Lip/PTX showed sensitive cleavage of FA, which reduced the hindrance effect and maximized the function of both FA and dNP2 peptide. Consequently, efficient targeting of folate receptor (FR)-positive tumor cells and FR-negative CAFs was achieved, leading to enhanced anti-tumor activity. This strategy provides a feasible approach to the cascade targeting of TME and BBB transmigration in orthotopic and metastatic cancer treatment. Copyright © 2018. Published by Elsevier Inc.

  16. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    Science.gov (United States)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-04-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which specifically binds at one half of the target introduced SH groups at both ends of dsDNA. Continuous disulfide bond formation at 3‧ and 5‧ terminals of targets leads to the self-assembly of dsDNAs into the sulfur- rich and flexible products with different lengths. These products have a high affinity for the surface of Au-NPs and efficiently protect the surface from salt induced aggregation. To evaluate the assay efficacy, a small part of the citrus tristeza virus (CTV) genome was targeted, leading to a detection limit of about 5 × 10-9 mol.L-1 over a linear ranged from 20 × 10-9 to 10 × 10-7 mol.L-1. This approach also exhibits good reproducibility and recovery levels in the presence of plant total RNA or human plasma total circulating RNA extracts. Self-assembled targets can be then sensitively distinguished from non-assembled or mismatched targets after gel electrophoresis. The disulfide reaction method and integrating self-assembled DNAs/RNAs targets with bare AuNPs as a sensitive indicator provide us a powerful and simple visual detection tool for a wide range of applications.

  17. A field trial of alternative targeted screening strategies for Chagas disease in Arequipa, Peru.

    Directory of Open Access Journals (Sweden)

    Gabrielle C Hunter

    2012-01-01

    Full Text Available Chagas disease is endemic in the rural areas of southern Peru and a growing urban problem in the regional capital of Arequipa, population ∼860,000. It is unclear how to implement cost-effective screening programs across a large urban and periurban environment.We compared four alternative screening strategies in 18 periurban communities, testing individuals in houses with 1 infected vectors; 2 high vector densities; 3 low vector densities; and 4 no vectors. Vector data were obtained from routine Ministry of Health insecticide application campaigns. We performed ring case detection (radius of 15 m around seropositive individuals, and collected data on costs of implementation for each strategy.Infection was detected in 21 of 923 (2.28% participants. Cases had lived more time on average in rural places than non-cases (7.20 years versus 3.31 years, respectively. Significant risk factors on univariate logistic regression for infection were age (OR 1.02; p = 0.041, time lived in a rural location (OR 1.04; p = 0.022, and time lived in an infested area (OR 1.04; p = 0.008. No multivariate model with these variables fit the data better than a simple model including only the time lived in an area with triatomine bugs. There was no significant difference in prevalence across the screening strategies; however a self-assessment of disease risk may have biased participation, inflating prevalence among residents of houses where no infestation was detected. Testing houses with infected-vectors was least expensive. Ring case detection yielded four secondary cases in only one community, possibly due to vector-borne transmission in this community, apparently absent in the others.Targeted screening for urban Chagas disease is promising in areas with ongoing vector-borne transmission; however, these pockets of epidemic transmission remain difficult to detect a priori. The flexibility to adapt to the epidemiology that emerges during screening is key to

  18. A Field Trial of Alternative Targeted Screening Strategies for Chagas Disease in Arequipa, Peru

    Science.gov (United States)

    Hunter, Gabrielle C.; Borrini-Mayorí, Katty; Ancca Juárez, Jenny; Castillo Neyra, Ricardo; Verastegui, Manuela R.; Malaga Chavez, Fernando S.; Cornejo del Carpio, Juan Geny; Córdova Benzaquen, Eleazar; Náquira, César; Gilman, Robert H.; Bern, Caryn; Levy, Michael Z.

    2012-01-01

    Background Chagas disease is endemic in the rural areas of southern Peru and a growing urban problem in the regional capital of Arequipa, population ∼860,000. It is unclear how to implement cost-effective screening programs across a large urban and periurban environment. Methods We compared four alternative screening strategies in 18 periurban communities, testing individuals in houses with 1) infected vectors; 2) high vector densities; 3) low vector densities; and 4) no vectors. Vector data were obtained from routine Ministry of Health insecticide application campaigns. We performed ring case detection (radius of 15 m) around seropositive individuals, and collected data on costs of implementation for each strategy. Results Infection was detected in 21 of 923 (2.28%) participants. Cases had lived more time on average in rural places than non-cases (7.20 years versus 3.31 years, respectively). Significant risk factors on univariate logistic regression for infection were age (OR 1.02; p = 0.041), time lived in a rural location (OR 1.04; p = 0.022), and time lived in an infested area (OR 1.04; p = 0.008). No multivariate model with these variables fit the data better than a simple model including only the time lived in an area with triatomine bugs. There was no significant difference in prevalence across the screening strategies; however a self-assessment of disease risk may have biased participation, inflating prevalence among residents of houses where no infestation was detected. Testing houses with infected-vectors was least expensive. Ring case detection yielded four secondary cases in only one community, possibly due to vector-borne transmission in this community, apparently absent in the others. Conclusions Targeted screening for urban Chagas disease is promising in areas with ongoing vector-borne transmission; however, these pockets of epidemic transmission remain difficult to detect a priori. The flexibility to adapt to the epidemiology that

  19. Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells.

    Science.gov (United States)

    Kumar, S; Peng, X; Daley, J; Yang, L; Shen, J; Nguyen, N; Bae, G; Niu, H; Peng, Y; Hsieh, H-J; Wang, L; Rao, C; Stephan, C C; Sung, P; Ira, G; Peng, G

    2017-04-17

    Replication stress is a characteristic feature of cancer cells, which is resulted from sustained proliferative signaling induced by activation of oncogenes or loss of tumor suppressors. In cancer cells, oncogene-induced replication stress manifests as replication-associated lesions, predominantly double-strand DNA breaks (DSBs). An essential mechanism utilized by cells to repair replication-associated DSBs is homologous recombination (HR). In order to overcome replication stress and survive, cancer cells often require enhanced HR repair capacity. Therefore, the key link between HR repair and cellular tolerance to replication-associated DSBs provides us with a mechanistic rationale for exploiting synthetic lethality between HR repair inhibition and replication stress. DNA2 nuclease is an evolutionarily conserved essential enzyme in replication and HR repair. Here we demonstrate that DNA2 is overexpressed in pancreatic cancers, one of the deadliest and more aggressive forms of human cancers, where mutations in the KRAS are present in 90-95% of cases. In addition, depletion of DNA2 significantly reduces pancreatic cancer cell survival and xenograft tumor growth, suggesting the therapeutic potential of DNA2 inhibition. Finally, we develop a robust high-throughput biochemistry assay to screen for inhibitors of the DNA2 nuclease activity. The top inhibitors were shown to be efficacious against both yeast Dna2 and human DNA2. Treatment of cancer cells with DNA2 inhibitors recapitulates phenotypes observed upon DNA2 depletion, including decreased DNA double strand break end resection and attenuation of HR repair. Similar to genetic ablation of DNA2, chemical inhibition of DNA2 selectively attenuates the growth of various cancer cells with oncogene-induced replication stress. Taken together, our findings open a new avenue to develop a new class of anticancer drugs by targeting druggable nuclease DNA2. We propose DNA2 inhibition as new strategy in cancer therapy by targeting

  20. Strategies for targeting tetraspanin proteins: potential therapeutic applications in microbial infections.

    Science.gov (United States)

    Hassuna, Noha; Monk, Peter N; Moseley, Gregory W; Partridge, Lynda J

    2009-01-01

    The identification of novel targets and strategies for therapy of microbial infections is an area of intensive research due to the failure of conventional vaccines or antibiotics to combat both newly emerging diseases (e.g. viruses such as severe acute respiratory syndrome (SARS) and new influenza strains, and antibiotic-resistant bacteria) and entrenched, pandemic diseases exemplified by HIV. One clear approach to this problem is to target processes of the host organism rather than the microbe. Recent data have indicated that members of the tetraspanin superfamily, proteins with a widespread distribution in eukaryotic organisms and 33 members in humans, may provide such an approach. Tetraspanins traverse the membrane four times, but are distinguished from other four-pass membrane proteins by the presence of conserved charged residues in the transmembrane domains and a defining 'signature' motif in the larger of the two extracellular domains (the EC2). They characteristically form promiscuous associations with one another and with other membrane proteins and lipids to generate a specialized type of microdomain: the tetraspanin-enriched microdomain (TEM). TEMs are integral to the main role of tetraspanins as 'molecular organizers' involved in functions such as membrane trafficking, cell-cell fusion, motility, and signaling. Increasing evidence demonstrates that tetraspanins are used by intracellular pathogens as a means of entering and replicating within human cells. Although previous investigations focused mainly on viruses such as hepatitis C and HIV, it is now becoming clear that other microbes associate with tetraspanins, using TEMs as a 'gateway' to infection. In this article we review the properties and functions of tetraspanins/TEMs that are relevant to infective processes and discuss the accumulating evidence that shows how different pathogens exploit these properties in infection and in the pathogenesis of disease. We then investigate the novel and exciting

  1. Bone marrow fibrosis – the basis of mielofibrosis: pathogenesis, prognostication and antifibrogenic targeted strategies

    Directory of Open Access Journals (Sweden)

    Timchenko A.S.

    2018-03-01

    Full Text Available Bone marrow fibrosis is a key patological feature and major diagnostic criterion of mielofibrosis. Although bone marrow fibrosis is manifested in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the mielofibrosis of hematopoietic stem/progenitor cells, contributing to an impaired microenvironment toward malignant over normal hematopoiesis. The increased expression of pro­inflammatory cytokines, transforming growth factor-β, impaired megakaryocyte function and aberrant JAK-STAT signaling are the peculiarities of pathogenesis of bone marrow fibrosis. Hematopoietic stem cell transplantation remains the only therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with mielofibrosis. In the work we review the pathogenesis, biological consequences and prognostic results of impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting at clonal hematopoietic stem/progenitor cells, aberrant signaling pathway, fibrogenic cytokines, and tumor microenvironment.

  2. Targeting Bruton Tyrosine Kinase: A novel strategy in the treatment of B-cell lymphomas

    Directory of Open Access Journals (Sweden)

    Sklavenitis-Pistofidis R.

    2017-06-01

    Full Text Available In normal B-cells, Bruton tyrosine kinase (Btk, a non-receptor tyrosine kinase involved in B-cell receptor (BCR signalling, is essential for cell survival and maturation. Not surprisingly, Btk is also implicated in the pathogenesis of B-cell lymphomas, like Chronic Lymphocytic Leukaemia/Small Lymphocytic Lymphoma (CLL/SLL, Mantle Cell Lymphoma (MCL and Waldenström’s Macroglobulinemia (WM, which are driven by aberrant BCR signalling. Thus, targeting Btk represents a promising therapeutic strategy in the treatment of B-cell lymphoma patients. Ibrutinib, a selective Btk inhibitor, has already been approved as second-line treatment of CLL/SLL, MCL and WM patients, while more clinical studies of ibrutinib and novel Btk inhibitors are currently under way. In light of results of the RESONATE-2 trial, the approval of ibrutinib as a first-line treatment of CLL/SLL may well be approaching. Herein, we review Btk’s role in normal and malignant BCR signalling, as well as ibrutinib’s performance in B-cell lymphoma treatment and prognosis.

  3. Cytokine-Modulating Strategies and Newer Cytokine Targets for Arthritis Therapy

    Directory of Open Access Journals (Sweden)

    Shivaprasad H. Venkatesha

    2014-12-01

    Full Text Available Cytokines are the key mediators of inflammation in the course of autoimmune arthritis and other immune-mediated diseases. Uncontrolled production of the pro-inflammatory cytokines such as interferon-γ (IFN-γ, tumor necrosis factor α (TNFα, interleukin-6 (IL-6, and IL-17 can promote autoimmune pathology, whereas anti-inflammatory cytokines including IL-4, IL-10, and IL-27 can help control inflammation and tissue damage. The pro-inflammatory cytokines are the prime targets of the strategies to control rheumatoid arthritis (RA. For example, the neutralization of TNFα, either by engineered anti-cytokine antibodies or by soluble cytokine receptors as decoys, has proven successful in the treatment of RA. The activity of pro-inflammatory cytokines can also be downregulated either by using specific siRNA to inhibit the expression of a particular cytokine or by using small molecule inhibitors of cytokine signaling. Furthermore, the use of anti-inflammatory cytokines or cytokine antagonists delivered via gene therapy has proven to be an effective approach to regulate autoimmunity. Unexpectedly, under certain conditions, TNFα, IFN-γ, and few other cytokines can display anti-inflammatory activities. Increasing awareness of this phenomenon might help develop appropriate regimens to harness or avoid this effect. Furthermore, the relatively newer cytokines such as IL-32, IL-34 and IL-35 are being investigated for their potential role in the pathogenesis and treatment of arthritis.

  4. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies.

    Science.gov (United States)

    Petit, Johann; Bres, Cécile; Mauxion, Jean-Philippe; Bakan, Bénédicte; Rothan, Christophe

    2017-11-09

    Improving crop productivity and quality while promoting sustainable agriculture have become major goals in plant breeding. The cuticle is a natural film covering the aerial organs of plants and consists of lipid polyesters covered and embedded with wax. The cuticle protects plants against water loss and pathogens and affects traits with strong impacts on crop quality such as, for horticultural crops, fruit brightness, cracking, russeting, netting, and shelf life. Here we provide an overview of the most important cuticle-associated traits that can be targeted for crop improvement. To date, most studies on cuticle-associated traits aimed at crop breeding have been done on fleshy fruits. Less information is available for staple crops such as rice, wheat or maize. Here we present new insights into cuticle formation and properties resulting from the study of genetic resources available for the various crop species. Our review also covers the current strategies and tools aimed at exploiting available natural and artificially induced genetic diversity and the technologies used to transfer the beneficial alleles affecting cuticle-associated traits to commercial varieties. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. EMT blockage strategies: Targeting Akt dependent mechanisms for breast cancer metastatic behaviour modulation.

    Science.gov (United States)

    Rafael, D; Doktorovová, S; Florindo, H F; Gener, P; Abasolo, I; Schwartz, S; Videira, M A

    2015-01-01

    Epithelial Mesenchymal Transition (EMT) is an event where epithelial cells acquire mesenchymal-like phenotype. EMT can occur as a physiological phenomenon during tissue development and wound healing, but most importantly, EMT can confer highly invasive properties to epithelial carcinoma cells. The impairment of E-cadherin expression, an essential cell-cell adhesion protein, together with an increase in the expression of mesenchymal markers, such as N-cadherin, vimentin, and fibronectin, characterize the EMT process and are usually correlated with tumor migration, and metastization. A wide range of micro-environmental and intracellular factors regulate tumor development and progression. The dynamic cross-talk between the adhesion-related proteins such as E-cadherin and the EMT-related transcription factors, with special focus on TWIST, will be discussed here, with the aim of finding a suitable biological pathway to be used as potential target for cancer therapy. Emerging concepts such as the role of the PI3K/AKT/TWIST pathway in the regulation of the E-cadherin expression will be highlighted, since it seems to be consistently involved in cells EMT. The well-known efficacy of the RNA interference as a tool to silence the expression of specific proteins has come into focus as a strategy to control different tumor sub-populations. Despite the oligonucleotides enormous sensitivity and low in vivo stability, new (nano)technological solutions are expected to enable RNAi clinical application in cancer therapy.

  6. Targeting methionine cycle as a potential therapeutic strategy for immune disorders.

    Science.gov (United States)

    Li, Heng; Lu, Huimin; Tang, Wei; Zuo, Jianping

    2017-08-23

    Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.

  7. Four-Week Strategy-Based Training to Enhance Prospective Memory in Older Adults: Targeting Intention Retention Is More Beneficial than Targeting Intention Formation.

    Science.gov (United States)

    Ihle, Andreas; Albiński, Rafal; Gurynowicz, Kamila; Kliegel, Matthias

    2018-01-01

    So far, training of prospective memory (PM) focused on very short instances (single sessions) and targeted the intention-formation phase only. We aimed to compare the effectiveness of 2 different 4-week strategy-based PM training types, namely imagery training (targeting the encoding of the PM intention in the intention-formation phase) versus rehearsal training (targeting the maintenance of the PM intention in the intention-retention phase) in older adults. We used a 4-week training protocol (8 sessions in total, 2 sessions per week). From the 44 participants, 21 were randomly assigned to the imagery training (vividly imagining a mental picture to memorize the connection between the PM cue words and related actions during intention formation) and 23 to the rehearsal training (rehearsing the PM cue words during intention retention). The criterion PM task was assessed before and after the training. Comparing the effectiveness of both training types, we found a significant time by training type interaction on PM accuracy in terms of PM cue detection, F(1, 42) = 6.07, p = 0.018, η2p = 0.13. Subsequent analyses revealed that the rehearsal training was more effective in enhancing PM accuracy in terms of PM cue detection than the imagery training. Strategy-based PM training in older adults targeting the maintenance of the PM intention in the intention-retention phase may be more effective in enhancing PM accuracy in terms of PM cue detection than the strategy targeting the encoding of the PM intention in the intention-formation phase. This suggests that for successful prospective remembering, older adults may need more support to keep the PM cues active in memory while working on the ongoing task than to initially encode the PM intention. © 2018 S. Karger AG, Basel.

  8. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages.

    Science.gov (United States)

    Qian, Yuan; Qiao, Sha; Dai, Yanfeng; Xu, Guoqiang; Dai, Bolei; Lu, Lisen; Yu, Xiang; Luo, Qingming; Zhang, Zhihong

    2017-09-26

    Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancer immunotherapy. Targeted delivery of therapeutic drugs to the tumor-promoting M2-like TAMs is challenging. Here, we developed M2-like TAM dual-targeting nanoparticles (M2NPs), whose structure and function were controlled by α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2pep (an M2 macrophage binding peptide). By loading anti-colony stimulating factor-1 receptor (anti-CSF-1R) small interfering RNA (siRNA) on the M2NPs, we developed a molecular-targeted immunotherapeutic approach to specifically block the survival signal of M2-like TAMs and deplete them from melanoma tumors. We confirmed the validity of SR-B1 for M2-like TAM targeting and demonstrated the synergistic effect of the two targeting units (α-peptide and M2pep) in the fusion peptide (α-M2pep). After being administered to tumor-bearing mice, M2NPs had higher affinity to M2-like TAMs than to tissue-resident macrophages in liver, spleen, and lung. Compared with control treatment groups, M2NP-based siRNA delivery resulted in a dramatic elimination of M2-like TAMs (52%), decreased tumor size (87%), and prolonged survival. Additionally, this molecular-targeted strategy inhibited immunosuppressive IL-10 and TGF-β production and increased immunostimulatory cytokines (IL-12 and IFN-γ) expression and CD8 + T cell infiltration (2.9-fold) in the tumor microenvironment. Moreover, the siRNA-carrying M2NPs down-regulated expression of the exhaustion markers (PD-1 and Tim-3) on the infiltrating CD8 + T cells and stimulated their IFN-γ secretion (6.2-fold), indicating the restoration of T cell immune function. Thus, the dual-targeting property of M2NPs combined with RNA interference provides a potential strategy of molecular-targeted cancer immunotherapy for clinical application.

  9. Internal Light Source-Driven Photoelectrochemical 3D-rGO/Cellulose Device Based on Cascade DNA Amplification Strategy Integrating Target Analog Chain and DNA Mimic Enzyme.

    Science.gov (United States)

    Lan, Feifei; Liang, Linlin; Zhang, Yan; Li, Li; Ren, Na; Yan, Mei; Ge, Shenguang; Yu, Jinghua

    2017-11-01

    In this work, a chemiluminescence-driven collapsible greeting card-like photoelectrochemical lab-on-paper device (GPECD) with hollow channel was demonstrated, in which target-triggering cascade DNA amplification strategy was ingeniously introduced. The GPECD had the functions of reagents storage and signal collection, and the change of configuration could control fluidic path, reaction time and alterations in electrical connectivity. In addition, three-dimentional reduced graphene oxide affixed Au flower was in situ grown on paper cellulose fiber for achieving excellent conductivity and biocompatibility. The cascade DNA amplification strategy referred to the cyclic formation of target analog chain and its trigger action to hybridization chain reaction (HCR), leading to the formation of numerous hemin/G-quadruplex DNA mimic enzyme with the presence of hemin. Subjected to the catalysis of hemin/G-quadruplex, the strong chemiluminiscence of luminol-H 2 O 2 system was obtained, which then was used as internal light source to excite photoactive materials realizing the simplification of instrument. In this analyzing process, thrombin served as proof-of-concept, and the concentration of target was converted into the DNA signal output by the specific recognition of aptamer-protein and target analog chain recycling. The target analog chain was produced in quantity with the presence of target, which further triggered abundant HCR and introduced hemin/G-quadruplex into the system. The photocurrent signal was obtained after the nitrogen-doped carbon dots sensitized ZnO was stimulated by chemiluminescence. The proposed GPECD exhibited excellent specificity and sensitivity toward thrombin with a detection limit of 16.7 fM. This judiciously engineered GPECD paved a luciferous way for detecting other protein with trace amounts in bioanalysis and clinical biomedicine.

  10. A method for evaluating cognitively informed micro-targeted campaign strategies: An agent-based model proof of principle.

    Science.gov (United States)

    Madsen, Jens Koed; Pilditch, Toby D

    2018-01-01

    In political campaigns, perceived candidate credibility influences the persuasiveness of messages. In campaigns aiming to influence people's beliefs, micro-targeted campaigns (MTCs) that target specific voters using their psychological profile have become increasingly prevalent. It remains open how effective MTCs are, notably in comparison to population-targeted campaign strategies. Using an agent-based model, the paper applies recent insights from cognitive models of persuasion, extending them to the societal level in a novel framework for exploring political campaigning. The paper provides an initial treatment of the complex dynamics of population level political campaigning in a psychologically informed manner. Model simulations show that MTCs can take advantage of the psychology of the electorate by targeting voters favourable disposed towards the candidate. Relative to broad campaigning, MTCs allow for efficient and adaptive management of complex campaigns. Findings show that disliked MTC candidates can beat liked population-targeting candidates, pointing to societal questions concerning campaign regulations.

  11. Adherence to a treat-to-target strategy in early rheumatoid arthritis : results of the DREAM remission induction cohort

    NARCIS (Netherlands)

    Vermeer, Marloes; Kuper, Hillechiena H.; Moens, Hein J. Bernelot; Hoekstra, Monique; Posthumus, Marcel D.; van Riel, Piet L. C. M.; van de Laar, Mart A. F. J.

    2012-01-01

    Introduction: Clinical trials have demonstrated that treatment-to-target (T2T) is effective in achieving remission in early rheumatoid arthritis (RA). However, the concept of T2T has not been fully implemented yet and the question is whether a T2T strategy is feasible in daily clinical practice. The

  12. A novel Trojan-horse targeting strategy to reduce the non-specific uptake of nanocarriers by non-cancerous cells.

    Science.gov (United States)

    Shen, Zheyu; Wu, Hao; Yang, Sugeun; Ma, Xuehua; Li, Zihou; Tan, Mingqian; Wu, Aiguo

    2015-11-01

    One big challenge with active targeting of nanocarriers is non-specific binding between targeting molecules and non-target moieties expressed on non-cancerous cells, which leads to non-specific uptake of nanocarriers by non-cancerous cells. Here, we propose a novel Trojan-horse targeting strategy to hide or expose the targeting molecules of nanocarriers on-demand. The non-specific uptake by non-cancerous cells can be reduced because the targeting molecules are hidden in hydrophilic polymers. The nanocarriers are still actively targetable to cancer cells because the targeting molecules can be exposed on-demand at tumor regions. Typically, Fe3O4 nanocrystals (FN) as magnetic resonance imaging (MRI) contrast agents were encapsulated into albumin nanoparticles (AN), and then folic acid (FA) and pH-sensitive polymers (PP) were grafted onto the surface of AN-FN to construct PP-FA-AN-FN nanoparticles. Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), transmission electron microscope (TEM) and gel permeation chromatography (GPC) results confirm successful construction of PP-FA-AN-FN. According to difference of nanoparticle-cellular uptake between pH 7.4 and 5.5, the weight ratio of conjugated PP to nanoparticle FA-AN-FN (i.e. graft density) and the molecular weight of PP (i.e. graft length) are optimized to be 1.32 and 5.7 kDa, respectively. In vitro studies confirm that the PP can hide ligand FA to prevent it from binding to cells with FRα at pH 7.4 and shrink to expose FA at pH 5.5. In vivo studies demonstrate that our Trojan-horse targeting strategy can reduce the non-specific uptake of the PP-FA-AN-FN by non-cancerous cells. Therefore, our PP-FA-AN-FN might be used as an accurately targeted MRI contrast agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Altered control strategy between leading and trailing leg increases knee adduction moment in the elderly while descending stairs.

