WorldWideScience

Sample records for storing co2 capter

  1. To harness, transport and store the CO2

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    This article about the CO 2 sequestration is divided in eight parts. The first part concerns the question of why it is important to harness the carbon dioxide. The second part reviews the different technologies to harness it. In part three, the conditioning and transport of CO 2 are studied. Then, the question of geological storage is tackled. The economical aspect of the CO 2 sequestration makes the following part. The acceptability of a underground storage is evoked because of the risk relative to the CO 2 storage. Some examples and projects (Usa, Canada, France) are presented. The conclusion ends this article with the assurance that the CO 2 sequestration is possible, but expansive on the energy level and financing (double investment cost and increasing at least 30% for the production costs for the energy coming from coal). It should be realized on a big scale only if significant tax are imposed to the atmospheric releases in CO 2 as it is the case in the Norwegian example (Sleipner field). The storage potentials are important by calling for aquifer layers. The questions of law and acceptability by the public are uncertain but not insurmountable if we think to the aquifers under the seas. (N.C.)

  2. Legal aspects of storing CO2. Update and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-21

    CO2 emissions from energy production and consumption are a major contributor to climate change. Thus, stabilising CO2 concentrations in the atmosphere by reducing these emissions is an increasingly urgent international necessity. Carbon capture and storage (CCS) represents one of the most promising potential solutions to contain emissions resulting from continued use of coal and other fossil fuels. However, challenges such as a lack of legal and regulatory frameworks to guide near-term demonstration projects and long-term technology expansion must be addressed to facilitate the expanded use of CCS. In October 2006, the International Energy Agency (IEA) and the Carbon Sequestration Leadership Forum (CSLF) convened with legal experts,to discuss the range of legal issues associated with expanded use of CCS and to identify ways to facilitate further CCS development and implementation Participants examined gaps and barriers to the deployment of CCS and identified recommendations to guide further development of appropriate legal and regulatory frameworks. This publication provides policymakers with a detailed summary of the main legal issues surrounding the CCS debate, including up-to-date background information, case studies and conclusions on the best legal and regulatory approaches to advance CCS. These strategies can be used to enable further development, deployment and demonstration of CCS technology, potentially an essential element in global efforts to mitigate climate change.

  3. Can Producing Oil Store Carbon? Greenhouse Gas Footprint of CO2EOR, Offshore North Sea.

    Science.gov (United States)

    Stewart, R Jamie; Haszeldine, R Stuart

    2015-05-05

    Carbon dioxide enhanced oil recovery (CO2EOR) is a proven and available technology used to produce incremental oil from depleted fields while permanently storing large tonnages of injected CO2. Although this technology has been used successfully onshore in North America and Europe, there are currently no CO2EOR projects in the United Kingdom. Here, we examine whether offshore CO2EOR can store more CO2 than onshore projects traditionally have and whether CO2 storage can offset additional emissions produced through offshore operations and incremental oil production. Using a high-level Life Cycle system approach, we find that the largest contribution to offshore emissions is from flaring or venting of reproduced CH4 and CO2. These can already be greatly reduced by regulation. If CO2 injection is continued after oil production has been optimized, then offshore CO2EOR has the potential to be carbon negative--even when emissions from refining, transport, and combustion of produced crude oil are included. The carbon intensity of oil produced can be just 0.056-0.062 tCO2e/bbl if flaring/venting is reduced by regulation. This compares against conventional Saudi oil 0.040 tCO2e/bbl or mined shale oil >0.300 tCO2e/bbl.

  4. Storing CO2 under the North Sea Basin - A key solution for combating climate change

    International Nuclear Information System (INIS)

    Skogen, T; Morris, B; Agerup, M; Svenningsen, S Oe; Kropelien, K F; Solheim, M; Northmore, B; Dixon, T; O'Carroll, K; Greaves, A; Golder, J; Selmer-Olsen, S; Sjoeveit, A; Kaarstad, O; Riley, N; Wright, I; Mansfield, C

    2007-06-01

    This report represents the first deliverable of the North Sea Basin Task Force, which Norway and the UK established in November 2005 to work together on issues surrounding the transport and storage of CO 2 beneath the North Sea. The North Sea represents the best geological opportunity for storing our CO 2 emissions away from the atmosphere for both the UK and Norway

  5. CO2-dependent metabolic modulation in red blood cells stored under anaerobic conditions

    Science.gov (United States)

    Dumont, Larry J.; D'Alessandro, Angelo; Szczepiorkowski, Zbigniew M.; Yoshida, Tatsuro

    2015-01-01

    Background Anaerobic RBC storage reduces oxidative damage, maintains ATP & 2,3-diphosphoglycerate (DPG) levels and has superior 24hr recovery at 6weeks compared to standard storage. This study will determine if removal of CO2 during O2 depletion by gas exchange may affect RBC during anaerobic storage. Methods This is a matched 3 arm study (n=14): control, O2&CO2 depleted with Ar (AN), O2 depleted with 95%Ar/5%CO2 (AN[CO2]). RBC in additives AS-3 or OFAS3 were evenly divided into 3 bags, and anaerobic conditions were established by gas exchange. Bags were stored 1-6°C in closed chambers under anaerobic conditions or ambient air, sampled weekly for up to 9weeks for a panel of in vitro tests. A full metabolomics screening was conducted for the first 4 weeks of storage. Results Purging with Ar (AN) results in alkalization of the RBC and increased glucose consumption. The addition of 5%CO2 to the purging gas prevented CO2 loss with an equivalent starting and final pH and lactate to control bags (p>0.5, days0-21). ATP levels are higher in AN[CO2] (p<0.0001). DPG was maintained beyond 2 weeks in the AN arm (p<0.0001). Surprisingly, DPG was lost at the same rate in both control and AN[CO2] arms (p=0.6). Conclusion Maintenance of ATP in the AN[CO2] arm demonstrates that ATP production is not solely a function of the pH effect on glycolysis. CO2 in anaerobic storage prevented the maintenance of DPG, and DPG production appears to be pH dependent. CO2 as well as O2 depletion provides metabolic advantage for stored RBC. PMID:26477888

  6. CO2 -dependent metabolic modulation in red blood cells stored under anaerobic conditions.

    Science.gov (United States)

    Dumont, Larry J; D'Alessandro, Angelo; Szczepiorkowski, Zbigniew M; Yoshida, Tatsuro

    2016-02-01

    Anaerobic red blood cell (RBC) storage reduces oxidative damage, maintains adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG) levels, and has superior 24-hour recovery at 6 weeks compared to standard storage. This study will determine if removal of CO2 during O2 depletion by gas exchange may affect RBCs during anaerobic storage. This is a matched three-arm study (n = 14): control, O2 and CO2 depleted with Ar (AN), and O2 depleted with 95%Ar/5%CO2 (AN[CO2 ]). RBCs in additives AS-3 or OFAS-3 were evenly divided into three bags, and anaerobic conditions were established by gas exchange. Bags were stored at 1 to 6°C in closed chambers under anaerobic conditions or ambient air, sampled weekly for up to 9 weeks for a panel of in vitro tests. A full metabolomics screening was conducted for the first 4 weeks of storage. Purging with Ar (AN) results in alkalization of the RBC and increased glucose consumption. The addition of 5% CO2 to the purging gas prevented CO2 loss with an equivalent starting and final pH and lactate to control bags (p > 0.5, Days 0-21). ATP levels are higher in AN[CO2 ] (p < 0.0001). DPG was maintained beyond 2 weeks in the AN arm (p < 0.0001). Surprisingly, DPG was lost at the same rate in both control and AN[CO2 ] arms (p = 0.6). Maintenance of ATP in the AN[CO2 ] arm demonstrates that ATP production is not solely a function of the pH effect on glycolysis. CO2 in anaerobic storage prevented the maintenance of DPG, and DPG production appears to be pH dependent. CO2 as well as O2 depletion provides metabolic advantage for stored RBCs. © 2015 AABB.

  7. Risk Assessment and Monitoring of Stored CO2 in Organic Rocks Under Non-Equilibrium Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Vivak

    2014-06-30

    The USA is embarking upon tackling the serious environmental challenges posed to the world by greenhouse gases, especially carbon dioxide (CO2). The dimension of the problem is daunting. In fact, according to the Energy Information Agency, nearly 6 billion metric tons of CO2 were produced in the USA in 2007 with coal-burning power plants contributing about 2 billion metric tons. To mitigate the concerns associated with CO2 emission, geological sequestration holds promise. Among the potential geological storage sites, unmineable coal seams and shale formations in particular show promise because of the probability of methane recovery while sequestering the CO2. However. the success of large-scale sequestration of CO2 in coal and shale would hinge on a thorough understanding of CO2's interactions with host reservoirs. An important parameter for successful storage of CO2 reservoirs would be whether the pressurized CO2 would remain invariant in coal and shale formations under reasonable internal and/or external perturbations. Recent research has brought to the fore the potential of induced seismicity, which may result in caprock compromise. Therefore, to evaluate the potential risks involved in sequestering CO2 in Illinois bituminous coal seams and shale, we studied: (i) the mechanical behavior of Murphysboro (Illinois) and Houchin Creek (Illinois) coals, (ii) thermodynamic behavior of Illinois bituminous coal at - 100oC ≤ T ≤ 300oC, (iii) how high pressure CO2 (up to 20.7 MPa) modifies the viscosity of the host, (iv) the rate of emission of CO2 from Illinois bituminous coal and shale cores if the cores, which were pressurized with high pressure (≤ 20.7 MPa) CO2, were exposed to an atmospheric pressure, simulating the development of leakage pathways, (v) whether there are any fractions of CO2 stored in these hosts which are resistance to emission by simply exposing the cores to atmospheric pressure, and (vi) how compressive shockwaves applied to the coal and

  8. Capturing and storing CO2 to combat the greenhouse effect. What IFP is doing

    International Nuclear Information System (INIS)

    2009-01-01

    The growing awareness of the international community and the convergence of the scientific data concerning climate change make it urgent to deploy, throughout the world, technologies to reduce emissions of greenhouse gases. Indeed, the growth of the world energy demand will prevent any rapid reduction of the use of fossil fuels - oil, natural gas, and coal - that are the main sources of greenhouse gas emissions. To reconcile the use of these resources with control of the emissions responsible for global warming, the capture and storage of CO 2 are a very promising approach; the economic and industrial stakes are high. To meet the objective of reducing CO 2 emissions, IFP is exploring three approaches: The first approach is to reduce energy consumption by improving the efficiency of energy converters, in particular internal combustion engines. A second approach is to reduce the carbon content of energy by favoring the use of natural gas or by incorporating in the fuel recycled carbon (biofuels and synfuels) and by developing hydrogen as an energy carrier. The third approach is to capture the CO 2 from industrial processes used for electricity, steel, and cement production, which emit it in large quantities, then store it underground so as to keep it out of the atmosphere. This approach for reducing the CO 2 emissions consists in capturing the CO 2 (Post-combustion, oxy-combustion), transporting it to the place of storage, then injecting it underground to store it. Storage sites are selected and evaluated prior to injection in order to estimate the injectivity, the propagation of CO 2 in the subsoil and the impact of geochemical and geomechanical transformations on the tightness of the overburden and of the injection well. The injection phase is followed by a phase of monitoring to ensure the safety and long-term viability of CO 2 storage facilities. IFP, through the research it is conducting either alone or in partnership with universities, research centers, and the

  9. Enhancement of farmland greenhouse gas emissions from leakage of stored CO2: simulation of leaked CO2 from CCS.

    Science.gov (United States)

    Zhang, Xueyan; Ma, Xin; Wu, Yang; Li, Yue

    2015-06-15

    The effects of leaked CO2 on plant and soil constitute a key objective of carbon capture and storage (CCS) safety. The effects of leaked CO2 on trace soil gas (e.g., methane (CH4) and nitrous oxide (N2O) emissions in farmlands are not well-understood. This study simulated the effects of elevated soil CO2 on CH4 and N2O through pot experiments. The results revealed that significant increases of CH4 and N2O emissions were induced by the simulated CO2 leakages; the emission rates of CH4 and N2O were substantial, reaching about 222 and 48 times than that of the control, respectively. The absolute global warming potentials (GWPs) of the additional CH4 and N2O are considerable, but the cumulative GWPs of the additional CH4 and N2O only accounted for 0.03% and 0.06%, respectively, of the cumulative amount of leaked CO2 under high leakage conditions. The results demonstrate that leakage from CCS projects may lead to additional greenhouse gas emissions from soil; however, in general, the amount of additional CH4 and N2O emissions is negligible when compared with the amount of leaked CO2. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Development of an MgO-based binder for stabilizing fine sediments and storing CO2.

    Science.gov (United States)

    Hwang, Kyung-Yup; Ahn, Jun-Young; Kim, Cheolyong; Seo, Jeong-Yun; Hwang, Inseong

    2015-12-01

    An MgO-based binder was developed that could stabilize fine dredged sediments for reuse and store CO2. Initially, a binder consisting of fly ash (FA) and blast furnace slag (BFS) was developed by using alkaline activators such as KOH, NaOH, and lime. The FA0.4-BFS0.6 binder (mixed at a FA-to-BFS weight ratio of 4:6) showed the highest compressive strength of 10.7 MPa among FA/BFS binders when 5 M KOH was used. When lime (L) was tested as an alkaline activator, the strength was comparable with those obtained when KOH or NaOH was used. The L0.1-(FA0.4BFS0.6)0.9 binder (10 % lime mixed with the FA/BFS binder) showed the highest strength of 11.0 MPa. Finally, by amending this L0.1-(FA0.4BFS0.6)0.9 binder with MgO, a novel MgO-based binder (MgO0.5-(L0.1-(FA0.4BFS0.6)0.9) 0.5) was developed, which demonstrated the 28th day strength of 11.9 MPa. The MgO-based binder was successfully applied to stabilize a fine sediment to yield a compressive strength of 4.78 MPa in 365 days, which was higher than that obtained by the Portland cement (PC) system (3.22 MPa). Carbon dioxide sequestration was evidenced by three observations: (1) the decrease in pH of the treated sediment from 12.2 to 11.0; (2) the progress of the carbonation front inward the treated sediment; and (3) the presence of magnesium carbonates. The thermogravimetric analysis (TGA) results showed that 67.2 kg of CO2 per ton of the treated sediment could be stored under the atmospheric condition during 1 year.

  11. Feeding enhances skeletal growth and energetic stores of an Atlantic coral under significantly elevated CO2

    Science.gov (United States)

    Drenkard, L.; Cohen, A. L.; McCorkle, D. C.; dePutron, S.; Zicht, A.

    2011-12-01

    Many corals living under the relatively acidic conditions of naturally high-CO2 reefs are calcifying as fast or faster than their conspecifics on naturally low CO2 reefs. These observations are inconsistent with most experimental work that shows a negative impact of ocean acidification on coral calcification. We investigated the link between coral nutritional (energetic) status and the calcification response to significantly elevated CO2. Juveniles of the Atlantic brooding coral, Favia fragum were reared for three weeks under fully crossed CO2 and feeding conditions: ambient (μar =1.6+-0.2) and high CO2 (μar =3.7+-0.3); fed and unfed. In most measured parameters, the effect of feeding is much stronger than the effect of CO2. Nutritionally enhanced (fed) corals, regardless of CO2 condition, have higher concentrations of total lipid and their skeletons are both significantly larger and more developmentally advanced than those of corals relying solely on autotrophy. In measurements of corallite weight, where the impact of CO2 is most apparent, no statistical difference is observed between unfed corals under ambient CO2 conditions and fed corals reared under 1600 ppm CO2. Our results suggest that coral energetic status, which can be enhanced by heterotrophic feeding but depleted by stressors such as bleaching, will play a key role in the coral response to ocean acidification and thus, in the resilience of reef ecosystems under climate change.

  12. Effects of elevated CO2 and trace ethylene present throughout the storage season on the processing colour of stored potatoes

    NARCIS (Netherlands)

    Daniels-Lake, B.J.

    2012-01-01

    Previous short-term trials (9-week duration) have shown that the fry colour of stored potatoes (Solanum tuberosum L.) can be negatively affected by simultaneous exposure to elevated CO2 plus a trace concentration of ethylene gas. In the present study, trials were conducted during each of two storage

  13. Coupled LBM-DEM Three-phase Simulation on Seepage of CO2 Stored under the Seabed.

    Science.gov (United States)

    Kano, Y.; Sato, T.

    2017-12-01

    Concerning the seepage of CO2 stored in a subsea formation, CO2 bubble/droplet rises to the sea-surface dissolving into the seawater, and the acidification of local seawater will be a problem. Previous research indicated that seepage rate and bubble size significantly affect its behaviour (Kano et al., 2009; Dewar et al., 2013). On the other hand, Kawada's experiments (2014) indicated that grain size affects formation of gas channels and bubbles through granular media. CO2 seepage through marine sediments probably shows similar behaviour. Additionally, such mobilisation and displacement of sand grains by gas migration may also cause capillary fracturing of CO2 in the reservoir and seal. To predict these phenomena, it is necessary to reveal three-phase behaviour of gas-water-sediment grains. We built gas-liquid-solid three-phase flow 3D simulator by coupling LBM-DEM program, and simulation results showed that the mobilisation of sand grain forms gas channels and affects bubble formation compared with that through solid porous media (Kano and Sato, 2017). In this presentation, we will report simulation results on effects of porosity, grain size and gas flow rate on the formation of gas channels and bubble and their comparison with laboratory experimental data. The results indicate that porosity and grain size of sand gravels affect the width of formed gas channels and resulting formed bubble size on the order of supposed seepage rate in the CO2 storage and that in most of experiment's conditions. References: Abe, S., Place, D., Mora, P., 2004. Pure. Appl. Geophys., 161, 2265-2277. (accessed Aug 01, 2017). Dewar, M., Wei, W., McNeil, D., Chen, B., 2013. Marine Pollution Bulletin 73(2), 504-515. Kano, Y., Sato, T., Kita, J., Hirabayashi, S., Tabeta, S., 2009. Int. J. Greenhouse Gas Control, Vol. 3(5), 617-625. Kano, Y. and Sato, T., 2017. In Proceeding of GHGT-13, Lausanne, Switzerland, Nov. 14-18, 2016. Kawada, R. 2014. Graduation thesis. Faculty of Engineering, The

  14. Feasibility of storing CO2 in the Utsira formation as part of a long term Dutch CCS strategy. An evaluation based on a GIS/MARKAL toolbox

    International Nuclear Information System (INIS)

    Van den Broek, M.A.; Ramirez-Ramirez, A.; Turkenburg, W.; Faaij, A; Groenenberg, H.; Neele, F.P.; Viebahn, P.

    2009-09-01

    This study provides insight into the feasibility of a CO2 trunkline from the Netherlands to the Utsira formation in the Norwegian part of the North Sea, which is a large geological storage reservoir for CO2. The feasibility is investigated in competition with CO2 storage in onshore and near-offshore sinks in the Netherlands. Least-cost modelling with a MARKAL model in combination with ArcGIS was used to assess the cost-effectiveness of the trunkline as part of a Dutch greenhouse gas emission reduction strategy for the Dutch electricity sector and CO2 intensive industry. The results show that under the condition that a CO2 permit price increases from 25 euro per tCO2 in 2010 to 60 euro per tCO2 in 2030, and remains at this level up to 2050, CO2 emissions in the Netherlands could reduce with 67% in 2050 compared to 1990, and investment in the Utsira trunkline may be cost-effective from 2020-2030 provided that Belgian and German CO2 is transported and stored via the Netherlands as well. In this case, by 2050 more than 2.1 GtCO2 would have been transported from the Netherlands to the Utsira formation. However, if the Utsira trunkline is not used for transportation of CO2 from Belgium and Germany, it may become cost-effective 10 years later, and less than 1.3 GtCO2 from the Netherlands would have been stored in the Utsira formation by 2050. On the short term, CO2 storage in Dutch fields appears more cost-effective than in the Utsira formation, but as yet there are major uncertainties related to the timing and effective exploitation of the Dutch offshore storage opportunities.

  15. Metabolic costs of foraging and the management of O2 and CO2 stores in Steller sea lions.

    Science.gov (United States)

    Fahlman, Andreas; Svärd, Caroline; Rosen, David A S; Jones, David R; Trites, Andrew W

    2008-11-01

    The metabolic costs of foraging and the management of O2 and CO2 stores during breath-hold diving was investigated in three female Steller sea lions (Eumetopias jubatus) trained to dive between 10 and 50 m (N=1142 dives). Each trial consisted of two to eight dives separated by surface intervals that were determined by the sea lion (spontaneous trials) or by the researcher (conditioned trials). During conditioned trials, surface intervals were long enough for O2 to return to pre-dive levels between each dive. The metabolic cost of each dive event (dive+surface interval; DMR) was measured using flow-through respirometry. The respiratory exchange ratio (VO2/VCO2) was significantly lower during spontaneous trials compared with conditioned trials. DMR was significantly higher during spontaneous trials and decreased exponentially with dive duration. A similar decrease in DMR was not as evident during conditioned trials. DMR could not be accurately estimated from the surface interval (SI) following individual dives that had short SIs (50 s). DMR decreased by 15%, but did not differ significantly from surface metabolic rates (MRS) when dive duration increased from 1 to 7 min. Overall, these data suggest that DMR is almost the same as MRS, and that Steller sea lions incur an O2 debt during spontaneous diving that is not repaid until the end of the dive bout. This has important consequences in differentiating between the actual and 'apparent' metabolic rate during diving, and may explain some of the differences in metabolic rates reported in pinniped species.

  16. A Natural Analogue Approach for Discriminating Leaks of CO2 Stored Underground Using Groundwater Geochemistry Statistical Methods, South Korea

    Directory of Open Access Journals (Sweden)

    Kwang-Koo Kim

    2017-12-01

    Full Text Available Carbon capture and storage (CCS is one of several useful strategies for capturing greenhouse gases to counter global climate change. In CCS, greenhouse gases such as CO2 that are emitted from stacks are isolated in underground geological storage. Natural analogue studies that can provide insights into possible geological CO2 storage sites, can deliver crucial information about the safety and security of geological sequestration, the long-term impact of CO2 storage on the environment, and the field operation and monitoring requirements for geological sequestration. This study adopted a probability density function (PDF approach for CO2 leakage monitoring by characterizing naturally occurring CO2-rich groundwater as an analogue that can occur around a CO2 storage site due to CO2 dissolving into fresh groundwater. Two quantitative indices, (QItail and QIshift, were estimated from the PDF test and were used to compare CO2-rich and ordinary groundwaters. Key geochemical parameters (pH, electrical conductance, total dissolved solids, HCO3−, Ca2+, Mg2+, and SiO2 in different geological regions of South Korea were determined through a comparison of quantitative indices and the respective distribution patterns of the CO2-rich and ordinary groundwaters.

  17. [Research on the spectral feature and identification of the surface vegetation stressed by stored CO2 underground leakage].

    Science.gov (United States)

    Chen, Yun-Hao; Jiang, Jin-Bao; Steven, Michael D; Gong, A-Du; Li, Yi-Fan

    2012-07-01

    With the global climate warming, reducing greenhouse gas emissions becomes a focused problem for the world. The carbon capture and storage (CCS) techniques could mitigate CO2 into atmosphere, but there is a risk in case that the CO2 leaks from underground. The objective of this paper is to study the chlorophyll contents (SPAD value), relative water contents (RWC) and leaf spectra changing features of beetroot under CO2 leakage stress through field experiment. The result shows that the chlorophyll contents and RWC of beetroot under CO2 leakage stress become lower than the control beetroot', and the leaf reflectance increases in the 550 nm region and decreases in the 680nm region. A new vegetation index (R550/R680) was designed for identifying beetroot under CO2 leakage stress, and the result indicates that the vegetation index R550/R680 could identify the beetroots after CO2 leakage for 7 days. The index has strong sensitivity, stability and identification for monitoring the beetroots under CO2 stress. The result of this paper has very important meaning and application values for selecting spots of CCS project, monitoring and evaluating land-surface ecology under CO2 stress and monitoring the leakage spots by using remote sensing.