    Science.gov (United States)

    Karamanidis, Kiros; Arampatzis, Adamantios

    2011-02-24

    The aim of the study was to examine the external knee adduction moments in a group of older and younger adults while descending stairs and thus the possibility of an increased risk of knee osteoarthritis due to altered knee joint loading in the elderly. Twenty-seven older and 16 younger adults descended a purpose-built staircase. A motion capture system and a force plate were used to determine the subjects' 3D kinematics and ground reaction forces (GRF) during locomotion. Calculation of the leg kinematics and kinetics was done by means of a rigid, three-segment, 3D leg model. In the initial portion of the support phase, older adults showed a more medio-posterior GRF vector relative to the ankle joint, leading to lower ankle joint moments (Pstairs by using the trailing leg before the initiation of the double support phase more compared to the younger ones. The consequence of this altered control strategy while stepping down is a more medially directed GRF vector increasing the magnitude of external knee adduction moment in the elderly. The observed changes between leading and trailing leg in the elderly may cause a redistribution of the mechanical load at the tibiofemoral joint, affecting the initiation and progression of knee osteoarthritis in the elderly. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Culturally Targeted Strategies for Diabetes Prevention in Minority Populations: A Systematic Review and Framework

    Science.gov (United States)

    Lagisetty, Pooja A.; Priyadarshini, Shubadra; Terrell, Stephanie; Hamati, Mary; Landgraf, Jessica; Chopra, Vineet; Heisler, Michele

    2017-01-01

    Purpose The purpose of this study is to (a) assess the effectiveness of culturally tailored diabetes prevention interventions in minority populations and (b) develop a novel framework to characterize four key domains of culturally tailored interventions. Prevention strategies specifically tailored to the culture of ethnic minority patients may help reduce the incidence of diabetes. Methods We searched PubMed, EMBASE, and CINAHL for English-language, randomized controlled trials (RCTs) or quasi-experimental (QE) trials testing culturally tailored interventions to prevent diabetes in minority populations. Two reviewers independently extracted data and assessed risk of bias. Inductive thematic analysis was used to develop a framework with four domains (FiLLM: Facilitating [i.e., delivering] Interventions through Language, Location and Message). The framework was used to assess the overall effectiveness of culturally tailored interventions. Results Thirty-four trials met eligibility criteria. Twelve studies were randomized controlled trials, and 22 were quasi-experimental trials. Twenty-five out of 34 studies (74%) that used cultural tailoring demonstrated significantly improved Hemoglobin A1C, fasting glucose, and/or weight loss. Of the 25 successful interventions, 21 (84%) incorporated at least three culturally targeted domains. Seven studies used all four domains and were all successful. The least utilized domain was delivery (4/34) of the intervention’s key educational message. Conclusions Culturally tailoring interventions across the four domains of facilitators, language, location, and messaging can be effective in improving risk factors for progression to diabetes among ethnic minority groups. Future studies should evaluate how specific tailoring approaches work compared to usual care as well as comparative effectiveness of each tailoring domain. Registration (PROSPERO registration: CRD42015016914) PMID:28118127

  15. Targeting the neurokinin receptor 1 with aprepitant: a novel antipruritic strategy.

    Science.gov (United States)

    Ständer, Sonja; Siepmann, Dorothee; Herrgott, Ilka; Sunderkötter, Cord; Luger, Thomas A

    2010-06-04

    Chronic pruritus is a global clinical problem with a high impact on the quality of life and lack of specific therapies. It is an excruciating and frequent symptom of e.g. uncurable renal, liver and skin diseases which often does not respond to conventional treatment with e.g. antihistamines. Therefore antipruritic therapies which target physiological mechanisms of pruritus need to be developed. Substance P (SP) is a major mediator of pruritus. As it binds to the neurokinin receptor 1 (NKR1), we evaluated if the application of a NKR1 antagonist would significantly decrease chronic pruritus. Twenty hitherto untreatable patients with chronic pruritus (12 female, 8 male; mean age, 66.7 years) were treated with the NKR1 antagonist aprepitant 80 mg for one week. 16 of 20 patients (80%) experienced a considerable reduction of itch intensity, as assessed by the visual analog scale (VAS, range 0 to 10). Considering all patients, the mean value of pruritus intensity was significantly reduced from 8.4 VAS points (SD +/-1.7) before treatment to 4.9 VAS points (SD +/-3.2) (pprofit from the treatment. Side-effects were mild (nausea, vertigo, and drowsiness) and only occurred in three patients. The high response rate in patients with therapy refractory pruritus suggests that the NKR1 antagonist aprepitant may indeed exhibit antipruritic effects and may present a novel, effective treatment strategy based on pathophysiology of chronic pruritus. The results are promising enough to warrant confirming the efficacy of NKR1 antagonists in a randomized, controlled clinical trial.

  16. Targeting the neurokinin receptor 1 with aprepitant: a novel antipruritic strategy.

    Directory of Open Access Journals (Sweden)

    Sonja Ständer

    2010-06-01

    Full Text Available Chronic pruritus is a global clinical problem with a high impact on the quality of life and lack of specific therapies. It is an excruciating and frequent symptom of e.g. uncurable renal, liver and skin diseases which often does not respond to conventional treatment with e.g. antihistamines. Therefore antipruritic therapies which target physiological mechanisms of pruritus need to be developed. Substance P (SP is a major mediator of pruritus. As it binds to the neurokinin receptor 1 (NKR1, we evaluated if the application of a NKR1 antagonist would significantly decrease chronic pruritus.Twenty hitherto untreatable patients with chronic pruritus (12 female, 8 male; mean age, 66.7 years were treated with the NKR1 antagonist aprepitant 80 mg for one week. 16 of 20 patients (80% experienced a considerable reduction of itch intensity, as assessed by the visual analog scale (VAS, range 0 to 10. Considering all patients, the mean value of pruritus intensity was significantly reduced from 8.4 VAS points (SD +/-1.7 before treatment to 4.9 VAS points (SD +/-3.2 (p<0.001, CI 1.913-5.187. Patients with dermatological diseases (e.g. atopic diathesis, prurigo nodularis had the best profit from the treatment. Side-effects were mild (nausea, vertigo, and drowsiness and only occurred in three patients.The high response rate in patients with therapy refractory pruritus suggests that the NKR1 antagonist aprepitant may indeed exhibit antipruritic effects and may present a novel, effective treatment strategy based on pathophysiology of chronic pruritus. The results are promising enough to warrant confirming the efficacy of NKR1 antagonists in a randomized, controlled clinical trial.

  17. Experimental study of the features of the running part liquid metal target on lead-bismuth alloy

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Meluzov, A.G.; Novozhilova, O.O.; Efanov, A.D.

    2007-01-01

    The results of experimental investigations of the through part of a full-scale liquid metal target of an accelerator-control system, where the working cavity of the target communicates directly with the particle accelerator cavity, are presented. Two design variants were investigated - with vertical and horizontal orientation of the target axis in space and spinning of the flow in front of the nozzle adapter located in front of the entrance of the eutectic into the working cavity of the target. The profiles obtained for the free coolant surface with liquid metal flowing through vertically and horizontally positioned targets are presented. It is confirmed that when the pressure of the free surface of the liquid metal corresponds to the pressure in the accelerator cavity it is possible that liquid metal will not flow into the cavity simulating the connecting piece for inflow of accelerated particles with the piece oriented vertically or horizontally [ru

  18. PSA-selective activation of cytotoxic human serine proteases within the tumor microenvironment as a therapeutic strategy to target prostate cancer.

    Science.gov (United States)

    Rogers, Oliver C; Anthony, Lizamma; Rosen, D Marc; Brennen, W Nathaniel; Denmeade, Samuel R

    2018-04-27

    Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers.

  19. The Target of 5-Lipoxygenase is a Novel Strategy over Human Urological Tumors than the Target of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2008-01-01

    Full Text Available The metabolism of arachidonic acid by either the cyclooxygenase (COX or lipoxygenase (LOX pathway generates eicosanoids, which have been implicated in the pathogenesis of a variety of human diseases, including cancer. It is now considered that they play important roles in tumor promotion, progression, and metastasis, also, the involvement of COX and LOX expression and function in tumor growth and metastasis has been reported in human tumor cell lines. In this study, we examined the expression of COX and LOX in human urological tumors (renal cell carcinoma, bladder tumor, prostate cancer, testicular cancer by immunohistochemistry and RT-PCR, and we also examined the effects of COX and LOX (5- and 12-LOX inhibitors in those cells by MTT assay, hoechest staining, and flow cytometry. COX-2, 5-LOX and 12-LOX expressions were significantly more extensive and intense in malignant tissues than in normal tissues. Furthermore, 5-LOX inhibitor induced the reduction of malignant cell viability through early apoptosis. These results demonstrated COX-2 and LOX were induced in urological tumors, and 5-LOX inhibitor may mediate potent antiproliferative effects against urological tumors cells. Thus, 5-LOX may become a new target in the treatment of urological tumors.

  20. 40 CFR 745.227 - Work practice standards for conducting lead-based paint activities: target housing and child...

    Science.gov (United States)

    2010-07-01

    ... that may cause lead-based paint exposure to one or more children age 6 years and under shall be... residential dwelling or child-occupied facility and occupant use patterns that may cause lead-based paint..., child-occupied facilities) on/in which abatement work will be performed. (F) Property name (if...

  1. A potential strategy to treat liver fibrosis : Drug targeting to hepatic stellate cells applying a novel linker technology

    NARCIS (Netherlands)

    Gonzalo Lázaro, Teresa

    2006-01-01

    Liver fibrosis is the 9th leading cause of death in the world. This chronic disease cannot be treated successfully with conventional antifibrotic and anti-inflammatory drugs currently on the market, because they either lack efficacy or cause too many side-effects. Targeting of antifibrotic agents to

  2. More target features in visual working memory leads to poorer search guidance: evidence from contralateral delay activity.

    Science.gov (United States)

    Schmidt, Joseph; MacNamara, Annmarie; Proudfit, Greg Hajcak; Zelinsky, Gregory J

    2014-03-05

    The visual-search literature has assumed that the top-down target representation used to guide search resides in visual working memory (VWM). We directly tested this assumption using contralateral delay activity (CDA) to estimate the VWM load imposed by the target representation. In Experiment 1, observers previewed four photorealistic objects and were cued to remember the two objects appearing to the left or right of central fixation; Experiment 2 was identical except that observers previewed two photorealistic objects and were cued to remember one. CDA was measured during a delay following preview offset but before onset of a four-object search array. One of the targets was always present, and observers were asked to make an eye movement to it and press a button. We found lower magnitude CDA on trials when the initial search saccade was directed to the target (strong guidance) compared to when it was not (weak guidance). This difference also tended to be larger shortly before search-display onset and was largely unaffected by VWM item-capacity limits or number of previews. Moreover, the difference between mean strong- and weak-guidance CDA was proportional to the increase in search time between mean strong-and weak-guidance trials (as measured by time-to-target and reaction-time difference scores). Contrary to most search models, our data suggest that trials resulting in the maintenance of more target features results in poor search guidance to a target. We interpret these counterintuitive findings as evidence for strong search guidance using a small set of highly discriminative target features that remain after pruning from a larger set of features, with the load imposed on VWM varying with this feature-consolidation process.

  3. More target features in visual working memory leads to poorer search guidance: Evidence from contralateral delay activity

    OpenAIRE

    Schmidt, Joseph; MacNamara, Annmarie; Proudfit, Greg Hajcak; Zelinsky, Gregory J.

    2014-01-01

    The visual-search literature has assumed that the top-down target representation used to guide search resides in visual working memory (VWM). We directly tested this assumption using contralateral delay activity (CDA) to estimate the VWM load imposed by the target representation. In Experiment 1, observers previewed four photorealistic objects and were cued to remember the two objects appearing to the left or right of central fixation; Experiment 2 was identical except that observers previewe...

  4. Oxidative Stress: A Unifying Mechanism for Cell Damage Induced by Noise, (Water-Pipe) Smoking, and Emotional Stress-Therapeutic Strategies Targeting Redox Imbalance.

    Science.gov (United States)

    Golbidi, Saeid; Li, Huige; Laher, Ismail

    2018-03-20

    Modern technologies have eased our lives but these conveniences can impact our lifestyles in destructive ways. Noise pollution, mental stresses, and smoking (as a stress-relieving solution) are some environmental hazards that affect our well-being and healthcare budgets. Scrutinizing their pathophysiology could lead to solutions to reduce their harmful effects. Recent Advances: Oxidative stress plays an important role in initiating local and systemic inflammation after noise pollution, mental stress, and smoking. Lipid peroxidation and release of lysolipid by-products, disturbance in activation and function of nuclear factor erythroid 2-related factor 2 (Nrf2), induction of stress hormones and their secondary effects on intracellular kinases, and dysregulation of intracellular Ca 2+ can all potentially trigger other vicious cycles. Recent clinical data suggest that boosting the antioxidant system through nonpharmacological measures, for example, lifestyle changes that include exercise have benefits that cannot easily be achieved with pharmacological interventions alone. Indiscriminate manipulation of the cellular redox network could lead to a new series of ailments. An ideal approach requires meticulous scrutiny of redox balance mechanisms for individual pathologies so as to create new treatment strategies that target key pathways while minimizing side effects. Extrapolating our understanding of redox balance to other debilitating conditions such as diabetes and the metabolic syndrome could potentially lead to devising a unifying therapeutic strategy. Antioxid. Redox Signal. 28, 741-759.

  5. Novel strategies lead to pre-elimination of malaria in previously high-risk areas in Suriname, South America

    Directory of Open Access Journals (Sweden)

    Hiwat Hélène

    2012-01-01

    Full Text Available Abstract Background Suriname was a high malaria risk country before the introduction of a new five-year malaria control program in 2005, the Medical Mission Malaria Programme (MM-MP. Malaria was endemic in the forested interior, where especially the stabile village communities were affected. Case description The interventions of the MM-MP included new strategies for prevention, vector control, case management, behavioral change communication (BCC/information, education and communication (IEC, and strengthening of the health system (surveillance, monitoring and evaluation and epidemic detection system. After a slow first year with non-satisfying scores for the performance indicators, the MM-MP truly engaged in its intervention activities in 2006 and kept its performance up until the end of 2009. A total of 69,994 long-lasting insecticide-treated nets were distributed and more than 15,000 nets re-impregnated. In high-risk areas, this was complemented with residual spraying of insecticides. Over 10,000 people were screened with active case detection in outbreak and high-risk areas. Additional notification points were established and the national health system was strengthened. Discussion and evaluation In the current paper, the MM-MP is evaluated both on account of the targets established within the programme and on account of its impact on the malaria situation in Suriname. Malaria vector populations, monitored in sentinel sites, collapsed after 2006 and concurrently the number of national malaria cases decreased from 8,618 in 2005 to 1,509 in 2009. Malaria transmission risk shifted from the stabile village communities to the mobile gold mining communities, especially those along the French Guiana border. Conclusions The novel strategies for malaria control introduced in Suriname within the MM-MP have led to a significant decrease in the national malaria burden. The challenge is to further reduce malaria using the available strategies as

  6. Novel strategies lead to pre-elimination of malaria in previously high-risk areas in Suriname, South America.

    Science.gov (United States)

    Hiwat, Hélène; Hardjopawiro, Loretta S; Takken, Willem; Villegas, Leopoldo

    2012-01-09

    Suriname was a high malaria risk country before the introduction of a new five-year malaria control program in 2005, the Medical Mission Malaria Programme (MM-MP). Malaria was endemic in the forested interior, where especially the stabile village communities were affected. The interventions of the MM-MP included new strategies for prevention, vector control, case management, behavioral change communication (BCC)/information, education and communication (IEC), and strengthening of the health system (surveillance, monitoring and evaluation and epidemic detection system). After a slow first year with non-satisfying scores for the performance indicators, the MM-MP truly engaged in its intervention activities in 2006 and kept its performance up until the end of 2009. A total of 69,994 long-lasting insecticide-treated nets were distributed and more than 15,000 nets re-impregnated. In high-risk areas, this was complemented with residual spraying of insecticides. Over 10,000 people were screened with active case detection in outbreak and high-risk areas. Additional notification points were established and the national health system was strengthened. In the current paper, the MM-MP is evaluated both on account of the targets established within the programme and on account of its impact on the malaria situation in Suriname. Malaria vector populations, monitored in sentinel sites, collapsed after 2006 and concurrently the number of national malaria cases decreased from 8,618 in 2005 to 1,509 in 2009. Malaria transmission risk shifted from the stabile village communities to the mobile gold mining communities, especially those along the French Guiana border. The novel strategies for malaria control introduced in Suriname within the MM-MP have led to a significant decrease in the national malaria burden. The challenge is to further reduce malaria using the available strategies as appropriate in the affected areas and populations. Elimination of malaria in the country will

  7. Climate change adaptation via targeted ecosystem service provision: a sustainable land management strategy for the Segura catchment (SE Spain)

    Science.gov (United States)

    Zagaria, Cecilia; de Vente, Joris; Perez-Cutillas, Pedro

    2014-05-01

    Topical research investigating climate, land-use and management scenarios in the Segura catchment (SE Spain), depicts a landscape at high-risk of, quite literally, deserting agriculture. Land degradation in the semi-arid region of SE Spain is characterized by water shortage, high erosion rates and salinization, increasingly exacerbated by climatic changes, scarce vegetation cover and detrimental farming practices. Future climate scenarios predict increases in aridity, variability and intensity of rainfall events, leading to increasing pressure on scarce soil and water resources. This study conceptualized the impending crisis of agro-ecological systems of the Segura basin (18800 km2) as a crisis of ecosystem service deterioration. In light of existing land degradation drivers and future climate scenarios, the potential of Sustainable Land Management (SLM) strategies was evaluated to target three priority ecosystem services (water provision, sediment retention and carbon sequestration) as a means to achieve climate change adaptation and mitigation. A preceding thorough process of stakeholder engagement (as part of the EU funded DESIRE project) indicated five SLM technologies for potential implementation, all with a focus upon reducing soil erosion, increasing soil water holding capacity and soil organic matter content. These technologies have been tested for over four years in local experimental field plots, and have provided results on the local effects upon individual environmental parameters. Despite the growing emphasis witnessed in literature upon the context-specificity which characterizes adaptation solutions, the frequent analysis at the field scale is limited in both scope and utility. There is a need to investigate the effects of adaptive SLM solutions at wider, regional scales. Thus, this study modeled the cumulative effect of each of the five selected SLM technologies with InVEST, a spatial analyst tool designed for ecosystem service quantification and

  8. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress

    International Nuclear Information System (INIS)

    Trevisan, Rafael; Delapedra, Gabriel; Mello, Danielle F.; Arl, Miriam; Schmidt, Éder C.; Meder, Fabian; Monopoli, Marco; Cargnin-Ferreira, Eduardo; Bouzon, Zenilda L.; Fisher, Andrew S.; Sheehan, David; Dafre, Alcir L.

    2014-01-01

    count). At 24 h post exposure, decreased (−29%) glutathione reductase (GR) activity was observed in gills, but other biochemical responses were observed only after 48 h of exposure: lower GR activity (−28%) and levels of protein thiols (−21%), increased index of lipid peroxidation (+49%) and GPx activity (+26%). In accordance with ultrastructural changes and zinc load, digestive gland showed delayed biochemical responses. Except for a decreased GR activity (−47%) at 48 h post exposure, the biochemical alterations seen in gills were not present in digestive gland. The results indicate that gills are able to incorporate zinc prior (24 h) to digestive gland (48 h), leading to earlier mitochondrial disruption and oxidative stress. Our data suggest that gills are the initial target of ZnONP and that mitochondria are organelles particularly susceptible to ZnONP in C. gigas

  9. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, Rafael; Delapedra, Gabriel; Mello, Danielle F.; Arl, Miriam [Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Schmidt, Éder C. [Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, 88049-900 Florianópolis, SC (Brazil); Meder, Fabian; Monopoli, Marco [Centre for Bionano Interactions, University College Dublin, Dublin (Ireland); Cargnin-Ferreira, Eduardo [Federal Institute of Santa Catarina, Campus Garopaba, Laboratory of Histological Markers, 88495-000 Garopaba, SC (Brazil); Bouzon, Zenilda L. [Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, 88049-900 Florianópolis, SC (Brazil); Fisher, Andrew S. [School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA Plymouth (United Kingdom); Sheehan, David [Department of Biochemistry, University College Cork, Cork (Ireland); Dafre, Alcir L., E-mail: alcir.dafre@ufsc.br [Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2014-08-15

    hemocyte count). At 24 h post exposure, decreased (−29%) glutathione reductase (GR) activity was observed in gills, but other biochemical responses were observed only after 48 h of exposure: lower GR activity (−28%) and levels of protein thiols (−21%), increased index of lipid peroxidation (+49%) and GPx activity (+26%). In accordance with ultrastructural changes and zinc load, digestive gland showed delayed biochemical responses. Except for a decreased GR activity (−47%) at 48 h post exposure, the biochemical alterations seen in gills were not present in digestive gland. The results indicate that gills are able to incorporate zinc prior (24 h) to digestive gland (48 h), leading to earlier mitochondrial disruption and oxidative stress. Our data suggest that gills are the initial target of ZnONP and that mitochondria are organelles particularly susceptible to ZnONP in C. gigas.

  10. Strategi Segmenting, Targeting dan Positioning Pengaruhnya terhadap Keputusan Konsumen Menggunakan Produk Kpr Bni Griya

    OpenAIRE

    Karamoy, Sandy Wulan

    2013-01-01

    Penentuan segmen pasar sangat penting dalam mengenali calon nasabah dan memastikan siapa yang potensial menjadi nasabah. Segmentasi ini dapat dibagi berdasar lokasi, usia, jenis kelamin, tingkat penghasilan, kebiasaan dan sebagainya. Penentuan targeting sangat tergantung dari hal-hal seperti karakter produk, karakter segmentasi, dan tingkat persaingan pada segmen yang sudah dipilih. Targeting ini menentukan kepada siapa target market dari suatu produk, apakah kepada semua orang, sebagian ora...

  11. Technology strategy for enhanced recovery; Technology Target Areas; TTA3 - enhanced recovery

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The Norwegian Continental Shelf (NCS) is facing new challenges in reserve replacement and improved recovery in order to maintain the overall oil production rate from the area. A new target for an increase in oil reserves of 800 million Sm3 of oil (5 billion barrels) by year 2015 has been set by NPD. This is an ambitious goal considering several of the large fields are on a steep decline, and most of the recent discoveries are relatively small. A significant part of these increased reserves will have to come from fields currently on production, from reservoir areas that have been partly or fully swept, and it is therefore evident that Enhanced Oil Recovery (EOR) methods have to play a key role in achieving this target. EOR methods can be divided into gas based EOR methods and water based EOR methods. Thermal methods are not considered applicable on the NCS due to the relatively light oils present, and the depth of the reservoirs. Gas Based EOR; Water Based EOR; CO{sub 2} injection; Surfactants; Air injection; Polymer; Nitrogen injection; Alkaline; Flue gas injection; Polymer gels; WAG; MEOR; FAWAG. The former OG21 strategy document gave high priority to Water Alternating Gas (WAG) methods and CO{sub 2} injection for enhanced recovery. A lot of research and development and evaluation projects on CO{sub 2} injection were launched and are on-going, most of these are being CO{sub 2} WAG studies. The main challenge now in order to realize CO{sub 2} injection on the NCS is on CO{sub 2} availability and transport. It is also believed that increasing gas prices will limit the availability of hydrocarbon gas for injection purposes in the future. There is, however, a clear need for developing alternative cost efficient EOR methods that can improve the sweep efficiency significantly. Since a majority of the fields on the NCS are being produced under water flooding (or WAG), methods that can improve the water flooding efficiency by chemical additives are of special interest and

  12. Misfire: An Operational Critique of Operation Iraqi Freedom (OIF) Targeting Strategy

    National Research Council Canada - National Science Library

    Martin, John D

    2005-01-01

    ...." However, while PGMs were instrumental in accomplishing the primary national-strategic objective of regime removal in OIF, targeting concentrated exclusively on leadership, command and control (C2...

  13. Simulation of electron, positron and Bremsstrahlung spectrum generated due to electromagnetic cascade by 2.5 GeV electron hitting lead target using FLUKA code

    International Nuclear Information System (INIS)

    Sahani, P.K.; Dev, Vipin; Haridas, G.; Thakkar, K.K.; Singh, Gurnam; Sarkar, P.K.; Sharma, D.N.

    2009-01-01

    INDUS-2 is a high energy electron accelerator facility where electrons are accelerated in circular ring up to maximum energy 2.5 GeV, to generate synchrotron radiation. During normal operation of the machine a fraction of these electrons is lost, which interact with the accelerator structures and components like vacuum chamber and residual gases in the cavity and hence generates significant amount of Bremsstrahlung radiation. The Bremsstrahlung radiation is highly dependent on the incident electron energy, target material and its thickness. The Bremsstrahlung radiation dominates the radiation environment in such electron storage rings. Because of its broad spectrum extending up to incident electron energy and pulsed nature, it is very difficult to segregate the Bremsstrahlung component from the mixed field environment in accelerators. With the help of FLUKA Monte Carlo code, Bremsstrahlung spectrum generated from 2.5 GeV electron on bombardment of high Z lead target is simulated. To study the variation in Bremsstrahlung spectrum on target thickness, lead targets of 3, 6, 9, 12, 15, 18 mm thickness was used. The energy spectrum of emerging electron and positron is also simulated. The study suggests that as the target thickness increases, the emergent Bremsstrahlung photon fluence increases. With increase in the target thickness Bremsstrahlung photons in the spectrum dominate the low energy part and degrade in high energy part. The electron and positron spectra also extend up to incident electron energy. (author)

  14. The grain of spatially referenced economic cost and biodiversity benefit data and the effectiveness of a cost targeting strategy.