  18. Capturing and storing CO{sub 2} to combat the greenhouse effect. What IFP is doing; Capter et stocker le CO{sub 2} pour lutter contre l'effet de serre. L'action de l'IFP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The growing awareness of the international community and the convergence of the scientific data concerning climate change make it urgent to deploy, throughout the world, technologies to reduce emissions of greenhouse gases. Indeed, the growth of the world energy demand will prevent any rapid reduction of the use of fossil fuels - oil, natural gas, and coal - that are the main sources of greenhouse gas emissions. To reconcile the use of these resources with control of the emissions responsible for global warming, the capture and storage of CO{sub 2} are a very promising approach; the economic and industrial stakes are high. To meet the objective of reducing CO{sub 2} emissions, IFP is exploring three approaches: The first approach is to reduce energy consumption by improving the efficiency of energy converters, in particular internal combustion engines. A second approach is to reduce the carbon content of energy by favoring the use of natural gas or by incorporating in the fuel recycled carbon (biofuels and synfuels) and by developing hydrogen as an energy carrier. The third approach is to capture the CO{sub 2} from industrial processes used for electricity, steel, and cement production, which emit it in large quantities, then store it underground so as to keep it out of the atmosphere. This approach for reducing the CO{sub 2} emissions consists in capturing the CO{sub 2} (Post-combustion, oxy-combustion), transporting it to the place of storage, then injecting it underground to store it. Storage sites are selected and evaluated prior to injection in order to estimate the injectivity, the propagation of CO{sub 2} in the subsoil and the impact of geochemical and geomechanical transformations on the tightness of the overburden and of the injection well. The injection phase is followed by a phase of monitoring to ensure the safety and long-term viability of CO{sub 2} storage facilities. IFP, through the research it is conducting either alone or in partnership with

  19. Viability of sublethally injured coliform bacteria on fresh-cut cabbage stored in high CO2 atmospheres following rinsing with electrolyzed water.

    Science.gov (United States)

    Izumi, Hidemi; Inoue, Ayano

    2018-02-02

    The extent of sublethally injured coliform bacteria on shredded cabbage, either rinsed or not rinsed with electrolyzed water, was evaluated during storage in air and high CO 2 controlled atmospheres (5%, 10%, and 15%) at 5°C and 10°C using the thin agar layer (TAL) method. Sublethally injured coliform bacteria on nonrinsed shredded cabbage were either absent or they were injured at a 64-65% level when present. Rinsing of shredded cabbage with electrolyzed water containing 25ppm available chlorine reduced the coliform counts by 0.4 to 1.1 log and caused sublethal injury ranging from 42 to 77%. Pantoea ananatis was one of the species injured by chlorine stress. When shredded cabbage, nonrinsed or rinsed with electrolyzed water, was stored in air and high CO 2 atmospheres at 5°C for 7days and 10°C for 5days, coliform counts on TAL plates increased from 3.3-4.5 to 6.5-9.0 log CFU/g during storage, with the increase being greater at 10°C than at 5°C. High CO 2 of 10% and 15% reduced the bacterial growth on shredded cabbage during storage at 5°C. Although injured coliform bacteria were not found on nonrinsed shredded cabbage on the initial day, injured coliforms at a range of 49-84% were detected on samples stored in air and high CO 2 atmospheres at 5°C and 10°C. Injured cells were detected more frequently during storage at both temperatures irrespective of the CO 2 atmosphere when shredded cabbage was rinsed with electrolyzed water. These results indicated that injured coliform bacteria on shredded cabbage, either rinsed or not rinsed with electrolyzed water, exhibited different degrees of injury during storage regardless of the CO 2 atmosphere and temperature tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The combined effect of CO2 and ethylene sprout inhibitor on the fry colour of stored potatoes (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Daniels-Lake, B.J.

    2013-01-01

    Recently, it has been shown that the darkening of potato processing colour attributable to a trace concentration of ethylene gas is more severe when CO2 is also elevated. In view of the increasing use of ethylene gas for sprout suppression in potato storage facilities, it was considered important to

  1. Qualidade de maçãs cv. gala armazenadas em diferentes pressões parciais de O2 e CO2 Quality of 'gala' apples stored at different partial pressures of O2 and CO2

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2000-06-01

    Full Text Available Este trabalho teve como objetivo verificar os efeitos da temperatura e pressões parciais de O2 e CO2 sobre a qualidade da maçã cv. Gala armazenada em atmosfera controlada. O delineamento experimental foi o inteiramente casualizado com três repetições de 30 frutos. Os tratamentos foram: 1,0 kPa de O2 e 2,0 kPa de CO2; 1,0 kPa de O2 e 3,0 kPa de CO2; 1,0 kPa de O2 e 4,0 kPa de CO2; 0,75 kPa de O2 e 2,0 kPa de CO2; 0,75 kPa de O2 e 3,0 kPa de CO2 e, 21,0 kPa de O2 e 0,0 kPa de CO2 na temperatura de 0 e 1ºC. A UR permaneceu em torno de 97%. O período de armazenamento foi de oito meses, sendo que as análises foram realizadas no momento da retirada dos frutos das câmaras e após sete dias de exposição dos mesmos à temperatura ambiente (24ºC. Avaliou-se firmeza de polpa, acidez titulável, teor de sólidos solúveis totais, cor de fundo da epiderme, degenerescência senescente, rachaduras e podridões. Melhor conservação da firmeza de polpa, acidez titulável e teores de sólidos solúveis totais foram encontrados com 0,75 a 1 kPa de O2, combinado com 3,0 kPa de CO2 na temperatura de 1ºC. A maçã apresentou degenerescência senescente em 4,0 kPa de CO2 e também quando utilizou-se a temperatura de 0ºC. A temperatura de 1ºC, em relação a 0ºC, manteve melhor qualidade dos frutos após oito meses de armazenamento.To evaluate the effects of the temperature and partial pressures of O2 and CO2 on the quality of `Gala' apples stored under controlled atmosphere an experiment was carried out using a completely randomized design with three replicates, each of 30 fruits. The treatments were: 1.0 kPa of O2 and 2.0 kPa of CO2; 1.0 kPa of O2 and 3.0 kPa of CO2; 1.0 kPa of O2 and 4.0 kPa of CO2; 0.75 kPa of O2 and 2.0 kPa of CO2; 0.75 kPa of O2 and 3.0 kPa of CO2; 21.0 kPa of O2 and 0.0 kPa of CO2 at the temperatures of 0 and 1ºC. RH was mantained around 97%. After 8 months, fruit quality was assessed at the opening of the CA chambers, and

  2. CO2 and O2 solubility and diffusivity data in food products stored in data warehouse structured by ontology.

    Science.gov (United States)

    Guillard, Valérie; Buche, Patrice; Dibie, Juliette; Dervaux, Stéphane; Acerbi, Filippo; Chaix, Estelle; Gontard, Nathalie; Guillaume, Carole

    2016-06-01

    This data article contains values of oxygen and carbon dioxide solubility and diffusivity measured in various model and real food products. These data are stored in a public repository structured by ontology. These data can be retrieved through the @Web tool, a user-friendly interface to capitalise and query data. The @Web tool is accessible online at http://pfl.grignon.inra.fr/atWeb/.

  3. Kalundborg case study, a feasibility study of CO{sub 2} storage in onshore saline aquifers. CO2STORE[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Michael; Bech, N.; Bidstrup, T.; Christensen, Niels Peter; Vangkilde-Pedersen, T. [GEUS (Denmark); Biede, O. [ENERGI E2 (Denmark)

    2007-06-15

    The Danish case-study of the CO2STORE project comprises the potential future capture and underground storage of CO{sub 2} from two point sources. These are the coal fired power plant Asnaesvaerket and the Statoil refinery both located in the city of Kalundborg, Denmark. Initial mapping of the storage structure was conducted as part of the EU funded research project GESTCO that was concluded in 2003. The study identified a large underground structure forming a potential, future storage site 15 km to the northeast of the city. Porous sandstones filled with saline water at a depth of approximately 1.500 m form the reservoir. The structure covers approximately 160 km{sup 2} and a preliminary calculation suggests a storage capacity of nearly 900 million tonnes of CO2 equal to more than 150 years of CO{sub 2} emissions from the two point sources. In the Kalundborg case-study, a fictive capture and storage scenario will be formulated and modelled. The scenario is based on experiences learned through the SACS and GESTCO projects. Detailed geological modelling, reservoir simulation, reservoir and cap rock characterisation and risk assessment will be important issues for the case-study. The Geological Survey of Denmark and Greenland (GEUS) is project leader for the Kalundborg case-study. Information on CO{sub 2} emissions from the point sources and technical and economical input for the three scenarios is provided by the industrial partners; ENERGI E2 and Statoil ASA. The scenario is designed only for this case study and does not reflect the strategic plans of ENERGI E2 nor Statoil ASA. Geochemical simulation and modelling studies on reservoir and cap rock were performed at Bureau de Recherches Geologiques et Minieres (BRGM) in France. The CO2STORE project is performed within the European Community supported 5th Framework Programme. (au)

  4. Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions

    Science.gov (United States)

    Kiaitsi, Elsa; Magan, Naresh

    2018-01-01

    Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90) and temperature (10–25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. 1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins. PMID:29462982

  5. Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Esther Garcia-Cela

    2018-02-01

    Full Text Available Zearalenone (ZEN contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90 and temperature (10–25 °C in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a respiration rate; (b dry matter losses (DML; (c ZEN production and (d relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. <1.0% DML, there was a low risk of ZEN contamination exceeding EU legislative limits, while at >1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins.

  6. Stores

    CERN Multimedia

    2004-01-01

    Following the introduction of Condensators, resistors and potentiometers from the Farnell electronic-catalogue into CERN Stores' catalogue, following products are now available: PRODUCT FAMILY GROUP SCEM Oscillators and quartz crystals 07.94.10 / 07.94.12 Diodes 08.51.14 / 08.51.54 Thyristors 08.51.60 / 08.51.66 Opto-electronics 08.52 Transistors 08.53 Integrated circuits 08.54 / 08.55 These articles can be procured in the same way as any other stores item, by completing a Material Request. N.B. Individual Farnell order codes can be used as keywords to facilitate searches in the CERN Stores Catalogue.

  7. Efeito de tratamentos com altas concentrações de CO2 sobre a qualidade de maçãs 'Golden delicious' armazenadas em atmosfera controlada Effect of treatment with high CO2 concentrations on quality of 'Golden delicious' apples stored in controlled atmosphere

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    1996-08-01

    Full Text Available O experimento teve por objetivo avaliar a influência das altas concentrações iniciais de CO2 sobre os aspectos físico-químicos de maçãs 'Golden Delicious' armazenadas em atmosfera controlada. Os tratamentos foram 10% de CO2 e 5% de O2 e 15% de CO2 e 5% de O2 durante 5, 10 e 15 dias, sendo que durante o restante do período de armazenamento os frutos foram armazenados em 4% de CO2 e 1,5% de O2, na temperatura de +0,5 °C e umidade relativa de 97%. Após 10 meses, não foi verificado diferenças significativas na firmeza de polpa, acidez titulável, sólidos solúveis totais e controle de podridões. Na abertura das câmaras os tratamentos iniciais com CO2 não mostraram influência na degenerescência da polpa e escaldadura, porém, após 14 dias todos os tratamentos com CO2 aumentaram a incidência de degenerescência interna e tratamentos com 15% de CO2 diminuíram ligeiramente a ocorrência da escaldadura.The aim of this experiment was to evaluate the effect of initial high CO2 concentrations on quality of 'Golden Delicious' apples stored in controlled atmosphere. The treatments were 10% of CO2, and 5% of O2, and 15% of CO2, and 5% of O2, during 5, 10 and 15 days but during the remaining of storage time fruits were kept in 4% of CO2, and 1.5% of O2, at +0,5 °C and 97% RH. After 10 months, no diferences in firmness, total soluble solids contents, acidity and decay were observed. At opening of controlled atmosphere chambers CO2 treatment had no influence in internal breakdown and scald, but after 14 days in shelf-life. all treatments with high CO2 increased internal breakdown and 15% of CO2 decreased scald incidence.

  8. CCS in the North Sea region: A comparison on the cost-effectiveness of storing CO2 in the Utsira formation at regional and national scales

    DEFF Research Database (Denmark)

    Strachan, N.; Hoefnagels, R.; Ramirez, A.

    2011-01-01

    The potential scale of carbon dioxide capture and storage (CCS) under long-term decarbonisation scenarios means that analysis on the contribution of large international CO2 storage reservoirs is critical. This paper compares the potentially key role of CCS within cost-optimizing energy systems...... formation as a common North Sea CO2 storage resource. A robust finding is that low carbon electricity is a primary decarbonisation pathway and that CCS plays a key role (32–40%) within this portfolio. This paper confirms that the overall driver of the amount of CCS utilized is the climate policy...... the CO2 storage cost curve, with the Netherlands and the UK being the largest contributors, followed by transboundary flows of CO2 from other countries. However, overall regional CCS flows may be larger (for example under low fossil fuel prices) than the estimated (and uncertain) maximum annual injection...

  9. CO2 chemical valorization

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Rakotojaona, Loic; Bucy, Jacques de; Clodic, Denis; Roger, Anne-Cecile; El Khamlichi, Aicha; Thybaud, Nathalie; Oeser, Christian; Forti, Laurent; Gimenez, Michel; Savary, David; Amouroux, Jacques

    2014-07-01

    Facing global warming, different technological solutions exist to tackle carbon dioxide (CO 2 ) emissions. Some inevitable short term emissions can be captured so as to avoid direct emissions into the atmosphere. This CO 2 must then be managed and geological storage seems to currently be the only way of dealing with the large volumes involved. However, this solution faces major economic profitability and societal acceptance challenges. In this context, alternative pathways consisting in using CO 2 instead of storing it do exist and are generating growing interest. This study ordered by the French Environment and Energy Management Agency (ADEME), aims at taking stock of the different technologies used for the chemical conversion of CO 2 in order to have a better understanding of their development potential by 2030, of the conditions in which they could be competitive and of the main actions to be implemented in France to foster their emergence. To do this, the study was broken down into two main areas of focus: The review and characterization of the main CO 2 chemical conversion routes for the synthesis of basic chemical products, energy products and inert materials. This review includes a presentation of the main principles underpinning the studied routes, a preliminary assessment of their performances, advantages and drawbacks, a list of the main R and D projects underway, a focus on emblematic projects as well as a brief analysis of the markets for the main products produced. Based on these elements, 3 routes were selected from among the most promising by 2030 for an in-depth modelling and assessment of their energy, environmental and economic performances. The study shows that the processes modelled do have favorable CO 2 balances (from 1 to 4 t-CO 2 /t-product) and effectively constitute solutions to reduce CO 2 emissions, despite limited volumes of CO 2 in question. Moreover, the profitability of certain solutions will remain difficult to reach, even with an

  10. CO2 as a refrigerant

    CERN Document Server

    2014-01-01

    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  11. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    KAUST Repository

    Drees, Markus; Cokoja, Mirza; Kü hn, Fritz E.

    2012-01-01

    . A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation

  12. CO2 blood test

    Science.gov (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... Many medicines can interfere with blood test results. Your health ... need to stop taking any medicines before you have this test. DO ...

  13. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  14. Clean Coal: myth or reality? At the heart of the energy-climate equation, capturing and storing CO2 - Proceedings of the 2007 Le Havre's international meetings

    International Nuclear Information System (INIS)

    Rufenacht, Antoine; Brodhag, Christian; Mocilnikar, Antoine-Tristan; Bennaceur, Kamel; Esseid, Ablaziz; Lemoine, Stephane; Prevot, Henri; Diercks, Thorsten; Jaclot, Francois; Fache, Dominique; Coulon, Pierre-Jean; Capris, Renaud; TRANIE, Jean-Pascal; Le Thiez, Pierre; Marliave, Luc de; Perrin, Nicolas; Paelinck, Philippe; Clodic, Denis; Thabussot, Laurent; Alf, Martin; Boon, Gustaaf; Giger, Francois; Bisseaud, Jean-Michel; Michel, Patrick; Poyer, Luc; Biebuyck, Christian; Kalaydjian, Francois; Roulet, Claude; Bonijoly, Didier; Gresillon, Francois Xavier; Bonneville, Alain; Tauziede, Christian; Munier, Gilles; Moncomble, Jean-Eudes; Frois, Bernard; Charmant, Marcel; Thybaud, Nathalie; Fares, Tewfik; Lacave, Jean-Marc; Duret, Benoit; Gerard, Bernard

    2007-03-01

    This document comprises the French and English versions of the executive summary of the RIH 2007 meetings, followed by the available presentations (slides). Content: - Symposium Opening: Government and the Coal Issue; 1 - First Session - Energy, Climate, Coal: - Scenarios for energy technologies and CO 2 emissions: Energy outlooks, CO 2 emissions, Technologies (Kamel BENNACEUR); - The global situation of coal: The situation of the international steam coal market, Change in this market, Total's position in this business, Major challenges for the future (Ablaziz ESSEID); - Coal markets: availability, competitiveness, and growing maturity (Stephane LEMOINE); - Coal in the geopolitics of greenhouse gases (Henri PREVOT); - Questions; 2 - Second Session - Coal Economy: - Opportunities and challenges for coal in the European energy mix: the Commission's energy package: The European situation, The European energy mix, The role of EURACOAL (Thorsten DIERCKS); - The development of a coal bed in Lucenay-les-Aix and Cossaye in the Massif Central (Francois JACLOT); - The Russian view of coal's place in the energy mix (Dominique FACHE); - Coal, a key to development in Niger (Pierre-Jean COULON); - The energy and environmental efficiency of coal-fired power plants associated with heating networks (Renaud CAPRIS); - The Valorca project: efficient and immediate use of coal, and strong outlooks for the future (Jean-Pascal TRANIE); - Questions; 3 - Third and Forth Sessions - Clean Power Plants: - CO 2 capture systems (Pierre LE THIEZ); - CO 2 geological capture and storage in the Lacq basin (Luc de MARLIAVE); - Clean coal: Air Liquide technology developments and industrial solutions (Nicolas PERRIN); - Clean combustion and CO 2 (Philippe PAELINCK); - CO 2 capture by freezing/defrosting at low temperatures (Denis CLODIC); - Questions; - Using the experience of a large corporation (ENDESA), to develop clean energy: coal (Laurent THABUSSOT); - Pathways to reduce CO 2

  15. Studies on CO2 removal and reduction. CO2 taisaku kenkyu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1993-02-01

    This paper summarizes study trends mainly in CO2 fixing processes. Underground CO2 storage is a most promising method because it can fix a huge amount of CO2 and has low effects on ecological systems. Storing CO2 in ocean includes such methods as storing it in deep oceans; storing it in deep ocean beds; dissolving it into sea water; neutralizing it with calcium carbonates; and precipitating it as dry ice. Japan, disposing CO2 in these ways, may create international problems. Separation of CO2 may use a chemical absorption process as a superior method. Other processes discussed include a physical adsorption method and a membrane separation method. A useful method for CO2 fixation using marine organisms is fixation using coral reefs. This process will require an overall study including circulation of phosphorus and nitrogen. Marine organisms may include planktons and algae. CO2 fixation using land plants may be able to fix one trillion and 8 hundred billion tons of CO2 as converted to carbon. This process would require forest protection, prevention of desertification, and tree planting. Discussions are being given also on improving power generation cycles, recovering CO2 from automotive exhausts, and backfilling carbons into ground by means of photosynthesis. 23 refs., 7 figs., 1 tab.

  16. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2015-01-01

    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  17. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  18. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  19. CO2 storage in Sweden

    International Nuclear Information System (INIS)

    Ekstroem, Clas; Andersson, Annika; Kling, Aasa; Bernstone, Christian; Carlsson, Anders; Liljemark, Stefan; Wall, Caroline; Erstedt, Thomas; Lindroth, Maria; Tengborg, Per; Edstroem, Mikael

    2004-07-01

    This study considers options, that could be feasible for Sweden, to transport and geologically store CO 2 , providing that technology for electricity production with CO 2 capture will be available in the future and also acceptable from cost- and reliability point of view. As a starting point, it is assumed that a new 600-1000 MW power plant, fired with coal or natural gas, will be constructed with CO 2 capture and localised to the Stockholm, Malmoe or Goeteborg areas. Of vital importance for storage of carbon dioxide in a reservoir is the possibility to monitor its distribution, i.e. its migration within the reservoir. It has been shown in the SACS-project that the distribution of carbon dioxide within the reservoir can be monitored successfully, mainly by seismic methods. Suitable geologic conditions and a large storage potential seems to exist mainly in South West Scania, where additional knowledge on geology/hydrogeology has been obtained since the year 2000 in connection to geothermal energy projects, and in the Eastern part of Denmark, bordering on South West Scania. Storage of carbon dioxide from the Stockholm area should not be excluded, but more studies are needed to clarify the storage options within this area. The possibilities to use CO 2 for enhanced oil recovery, EOR, in i.a. the North Sea should be investigated, in order to receive incomes from the CO 2 and shared costs for infrastructure, and by this also make the CO 2 regarded as a trading commodity, and thereby achieving a more favourable position concerning acceptance, legal issues and regulations. The dimensions of CO 2 -pipelines should be similar to those for natural natural gas, although regarding some aspects they have different design and construction prerequisites. To obtain cost efficiency, the transport distances should be kept short, and possibilities for co-ordinated networks with short distribution pipelines connected to common main pipelines, should be searched for. Also, synergies

  20. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J.

    2001-01-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2 . Some techniques could be used to reduced CO 2 emission and stabilize atmospheric CO 2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO 2 emissions such as renewable or nuclear energy, iii) capture and store CO 2 from fossil fuels combustion, and enhance the natural sinks for CO 2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO 2 and to review the various options for CO 2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO 2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO 2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could

  1. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  2. Increasing CO2 storage in oil recovery

    International Nuclear Information System (INIS)

    Jessen, K.; Kovscek, A.R.; Orr, F.M. Jr.

    2005-01-01

    Oil fields offer a significant potential for storing CO 2 and will most likely be the first large scale geological targets for sequestration as the infrastructure, experience and permitting procedures already exist. The problem of co-optimizing oil production and CO 2 storage differs significantly from current gas injection practice due to the cost-benefit imbalance resulting from buying CO 2 for enhanced oil recovery projects. Consequently, operators aim to minimize the amount of CO 2 required to sweep an oil reservoir. For sequestration purposes, where high availability of low cost CO 2 is assumed, the design parameters of enhanced oil recovery processes must be re-defined to optimize the amount of CO 2 left in the reservoir at the time of abandonment. To redefine properly the design parameters, thorough insight into the mechanisms controlling the pore scale displacement efficiency and the overall sweep efficiency is essential. We demonstrate by calculation examples the different mechanisms controlling the displacement behavior of CO 2 sequestration schemes, the interaction between flow and phase equilibrium and how proper design of the injection gas composition and well completion are required to co-optimize oil production and CO 2 storage. [Author

  3. Increasing CO2 storage in oil recovery

    International Nuclear Information System (INIS)

    Jessen, Kristian; Kovscek, Anthony R.; Orr, Franklin M.

    2005-01-01

    Oil fields offer a significant potential for storing CO 2 and will most likely be the first large scale geological targets for sequestration as the infrastructure, experience and permitting procedures already exist. The problem of co-optimizing oil production and CO 2 storage differs significantly from current gas injection practice due to the cost-benefit imbalance resulting from buying CO 2 for enhanced oil recovery projects. Consequently, operators aim to minimize the amount of CO 2 required to sweep an oil reservoir. For sequestration purposes, where high availability of low cost CO 2 is assumed, the design parameters of enhanced oil recovery processes must be re-defined to optimize the amount of CO 2 left in the reservoir at the time of abandonment. To redefine properly the design parameters, thorough insight into the mechanisms controlling the pore scale displacement efficiency and the overall sweep efficiency is essential. We demonstrate by calculation examples the different mechanisms controlling the displacement behavior of CO 2 sequestration schemes, the interaction between flow and phase equilibrium and how proper design of the injection gas composition and well completion are required to co-optimize oil production and CO 2 storage

  4. CO2 cycle

    Science.gov (United States)

    Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.

    2017-01-01

    This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.

  5. Comparison of Dry Gas Seasonal Storage with CO2 Storage and Re-Use Potential

    OpenAIRE

    Killerud, Marie

    2013-01-01

    To make large-scale CO2 storage economic, many groups have proposed using CO2in EOR projects to create value for CO2 storage. However, CO2 EOR projectsgenerally require a large and variable supply of CO2 and consequently may requiretemporary storage of CO2 in geological formations. In order to store CO2 atoffshore sites as a source for CO2 EOR projects, the CO2 needs to be extractedfrom a storage site to a certain extent. Alternatively, CO2 EOR projects maybe developed alongside saline aquife...

  6. CO2-strategier

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2008-01-01

    I 2007 henvendte Lyngby-Taarbæk kommunens Agenda 21 koordinator sig til Videnskabsbutikken og spurgte om der var interesse for at samarbejde om CO2-strategier. Da Videnskabsbutikken DTU er en åben dør til DTU for borgerne og deres organisationer, foreslog Videnskabsbutikken DTU at Danmarks...

  7. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  8. Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership

    Science.gov (United States)

    Flude, Stephanie; Gilfillan, Stuart; Johnston, Gareth; Stuart, Finlay; Haszeldine, Stuart

    2016-04-01

    In the long term, captured CO2 will most likely be stored in large saline formations and it is highly likely that CO2 from multiple operators will be injected into a single saline formation. Understanding CO2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO2 leak, being able to identify the owner of the CO2 is of vital importance in terms of liability and remediation. Addition of geochemical tracers to the CO2 stream is an effective way of tagging the CO2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO2 is sufficient to distinguish CO2 captured using different technologies and from different fuel sources, from likely baseline conditions. Results include analytical measurements of CO2 captured from a number of different CO2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions. Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.

  9. CO2 flowrate calculator

    International Nuclear Information System (INIS)

    Carossi, Jean-Claude

    1969-02-01

    A CO 2 flowrate calculator has been designed for measuring and recording the gas flow in the loops of Pegase reactor. The analog calculator applies, at every moment, Bernoulli's formula to the values that characterize the carbon dioxide flow through a nozzle. The calculator electronics is described (it includes a sampling calculator and a two-variable function generator), with its amplifiers, triggers, interpolator, multiplier, etc. Calculator operation and setting are presented

  10. Well technologies for CO2 geological storage: CO2-resistant cement

    International Nuclear Information System (INIS)

    Barlet-Gouedard, V.; Rimmele, G.; Porcherie, O.; Goffe, B.

    2007-01-01

    Storing carbon dioxide (CO 2 ) underground is considered the most effective way for long-term safe and low-cost CO 2 sequestration. This recent application requires long-term well-bore integrity. A CO 2 leakage through the annulus may occur much more rapidly than geologic leakage through the formation rock, leading to economic loss, reduction of CO 2 storage efficiency, and potential compromise of the field for storage. The possibility of such leaks raises considerable concern about the long-term well-bore isolation and the durability of hydrated cement that is used to isolate the annulus across the producing/injection intervals in CO 2 -storage wells. We propose a new experimental procedure and methodology to study reactivity of CO 2 -Water-Cement systems in simulating the interaction of the set cement with injected supercritical CO 2 under downhole conditions. The conditions of experiments are 90 deg. C under 280 bars. The evolution of mechanical, physical and chemical properties of Portland cement with time is studied up to 6 months. The results are compared to equivalent studies on a new CO 2 -resistant material; the comparison shows significant promise for this new material. (authors)

  11. CO2 laser development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research and development programs on high-energy, short-pulse CO 2 lasers were begun at LASL in 1969. Three large systems are now either operating or are being installed. The Single-Beam System (SBS), a four-stage prototype, was designed in 1971 and has been in operation since 1973 with an output energy of 250 J in a 1-ns pulse with an on-target intensity of 3.5 x 10 14 W/cm 2 . The Dual-Beam System (DBS), now in the final stages of electrical and optical checkout, will provide about ten times more power for two-beam target irradiation experiments. Four such dual-beam modules are being installed in the Laser-Fusion Laboratory to provide an Eight-Beam System (EBS) scheduled for operation at the 5- to 10-TW level in 1977. A fourth system, a 100- to 200-TW CO 2 laser, is being designed for the High-Energy Gas Laser Facility (HEGLF) program

  12. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    KAUST Repository

    Drees, Markus

    2012-08-10

    Faced with depleting fossil carbon sources, the search for alternative energy carriers and energy storage possibilities has become an important issue. Nature utilizes carbon dioxide as starting material for storing sun energy in plant hydrocarbons. A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation of CO 2 involve high temperatures and are often not selective. With the development of more sophisticated methods and better software, theoretical studies have become both increasingly widespread and useful. This concept article summarizes theoretical investigations of the current state of the feasibility of CO 2 activation with molecular transition metal catalysts, highlighting the most promising reactions of CO 2 with olefins to industrially relevant acrylic acid/acrylates, and the insertion of CO 2 into metal-element bonds, particularly for the synthesis of cyclic carbonates and polymers. Rapidly improving computational power and methods help to increase the importance and accuracy of calculations continuously and make computational chemistry a useful tool helping to solve some of the most important questions for the future. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. CO2 Laser Market

    Science.gov (United States)

    Simonsson, Samuel

    1989-03-01

    It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.

  14. Natural Analogues of CO2 Geological Storage

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-01-01

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  15. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    Science.gov (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  16. What does CO2 geological storage really mean?

    International Nuclear Information System (INIS)

    2008-01-01

    It is now accepted that human activities are disturbing the carbon cycle of the planet. CO 2 , a greenhouse gas, has accumulated in the atmosphere where it contributes to climate change. Amongst the spectrum of short term measures that need to be urgently implemented to mitigate climate change, CO 2 capture and storage can play a decisive role as it could contribute 33% of the CO 2 reduction needed by 2050. This document aims to explain this solution by answering the following questions: where and how much CO 2 can we store underground, How can we transport and inject large quantities of CO 2 , What happens to the CO 2 once in the storage reservoir? Could CO 2 leak from the reservoir and if so, what might be the consequences? How can we monitor the storage site at depth and at the surface? What safety criteria need to be imposed and respected? (A.L.B.)

  17. Enhanced Oil Recovery with CO2 Capture and Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, Maria; De Simoni, Michela; Delbianco, Alberto; Cazzani, Piero; Zanibelli, Laura

    2010-09-15

    This paper presents the results of a feasibility study aimed at extending the production life of a small oilfield in Italy through EOR, employing the CO2 captured from the flue gas streams of the refinery nearby. The EOR operation allows the recovery of additional reserves while a consistent amount of the CO2 injected remains permanently stored into the reservoir. The screening process selection for EOR-CO2 and the main elements of the pilot project for the proper upstream-downstream integration will be described. Evaluation of EOR-CO2 extension to other oilfields and its effect on oil production and project's economics will be reported.

  18. Forecasting global atmospheric CO2

    International Nuclear Information System (INIS)

    Agusti-Panareda, A.; Massart, S.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Engelen, R.; Jones, L.; Peuch, V.H.; Chevallier, F.; Ciais, P.; Paris, J.D.; Sherlock, V.

    2014-01-01

    A new global atmospheric carbon dioxide (CO 2 ) real-time forecast is now available as part of the preoperational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO 2 forecasting system is that the land surface, including vegetation CO 2 fluxes, is modelled online within the IFS. Other CO 2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO 2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO 2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO 2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO 2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO 2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO 2 fluxes also lead to accumulating errors in the CO 2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO 2 fluxes compared to total optimized fluxes and the atmospheric CO 2 compared to observations. The largest biases in the atmospheric CO 2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO 2 analyses based on the assimilation of CO 2 products retrieved from satellite

  19. On-board co2 capture and storage with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed

    2016-03-17

    In general, this disclosure describes method of capturing and storing CO2 on a vehicle. The method includes contacting an vehicle exhaust gas with one or more of a first metal organic framework (MOF) composition sufficient to separate CO2 from the exhaust gas, contacting the separated CO2 with one or more of a second MOF composition sufficient to store the CO2 and wherein the one or more first MOF composition comprises one or more SIFSIX-n-M MOF and wherein M is a metal and n is 2 or 3. Embodiments also describe an apparatus or system for capturing and storing CO2 onboard a vehicle.

  20. Capture and geologic storage of carbon dioxide (CO2)

    International Nuclear Information System (INIS)

    2004-11-01

    This dossier about carbon sequestration presents: 1 - the world fossil fuels demand and its environmental impact; 2 - the solutions to answer the climatic change threat: limitation of fossil fuels consumption, development of nuclear and renewable energies, capture and storage of CO 2 (environmental and industrial advantage, cost); 3 - the CO 2 capture: post-combustion smokes treatment, oxi-combustion techniques, pre-combustion techniques; 4 - CO 2 storage: in hydrocarbon deposits (Weyburn site in Canada), in deep saline aquifers (Sleipner and K12B (North Sea)), in non-exploitable coal seams (Recopol European project); 5 - international and national mobilization: IEA R and D program, USA (FutureGen zero-emission coal-fired power plant, Carbon Sequestration Leadership forum), European Union (AZEP, GRACE, GESTCO, CO2STORE, NASCENT, RECOPOL, Castor, ENCAP, CO2sink etc programs), French actions (CO 2 club, network of oil and gas technologies (RTPG)), environmental stake, competitiveness, research stake. (J.S.)

  1. Toxic emissions and devaluated CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    Environmental, energy and climate policies need fresh reflections. In order to evaluate toxics reduction policies the Stockholm Convention on Persistent Organic Pollutants is mandatory. Denmark's function as lead country for dioxin research in the context of the OSPAR Convention is contrasted...... with a climate policy whose goals of CO2-reduction were made operational by green-wash. Arguments are given for the devaluation of CO2- neutrality in case of burning wood. Alternative practices as storing C in high quality wood products and/or leaving wood in the forest are recommended. A counter......-productive effect of dioxin formation in the cooling phase of wood burning appliances has been registered akin to de-novo-synthesis in municipal solid waste incinerators. Researchers, regulators and the public are, however, still preoccupied by notions of oven design and operation parameters, assuming that dioxin...

  2. Natural Analogues of CO2 Geological Storage; Analogos Naturales del Almacenamiento Geologico de CO2

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L; Pelayo, M; Recreo, F

    2007-07-20

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  3. The sequestration of CO2

    International Nuclear Information System (INIS)

    Le Thiez, P.

    2004-01-01

    The reduction of greenhouse gas emissions, especially CO 2 , represents a major technological and societal challenge in the fight against climate change. Among the measures likely to reduce anthropic CO 2 emissions, capture and geological storage holds out promise for the future. (author)

  4. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  5. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  6. Supported Catalysts for CO2 Methanation: A Review

    Directory of Open Access Journals (Sweden)

    Patrizia Frontera

    2017-02-01

    Full Text Available CO2 methanation is a well-known reaction that is of interest as a capture and storage (CCS process and as a renewable energy storage system based on a power-to-gas conversion process by substitute or synthetic natural gas (SNG production. Integrating water electrolysis and CO2 methanation is a highly effective way to store energy produced by renewables sources. The conversion of electricity into methane takes place via two steps: hydrogen is produced by electrolysis and converted to methane by CO2 methanation. The effectiveness and efficiency of power-to-gas plants strongly depend on the CO2 methanation process. For this reason, research on CO2 methanation has intensified over the last 10 years. The rise of active, selective, and stable catalysts is the core of the CO2 methanation process. Novel, heterogeneous catalysts have been tested and tuned such that the CO2 methanation process increases their productivity. The present work aims to give a critical overview of CO2 methanation catalyst production and research carried out in the last 50 years. The fundamentals of reaction mechanism, catalyst deactivation, and catalyst promoters, as well as a discussion of current and future developments in CO2 methanation, are also included.

  7. Interfacial Interactions and Wettability Evaluation of Rock Surfaces for CO2 Storage

    NARCIS (Netherlands)

    Shojai Kaveh, N.

    2014-01-01

    To reduce CO2 emissions into the atmosphere, different scenarios are proposed to capture and store carbon dioxide (CO2) in geological formations (CCS). Storage strategies include CO2 injection into deep saline aquifers, depleted gas and oil reservoirs, and unmineable coal seams. To identify a secure

  8. The effect of elevated CO2 on the vegetative and generative growth of Phalaenopsis

    NARCIS (Netherlands)

    Kromwijk, J.A.M.; Meinen, E.; Dueck, T.A.

    2014-01-01

    Phalaenopsis is a crassulacean acid metabolism (CAM) plant which absorbs and binds CO2 as malate during the night. During daytime the stomata close and the CO2 stored in the vacuole is released and used for photosynthesis. Because the CO2 taken up by CAM plants was assumed to be unaffected by the

  9. CO2 pellet blasting studies

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1997-01-01

    Initial tests with CO 2 pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO 2 pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO 2 blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report

  10. Carbon balance of CO2-EOR for NCNO classification

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Lopez, Vanessa [The University of Texas at Austin; Gil-Egui, Ramon; Gonzalez-Nicolas, Ana; Hovorka, Susan D

    2017-03-18

    The question of whether carbon dioxide enhanced oil recovery (CO2-EOR) constitutes a valid alternative for greenhouse gas emission reduction has been frequently asked by the general public and environmental sectors. Through this technology, operational since 1972, oil production is enhanced by injecting CO2 into depleted oil reservoirs in order displace the residual oil toward production wells in a solvent/miscible process. For decades, the CO2 utilized for EOR has been most commonly sourced from natural CO2 accumulations. More recently, a few projects have emerged where anthropogenic CO2 (A-CO2) is captured at an industrial facility, transported to a depleted oil field, and utilized for EOR. If carbon geologic storage is one of the project objectives, all the CO2 injected into the oil field for EOR could technically be stored in the formation. Even though the CO2 is being prevented from entering the atmosphere, and permanently stored away in a secured geologic formation, a question arises as to whether the total CO2 volumes stored in order to produce the incremental oil through EOR are larger than the CO2 emitted throughout the entire CO2-EOR process, including the capture facility, the EOR site, and the refining and burning of the end product. We intend to answer some of these questions through a DOE-NETL funded study titled “Carbon Life Cycle Analysis of CO2-EOR for Net Carbon Negative Oil (NCNO) Classification”. NCNO is defined as oil whose carbon emissions to the atmosphere, when burned or otherwise used, are less than the amount of carbon permanently stored in the reservoir in order to produce the oil. In this paper, we focus on the EOR site in what is referred to as a gate-to-gate system, but are inclusive of the burning of the refined product, as this end member is explicitly stated in the definition of NCNO. Finally, we use Cranfield, Mississippi, as a case study and come to the conclusion that the incremental oil produced is net carbon negative.

  11. Effects of Atmospheric CO2 Enrichment on Soil CO2 Efflux in a Young Longleaf Pine System

    OpenAIRE

    Runion, G. Brett; Butnor, J. R.; Prior, S. A.; Mitchell, R. J.; Rogers, H. H.

    2012-01-01

    The southeastern landscape is composed of agricultural and forest systems that can store carbon (C) in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2) on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf pine savannahs are an ecologically and economically important, yet understudied, component of the southeastern landscape. We investigated the effects of ambient and elevated C...

  12. Possible impacts of CO2 storage on the marine environment

    International Nuclear Information System (INIS)

    Poremski, H.J.

    2005-01-01

    This study examined the potential impacts of deep-sea carbon dioxide (CO 2 ) sequestration on the marine environment. The upper layers of oceans are currently saturated with CO 2 , while deeper ocean waters remain undersaturated. Arctic and Antarctic waters have higher uptake rates of CO 2 due to their lower temperatures. CO 2 deposited in Arctic and Antarctic waters sinks to the bottom of the ocean, and is then transported to equatorial latitudes, where stored amounts of CO 2 that are not fixed by biochemical processes will be released and enter the atmosphere again after a period of approximately 1000 years. Nearly 50 per cent of CO 2 fixation occurs as a result of phytoplankton growth, which is dependent on the availability of a range of nutrients, essential trace metals, and optimal physical conditions. Fertilization-induced CO 2 fixation in the sediments of southern oceans will result in nutrient depletion of bottom layers, which will in turn result in lower primary production levels at equatorial latitudes. Current modelling approaches to CO 2 injection assume that the injected CO 2 will dissolve in a plume extending 100 m around a riser. Retention times of several hundred years are anticipated. However, further research is needed to investigate the efficacy of CO 2 deep ocean storage technologies. Increased CO 2 uptake can also increase the formation of bicarbonate (HCO 3 ) acidification, decrease pH values, and inhibit the formation of biomass in addition to impacting on the calcification of many organisms. It was concluded that ocean storage by injection or deep storage is an untenable option at present due to the fact that the effects of excessive CO 2 in marine environments are not fully understood. 22 refs., 2 tabs

  13. CO2: a worldwide myth

    International Nuclear Information System (INIS)

    Gerondeau, Ch.

    2009-01-01

    In this book, the author demonstrates the paradox that reducing CO 2 emissions leads to no CO 2 abatement at all. This assertion is based on an obvious statement. Everybody knows that oil resources are going to be exhausted in few decades. The oil that industrialized countries will not use will be consumed by emerging countries and the CO 2 emissions will remain the same. Who would believe that the oil, gas or coal still available will remain unused? The Kyoto protocol, the national policies, the European agreements of emissions abatement, the carbon taxes, the emissions abatement requests sent to the rest of the world, all these actions cost a lot and are useless. CO 2 concentration in the atmosphere will inescapably double during the 21. century but, according to the author, without any catastrophic consequence for the Earth. (J.S.)

  14. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.

    2009-06-10

    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  15. Sequestering CO2 in the Ocean: Options and Consequences

    Science.gov (United States)

    Rau, G. H.; Caldeira, K.

    2002-12-01

    The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood

  16. Foraminiferal calcification and CO2

    Science.gov (United States)

    Nooijer, L. D.; Toyofuku, T.; Reichart, G. J.

    2017-12-01

    Ongoing burning of fossil fuels increases atmospheric CO2, elevates marine dissolved CO2 and decreases pH and the saturation state with respect to calcium carbonate. Intuitively this should decrease the ability of CaCO3-producing organisms to build their skeletons and shells. Whereas on geological time scales weathering and carbonate deposition removes carbon from the geo-biosphere, on time scales up to thousands of years, carbonate precipitation increases pCO2 because of the associated shift in seawater carbon speciation. Hence reduced calcification provides a potentially important negative feedback on increased pCO2 levels. Here we show that foraminifera form their calcium carbonate by active proton pumping. This elevates the internal pH and acidifies the direct foraminiferal surrounding. This also creates a strong pCO2 gradient and facilitates the uptake of DIC in the form of carbon dioxide. This finding uncouples saturation state from calcification and predicts that the added carbon due to ocean acidification will promote calcification by these organisms. This unknown effect could add substantially to atmospheric pCO2 levels, and might need to be accounted for in future mitigation strategies.

  17. A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry

    International Nuclear Information System (INIS)

    Park, Sangwon; Jo, Hoyong; Kang, Dongwoo; Park, Jinwon

    2014-01-01

    CCS (carbon capture and storage) is the most popular technology used for the reduction of CO 2 in the post-combustion stage. However, the CCS process has some disadvantages including uncertainty about the stability of the land that is used to store the separated CO 2 . Consequently, CCU (carbon capture and utilization) technologies have recently received increased attention as a possible replacement for CCS. In this study, we utilized CO 2 fixation methods by using the metal carbonate mechanism. We selected 5 and 30 wt% MEA (mono-ethanolamine) solutions to rapidly make a carbonate and Ca(OH) 2 slurry. In all of the experiments, normal temperature and pressure conditions were maintained (except during desorption to check for residual CO 2 in the MEA solution). Consequently, most of the CO 2 was converted to carbonate. The MEA converted CO 2 to ionic CO 2 and rapidly created calcium carbonate. Also the formed solids that were observed were determined to be CaCO 3 and Ca(OH) 2 by X-ray diffractometry. Also, the MEA solution could be reused to absorb CO 2 . Therefore, we have confirmed the development of our suggested CCS process. This process has the ability not only to reuse emitted CO 2 , but it can also be employed to reuse construction wastes that include heavy metals. - Highlights: • We propose novel CO 2 conversion technology by utilizing an amine solution. • In this study, alkaline solutions were used to produce CO 2 precipitate. • The MEA (mono-ethanolamine) solution has a sufficient potential to fix CO 2 with metal sources under moderate condition. • Also, the Ca(OH) 2 slurry yielded enough Ca 2+ ions to make carbonate

  18. The Value of CO2-Geothermal Bulk Energy Storage to Reducing CO2 Emissions Compared to Conventional Bulk Energy Storage Technologies

    Science.gov (United States)

    Ogland-Hand, J.; Bielicki, J. M.; Buscheck, T. A.

    2016-12-01

    Sedimentary basin geothermal resources and CO2 that is captured from large point sources can be used for bulk energy storage (BES) in order to accommodate higher penetration and utilization of variable renewable energy resources. Excess energy is stored by pressurizing and injecting CO2 into deep, porous, and permeable aquifers that are ubiquitous throughout the United States. When electricity demand exceeds supply, some of the pressurized and geothermally-heated CO2 can be produced and used to generate electricity. This CO2-BES approach reduces CO2 emissions directly by storing CO2 and indirectly by using some of that CO2 to time-shift over-generation and displace CO2 emissions from fossil-fueled power plants that would have otherwise provided electricity. As such, CO2-BES may create more value to regional electricity systems than conventional pumped hydro energy storage (PHES) or compressed air energy storage (CAES) approaches that may only create value by time-shifting energy and indirectly reducing CO2 emissions. We developed and implemented a method to estimate the value that BES has to reducing CO2 emissions from regional electricity systems. The method minimizes the dispatch of electricity system components to meet exogenous demand subject to various CO2 prices, so that the value of CO2 emissions reductions can be estimated. We applied this method to estimate the performance and value of CO2-BES, PHES, and CAES within real data for electricity systems in California and Texas over the course of a full year to account for seasonal fluctuations in electricity demand and variable renewable resource availability. Our results suggest that the value of CO2-BES to reducing CO2 emissions may be as much as twice that of PHES or CAES and thus CO2-BES may be a more favorable approach to energy storage in regional electricity systems, especially those where the topography is not amenable to PHES or the subsurface is not amenable to CAES.