    Science.gov (United States)

    Sutton, N J; Armsworth, P R

    2014-12-01

    Facing tight resource constraints, conservation organizations must allocate funds available for habitat protection as effectively as possible. Often, they combine spatially referenced economic and biodiversity data to prioritize land for protection. We tested how sensitive these prioritizations could be to differences in the spatial grain of these data by demonstrating how the conclusion of a classic debate in conservation planning between cost and benefit targeting was altered based on the available information. As a case study, we determined parcel-level acquisition costs and biodiversity benefits of land transactions recently undertaken by a nonprofit conservation organization that seeks to protect forests in the eastern United States. Then, we used hypothetical conservation plans to simulate the types of ex ante priorities that an organization could use to prioritize areas for protection. We found the apparent effectiveness of cost and benefit targeting depended on the spatial grain of the data used when prioritizing parcels based on local species richness. However, when accounting for complementarity, benefit targeting consistently was more efficient than a cost targeting strategy regardless of the spatial grain of the data involved. More pertinently for other studies, we found that combining data collected over different spatial grains inflated the apparent effectiveness of a cost targeting strategy and led to overestimation of the efficiency gain offered by adopting a more integrative return-on-investment approach. © 2014 Society for Conservation Biology.

  15. More than Just Finding Color: Strategy in Global Visual Search Is Shaped by Learned Target Probabilities

    Science.gov (United States)

    Williams, Carrick C.; Pollatsek, Alexander; Cave, Kyle R.; Stroud, Michael J.

    2009-01-01

    In 2 experiments, eye movements were examined during searches in which elements were grouped into four 9-item clusters. The target (a red or blue "T") was known in advance, and each cluster contained different numbers of target-color elements. Rather than color composition of a cluster invariantly guiding the order of search though…

  16. Targeted therapies for renal cell carcinoma: review of adverse event management strategies.

    NARCIS (Netherlands)

    Eisen, T.; Sternberg, C.N.; Robert, C.; Mulders, P.F.; Pyle, L.; Zbinden, S.; Izzedine, H.; Escudier, B.

    2012-01-01

    With the advent of targeted agents for the treatment of renal cell carcinoma (RCC), overall survival has improved, and patients are being treated continuously for increasingly long periods of time. This has raised challenges in the management of adverse events (AEs) associated with the six targeted

  17. Ligand-based targeted therapy: a novel strategy for hepatocellular carcinoma

    Science.gov (United States)

    Li, Min; Zhang, Weiyue; Wang, Birong; Gao, Yang; Song, Zifang; Zheng, Qi Chang

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high morbidity and mortality worldwide. Chemotherapy is recommended to patients with intermediate or advanced stage cancer. However, the conventional chemotherapy yields low desired response rates due to multidrug resistance, fast clearance rate, nonspecific delivery, severe side effects, low drug concentration in cancer cells, and so on. Nanoparticle-mediated targeted drug delivery system can surmount the aforementioned obstacles through enhanced permeability and retention effect and active targeting as a novel approach of therapeutics for HCC in recent years. The active targeting is triggered by ligands on the delivery system, which recognize with and internalize into hepatoma cells with high specificity and efficiency. This review focuses on the latest targeted delivery systems for HCC and summarizes the ligands that can enhance the capacity of active targeting, to provide some insight into future research in nanomedicine for HCC. PMID:27920520

  18. Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance.

    Science.gov (United States)

    Verstraeten, Natalie; Knapen, Wouter Joris; Kint, Cyrielle Ines; Liebens, Veerle; Van den Bergh, Bram; Dewachter, Liselot; Michiels, Joran Elie; Fu, Qiang; David, Charlotte Claudia; Fierro, Ana Carolina; Marchal, Kathleen; Beirlant, Jan; Versées, Wim; Hofkens, Johan; Jansen, Maarten; Fauvart, Maarten; Michiels, Jan

    2015-07-02

    Within bacterial populations, a small fraction of persister cells is transiently capable of surviving exposure to lethal doses of antibiotics. As a bet-hedging strategy, persistence levels are determined both by stochastic induction and by environmental stimuli called responsive diversification. Little is known about the mechanisms that link the low frequency of persisters to environmental signals. Our results support a central role for the conserved GTPase Obg in determining persistence in Escherichia coli in response to nutrient starvation. Obg-mediated persistence requires the stringent response alarmone (p)ppGpp and proceeds through transcriptional control of the hokB-sokB type I toxin-antitoxin module. In individual cells, increased Obg levels induce HokB expression, which in turn results in a collapse of the membrane potential, leading to dormancy. Obg also controls persistence in Pseudomonas aeruginosa and thus constitutes a conserved regulator of antibiotic tolerance. Combined, our findings signify an important step toward unraveling shared genetic mechanisms underlying persistence. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A Hybrid Strategy for the Lattice Evaluation of the Leading Order Hadronic Contribution to (g - 2)μ

    Science.gov (United States)

    Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2016-04-01

    The leading-order hadronic contribution to the muon anomalous magentic moment, aμLO,HVP, can be expressed as an integral over Euclidean Q2 of the vacuum polarization function. We point out that a simple trapezoid-rule numerical integration of the current lattice data is good enough to produce a result with a less-than-1% error for the contribution from the interval above Q2 ≳ 0.1 - 0.2GeV2. This leaves the interval below this value of Q2 as the one to focus on in the future. In order to achieve an accurate result also in this lower window Q2 ≲ 0.1 - 0.2GeV2, we indicate the usefulness of three possible tools. These are: Padé Approximants, polynomials in a conformal variable and a NNLO Chiral Perturbation Theory representation supplemented by a Q4 term. The combination of the numerical integration in the upper Q2 interval together with the use of these tools in the lower Q2 interval provides a hybrid strategy which looks promising as a means of reaching the desired goal on the lattice of a sub-percent precision in the hadronic vacuum polarization contribution to the muon anomalous magnetic moment.

  20. Tumor-specific detection of an optically targeted antibody combined with a quencher-conjugated neutravidin "quencher-chaser": a dual "quench and chase" strategy to improve target to nontarget ratios for molecular imaging of cancer.

    Science.gov (United States)

    Ogawa, Mikako; Kosaka, Nobuyuki; Choyke, Peter L; Kobayashi, Hisataka

    2009-01-01

    In vivo molecular cancer imaging with monoclonal antibodies has great potential not only for cancer detection, but also for cancer characterization. However, the prolonged retention of intravenously injected antibody in the blood causes low target tumor-to-background ratio (TBR). Avidin has been used as a "chase" to clear the unbound, circulating biotinylated antibody and decrease the background signal. Here, we utilize a combined approach of a fluorescence resonance energy transfer (FRET) quenched antibody with an "avidin chase" to increase TBR. Trastuzumab, a humanized monoclonal antibody against human epidermal growth factor receptor type 2 (HER2), was biotinylated and conjugated with the near-infrared (NIR) fluorophore Alexa680 to synthesize Tra-Alexa680-biotin. Next, the FRET quencher, QSY-21, was conjugated to avidin, neutravidin (nAv), or streptavidin (sAv), thus creating Av-QSY21, nAv-QSY21, or sAv-QSY21 as "chasers". The fluorescence was quenched in vitro by binding Tra-Alexa680-biotin to Av-QSY21, nAv-QSY21, or sAv-QSY21. To evaluate if the injection of quencher-conjugated avidin derivatives can improve target TBR by using a dual "quench and chase" strategy, both target (3T3/HER2+) and nontarget (Balb3T3/ZsGreen) tumor-bearing mice were employed. The "FRET quench" effect induced by all the QSY21 avidin-based conjugates reduced but did not totally eliminate background signal from the blood pool. The addition of nAv-QSY21 administration increased target TBR mainly because of the "chase" effect where unbound conjugated antibody was preferentially cleared to the liver. The relatively slow clearance of unbound nAv-QSY21 leads to further reductions in background signal by leaking out of the vascular space and binding to unbound antibodies in the extravascular space of tumors, resulting in decreased nontarget tumor-to-background ratios but increased target TBR due to the "FRET quench" effect, because target-bound antibodies were internalized and could not bind

  1. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction

    Science.gov (United States)

    Park, Yeonkyung; Lee, Chang Yeol; Kang, Shinyoung; Kim, Hansol; Park, Ki Soo; Park, Hyun Gyu

    2018-02-01

    In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.

  2. Targeting Tumor-Associated Macrophages as a Potential Strategy to Enhance the Response to Immune Checkpoint Inhibitors.

    Science.gov (United States)

    Cassetta, Luca; Kitamura, Takanori

    2018-01-01

    Inhibition of immune checkpoint pathways in CD8 + T cell is a promising therapeutic strategy for the treatment of solid tumors that has shown significant anti-tumor effects and is now approved by the FDA to treat patients with melanoma and lung cancer. However the response to this therapy is limited to a certain fraction of patients and tumor types, for reasons still unknown. To ensure success of this treatment, CD8 + T cells, the main target of the checkpoint inhibitors, should exert full cytotoxicity against tumor cells. However recent studies show that tumor-associated macrophages (TAM) can impede this process by different mechanisms. In this mini-review we will summarize recent studies showing the effect of TAM targeting on immune checkpoint inhibitors efficacy. We will also discuss on the limitations of the current strategies as well on the future scientific challenges for the progress of the tumor immunology field.

  3. Linking Genotype and Phenotype of Saccharomyces cerevisiae Strains Reveals Metabolic Engineering Targets and Leads to Triterpene Hyper-Producers

    DEFF Research Database (Denmark)

    Madsen, Karina Marie; Udatha, Gupta D. B. R. K.; Semba, Saori

    2011-01-01

    with the S288C strain, we implemented a strategy for the construction of a beta-amyrin production platform. The genes Erg8, Erg9 and HFA1 contained non-silent SNPs that were computationally analyzed to evaluate the changes that cause in the respective protein structures. Subsequently, Erg8, Erg9 and HFA1...

  4. Obstacles to the implementation of the treat-to-target strategy for rheumatoid arthritis in clinical practice in Japan.

    Science.gov (United States)

    Kaneko, Yuko; Koike, Takao; Oda, Hiromi; Yamamoto, Kazuhiko; Miyasaka, Nobuyuki; Harigai, Masayoshi; Yamanaka, Hisashi; Ishiguro, Naoki; Tanaka, Yoshiya; Takeuchi, Tsutomu

    2015-01-01

    To clarify the obstacles preventing the implementation of the treat-to-target (T2T) strategy for rheumatoid arthritis (RA) in clinical practice. A total of 301 rheumatologists in Japan completed a questionnaire. In the first section, participants were indirectly questioned on the implementation of basic components of T2T, and in the second section, participants were directly questioned on their level of agreement and application. Although nearly all participants set treatment targets for the majority of RA patients with moderate to high disease activity, the proportion who set clinical remission as their target was 59%, with only 45% of these using composite measures. The proportion of participants who monitored X-rays and Health Assessment Questionnaires for all their patients was 44% and 14%, respectively. The proportion of participants who did not discuss treatment strategies was 44%, with approximately half of these reasoning that this was due to a proportion of patients having a lack of understanding of the treatment strategy or inability to make decisions. When participants were directly questioned, there was a high level of agreement with the T2T recommendations. Although there was a high level of agreement with the T2T recommendations, major obstacles preventing its full implementation still remain.

  5. Targeting PEPT1: a novel strategy to improve the antitumor efficacy of doxorubicin in human hepatocellular carcinoma therapy.

    Science.gov (United States)

    Gong, Yanxia; Wu, Xiang; Wang, Tao; Zhao, Jia; Liu, Xi; Yao, Zhi; Zhang, Qingyu; Jian, Xu

    2017-06-20

    Proton coupled oligopeptide transporter 1 (PEPT1) is a member of the peptide transporter superfamily and plays important role in the absorption of oligopeptide and peptidomimetic drugs. Our previous research verified that PEPT1 expressed specifically in human Hepatocellular carcinoma (HCC) tissue and cell lines and showed potential transport activity to be a new candidate of the tumor therapeutic target. In this study, we aim to explore the feasibility of a novel tumor target therapeutic strategy: Targeting PEPT1 to improve the antitumor efficacy of Doxorubicin in human HCC therapy. First, Doxorubicin was conjugated with Glycylglycylglycine (Gly-Gly-Gly) - a tripeptide which was known as the substrate of PEPT1 and characterized by HPLC and MS successfully. Doxorubicin-tripeptide conjugate was then observed to clarify the target delivery by PEPT1 and the antitumor effect on human hepatocarcinoma in vivo and in vitro. Furthermore, the improvement of the toxic and side effect of Doxorubicin after conjugation was also evaluated by some biochemical tests. Our results reveal that targeting PEPT1 may contribute to the efficient delivery of Doxorubicin to hepatocarcinoma cells and the reduction of drug toxicity. PEPT1 has the prospect to be a novel target of HCC therapy.

  6. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective

    Directory of Open Access Journals (Sweden)

    Zhenjie Wang

    2017-11-01

    Full Text Available Mitochondria are a novel and promising therapeutic target for diagnosis, treatment and prevention of a lot of human diseases such as cancer, metabolic diseases and neurodegenerative disease. Owing to the mitochondrial special bilayer structure and highly negative potential nature, therapeutic molecules have multiple difficulties in reaching mitochondria. To overcome multiple barriers for targeting mitochondria, the researchers developed various pharmaceutical preparations such as liposomes, polymeric nanoparticles and inorganic nanoparticles modified by mitochondriotropic moieties like dequalinium (DQA, triphenylphosphonium (TPP, mitochondrial penetrating peptides (MPPs and mitochondrial protein import machinery that allow specific targeting. The targeted formulations exhibited enhanced pharmacological effect and better therapeutic effect than their untargeted counterpart both in vitro and in vivo. Nanocarriers may be used for bio-therapeutic delivery into specific mitochondria that possess a great potential treatment of mitochondria related diseases.

  7. Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia

    Directory of Open Access Journals (Sweden)

    Tomoko Hasegawa

    2016-12-01

    Full Text Available We investigated the key mitigation options for achieving the mid-term target for carbon emission reduction in Indonesia. A computable general equilibrium model coupled with a land-based mitigation technology model was used to evaluate specific mitigation options within the whole economic framework. The results revealed three primary findings: (1 If no climate policy were implemented, Indonesia’s total greenhouse gas emissions would reach 3.0 GtCO2eq by 2030; (2 To reduce carbon emissions to meet the latest Intended Nationally-Determined Contributions (INDC target, ~58% of total reductions should come from the agriculture, forestry and other land use sectors by implementing forest protection, afforestation and plantation efforts; (3 A higher carbon price in 2020 suggests that meeting the 2020 target would be economically challenging, whereas the INDC target for 2030 would be more economically realistic in Indonesia.

  8. What is a free customer worth? Armchair calculations of nonpaying customers' value can lead to flawed strategies.

    Science.gov (United States)

    Gupta, Sunil; Mela, Carl F

    2008-11-01

    Free customers who are subsidized by paying customers are essential to a vast array of businesses, such as media companies, employment services, and even IT providers. But because they generate revenue only indirectly, figuring out the true value of those customers--and how much attention to devote them--has always been a challenge. Traditional customer-valuation models don't help; they focus exclusively on paying customers and largely ignore network effects, or how customers help draw other customers to a business. Now a new model, devised by professors Gupta, of Harvard Business School, and Mela, of Fuqua School of Business, takes into account not only direct network effects (where buyers attract more buyers or sellers more sellers) but also indirect network effects (where buyers attract more sellers or vice versa) . The model calculates the precise long-term impact of each additional free customer on a company's profits, factoring in the degree to which he or she brings in other customers--whether free or paying--and the ripple effect of those customers. The model helped an online auction house make several critical decisions. The business made its money on fees charged to sellers but recognized that its free customers--its buyers--were valuable, too. As competition heated up, the company worried that it wasn't wooing enough buyers. Using the model, the business discovered that the network effects of buyers were indeed large and that those customers were worth over $1,000 each--much more than had been assumed. Armed with that information, the firm increased its research on buyers, invested more in targeting them with ads, and improved their experience. The model also helped the company identify the effects of various pricing strategies on sellers, showing that they became less price-sensitive over time. As a result, the company raised the fees it charged them as well.

  9. Developing a Novel Therapeutic Strategy Targeting Kallikrein-4 to Inhibit Prostate Cancer Growth and Metastasis

    Science.gov (United States)

    2015-08-01

    Medical Center, USA) were maintained in RPMI media containing 5% fetal bovine serum (Gibco, Life Technologies). All cell lines were incubated at 37°C in... acidosis upon degradation.35–38 Thus, a theranostic device that enters a tumour cell via receptor mediated endo- cytosis can undergo rapid degradation of...Technologies, Mulgrave, Vic, Aust) containing 10% fetal bovine serum (FBS; Moregate, Brisbane, Aust). The targeted and non- targeted polymers were made to 5

  10. Genotype-by-environment interactions leads to variable selection on life-history strategy in Common Evening Primrose (Oenothera biennis).

    Science.gov (United States)

    Johnson, M T J

    2007-01-01

    Monocarpic plant species, where reproduction is fatal, frequently exhibit variation in the length of their prereproductive period prior to flowering. If this life-history variation in flowering strategy has a genetic basis, genotype-by-environment interactions (G x E) may maintain phenotypic diversity in flowering strategy. The native monocarpic plant Common Evening Primrose (Oenothera biennis L., Onagraceae) exhibits phenotypic variation for annual vs. biennial flowering strategies. I tested whether there was a genetic basis to variation in flowering strategy in O. biennis, and whether environmental variation causes G x E that imposes variable selection on flowering strategy. In a field experiment, I randomized more than 900 plants from 14 clonal families (genotypes) into five distinct habitats that represented a natural productivity gradient. G x E strongly affected the lifetime fruit production of O. biennis, with the rank-order in relative fitness of genotypes changing substantially between habitats. I detected genetic variation in annual vs. biennial strategies in most habitats, as well as a G x E effect on flowering strategy. This variation in flowering strategy was correlated with genetic variation in relative fitness, and phenotypic and genotypic selection analyses revealed that environmental variation resulted in variable directional selection on annual vs. biennial strategies. Specifically, a biennial strategy was favoured in moderately productive environments, whereas an annual strategy was favoured in low-productivity environments. These results highlight the importance of variable selection for the maintenance of genetic variation in the life-history strategy of a monocarpic plant.

  11. HAMS: High-Affinity Mass Spectrometry Screening. A High-Throughput Screening Method for Identifying the Tightest-Binding Lead Compounds for Target Proteins with No False Positive Identifications.

    Science.gov (United States)

    Imaduwage, Kasun P; Go, Eden P; Zhu, Zhikai; Desaire, Heather

    2016-11-01

    A major challenge in drug discovery is the identification of high affinity lead compounds that bind a particular target protein; these leads are typically identified by high throughput screens. Mass spectrometry has become a detection method of choice in drug screening assays because the target and the ligand need not be modified. Label-free assays are advantageous because they can be developed more rapidly than assays requiring labels, and they eliminate the risk of the label interfering with the binding event. However, in commonly used MS-based screening methods, detection of false positives is a major challenge. Here, we describe a detection strategy designed to eliminate false positives. In this approach, the protein and the ligands are incubated together, and the non-binders are separated for detection. Hits (protein binders) are not detectable by MS after incubation with the protein, but readily identifiable by MS when the target protein is not present in the incubation media. The assay was demonstrated using three different proteins and hundreds of non-inhibitors; no false positive hits were identified in any experiment. The assay can be tuned to select for ligands of a particular binding affinity by varying the quantity of protein used and the immobilization method. As examples, the method selectively detected inhibitors that have K i values of 0.2 μM, 50 pM, and 700 pM. These findings demonstrate that the approach described here compares favorably with traditional MS-based screening methods. Graphical Abstract ᅟ.

  12. Strategies for enhancing the implementation of school-based policies or practices targeting risk factors for chronic disease.

    Science.gov (United States)

    Wolfenden, Luke; Nathan, Nicole K; Sutherland, Rachel; Yoong, Sze Lin; Hodder, Rebecca K; Wyse, Rebecca J; Delaney, Tessa; Grady, Alice; Fielding, Alison; Tzelepis, Flora; Clinton-McHarg, Tara; Parmenter, Benjamin; Butler, Peter; Wiggers, John; Bauman, Adrian; Milat, Andrew; Booth, Debbie; Williams, Christopher M

    2017-11-29

    consulted with experts in the field to identify other relevant research. 'Implementation' was defined as the use of strategies to adopt and integrate evidence-based health interventions and to change practice patterns within specific settings. We included any trial (randomised or non-randomised) conducted at any scale, with a parallel control group that compared a strategy to implement policies or practices to address diet, physical activity, overweight or obesity, tobacco or alcohol use by school staff to 'no intervention', 'usual' practice or a different implementation strategy. Citation screening, data extraction and assessment of risk of bias was performed by review authors in pairs. Disagreements between review authors were resolved via consensus, or if required, by a third author. Considerable trial heterogeneity precluded meta-analysis. We narratively synthesised trial findings by describing the effect size of the primary outcome measure for policy or practice implementation (or the median of such measures where a single primary outcome was not stated). We included 27 trials, 18 of which were conducted in the USA. Nineteen studies employed randomised controlled trial (RCT) designs. Fifteen trials tested strategies to implement healthy eating policies, practice or programs; six trials tested strategies targeting physical activity policies or practices; and three trials targeted tobacco policies or practices. Three trials targeted a combination of risk factors. None of the included trials sought to increase the implementation of interventions to delay initiation or reduce the consumption of alcohol. All trials examined multi-strategic implementation strategies and no two trials examined the same combinations of implementation strategies. The most common implementation strategies included educational materials, educational outreach and educational meetings. For all outcomes, the overall quality of evidence was very low and the risk of bias was high for the majority of

  13. Volatile elements production rates in a 1.4 Gev proton-irradiated molten lead-bismuth target

    CERN Document Server

    Zanini, L; Everaerts, P; Fallot, M; Franberg, H; Gröschel, F; Jost, C; Kirchner, T; Kojima, Y; Köster, U; Lebenhaft, J; Manfrina, E; Pitcher, E J; Ravn, H L; Tall, Y; Wagner, W; Wohlmuther, M

    2005-01-01

    Production rates of volatile elements following spallation reaction of 1.4 GeV protons on a liquid Pb/Bi target have been measured. The experiment was performed at the ISOLDE facility at CERN. These data are of interest for the developments of targets for accelerator driven systems such as MEGAPIE. Additional data have been taken on a liquid Pb target. Calculations were performed using the FLUKA and MCNPX Monte Carlo codes coupled with the evolution codes ORIHET3 and FISPACT using different options for the intra-nuclear cascades and evaporation models. Preliminary results from the data analysis show good comparison with calculations for Hg and for noble gases. For other elements such as I it is apparent that only a fraction of the produced isotopes is released. The agreement with the experimental data varies depending on the model combination used. The best results are obtained using MCNPX with the INCL4/ABLA models and with FLUKA. Discrepancies are found for some isotopes produced by fission using the MCNPX ...

  14. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications.

    Science.gov (United States)

    Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng

    2013-01-01

    Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely (131)I-hypericin ((131)I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications.

  15. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies.

    Directory of Open Access Journals (Sweden)

    Zhi Yon Charles Toh

    Full Text Available Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.

  16. Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy.

    Science.gov (United States)

    Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter

    2017-02-10

    One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.

  17. A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting.

    Science.gov (United States)

    van den Wollenberg, D J M; van den Hengel, S K; Dautzenberg, I J C; Cramer, S J; Kranenburg, O; Hoeben, R C

    2008-12-01

    Human Orthoreovirus Type 3 Dearing is not pathogenic to humans and has been evaluated clinically as an oncolytic agent. Its transduction efficiency and the tumor cell selectivity may be enhanced by incorporating ligands for alternative receptors. However, the genetic modification of reoviruses has been difficult, and genetic targeting of reoviruses has not been reported so far. Here we describe a technique for generating genetically targeted reoviruses. The propagation of wild-type reoviruses on cells expressing a modified sigma 1-encoding segment embedded in a conventional RNA polymerase II transcript leads to substitution of the wild-type genome segment by the modified version. This technique was used for generating reoviruses that are genetically targeted to an artificial receptor expressed on U118MG cells. These cells lack the junction adhesion molecule-1 and therefore resist infection by wild-type reoviruses. The targeted reoviruses were engineered to carry the ligand for this receptor at the C terminus of the sigma 1 spike protein. This demonstrates that the C terminus of the sigma 1 protein is a suitable locale for the insertion of oligopeptide ligands and that targeting of reoviruses is feasible. The genetically targeted viruses can be propagated using the modified U118MG cells as helper cells. This technique may be applicable for the improvement of human reoviruses as oncolytic agents.

  18. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer and user. This

  19. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer

  20. Targeting multiple cannabinoid anti-tumour pathways with a resorcinol derivative leads to inhibition of advanced stages of breast cancer.

    Science.gov (United States)

    Murase, Ryuichi; Kawamura, Rumi; Singer, Eric; Pakdel, Arash; Sarma, Pranamee; Judkins, Jonathon; Elwakeel, Eiman; Dayal, Sonali; Martinez-Martinez, Esther; Amere, Mukkanti; Gujjar, Ramesh; Mahadevan, Anu; Desprez, Pierre-Yves; McAllister, Sean D

    2014-10-01

    The psychoactive cannabinoid Δ(9) -tetrahydrocannabinol (THC) and the non-psychoactive cannabinoid cannabidiol (CBD) can both reduce cancer progression, each through distinct anti-tumour pathways. Our goal was to discover a compound that could efficiently target both cannabinoid anti-tumour pathways. To measure breast cancer cell proliferation/viability and invasion, MTT and Boyden chamber assays were used. Modulation of reactive oxygen species (ROS) and apoptosis was measured using dichlorodihydrofluorescein and annexin/propidium iodide, respectively, in combination with cell flow cytometry. Changes in protein levels were evaluated using Western analysis. Orthotopic and i.v. mouse models of breast cancer metastasis were used to test the activity of cannabinoids in vivo. CBD reduced breast cancer metastasis in advanced stages of the disease as the direct result of down-regulating the transcriptional regulator Id1. However, this was associated with moderate increases in survival. We therefore screened for analogues that could co-target cannabinoid anti-tumour pathways (CBD- and THC-associated) and discovered the compound O-1663. This analogue inhibited Id1, produced a marked stimulation of ROS, up-regulated autophagy and induced apoptosis. Of all the compounds tested, it was the most potent at inhibiting breast cancer cell proliferation and invasion in culture and metastasis in vivo. O-1663 prolonged survival in advanced stages of breast cancer metastasis. Developing compounds that can simultaneously target multiple cannabinoid anti-tumour pathways efficiently may provide a novel approach for the treatment of patients with metastatic breast cancer. © 2014 The British Pharmacological Society.

  1. Downregulation of chloroplast-targeted beta-amylase leads to a starch-excess phenotype in leaves

    DEFF Research Database (Denmark)

    Scheidig, A.; Fröhlich, A.; Schulze, S.

    2002-01-01

    showed that the protein product was a functional beta-amylase that could degrade both starch granules and solubilized amylopectin, while import experiments demonstrated that the beta-amylase was imported and processed into pea chloroplasts. To study the function of the protein in transitory starch......A functional screen in Escherichia coli was established to identify potato genes coding for proteins involved in transitory starch degradation. One clone isolated had a sequence very similar to a recently described chloroplast-targeted 5-amylase of Arabidopsis. Expression of the gene in E. coli...

  2. Proposal of measuring the mechanisms of nuclear excitation leading to fission with the ADONE jet-target tagged photon beam

    International Nuclear Information System (INIS)

    Lucherini, V.; Bianchi, N.; De Sanctis, E.; Guaraldo, C.; Levi Sandri, P.; Muccifora, V.; Polli, E.; Reolon, A.R.; Aiello, S.; De Filippo, E.; Lanzano', G.; Lo Nigro, S.; Milone, C.; Pagano, A.; Botvina, A.S.; Iljinov, A.S.; Mebel, M.V.

    1990-01-01

    The mechanisms of excitation with subsequent fission of heavy nuclei can be conveniently studied by means of photons, since this probe is able to interact deeply inside the nucleus. We propose the use of the (200-1200 MeV) tagged photon beam from the ADONE Jet Target in order to study the mass-energy and total momentum distributions of fission fragments, to obtain experimental information on the configurations (excitation energy and nucleonic composition) of produced compound nuclei and on their decay channels

  3. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy.

    Science.gov (United States)

    Bostad, Monica; Olsen, Cathrine Elisabeth; Peng, Qian; Berg, Kristian; Høgset, Anders; Selbo, Pål Kristian

    2015-05-28

    The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis. Copyright © 2015

  4. New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation.

    Science.gov (United States)

    Wang, Xin; Feng, Shaozhen; Fan, Jinjin; Li, Xiaoyan; Wen, Qiong; Luo, Ning

    2016-09-15

    Smad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to degrade target proteins via ubiquitination. They have three components: (1) a recognition motif for E3 ligase; (2) a linker; and (3) a ligand for the target protein. We aimed to design a new PROTAC to prevent renal fibrosis by targeting Smad3 proteins and using hydroxylated pentapeptide of hypoxia-inducible factor-1α as the recognition motif for von Hippel-Lindau (VHL) ubiquitin ligase (E3). Computer-aided drug design was used to find a specific ligand targeting Smad3. Surface plasmon resonance (SPR) was used to verify and optimize screening results. Synthesized PROTAC was validated by two-stage mass spectrometry. The PROTAC's specificity for VHL (E3 ligase) was proved with two human renal carcinoma cell lines, 786-0 (VHL(-)) and ACHN (VHL(+)), and its anti-fibrosis effect was tested in renal fibrosis cell models. Thirteen small molecular compounds (SMCs) were obtained from the Enamine library using GLIDE molecular docking program. SPR results showed that #8 SMC (EN300-72284) combined best with Smad3 (KD=4.547×10(-5)M). Mass spectrometry showed that synthesized PROTAC had the correct peptide molecular weights. Western blot showed Smad3 was degraded by PROTAC with whole-cell lysate of ACHN but not 786-0. Degradation, but not ubiquitination, of Smad3 was inhibited by proteasome inhibitor MG132. The upregulation of fibronectin and Collagen I induced by TGF-β1 in both renal fibroblast and mesangial cells were inhibited by PROTAC. The new PROTAC might prevent renal fibrosis by targeting Smad3 for ubiquitination and degradation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A new disaster victim identification management strategy targeting "near identification-threshold" cases: Experiences from the Boxing Day tsunami.

    Science.gov (United States)

    Wright, Kirsty; Mundorff, Amy; Chaseling, Janet; Forrest, Alexander; Maguire, Christopher; Crane, Denis I

    2015-05-01

    The international disaster victim identification (DVI) response to the Boxing Day tsunami, led by the Royal Thai Police in Phuket, Thailand, was one of the largest and most complex in DVI history. Referred to as the Thai Tsunami Victim Identification operation, the group comprised a multi-national, multi-agency, and multi-disciplinary team. The traditional DVI approach proved successful in identifying a large number of victims quickly. However, the team struggled to identify certain victims due to incomplete or poor quality ante-mortem and post-mortem data. In response to these challenges, a new 'near-threshold' DVI management strategy was implemented to target presumptive identifications and improve operational efficiency. The strategy was implemented by the DNA Team, therefore DNA kinship matches that just failed to reach the reporting threshold of 99.9% were prioritized, however the same approach could be taken by targeting, for example, cases with partial fingerprint matches. The presumptive DNA identifications were progressively filtered through the Investigation, Dental and Fingerprint Teams to add additional information necessary to either strengthen or conclusively exclude the identification. Over a five-month period 111 victims from ten countries were identified using this targeted approach. The new identifications comprised 87 adults, 24 children and included 97 Thai locals. New data from the Fingerprint Team established nearly 60% of the total near-threshold identifications and the combined DNA/Physical method was responsible for over 30%. Implementing the new strategy, targeting near-threshold cases, had positive management implications. The process initiated additional ante-mortem information collections, and established a much-needed, distinct "end-point" for unresolved cases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Measurement of activation reaction rate distribution on a mercury target with a lead-reflector and light-water-moderator for high energy proton bombardment using AGS accelerator

    International Nuclear Information System (INIS)

    Kasugai, Yoshimi; Takada, Hiroshi; Meigo, Shin-ichiro

    2001-02-01

    Characteristic of spallation neutrons driven by GeV protons from a mercury target with a lead-reflector and light-water-moderator was studied experimentally using the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Several reaction rates along with the mercury target were measured with the activation method at incident proton energies of 1.94, 12 and 24 GeV. Indium, niobium, aluminum, cobalt, nickel and bismuth were used as activation detectors to cover the threshold energy of between 0.33 and 40.9 MeV. This report summarizes the experimental procedure with all the measured data. (author)

  7. Missing the target: including perspectives of women with overweight and obesity to inform stigma-reduction strategies.

    Science.gov (United States)

    Puhl, R M; Himmelstein, M S; Gorin, A A; Suh, Y J

    2017-03-01

    Pervasive weight stigma and discrimination have led to ongoing calls for efforts to reduce this bias. Despite increasing research on stigma-reduction strategies, perspectives of individuals who have experienced weight stigma have rarely been included to inform this research. The present study conducted a systematic examination of women with high body weight to assess their perspectives about a broad range of strategies to reduce weight-based stigma. Women with overweight or obesity ( N  = 461) completed an online survey in which they evaluated the importance, feasibility and potential impact of 35 stigma-reduction strategies in diverse settings. Participants (91.5% who reported experiencing weight stigma) also completed self-report measures assessing experienced and internalized weight stigma. Most participants assigned high importance to all stigma-reduction strategies, with school-based and healthcare approaches accruing the highest ratings. Adding weight stigma to existing anti-harassment workplace training was rated as the most impactful and feasible strategy. The family environment was viewed as an important intervention target, regardless of participants' experienced or internalized stigma. These findings underscore the importance of including people with stigmatized identities in stigma-reduction research; their insights provide a necessary and valuable contribution that can inform ways to reduce weight-based inequities and prioritize such efforts.

  8. Identification and Functional Analysis of MicroRNAs and Their Targets in Platanus acerifolia under Lead (Pb) Stress

    OpenAIRE

    Yuanlong Wang; Zhenli Zhao; Minjie Deng; Rongning Liu; Suyan Niu; Guoqiang Fan

    2015-01-01

    MicroRNAs (miRNAs) play important regulatory roles in development and stress responses in plants. Lead (Pb) is a non-essential element that is highly toxic to living organisms. Platanus acerifolia is grown as a street tree in cities throughout temperate regions for its importance in improving the urban ecological environment. MiRNAs that respond to abiotic stresses have been identified in plants; however, until now, the influence of Pb stress on P. acerifolia miRNAs has not been reported. To ...

  9. Targeting Academic Programs to Student Diversity Utilizing Learning Styles and Learning-Study Strategies.

    Science.gov (United States)

    Grimes, Sue K.

    1995-01-01

    A diagnostic, prescriptive model was utilized (n=394) in identification of learning styles and learning-study strategies of diverse student groups and in the analysis of prescriptive methods to address their specific needs. High-risk groups demonstrated auditory, tactile concrete, and group learning style preferences and were weaker on cognitive,…

  10. Targeting the Parasite's DNA with Methyltriazenyl Purine Analogs Is a Safe, Selective, and Efficacious Antitrypanosomal Strategy

    NARCIS (Netherlands)

    Rodenko, B.; Wanner, M.J.; Alkhaldi, A.A.M.; Ebiloma, G.U.; Barnes, R.L.; Kaiser, M.; Brun, R.; McCulloch, R.; Koomen, G.J.; de Koning, H.P.

    2015-01-01

    The human and veterinary disease complex known as African trypanosomiasis continues to inflict significant global morbidity, mortality, and economic hardship. Drug resistance and toxic side effects of old drugs call for novel and unorthodox strategies for new and safe treatment options. We designed

  11. Modelling the consequences of targeted selective treatment strategies on performance and emergence of anthelmintic resistance amongst grazing calves

    Directory of Open Access Journals (Sweden)

    Zoe Berk

    2016-12-01

    Full Text Available The development of anthelmintic resistance by helminths can be slowed by maintaining refugia on pasture or in untreated hosts. Targeted selective treatments (TST may achieve this through the treatment only of individuals that would benefit most from anthelmintic, according to certain criteria. However TST consequences on cattle are uncertain, mainly due to difficulties of comparison between alternative strategies. We developed a mathematical model to compare: 1 the most ‘beneficial’ indicator for treatment selection and 2 the method of selection of calves exposed to Ostertagia ostertagi, i.e. treating a fixed percentage of the population with the lowest (or highest indicator values versus treating individuals who exceed (or are below a given indicator threshold. The indicators evaluated were average daily gain (ADG, faecal egg counts (FEC, plasma pepsinogen, combined FEC and plasma pepsinogen, versus random selection of individuals. Treatment success was assessed in terms of benefit per R (BPR, the ratio of average benefit in weight gain to change in frequency of resistance alleles R (relative to an untreated population. The optimal indicator in terms of BPR for fixed percentages of calves treated was plasma pepsinogen and the worst ADG; in the latter case treatment was applied to some individuals who were not in need of treatment. The reverse was found when calves were treated according to threshold criteria, with ADG being the best target indicator for treatment. This was also the most beneficial strategy overall, with a significantly higher BPR value than any other strategy, but its degree of success depended on the chosen threshold of the indicator. The study shows strong support for TST, with all strategies showing improvements on calves treated selectively, compared with whole-herd treatment at 3, 8, 13 weeks post-turnout. The developed model appeared capable of assessing the consequences of other TST strategies on calf populations.

  12. Targeting the adaptive immune system: new strategies in the treatment of atherosclerosis

    NARCIS (Netherlands)

    Zarzycka, Barbara; Nicolaes, Gerry A. F.; Lutgens, Esther

    2015-01-01

    Atherosclerosis is a lipid-driven chronic inflammatory disease of the arterial wall. Current treatment of atherosclerosis is focused on limiting its risk factors, such as hyperlipidemia or hypertension. However, treatments that target the inflammatory nature of atherosclerosis are still under

  13. Targeting cell adhesion and homing as strategy to cure Waldenström's macroglobulinemia

    NARCIS (Netherlands)

    Pals, Steven T.; Kersten, Marie José; Spaargaren, Marcel

    2016-01-01

    Most B-cell malignancies strictly depend on signals from the microenvironment for their survival and proliferation. This niche-dependency can be regarded as their Achilles' heel and provides an excellent target for therapy. Waldenström's macroglobulinemia (WM) is characterized by the accumulation of

  14. Two strategies for the development of mitochondrion-targeted small molecule radiation damage mitigators

    NARCIS (Netherlands)

    Rwigema, Jean-Claude M.; Beck, Barbara; Wang, Wei; Doemling, Alexander; Epperly, Michael W.; Shields, Donna; Goff, Julie P.; Franicola, Darcy; Dixon, Tracy; Frantz, Marie-Céline; Wipf, Peter; Tyurina, Yulia; Kagan, Valerian E.; Wang, Hong; Greenberger, Joel S.

    2011-01-01

    Purpose: To evaluate the effectiveness of mitigation of acute ionizing radiation damage by mitochondrion-targeted small molecules. Methods and Materials: We evaluated the ability of nitroxide-linked alkene peptide isostere JP4-039, the nitric oxide synthase inhibitor-linked alkene peptide esostere

  15. The Relationship between Retailers' Targeting and E-Commerce Strategies: An Empirical Analysis.

    Science.gov (United States)

    Doherty, Neil F.; Ellis-Chadwick, Fiona E.

    2003-01-01

    This survey of senior marketing executives in the United Kingdom's largest retail organizations investigated the extent to which the adoption of e-commerce is influenced by the socio-demographic characteristics of their target customers. Results demonstrate that organizations are most likely to adopt the Internet if their typical customer is male,…

  16. A New Strategy to Reduce Influenza Escape: Detecting Therapeutic Targets Constituted of Invariance Groups

    Directory of Open Access Journals (Sweden)

    Julie Lao

    2017-03-01

    Full Text Available The pathogenicity of the different flu species is a real public health problem worldwide. To combat this scourge, we established a method to detect drug targets, reducing the possibility of escape. Besides being able to attach a drug candidate, these targets should have the main characteristic of being part of an essential viral function. The invariance groups that are sets of residues bearing an essential function can be detected genetically. They consist of invariant and synthetic lethal residues (interdependent residues not varying or slightly varying when together. We analyzed an alignment of more than 10,000 hemagglutinin sequences of influenza to detect six invariance groups, close in space, and on the protein surface. In parallel we identified five potential pockets on the surface of hemagglutinin. By combining these results, three potential binding sites were determined that are composed of invariance groups located respectively in the vestigial esterase domain, in the bottom of the stem and in the fusion area. The latter target is constituted of residues involved in the spring-loaded mechanism, an essential step in the fusion process. We propose a model describing how this potential target could block the reorganization of the hemagglutinin HA2 secondary structure and prevent viral entry into the host cell.

  17. How high-performance work systems drive health care value: an examination of leading process improvement strategies.

    Science.gov (United States)

    Robbins, Julie; Garman, Andrew N; Song, Paula H; McAlearney, Ann Scheck

    2012-01-01

    As hospitals focus on increasing health care value, process improvement strategies have proliferated, seemingly faster than the evidence base supporting them. Yet, most process improvement strategies are associated with work practices for which solid evidence does exist. Evaluating improvement strategies in the context of evidence-based work practices can provide guidance about which strategies would work best for a given health care organization. We combined a literature review with analysis of key informant interview data collected from 5 case studies of high-performance work practices (HPWPs) in health care organizations. We explored the link between an evidence-based framework for HPWP use and 3 process improvement strategies: Hardwiring Excellence, Lean/Six Sigma, and Baldrige. We found that each of these process improvement strategies has not only strengths but also important gaps with respect to incorporating HPWPs involving engaging staff, aligning leaders, acquiring and developing talent, and empowering the front line. Given differences among these strategies, our analyses suggest that some may work better than others for individual health care organizations, depending on the organizations' current management systems. In practice, most organizations implementing improvement strategies would benefit from including evidence-based HPWPs to maximize the potential for process improvement strategies to increase value in health care.

  18. Targeted inactivation of the murine Abca3 gene leads to respiratory failure in newborns with defective lamellar bodies

    International Nuclear Information System (INIS)

    Hammel, Markus; Michel, Geert; Hoefer, Christina; Klaften, Matthias; Mueller-Hoecker, Josef; Angelis, Martin Hrabe de; Holzinger, Andreas

    2007-01-01

    Mutations in the human ABCA3 gene, encoding an ABC-transporter, are associated with respiratory failure in newborns and pediatric interstitial lung disease. In order to study disease mechanisms, a transgenic mouse model with a disrupted Abca3 gene was generated by targeting embryonic stem cells. While heterozygous animals developed normally and were fertile, individuals homozygous for the altered allele (Abca3-/-) died within one hour after birth from respiratory failure, ABCA3 protein being undetectable. Abca3-/- newborns showed atelectasis of the lung in comparison to a normal gas content in unaffected or heterozygous littermates. Electron microscopy demonstrated the absence of normal lamellar bodies in type II pneumocytes. Instead, condensed structures with apparent absence of lipid content were found. We conclude that ABCA3 is required for the formation of lamellar bodies and lung surfactant function. The phenotype of respiratory failure immediately after birth corresponds to the clinical course of severe ABCA3 mutations in human newborns

  19. Multiple polysaccharide-drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting.

    Science.gov (United States)

    Ruttala, Hima Bindu; Ramasamy, Thiruganesh; Gupta, Biki; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-10-01

    In the present study, a unique strategy was developed to develop nanocarriers containing multiple therapeutics with controlled release characteristics. In this study, we demonstrated the synthesis of dextran sulfate-doxorubicin (DS-DOX) and alginate-cisplatin (AL-CIS) polymer-drug complexes to produce a transferrin ligand-conjugated liposome. The targeted nanoparticles (TL-DDAC) were nano-sized and spherical. The targeted liposome exhibited a specific receptor-mediated endocytic uptake in cancer cells. The enhanced cellular uptake of TL-DDAC resulted in a significantly better anticancer effect in resistant and sensitive breast cancer cells compared to that of the free drugs. Specifically, DOX and CIS at a molar ratio of 1:1 exhibited better therapeutic performance compared to that of other combinations. The combination of an anthracycline-based topoisomerase II inhibitor (DOX) and a platinum compound (CIS) resulted in significantly higher cell apoptosis (early and late) in both types of cancer cells. In conclusion, treatment with DS-DOX and AL-CIS based combination liposomes modified with transferrin (TL-DDAC) was an effective cancer treatment strategy. Further investigation in clinically relevant animal models is warranted to prove the therapeutic efficacy of this unique strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Differential response to targeted recruitment strategies to fitness promotion research by African-American women of varying body mass index.

    Science.gov (United States)

    Yancey, A K; Miles, O L; McCarthy, W J; Sandoval, G; Hill, J; Leslie, J J; Harrison, G G

    2001-01-01

    To assess patterns of recruitment into a community-based NCI-funded physical activity and dietary lifestyle change program targeting African-American women. Acquisition of a convenience sample to be screened for participation in a randomized, controlled prevention intervention. African-American-owned and -operated health club located in an area of Los Angeles in which African Americans are concentrated. 893 African-American women. RECRUITMENT STRATEGIES: Social networking/word-of-mouth, staff presentations, mass and targeted media, and physician referral. Completion of screening questionnaire indicating a desire to enroll in the study. Screening questionnaire domains included self-reported height and weight, recent participation in organized weight loss programs, ability to walk one mile unassisted, current medication use, smoking status, personal medical history of cancer, sociodemographic variables, and recruitment source. Sociodemographic and anthropometric characteristics distinguished between respondents obtained through different recruitment strategies. In particular, women with a higher body mass index (BMI) were more likely than those with lower BMIs (P = .014) to be recruited through more personalized methods (eg, social networking). Culturally tailored recruitment strategies are critical in securing the participation of members of "hard-to-reach" populations, who are both under-represented in health promotion research and at high risk for chronic diseases.

  1. Expression of PFKFB3 and Ki67 in lung adenocarcinomas and targeting PFKFB3 as a therapeutic strategy.

    Science.gov (United States)

    Li, Xiaoli; Liu, Jian; Qian, Li; Ke, Honggang; Yao, Chan; Tian, Wei; Liu, Yifei; Zhang, Jianguo

    2018-01-11

    Phosphofructokinase-2/fructose-2, 6-bisphosphatase 3 (PFKFB3) catalyzes the synthesis of F2,6BP, which is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1): the rate-limiting enzyme of glycolysis. During tumorigenesis, PFKFB3 increases glycolysis, angiogenesis, and tumor progression. In this study, our aim was to investigate the significance of PFKFB3 and Ki67 in human lung adenocarcinomas and to target PFKFB3 as a therapeutic strategy. In this study, we determined the expression levels of PFKFB3 mRNA and proteins in cancerous and normal lung adenocarcinomas by quantitative reverse transcription PCR (qRT-PCR), Western blot analysis, and tissue microarray immunohistochemistry analysis, respectively. In human adenocarcinoma tissues, PFKFB3 and Ki67 protein levels were related to the clinical characteristics and overall survival. Both PFKFB3 mRNA and protein were significantly higher in lung adenocarcinoma cells (all P targeting PFKFB3, it inhibited cell viability and glycolytic activity. It also caused apoptosis and induced cell cycle arrest. Furthermore, the migration and invasion of A549 cells was inhibited. We conclude that PFKFB3 bears an oncogene-like regulatory element in lung adenocarcinoma progression. In the treatment of lung adenocarcinoma, targeting PFKFB3 would be a promising therapeutic strategy.

  2. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment.

    Science.gov (United States)

    Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong

    2016-08-01

    Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Small-molecule intramimics of formin autoinhibition: a new strategy to target the cytoskeletal remodeling machinery in cancer cells.

    Science.gov (United States)

    Lash, L Leanne; Wallar, Bradley J; Turner, Julie D; Vroegop, Steven M; Kilkuskie, Robert E; Kitchen-Goosen, Susan M; Xu, H Eric; Alberts, Arthur S

    2013-11-15

    Although the cancer cell cytoskeleton is a clinically validated target, few new strategies have emerged for selectively targeting cell division by modulating the cytoskeletal structure, particularly ways that could avoid the cardiotoxic and neurotoxic effects of current agents such as taxanes. We address this gap by describing a novel class of small-molecule agonists of the mammalian Diaphanous (mDia)-related formins, which act downstream of Rho GTPases to assemble actin filaments, and their organization with microfilaments to establish and maintain cell polarity during migration and asymmetric division. GTP-bound Rho activates mDia family members by disrupting the interaction between the DID and DAD autoregulatory domains, which releases the FH2 domain to modulate actin and microtubule dynamics. In screening for DID-DAD disruptors that activate mDia, we identified two molecules called intramimics (IMM-01 and -02) that were sufficient to trigger actin assembly and microtubule stabilization, serum response factor-mediated gene expression, cell-cycle arrest, and apoptosis. In vivo analysis of IMM-01 and -02 established their ability to slow tumor growth in a mouse xenograft model of colon cancer. Taken together, our work establishes the use of intramimics and mDia-related formins as a new general strategy for therapeutic targeting of the cytoskeletal remodeling machinery of cancer cells. ©2013 AACR

  4. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections.

    Science.gov (United States)

    Bauer, Lisa; Lyoo, Heyrhyoung; van der Schaar, Hilde M; Strating, Jeroen Rpm; van Kuppeveld, Frank Jm

    2017-06-01

    Enteroviruses (e.g., poliovirus, enterovirus-A71, coxsackievirus, enterovirus-D68, rhinovirus) include many human pathogens causative of various mild and more severe diseases, especially in young children. Unfortunately, antiviral drugs to treat enterovirus infections have not been approved yet. Over the past decades, several direct-acting inhibitors have been developed, including capsid binders, which block virus entry, and inhibitors of viral enzymes required for genome replication. Capsid binders and protease inhibitors have been clinically evaluated, but failed due to limited efficacy or toxicity issues. As an alternative approach, host-targeting inhibitors with potential broad-spectrum activity have been identified. Furthermore, drug repurposing screens have recently uncovered promising new inhibitors with disparate viral and host targets. Together, these findings raise hope for the development of (broad-range) anti-enteroviral drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Iontophoresis of minoxidil sulphate loaded microparticles, a strategy for follicular drug targeting?