  19. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.

    2003-01-01

    CO2 capture and storage including its utilization or reuse presents an opportunity to achieve deep reductions in greenhouse gas emissions from fossil energy use. The development and deployment of this option could significantly assist in meeting a future goal of achieving stabilization of the presently rising atmospheric concentration of greenhouse gases. CO2 capture from process streams is an established concept that has achieved industrial practice. Examples of current applications include the use of primarily, solvent based capture technologies for the recovery of pure CO2 streams for chemical synthesis, for utilization as a food additive, for use as a miscible agent in enhanced oil recovery operations and removal of CO2 as an undesired contaminant from gaseous process streams for the production of fuel gases such as hydrogen and methane. In these applications, the technologies deployed for CO2 capture have focused on gas separation from high purity, high pressure streams and in reducing (or oxygen deficient) environments, where the energy penalties and cost for capture are moderately low. However, application of the same capture technologies for large scale abatement of greenhouse gas emissions from fossil fuel use poses significant challenges in achieving (at comparably low energy penalty and cost) gas separation in large volume, dilute concentration and/or low pressure flue gas streams. This paper will focus on a review of existing commercial methods of CO2 capture and the technology stretch, process integration and energy system pathways needed for their large scale deployment in fossil fueled processes. The assessment of potential capture technologies for the latter purpose will also be based on published literature data that are both 'transparent' and 'systematic' in their evaluation of the overall cost and energy penalties of CO2 capture. In view of the of the fact that many of the existing commercial processes for CO2 capture have seen applications in

  20. The effect of elevated CO2 on the vegetative and generative growth of Phalaenopsis

    OpenAIRE

    Kromwijk, J.A.M.; Meinen, E.; Dueck, T.A.

    2014-01-01

    Phalaenopsis is a crassulacean acid metabolism (CAM) plant which absorbs and binds CO2 as malate during the night. During daytime the stomata close and the CO2 stored in the vacuole is released and used for photosynthesis. Because the CO2 taken up by CAM plants was assumed to be unaffected by the CO2 concentration in the air, additional CO2 for increased growth was generally not supplied in Phalaenopsis. However, a literature study indicated that elevated CO2 might have a positive effect in P...

  1. CO2 Abatement In The Iron And Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    The iron and steel industry is the largest industrial source of CO2 emissions due to the energy intensity of steel production, its reliance on carbon-based fuels and reductants, and the large volume of steel produced -- over 1414 Mt in 2010. With the growing concern over climate change, steel makers are faced with the challenge of finding ways of lowering CO2 emissions without seriously undermining process efficiency or considerably adding to costs. This report examines ways of abating CO2 emissions from raw materials preparation (coking, sintering and pelletising plants) through to the production of liquid steel in basic oxygen furnaces and electric arc furnaces. Direct reduction and smelting reduction processes are covered, as well as iron making in a blast furnace. A range of technologies and measures exist for lowering CO2 emissions including minimising energy consumption and improving energy efficiency, changing to a fuel and/or reducing agent with a lower CO2 emission factor (such as wood charcoal), and capturing the CO2 and storing it underground. Significant CO2 reductions can be achieved by combining a number of the available technologies. If carbon capture and storage is fitted than steel plants could become near zero emitters of CO2.

  2. The CO2nnect activities

    Science.gov (United States)

    Eugenia, Marcu

    2014-05-01

    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  3. Unveiling CO2 heterogeneous freezing plumes during champagne cork popping.

    Science.gov (United States)

    Liger-Belair, Gérard; Cordier, Daniel; Honvault, Jacques; Cilindre, Clara

    2017-09-14

    Cork popping from clear transparent bottles of champagne stored at different temperatures (namely, 6, 12, and 20 °C) was filmed through high-speed video imaging in the visible light spectrum. During the cork popping process, a plume mainly composed of gaseous CO 2 with traces of water vapour freely expands out of the bottleneck through ambient air. Most interestingly, for the bottles stored at 20 °C, the characteristic grey-white cloud of fog classically observed above the bottlenecks of champagne stored at lower temperatures simply disappeared. It is replaced by a more evanescent plume, surprisingly blue, starting from the bottleneck. We suggest that heterogeneous freezing of CO 2 occurs on ice water clusters homogeneously nucleated in the bottlenecks, depending on the saturation ratio experienced by gas-phase CO 2 after adiabatic expansion (indeed highly bottle temperature dependent). Moreover, and as observed for the bottles stored at 20 °C, we show that the freezing of only a small portion of all the available CO 2 is able to pump the energy released through adiabatic expansion, thus completely inhibiting the condensation of water vapour found in air packages adjacent to the gas volume gushing out of the bottleneck.

  4. Towards CO2 sequestration and applications of CO2 hydrates: the effects of tetrahydrofuran on the phase equilibria of CO2 hydrates

    International Nuclear Information System (INIS)

    Khalik, M.S.; Peters, C.J.

    2006-01-01

    The increasing quantity of carbon dioxide (CO 2 ) in the atmosphere has caused widespread global concerns. Capturing CO 2 from its sources and stored it in the form of gas hydrates and application of CO 2 hydrates are among the proposed methods to overcome this problem. In order to make hydrate-based process more attractive, the use of cyclic ethers as promoters is suggested to reduce the required hydrate formation pressure and enhancing the corresponding kinetic rate. In the present work, tetrahydrofuran (THF) is chosen as a hydrate promoter, participating in forming hydrates and produces mixed hydrate together with CO 2 . The pressure and temperature ranges of hydrate stability region are carefully determined through phase equilibrium measurement of the ternary CO 2 , tetrahydrofuran (THF) and water systems. From the experimental results, it is confirmed that the presence of THF in CO 2 + water systems will extend the hydrate formation region to higher temperature at a constant pressure. The extension of the hydrate stability region is depended on the overall concentration of the ternary system. Moreover, four-phase equilibrium of H-Lw-Lv-V is observed in the system, which may be due to a liquid phase split. In the region where the four-phase equilibrium exists, the ternary system loses its concentration dependency of the hydrate equilibrium conditions. (Author)

  5. On a CO2 ration

    International Nuclear Information System (INIS)

    De Wit, P.

    2003-01-01

    In 2 years all the large energy companies in the European Union will have a CO2 ration, including a system to trade a shortage or surplus of emission rights. A cost effective system to reduce emission, provided that the government does not auction the emission rights [nl

  6. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  7. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs

  8. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref

  9. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Selecci0n de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Martinez, R; Recreo, F; Prado, P; Campos, R; Pelayo, M; Losa, A de la; Hurtado, A; Lomba, L; Perez del Villar, L; Ortiz, G; Sastre, J; Zapatero, M A; Suarez, I; Arenillas, A

    2007-09-18

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs.

  10. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Seleccion de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Martinez, R; Recreo, F; Prado, P; Campos, R; Pelayo, M; Losa, A de la; Hurtado, A; Lomba, L; Perez del Villar, L; Ortiz, G; Sastre, J

    2006-07-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref.

  11. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  12. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  13. Fang CO2 med Aminosyrer

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai

    2010-01-01

    Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer.......Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer....

  14. CO2 reduction by dematerialization

    Energy Technology Data Exchange (ETDEWEB)

    Hekkert, M.P. [Department of Innovation Studies, Copernicus Institute, Utrecht University, Utrecht (Netherlands)

    2002-04-01

    Current policy for the reduction of greenhouse gases is mainly concerned with a number of types of solutions: energy saving, shifting to the use of low-carbon fuels and the implementation of sustainable energy technologies. Recent research has shown that a strategy directed at a more efficient use of materials could make a considerable contribution to reducing CO2 emissions. Moreover, the costs to society as a whole of such a measure appear to be very low.

  15. Outsourcing CO2 within China.

    Science.gov (United States)

    Feng, Kuishuang; Davis, Steven J; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus

    2013-07-09

    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country's borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world's largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China's emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low-value-added but high-carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China.

  16. Noble gas geochemistry to monitor CO2 geological storages

    International Nuclear Information System (INIS)

    Lafortune, St.

    2007-11-01

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO 2 emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO 2 could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO 2 in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO 2 storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO 2 accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  17. Impact of CO_2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO_2 Leakage

    International Nuclear Information System (INIS)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    2016-01-01

    -dependent results suggest a limited ability to predict the emerging dominant species for other CO_2-exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO_2 leakage. This is the first step for understanding how a CO_2-altered microbial community may impact injectivity, permanence of stored CO_2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO_2 exposed environments.

  18. Capture, transport and storage of CO2

    International Nuclear Information System (INIS)

    De Boer, B.

    2008-01-01

    The emission of greenhouse gas CO2 in industrial processes and electricity production can be reduced on a large scale. Available techniques include post-combustion, pre-combustion, the oxy-fuel process, CO2 fixation in industrial processes and CO2 mineralization. In the Netherlands, plans for CO2 capture are not developing rapidly (CCS - carbon capture and storage). [mk] [nl

  19. RODZAJE METOD SEKWESTRACJI CO2

    Directory of Open Access Journals (Sweden)

    Zofia LUBAŃSKA

    Full Text Available Z pojęciem ochrony środowiska wiąże się bardzo szeroko w ostatnim czasie omawiane zagadnienie dotyczące ograniczenia emisji CO2. Konsekwencją globalnych zmian klimatu wywołanego przez ludzi jest wzrost stężenia atmosferycznego gazów cieplarnianych, które powodują nasilający się efekt cieplarniany. Wzrasta na świecie liczba ludności, a co za tym idzie wzrasta konsumpcja na jednego mieszkańca, szczególnie w krajach szeroko rozwiniętych gospodarczo. Protokół z Kioto ściśle określa działania jakie należy podjąć w celu zmniejszenia stężenia dwutlenku węgla w atmosferze. Pomimo maksymalnej optymalizacji procesu spalania paliw kopalnianych wykorzystywanych do produkcji energii, zastosowania odnawialnych źródeł energii zmiana klimatu jest nieunikniona i konsekwentnie będzie postępować przez kolejne dekady. Prognozuje się, że duże znaczenie odegra nowoczesna technologia, która ma za zadanie wychwycenie CO2 a następnie składowanie go w odpowiednio wybranych formacjach geologicznych (CCS- Carbon Capture and Storage. Eksperci są zgodni, że ta technologia w niedalekiej przyszłości stanie się rozwiązaniem pozwalającym ograniczyć ogromną ilość emisji CO2 pochodzącą z procesów wytwarzania energii z paliw kopalnych. Z analiz Raportu IPCC wynika, iż technologia CSS może się przyczynić do ok. 20% redukcji emisji dwutlenku węgla przewidzianej do 2050 roku [3]. Zastosowanie jej napotyka na wiele barier, nie tylko technologicznych i ekonomicznych, ale także społecznych. Inną metodą dającą ujemne źródło emisji CO2 jest możliwość wykorzystania obszarów leśnych o odpowiedniej strukturze drzewostanu. Środkiem do tego celu, oprócz ograniczenia zużycia emisjogennych paliw kopalnych (przy zachowaniu zasad zrównoważonego rozwoju może być intensyfikacja zalesień. Zwiększanie lesistości i prawidłowa gospodarka leśna należy do najbardziej efektywnych sposobów kompensowania

  20. PEAT-CO2. Assessment of CO2 emissions from drained peatlands in SE Asia

    International Nuclear Information System (INIS)

    Hooijer, A.; Silvius, M.; Woesten, H.; Page, S.

    2006-12-01

    Forested tropical peatlands in SE Asia store at least 42,000 Megatonnes of soil carbon. This carbon is increasingly released to the atmosphere due to drainage and fires associated with plantation development and logging. Peatlands make up 12% of the SE Asian land area but account for 25% of current deforestation. Out of 27 million hectares of peatland, 12 million hectares (45%) are currently deforested and mostly drained. One important crop in drained peatlands is palm oil, which is increasingly used as a biofuel in Europe. In the PEAT-CO2 project, present and future emissions from drained peatlands were quantified using the latest data on peat extent and depth, present and projected land use and water management practice, decomposition rates and fire emissions. It was found that current likely CO2 emissions caused by decomposition of drained peatlands amounts to 632 Mt/y (between 355 and 874 Mt/y). This emission will increase in coming decades unless land management practices and peatland development plans are changed, and will continue well beyond the 21st century. In addition, over 1997-2006 an estimated average of 1400 Mt/y in CO2 emissions was caused by peatland fires that are also associated with drainage and degradation. The current total peatland CO2 emission of 2000 Mt/y equals almost 8% of global emissions from fossil fuel burning. These emissions have been rapidly increasing since 1985 and will further increase unless action is taken. Over 90% of this emission originates from Indonesia, which puts the country in 3rd place (after the USA and China) in the global CO2 emission ranking. It is concluded that deforested and drained peatlands in SE Asia are a globally significant source of CO2 emissions and a major obstacle to meeting the aim of stabilizing greenhouse gas emissions, as expressed by the international community. It is therefore recommended that international action is taken to help SE Asian countries, especially Indonesia, to better conserve

  1. Dolomite decomposition under CO2

    International Nuclear Information System (INIS)

    Guerfa, F.; Bensouici, F.; Barama, S.E.; Harabi, A.; Achour, S.

    2004-01-01

    Full text.Dolomite (MgCa (CO 3 ) 2 is one of the most abundant mineral species on the surface of the planet, it occurs in sedimentary rocks. MgO, CaO and Doloma (Phase mixture of MgO and CaO, obtained from the mineral dolomite) based materials are attractive steel-making refractories because of their potential cost effectiveness and world wide abundance more recently, MgO is also used as protective layers in plasma screen manufacture ceel. The crystal structure of dolomite was determined as rhombohedral carbonates, they are layers of Mg +2 and layers of Ca +2 ions. It dissociates depending on the temperature variations according to the following reactions: MgCa (CO 3 ) 2 → MgO + CaO + 2CO 2 .....MgCa (CO 3 ) 2 → MgO + Ca + CaCO 3 + CO 2 .....This latter reaction may be considered as a first step for MgO production. Differential thermal analysis (DTA) are used to control dolomite decomposition and the X-Ray Diffraction (XRD) was used to elucidate thermal decomposition of dolomite according to the reaction. That required samples were heated to specific temperature and holding times. The average particle size of used dolomite powders is 0.3 mm, as where, the heating temperature was 700 degree celsius, using various holding times (90 and 120 minutes). Under CO 2 dolomite decomposed directly to CaCO 3 accompanied by the formation of MgO, no evidence was offered for the MgO formation of either CaO or MgCO 3 , under air, simultaneous formation of CaCO 3 , CaO and accompanied dolomite decomposition

  2. Outsourcing CO2 within China

    Science.gov (United States)

    Feng, Kuishuang; Davis, Steven J.; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus

    2013-01-01

    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country’s borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world’s largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China’s emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low–value-added but high–carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China. PMID:23754377

  3. Shifting terrestrial feedbacks from CO2 fertilization to global warming

    Science.gov (United States)

    Peñuelas, Josep; Ciais, Philippe; Janssens, Ivan; Canadell, Josep; Obersteiner, Michael; Piao, Shilong; Vautard, Robert; Sardans Jordi Sardans, Jordi

    2016-04-01

    Humans are increasingly fertilizing the planet. Our activities are increasing atmospheric concentrations of carbon dioxide, nitrogen inputs to ecosystems and global temperatures. Individually and combined, they lead to biospheric availability of carbon and nitrogen, enhanced metabolic activity, and longer growing seasons. Plants can consequently grow more and take up more carbon that can be stored in ecosystem carbon pools, thus enhancing carbon sinks for atmospheric CO2. Data on the increased strength of carbon sinks are, however, inconclusive: Some data (eddy covariance, short-term experiments on elevated CO2 and nutrient fertilization) suggest that biospheric carbon uptake is already effectively increasing but some other data suggest it is not, or are not general and conclusive (tree-ring, forest inventory). The combined land-ocean CO2 sink flux per unit of excess atmospheric CO2 above preindustrial levels declined over 1959-2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. We will discuss the available data, and the discussion will drive us to revisit our projections for enhanced carbon sinks. We will reconsider the performance of the modulators of increased carbon uptake in a CO2 fertilized and warmed world: nutrients, climate, land use and pollution. Nutrient availability in particular plays a crucial role. A simple mass-balance approach indicates that limited phosphorus availability and the corresponding N:P imbalances can jointly reduce the projected future carbon storage by natural ecosystems during this century. We then present a new paradigm: we are shifting from a fertilization to a warming era. Compared to the historical period, future impacts of warming will be larger than the benefits of CO2 fertilization given nutrient limitations, management and disturbance (which reduces C stocks and thus sequestration potential) and because CO2 will decrease by 2050 in RCP2.6, meaning loss of CO2 fertilization, and CO2

  4. Have We Overestimated Saline Aquifer CO2 Storage Capacities?

    International Nuclear Information System (INIS)

    Thibeau, S.; Mucha, V.

    2011-01-01

    During future, large scale CO 2 geological storage in saline aquifers, fluid pressure is expected to rise as a consequence of CO 2 injection, but the pressure build up will have to stay below specified values to ensure a safe and long term containment of the CO 2 in the storage site. The pressure build up is the result of two different effects. The first effect is a local overpressure around the injectors, which is due to the high CO 2 velocities around the injectors, and which can be mitigated by adding CO 2 injectors. The second effect is a regional scale pressure build up that will take place if the storage aquifer is closed or if the formation water that flows away from the pressurised area is not large enough to compensate volumetrically the CO 2 injection. This second effect cannot be mitigated by adding additional injectors. In the first section of this paper, we review some major global and regional assessments of CO 2 storage capacities in deep saline aquifers, in term of mass and storage efficiency. These storage capacities are primarily based on a volumetric approach: storage capacity is the volumetric sum of the CO 2 that can be stored through various trapping mechanisms. We then discuss in Section 2 storage efficiencies derived from a pressure build up approach, as stated in the CO2STORE final report (Chadwick A. et al. (eds) (2008) Best Practice for the Storage of CO 2 in Saline Aquifers, Observations and Guidelines from the SACS and CO2STORE Projects, Keyworth, Nottingham, BGS Occasional Publication No. 14) and detailed by Van der Meer and Egberts (van der Meer L.G.H., Egberts P.J.P. (2008) A General Method for Calculating Subsurface CO 2 Storage Capacity, OTC Paper 19309, presented at the OTC Conference held in Houston, Texas, USA, 5-8 May). A quantitative range of such storage efficiency is presented, based on a review of orders of magnitudes of pore and water compressibilities and allowable pressure increase. To illustrate the relevance of this

  5. CO2 supply from an integrated network : the opportunities and challenges

    International Nuclear Information System (INIS)

    Heath, M.

    2006-01-01

    Strategies for using carbon dioxide (CO 2 ) from an integrated network were discussed. The oil and gas industry is currently considering carbon capture and storage (CCS) scenarios for Alberta. Integrated scenarios are aimed at providing business solution for CO 2 currently being produced in the province as well as optimizing the amounts of CO 2 that can be stored in geologic sinks. The scenarios hope to transform CCS into a value-added market capable of providing optimal returns to stakeholders along the CO 2 supply chain through the creation of an infrastructure designed to transport CO 2 in sufficient volumes. The storage of CO 2 in geologic sinks is expected to remove optimal amounts of anthropogenic CO 2 from larger stationary point sources. Interest in an integrated CO 2 market in Alberta has arisen from both economic and environmental concerns. The most effective CO 2 sources are fertilizer, gas processing, and hydrogen plants. Petrochemical facilities also produce high purity CO 2 . CO 2 capture approaches include post- and pre-combustion capture technologies as well as oxyfuel conversion. It was concluded that the cost of capturing CO 2 depends on concentration and purity levels obtained at the point of capture. Major CO 2 sources in the Western Canadian Sedimentary Basin (WCSB) were provided. tabs., figs

  6. Trading CO2 emission; Verhandelbaarheid van CO2-emissies

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.F.; Looijenga, A.; Moor, R.; Wissema, E.W.J. [Afdeling Energie, Ministerie van VROM, The Hague (Netherlands)

    2000-06-01

    Systems for CO2-emission trading can take many shapes as developments in Europe show. European developments for emission trading tend to comprehend cap and-trade systems for large emission sources. In the Netherlands a different policy is in preparation. A trading system for sheltered sectors with an option to buy reductions from exposed sectors will be further developed by a Commission, appointed by the minister of environment. Exposed sectors are committed to belong to the top of the world on the area of energy-efficiency. The authors point out that a cap on the distribution of energy carriers natural gas, electricity and fuel seems to be an interesting option to shape the trade scheme. A cap on the distribution of electricity is desirable, but not easy to implement. The possible success of the system depends partly on an experiment with emission reductions. 10 refs.

  7. Geological storage of CO2

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2005-01-01

    The industrial storage of CO 2 is comprised of three steps: - capture of CO 2 where it is produced (power plants, cement plants, etc.); - transport (pipe lines or boats); - storage, mainly underground, called geological sequestration... Three types of reservoirs are considered: - salted deep aquifers - they offer the biggest storage capacity; - exhausted oil and gas fields; - non-exploited deep coal mine streams. The two latter storage types may allow the recovery of sellable products, which partially or totally offsets the storage costs. This process is largely used in the petroleum industry to improve the productivity of an oil field, and is called FOR (Enhanced Oil Recovery). A similar process is applied in the coal mining industry to recover the imprisoned gas, and is called ECBM (Enhanced Coal Bed methane). Two storage operations have been initiated in Norway and in Canada, as well as research programmes in Europe, North America, Australia and Japan. International organisations to stimulate this technology have been created such as the 'Carbon Sequestration Leadership Forum' and 'the Intergovernmental Group for Climate Change'. This technology will be taken into account in the instruments provided by the Tokyo Protocol. (author)

  8. Effect of Mineral Dissolution/Precipitation and CO2 Exsolution on CO2 transport in Geological Carbon Storage.

    Science.gov (United States)

    Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue

    2017-09-19

    Geological carbon sequestration (GCS) in deep saline aquifers is an effective means for storing carbon dioxide to address global climate change. As the time after injection increases, the safety of storage increases as the CO 2 transforms from a separate phase to CO 2 (aq) and HCO 3 - by dissolution and then to carbonates by mineral dissolution. However, subsequent depressurization could lead to dissolved CO 2 (aq) escaping from the formation water and creating a new separate phase which may reduce the GCS system safety. The mineral dissolution and the CO 2 exsolution and mineral precipitation during depressurization change the morphology, porosity, and permeability of the porous rock medium, which then affects the two-phase flow of the CO 2 and formation water. A better understanding of these effects on the CO 2 -water two-phase flow will improve predictions of the long-term CO 2 storage reliability, especially the impact of depressurization on the long-term stability. In this Account, we summarize our recent work on the effect of CO 2 exsolution and mineral dissolution/precipitation on CO 2 transport in GCS reservoirs. We place emphasis on understanding the behavior and transformation of the carbon components in the reservoir, including CO 2 (sc/g), CO 2 (aq), HCO 3 - , and carbonate minerals (calcite and dolomite), highlight their transport and mobility by coupled geochemical and two-phase flow processes, and consider the implications of these transport mechanisms on estimates of the long-term safety of GCS. We describe experimental and numerical pore- and core-scale methods used in our lab in conjunction with industrial and international partners to investigate these effects. Experimental results show how mineral dissolution affects permeability, capillary pressure, and relative permeability, which are important phenomena affecting the input parameters for reservoir flow modeling. The porosity and the absolute permeability increase when CO 2 dissolved water is

  9. Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO2 utilisation in polyol synthesis

    NARCIS (Netherlands)

    Fernández-Dacosta, Cora; Van Der Spek, Mijndert; Hung, Christine Roxanne; Oregionni, Gabriel David; Skagestad, Ragnhild; Parihar, Prashant; Gokak, D. T.; Strømman, Anders Hammer; Ramirez, Andrea

    2017-01-01

    CO2 utilisation is gaining interest as a potential element towards a sustainable economy. CO2 can be used as feedstock in the synthesis of fuels, chemicals and polymers. This study presents a prospective assessment of carbon capture from a hydrogen unit at a refinery, where the CO2 is either stored,

  10. One strategy for estimating the potential soil carbon storage due to CO2 fertilization

    International Nuclear Information System (INIS)

    Harrison, K.G.; Bonani, G.