    Science.gov (United States)

    Gelfuso, Guilherme M; Barros, M Angélica de Oliveira; Delgado-Charro, M Begoña; Guy, Richard H; Lopez, Renata F V

    2015-10-01

    The feasibility of targeting drugs to hair follicles by a combination of microencapsulation and iontophoresis has been evaluated. Minoxidil sulphate (MXS), which is used in the treatment of alopecia, was selected as a relevant drug with respect to follicular penetration. The skin permeation and disposition of MXS encapsulated in chitosan microparticles (MXS-MP) was evaluated in vitro after passive and iontophoretic delivery. Uptake of MXS was quantified at different exposure times in the stratum corneum (SC) and hair follicles. Microencapsulation resulted in increased (6-fold) drug accumulation in the hair follicles relative to delivery from a simple MXS solution. Application of iontophoresis enhanced follicular delivery for both the solution and the microparticle formulations. It appears, therefore, that microencapsulation and iontophoresis can act synergistically to enhance topical drug targeting to hair follicles. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Target-specific stigma change: a strategy for impacting mental illness stigma.

    Science.gov (United States)

    Corrigan, Patrick W

    2004-01-01

    In the past decade, mental health advocates and researchers have sought to better understand stigma so that the harm it causes can be erased. In this paper, we propose a target-specific stigma change model to organize the diversity of information into a cogent framework. "Target" here has a double meaning: the power groups that have some authority over the life goals of people with mental illness and specific discriminatory behaviors which power groups might produce that interfere with these goals. Key power groups in the model include landlords, employers, health care providers, criminal justice professionals, policy makers, and the media. Examples are provided of stigmatizing attitudes that influence the discriminatory behavior and social context in which the power group interacts with people with mental illness. Stigma change is most effective when it includes all the components that describe how a specific power group impacts people with mental illness.

  7. Hepatitis B in sub-Saharan Africa: strategies to achieve the 2030 elimination targets.

    Science.gov (United States)

    Spearman, C Wendy; Afihene, Mary; Ally, Reidwaan; Apica, Betty; Awuku, Yaw; Cunha, Lina; Dusheiko, Geoffrey; Gogela, Neliswa; Kassianides, Chris; Kew, Michael; Lam, Philip; Lesi, Olufunmilayo; Lohouès-Kouacou, Marie-Jeanne; Mbaye, Papa Saliou; Musabeyezu, Emmanuel; Musau, Betty; Ojo, Olusegun; Rwegasha, John; Scholz, Barbara; Shewaye, Abate B; Tzeuton, Christian; Sonderup, Mark W

    2017-12-01

    The WHO global health sector strategy on viral hepatitis, created in May, 2016, aims to achieve a 90% reduction in new cases of chronic hepatitis B and C and a 65% reduction in mortality due to hepatitis B and C by 2030. Hepatitis B virus (HBV) is endemic in sub-Saharan Africa, and despite the introduction of universal hepatitis B vaccination and effective antiviral therapy, the estimated overall seroprevalence of hepatitis B surface antigen remains high at 6·1% (95% uncertainty interval 4·6-8·5). In this Series paper, we have reviewed the literature to examine the epidemiology, burden of liver disease, and elimination strategies of hepatitis B in sub-Saharan Africa. This paper reflects a supranational perspective of sub-Saharan Africa, and recommends several priority elimination strategies that address the need both to prevent new infections and to diagnose and treat chronic infections. The key to achieving these elimination goals in sub-Saharan Africa is the effective prevention of new infections via universal implementation of the HBV birth-dose vaccine, full vaccine coverage, access to affordable diagnostics to identify HBV-infected individuals, and to enable linkage to care and antiviral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Information sources - information targets: evaluative aspects of the scientists’ publication strategies

    Energy Technology Data Exchange (ETDEWEB)

    Glaenzel, W.; Chi, P.S.; Gumpenberger, C.; Gorraiz, J.

    2016-07-01

    Journal citation measures, if properly used, provide important information on the author’s publication strategy. In this explorative study, which is part of a larger project, we attempt to shed light on to what extent publication strategies are adequately reflected by the impact generated in the respective scientific community in the context of academic research assessment at micro level.In this paper we present three cases based on the research output of researchers active in three different fields: chemistry, medicine and economics. In each individual case, the lists of journals, in which the author in question has published along with the journals in the reference lists and those where the citing papers have been published, are analysed according to two aspects, the congruence of the three resulting lists and the overlap by journal quartiles based on field-normalised impact. Similarity measures are then introduced at both levels.The results reveal important aspects of the authors’ publication strategy and their position in the information flow enabling the identification of different scenarios, which are discussed in detail in order to be correctly applied for bibliometric individual assessment. (Author)

  9. A Synthetic-Biology-Inspired Therapeutic Strategy for Targeting and Treating Hepatogenous Diabetes.

    Science.gov (United States)

    Xue, Shuai; Yin, Jianli; Shao, Jiawei; Yu, Yuanhuan; Yang, Linfeng; Wang, Yidan; Xie, Mingqi; Fussenegger, Martin; Ye, Haifeng

    2017-02-01

    Hepatogenous diabetes is a complex disease that is typified by the simultaneous presence of type 2 diabetes and many forms of liver disease. The chief pathogenic determinant in this pathophysiological network is insulin resistance (IR), an asymptomatic disease state in which impaired insulin signaling in target tissues initiates a variety of organ dysfunctions. However, pharmacotherapies targeting IR remain limited and are generally inapplicable for liver disease patients. Oleanolic acid (OA) is a plant-derived triterpenoid that is frequently used in Chinese medicine as a safe but slow-acting treatment in many liver disorders. Here, we utilized the congruent pharmacological activities of OA and glucagon-like-peptide 1 (GLP-1) in relieving IR and improving liver and pancreas functions and used a synthetic-biology-inspired design principle to engineer a therapeutic gene circuit that enables a concerted action of both drugs. In particular, OA-triggered short human GLP-1 (shGLP-1) expression in hepatogenous diabetic mice rapidly and simultaneously attenuated many disease-specific metabolic failures, whereas OA or shGLP-1 monotherapy failed to achieve corresponding therapeutic effects. Collectively, this work shows that rationally engineered synthetic gene circuits are capable of treating multifactorial diseases in a synergistic manner by multiplexing the targeting efficacies of single therapeutics. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  10. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer's disease.

    Science.gov (United States)

    Muntimadugu, Eameema; Dhommati, Raju; Jain, Anjali; Challa, Venu Gopala Swami; Shaheen, M; Khan, Wahid

    2016-09-20

    Poor brain penetration of tarenflurbil (TFB) was one of the major reasons for its failure in phase III clinical trials conducted on Alzheimer's patients. Thus there is a tremendous need of developing efficient delivery systems for TFB. This study was designed with the aim of improving drug delivery to brain through intranasally delivered nanocarriers. TFB was loaded into two different nanocarriers i.e., poly (lactide-co-glycolide) nanoparticles (TFB-NPs) and solid lipid nanoparticles (TFB-SLNs). Particle size of both the nanocarriers (targeting site. Pharmacokinetics suggested improved circulation behavior of nanoparticles and the absolute bioavailabilities followed this order: TFB-NPs (i.n.)>TFB-SLNs (i.n.)>TFB solution (i.n.)>TFB suspension (oral). Brain targeting efficiency was determined in terms of %drug targeting efficiency (%DTE) and drug transport percentage (DTP). The higher %DTE (287.24) and DTP (65.18) were observed for TFB-NPs followed by TFB-SLNs (%DTE: 183.15 and DTP: 45.41) among all other tested groups. These encouraging results proved that therapeutic concentrations of TFB could be transported directly to brain via olfactory pathway after intranasal administration of polymeric and lipidic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation

    Directory of Open Access Journals (Sweden)

    Thomas J. Kean

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are currently being widely investigated both in the lab and in clinical trials for multiple disease states. The differentiation, trophic, and immunomodulatory characteristics of MSCs contribute to their therapeutic effects. Another often overlooked factor related to efficacy is the degree of engraftment. When reported, engraftment is generally low and transient in nature. MSC delivery methods should be tailored to the lesion being treated, which may be local or systemic, and customized to the mechanism of action of the MSCs, which can also be local or systemic. Engraftment efficiency is enhanced by using intra-arterial delivery instead of intravenous delivery, thus avoiding the “first-pass” accumulation of MSCs in the lung. Several methodologies to target MSCs to specific organs are being developed. These cell targeting methodologies focus on the modification of cell surface molecules through chemical, genetic, and coating techniques to promote selective adherence to particular organs or tissues. Future improvements in targeting and delivery methodologies to improve engraftment are expected to improve therapeutic results, extend the duration of efficacy, and reduce the effective (MSC therapeutic dose.

  12. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    Science.gov (United States)

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  13. Power reactors and sub-critical blanket systems with lead and lead-bismuth as coolant and/or target material. Utilization and transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    2003-05-01

    High level radioactive waste disposal is an issue of great importance in the discussion of the sustainability of nuclear power generation. The main contributors to the high radioactivity are the fission products and the minor actinides. The long lived fission products and minor actinides set severe demands on the arrangements for safe waste disposal. Fast reactors and accelerator driven systems (ADS) are under development in Member States to reduce the long term hazard of spent fuel and radioactive waste, taking advantage of their incineration and transmutation capability. Important R and D programmes are being undertaken in many Member States to substantiate this option and advance the basic knowledge in this innovative area of nuclear energy development. The conceptual design of the lead cooled fast reactor concept BREST-OD-300, as well as various other conceptual designs of lead/lead-bismuth cooled fast reactors have been developed to meet enhanced safety and non-proliferation requirements, aiming at both energy production and transmutation of nuclear waste. Some R and D studies indicate that the use of lead and lead-bismuth coolant has some advantages in comparison with existing sodium cooled fast reactor systems, e.g.: simplified design of fast reactor core and BOP, enhanced inherent safety, and easier radwaste management in related fuel cycles. Moreover, various ADS conceptual designs with lead and lead-bismuth as target material and coolant also have been pursued. The results to date are encouraging, indicating that the ADS has the potential to offer an option for meeting the challenges of the back end fuel cycle. During the last decade, there have been substantial advances in several countries with their own R and D programme in the fields of lead/lead-bismuth cooled critical and sub-critical concepts. coolant technology, and experimental validation. In this context, international exchange of information and experience, as well as international

  14. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Charu Sharma

    2015-01-01

    Full Text Available The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2 which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

  15. Monte carlo simulations of the n_TOF lead spallation target with the Geant4 toolkit: A benchmark study

    Directory of Open Access Journals (Sweden)

    Lerendegui-Marco J.

    2017-01-01

    Full Text Available Monte Carlo (MC simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1, especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2 of the facility.

  16. Monte carlo simulations of the n_TOF lead spallation target with the Geant4 toolkit: A benchmark study

    Science.gov (United States)

    Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.; Meo, S. Lo; Massimi, C.; Barbagallo, M.; Colonna, N.; Mancussi, D.; Mingrone, F.; Sabaté-Gilarte, M.; Vannini, G.; Vlachoudis, V.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; Gómez-Hornillos, M. B.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    Monte Carlo (MC) simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1), especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2) of the facility.

  17. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention.

    Science.gov (United States)

    Tewari, Devesh; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Sureda, Antoni; Farooqi, Ammad Ahmad; Atanasov, Atanas G; Vacca, Rosa Anna; Sethi, Gautam; Bishayee, Anupam

    2018-02-01

    Activator protein 1 (AP-1) is a key transcription factor in the control of several cellular processes responsible for cell survival proliferation and differentiation. Dysfunctional AP-1 expression and activity are involved in several severe diseases, especially inflammatory disorders and cancer. Therefore, targeting AP-1 has recently emerged as an attractive therapeutic strategy for cancer prevention and therapy. This review summarizes our current understanding of AP-1 biology and function as well as explores and discusses several natural bioactive compounds modulating AP-1-associated signaling pathways for cancer prevention and intervention. Current limitations, challenges, and future directions of research are also critically discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Target-aimed versus wishful-thinking in designing efficient GHG reduction strategies for a metropolitan city: Taipei

    International Nuclear Information System (INIS)

    Liu, C.-M.; Liou, M.-L.; Yeh, S.-C.; Shang, N.-C.

    2009-01-01

    In recent years, many national and local governments claim for a specific GHG (greenhouse gas) reduction goal targeted for many years later. In 2005, the Taipei City government announced that Taipei's total GHG emission in 2015 will reach the same level as that in 2005 and then down to 75% of that level at year 2030. However, based on the estimated energy consumption and GHG emission and the proposed emission reduction plans from the local government, it is clear that these goals are not going to be accomplished. In Taipei, the residential and commercial sector contributes more than 78% of the total GHG emission. Thus, in a business as usual scenario, the total GHG emission in 2030 would be 79% more than that in 2005, far more than the target value proclaimed. As many key factors are uncontrollable by the local government, a target-aimed strategy designing process by looking into changes in Taipei and identifying major targets is proposed in this study. It is demonstrated that such a universally applicable approach will give more confidence to the public on working toward the expected GHG reduction goal

  19. pH-Sensitive Reversible Programmed Targeting Strategy by the Self-Assembly/Disassembly of Gold Nanoparticles.

    Science.gov (United States)

    Ma, Jinlong; Hu, Zhenpeng; Wang, Wei; Wang, Xinyu; Wu, Qiang; Yuan, Zhi

    2017-05-24

    A reversible programmed targeting strategy could achieve high tumor accumulation due to its long blood circulation time and high cellular internalization. Here, targeting ligand-modified poly(ethylene glycol) (PEG-ligand), dibutylamines (Bu), and pyrrolidinamines (Py) were introduced on the surface of gold nanoparticles (Au NPs) for reversible shielding/deshielding of the targeting ligands by pH-responsive self-assembly. Hydrophobic interaction and steric repulsion are the main driving forces for the self-assembly/disassembly of Au NPs. The precise self-assembly (pH ≥ 7.2) and disassembly (pH ≤ 6.8) of Au NPs with different ligands could be achieved by fine-tuning the modifying molar ratio of Bu and Py (R m ), which followed the formula R m = 1/(-0.0013X 2 + 0.0323X + 1), in which X is the logarithm of the partition coefficient of the targeting ligand. The assembled/disassembled behavior of Au NPs at pH 7.2 and 6.8 was confirmed by transmission electron microscopy and dynamic light scattering. Enzyme-linked immunosorbent assays and cellular uptake studies showed that the ligands could be buried inside the assembly and exposed when disassembled. More importantly, this process was reversible, which provides the possibility of prolonging blood circulation by shielding ligands associated with the NPs that were effused from tumor tissue.

  20. Preclinical evaluation of transcriptional targeting strategy for human hepatocellular carcinoma in an orthotopic xenograft mouse model.

    Science.gov (United States)

    Sia, Kian Chuan; Huynh, Hung; Chung, Alexander Yaw Fui; Ooi, London Lucien Peng Jin; Lim, Kiat Hon; Hui, Kam Man; Lam, Paula Yeng Po

    2013-08-01

    Gene regulation of many key cell-cycle players in S-, G(2) phase, and mitosis results from transcriptional repression in their respective promoter regions during the G(0) and G(1) phases of cell cycle. Within these promoter regions are phylogenetically conserved sequences known as the cell-cycle-dependent element (CDE) and cell-cycle genes homology regions (CHR) sites. Thus, we hypothesize that transcriptional regulation of cell-cycle regulation via the CDE/CHR region together with liver-specific apolipoprotein E (apoE)-hAAT promoter could bring about a selective transgene expression in proliferating human hepatocellular carcinoma. We show that the newly generated vector AH-6CC-L2C could mediate hepatocyte-targeted luciferase gene expression in tumor cells and freshly isolated short-term hepatocellular carcinoma cultures from patient biopsy. In contrast, normal murine and human hepatocytes infected with AH-6CC-L2C expressed minimal or low luciferase activities. In the presence of prodrug 5-fluorocytosine (5-FC), AH-6CC-L2C effectively suppressed the growth of orthotopic hepatocellular carcinoma patient-derived xenograft mouse model via the expression of yeast cytosine deaminase (yCD) that converts 5-FC to anticancer metabolite 5-fluoruracil. More importantly, we show that combination treatment of AH-6CC-L2C with an EZH2 inhibitor, DZNep, that targets EpCAM-positive hepatocellular carcinoma, can bring about a greater therapeutic efficacy compared with a single treatment of virus or inhibitor. Our study showed that targeting proliferating human hepatocellular carcinoma cells through the transcriptional control of therapeutic gene could represent a feasible approach against hepatocellular carcinoma.

  1. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies.

    Science.gov (United States)

    Deng, Changchun; Lipstein, Mark R; Scotto, Luigi; Jirau Serrano, Xavier O; Mangone, Michael A; Li, Shirong; Vendome, Jeremie; Hao, Yun; Xu, Xiaoming; Deng, Shi-Xian; Realubit, Ronald B; Tatonetti, Nicholas P; Karan, Charles; Lentzsch, Suzanne; Fruman, David A; Honig, Barry; Landry, Donald W; O'Connor, Owen A

    2017-01-05

    Phosphoinositide 3-kinase (PI3K) and the proteasome pathway are both involved in activating the mechanistic target of rapamycin (mTOR). Because mTOR signaling is required for initiation of messenger RNA translation, we hypothesized that cotargeting the PI3K and proteasome pathways might synergistically inhibit translation of c-Myc. We found that a novel PI3K δ isoform inhibitor TGR-1202, but not the approved PI3Kδ inhibitor idelalisib, was highly synergistic with the proteasome inhibitor carfilzomib in lymphoma, leukemia, and myeloma cell lines and primary lymphoma and leukemia cells. TGR-1202 and carfilzomib (TC) synergistically inhibited phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), leading to suppression of c-Myc translation and silencing of c-Myc-dependent transcription. The synergistic cytotoxicity of TC was rescued by overexpression of eIF4E or c-Myc. TGR-1202, but not other PI3Kδ inhibitors, inhibited casein kinase-1 ε (CK1ε). Targeting CK1ε using a selective chemical inhibitor or short hairpin RNA complements the effects of idelalisib, as a single agent or in combination with carfilzomib, in repressing phosphorylation of 4E-BP1 and the protein level of c-Myc. These results suggest that TGR-1202 is a dual PI3Kδ/CK1ε inhibitor, which may in part explain the clinical activity of TGR-1202 in aggressive lymphoma not found with idelalisib. Targeting CK1ε should become an integral part of therapeutic strategies targeting translation of oncogenes such as c-Myc. © 2017 by The American Society of Hematology.

  2. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.

    Science.gov (United States)

    Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J

    2017-08-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication.

    Science.gov (United States)

    Damiani, María Teresa; Gambarte Tudela, Julián; Capmany, Anahí

    2014-09-01

    Chlamydia, an obligate intracellular bacterium which passes its entire lifecycle within a membrane-bound vacuole called the inclusion, has evolved a variety of unique strategies to establish an advantageous intracellular niche for survival. This review highlights the mechanisms by which Chlamydia subverts vesicular transport in host cells, particularly by hijacking the master controllers of eukaryotic trafficking, the Rab proteins. A subset of Rabs and Rab interacting proteins that control the recycling pathway or the biosynthetic route are selectively recruited to the chlamydial inclusion membrane. By interfering with Rab-controlled transport steps, this intracellular pathogen not only prevents its own degradation in the phagocytic pathway, but also creates a favourable intracellular environment for growth and replication. Chlamydia, a highly adapted and successful intracellular pathogen, has several redundant strategies to re-direct vesicles emerging from biosynthetic compartments that carry host molecules essential for bacterial development. Although current knowledge is limited, the latest findings have shed light on the role of Rab proteins in the course of chlamydial infections and could open novel opportunities for anti-chlamydial therapy. © 2014 John Wiley & Sons Ltd.

  4. Reconciling sectoral abatement strategies with global climate targets: the case of the Chinese passenger vehicle fleet.

    Science.gov (United States)

    Pauliuk, Stefan; Dhaniati, Ni Made A; Müller, Daniel B

    2012-01-03

    The IPCC Forth Assessment Report postulates that global warming can be limited to 2 °C by deploying technologies that are currently available or expected to be commercialized in the coming decades. However, neither specific technological pathways nor internationally binding reduction targets for different sectors or countries have been established yet. Using the passenger car stock in China as example we compute direct CO(2) emissions until 2050 depending on population, car utilization, and fuel efficiency and compare them to benchmarks derived by assuming even contribution of all sectors and a unitary global per capita emission quota. Compared to present car utilization in industrialized countries, massive deployment of prototypes of fuel efficient cars could reduce emissions by about 45%, and moderately lower car use could contribute with another 33%. Still, emissions remain about five times higher than the benchmark for the 2 °C global warming target. Therefore an extended analysis, including in particular low-carbon fuels and the impact of urban and transport planning on annual distance traveled and car ownership, should be considered. A cross-sectoral comparison could reveal whether other sectors could bear an overproportional reduction quota instead. The proposed model offers direct interfaces to material industries, fuel production, and scrap vehicle supply.

  5. Structural insights into drug development strategy targeting EGFR T790M/C797S.

    Science.gov (United States)

    Zhu, Su-Jie; Zhao, Peng; Yang, Jiao; Ma, Rui; Yan, Xiao-E; Yang, Sheng-Yong; Yang, Jing-Wen; Yun, Cai-Hong

    2018-03-02

    Treatment of non-small-cell lung cancers (NSCLCs) harboring primary EGFR oncogenic mutations such as L858R and exon 19 deletion delE746_A750 (Del-19) using gefitinib/erlotinib ultimately fails due to the emergence of T790M mutation. Though WZ4002/CO-1686/AZD9291 are effective in overcoming EGFR T790M by targeting Cys797 via covalent bonding, their efficacy is again limited due to the emergence of C797S mutation. New agents effectively inhibiting EGFR T790M without covalent linkage through Cys 797 may solve this problem. We presented here crystal structures of EGFR activating/drug-resistant mutants in complex with a panel of reversible inhibitors along with mutagenesis and enzyme kinetic data. These data revealed a previously un-described hydrophobic clamp structure in the EGFR kinase which may be exploited to facilitate development of next generation drugs targeting EGFR T790M with or without concomitant C797S. Interestingly, mutations in the hydrophobic clamp that hinder drug binding often also weaken ATP binding and/or abolish kinase activity, thus do not readily result in resistance to the drugs.

  6. Using a Treat-to-Target Management Strategy to Improve the Doctor-Patient Relationship in Inflammatory Bowel Disease.

    Science.gov (United States)

    Rubin, David T; Krugliak Cleveland, Noa

    2015-09-01

    The doctor-patient relationship (DPR) in inflammatory bowel disease (IBD) has been facing new challenges, in part due to the substantial progress in medical and surgical management and also due to the rapid expansion of patient access to medical information. Not surprisingly, the complexity of IBD care and heterogeneity of the disease types may lead to conflict between a physician's therapeutic recommendations and the patient's wishes. In this commentary, we propose that the so-called "treat-to-target" approach of objective targets of disease control and serial adjustments to therapies can also strengthen the DPR in IBD by enabling defined trials of alternative approaches, followed by a more objective assessment and reconsideration of treatments. We contend that such respect for patient autonomy and the use of objective markers of disease activity improves the DPR by fostering trust and both engaging and empowering patients and physicians with the information necessary to make shared decisions about therapies.

  7. Measurements of spallation neutrons from a thick lead target bombarded with 0.5 and 1.5 GeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro; Takada, Hiroshi; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-03-01

    Double differential neutron spectra from a thick lead target bombarded with 0.5 and 1.5 GeV protons have been measured with the time-of-flight technique. In order to obtain the neutron spectra without the effect of the flight time fluctuation by neutron scattering in the target, an unfolding technique has also been employed in the low energy region below 3 MeV. The measured data have been compared with the calculated results of NMTC/JAERI-MCNP-4A code system. It has been found that the code system gives about 50 % lower neutron yield than the experimental ones in the energy region between 20 and 80 MeV for both incident energies. The disagreements, however, have been improved well by taking account of the inmedium nucleon-nucleon scattering cross sections in the NMTC/JAERI code. (author)

  8. Estimation of Inflationary Expectations and the Effectiveness of Inflation Targeting Strategy

    Directory of Open Access Journals (Sweden)

    Amalia CRISTESCU

    2011-02-01

    Full Text Available The credibility and accountability of a central bank, acting in an inflation targeting regime, are essential because they allow a sustainable anchoring of the inflationary anticipation of economic agents. Their decisions and behavior will increasingly be grounded on information provided by the central bank, especially if it shows transparency in the process of communicating with the public. Thus, inflationary anticipations are one of the most important channels through which the monetary policy affects the economic activity. They are crucial in the formation of the consumer prices among producers and traders, especially since it is relatively expensive for the economic agents to adjust their prices at short intervals. That is why many central banks use response functions containing inflationary anticipations, in their inflation targeting models. The most frequently problem in relation to these anticipations is that they are based on the assumption of optimal forecasts of future inflation, which are, implicitly, rational anticipations. In fact, the economic agents’ inflationary anticipations are most often adaptive or even irrational. Thus, rational anticipations cannot be used to estimate equations for the Romanian economy because the agents who form their expectations do not have sufficient information and an inflationary environment stable enough to fully anticipate the inflation evolution. The inflation evolution in the Romanian economy helps to calculate adaptive forecasts for which the weight of the "forward looking" component has to be rather important. The economic agents form their inflation expectations for periods of time that, usually, coincide with a production cycle (one year and consider the official and unofficial inflation forecasts present on the market in order to make strategic decisions. Thus, in recent research on inflation modeling, actual inflationary anticipations of economic agents which are revealed based on national

  9. Strict sequential catheter ablation strategy targeting the pulmonary veins and superior vena cava for persistent atrial fibrillation.

    Science.gov (United States)

    Yoshiga, Yasuhiro; Shimizu, Akihiko; Ueyama, Takeshi; Ono, Makoto; Fukuda, Masakazu; Fumimoto, Tomoko; Ishiguchi, Hironori; Omuro, Takuya; Kobayashi, Shigeki; Yano, Masafumi

    2018-08-01

    An effective catheter ablation strategy, beyond pulmonary vein isolation (PVI), for persistent atrial fibrillation (AF) is necessary. Pulmonary vein (PV)-reconduction also causes recurrent atrial tachyarrhythmias. The effect of the PVI and additional effect of a superior vena cava (SVC) isolation (SVCI) was strictly evaluated. Seventy consecutive patients with persistent AF who underwent a strict sequential ablation strategy targeting the PVs and SVC were included in this study. The initial ablation strategy was a circumferential PVI. A segmental SVCI was only applied as a repeat procedure when patients demonstrated no PV-reconduction. After the initial procedure, persistent AF was suppressed in 39 of 70 (55.7%) patients during a median follow-up of 32 months. After multiple procedures, persistent AF was suppressed in 46 (65.7%) and 52 (74.3%) patients after receiving the PVI alone and PVI plus SVCI strategies, respectively. In 6 of 15 (40.0%) patients with persistent AF resistant to PVI, persistent AF was suppressed. The persistent AF duration independently predicted persistent AF recurrences after multiple PVI alone procedures [HR: 1.012 (95% confidence interval: 1.006-1.018); pstrategies [HR: 1.018 (95% confidence interval: 1.011-1.025); pstrategies, respectively. The outcomes of the PVI plus SVCI strategy were favorable for patients with shorter persistent AF durations. The initial SVCI had the additional effect of maintaining sinus rhythm in some patients with persistent AF resistant to PVI. Copyright © 2018 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  10. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease.

    Science.gov (United States)

    Aliev, Gjumrakch; Palacios, Hector H; Walrafen, Brianna; Lipsitt, Amanda E; Obrenovich, Mark E; Morales, Ludis

    2009-10-01

    Alzheimer's disease (AD) and cerebrovascular accidents are two leading causes of age-related dementia. Increasing evidence supports the idea that chronic hypoperfusion is primarily responsible for the pathogenesis that underlies both disease processes. In this regard, hypoperfusion appears to induce oxidative stress (OS), which is largely due to reactive oxygen species (ROS), and over time initiates mitochondrial failure which is known as an initiating factor of AD. Recent evidence indicates that chronic injury stimulus induces hypoperfusion seen in vulnerable brain regions. This reduced regional cerebral blood flow (CBF) then leads to energy failure within the vascular endothelium and associated brain parenchyma, manifested by damaged mitochondrial ultrastructure (the formation of large number of immature, electron-dense "hypoxic" mitochondria) and by overproduction of mitochondrial DNA (mtDNA) deletions. Additionally, these mitochondrial abnormalities co-exist with increased redox metal activity, lipid peroxidation, and RNA oxidation. Interestingly, vulnerable neurons and glial cells show mtDNA deletions and oxidative stress markers only in the regions that are closely associated with damaged vessels, and, moreover, brain vascular wall lesions linearly correlate with the degree of neuronal and glial cell damage. We summarize the large body of evidence which indicates that sporadic, late-onset AD results from a vascular etiology by briefly reviewing mitochondrial damage and vascular risk factors associated with the disease and then we discuss the cerebral microvascular changes reason for the energy failure that occurs in normal aging and, to a much greater extent, AD.

  11. Direct flow separation strategy, to isolate no-carrier-added {sup 90}Nb from irradiated Mo or Zr targets

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Roesch, Frank [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Filosofov, Dmitry V.; Dadakhanov, Jakhongir [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Karaivanov, Dimitar V. [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. for Nuclear Research and Nuclear Energy; Marinova, Atanaska [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Sofia Univ. (Bulgaria). Faculty of Chemistry and Pharmacy; Baimukhanova, Ayagoz [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty (Kazakhstan)

    2016-11-01

    {sup 90}Nb has an intermediate half-life of 14.6 h, a high positron branching of 53% and optimal β{sup +} emission energy of only E{sub mean} 0.35 MeV per decay. These favorable characteristics suggest it may be a potential candidate for application in immuno-PET. Our recent aim was to conduct studies on distribution coefficients for Zr{sup IV} and Nb{sup V} in mixtures of HCl/H{sub 2}O{sub 2} and HCl/oxalic acid for anion exchange resin (AG 1 x 8) and UTEVA resin to develop a ''direct flow'' separation strategy for {sup 90}Nb. The direct flow concept refers to a separation accomplished using a single eluent on multiple columns, effectively streamlining the separation process and increasing the time efficiency. Finally, we also demonstrated that this separation strategy is applicable to the production of the positron emitter {sup 90}Nb via the irradiation of molybdenum targets and isolation of {sup 90}Nb from the irradiated molybdenum target.

  12. Targeting TRIM5α in HIV Cure Strategies for the CRISPR-Cas9 Era

    Directory of Open Access Journals (Sweden)

    Daryl Anne Victoria Weatherley

    2017-11-01

    Full Text Available In the past decade, studies of innate immune activity against HIV-1 and other retroviruses have revealed a powerful array of host factors that can attack the virus at various stages of its life cycle in human and primate cells, raising the prospect that these antiviral factors could be manipulated in immunotherapeutic strategies for HIV infection. This has not proved straightforward: while HIV accessory genes encode proteins that subvert or destroy many of these restriction factors, others, such as human TRIM5α show limited potency against HIV-1. However, HIV-1 is much more susceptible to simian versions of TRIM5α: could this information be translated into the development of an effective gene therapy for HIV infection? Reigniting research into the restriction factor TRIM5α in the era of superior gene editing technology such as CRISPR-Cas9 presents an exciting opportunity to revisit this prospect.

  13. New strategy for sepsis: Targeting a key role of platelet-neutrophil interaction

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2014-07-01

    Full Text Available Neutrophil and platelet are essential arms of the innate immune response. In sepsis, platelet abnormal activation as well as neutrophil paralysis are well recognized. For platelet, it is characterized by the contribution to disseminated intravascular coagulation (DIC and the enhanced inflammation response. In terms of neutrophil, its dysfunction is manifested by the impaired recruitment and migration to the infectious foci, abnormal sequestration in the remote organs, and the delayed clearance. More recently, it has been apparent that together platelet-neutrophil interaction can induce a faster and harder response during sepsis. This article focuses on the activation of platelet, dysfunction of neutrophil, and the interaction between them during sepsis and profiles some of the molecular mechanisms and outcomes in these cellular dialogues, providing a novel strategy for treatment of sepsis.

  14. Improving email strategies to target stress and productivity in clinical practice.

    Science.gov (United States)

    Armstrong, Melissa J

    2017-12-01

    Physician burnout is gaining increased attention in medicine and neurology and often relates to hours worked and insufficient time. One component of this is administrative burden, which relates to regulatory requirements and electronic health record tasks but may also involve increased time spent processing emails. Research in academic medical centers demonstrates that physicians face increasing inbox sizes related to mass distribution emails from various sources on top of emails required for patient care, research, and teaching. This commentary highlights the contribution of administrative tasks to physician burnout, research to date on email in medical contexts, and corporate strategies for reducing email burden that are applicable to neurology clinical practice. Increased productivity and decreased stress can be achieved by limiting the amount one accesses email, managing inbox size, and utilizing good email etiquette. Department and practice physician leaders have roles in decreasing email volume and modeling good practice.

  15. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy.

    Science.gov (United States)

    Jacobsen, Jonathan Henry W; Hutchinson, Mark R; Mustafa, Sanam

    2016-02-01

    Drug addiction and dependence have proven to be difficult psychiatric disorders to treat. The limited efficacy of neuronally acting medications, such as acamprosate and naltrexone, highlights the need to identify novel targets. Recent research has underscored the importance of the neuroimmune system in many behavioural manifestations of drug addiction. In this review, we propose that our appreciation for complex phenotypes such as drug addiction and dependence will come with a greater understanding that these disorders are the result of intricate, interconnected signalling pathways that are, if only partially, determined at the receptor level. The idea of receptor heteromerisation and receptor mosaics will be introduced to explain cross talk between the receptors and signalling molecules implicated in neuroimmune signalling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Targeting sTNF/TNFR1 Signaling as a New Therapeutic Strategy

    Directory of Open Access Journals (Sweden)

    Roman Fischer

    2015-03-01

    Full Text Available Deregulation of the tumor necrosis factor (TNF plays an important role in the initiation and perpetuation of chronic inflammation and has been implicated in the development of various autoimmune diseases. Accordingly, TNF-inhibitors are successfully used for the treatment of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, total inhibition of TNF can cause severe side effects such as an increased risk of inflammation and reactivation of tuberculosis. This is likely due to the different actions of the two TNF receptors. Whereas TNFR1 predominantly promotes inflammatory signaling pathways, TNFR2 mediates immune modulatory functions and promotes tissue homeostasis and regeneration. Therefore, the specific blockage of TNFR1 signaling, either by direct inhibition with TNFR1-selective antagonists or by targeting soluble TNF, which predominantly activates TNFR1, may prevent the detrimental effects associated with total TNF-inhibitors and constitute a next-generation approach to interfere with TNF.

  17. The role of EGFR-targeting strategies in the treatment of head and neck cancer

    Directory of Open Access Journals (Sweden)

    Dequanter D

    2012-07-01

    Full Text Available Didier Dequanter, Mohammad Shahla, Pascal Paulus, Philippe H LothaireDepartment of Surgery, CHU Charleroi (Hopital Andre Vésale, Montigny le Tilleul, BelgiumAbstract: With its targeted mechanism of action and synergistic activity with current treatment modalities, cetuximab is a potentially valuable treatment option for patients with recurrent and/or metastatic squamous cell cancer of the head and neck who have progressed on cisplatin-based chemotherapy. The use of cetuximab in combination with radiotherapy as definitive treatment for locoregionally advanced squamous cell cancer of the head and neck is generally restricted to patients unfit to receive cisplatin-based chemoradiation, which is still considered the standard of care. The effect of this epidermal growth factor receptor antagonist occurs without any change in the pattern and the severity of toxicity usually associated with head and neck radiation.Keywords: cetuximab, SCCHN, radiotherapy

  18. Targeted therapy and personalized medicine in hepatocellular carcinoma: drug resistance, mechanisms, and treatment strategies

    Directory of Open Access Journals (Sweden)

    Galun D

    2017-07-01

    Full Text Available Danijel Galun,1,2 Tatjana Srdic-Rajic,3 Aleksandar Bogdanovic,1 Zlatibor Loncar,2,4 Marinko Zuvela1,2 1Hepato-Pancreato-Biliary Unit, University Clinic for Digestive Surgery, Clinical Center of Serbia, 2Medical School, University of Belgrade, 3Institute for Oncology and Radiology of Serbia/Unit for Experimental Oncology, 4Emergency Center, Clinical Center of Serbia, Belgrade, Serbia Abstract: Hepatocellular carcinoma (HCC is characterized by a growing number of new cases diagnosed each year that is nearly equal to the number of deaths from this cancer. In a majority of the cases, HCC is associated with the underlying chronic liver disease, and it is diagnosed in advanced stage of disease when curative treatment options are not applicable. Sorafenib is a treatment of choice for patients with performance status 1 or 2 and/or macrovascular invasion or extrahepatic spread, and regorafenib is the only systemic treatment found to provide survival benefit in HCC patients progressing on sorafenib treatment. Other drugs tested in different trials failed to demonstrate any benefit. Disappointing results of numerous trials testing the efficacy of various drugs indicate that HCC has low sensitivity to chemotherapy that is in great part caused by multidrug resistance. Immunotherapy for HCC is a new challenging treatment option and involves immune checkpoint inhibitors/antibody-based therapy and peptide-based vaccines. Another challenging approach is microRNA-based therapy that involves two strategies. The first aims to inhibit oncogenic miRNAs by using miRNA antagonists and the second strategy is miRNA replacement, which involves the reintroduction of a tumor-suppressor miRNA mimetic to restore a loss of function. Keywords: hepatocellular carcinoma, drug resistance, multimodal treatment, chemotherapy 

  19. Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management.

    Science.gov (United States)

    Villa, Federica; Cappitelli, Francesca; Cortesi, Paolo; Kunova, Andrea

    2017-01-01

    The global food supply has been facing increasing challenges during the first decades of the 21 st century. Disease in plants is an important constraint to worldwide crop production, accounting for 20-40% of its annual harvest loss. Although the use of resistant varieties, good water management and agronomic practices are valid management tools in counteracting plant diseases, there are still many pathosystems where fungicides are widely used for disease management. However, restrictive regulations and increasing concern regarding the risk to human health and the environment, along with the incidence of fungicide resistance, have discouraged their use and have prompted for a search for new efficient, ecologically friendly and sustainable disease management strategies. The recent evidence of biofilm formation by fungal phytopathogens provides the scientific framework for designing and adapting methods and concepts developed by biofilm research that could be integrated in IPM practices. In this perspective paper, we provide evidence to support the view that the biofilm lifestyle plays a critical role in the pathogenesis of plant diseases. We describe the main factors limiting the durability of single-site fungicides, and we assemble the current knowledge on pesticide resistance in the specific context of the biofilm lifestyle. Finally, we illustrate the potential of antibiofilm compounds at sub-lethal concentrations for the development of an innovative, eco-sustainable strategy to counteract phytopathogenic fungi. Such fungicide-free solutions will be instrumental in reducing disease severity, and will permit more prudent use of fungicides decreasing thus the selection of resistant forms and safeguarding the environment.

  20. Potential Targets' Analysis Reveals Dual PI3K/mTOR Pathway Inhibition as a Promising Therapeutic Strategy for Uterine Leiomyosarcomas-an ENITEC Group Initiative

    NARCIS (Netherlands)

    Cuppens, T.; Annibali, D.; Coosemans, A.; Trovik, J.; Haar, N. Ter; Colas, E.; Garcia-Jimenez, A.; Vijver, K. van der; Kruitwagen, R.P.; Brinkhuis, M.; Zikan, M.; Dundr, P.; Huvila, J.; Carpen, O.; Haybaeck, J.; Moinfar, F.; Salvesen, H.B.; Stukan, M.; Mestdagh, C.; Zweemer, R.P.; Massuger, L.F.A.G.; Mallmann, M.R.; Wardelmann, E.; Mints, M.; Verbist, G.; Thomas, D; Gomme, E.; Hermans, E; Moerman, P.; Bosse, T.; Amant, F.

    2017-01-01

    Purpose: Uterine sarcomas are rare and heterogeneous tumors characterized by an aggressive clinical behavior. Their high rates of recurrence and mortality point to the urgent need for novel targeted therapies and alternative treatment strategies. However, no molecular prognostic or predictive

  1. Pathways for the release of polonium from a lead-bismuth spallation target (thermochemical calculation); Verfluechtigungspfade des Poloniums aus einem Pb-Bi-Spallationstarget (Thermochemische Kalkulation)

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, B.; Neuhausen, J

    2004-06-01

    An analysis of literature data for the thermochemical constants of polonium reveals considerable discrepancies in the relations of these data among each other as well as in their expected trends within the chalcogen group. This fact hinders a reliable assessment of possible reaction paths for the release of polonium from a liquid lead-bismuth spallation target. In this work an attempt is made to construct a coherent data set for the thermochemical properties of polonium and some of its compounds that are of particular importance with respect to the behaviour of polonium in a liquid Pb-Bi target. This data set is based on extrapolations using general trends throughout the periodic table and, in particular, within the chalcogen group. Consequently, no high accuracy should be attributed to the derived data set. However, the data set derived in this work is consistent with definitely known experimental data. Furthermore, it complies with the general trends of physicochemical properties within the chalcogen group. Finally, well known relations between thermochemical quantities are fulfilled by the data derived in this work. Thus, given the lack of accurate experimental data it can be regarded as best available data. Thermochemical constants of polonium hydride, lead polonide and polonium dioxide are derived based on extrapolative procedures. Furthermore, the possibility of formation of the gaseous intermetallic molecule BiPo, which has been omitted from discussion up to now, is investigated. From the derived thermochemical data the equilibrium constants of formation, release and dissociation reactions are calculated for different polonium containing species. Furthermore equilibrium constants are determined for the reaction of lead polonide and polonium dioxide with hydrogen, water vapour and the target components lead and bismuth. The most probable release pathways are discussed. From thermochemical evaluations polonium is expected to be released from liquid lead

  2. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    Science.gov (United States)

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Lymphatic-targeted therapy following neoadjuvant chemotherapy: a promising strategy for lymph node-positive breast cancer treatment.

    Science.gov (United States)

    Chen, Jianghao; Yao, Qing; Wang, Hui; Wang, Bo; Zhang, Juliang; Wang, Ting; Lv, Yonggang; Han, Zenghui; Wang, Ling

    2015-07-01

    Neoadjuvant chemotherapy has been increasingly used to downstage breast cancer prior to surgery recently. However, in some cases, it was observed that despite sufficient regression of primary tumors, the metastatic lymph nodes remained nonresponsive. In this study, we applied lymphatic-targeted strategy to evaluate its efficacy and safety for patients presenting refractory nodes following systemic chemotherapy. A total of 318 breast cancer patients were demonstrated with lymph node metastasis by needle biopsy and given neoadjuvant chemotherapy. Two cycles later, 72 patients were observed with responsive tumors but stable nodes, 42 of which received a subcutaneous injection of lymphatic-targeted pegylated liposomal doxorubicin during the third cycle, while the remaining 30 patients were continued with former neoadjuvant therapeutic pattern and regarded as the control. Lymphatic-targeted treatment substantially increased both clinical and pathological node response rate [62 % (26/42) vs. 13 % (4/30) and 12 % (5/42) vs. 0 (0/30), respectively], and induced a higher apoptosis level of metastatic cells (median, 41 vs. 6 %), compared with the control. Moreover, a higher disease-free survival was observed after a median follow-up of 4 years (69 vs. 56 %). Inflammatory reaction surrounding injection sites was the most common side effect. Lymphatic chemotherapy has reliable efficacy and well-tolerated toxicity for breast cancer patients presenting refractory lymph nodes following neoadjuvant chemotherapy.

  4. Two Strategies for the Development of Mitochondrion-Targeted Small Molecule Radiation Damage Mitigators

    International Nuclear Information System (INIS)

    Rwigema, Jean-Claude M.; Beck, Barbara; Wang Wei; Doemling, Alexander; Epperly, Michael W.; Shields, Donna; Goff, Julie P.; Franicola, Darcy; Dixon, Tracy; Frantz, Marie-Celine; Wipf, Peter; Tyurina, Yulia; Kagan, Valerian E.; Wang, Hong

    2011-01-01

    Purpose: To evaluate the effectiveness of mitigation of acute ionizing radiation damage by mitochondrion-targeted small molecules. Methods and Materials: We evaluated the ability of nitroxide-linked alkene peptide isostere JP4-039, the nitric oxide synthase inhibitor-linked alkene peptide esostere MCF201-89, and the p53/mdm2/mdm4 protein complex inhibitor BEB55 to mitigate radiation effects by clonogenic survival curves with the murine hematopoietic progenitor cell line 32D cl 3 and the human bone marrow stromal (KM101) and pulmonary epithelial (IB3) cell lines. The p53-dependent mechanism of action was tested with p53 +/+ and p53 -/- murine bone marrow stromal cell lines. C57BL/6 NHsd female mice were injected i.p. with JP4-039, MCF201-89, or BEB55 individually or in combination, after receiving 9.5 Gy total body irradiation (TBI). Results: Each drug, JP4-039, MCF201-89, or BEB55, individually or as a mixture of all three compounds increased the survival of 32D cl 3 (p = 0.0021, p = 0.0011, p = 0.0038, and p = 0.0073, respectively) and IB3 cells (p = 0.0193, p = 0.0452, p = 0.0017, and p = 0.0019, respectively) significantly relative to that of control irradiated cells. KM101 cells were protected by individual drugs (p = 0.0007, p = 0.0235, p = 0.0044, respectively). JP4-039 and MCF201-89 increased irradiation survival of both p53 +/+ (p = 0.0396 and p = 0.0071, respectively) and p53 -/- cells (p = 0.0007 and p = 0.0188, respectively), while BEB55 was ineffective with p53 -/- cells. Drugs administered individually or as a mixtures of all three after TBI significantly increased mouse survival (p = 0.0234, 0.0009, 0.0052, and 0.0167, respectively). Conclusion: Mitochondrial targeting of small molecule radiation mitigators decreases irradiation-induced cell death in vitro and prolongs survival of lethally irradiated mice.

  5. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Wang, Dapeng [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Yamanaka, Kenzo [Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba (Japan); An, Yan, E-mail: dranyan@126.com [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China)

    2015-12-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  6. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Yang, Xu; Wang, Dapeng; Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian; Yamanaka, Kenzo; An, Yan

    2015-01-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  7. Do strategies to improve quality of maternal and child health care in lower and middle income countries lead to improved outcomes? A review of the evidence.

    Science.gov (United States)

    Dettrick, Zoe; Firth, Sonja; Jimenez Soto, Eliana

    2013-01-01

    Efforts to scale-up maternal and child health services in lower and middle income countries will fail if services delivered are not of good quality. Although there is evidence of strategies to increase the quality of health services, less is known about the way these strategies affect health system goals and outcomes. We conducted a systematic review of the literature to examine this relationship. We undertook a search of MEDLINE, SCOPUS and CINAHL databases, limiting the results to studies including strategies specifically aimed at improving quality that also reported a measure of quality and at least one indicator related to health system outcomes. Variation in study methodologies prevented further quantitative analysis; instead we present a narrative review of the evidence. Methodologically, the quality of evidence was poor, and dominated by studies of individual facilities. Studies relied heavily on service utilisation as a measure of strategy success, which did not always correspond to improved quality. The majority of studies targeted the competency of staff and adequacy of facilities. No strategies addressed distribution systems, public-private partnership or equity. Key themes identified were the conflict between perceptions of patients and clinical measures of quality and the need for holistic approaches to health system interventions. Existing evidence linking quality improvement strategies to improved MNCH outcomes is extremely limited. Future research would benefit from the inclusion of more appropriate indicators and additional focus on non-facility determinants of health service quality such as health policy, supply distribution, community acceptability and equity of care.

  8. Culturally sensitive strategies designed to target the silent epidemic of hepatitis B in a Filipino community.

    Science.gov (United States)

    Marineau, Michelle; Tice, Alan D; Taylor-Garcia, David; Akinaka, Kenneth T; Lusk, Heather; Ona, Fernando

    2007-06-01

    Hepatitis B is frequent in the Philippines. A high rate of immigration to the United States has brought many Filipinos with infections who are asymptomatic yet will go on to develop liver cancer and cirrhosis unless diagnose and evaluated. Interventions are necessary to educate this ethnic community, identify those infected, and offer therapy. In an effort to reach this high risk population in Hawai'i an intervention program was designed to address the silent epidemic of hepatitis. Ethnic barriers were crossed through involvement of trusted, key stakeholders and individuals within the Filipino health care and church communities, along with groups that had joint missions to address viral hepatitis. After extensive planning and meetings with faith-based organizations and health care providers in the Filipino community, it was decided to hold a community health fair in the Filipino community to provide culturally appropriate health information and services. More than 500 individuals attended the health fair; 167 participated in a survey and were tested for hepatitis B. Significant knowledge gaps were found in relation to risk factors, prevention strategies, and transmission. Five individuals tested positive; all were immigrants and did not know of their disease. The objective to educate people and test them for hepatitis was successful through utilizing ethnic community leaders, religious organizations, health care professionals, and a collaborative health fair.

  9. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.

    Science.gov (United States)

    Ciechanover, Aaron; Kwon, Yong Tae

    2015-03-13

    Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.

  10. MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors

    Science.gov (United States)

    Birsoy, Kivanc; Wang, Tim; Possemato, Richard; Yilmaz, Omer H.; Koch, Catherine E.; Chen, Walter W.; Hutchins, Amanda W.; Gultekin, Yetis; Peterson, Tim R.; Carette, Jan E.; Brummelkamp, Thijn R.; Clish, Clary B.; Sabatini, David M.

    2012-01-01

    SUMMARY There is increasing evidence that oncogenic transformation modifies the metabolic program of cells. A common alteration is the upregulation of glycolysis, and efforts to target glycolytic enzymes for anti-cancer therapy are underway. Here, we performed a genome-wide haploid genetic screen to identify resistance mechanisms to 3-bromopyruvate (3-BrPA), a drug candidate that inhibits glycolysis in a poorly understood fashion. We identified the SLC16A1 gene product, MCT1, as the main determinant of 3-BrPA sensitivity. MCT1 is necessary and sufficient for 3-BrPA uptake by cancer cells. Additionally, MCT1 mRNA levels are the best predictor of 3-BrPA sensitivity and are most elevated in glycolytic cancer cells. Lastly, forced MCT1 expression in 3-BrPA resistant cancer cells sensitizes tumor xenografts to 3-BrPA treatment in vivo. Our results identify a potential biomarker for 3-BrPA sensitivity and provide proof of concept that the selectivity of cancer-expressed transporters can be exploited for delivering toxic molecules to tumors. PMID:23202129

  11. Al-Qaida threats and strategies : the religious justification for targeting the international energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.F.