    1994-01-01

    Soil radiocarbon measurements can be used to estimate soil carbon turnover rates and inventories. A labile component of soil carbon has the potential to respond to perturbations such as CO 2 fertilization, changing climate, and changing land use. Soil carbon has influenced past and present atmospheric CO 2 levels and will influence future levels. A model is used to calculate the amount of additional carbon stored in soil because of CO 2 fertilization

  11. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  12. On-board co2 capture and storage with metal organic framework

    KAUST Repository

    Eddaoudi, Mohamed; Belmabkhout, Youssef; Shekhah, Osama

    2016-01-01

    In general, this disclosure describes method of capturing and storing CO2 on a vehicle. The method includes contacting an vehicle exhaust gas with one or more of a first metal organic framework (MOF) composition sufficient to separate CO2 from

  13. Second Generation CO2 FEP Analysis: CASSIF - Carbon Storage Scenario Identification Framework

    NARCIS (Netherlands)

    Yavuz, F.; Tilburg, T. van; David, P.; Spruijt, M.; Wildenborg, T.

    2009-01-01

    Carbon dioxide Capture and Storage (CCS) is a promising contribution to reduce further increase of atmospheric CO2 emissions from fossil fuels. The CCS concept anticipates that large amounts of CO2 are going to be stored in the subsurface for the long term. Since CCS is a rather new technology,

  14. Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands

    Science.gov (United States)

    Lisa J. Samuelson; Kurt Johnsen; Tom Stokes; Weinlang Lu

    2004-01-01

    Intensive forestry may reduce net CO2 emission into atmosphere by storing carbon in living biomass, dead organic matter and soil, and durable wood products. Because quantification of belowground carbon dynamics is important for reliable estimation of the carbon sequestered by intensively managed plantations, we examined soil CO2...

  15. Alberta industrial synergy CO2 programs initiative

    International Nuclear Information System (INIS)

    Yildirim, E.

    1998-01-01

    The various industrial sectors within Alberta produce about 350,000 tonnes of CO 2 per day. This presentation was concerned with how this large volume and high concentration of CO 2 can be used in industrial and agricultural applications, because every tonne of CO 2 used for such purposes is a tonne that does not end up in the atmosphere. There is a good potential for an industrial synergy between the producers and users of CO 2 . The Alberta Industrial Synergy CO 2 Programs Initiative was established to ultimately achieve a balance between the producers of CO 2 and the users of CO 2 by creating ways to use the massive quantities of CO 2 produced by Alberta's hydrocarbon-based economy. The Alberta CO 2 Research Steering Committee was created to initiate and support CO 2 programs such as: (1) CO 2 use in enhanced oil recovery, (2) creation of a CO 2 production inventory, (3) survey of CO 2 users and potential users, (4) investigation of process issues such as power generation, oil sands and cement manufacturing, and (5) biofixation by plants, (6) other disposal options (e.g. in depleted oil and gas reservoirs, in aquifers, in tailings ponds, in coal beds). The single most important challenge was identified as 'rationalizing the formation of the necessary infrastructure'. Failing to do that will greatly impede efforts directed towards CO 2 utilization

  16. Some safety aspects of CO2 vapour compression systems

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, J. [Department of Refrigeration and Air Conditioning, Norwegian University of Science and Technology NTNU, Trondheim (Norway); Hafner, A.; Braanaas, M. [SINTEF Energy Research, Refrigeration and Air Conditioning, Trondheim (Norway)

    2000-11-01

    Since CO2 is a non-toxic and non-flammable refrigerant, the major safety issues for CO2 systems are related to the high operating pressure. In case of a component rupture, the explosion energy (stored energy) may characterise the extent of potential damage.The explosion energy can be estimated based on component (refrigerant-side) volumes, pressures and refrigerant property data. The explosion (stored) energies of baseline systems and CO2 systems are calculated and compared. Results show that the explosion energies are not as different as the large difference in pressure would indicate. It has been suggested that a Boiling Liquid Expanding Vapour Explosion (BLEVE) may occur when a vessel containing pressurised liquid or supercritical fluid is rapidly depressurised, e.g. due to a crack or a rupture. The overpressure from a BLEVE may be high enough to rupture the whole vessel, with a resulting blast wave and risk of flying fragments. Some tests on CO2 have been conducted at varying initial conditions and liquid fill levels, and with varying vent areas. No significant overpressure peaks above the initial pressure has been observed in the current test programme. 19 refs.

  17. Modelling CO2-Brine Interfacial Tension using Density Gradient Theory

    KAUST Repository

    Ruslan, Mohd Fuad Anwari Che

    2018-03-01

    Knowledge regarding carbon dioxide (CO2)-brine interfacial tension (IFT) is important for petroleum industry and Carbon Capture and Storage (CCS) strategies. In petroleum industry, CO2-brine IFT is especially importance for CO2 – based enhanced oil recovery strategy as it affects phase behavior and fluid transport in porous media. CCS which involves storing CO2 in geological storage sites also requires understanding regarding CO2-brine IFT as this parameter affects CO2 quantity that could be securely stored in the storage site. Several methods have been used to compute CO2-brine interfacial tension. One of the methods employed is by using Density Gradient Theory (DGT) approach. In DGT model, IFT is computed based on the component density distribution across the interface. However, current model is only applicable for modelling low to medium ionic strength solution. This limitation is due to the model only considers the increase of IFT due to the changes of bulk phases properties and does not account for ion distribution at interface. In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections. The saddle point of tangent plane distance where ( ) was defined as the boundary separating the two sections of the interface. Electrolyte is assumed to be present only in the second section which is connected to the bulk liquid phase side. Numerical simulations were performed using the proposed approach for single and mixed salt solutions for three salts (NaCl, KCl, and CaCl2), for temperature (298 K to 443 K), pressure (2 MPa to 70 MPa), and ionic strength (0.085 mol·kg-1 to 15 mol·kg-1). The simulation result shows that the tuned model was able to predict with good accuracy CO2-brine IFT for all studied cases. Comparison with current DGT model showed that the proposed approach yields better match with the experiment data

  18. ISLSCP II Globalview: Atmospheric CO2 Concentrations

    Data.gov (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  19. Modeling of CO2 migration injected in Weyburn oil reservoir

    International Nuclear Information System (INIS)

    Zhou Wei; Stenhouse, M.J.; Arthur, R.

    2008-01-01

    Injecting CO 2 into oil and gas field is a way to enhance oil recovery (EOR) as well as mitigate global warming effect by permanently storing the greenhouse gas into underground. This paper details the models and results of simulating the long-term migration of CO 2 injected into the Weyburn field for both Enhanced Oil Recovery operations and CO 2 sequestration. A System Model was established to define the spatial and temporal extents of the analysis. The Base Scenario was developed to identify key processes, features, and events (FEPs) for the expected evolution of the storage system. A compositional reservoir simulator with equations-of-states (EOS) was used as the modeling tool in order to simulate multiphase, multi-component flow and transport coupled with CO 2 mass partitioning into oil, gas, and water phases. We apply a deterministic treatment to CO 2 migration in the geosphere (natural pathways), whereas the variability of abandoned wells (man-made pathways) necessitates a stochastic treatment. The simulation result was then used to carry out consequence analysis to the local environment. (authors)

  20. Modulation of magmatic processes by CO2 flushing

    Science.gov (United States)

    Caricchi, Luca; Sheldrake, Tom E.; Blundy, Jon

    2018-06-01

    Magmatic systems are the engines driving volcanic eruptions and the source of fluids responsible for the formation of porphyry-type ore deposits. Sudden variations of pressure, temperature and volume in magmatic systems can produce unrest, which may culminate in a volcanic eruption and/or the abrupt release of ore-forming fluids. Such variations of the conditions within magmatic systems are commonly ascribed to the injection of new magma from depth. However, as magmas fractionating at depth or rising to the upper crust release CO2-rich fluids, the interaction between carbonic fluids and H2O-rich magmas stored in the upper crust (CO2 flushing), must also be a common process affecting the evolution of subvolcanic magma reservoirs. Here, we investigate the effect of gas injection on the stability and chemical evolution of magmatic systems. We calculate the chemical and physical evolution of magmas subjected to CO2-flushing using rhyolite-MELTS. We compare the calculations with a set of melt inclusion data for Mt. St. Helens, Merapi, Etna, and Stromboli volcanoes. We provide an approach that can be used to distinguish between melt inclusions trapped during CO2 flushing, magma ascent and decompression, or those affected by post-entrapment H2O-loss. Our results show that CO2 flushing is a widespread process in both felsic and mafic magmatic systems. Depending upon initial magma crystallinity and duration of CO2 input, flushing can either lead to volcanic eruption or fluid release. We suggest that CO2 flushing is a fundamental process modulating the behaviour and chemical evolution of crustal magmatic systems.

  1. Bioelectrochemical conversion of CO2 to chemicals

    NARCIS (Netherlands)

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J.N.; Strik, David P.B.T.B.; Pant, Deepak

    2017-01-01

    The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds

  2. Large-scale CO2 storage — Is it feasible?

    Directory of Open Access Journals (Sweden)

    Johansen H.

    2013-06-01

    Full Text Available CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit. The large-scale storage challenge (several Gigatons of CO2 per year is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1 finding reservoirs with adequate storage capacity, 2 make sure that the sealing capacity above the reservoir is sufficient, 3 build the infrastructure for transport, drilling and injection, and 4 set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1 the storage activity results in pressure increase in the subsurface, 2 there is no production of fluids that give important feedback on reservoir performance, and 3 the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples

  3. Large-scale CO2 storage — Is it feasible?

    Science.gov (United States)

    Johansen, H.

    2013-06-01

    CCS is generally estimated to have to account for about 20% of the reduction of CO2 emissions to the atmosphere. This paper focuses on the technical aspects of CO2 storage, even if the CCS challenge is equally dependent upon finding viable international solutions to a wide range of economic, political and cultural issues. It has already been demonstrated that it is technically possible to store adequate amounts of CO2 in the subsurface (Sleipner, InSalah, Snøhvit). The large-scale storage challenge (several Gigatons of CO2 per year) is more an issue of minimizing cost without compromising safety, and of making international regulations.The storage challenge may be split into 4 main parts: 1) finding reservoirs with adequate storage capacity, 2) make sure that the sealing capacity above the reservoir is sufficient, 3) build the infrastructure for transport, drilling and injection, and 4) set up and perform the necessary monitoring activities. More than 150 years of worldwide experience from the production of oil and gas is an important source of competence for CO2 storage. The storage challenge is however different in three important aspects: 1) the storage activity results in pressure increase in the subsurface, 2) there is no production of fluids that give important feedback on reservoir performance, and 3) the monitoring requirement will have to extend for a much longer time into the future than what is needed during oil and gas production. An important property of CO2 is that its behaviour in the subsurface is significantly different from that of oil and gas. CO2 in contact with water is reactive and corrosive, and may impose great damage on both man-made and natural materials, if proper precautions are not executed. On the other hand, the long-term effect of most of these reactions is that a large amount of CO2 will become immobilized and permanently stored as solid carbonate minerals. The reduced opportunity for direct monitoring of fluid samples close to the

  4. Nocturnal accumulation of CO2 underneath a tropical forest canopy along a topographical gradient.

    Science.gov (United States)

    de Araújo, Alessandro C; Kruijt, Bart; Nobre, Antonio D; Dolman, Albertus J; Waterloo, Maarten J; Moors, Eddy J; de Souza, Juliana S

    2008-09-01

    Flux measurements of carbon dioxide and water vapor above tropical rain forests are often difficult to interpret because the terrain is usually complex. This complexity induces heterogeneity in the surface but also affects lateral movement of carbon dioxide (CO2) not readily detected by the eddy covariance systems. This study describes such variability using measurements of CO2 along vertical profiles and along a toposequence in a tropical rain forest near Manaus, Brazil. Seasonal and diurnal variation was recorded, with atmospheric CO2 concentration maxima around dawn, generally higher CO2 build-up in the dry season and stronger daytime CO2 drawdown in the wet season. This variation was reflected all along the toposequence, but the slope and valley bottom accumulated clearly more CO2 than the plateaus, depending on atmospheric stability. Particularly during stable nights, accumulation was along lines of equal altitude, suggesting that large amounts of CO2 are stored in the valleys of the landscape. Flushing of this store only occurs during mid-morning, when stored CO2 may well be partly transported back to the plateaus. It is clear that, for proper interpretation of tower fluxes in such complex and actively respiring terrain, the horizontal variability of storage needs to be taken into account not only during the night but also during the mornings.

  5. Forest succession at elevated CO2; TOPICAL

    International Nuclear Information System (INIS)

    Clark, James S.; Schlesinger, William H.

    2002-01-01

    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response

  6. Residual CO2 trapping in Indiana limestone.

    Science.gov (United States)

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-02

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  7. CO2 clearance by membrane lungs.

    Science.gov (United States)

    Sun, Liqun; Kaesler, Andreas; Fernando, Piyumindri; Thompson, Alex J; Toomasian, John M; Bartlett, Robert H

    2018-05-01

    Commercial membrane lungs are designed to transfer a specific amount of oxygen per unit of venous blood flow. Membrane lungs are much more efficient at removing CO 2 than adding oxygen, but the range of CO 2 transfer is rarely reported. Commercial membrane lungs were studied with the goal of evaluating CO 2 removal capacity. CO 2 removal was measured in 4 commercial membrane lungs under standardized conditions. CO 2 clearance can be greater than 4 times that of oxygen at a given blood flow when the gas to blood flow ratio is elevated to 4:1 or 8:1. The CO 2 clearance was less dependent on surface area and configuration than oxygen transfer. Any ECMO system can be used for selective CO 2 removal.

  8. Using noble gas fingerprints at the Kerr Farm to assess CO2 leakage allegations linked to the Weyburn-Midale CO2 Monitoring and Storage Project

    OpenAIRE

    Gilfillan, Stuart; Sherk, George Williams; Poreda, Robert J.; Haszeldine, Robert

    2017-01-01

    For carbon capture and storage technology to successfully contribute to climate mitigation efforts, the stored CO2 must be securely isolated from the atmosphere and oceans. Hence, there is a need to establish and verify monitoring techniques that can detect unplanned migration of injected CO2 from a storage site to the near surface. Noble gases are sensitive tracers of crustal fluid input in the subsurface due to their low concentrations and unreactive nature. Several studies have identified ...

  9. Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol

    Directory of Open Access Journals (Sweden)

    A. Pasquel

    2000-09-01

    Full Text Available Stevia leaves are an important source of natural sugar substitute. There are some restrictions on the use of stevia extract because of its distinctive aftertaste. Some authors attribute this to soluble material other than the stevia glycosides, even though it is well known that stevia glycosides have to some extent a bitter taste. Therefore, the purpose of this work was to develop a process to obtain stevia extract of a better quality. The proposed process includes two steps: i Pretreatment of the leaves by SCFE; ii Extraction of the stevia glycosides by SCFE using CO2 as solvent and water and/or ethanol as cosolvent. The mean total yield for SCFE pretreatment was 3.0%. The yields for SCFE with cosolvent of stevia glycosides were below 0.50%, except at 120 bar, 16°C, and 9.5% (molar of water. Under this condition, total yield was 3.4%. The quality of the glycosidic fraction with respect to its capacity as sweetener was better for the SCFE extract as compared to extract obtained by the conventional process. The overall extraction curves were well described by the Lack extended model.

  10. Analysis of Microbial Communities in the Oil Reservoir Subjected to CO2-Flooding by Using Functional Genes as Molecular Biomarkers for Microbial CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jin-Feng eLiu

    2015-03-01

    Full Text Available Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs.

  11. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  12. Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)

    Energy Technology Data Exchange (ETDEWEB)

    Dan Kieki

    2008-09-30

    The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

  13. CO2 flux from Javanese mud volcanism.

    Science.gov (United States)

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A

    2017-06-01

    Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.

  14. Modeling of CO2 storage in aquifers

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Santos, Juan E

    2011-01-01

    Storage of CO 2 in geological formations is a means of mitigating the greenhouse effect. Saline aquifers are a good alternative as storage sites due to their large volume and their common occurrence in nature. The first commercial CO 2 injection project is that of the Sleipner field in the Utsira Sand aquifer (North Sea). Nevertheless, very little was known about the effectiveness of CO 2 sequestration over very long periods of time. In this way, numerical modeling of CO 2 injection and seismic monitoring is an important tool to understand the behavior of CO 2 after injection and to make long term predictions in order to prevent CO 2 leaks from the storage into the atmosphere. The description of CO 2 injection into subsurface formations requires an accurate fluid-flow model. To simulate the simultaneous flow of brine and CO 2 we apply the Black-Oil formulation for two phase flow in porous media, which uses the PVT data as a simplified thermodynamic model. Seismic monitoring is modeled using Biot's equations of motion describing wave propagation in fluid-saturated poroviscoelastic solids. Numerical examples of CO 2 injection and time-lapse seismics using data of the Utsira formation show the capability of this methodology to monitor the migration and dispersal of CO 2 after injection.

  15. Explaining CO2 fluctuations observed in snowpacks

    Science.gov (United States)

    Graham, Laura; Risk, David

    2018-02-01

    Winter soil carbon dioxide (CO2) respiration is a significant and understudied component of the global carbon (C) cycle. Winter soil CO2 fluxes can be surprisingly variable, owing to physical factors such as snowpack properties and wind. This study aimed to quantify the effects of advective transport of CO2 in soil-snow systems on the subdiurnal to diurnal (hours to days) timescale, use an enhanced diffusion model to replicate the effects of CO2 concentration depletions from persistent winds, and use a model-measure pairing to effectively explore what is happening in the field. We took continuous measurements of CO2 concentration gradients and meteorological data at a site in the Cape Breton Highlands of Nova Scotia, Canada, to determine the relationship between wind speeds and CO2 levels in snowpacks. We adapted a soil CO2 diffusion model for the soil-snow system and simulated stepwise changes in transport rate over a broad range of plausible synthetic cases. The goal was to mimic the changes we observed in CO2 snowpack concentration to help elucidate the mechanisms (diffusion, advection) responsible for observed variations. On subdiurnal to diurnal timescales with varying winds and constant snow levels, a strong negative relationship between wind speed and CO2 concentration within the snowpack was often identified. Modelling clearly demonstrated that diffusion alone was unable to replicate the high-frequency CO2 fluctuations, but simulations using above-atmospheric snowpack diffusivities (simulating advective transport within the snowpack) reproduced snow CO2 changes of the observed magnitude and speed. This confirmed that wind-induced ventilation contributed to episodic pulsed emissions from the snow surface and to suppressed snowpack concentrations. This study improves our understanding of winter CO2 dynamics to aid in continued quantification of the annual global C cycle and demonstrates a preference for continuous wintertime CO2 flux measurement systems.

  16. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-05-01

    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  17. Rapid adaptation of the stimulatory effect of CO2 on brain norepinephrine metabolism.

    Science.gov (United States)

    Stone, E A

    1983-12-01

    The present study examined the effects of exposure of rats to elevated environmental levels of CO2 on norepinephrine metabolism in the hypothalamus and other regions of the brain. In confirmation of previous findings by others CO2 at 10 or 15% was found to elevate both dopa accumulation after dopa decarboxylase inhibition and norepinephrine utilization after tyrosine hydroxylase inhibition. These effects however were found to be transient occurring only during the first 30 min of 2.5 h exposure. In this regard CO2 differs from another form of stress, restraint which produces a sustained 2.5 h increase of dopa accumulation and NE accumulation. Restraint was also more effective than CO2 in depleting endogenous stores of hypothalamic NE. The factor responsible for the adaptation of the catecholamine response to CO2 was not identified although it was shown not to be hypothermia and it was reversed by a 2 h CO2-free recovery period.

  18. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    Science.gov (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  19. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup

    2010-09-15

    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  20. CO2 Allowance and Electricity Price Interaction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    With the introduction of CO2 emission constraints on power generators in the European Union, climate policy is starting to have notable effects on energy markets. This paper sheds light on the links between CO2 prices, electricity prices, and electricity costs to industry. It is based on a series of interviews with industrial and electricity stakeholders, as well as a rich literature seeking to estimate the exact effect of CO2 prices on electricity prices.

  1. CO2 sequestration: Storage capacity guideline needed

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.; Hickman, T.S.

    2006-01-01

    Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.

  2. Economic effects on taxing CO2 emissions

    International Nuclear Information System (INIS)

    Haaparanta, P.; Jerkkola, J.; Pohjola, J.

    1996-01-01

    The CO 2 emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO 2 taxation. First one was the economic effects of increasing CO 2 tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  3. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  4. Supercritical CO2 uptake by nonswelling phyllosilicates.

    Science.gov (United States)

    Wan, Jiamin; Tokunaga, Tetsu K; Ashby, Paul D; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J

    2018-01-30

    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2 , can increase CO 2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism. Copyright © 2018 the Author(s). Published by PNAS.

  5. Corn residue removal and CO2 emissions

    Science.gov (United States)

    Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) are the primary greenhouse gases (GHG) emitted from the soil due to agricultural activities. In the short-term, increases in CO2 emissions indicate increased soil microbial activity. Soil micro-organisms decompose crop residues and release...

  6. NIST Photoionization of CO2 (ARPES) Database

    Science.gov (United States)

    SRD 119 NIST Photoionization of CO2 (ARPES) Database (Web, free access)   CO2 is studied using dispersed synchrotron radiation in the 650 Å to 850 Å spectral region. The vibrationally resolved photoelectron spectra are analyzed to generate relative vibrational transition amplitudes and the angular asymmetry parameters describing the various transitions observed.

  7. CO2 Capture with Enzyme Synthetic Analogue

    Energy Technology Data Exchange (ETDEWEB)

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  8. Eindhoven Airport : towards zero CO2 emissions

    NARCIS (Netherlands)

    Jorge Simoes Pedro, Joana

    2015-01-01

    Eindhoven airport is growing and it is strongly committed to take this opportunity to invest in innovative solutions for a sustainable development. Therefore, this document proposes a strategic plan for reaching Zero CO2 emissions at Eindhoven airport. This document proposes to reduce the CO2

  9. Thermodynamic modeling of CO2 mixtures

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel

    Knowledge of the thermodynamic properties and phase equilibria of mixtures containing carbon dioxide (CO2) is important in several industrial processes such as enhanced oil recovery, carbon capture and storage, and supercritical extractions, where CO2 is used as a solvent. Despite this importance...