    2008-03-15

    Methods of analyzing threats generated by terrorists against the energy industry were discussed. Threat was defined as the product of an adversary's capability, intent, and authority to engage a target using a specific attack mode. The paper argued that robust models for threat must demonstrate a cultural awareness of the adversary in question. The study used an al-Qaida attack to develop and critique the religious justification offered by Salafi-Jihadi religious scholars for attacking the energy industry. The importance of the fatawa's religious authority was evaluated, and cultural drivers for al-Qaida were explored in relation to the threat model. An assessment of past terrorist acts against energy industry infrastructure was conducted. Various relevant fatawa issued by religious scholars were discussed. Socio-political and religious attributes of the al-Qaida movement were outlined using the Combating Terrorism Center's militant ideology atlas. The threat equation was expanded to include authority and cultural influences. The threat model was developed by assigning information to bins of capability, intent, and authority in order to assess and evaluate data. The Kalman filter technique was used to determine threat drivers. 98 refs., 20 figs.

  12. Basic targeting strategies for rendezvous and flyby missions to the near-Earth asteroids

    Science.gov (United States)

    Perozzi, Ettore; Rossi, Alessandro; Valsecchi, Giovanni B.

    2001-01-01

    Missions to asteroids and comets are becoming increasingly feasible both from a technical and a financial point of view. In particular, those directed towards the Near-Earth Asteroids have proven suitable for a low-cost approach, thus attracting the major space agencies as well as private companies. The choice of a suitable target involves both scientific relevance and mission design considerations, being often a difficult task to accomplish due to the limited energy budget at disposal. The aim of this paper is to provide an approach to basic trajectory design which allows to account for both aspects of the problem, taking into account scientific and technical information. A global characterization of the Near-Earth Asteroids population carried out on the basis of their dynamics, physical properties and flight dynamics considerations, allows to identify a group of candidates which satisfy both, the scientific and engineering requirements. The feasibility of rendezvous and flyby missions towards them is then discussed and the possibility of repeated encounters with the same object is investigated, as an intermediate scenario. Within this framework, the capability of present and near future launch and propulsion systems for interplanetary missions is also addressed.

  13. Interrupting the natural history of diabetes mellitus: lifestyle, pharmacological and surgical strategies targeting disease progression.

    Science.gov (United States)

    Khavandi, Kaivan; Brownrigg, Jack; Hankir, Mohammed; Sood, Harpreet; Younis, Naveed; Worth, Joy; Greenstein, Adam; Soran, Handrean; Wierzbicki, Anthony; Goldsmith, David J

    2014-01-01

    In recent decades we have seen a surge in the incidence of diabetes in industrialized nations; a threat which has now extended to the developing world. Type 2 diabetes is associated with significant microvascular and macrovascular disease, with considerable impact on morbidity and mortality. Recent evidence has cast uncertainty on the benefits of very tight glycaemic goals in these individuals. The natural history of disease follows an insidious course from disordered glucose metabolism in a pre-diabetic state, often with metabolic syndrome and obesity, before proceeding to diabetes mellitus. In the research setting, lifestyle, pharmacological and surgical intervention targeted against obesity and glycaemia has shown that metabolic disturbances can be halted and indeed regressed if introduced at an early stage of disease. In addition to traditional anti-diabetic medications such as the glinides, sulphonylureas and the glitazones, novel therapies manipulating the endocannabinoid system, neurotransmitters, intestinal absorption and gut hormones have shown dual benefit in weight loss and glycaemic control normalisation. Whilst these treatments will not and should not replace lifestyle change, they will act as invaluable adjuncts for weight loss and aid in normalising the metabolic profile of individuals at risk of diabetes. Utilizing novel therapies to prevent diabetes should be the focus of future research, with the aim of preventing the challenging microvascular and macrovascular complications, and ultimately cardiovascular death.

  14. Adaptive co-evolution of strategies and network leading to optimal cooperation level in spatial prisoner's dilemma game

    International Nuclear Information System (INIS)

    Han-Shuang, Chen; Zhong-Huai, Hou; Hou-Wen, Xin; Ji-Qian, Zhang

    2010-01-01

    We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability p or update their strategies with probability 1 – p depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of p via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve. (general)

  15. Collaborative Teaching Strategies Lead to Retention of Skills in Acid-Base Physiology: A 2-Yr Follow-Up Study

    Science.gov (United States)

    Hartmann, Jacob P.; Toksvang, Linea Natalie; Berg, Ronan M. G.

    2015-01-01

    A basic understanding of acid-base physiology is critical for the correct assessment of arterial blood gases in the clinical setting. In this context, collaborative teaching strategies in the undergraduate classroom setting may be useful, since it has been reported to enhance both transfer and retention of learned material in a time-efficient…

  16. Targeting protein neddylation: a novel therapeutic strategy for the treatment of cancer.

    Science.gov (United States)

    Wang, Meng; Medeiros, Bruno C; Erba, Harry P; DeAngelo, Daniel J; Giles, Francis J; Swords, Ronan T

    2011-03-01

    The NEDD8 (neural precursor cell-expressed developmentally downregulated 8) conjugation pathway regulates the post-translational modification of oncogenic proteins. This pathway has important potential for cancer therapeutics. Several proteins vital in cancer biology are regulated by protein neddylation. These observations led to the development of a small molecule inhibitor that disrupts protein neddylation and leads to cancer cell death and important activity in early phase clinical trials. This review provides an extensive coverage of cellular protein homeostasis with particular emphasis on the NEDD8 conjugation pathway. Insights into a new investigational drug that specifically disrupts the NEDD8 pathway are discussed. The clinical data for this agent are also updated. Neddylation controls key cellular pathways found to be dysregulated in many cancers. Protein neddylation is a relatively under-explored pathway for pharmacologic inhibition in cancer. Selective disruption of this pathway has demonstrated clinical activity in patients with myeloid neoplasms and is worth exploring further in combination with other anti-leukemia agents.

  17. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    Science.gov (United States)

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  18. Pharmacological targeting of p53 through RITA is an effective antitumoral strategy for malignant pleural mesothelioma.

    Science.gov (United States)

    Di Marzo, Domenico; Forte, Iris Maria; Indovina, Paola; Di Gennaro, Elena; Rizzo, Valeria; Giorgi, Francesca; Mattioli, Eliseo; Iannuzzi, Carmelina Antonella; Budillon, Alfredo; Giordano, Antonio; Pentimalli, Francesca

    2014-01-01

    Malignant mesothelioma, a very aggressive tumor associated to asbestos exposure, is expected to increase in incidence, and unfortunately, no curative modality exists. Reactivation of p53 is a new attractive antitumoral strategy. p53 is rarely mutated in mesothelioma, but it is inactivated in most tumors by the lack of p14(ARF). Here, we evaluated the feasibility of this approach in pleural mesothelioma by testing RITA and nutlin-3, two molecules able to restore p53 function through a different mechanism, on a panel of mesothelioma cell lines representing the epithelioid (NCI-H28, NCI-H2452, IST-MES 2), biphasic (MSTO-211H), and sarcomatoid (NCI-H2052) histotypes compared with the normal mesothelial HMC-hTERT. RITA triggered robust caspase-dependent apoptosis specifically in epithelioid and biphasic mesothelioma cell lines, both through wild-type and mutant p53, concomitant to p21 downregulation. Conversely, nutlin-3 induced a p21-dependent growth arrest, rather than apoptosis, and was slightly toxic on HMC-hTERT.   Interestingly, we identified a previously undetected point mutation of p53 (p.Arg249Ser) in IST-MES 2, and showed that RITA is also able to reactivate this p53 mutant protein and its apoptotic function. RITA reduced tumor growth in a MSTO-211H-derived xenograft model of mesothelioma and synergized with cisplatin, which is the mainstay of treatment for this tumor. Our data indicate that reactivation of p53 and concomitant p21 downregulation effectively induce cell death in mesothelioma, a tumor characterized by a high intrinsic resistance to apoptosis. Altogether, our findings provide the preclinical framework supporting the use of p53-reactivating agents alone, or in combination regimens, to improve the outcome of patients with mesothelioma.

  19. Targeting the VEGF pathway: antiangiogenic strategies in the treatment of non-small cell lung cancer.

    Science.gov (United States)

    Aita, Marianna; Fasola, Gianpiero; Defferrari, Carlotta; Brianti, Annalisa; Bello, Maria Giovanna Dal; Follador, Alessandro; Sinaccio, Graziella; Pronzato, Paolo; Grossi, Francesco

    2008-12-01

    The management of advanced non-small cell lung cancer (NSCLC) has evolved considerably in recent years, due to a progressive understanding of tumour biology and the identification of promising molecular targets. Several agents have been developed so far inhibiting vascular endothelial growth factor (VEGF) - a key protein in tumour neoangiogenesis, growth and dissemination - or its receptor signalling system. The finding in study E4599 of a survival benefit for carboplatin-paclitaxel plus bevacizumab - a humanised anti-VEGF monoclonal antibody - over chemotherapy (CT) alone led the U.S. Food and Drug Administration (FDA) to approve the novel combination for first-line treatment of patients with unresectable, locally advanced, recurrent or metastatic non-squamous NSCLC. In a randomised phase III trial presented at the American Society of Clinical Oncology (ASCO) 2007 Annual Meeting, patients receiving cisplatin-gemcitabine plus bevacizumab experienced a significantly longer progression-free survival (PFS) compared to the standard arm. Based on these data, the European Medicines Agency (EMEA) has granted marketing authorisation for bevacizumab in addition to any platinum-based CT for first-line treatment of advanced NSCLC other than predominantly squamous histology. Aim of this report is to provide an overview on bevacizumab in NSCLC, with special emphasis on clinical results presented at ASCO last meeting. Multitargeted tyrosine kinase inhibitors (TKIs), sharing a focus on both the angiogenesis process and additional cell-surface receptors, and VEGF Trap, a novel fusion protein with markedly higher affinity for VEGF than bevacizumab, will be briefly discussed as well.

  20. Selective targeting of the mTORC1/2 protein kinase complexes leads to antileukemic effects in vitro and in vivo

    International Nuclear Information System (INIS)

    Schuster, K; Zheng, J; Arbini, A A; Zhang, C C; Scaglioni, P P

    2011-01-01

    The BCR/ABL tyrosine kinase promotes leukemogenesis through activation of several targets that include the phosphoinositide 3-kinase (PI3K). Tyrosine kinase inhibitors (TKIs), which target BCR/ABL, induce striking clinical responses. However, therapy with TKIs is associated with limitations such as drug intolerance, inability to universally eradicate the disease and emergence of BCR/ABL drug-resistant mutants. To overcome these limitations, we tested whether inhibition of the PI3K/target of rapamycin (mTOR) signaling pathway has antileukemic effect in primary hematopoietic stem cells and BA/F3 cells expressing the BCR/ABL oncoprotein. We determined that dual inhibition of PI3K/mTOR causes growth arrest and apoptosis leading to profound antileukemic effects both in vitro and in vivo. We also established that pharmacologic inhibition of the mTORC1/mTORC2 complexes is sufficient to cause these antileukemic effects. Our results support the development of inhibitors of the mTORC1/2 complexes for the therapy of leukemias that either express BCR/ABL or display deregulation of the PI3K/mTOR signaling pathway

  1. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 deg

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Dipartimento di Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milan (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan (Italy); Birattari, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan (Italy); Universita degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, 20133 Milan (Italy); Dimovasili, E. [CERN, 1211 Geneva 23 (Switzerland); Foglio Para, A. [Dipartimento di Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milan (Italy); Silari, M. [CERN, 1211 Geneva 23 (Switzerland)]. E-mail: marco.silari@cern.ch; Ulrici, L. [CERN, 1211 Geneva 23 (Switzerland); Vincke, H. [CERN, 1211 Geneva 23 (Switzerland)

    2005-02-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number.

  2. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 deg

    International Nuclear Information System (INIS)

    Agosteo, S.; Birattari, C.; Dimovasili, E.; Foglio Para, A.; Silari, M.; Ulrici, L.; Vincke, H.

    2005-01-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number

  3. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135°

    Science.gov (United States)

    Agosteo, S.; Birattari, C.; Dimovasili, E.; Foglio Para, A.; Silari, M.; Ulrici, L.; Vincke, H.

    2005-02-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135° with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number.

  4. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas.

    Directory of Open Access Journals (Sweden)

    A G de Lucas

    -specific-contrast imaging of MT1-MMP positive GBM tumors and provided strong evidence for utility of MT1-MMP-targeted immunoPET as an alternate to nonspecific imaging of GBM.

  5. Please Ask Gently: Using Culturally Targeted Communication Strategies to Initiate End-of-Life Care Discussions With Older Chinese Americans.

    Science.gov (United States)

    Chi, Han-Lin; Cataldo, Janine; Ho, Evelyn Y; Rehm, Roberta S

    2018-01-01

    Health-care providers (HCPs) find facilitating end-of-life (EOL) care discussions challenging, especially with patients whose ethnicities differ from their own. Currently, there is little guidance on how to initiate and facilitate such discussions with older Chinese Americans (≥55 years) and their families. To explore communication strategies for HCPs to initiate EOL care discussions with older Chinese Americans in the San Francisco Bay Area. This qualitative (focused) ethnographic study included field observations and individual semistructured interviews with 14 community-dwelling older Chinese Americans who lived independently at home, 9 adult children, and 7 HCPs. Responses were analyzed using open coding, memos, and comparison across participants. The study participants emphasized the importance of assessing readiness for early EOL care discussions. All recommended using indirect communication approaches to determine older Chinese Americans' readiness. Indirect communication can be culturally targeted and applied at both system-wide (ie, health-care system) and individual (ie, HCP) levels. To institutionalize the practice, health-care facilities should implement EOL care discussion inquiries as part of routine during check-in or intake questionnaires. In individual practice, using depersonalized communication strategies to initiate the discussion was recommended to determine older Chinese Americans' readiness. Assessing readiness should be an essential and necessary action for early EOL care discussions. Culturally targeted assessment of older Chinese Americans includes using indirect communication approaches to initiate an EOL care discussion to determine their readiness. In addition to health-care system integration, providers should implement and evaluate proposed EOL discussion initiation prompts with their older Chinese American patients.

  6. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness.

    Science.gov (United States)

    Abdeen, Sanofar; Salim, Nilshad; Mammadova, Najiba; Summers, Corey M; Goldsmith-Pestana, Karen; McMahon-Pratt, Diane; Schultz, Peter G; Horwich, Arthur L; Chapman, Eli; Johnson, Steven M

    2016-11-01

    Trypanosoma brucei are protozoan parasites that cause African sleeping sickness in humans (also known as Human African Trypanosomiasis-HAT). Without treatment, T. brucei infections are fatal. There is an urgent need for new therapeutic strategies as current drugs are toxic, have complex treatment regimens, and are becoming less effective owing to rising antibiotic resistance in parasites. We hypothesize that targeting the HSP60/10 chaperonin systems in T. brucei is a viable anti-trypanosomal strategy as parasites rely on these stress response elements for their development and survival. We recently discovered several hundred inhibitors of the prototypical HSP60/10 chaperonin system from Escherichia coli, termed GroEL/ES. One of the most potent GroEL/ES inhibitors we discovered was compound 1. While examining the PubChem database, we found that a related analog, 2e-p, exhibited cytotoxicity to Leishmania major promastigotes, which are trypanosomatids highly related to Trypanosoma brucei. Through initial counter-screening, we found that compounds 1 and 2e-p were also cytotoxic to Trypanosoma brucei parasites (EC 50 =7.9 and 3.1μM, respectively). These encouraging initial results prompted us to develop a library of inhibitor analogs and examine their anti-parasitic potential in vitro. Of the 49 new chaperonin inhibitors developed, 39% exhibit greater cytotoxicity to T. brucei parasites than parent compound 1. While many analogs exhibit moderate cytotoxicity to human liver and kidney cells, we identified molecular substructures to pursue for further medicinal chemistry optimization to increase the therapeutic windows of this novel class of chaperonin-targeting anti-parasitic candidates. An intriguing finding from this study is that suramin, the first-line drug for treating early stage T. brucei infections, is also a potent inhibitor of GroEL/ES and HSP60/10 chaperonin systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Targeting the upstream transcriptional activator of PD-L1 as an alternative strategy in melanoma therapy.

    Science.gov (United States)

    Zhu, Bo; Tang, Liming; Chen, Shuyang; Yin, Chengqian; Peng, Shiguang; Li, Xin; Liu, Tongzheng; Liu, Wei; Han, Changpeng; Stawski, Lukasz; Xu, Zhi-Xiang; Zhou, Guangbiao; Chen, Xiang; Gao, Xiumei; Goding, Colin R; Xu, Nan; Cui, Rutao; Cao, Peng

    2018-05-22

    Programmed cell death ligand 1 (PD-L1) interacts with programmed cell death protein-1 (PD-1) as an immune checkpoint. Reactivating the immune response by inhibiting PD-L1 using therapeutic antibodies provides substantial clinical benefits in many, though not all, melanoma patients. However, transcriptional suppression of PD-L1 expression as an alternative therapeutic anti-melanoma strategy has not been exploited. Here we provide biochemical evidence demonstrating that ultraviolet radiation (UVR) induction of PD-L1 in skin is directly controlled by nuclear factor E2-related transcription factor 2 (NRF2). Depletion of NRF2 significantly induces tumor infiltration by both CD8 + and CD4 + T cells to suppress melanoma progression, and combining NRF2 inhibition with anti-PD-1 treatment enhanced its anti-tumor function. Our studies identify a critical and targetable PD-L1 upstream regulator and provide an alternative strategy to inhibit the PD-1/PD-L1 signaling in melanoma treatment.

  8. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    Science.gov (United States)

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM 2.5 ) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM 2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.

  9. Design and Evaluation for Target Indicated Torque Based Engine Starting Control Strategy in a High Pressure Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Xuedong Lin

    2016-01-01

    Full Text Available The diesel engine power demand of the start condition can be separated into two parts including resistance overcoming and acceleration realization for the reason that there is no power output during the starting process. The present paper mainly focuses on the fuel injection quantity control based on the engine power demand especially the acceleration demand for the resistance force is fixed for a specific engine, and the starting acceleration velocity is set as a target curve so that the acceleration process can also be fixed. The feasibility of the start control strategy proposed in this paper was verified by a comparison of the traditional starting control with a constant fuel quantity, and starting performance of the target acceleration based control shows predominance to the constant quantity control. And then the comparison between various starting acceleration processes, which was realized by the settings of acceleration curve slope factor, was conducted and results showed that the acceleration processes with higher slope factors perform better.

  10. A novel synergetic targeting strategy for glioma therapy employing borneol combination with angiopep-2-modified, DOX-loaded PAMAM dendrimer.

    Science.gov (United States)

    Han, Shunping; Zheng, Hongyue; Lu, Yanping; Sun, Yue; Huang, Anhao; Fei, Weidong; Shi, Xiaowei; Xu, Xiuling; Li, Jingjing; Li, Fanzhu

    2018-01-01

    Glioma is the most common primary malignant brain tumour and the effect of chemotherapy is hampered by low permeability across the blood-brain-barrier (BBB). Borneol is a time-honoured 'Guide' drug in traditional Chinese medicine and has been proved to be capable of promoting free drugs into the brain efficiently, but there are still risks that free drugs, especially anti-glioma drugs, may be disassembled and metabolised before penetrating the BBB and caused the whole brain distribution. The purpose of this paper was to investigate whether borneol intervention could facilitate the BBB penetration and assist glioma treatment by combining with doxorubicin (DOX) loaded PAMAM dendrimers drug delivery system modified with Angiopep-2 (a ligand of the low-density lipoprotein receptor-related protein, which overexpress both in the BBB and gliomas). The results demonstrated that Angiopep-2 modification could actually enhance the affinity between the dendrimers and the targeting cells and finally increase the cell uptake and boost the anti-tumour ability. Borneol physical combination could further enhance the anti-tumour efficiency of this targeting drug delivery system (TDDS) after penetrating BBB. Compared with free DOX solution, this TDDS illustrated obviously sustained and pH-dependent drug release. This suggested that this synergetic strategy provided a promising way for glioma therapy.

  11. Highlights from the 2015 WIN Symposium: novel targets, innovative agents, and advanced technologies-a WINning strategy?

    Science.gov (United States)

    Schilsky, Richard L

    2015-01-01

    The worldwide innovative networking (WIN) consortium comprises a global alliance of 28 academic and clinical cancer centres, 11 pharmaceutical and technology companies and five charitable or health payer organisations. Since its inception the consortium has striven to provide a forum for all of its members to network, share information and experience, and perform clinical trials with the overarching goal of advancing the care of patients with cancer through the use of precision medicine. The annual 2-day WIN Symposium is the most visible output of the consortium and provides an opportunity for around 400 experts and other delegates to meet and discuss the latest research and initiatives in personalised cancer medicine. The seventh WIN Symposium, held in Paris, France, 29-30 June 2015, consisted of nine plenary and eight poster sessions that covered the overarching theme of novel targets, innovative agents, and advanced technologies being a winning strategy. Highlights included discussions of immune mechanisms and ways to target the cancer immunome and systems biology approaches to supporting personalised cancer. The latest data from the BATTLE-2 and WINther trials were discussed, and round table discussions were held that focused on how best to design the next generation of clinical trials, which included SPRING, SUMMER, and BOOSTER being initiated by the WIN Consortium.

  12. Targeting of free fatty acid receptor 1 in EOC: A novel strategy to restrict the adipocyte-EOC dependence.

    Science.gov (United States)

    Munkarah, Adnan; Mert, Ismail; Chhina, Jasdeep; Hamid, Suhail; Poisson, Laila; Hensley-Alford, Sharon; Giri, Shailendra; Rattan, Ramandeep

    2016-04-01

    Adipocyte derived free fatty acids (FFA) promote epithelial ovarian cancer (EOC) by acting as a fuel source to support the energy requirement of the cancer cells. FFA may also exert biological effects through signaling pathways. Recently, a family of FFA activated G-protein coupled receptors (FFAR/GPCRs) was identified. Our objective was to investigate the role of FFAR/GPCRs in EOC and assess their potential as therapeutic targets. The mRNA (RT-PCR) expression of FFAR/GPCR family members (FFAR1/GPR40; FFAR2/GPR43, FFAR3/GPR41, FFAR4/GPR120 and GPR84) was examined in: (1) a syngeneic mouse model of EOC fed high energy diet (60% fat) or regular diet (30% fat), (2) EOC cell lines exposed to free fatty acids and (3) specimens from 13 histologically normal ovaries and 28 high grade ovarian serous carcinomas. The GPR 40 antagonist, GW1100, was used to inhibit FFAR1/GPR40 and cell survival was assayed by MTT in various cell lines. High Grade Serous carcinoma specimens expressed significantly increased GPR40 compared to normal ovaries (p=0.0020). Higher expression was noted in advanced stage disease. ID8 ovarian tumors from mice fed with high fat diet also showed higher GPR40 expression. Exposing EOC cells to FFAs, increased GPR40 expression. Treatment of EOC cell lines with GW100 resulted in growth inhibition and was associated with an alteration in their energy metabolism. FFA-induced cancer cell growth may be partly mediated through FFAR1/GPR40. Targeting of FFAR1/GPR40 may be an attractive treatment strategy in EOC, and possibly offers a targeted treatment for a subset of EOC patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. An N-targeting real-time PCR strategy for the accurate detection of spring viremia of carp virus.

    Science.gov (United States)

    Shao, Ling; Xiao, Yu; He, Zhengkan; Gao, Longying

    2016-03-01

    Spring viremia of carp virus (SVCV) is a highly pathogenic agent of several economically important Cyprinidae fish species. Currently, there are no effective vaccines or drugs for this virus, and prevention of the disease mostly relies on prompt diagnosis. Previously, nested RT-PCR and RT-qPCR detection methods based on the glycoprotein gene G have been developed. However, the high genetic diversity of the G gene seriously limits the reliability of those methods. Compared with the G gene, phylogenetic analyses indicate that the nucleoprotein gene N is more conserved. Furthermore, studies in other members of the Rhabdoviridae family reveals that their gene transcription level follows the order N>P>M>G>L, indicating that an N gene based RT-PCR should have higher sensitivity. Therefore, two pairs of primers and two corresponding probes targeting the conserved regions of the N gene were designed. RT-qPCR assays demonstrated all primers and probes could detect phylogenetically distant isolates specifically and efficiently. Moreover, in artificially infected fish, the detected copy numbers of the N gene were much higher than those of the G gene in all tissues, and both the N and G gene copy numbers were highest in the kidney and spleen. Testing in 1100 farm-raised fish also showed that the N-targeting strategy was more reliable than the G-targeting methods. The method developed in this study provides a reliable tool for the rapid diagnosis of SVCV. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Targeting of chromatin readers: a novel strategy used by the Shigella flexneri virulence effector OspF to reprogram transcription

    Directory of Open Access Journals (Sweden)

    Habiba Harouz

    2014-12-01

    Full Text Available Shigella flexneri, a gram-negative bacterium responsible of bacillary dysentery, uses multiple strategies to overcome host immune defense. We have decrypted how this bacterium manipulates host-cell chromatin binders to take control of immune gene expression. We found that OspF, an injected virulence factor previously identified as a repressor of immune gene expression, targets the chromatin reader HP1γ. Heterochromatin Protein 1 family members specifically recognize and bind histone H3 methylated at Lys 9. Although initially identified as chromatin-associated transcriptional silencers in heterochromatin, their location in euchromatin indicates an active role in gene expression. Notably, HP1γ phosphorylation at Serine 83 defines a subpopulation exclusively located to euchromatin, targeted to the site of transcriptional elongation. We showed that OspF directly interacts with HP1γ, and causes HP1 dephosphorylation, suggesting a model in which this virulence effector “uses” HP1 proteins as beacons to target and repress immune gene expression (Harouz, et al. EMBO J (2014. OspF alters HP1γ phosphorylation mainly by inactivating the Erk-activated kinase MSK1, spotlighting it as a new HP1 kinase. In vivo, infectious stresses trigger HP1γ phosphorylation in the colon, principally in the lamina propria and the intestinal crypts. Several lines of evidence suggest that HP1 proteins are modified as extensively as histones, and decrypting the impact of these HP1 post-translational modifications on their transcriptional activities in vivo will be the next challenges to be taken up.