  10. CO2 emission calculations and trends

    International Nuclear Information System (INIS)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-01-01

    Evidence that the atmospheric CO 2 concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO 2 is believed to result from CO 2 releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO 2 concentration and its potential impact on climate. One of the convention's stated objectives was the ''stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. '' Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO 2 as a greenhouse gas, the relationship between CO 2 emissions and increases in atmospheric CO 2 levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO 2 emissions records be compiled, maintained, updated, and documented

  11. Recent development of capture of CO2

    CERN Document Server

    Chavez, Rosa Hilda

    2014-01-01

    "Recent Technologies in the capture of CO2" provides a comprehensive summary on the latest technologies available to minimize the emission of CO2 from large point sources like fossil-fuel power plants or industrial facilities. This ebook also covers various techniques that could be developed to reduce the amount of CO2 released into the atmosphere. The contents of this book include chapters on oxy-fuel combustion in fluidized beds, gas separation membrane used in post-combustion capture, minimizing energy consumption in CO2 capture processes through process integration, characterization and application of structured packing for CO2 capture, calcium looping technology for CO2 capture and many more. Recent Technologies in capture of CO2 is a valuable resource for graduate students, process engineers and administrative staff looking for real-case analysis of pilot plants. This eBook brings together the research results and professional experiences of the most renowned work groups in the CO2 capture field...

  12. Flow assurance studies for CO2 transport

    NARCIS (Netherlands)

    Veltin, J.; Belfroid, S.P.C.

    2013-01-01

    In order to compensate for the relative lack of experience of the CCTS community, Flow Assurance studies of new CO2 pipelines and networks are a very important step toward reliable operation. This report details a typical approach for Flow Assurance study of CO2 transport pipeline. Considerations to

  13. Only CO2 as coolant for supermarket Plus Vermaning, Olst, Netherlands; Alleen CO2 als koudemiddel bij Plus Vermaning

    Energy Technology Data Exchange (ETDEWEB)

    Jans, R. [Coolsultancy, Rucphen (Netherlands)

    2010-09-15

    Early July 2009 the Dutch supermarket Plus Vermaning in Olst was reopened. The cooling installation in this supermarket is among the first in the Netherlands equipped with only the natural cooling agent R744 (CO2) and is also equipped with a heat recovery system. A gas connection is no longer required in this store. The time has come to list the experiences. [Dutch] Begin juli 2009 is in Olst, Nederland, de supermarkt van Plus Vermaning heropend. De koelinstallatie in deze supermarkt is als een van de eersten in Nederland uitgevoerd met uitsluitend het natuurlijke koudemiddel R744 (CO2) en is verder voorzien van een warmteterugwinning (WTW) systeem. Een gasaansluiting is in de winkel niet meer aanwezig. Nu is het tijd de ervaringen op een rij te zetten.

  14. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs With Dual-Porosity Models

    Science.gov (United States)

    March, Rafael; Doster, Florian; Geiger, Sebastian

    2018-03-01

    Naturally Fractured Reservoirs (NFR's) have received little attention as potential CO2 storage sites. Two main facts deter from storage projects in fractured reservoirs: (1) CO2 tends to be nonwetting in target formations and capillary forces will keep CO2 in the fractures, which typically have low pore volume; and (2) the high conductivity of the fractures may lead to increased spatial spreading of the CO2 plume. Numerical simulations are a powerful tool to understand the physics behind brine-CO2 flow in NFR's. Dual-porosity models are typically used to simulate multiphase flow in fractured formations. However, existing dual-porosity models are based on crude approximations of the matrix-fracture fluid transfer processes and often fail to capture the dynamics of fluid exchange accurately. Therefore, more accurate transfer functions are needed in order to evaluate the CO2 transfer to the matrix. This work presents an assessment of CO2 storage potential in NFR's using dual-porosity models. We investigate the impact of a system of fractures on storage in a saline aquifer, by analyzing the time scales of brine drainage by CO2 in the matrix blocks and the maximum CO2 that can be stored in the rock matrix. A new model to estimate drainage time scales is developed and used in a transfer function for dual-porosity simulations. We then analyze how injection rates should be limited in order to avoid early spill of CO2 (lost control of the plume) on a conceptual anticline model. Numerical simulations on the anticline show that naturally fractured reservoirs may be used to store CO2.

  15. Characterization of Unconventional Reservoirs: CO2 Induced Petrophysics

    Science.gov (United States)

    Verba, C.; Goral, J.; Washburn, A.; Crandall, D.; Moore, J.

    2017-12-01

    As concerns about human-driven CO2 emissions grow, it is critical to develop economically and environmentally effective strategies to mitigate impacts associated with fossil energy. Geologic carbon storage (GCS) is a potentially promising technique which involves the injection of captured CO2 into subsurface formations. Unconventional shale formations are attractive targets for GCS while concurrently improving gas recovery. However, shales are inherently heterogeneous, and minor differences can impact the ability of the shale to effectively adsorb and store CO2. Understanding GCS capacity from such endemic heterogeneities is further complicated by the complex geochemical processes which can dynamically alter shale petrophysics. We investigated the size distribution, connectivity, and type (intraparticle, interparticle, and organic) of pores in shale; the mineralogy of cores from unconventional shale (e.g. Bakken); and the changes to these properties under simulated GCS conditions. Electron microscopy and dual beam focused ion beam scanning electron microscopy were used to reconstruct 2D/3D digital matrix and pore structures. Comparison of pre and post-reacted samples gives insights into CO2-shale interactions - such as the mechanism of CO2 sorption in shales- intended for enhanced oil recovery and GCS initiatives. These comparisons also show how geochemical processes proceed differently across shales based on their initial diagenesis. Results show that most shale pore sizes fall within meso-macro pore classification (> 2 nm), but have variable porosity and organic content. The formation of secondary minerals (calcite, gypsum, and halite) may play a role in the infilling of fractures and pore spaces in the shale, which may reduce permeability and inhibit the flow of fluids.

  16. Silvering substrates after CO2 snow cleaning

    Science.gov (United States)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  17. The ins and outs of CO2

    Science.gov (United States)

    Raven, John A.; Beardall, John

    2016-01-01

    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3 –. The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3 – use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3 – active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3 – can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3 – pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3 –. Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  18. Carbonation and CO2 uptake of concrete

    International Nuclear Information System (INIS)

    Yang, Keun-Hyeok; Seo, Eun-A; Tae, Sung-Ho

    2014-01-01

    This study developed a reliable procedure to assess the carbon dioxide (CO 2 ) uptake of concrete by carbonation during the service life of a structure and by the recycling of concrete after demolition. To generalize the amount of absorbable CO 2 per unit volume of concrete, the molar concentration of carbonatable constituents in hardened cement paste was simplified as a function of the unit content of cement, and the degree of hydration of the cement paste was formulated as a function of the water-to-cement ratio. The contribution of the relative humidity, type of finishing material for the concrete surface, and the substitution level of supplementary cementitious materials to the CO 2 diffusion coefficient in concrete was reflected using various correction factors. The following parameters varying with the recycling scenario were also considered: the carbonatable surface area of concrete crusher-runs and underground phenomena of the decreased CO 2 diffusion coefficient and increased CO 2 concentration. Based on the developed procedure, a case study was conducted for an apartment building with a principal wall system and an office building with a Rahmen system, with the aim of examining the CO 2 uptake of each structural element under different exposure environments during the service life and recycling of the building. As input data necessary for the case study, data collected from actual surveys conducted in 2012 in South Korea were used, which included data on the surrounding environments, lifecycle inventory database, life expectancy of structures, and recycling activity scenario. Ultimately, the CO 2 uptake of concrete during a 100-year lifecycle (life expectancy of 40 years and recycling span of 60 years) was estimated to be 15.5%–17% of the CO 2 emissions from concrete production, which roughly corresponds to 18%–21% of the CO 2 emissions from the production of ordinary Portland cement. - Highlights: • CO 2 uptake assessment approach owing to the

  19. Sequestering CO2 in the Built Environment

    Science.gov (United States)

    Constantz, B. R.

    2009-12-01

    Calera’s Carbonate Mineralization by Aqueous Precipitation (CMAP) technology with beneficial reuse has been called, “game-changing” by Carl Pope, Director of the Sierra Club. Calera offers a solution to the scale of the carbon problem. By capturing carbon into the built environment through carbonate mineralization, Calera provides a sound and cost-effective alternative to Geologic Sequestration and Terrestrial Sequestration. The CMAP technology permanently converts carbon dioxide into a mineral form that can be stored above ground, or used as a building material. The process produces a suite of carbonate-containing minerals of various polymorphic forms. Calera product can be substituted into blends with ordinary Portland cements and used as aggregate to produce concrete with reduced carbon, carbon neutral, or carbon negative footprints. For each ton of product produced, approximately half a ton of carbon dioxide can be sequestered using the Calera process. Coal and natural gas are composed of predominately istopically light carbon, as the carbon in the fuel is plant-derived. Thus, power plant CO2 emissions have relatively low δ13C values.The carbon species throughout the CMAP process are identified through measuring the inorganic carbon content, δ13C values of the dissolved carbonate species, and the product carbonate minerals. Measuring δ13C allows for tracking the flue gas CO2 throughout the capture process. Initial analysis of the capture of propane flue gas (δ13C ˜ -25 ‰) with seawater (δ13C ˜ -10 ‰) and industrial brucite tailings from a retired magnesium oxide plant in Moss Landing, CA (δ13C ˜ -7 ‰ from residual calcite) produced carbonate mineral products with a δ13C value of ˜ -20 ‰. This isotopically light carbon, transformed from flue gas to stable carbonate minerals, can be transferred and tracked through the capture process, and finally to the built environment. CMAP provides an economical solution to global warming by producing

  20. The FP7 ULTimateCO2 project: a study of the long term fate of CO2

    Science.gov (United States)

    Audigane, Pascal; Waldmann, Svenja; Pearce, Jonathan; Dimier, Alain; Le Gallo, Yann; Frykman, Peter; Maurand, Nicolas; Gherardi, Fabrizio; Yalamas, Thierry; Cremer, Holger; Spiers, Chris; Nussbaum, Christophe

    2014-05-01

    The objectives of the European FP7 ULTimateCO2 project are to study specific processes that could influence the long-term fate of geologically stored CO2, mainly: the trapping mechanisms occurring in the storage reservoir, the influence of fluid-rock interactions on mechanical integrity of caprock and well vicinity, and also the modifications induced at the regional scale (brine displacement, fault reactivation, hydrogeology changes...). A comprehensive approach combining laboratory experiments, numerical modeling and natural analogue studies is developed to assess all the processes mentioned above. A collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. To address geochemical trapping at reservoir scale, an experimental approach is developed using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland), an analogue for caprock well investigated in the past for nuclear waste disposal purpose. To evaluate the interactions between CO2 (and formation fluid) and the well environment (formation, cement, casing) and to assess the consequences of these interactions on the transport properties of well materials, a 1 to 1 scale experiment has been set in the Mont Terri Gallery Opalinus clay to reproduce classical well objects (cemented annulus, casing and cement plug) perforating caprock formations. An extensive program of numerical modeling is also developed to calibrate, to reproduce and to extrapolate the experimental results at longer time scales including uncertainty

  1. Electrocatalytic Alloys for CO2 Reduction.

    Science.gov (United States)

    He, Jingfu; Johnson, Noah J J; Huang, Aoxue; Berlinguette, Curtis P

    2018-01-10

    Electrochemically reducing CO 2 using renewable energy is a contemporary global challenge that will only be met with electrocatalysts capable of efficiently converting CO 2 into fuels and chemicals with high selectivity. Although many different metals and morphologies have been tested for CO 2 electrocatalysis over the last several decades, relatively limited attention has been committed to the study of alloys for this application. Alloying is a promising method to tailor the geometric and electric environments of active sites. The parameter space for discovering new alloys for CO 2 electrocatalysis is particularly large because of the myriad products that can be formed during CO 2 reduction. In this Minireview, mixed-metal electrocatalyst compositions that have been evaluated for CO 2 reduction are summarized. A distillation of the structure-property relationships gleaned from this survey are intended to help in the construction of guidelines for discovering new classes of alloys for the CO 2 reduction reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    Science.gov (United States)

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.

  3. Effects of tillage practice and atmospheric CO2 level on soil CO2 efflux

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) affects both the quantity and quality of plant tissues, which impacts the cycling and storage of carbon (C) within plant/soil systems and thus the rate of CO2 release back to the atmosphere. Research to accurately quantify the effects of elevated CO2 and as...

  4. Estimating CO2 Emission Reduction of Non-capture CO2 Utilization (NCCU) Technology

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Gyu, Jang Se; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin

    2015-01-01

    Estimating potential of CO 2 emission reduction of non-capture CO 2 utilization (NCCU) technology was evaluated. NCCU is sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue gas. For the estimating the CO 2 emission reduction, process simulation using process simulator (PRO/II) based on a chemical plant which could handle CO 2 of 100 tons per day was performed, Also for the estimation of the indirect CO 2 reduction, the solvay process which is a conventional technology for the production of sodium carbonate/sodium bicarbonate, was studied. The results of the analysis showed that in case of the solvay process, overall CO 2 emission was estimated as 48,862 ton per year based on the energy consumption for the production of NaHCO 3 (7.4 GJ/tNaHCO 3 ). While for the NCCU technology, the direct CO 2 reduction through the CO 2 carbonation was estimated as 36,500 ton per year and the indirect CO 2 reduction through the lower energy consumption was 46,885 ton per year which lead to 83,385 ton per year in total. From these results, it could be concluded that sodium bicarbonate production technology through the carbonation reaction of CO 2 contained in the flue was energy efficient and could be one of the promising technology for the low CO 2 emission technology.

  5. CO2 content of electricity losses

    International Nuclear Information System (INIS)

    Daví-Arderius, Daniel; Sanin, María-Eugenia; Trujillo-Baute, Elisa

    2017-01-01

    Countries are implementing policies to develop greener energy markets worldwide. In Europe, the ¨2030 Energy and Climate Package¨ asks for further reductions of green house gases, renewable sources integration, and energy efficiency targets. But the polluting intensity of electricity may be different in average than when considering market inefficiencies, in particular losses, and therefore the implemented policy must take those differences into account. Precisely, herein we study the importance in terms of CO2 emissions the extra amount of energy necessary to cover losses. With this purpose we use Spanish market and system data with hourly frequency from 2011 to 2013. Our results show that indeed electricity losses significantly explain CO2 emissions, with a higher CO2 emissions rate when covering losses than the average rate of the system. Additionally, we find that the market closing technologies used to cover losses have a positive and significant impact on CO2 emissions: when polluting technologies (coal or combined cycle) close the market, the impact of losses on CO2 emissions is high compared to the rest of technologies (combined heat and power, renewables or hydropower). To the light of these results we make some policy recommendations to reduce the impact of losses on CO2 emissions. - Highlights: • Electricity losses significantly explain CO2 emissions. • Policies aimed to reducing losses have a positive impact on CO2 emissions. • The market closing technology used to cover losses have impacts on CO2 emissions. • Pollutant technologies that close the market should be replaced by renewables.

  6. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng

    2008-01-01

    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  7. CO2, the promises of geological sequestration

    International Nuclear Information System (INIS)

    Rouat, S.

    2006-01-01

    Trapping part of the world CO 2 effluents in the deep underground is a profitable and ecological way to limit the global warming. This digest paper presents the different ways of CO 2 sequestration (depleted oil and gas fields, unexploited coal seams, saline aquifers), the other possible solutions for CO 2 abatement (injection in the bottom of the ocean, conversion into carbonates by injection into basic rocks, fixation by photosynthesis thanks to micro-algae cultivation), and takes stock of the experiments in progress (Snoehvit field in Norway, European project Castor). (J.S.)

  8. Climate change and the CO2 myth

    International Nuclear Information System (INIS)

    Boettcher, C.J.F.

    1994-01-01

    Further increase of the CO 2 concentration in the atmosphere has little effect on the greenhouse effect contrary to the effect of the increase of other greenhouse gases. However, politicians are using targets for the reduction of CO 2 emissions that are unrealistic, taking into account the scientific uncertainties of the applied models, the doubts about the feasibility of quantitative targets and the economic consequences of such drastic measures. Some recommendations are given for a more realistic CO 2 policy. Also attention is paid to the important role that coal will play in the future of the energy supply. 5 figs., 3 ills

  9. Equilibration of metabolic CO2 with preformed CO2 and bicarbonate

    International Nuclear Information System (INIS)

    Hems, R.; Saez, G.T.

    1983-01-01

    Entry of metabolic 14 CO 2 into urea is shown to occur more readily than it equilibrates with the general pool of cellular plus extracellular bicarbonate plus CO 2 . Since the sites of CO 2 production (pyruvate dehydrogenase and oxoglutarate dehydrogenase) and of fixation (carbamoylphosphate synthetase) are intramitochondrial, it is likely that the fixation of CO 2 is also more rapid than its equilibration with the cytoplasmic pool of bicarbonate plus CO 2 . This observation may point to a more general problem concerning the interpretation of isotope data, with compartmentation or proximity of sites of production and utilisation of metabolites may result in the isotope following a preferred pathway. (Auth.)

  10. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  11. Energy Efficiency instead of CO2 levy

    International Nuclear Information System (INIS)

    Uetz, R.

    2005-01-01

    This article takes a look at ways of avoiding a future, planned Swiss CO 2 levy by improving the efficiency of energy use. The political situation concerning the reduction of CO 2 emissions in Switzerland is reviewed and the likeliness of the introduction of a CO 2 levy is discussed. Strategies for the reduction of fossil fuel consumption and therefore of CO 2 emissions are looked at, including process optimisation. Recommendations are made on how to approach this work systematically - data collection, assessment of the potential for reduction and the planning of measures to be taken are looked at. The high economic efficiency of immediate action is stressed and typical middle and long-term measures are listed

  12. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  13. Capture and geological storage of CO2

    International Nuclear Information System (INIS)

    2013-03-01

    Capture and geological storage of CO 2 could be a contribution to reduce CO 2 emissions, and also a way to meet the factor 4 objective of reduction of greenhouse gas emissions. This publication briefly presents the capture and storage definitions and principles, and comments some key data related to CO 2 emissions, and their natural trapping by oceans, soils and forests. It discusses strengths (a massive and perennial reduction of CO 2 emissions, a well defined regulatory framework) and weaknesses (high costs and uncertain cost reduction perspectives, a technology which still consumes a lot of energy, geological storage capacities still to be determined, health environmental impacts and risks to be controlled, a necessary consultation of population for planned projects) of this option. Actions undertaken by the ADEME are briefly reviewed

  14. CO2 Washout Capability with Breathing Manikin

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon Dioxide (CO2) Washout performance is a critical parameter needed to ensure proper and sufficient designs in a spacesuit and in vehicle applications such as...

  15. Emerging terawatt picosecond CO2 laser technology

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1997-09-01

    The first terawatt picosecond (TWps) CO 2 laser is under construction at the BNL Accelerator Test Facility (ATF). TWps-CO 2 lasers, having an order of magnitude longer wavelength than the well-known table-top terawatt solid state lasers, offer new opportunities for strong-field physics research. For laser wakefield accelerators (LWFA) the advantage of the new class of lasers is due to a gain of two orders of magnitude in the ponderomotive potential. The large average power of CO 2 lasers is important for the generation of hard radiation through Compton back-scattering of the laser off energetic electron beams. The authors discuss applications of TWps-CO 2 lasers for LWFA modules of a tentative electron-positron collider, for γ-γ (or γ-lepton) colliders, for a possible table-top source of high-intensity x-rays and gamma rays, and the generation of polarized positron beams

  16. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang

    2013-01-01

    to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs

  17. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    Fossil fuels are the backbone of the energy generation in the coming decades for USA, China, India and Europe, hence high greenhouse gas emissions are expected in future. Carbon capture and storage technology (CCS) is the only technology that can mitigate greenhouse gas emissions from fossil fuel...... the mass transfer of CO2 with slow-capturing but energetically favorable solvents can open up a variety of new process options for this technology. The ubiquitous enzyme carbonic anhydrase (CA), which enhances the mass transfer of CO2 in the lungs by catalyzing the reversible hydration of CO2, is one very...... enhanced CO2 capture technology by identifying the potentials and limitations in lab and in pilot scale and benchmarking the process against proven technologies. The main goal was to derive a realistic process model for technical size absorbers with a wide range of validity incorporating a mechanistic...

  18. CO2 emissions of nuclear power supply

    International Nuclear Information System (INIS)

    Wissel, S.; Mayer-Spohn, O.; Fahl, U.; Voss, A.

    2007-01-01

    Increasingly, supported by the recent reports of the IPCC (International Panel on Climate Change), political, social and scientific institutions call for the use of atomic energy for reducing CO2 emissions. In Germany, the discussion is highly controversial. A life-cycle balance of nuclear power shows that its CO2 emissions are much lower than those of other technologies, even if changes in the nuclear fuel cycle are taken into account. (orig.)

  19. Photoacoustic CO2-Sensor for Automotive Applications

    OpenAIRE

    Huber, J.; Weber, C.; Eberhardt, A.; Wöllenstein, J.

    2016-01-01

    We present a field-tested miniaturized spectroscopic CO2 sensor which is based on the photoacoustic effect. The sensor is developed for automotive applications and considers the requirements for the usage in vehicles. The sensor measures two measurement ranges simultaneously: The monitoring of the indoor air quality and the detection of possible leakages of the coolant in CO2 air-conditioning systems. The sensor consists of a miniaturized innovative photoacoustic sensor unit with integrated e...

  20. Study on CO2 global recycling system

    International Nuclear Information System (INIS)

    Takeuchi, M.; Sakamoto, Y.; Niwa, S.

    2001-01-01

    In order to assist in finding ways to mitigate CO 2 emission and to slow the depletion of fossil fuels we have established and evaluated a representative system, which consists of three technologies developed in our laboratory. These technologies were in CO 2 recovery, hydrogen production and methanol synthesis and in addition we established the necessary supporting systems. Analysis of outline designs of the large scale renewable energy power generation system and this system and energy input for building plant, energy input for running plant has been conducted based on a case using this system for a 1000-MW coal fired power plant, followed by an evaluation of the material balance and energy balance. The results are as follows. Energy efficiency is 34%, the CO 2 reduction rate is 41%, the balance ratio of the energy and CO 2 of the system is 2.2 and 1.8, respectively, on the assumption that the primary renewable energy is solar thermal power generation, the stationary CO 2 emission source is a coal-fired power plant and the generation efficiency of the methanol power plant is 60%. By adopting the system, 3.7 million tons of CO 2 can be recovered, approximately 2.7 million tons of methanol can be produced, and 15.4 billion kWh of electricity can be generated per year. Compared to generating all electrical power using only coal, approximately 2.6 million tons of coal per year can be saved and approximately 2.15 million tons of CO 2 emission can be reduced. Therefore, it is clearly revealed that this system would be effective to reduce CO 2 emissions and to utilize renewable energy

  1. Anthropogenic CO2 in the ocean

    Directory of Open Access Journals (Sweden)

    Tsung-Hung Peng

    2005-06-01

    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  2. Recent developments in CO2 lasers

    Science.gov (United States)

    Du, Keming

    1993-05-01

    CO2 lasers have been used in industry mainly for such things as cutting, welding, and surface processing. To conduct a broad spectrum of high-speed and high-quality applications, most of the developments in industrial CO2 lasers at the ILT are aimed at increasing the output power, optimizing the beam quality, and reducing the production costs. Most of the commercial CO2 lasers above 5 kW are transverse-flow systems using dc excitation. The applications of these lasers are limited due to the lower beam quality, the poor point stability, and the lower modulation frequency. To overcome the problems we developed a fast axial- flow CO2 laser using rf excitation with an output of 13 kW. In section 2 some of the results are discussed concerning the gas flow, the discharge, the resonator design, optical effects of active medium, the aerodynamic window, and the modulation of the output power. The first CO2 lasers ever built are diffusion-cooled systems with conventional dc excited cylindrical discharge tubes surrounded by cooling jackets. The output power per unit length is limited to 50 W/m by those lasers with cylindrical tubes. In the past few years considerable increases in the output power were achieved, using new mechanical geometries, excitation- techniques, and resonator designs. This progress in diffusion-cooled CO2 lasers is presented in section 3.

  3. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils.We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days.Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  4. How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?

    Science.gov (United States)

    Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György

    2017-04-01

    Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an

  5. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  6. Atmospheric inversion of the surface CO2 flux with 13CO2 constraint

    Science.gov (United States)

    Chen, J. M.; Mo, G.; Deng, F.

    2013-10-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using the 13CO2/CO2 flux ratio modeled with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and respiration and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. For the 2002-2004 period, the 13CO2 constraint on the inversion increases the total land carbon sink from 3.40 to 3.70 Pg C yr-1 and decreases the total oceanic carbon sink from 1.48 to 1.12 Pg C yr-1. The largest changes occur in tropical areas: a considerable decrease in the carbon source in the Amazon forest, and this decrease is mostly compensated by increases in the ocean region immediately west of the Amazon and the southeast Asian land region. Our further investigation through different treatments of the 13CO2/CO2 flux ratio used in the inversion suggests that variable spatial distributions of the 13CO2 isotopic discrimination rate simulated by the models over land and ocean have considerable impacts on the spatial distribution of the inverted CO2 flux over land and the inversion results are not sensitive to errors in the estimated disequilibria over land and ocean.

  7. Diffuse CO2 degassing at Vesuvio, Italy

    Science.gov (United States)

    Frondini, Francesco; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Granieri, Domenico; Ventura, Guido

    2004-10-01

    At Vesuvio, a significant fraction of the rising hydrothermal-volcanic fluids is subjected to a condensation and separation process producing a CO2-rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic-hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d-1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d-1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d-1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.

  8. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  9. Is there a decrease in the sink of atmospheric CO2 in the Nordic seas?

    International Nuclear Information System (INIS)

    Olsen, Are; Anderson, Leif G.

    2002-01-01

    It is well known that the seas off Norway sink a lot of carbon dioxide from the atmosphere, mainly because of the large heat loss from the sea in the area, which makes CO 2 more soluble in the water. Whether this sink has increased after the industrial revolution and thereby contributes to slowing down the increase of atmospheric CO 2 is uncertain. That is, it is uncertain whether there is a sink of anthropogenic CO 2 . There are indications that the opposite is true, that the sink of CO 2 in this area has slowed down along with the rise in the concentration of atmospheric CO 2 . Storing of anthropogenic CO 2 , however, takes place at higher latitudes where deep-water formation occurs, such as in the Nordic seas, where water that is saturated with anthropogenic CO 2 is transported down in the deep sea and becomes shielded from the atmosphere. Model calculations show that increased CO 2 in the atmosphere will reduce the sink of this gas in the Nordic seas. This conclusion is supported by observations from the Barents Sea

  10. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  11. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  12. A cost effective CO2 strategy

    DEFF Research Database (Denmark)

    , a scenario-part and a cost-benefit part. Air and sea modes are not analyzed. The model adopts a bottom-up approach to allow a detailed assessment of transport policy measures. Four generic areas of intervention were identified and the likely effect on CO2 emissions, socioeconomic efficiency and other...... are evaluated according to CO2 reduction potential and according to the ‘shadow price’ on a reduction of one ton CO2. The shadow price reflects the costs (and benefits) of the different measures. Comparing the measures it is possible to identify cost effective measures, but these measures are not necessarily...... by the Ministry of Transport, with the Technical University of Denmark as one of the main contributors. The CO2-strategy was to be based on the principle of cost-effectiveness. A model was set up to assist in the assessment. The model consists of a projection of CO2-emissions from road and rail modes from 2020...

  13. Rangeland -- plant response to elevated CO2

    International Nuclear Information System (INIS)

    Owensby, C.E.; Coyne, P.I.; Ham, J.M.; Parton, W.; Rice, C.; Auen, L.M.; Adam, N.

    1993-01-01

    Plots of a tallgrass prairie ecosystem were exposed to ambient and twice-ambient CO 2 concentrations in open-top chambers and compared to unchambered ambient CO 2 plots during the entire growing season from 1989 through 1992. Relative root production among treatments was estimated using root ingrowth bags which remained in place throughout the growing season. Latent heat flux was simulated with and without water stress. Botanical composition was estimated annuallyin all treatments. Open-top chambers appeared to reduce latent heat flux and increase water use efficiency similar to elevated CO 2 when water stress was not severe, but under severe water stress, chamber effect on water use efficiency was limited. In natural ecosystems with periodic moisture stress, increased water use efficiency under elevated CO 2 apparently would have a greater impact on productivity than photosynthetic pathway. Root ingrowth biomass was greater in 1990 and 1991 on elevated CO 2 plots compared to ambient or chambered-ambient plots. In 1992, there was no difference in root ingrowth biomass among treatments

  14. Economic efficiency of CO2 reduction programs

    International Nuclear Information System (INIS)

    Tahvonen, O.; Storch, H. von; Storch, J. von

    1993-01-01

    A highly simplified time-dependent low-dimensional system has been designed to describe conceptually the interaction of climate and economy. Enhanced emission of carbon dioxide (CO 2 ) is understood as the agent that not only favors instantaneous consumption but also causes unfavorable climate changes at a later time. The problem of balancing these two counterproductive effects of CO 2 emissions on a finite time horizon is considered. The climate system is represented by just two parameters, namely a globally averaged near-surface air-temperature and a globally averaged troposheric CO 2 concentration. The costs of abating CO 2 emissions are monitored by a function which depends quadratically on the percentage reduction of emission compared to an 'uncontrolled emission' scenario. Parameters are fitted to historical climate data and to estimates from studies of CO 2 abatement costs. Two optimization approaches, which differ from earlier attempts to describe the interaction of economy and climate, are discussed. In the 'cost oriented' strategy an optimal emission path is identified which balances the abatement costs and explicitly formulated damage costs. These damage costs, whose estimates are very uncertain, are hypothesized to be a linear function of the time-derivative of temperature. In the 'target oriented' strategy an emission path is chosen so that the abatement costs are minimal while certain restrictions on the terminal temperature and concentration change are met. (orig.)

  15. CO2-Switchable Membranes Prepared by Immobilization of CO2-Breathing Microgels.

    Science.gov (United States)

    Zhang, Qi; Wang, Zhenwu; Lei, Lei; Tang, Jun; Wang, Jianli; Zhu, Shiping

    2017-12-20

    Herein, we report the development of a novel CO 2 -responsive membrane system through immobilization of CO 2 -responsive microgels into commercially available microfiltration membranes using a method of dynamic adsorption. The microgels, prepared from soap-free emulsion polymerization of CO 2 -responsive monomer 2-(diethylamino)ethyl methacrylate (DEA), can be reversibly expanded and shrunken upon CO 2 /N 2 alternation. When incorporated into the membranes, this switching behavior was preserved and further led to transformation between microfiltration and ultrafiltration membranes, as indicated from the dramatic changes on water flux and BSA rejection results. This CO 2 -regulated performance switching of membranes was caused by the changes of water transportation channel, as revealed from the dynamic water contact angle tests and SEM observation. This work represents a simple yet versatile strategy for making CO 2 -responsive membranes.

  16. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions

    Science.gov (United States)

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian

    2015-01-01

    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  17. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem.

    Science.gov (United States)

    Black, Christopher K; Davis, Sarah C; Hudiburg, Tara W; Bernacchi, Carl J; DeLucia, Evan H

    2017-01-01

    Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long-term declines in the amount of carbon stored in agricultural soils. © 2016 John Wiley & Sons Ltd.

  18. Evasion of CO2 injected into the ocean in the context of CO2 stabilization

    International Nuclear Information System (INIS)

    Kheshgi, Haroon S.

    2004-01-01

    The eventual evasion of injected CO 2 to the atmosphere is one consideration when assessing deep-sea disposal of CO 2 as a potential response option to climate change concerns. Evasion estimated using an ocean carbon cycle model is compared to long-term trajectories for future CO 2 emissions, including illustrative cases leading to stabilization of CO 2 concentration at various levels. Modeled residence time for CO 2 injected into the deep ocean exceeds the 100-year time-scale usually considered in scenarios for future emissions, and the potential impacts of climate change. Illustrative cases leading monotonically to constant CO 2 concentration have been highlighted by the Intergovernmental Panel on Climate Change to give guidance on possible timing of emission reductions that may be required to stabilize greenhouse gas concentrations at various levels. For stabilization cases considered, significant modeled evasion does not occur until long after CO 2 emissions have reached a maximum and begun to decline. Illustrative cases can also lead to a maximum in CO 2 concentration followed by a decline to slowly decreasing concentrations. In such cases, future injection of emissions into the deep ocean leads to lower maximum CO 2 concentration, with less effect on concentration later on in time

  19. Effect of Uncertainties in CO2 Property Databases on the S-CO2 Compressor Performance

    International Nuclear Information System (INIS)

    Lee, Je Kyoung; Lee, Jeong Ik; Ahn, Yoonhan; Kim, Seong Gu; Cha, Je Eun

    2013-01-01

    Various S-CO 2 Brayton cycle experiment facilities are on the state of construction or operation for demonstration of the technology. However, during the data analysis, S-CO 2 property databases are widely used to predict the performance and characteristics of S-CO 2 Brayton cycle. Thus, a reliable property database is very important before any experiment data analyses or calculation. In this paper, deviation of two different property databases which are widely used for the data analysis will be identified by using three selected properties for comparison, C p , density and enthalpy. Furthermore, effect of above mentioned deviation on the analysis of test data will be briefly discussed. From this deviation, results of the test data analysis can have critical error. As the S-CO 2 Brayton cycle researcher knows, CO 2 near the critical point has dramatic change on thermodynamic properties. Thus, it is true that a potential error source of property prediction exists in CO 2 properties near the critical point. During an experiment data analysis with the S-CO 2 Brayton cycle experiment facility, thermodynamic properties are always involved to predict the component performance and characteristics. Thus, construction or defining of precise CO 2 property database should be carried out to develop Korean S-CO 2 Brayton cycle technology

  20. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    OpenAIRE

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01

    A new field facility was used to study CO2 migration processes and test techniques to detect and quantify potential CO2 leakage from geologic storage sites. For 10 days starting 9 July 2007, and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1, respectively, were released from a ~;100-m long, sub-water table (~;2.5-m depth) horizontal well. The spatio-temporal evolution of leakage was mapped through repeated grid measurements of soil CO2 flux (FCO2). The surface leakage onset...

  1. The idea of global CO2 trade

    International Nuclear Information System (INIS)

    Svendsen, G.T.

    1999-01-01

    The US has been criticized for wanting to earn a fortune on a global CO 2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO 2 market may provide the world with an epoch-making means of cost-effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO 2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future

  2. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima

    2016-12-01

    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  3. CO2 utilization: Developments in conversion processes

    Directory of Open Access Journals (Sweden)

    Erdogan Alper

    2017-03-01

    The potential utilization of CO2, captured at power plants, should also been taken into consideration for sustainability. This CO2 source, which is potentially a raw material for the chemical industry, will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects. Products resulting from carboxylation reactions are obvious conversions. In addition, provided that enough supply of energy from non-fossil resources, such as solar [1], is ensured, CO2 reduction reactions can produce several valuable commodity chemicals including multi-carbon compounds, such as ethylene and acrylic acid, in addition to C1 chemicals and polymers. Presently, there are only few developing technologies which can find industrial applications. Therefore, there is a need for concerted research in order to assess the viability of these promising exploratory technologies rationally.

  4. Crop responses to CO2 enrichment

    International Nuclear Information System (INIS)

    Rogers, H.H.; Dahlman, R.C.

    1993-01-01

    Carbon dioxide is rising in the global atmosphere, and this increase can be expected to continue into the foreseeable future. This compound is an essential input to plant life. Crop function is affected across all scales from biochemical to agroecosystem. An array of methods (leaf cuvettes, field chambers, free-air release systems) are available for experimental studies of CO 2 effects. Carbon dioxide enrichment of the air in which crops grow usually stimulates their growth and yield. Plant structure and physiology are markedly altered. Interactions between CO 2 and environmental factors that influence plants are known to occur. Implications for crop growth and yield are enormous. Strategies designed to assure future global food security must include a consideration of crop responses to elevated atmospheric CO 2 . 137 refs., 4 figs., 4 tabs

  5. Waste cleaning using CO2-acid microemulsion

    International Nuclear Information System (INIS)

    Park, Kwangheon; Sung, Jinhyun; Koh, Moonsung; Ju, Minsu

    2011-01-01

    Frequently we need to decontaminate radioactive wastes for volume reduction purposes. Metallic contaminants in wastes can be removed by dissolution to acid; however, this process produces a large amount of liquid acid waste. To reduce this 2ndary liquid waste, we suggest CO 2 -acid emulsion in removing metallic contaminants. Micro- and macro-emulsion of acid in liquid/supercritical CO 2 were successfully made. The formation region of microemulsion (water or acid in CO 2 ) was measured, and stability of the microemulsion was analyzed with respect to surfactant types. We applied micro- and macro-emulsion containing acid to the decontamination of radioactive metallic parts contaminated on the surface. The cleaning methods of micro- and macro-emulsion seemed better compared to the conventional acid cleaning. Moreover, these methods produce very small amount of secondary wastes. (author)

  6. Direct electroreduction of CO2 into hydrocarbon

    International Nuclear Information System (INIS)

    Winea, Gauthier; Ledoux, Marc-Jacques; Pham-Huu, Cuong; Gangeri, Miriam; Perathoner, Siglinda; Centi, Gabriele

    2006-01-01

    A lot of methods exist to directly reduce carbon dioxide into hydrocarbons: the photoelectrochemical process is certainly the most interesting, essentially due to the similarities with photosynthesis. As the human activities produce a great quantity of CO 2 , this one can then be considered as an infinite source of carbon. The products of this reaction are identical to those obtained during a Fischer-Tropsch reaction, that is to say hydrocarbons, alcohols and carboxylic acids. These works deal with the electrochemical reduction of CO 2 in standard conditions of temperature and pressure. The photochemical part has been replaced by a current generator as electrons source and a KHCO 3 aqueous solution as protons source. The first catalytic results clearly show that it is possible to reduce CO 2 into light hydrocarbons, typically from C1 to C9. (O.M.)

  7. Cutting weeds with a CO2 laser

    DEFF Research Database (Denmark)

    Heisel, T.; Schou, Jørgen; Christensen, S.

    2001-01-01

    Stems of Chenopodium album. and Sinapis arvensis. and leaves of Lolium perenne. were cut with a CO2 laser or with a pair of scissors. Treatments were carried out on greenhouse-grown pot plants at three different growth stages and at two heights. Plant dry matter was measured 2 to 5 weeks after...... treatment. The relationship between dry weight and laser energy was analysed using a non-linear dose-response regression model. The regression parameters differed significantly between the weed species. At all growth stages and heights S. arvensis was more difficult to cut with a CO2 laser than C. album....... When stems were cut below the meristems, 0.9 and 2.3 J mm(-1) of CO2 laser energy dose was sufficient to reduce by 90% the biomass of C. album and S. arvensis respectively. Regrowth appeared when dicotyledonous plant stems were cut above meristems, indicating that it is important to cut close...

  8. Assessment of CO2 free energy options

    International Nuclear Information System (INIS)

    Cavlina, N.; Raseta, D.; Matutinovic, I.

    2014-01-01

    One of the European Union climate and energy targets is to significantly reduce CO 2 emissions, at least 20% by 2020, compared to 1990. In the power industry, most popular solution is use of solar and wind power. Since their production varies significantly during the day, for the purpose of base-load production they can be paired with gas-fired power plant. Other possible CO 2 -free solution is nuclear power plant. This article compared predicted cost of energy production for newly built nuclear power plant and newly built combination of wind or solar and gas-fired power plant. Comparison was done using Levelized Unit of Energy Cost (LUEC). Calculations were performed using the Monte Carlo method. For input parameters that have biggest uncertainty (gas cost, CO 2 emission fee) those uncertainties were addressed not only through probability distribution around predicted value, but also through different scenarios. Power plants were compared based on their economic lifetime. (authors)

  9. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  10. Novel concepts for CO2 capture

    International Nuclear Information System (INIS)

    Dijkstra, J.W.; Jansen, D.

    2004-01-01

    This paper describes the possibilities for power generation with CO 2 capture using envisaged key technologies: gas turbines, membranes and solid oxide fuel cells (SOFCs). First, the underlying programs in the Netherlands and at ECN are introduced. Then the key technologies are introduced, and concepts using these technologies are discussed. A literature overview of systems for power generation with fuel cells in combination with CO 2 capture is presented. Then a novel concept is introduced. This concept uses a water gas shift membrane reactor to convert the CO and H 2 in the SOFC anode off-gas to gain a CO 2 rich stream, which can be used for sequestration without elaborate treatment. Several implementation schemes of the technique are discussed such as atmospheric systems and hybrid SOFC-GT systems

  11. Equilibrium Solubility of CO2 in Alkanolamines

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2014-01-01

    Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....

  12. Spectroscopic technique for measuring atmospheric CO2

    International Nuclear Information System (INIS)

    Stokes, G.M.; Stokes, R.A.

    1979-01-01

    As part of a continuing effort to identify areas in which astronomical techniques and data may be profitably applied to atmospheric problems, both new and archival solar spectra have been collected to prepare for an analysis of their use for studying the changes of the atmospheric CO 2 burden. This analysis has resulted in the initiation of an observing program using the Fourier Transform Spectrometer (FTS) of the McMath Solar Telescope at Kitt Peak National Observatory (KPNO). This program is generating spectra, the quality of which should not only aid the archival CO 2 study but also lead to analyses of other trace gases

  13. 10 MW Supercritical CO2 Turbine Test

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  14. 14CO2 fixation pattern of cyanobacteria

    International Nuclear Information System (INIS)

    Erdmann, N.; Schiewer, U.

    1985-01-01

    The 14 CO 2 fixation pattern of three cyanobacteria in the light and dark were studied. Two different chromatographic methods widely used for separating labelled photosynthetic intermediates were compared. After ethanolic extraction, a rather uniform fixation pattern reflecting mainly the β-carboxylation pathway is obtained for all 3 species. Of the intermediates, glucosylglycerol is specific and high citrulline and low malate contents are fairly specific to cyanobacteria. The composition of the 14 CO 2 fixation pattern is hardly affected by changes in temperature or light intensity, but it is severely affected by changes in the water potential of the medium. (author)

  15. System to determine leaf photosynthetic activity by means of 14CO2

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.

    1977-01-01

    A method to determine leaf photosynthetic activity is described. 14 CO 2 labeled air is produced from 14 CO 3 Ba and stored in a poliethylene balloon and supplied by means of an automatic dispenser to a perspex chamber inside of which is the leaf. (author) [es

  16. What affects CH4/CO2 ratio in cow’s breath

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Weisbjerg, Martin Riis; Madsen, Jørgen

    2013-01-01

    under farm management control. CO2 is released largely from microbial decay or burning of plant litter and soil organic matter. CH4 is produced when organic materials decompose under anoxic conditions, notably from fermentative digestion by ruminant livestock, stored manures, wetlands and rice grown...

  17. ELEVATED CO2 AND TEMPERATURE ALTER THE RESPONSE OF PINUS PONDEROSA TO OZONE: A SIMULATION ANALYSIS

    Science.gov (United States)

    Forests regulate numerous biogeochemical cycles, storing and cycling large quantities of carbon, water, and nutrients, however, there is concern how climate change, elevated CO2 and tropospheric O3 will affect these processes. We investigated the potential impact of O3 in combina...

  18. Studying biosphere-atmosphere exchange of CO2 through Carbon-13 stable isotopes

    NARCIS (Netherlands)

    Velde, van der I.R.

    2015-01-01

    Summary Thesis ‘Studying biosphere-atmosphere exchange of CO2 through

    carbon-13 stable isotopes’

    Ivar van der Velde

    Making predictions of future climate is difficult, mainly due to large uncertainties in the carbon cycle. The rate at which carbon is stored in the oceans and

  19. Soil CO2 production in upland tundra where permafrost is thawing

    Science.gov (United States)

    Hanna Lee; Edward A.G. Schuur; Jason G. Vogel

    2010-01-01

    Permafrost soils store nearly half of global soil carbon (C), and therefore permafrost thawing could lead to large amounts of greenhouse gas emissions via decomposition of soil organic matter. When ice-rich permafrost thaws, it creates a localized surface subsidence called thermokarst terrain, which changes the soil microenvironment. We used soil profile CO2...

  20. An integrated GIS-MARKAL toolbox for designing a CO2 infrastructure network in the Netherlands

    NARCIS (Netherlands)

    van den Broek, M.A.; Brederode, E.; Ramirez, C.A.; Kramers, K.; van der Kuip, M.; Wildenborg, T.; Faaij, A.P.C.; Turkenburg, W.C.

    2009-01-01

    Large-scale implementation of carbon capture and storage needs a whole new infrastructure to transport and store CO2. Tools that can support planning and designing of such infrastructure require incorporation of both temporal and spatial aspects. Therefore, a toolbox that integrates ArcGIS, a

  1. Capture and Geological Storage of CO2

    International Nuclear Information System (INIS)

    Kerr, T.; Brockett, S.; Hegan, L.; Barbucci, P.; Tullius, K.; Scott, J.; Otter, N.; Cook, P.; Hill, G.; Dino, R.; Aimard, N.; Giese, R.; Christensen, N.P.; Munier, G.; Paelinck, Ph.; Rayna, L.; Stromberg, L.; Birat, J.P.; Audigane, P.; Loizzo, M.; Arts, R.; Fabriol, H.; Radgen, P.; Hartwell, J.; Wartmann, S.; Drosin, E.; Willnow, K.; Moisan, F.

    2009-01-01

    To build on the growing success of the first two international symposia on emission reduction and CO 2 capture and geological storage, held in Paris in 2005 and again in 2007, IFP, ADEME and BRGM organised a third event on the same topic the 5-6 November 2009. This time, the focus was on the urgency of industrial deployment. Indeed, the IPCC 4. assessment report indicates that the world must achieve a 50 to 85% reduction in CO 2 emissions by 2050 compared to 2000, in order to limit the global temperature increase to around 2 deg. C. Moreover, IPCC stresses that a 'business as usual' scenario could lead to a temperature increase of between 4 deg. C to 7 deg. C across the planet. The symposium was organized in 4 sessions: Session I - Regulatory framework and strategies for enabling CCS deployment: - CCS: international status of political, regulatory and financing issues (Tom Kerr, IEA); - EC regulatory framework (Scott Brockett, European Commission, DG ENV); - Canada's investments towards implementation of CCS in Canada (Larry Hegan, Office of Energy Research and Development - Government of Canada); - A power company perspective (Pietro Barbucci, ENEL); - EC CCS demonstration network (Kai Tullius, European Commission, DG TREN); - Strategies and policies for accelerating global CCS deployment (Jesse Scott, E3G); - The global CCS Institute, a major initiative to facilitate the rapid deployment of CCS (Nick Otter, GCCSI); Session II - From pilot to demonstration projects: - Otway project, Australia (David Hilditch, CO2 CRC); - US regional partnerships (Gerald Hill, Southeast Regional Carbon Sequestration Partnership - SECARB); - CCS activities in Brazil (Rodolfo Dino, Petrobras); - Lessons learnt from Ketzin CO2Sink project in Germany (Ruediger Giese, GFZ); - CO 2 storage - from laboratory to reality (Niels-Peter Christensen, Vattenfall); - Valuation and storage of CO 2 : A global project for carbon management in South-East France (Gilles Munier, Geogreen); Session III

  2. Effects of a holiday week on urban soil CO2 flux: an intensive study in Xiamen, southeastern China

    Science.gov (United States)

    Ye, H.; Wang, K.; Chen, F.