  15. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    Science.gov (United States)

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  16. Upgrading of smallholder agro-food production in Africa: the role of lead firm strategies and new markets

    DEFF Research Database (Denmark)

    Fold, Niels; Larsen, Marianne Nylandsted

    2011-01-01

    of the co-existing collaboration and intensified rivalry between lead firms within the same chain. The other is caused by new opportunities and challenges stemming from increased requirements on retailer-driven markets in the North and expansion of new markets in the South. The paper points out the need...... to rectify the heavily biased policy focus on standard compliance with the purpose of strengthening smallholder incorporation and upgrading in retailer-driven strands of global value chains ending in the North. Instead, markets in the South and in emerging economies may function as a training ground...

  17. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120.

    Science.gov (United States)

    Curreli, Francesca; Belov, Dmitry S; Kwon, Young Do; Ramesh, Ranjith; Furimsky, Anna M; O'Loughlin, Kathleen; Byrge, Patricia C; Iyer, Lalitha V; Mirsalis, Jon C; Kurkin, Alexander V; Altieri, Andrea; Debnath, Asim K

    2018-05-12

    We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR). We have selected three inhibitors with the high selectivity index for testing against a large panel of 55 Env-pseudotyped viruses representing a diverse set of clinical isolates of different subtypes. The antiviral activity of one of these potent inhibitors, 55 (NBD-14189), against some clinical isolates was as low as 63 nM. We determined the sensitivity of CD4-binding site mutated-pseudoviruses to these inhibitors to confirm that they target HIV-1 gp120. Furthermore, we assessed their ADMET properties and compared them to the clinical candidate attachment inhibitor, BMS-626529. The ADMET data indicate that some of these new inhibitors have comparable ADMET properties to BMS-626529 and can be optimized further to potential clinical candidates. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Novel anti-cancer strategy in bone tumors by targeting molecular and cellular modulators of bone resorption.

    Science.gov (United States)

    Brounais, Bénédicte; Ruiz, Carmen; Rousseau, Julie; Lamoureux, François; Blanchard, Frédéric; Heymann, Dominique; Redini, Françoise

    2008-11-01

    Tumor cells alter the balanced process of bone formation and bone resorption mediated respectively by osteoblasts and osteoclasts, leading to the disruption of the normal equilibrium and resulting in a spectrum of osteolytic to osteoblastic lesions. This review will summarize research on molecules that play direct and essential roles in the differentiation and activity of osteoclasts, and the role of these molecules in bone destruction caused by cancer. Results from experimental models suggest that the Receptor Activator of NF-kB Ligand (RANKL), a member of the TNF superfamily is a common effector of bony lesions in osteolysis caused by primary and secondary bone tumors. Therefore, osteoclast represents an attractive target across a broad range of tumors that develop in bone. Elucidation of the mechanisms of RANKL interactions with its activator (RANK) and decoy (osteoprotegerin: OPG) receptors has enable the development of pharmacological inhibitors of RANKL (and of its signalling pathway) which have been recently patented, with potential for the treatment of cancer-induced bone disease. Blocking bone resorption by specific other drugs such as bisphosphonates, inhibitors of cathepsin K (the main enzyme involved in bone resorption mechanisms) or signalling pathways regulating osteoclast differentiation and activation is also a promising target for the treatment of osteolysis associated to bone tumors.

  19. Analysis of the AGS experiment on a mercury target with a moderator and a lead reflector bombarded by GeV energy protons

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Meigo, Shin-ichiro; Kasugai, Yoshimi; Takada, Hiroshi; Ikeda, Yujiro; Ino, Takashi; Sato, Setsuo

    2001-01-01

    The AGS experiment on a mercury target with a moderator and a lead reflector bombarded by GeV energy protons was analyzed to investigate prediction capability of Monte Carlo simulation codes used in neutronic designs of spallation neutron sources. The NMTC/JAM code was used for nucleon meson transport calculations above 20 MeV while the MCNP-4A code with the JENDL cross section library was used for neutron transport below 20 MeV. The MCNPX code with the LA-150 library was also used for a reference. The calculations were compared with the experimental data obtained with 1.94, 12 and 24 GeV proton beams: (1) neutron flux distributions along the mercury target and (2) spectral fluxes of thermal neutrons extracted from a light water moderator. As a result, it was found that all the calculations predicted these experimental results with accuracies better than ±50% in absolute values. Accordingly, it was concluded that these calculation codes were adequate for neutronics designs of spallation neutron sources. (author)

  20. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 degree

    CERN Document Server

    Agosteo, S; Dimovasili, E; Foglio-Para, A; Silari, M; Ulrici, L; Vincke, H

    2005-01-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 degree with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: less than 100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normaliza...

  1. Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation.

    Directory of Open Access Journals (Sweden)

    Xiao Bu

    Full Text Available A comparative metabolomic analysis was conducted on recombinant Saccharomyces cerevisiae strain producing β-carotene and the parent strain cultivated with glucose as carbon source using gas chromatography-mass spectrometry (GC-MS, high performance liquid chromatography-mass spectrometry (HPLC-MS and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS based approach. The results showed that most of the central intermediates associated with amino acids, carbohydrates, glycolysis and TCA cycle intermediates (acetic acid, glycerol, citric acid, pyruvic acid and succinic acid, fatty acids, ergosterol and energy metabolites were produced in a lower amount in recombinant strain, as compared to the parent strain. To increase β-carotene production in recombinant strain, a strategy that exogenous addition of acetate (10 g/l in exponential phase was developed, which could enhance most intracellular metabolites levels and result in 39.3% and 14.2% improvement of β-carotene concentration and production, respectively, which was accompanied by the enhancement of acetyl-CoA, fatty acids, ergosterol and ATP contents in cells. These results indicated that the amounts of intracellular metabolites in engineered strain are largely consumed by carotenoid formation. Therefore, maintaining intracellular metabolites pool at normal levels is essential for carotenoid biosynthesis. To relieve this limitation, rational supplementation of acetate could be a potential way because it can partially restore the levels of intracellular metabolites and improve the production of carotenoid compounds in recombinant S. cerevisiae.

  2. Disrupted Signaling through the Fanconi Anemia Pathway Leads to Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Science.gov (United States)

    Geiselhart, Anja; Lier, Amelie; Walter, Dagmar; Milsom, Michael D.

    2012-01-01

    Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC). This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients. PMID:22675615

  3. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    Science.gov (United States)

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer’s drugs: a computational investigation

    Directory of Open Access Journals (Sweden)

    Azam F

    2014-10-01

    Full Text Available Faizul Azam,1,2 Abdualrahman M Amer,1 Abdullah R Abulifa,1 Mustafa M Elzwawi1 1Faculty of Pharmacy, Misurata University, Misurata, Libya; 2Department of Pharmaceutical Chemistry, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan, India Abstract: Ginger (Zingiber officinale, despite being a common dietary adjunct that contributes to the taste and flavor of foods, is well known to contain a number of potentially bioactive phytochemicals having valuable medicinal properties. Although recent studies have emphasized their benefits in Alzheimer’s disease, limited information is available on the possible mechanism by which it renders anti-Alzheimer activity. Therefore, the present study seeks to employ molecular docking studies to investigate the binding interactions between active ginger components and various anti-Alzheimer drug targets. Lamarckian genetic algorithm methodology was employed for docking of 12 ligands with 13 different target proteins using AutoDock 4.2 program. Docking protocol was validated by re-docking of all native co-crystallized ligands into their original binding cavities exhibiting a strong correlation coefficient value (r2=0.931 between experimentally reported and docking predicted activities. This value suggests that the approach could be a promising computational tool to aid optimization of lead compounds obtained from ginger. Analysis of binding energy, predicted inhibition constant, and hydrophobic/hydrophilic interactions of ligands with target receptors revealed acetylcholinesterase as most promising, while c-Jun N-terminal kinase was recognized as the least favorable anti-Alzheimer’s drug target. Common structural requirements include hydrogen bond donor/acceptor area, hydrophobic domain, carbon spacer, and distal hydrophobic domain flanked by hydrogen bond donor/acceptor moieties. In addition, drug-likeness score and molecular properties responsible for a good pharmacokinetic profile were calculated

  5. A Novel Therapeutic Strategy for the Treatment of Glioma, Combining Chemical and Molecular Targeting of Hsp90α

    International Nuclear Information System (INIS)

    Mehta, Adi; Shervington, Leroy; Munje, Chinmay; Shervington, Amal

    2011-01-01

    Hsp90α's vital role in tumour survival and progression, together with its highly inducible expression profile in gliomas and its absence in normal tissue and cell lines validates it as a therapeutic target for glioma. Hsp90α was downregulated using the post-transcriptional RNAi strategy (sihsp90α) and a post-translational inhibitor, the benzoquinone antibiotic 17-AAG. Glioblastoma U87-MG and normal human astrocyte SVGp12 were treated with sihsp90α, 17-AAG and concurrent sihsp90α/17-AAG (combined treatment). Both Hsp90α gene silencing and the protein inhibitor approaches resulted in a dramatic reduction in cell viability. Results showed that sihsp90α, 17-AAG and a combination of sihsp90α/17-AAG, reduced cell viability by 27%, 75% and 88% (p < 0.001), respectively, after 72 h. hsp90α mRNA copy numbers were downregulated by 65%, 90% and 99% after 72 h treatment with sihsp90α, 17-AAG and sihsp90α/17-AAG, respectively. The relationship between Hsp90α protein expression and its client Akt kinase activity levels were monitored following treatment with sihsp90α, 17-AAG and sihsp90α/17-AAG. Akt kinase activity was downregulated as a direct consequence of Hsp90α inhibition. Both Hsp90α and Akt kinase levels were significantly downregulated after 72 h. Although, 17-AAG when used as a single agent reduces the Hsp90α protein and the Akt kinase levels, the efficacy demonstrated by combinatorial treatment was found to be far more effective. Combination treatment reduced the Hsp90α protein and Akt kinase levels to 4.3% and 43%, respectively, after 72 h. hsp90α mRNA expression detected in SVGp12 was negligible compared to U87-MG, also, the combination treatment did not compromise the normal cell viability. Taking into account the role of Hsp90α in tumour progression and the involvement of Akt kinase in cell signalling and the anti-apoptotic pathways in tumours, this double targets treatment infers a novel therapeutic strategy

  6. Ecotoxicology: Lead

    Science.gov (United States)

    Scheuhammer, A.M.; Beyer, W.N.; Schmitt, C.J.; Jorgensen, Sven Erik; Fath, Brian D.

    2008-01-01

    Lead (Pb) is a naturally occurring metallic element; trace concentrations are found in all environmental media and in all living things. However, certain human activities, especially base metal mining and smelting; combustion of leaded gasoline; the use of Pb in hunting, target shooting, and recreational angling; the use of Pb-based paints; and the uncontrolled disposal of Pb-containing products such as old vehicle batteries and electronic devices have resulted in increased environmental levels of Pb, and have created risks for Pb exposure and toxicity in invertebrates, fish, and wildlife in some ecosystems.

  7. Sample preservation, transport and processing strategies for honeybee RNA extraction: Influence on RNA yield, quality, target quantification and data normalization.

    Science.gov (United States)

    Forsgren, Eva; Locke, Barbara; Semberg, Emilia; Laugen, Ane T; Miranda, Joachim R de

    2017-08-01

    Viral infections in managed honey bees are numerous, and most of them are caused by viruses with an RNA genome. Since RNA degrades rapidly, appropriate sample management and RNA extraction methods are imperative to get high quality RNA for downstream assays. This study evaluated the effect of various sampling-transport scenarios (combinations of temperature, RNA stabilizers, and duration) of transport on six RNA quality parameters; yield, purity, integrity, cDNA synthesis efficiency, target detection and quantification. The use of water and extraction buffer were also compared for a primary bee tissue homogenate prior to RNA extraction. The strategy least affected by time was preservation of samples at -80°C. All other regimens turned out to be poor alternatives unless the samples were frozen or processed within 24h. Chemical stabilizers have the greatest impact on RNA quality and adding an extra homogenization step (a QIAshredder™ homogenizer) to the extraction protocol significantly improves the RNA yield and chemical purity. This study confirms that RIN values (RNA Integrity Number), should be used cautiously with bee RNA. Using water for the primary homogenate has no negative effect on RNA quality as long as this step is no longer than 15min. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. SIGNIFICANCE OF TARGETED EXOME SEQUENCING AND METHODS OF DATA ANALYSIS IN THE DIAGNOSIS OF GENETIC DISORDERS LEADING TO THE DEVELOPMENT OF EPILEPTIC ENCEPHALOPATHY

    Directory of Open Access Journals (Sweden)

    Tatyana Victorovna Kozhanova

    2017-08-01

    Full Text Available Epilepsy is the most common serious neurological disorder, and there is a genetic basis in almost 50% of people with epilepsy. The diagnosis of genetic epilepsies makes to estimate reasons of seizures in the patient. Last decade has shown tremendous growth in gene sequencing technologies, which have made genetic tests available. The aim is to show significance of targeted exome sequencing and methods of data analysis in the diagnosis of hereditary syndromes leading to the development of epileptic encephalopathy. We examined 27 patients with с early EE (resistant to antiepileptic drugs, psychomotor and speech development delay in the psycho-neurological department. Targeted exome sequencing was performed for patients without a previously identified molecular diagnosis using 454 Sequencing GS Junior sequencer (Roche and IlluminaNextSeq 500 platform. As a result of the analysis, specific epilepsy genetic variants were diagnosed in 27 patients. The greatest number of cases was due to mutations in the SCN1A gene (7/27. The structure of mutations for other genes (mutations with a minor allele frequency of less than 0,5% are presented: ALDH7A1 (n=1, CACNA1C (n=1, CDKL5 (n=1, CNTNAP2 (n=2, DLGAP2 (n=2, DOCK7 (n=2, GRIN2B (n=2, HCN1 (n=1, NRXN1 (n=3, PCDH19 (n=1, RNASEH2B (n=2, SLC2A1 (n=1, UBE3A (n=1. The use of the exome sequencing in the genetic practice allows to significantly improve the effectiveness of medical genetic counseling, as it made possible to diagnose certain variants of genetically heterogeneous groups of diseases with similar of clinical manifestations.

  9. Beta blockers and chronic heart failure patients: prognostic impact of a dose targeted beta blocker therapy vs. heart rate targeted strategy.

    Science.gov (United States)

    Corletto, Anna; Fröhlich, Hanna; Täger, Tobias; Hochadel, Matthias; Zahn, Ralf; Kilkowski, Caroline; Winkler, Ralph; Senges, Jochen; Katus, Hugo A; Frankenstein, Lutz

    2018-05-17

    Beta blockers improve survival in patients with chronic systolic heart failure (CHF). Whether physicians should aim for target dose, target heart rate (HR), or both is still under debate. We identified 1,669 patients with systolic CHF due to ischemic heart disease or idiopathic dilated cardiomyopathy from the University Hospital Heidelberg and the Clinic of Ludwigshafen, Germany. All patients were treated with an angiotensin converting enzyme inhibitor or angiotensin receptor blocker and had a history of CHF known for at least 6 months. Target dose was defined as treatment with ≥ 95% of the respective published guideline-recommended dose. Target HR was defined as 51-69 bpm. All-cause mortality during the median follow-up of 42.8 months was analysed with respect to beta blocker dosing and resting HR. 201 (12%) patients met the dose target (group A), 285 (17.1%) met the HR target (group B), 627 (37.6%) met no target (group C), and 556 (33.3%) did not receive beta blockers (Group D). 5-year mortality was 23.7, 22.7, 37.6, and 55.6% for group A, B, C, and D, respectively (p <  0.001). Survival for group A patients with a HR ≥ 70 bpm was 28.8% but 14.8% if HR was 50-70 bpm (p = 0.054). Achieving guidelines recommended beta blocker dose or to HR control has a similar positive impact on survival. When on target dose, supplemental HR control additionally improves survival.

  10. Evaluation of Activity and Combination Strategies with the Microtubule-Targeting Drug Sagopilone in Breast Cancer Cell Lines

    International Nuclear Information System (INIS)

    Eschenbrenner, Julia; Winsel, Sebastian; Hammer, Stefanie; Sommer, Anette; Mittelstaedt, Kevin; Drosch, Michael; Klar, Ulrich; Sachse, Christoph; Hannus, Michael; Seidel, Monika; Weiss, Bertram; Merz, Claudia; Siemeister, Gerhard; Hoffmann, Jens

    2011-01-01

    Sagopilone, a fully synthetic epothilone, is a microtubule-stabilizing agent optimized for high in vitro and in vivo activity against a broad range of tumor models, including those resistant to paclitaxel and other systemic treatments. Sagopilone development is accompanied by translational research studies to evaluate the molecular mode of action, to recognize mechanisms leading to resistance, to identify predictive response biomarkers, and to establish a rationale for combination with different therapies. Here, we profiled sagopilone activity in breast cancer cell lines. To analyze the mechanisms of mitotic arrest and apoptosis and to identify additional targets and biomarkers, an siRNA-based RNAi drug modifier screen interrogating 300 genes was performed in four cancer cell lines. Defects of the spindle assembly checkpoint (SAC) were identified to cause resistance against sagopilone-induced mitotic arrest and apoptosis. Potential biomarkers for resistance could therefore be functional defects like polymorphisms or mutations in the SAC, particularly in the central SAC kinase BUB1B. Moreover, chromosomal heterogeneity and polyploidy are also potential biomarkers of sagopilone resistance since they imply an increased tolerance for aberrant mitosis. RNAi screening further demonstrated that the sagopilone-induced mitotic arrest can be enhanced by concomitant inhibition of mitotic kinesins, thus suggesting a potential combination therapy of sagopilone with a KIF2C (MCAK) kinesin inhibitor. However, the combination of sagopilone and inhibition of the prophase kinesin KIF11 (EG5) is antagonistic, indicating that the kinesin inhibitor has to be highly specific to bring about the required therapeutic benefit.

  11. Evaluation of Activity and Combination Strategies with the Microtubule-Targeting Drug Sagopilone in Breast Cancer Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Eschenbrenner, Julia [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Biotechnology, Technical University Berlin, Berlin (Germany); Winsel, Sebastian [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Chemistry and Biochemistry, Free University Berlin, Berlin (Germany); Medical Biotechnology, VTT Technical Research Centre of Finland, Turku (Finland); Hammer, Stefanie [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Sommer, Anette [Global Drug Discovery, Target Discovery, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Mittelstaedt, Kevin [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Chemistry and Biochemistry, Free University Berlin, Berlin (Germany); Department of Medicine, The University of Melbourne, Melbourne, VIC (Australia); Drosch, Michael [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Center of Human Genetics, University of Bremen, Bremen (Germany); Klar, Ulrich [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Sachse, Christoph; Hannus, Michael; Seidel, Monika [Cenix BioScience GmbH, Dresden (Germany); Weiss, Bertram; Merz, Claudia [Global Drug Discovery, Target Discovery, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Siemeister, Gerhard [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Hoffmann, Jens, E-mail: jens.hoffmann@epo-berlin.com [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Experimentelle Pharmakologie und Onkologie Berlin-Buch GmbH, Berlin (Germany)

    2011-11-16

    Sagopilone, a fully synthetic epothilone, is a microtubule-stabilizing agent optimized for high in vitro and in vivo activity against a broad range of tumor models, including those resistant to paclitaxel and other systemic treatments. Sagopilone development is accompanied by translational research studies to evaluate the molecular mode of action, to recognize mechanisms leading to resistance, to identify predictive response biomarkers, and to establish a rationale for combination with different therapies. Here, we profiled sagopilone activity in breast cancer cell lines. To analyze the mechanisms of mitotic arrest and apoptosis and to identify additional targets and biomarkers, an siRNA-based RNAi drug modifier screen interrogating 300 genes was performed in four cancer cell lines. Defects of the spindle assembly checkpoint (SAC) were identified to cause resistance against sagopilone-induced mitotic arrest and apoptosis. Potential biomarkers for resistance could therefore be functional defects like polymorphisms or mutations in the SAC, particularly in the central SAC kinase BUB1B. Moreover, chromosomal heterogeneity and polyploidy are also potential biomarkers of sagopilone resistance since they imply an increased tolerance for aberrant mitosis. RNAi screening further demonstrated that the sagopilone-induced mitotic arrest can be enhanced by concomitant inhibition of mitotic kinesins, thus suggesting a potential combination therapy of sagopilone with a KIF2C (MCAK) kinesin inhibitor. However, the combination of sagopilone and inhibition of the prophase kinesin KIF11 (EG5) is antagonistic, indicating that the kinesin inhibitor has to be highly specific to bring about the required therapeutic benefit.

  12. Feasibility Studies for Quarkonium Production at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC)

    International Nuclear Information System (INIS)

    Hadjidakis, C.; Kikola, D.; Massacrier, L.; Trzeciak, B.; Lansberg, J. P.; Fleuret, F.; Shao, H.-S.

    2015-01-01

    Being used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow for studies of heavy-flavour hadroproduction with unprecedented precision at backward rapidities, far negative Feynman-x, using conventional detection techniques. At the nominal LHC energies, quarkonia can be studied in detail in p+p, p+d, and p+A collisions at √(s_N_N)≃115 GeV and in Pb + p and Pb + A collisions at √(s_N_N)≃72 GeV with luminosities roughly equivalent to that of the collider mode that is up to 20 fb"−"1 yr"−"1 in p+p and p+d collisions, up to 0.6 fb"−"1 yr"−"1 in p+A collisions, and up to 10 nb"−"1 yr"−"1 in Pb + A collisions. In this paper, we assess the feasibility of such studies by performing fast simulations using the performance of a LHCb-like detector.

  13. Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC)

    CERN Document Server

    Massacrier, L; Fleuret, F; Hadjidakis, C; Kikola, D; Lansberg, J P; Shao, H -S

    2015-01-01

    Used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow for studies of heavy-flavour hadroproduction with unprecedented precision at backward rapidities - far negative Feyman-x - using conventional detection techniques. At the nominal LHC energies, quarkonia can be studies in detail in p+p, p+d and p+A collisions at sqrt(s_NN) ~ 115 GeV as well as in Pb+p and Pb+A collisions at sqrt(s_NN) ~ 72 GeV with luminosities roughly equivalent to that of the collider mode, i.e. up to 20 fb-1 yr-1 in p+p and p+d collisions, up to 0.6 fb-1 yr-1 in p+A collisions and up to 10 nb-1 yr-1 in Pb+A collisions. In this paper, we assess the feasibility of such studies by performing fast simulations using the performance of a LHCb-like detector.

  14. A genome-wide RNAi screen identifies novel targets of neratinib resistance leading to identification of potential drug resistant genetic markers.

    Science.gov (United States)

    Seyhan, Attila A; Varadarajan, Usha; Choe, Sung; Liu, Wei; Ryan, Terence E

    2012-04-01

    Neratinib (HKI-272) is a small molecule tyrosine kinase inhibitor of the ErbB receptor family currently in Phase III clinical trials. Despite its efficacy, the mechanism of potential cellular resistance to neratinib and genes involved with it remains unknown. We have used a pool-based lentiviral genome-wide functional RNAi screen combined with a lethal dose of neratinib to discover chemoresistant interactions with neratinib. Our screen has identified a collection of genes whose inhibition by RNAi led to neratinib resistance including genes involved in oncogenesis (e.g. RAB33A, RAB6A and BCL2L14), transcription factors (e.g. FOXP4, TFEC, ZNF), cellular ion transport (e.g. CLIC3, TRAPPC2P1, P2RX2), protein ubiquitination (e.g. UBL5), cell cycle (e.g. CCNF), and genes known to interact with breast cancer-associated genes (e.g. CCNF, FOXP4, TFEC, several ZNF factors, GNA13, IGFBP1, PMEPA1, SOX5, RAB33A, RAB6A, FXR1, DDO, TFEC, OLFM2). The identification of novel mediators of cellular resistance to neratinib could lead to the identification of new or neoadjuvant drug targets. Their use as patient or treatment selection biomarkers could make the application of anti-ErbB therapeutics more clinically effective.

  15. Strategy for Extracting DNA from Clay Soil and Detecting a Specific Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification ▿

    Science.gov (United States)

    Yankson, Kweku K.; Steck, Todd R.

    2009-01-01

    We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108