    2012-12-01

    To study the effects of a holiday period on urban soil CO2 flux, CO2 efflux from grassland soil in a traditional park in the city of Xiamen was measured hourly from 28th Sep to 11th Oct, a period that included China's National Day holiday week in 2009. The results of this study revealed that: a) The urban soil CO2 emissions were higher before and after the holiday week and lower during the National Day holiday reflecting changes in the traffic cycles; b) A diurnal cycle where the soil CO2 flux decreased from early morning to noon was associated with CO2 uptake by vegetation which strongly offset vehicle CO2 emissions. The soil CO2 flux increased from night to early morning, associated with reduced CO2 uptake by vegetation; c) During the National Day holiday week in 2009, lower rates of soil respiration were measured after Mid-Autumn Day than earlier in the week, and this was related to a reduced level of human activities and vehicle traffic, reducing the CO2 concentration in the air. Urban holidays have a clear effect on soil CO2 flux through the interactions between vehicle, visitor and vegetation CO2 emissions which indirectly control the use of carbon by plant roots, the rhizosphere and soil microorganisms. Consequently, appropriate traffic controls and tourism travel plans can have positive effects on the soil carbon store and may improve local air quality.

  3. Heterotrophic fixation of CO2 in soil

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Elhottová, Dana; Novák, Jaroslav; Picek, T.; Šimek, Miloslav; Tykva, Richard

    2005-01-01

    Roč. 49, č. 2 (2005), s. 218-225 ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/02/1036; GA AV ČR(CZ) IAA6066901 Institutional research plan: CEZ:AV0Z60660521 Keywords : heterotrophic fixation * CO2 * soil Subject RIV: EH - Ecology, Behaviour Impact factor: 2.674, year: 2005

  4. Managing CO2 emissions in Nigeria

    International Nuclear Information System (INIS)

    Obioh, I.B.; Oluwole, A.F.; Akeredolu, F.A.

    1994-01-01

    The energy resources in Nigeria are nearly equally divided between fossil fuels and biofuels. The increasing pressure on them, following expected increased population growth, may lead to substantial emissions of carbon into the atmosphere. Additionally agricultural and forestry management practices in vogue are those related to savannah burning and rotational bush fallow systems, which have been clearly implicated as important sources of CO 2 and trace gases. An integrated model for the prediction of future CO 2 emissions based on fossil fuels and biomass fuels requirements, rates of deforestation and other land-use indices is presented. This is further based on trends in population and economic growth up to the year 2025, with a base year in 1988. A coupled carbon cycle-climate model based on the contribution of CO 2 and other trace gases is established from the proportions of integrated global warming effects for a 20-year averaging time using the product of global warming potential (GWP) and total emissions. An energy-technology inventory approach to optimal resources management is used as a tool for establishing the future scope of reducing the CO 2 emissions through improved fossil fuel energy efficiencies. Scenarios for reduction based on gradual to swift shifts from biomass to fossil and renewable fuels are presented together with expected policy options required to effect them

  5. Detection of 14CO2 in radiotoxicology

    International Nuclear Information System (INIS)

    Simonnet, Francoise; Bocquet, Colette.

    1980-12-01

    14 CO 2 is detected in exhaled air by conversion to Ba 14 CO 3 which is then filtered, dried and weighed. The radioactivity is measured by liquid scintillation counting. The radioactivity is expressed in μCi per litre of exhaled air according to the ICRP recommendations. The detection threshold is well below the values indicated by the ICRP [fr

  6. Stereotactic CO2 laser therapy for hydrocephalus

    Science.gov (United States)

    Kozodoy-Pins, Rebecca L.; Harrington, James A.; Zazanis, George A.; Nosko, Michael G.; Lehman, Richard M.

    1994-05-01

    A new fiber-optic delivery system for CO2 radiation has been used to successfully treat non-communicating hydrocephalus. This system consists of a hollow sapphire waveguide employed in the lumen of a stereotactically-guided neuroendoscope. CO2 gas flows through the bore of the hollow waveguide, creating a path for the laser beam through the cerebrospinal fluid (CSF). This delivery system has the advantages of both visualization and guided CO2 laser radiation without the same 4.3 mm diameter scope. Several patients with hydrocephalus were treated with this new system. The laser was used to create a passage in the floor of the ventricle to allow the flow of CSF from the ventricles to the sub-arachnoid space. Initial postoperative results demonstrated a relief of the clinical symptoms. Long-term results will indicate if this type of therapy will be superior to the use of implanted silicone shunts. Since CO2 laser radiation at 10.6 micrometers is strongly absorbed by the water in tissue and CSF, damage to tissue surrounding the lesion with each laser pulse is limited. The accuracy and safety of this technique may prove it to be an advantageous therapy for obstructive hydrocephalus.

  7. Chilled ammonia process for CO2 capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; van Well, Willy J. M

    2009-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2-10 degrees C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows...

  8. Chilled Ammonia Process for CO2 Capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; Well, Willy J.M. van

    2010-01-01

    The chilled ammonia process absorbs the CO2 at low temperature (2–10°C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good...

  9. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1998-01-01

    -effective control which can solve future global environmental problems. The gains from CO2 trade may give vital financial subsidies from the EU to Eastern Europe, for example, and it will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further...

  10. Climate change and CO2 emission reductions

    International Nuclear Information System (INIS)

    Ha Duong, M.; Campos, A.S.

    2007-04-01

    This paper presents the results of an opinion poll performed on a representative sample of 1000 persons about their sensitivity to climate change and to environment protection, their knowledge about technologies which are useful for environment protection, their opinion about geological CO 2 sequestration, and technologies to be developed to struggle against climate warming

  11. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred

    2008-01-01

    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  12. CO2 effect on porous concrete

    Directory of Open Access Journals (Sweden)

    Sauman, Zdenek

    1974-09-01

    Full Text Available Not availableDebido a la acción del CO2 y de la humedad sobre un hormigón poroso, la tobermorita 11 A se descompone en vaterita, calcita y SÍO2 gel. A causa de la pseudomorfosis, la morfología de los cristales de la fase cementante no sufre cambios notables. La menor resistencia a la compresión se obtuvo después de 30 días de conservación en atmósferas de un 10 y un 30% de CO2. Después de un año de conservación, las resistencias no bajaron más de un 10%. En lo que respecta a la retracción de un hormigón poroso, la principal influencia fue la ejercida por la acción del CO2 y solamente en segundo lugar figura la acción ejercida por la humedad ambiente. Los hormigones porosos expuestos al aire (con su 0,03% de CO2 a h. r. de 50, 70 y 100% sufrieron al cabo de un año una expansión muy ligera.

  13. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.

    2010-01-01

    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  14. CO2 contain of the electric heating

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-02-01

    A recent announcement of the RTE and the ADEME on the CO 2 contain of the electric kW, refuting a 2005 study of EDF and ADEME, perturbed the public opinion and was presented as the proof that the nuclear has no part in the fight against the climatic change. The author aims to set things straight. (A.L.B.)

  15. Towards Verifying National CO2 Emissions

    Science.gov (United States)

    Fung, I. Y.; Wuerth, S. M.; Anderson, J. L.

    2017-12-01

    With the Paris Agreement, nations around the world have pledged their voluntary reductions in future CO2 emissions. Satellite observations of atmospheric CO2 have the potential to verify self-reported emission statistics around the globe. We present a carbon-weather data assimilation system, wherein raw weather observations together with satellite observations of the mixing ratio of column CO2 from the Orbiting Carbon Observatory-2 are assimilated every 6 hours into the NCAR carbon-climate model CAM5 coupled to the Ensemble Kalman Filter of DART. In an OSSE, we reduced the fossil fuel emissions from a country, and estimated the emissions innovations demanded by the atmospheric CO2 observations. The uncertainties in the innovation are analyzed with respect to the uncertainties in the meteorology to determine the significance of the result. The work follows from "On the use of incomplete historical data to infer the present state of the atmosphere" (Charney et al. 1969), which maps the path for continuous data assimilation for weather forecasting and the five decades of progress since.

  16. Ocean acidification: the other CO2 problem.

    Science.gov (United States)

    Doney, Scott C; Fabry, Victoria J; Feely, Richard A; Kleypas, Joan A

    2009-01-01

    Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

  17. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard

    1999-01-01

    -effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably...

  18. CO2 emissions vs. CO2 responsibility: An input-output approach for the Turkish economy

    International Nuclear Information System (INIS)

    Ipek Tunc, G.; Tueruet-Asik, Serap; Akbostanci, Elif

    2007-01-01

    Recently, global warming (greenhouse effect) and its effects have become one of the hottest topics in the world agenda. There have been several international attempts to reduce the negative effects of global warming. The Kyoto Protocol can be cited as the most important agreement which tries to limit the countries' emissions within a time horizon. For this reason, it becomes important to calculate the greenhouse gas emissions of countries. The aim of this study is to estimate the amount of CO 2 -the most important greenhouse gas-emissions, for the Turkish economy. An extended input-output model is estimated by using 1996 data in order to identify the sources of CO 2 emissions and to discuss the share of sectors in total emission. Besides, 'CO 2 responsibility', which takes into account the CO 2 content of imports, is estimated for the Turkish economy. The sectoral CO 2 emissions and CO 2 responsibilities are compared and these two notions are linked to foreign trade volume. One of the main conclusions is that the manufacturing industry has the first place in both of the rankings for CO 2 emissions and CO 2 responsibilities, while agriculture and husbandry has the last place

  19. Literatuuronderzoek CAM-fotosynthese en CO2-bemesting en CO2-bemesting bij bromelia's

    NARCIS (Netherlands)

    Marissen, A.; Warmenhoven, M.G.

    2004-01-01

    De ‘normale’ wijze van CO2-opname gebeurt bij de meeste planten overdag, wanneer er licht is om de opgenomen CO2 door middel van fotosynthese direct om te zetten in suikers. Hiervoor is het nodig dat de huidmondjes overdag open staan, ‘s nachts zijn huidmondjes meestal dicht. Via de huidmondjes gaat

  20. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao; Das, Shyamal K.; Archer, Lynden A.

    2013-01-01

    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than

  1. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.

    Science.gov (United States)

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi

    2018-05-21

    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 2 ↔ 2Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux

    Science.gov (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren

    2014-01-01

    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  3. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.

    2012-01-01

    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the

  4. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer

    Science.gov (United States)

    Ma, Sichao; Sadakiyo, Masaaki; Luo, Raymond; Heima, Minako; Yamauchi, Miho; Kenis, Paul J. A.

    2016-01-01

    Electroreduction of CO2 has potential for storing otherwise wasted intermittent renewable energy, while reducing emission of CO2 into the atmosphere. Identifying robust and efficient electrocatalysts and associated optimum operating conditions to produce hydrocarbons at high energetic efficiency (low overpotential) remains a challenge. In this study, four Cu nanoparticle catalysts of different morphology and composition (amount of surface oxide) are synthesized and their activities towards CO2 reduction are characterized in an alkaline electrolyzer. Use of catalysts with large surface roughness results in a combined Faradaic efficiency (46%) for the electroreduction of CO2 to ethylene and ethanol in combination with current densities of ∼200 mA cm-2, a 10-fold increase in performance achieved at much lower overpotential (only catalysts bring electrochemical reduction processes such as presented here closer to practical application.

  5. BOREAS TF-3 Automated Chamber CO2 Flux Data from the NSA-OBS

    Science.gov (United States)

    Goulden, Michael L.; Crill, Patrick M.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOReal Ecosystem Atmosphere Study Tower Flux (BOREAS TF-3) and Trace Gas Biogeochemistry (TGB-1) teams collected automated CO2 chamber flux data in their efforts to fully describe the CO2 flux at the Northern Study Area-Old Black Spruce (NSA-OBS) site. This data set contains fluxes of CO2 at the NSA-OBS site measured using automated chambers. In addition to reporting the CO2 flux, it reports chamber air temperature, moss temperature, and light levels during each measurement. The data set covers the period from 23-Sep-1995 through 26-Oct-1995 and from 28-May-1996 through 21-Oct-1996. The data are stored in tabular ASCII files.

  6. Electrochemical CO2 Reduction by Ni-containing Iron Sulfides: How Is CO2 Electrochemically Reduced at Bisulfide-Bearing Deep-sea Hydrothermal Precipitates?

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Yamamoto, Masahiro; Takai, Ken; Ishii, Takumi; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-01-01

    The discovery of deep-sea hydrothermal vents on the late 1970's has led to many hypotheses concerning chemical evolution in the prebiotic ocean and the early evolution of energy metabolism in ancient Earth. Such studies stand on the quest for the bioenergetic evolution to utilize reducing chemicals such as H 2 for CO 2 reduction and carbon assimilation. In addition to the direct reaction of H 2 and CO 2 , the electrical current passing across a bisulfide-bearing chimney structure has pointed to the possible electrocatalytic CO 2 reduction at the cold ocean-vent interface (R. Nakamura, et al. Angew. Chem. Int. Ed. 2010, 49, 7692 − 7694). To confirm the validity of this hypothesis, here, we examined the energetics of electrocatalytic CO 2 reduction by iron sulfide (FeS) deposits at slightly acidic pH. Although FeS deposits inefficiently reduced CO 2 , the efficiency of the reaction was substantially improved by the substitution of Fe with Ni to form FeNi 2 S 4 (violarite), of which surface was further modified with amine compounds. The potential-dependent activity of CO 2 reduction demonstrated that CO 2 reduction by H 2 in hydrothermal fluids was involved in a strong endergonic electron transfer reaction, suggesting that a naturally occurring proton-motive force (PMF) as high as 200 mV would be established across the hydrothermal vent chimney wall. However, in the chimney structures, H 2 generation competes with CO 2 reduction for electrical current, resulting in rapid consumption of the PMF. Therefore, to maintain the PMF and the electrosynthesis of organic compounds in hydrothermal vent mineral deposits, we propose a homeostatic pH regulation mechanism of FeS deposits, in which elemental hydrogen stored in the hydrothermal mineral deposits is used to balance the consumption of the electrochemical gradient by H 2 generation

  7. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2

  8. CO2 capture by ionic liquids - an answer to anthropogenic CO2 emissions?

    Science.gov (United States)

    Sanglard, Pauline; Vorlet, Olivier; Marti, Roger; Naef, Olivier; Vanoli, Ennio

    2013-01-01

    Ionic liquids (ILs) are efficient solvents for the selective removal of CO2 from flue gas. Conventional, offthe-shelf ILs are limited in use to physisorption, which restricts their absorption capacity. After adding a chemical functionality like amines or alcohols, absorption of CO2 occurs mainly by chemisorption. This greatly enhances CO2 absorption and makes ILs suitable for potential industrial applications. By carefully choosing the anion and the cation of the IL, equimolar absorption of CO2 is possible. This paper reviews the current state of the art of CO2 capture by ILs and presents the current research in this field performed at the ChemTech Institute of the Ecole d'Ingénieurs et d'Architectes de Fribourg.

  9. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao

    2013-01-01

    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than that at 40 °C, and the temperature dependence is significantly weaker for higher surface area carbon cathodes. Ex-situ FTIR and XRD analyses convincingly show that lithium carbonate (Li2CO3) is the main component of the discharge product. The feasibility of similar primary metal-CO2 batteries based on earth abundant metal anodes, such as Al and Mg, is demonstrated. The metal-CO2 battery platform provides a novel approach for simultaneous capturing of CO2 emissions and producing electrical energy. © 2013 The Royal Society of Chemistry.

  10. City density and CO_2 efficiency

    International Nuclear Information System (INIS)

    Gudipudi, Ramana; Fluschnik, Till; Ros, Anselmo García Cantú; Walther, Carsten; Kropp, Jürgen P.

    2016-01-01

    Cities play a vital role in the global climate change mitigation agenda. City population density is one of the key factors that influence urban energy consumption and the subsequent GHG emissions. However, previous research on the relationship between population density and GHG emissions led to contradictory results due to urban/rural definition conundrum and the varying methodologies for estimating GHG emissions. This work addresses these ambiguities by employing the City Clustering Algorithm (CCA) and utilizing the gridded CO_2 emissions data. Our results, derived from the analysis of all inhabited areas in the US, show a sub-linear relationship between population density and the total emissions (i.e. the sum of on-road and building emissions) on a per capita basis. Accordingly, we find that doubling the population density would entail a reduction in the total CO_2 emissions in buildings and on-road sectors typically by at least 42%. Moreover, we find that population density exerts a higher influence on on-road emissions than buildings emissions. From an energy consumption point of view, our results suggest that on-going urban sprawl will lead to an increase in on-road energy consumption in cities and therefore stresses the importance of developing adequate local policy measures to limit urban sprawl. - Highlights: •We use gridded population, land use and CO_2 emissions data. •We attribute building and on-road sectoral emissions to populated settlements. •We apply CCA to identify unique city extents and population densities. •Doubling the population density increases CO_2 efficiency typically by 42%. •Population density has more influence on-road CO_2 efficiency than buildings sector.

  11. Imaging volcanic CO2 and SO2

    Science.gov (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.

    2017-12-01

    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  12. CO2 Orbital Trends in Comets

    Science.gov (United States)

    Kelley, Michael; Feaga, Lori; Bodewits, Dennis; McKay, Adam; Snodgrass, Colin; Wooden, Diane

    2014-12-01

    Spacecraft missions to comets return a treasure trove of details of their targets, e.g., the Rosetta mission to comet 67P/Churyumov-Gerasimenko, the Deep Impact experiment at comet 9P/Tempel 1, or even the flyby of C/2013 A1 (Siding Spring) at Mars. Yet, missions are rare, the diversity of comets is large, few comets are easily accessible, and comet flybys essentially return snapshots of their target nuclei. Thus, telescopic observations are necessary to place the mission data within the context of each comet's long-term behavior, and to further connect mission results to the comet population as a whole. We propose a large Cycle 11 project to study the long-term activity of past and potential future mission targets, and select bright Oort cloud comets to infer comet nucleus properties, which would otherwise require flyby missions. In the classical comet model, cometary mass loss is driven by the sublimation of water ice. However, recent discoveries suggest that the more volatile CO and CO2 ices are the likely drivers of some comet active regions. Surprisingly, CO2 drove most of the activity of comet Hartley 2 at only 1 AU from the Sun where vigorous water ice sublimation would be expected to dominate. Currently, little is known about the role of CO2 in comet activity because telluric absorptions prohibit monitoring from the ground. In our Cycle 11 project, we will study the CO2 activity of our targets through IRAC photometry. In conjunction with prior observations of CO2 and CO, as well as future data sets (JWST) and ongoing Earth-based projects led by members of our team, we will investigate both long-term activity trends in our target comets, with a particular goal to ascertain the connections between each comet's coma and nucleus.

  13. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  14. Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions.

    Science.gov (United States)

    Carroll, Susan A; McNab, Walt W; Torres, Sharon C

    2011-11-11

    Reactive-transport simulation is a tool that is being used to estimate long-term trapping of CO2, and wellbore and cap rock integrity for geologic CO2 storage. We reacted end member components of a heterolithic sandstone and shale unit that forms the upper section of the In Salah Gas Project carbon storage reservoir in Krechba, Algeria with supercritical CO2, brine, and with/without cement at reservoir conditions to develop experimentally constrained geochemical models for use in reactive transport simulations. We observe marked changes in solution composition when CO2 reacted with cement, sandstone, and shale components at reservoir conditions. The geochemical model for the reaction of sandstone and shale with CO2 and brine is a simple one in which albite, chlorite, illite and carbonate minerals partially dissolve and boehmite, smectite, and amorphous silica precipitate. The geochemical model for the wellbore environment is also fairly simple, in which alkaline cements and rock react with CO2-rich brines to form an Fe containing calcite, amorphous silica, smectite and boehmite or amorphous Al(OH)3. Our research shows that relatively simple geochemical models can describe the dominant reactions that are likely to occur when CO2 is stored in deep saline aquifers sealed with overlying shale cap rocks, as well as the dominant reactions for cement carbonation at the wellbore interface.

  15. Techno-Economic Assessment of Four CO2 Storage Sites

    Directory of Open Access Journals (Sweden)

    Gruson J.-F.

    2015-04-01

    Full Text Available Carbon Capture and Storage (CCS should be a key technology in order to achieve a decline in the CO2 emissions intensity of the power sector and other intensive industry, but this potential deployment could be restricted by cost issues as the International Energy Agency (IEA in their last projections (World Energy Outlook 2013 has considered only around 1% of global fossil fuel-fired power plants could be equipped with CCS by 2035. The SiteChar project funded by 7th Framework Programme of European Commission gives the opportunity to evaluate the most influential parameters of techno-economic evaluations of four feasible European projects for CO2 geological storage located onshore and offshore and related to aquifer storage or oil and gas reservoirs, at different stages of characterization. Four potential CO2 storage sites have been assessed in terms of storage costs per tonne of CO2 permanently stored (equivalent cost based. They are located offshore UK, onshore Denmark, offshore Norway and offshore Italy. The four SiteChar techno-economic evaluations confirm it is not possible to derive any meaningful average cost for a CO2 storage site. The results demonstrate that the structure of costs for a project is heterogeneous and the storage cost is consequently site dependent. The strategy of the site development is fundamental, the technical choices such as the timing, rate and duration of injection are also important. The way monitoring is managed, using observation wells and logging has a strong impact on the estimated monitoring costs. Options to lower monitoring costs, such as permanent surveys, exist and should be further investigated. Table 1 below summarizes the cost range in Euro per tonne (Discount Rate (DR at 8% for the different sites, which illustrates the various orders of magnitude due to the specificities of each site. These figures have how to be considered with care. In particular the Italian and Norwegian sites present very specific

  16. Comparison of the Wymark CO2 Reservoir with the Midale Beds at the Weyburn CO2 Injection Project

    International Nuclear Information System (INIS)

    Ryerson, F.; Johnson, J.

    2010-01-01

    The Devonian carbonates of the Duperow Formation on the western flank of the Williston Basin in southwest Saskatchewan contain natural accumulations of CO 2 , and may have done so for as long as 50 m.y. in the views of some investigations. These carbonate sediments are characterized by a succession of carbonate cycles capped by anhydrite-rich evaporites that are thought to act as seals to fluid migration. The Weyburn CO 2 injection site lies 400 km to the east in a series of Mississippian carbonates that were deposited in a similar depositional environment. That natural CO 2 can be stored long-term within carbonate strata has motivated the investigation of the Duperow rocks as a potential natural analogue to storage of anthropogenic CO 2 that may ultimately provide additional confidence for CO 2 sequestration in carbonate lithologies. For the Duperow strata to represent a legitimate analog for Midale injection and storage, the similarity in lithofacies, whole rock compositions, mineral compositions and porosity with the Midale Beds must be established. Previous workers have demonstrated the similarity of the lithofacies at both sites. Here we compare the whole rock compositions, mineralogy and mineral compositions. The major mineral phases at both locales are calcite, dolomite and anhydrite. In addition, accessory pyrite, fluorite and celestine are also observed. The distribution of porosity in the Midale Vuggy units is virtually identical to that of the Duperow Formation, but the Marly units of the Midale have significantly higher porosity. The Duperow Formation is topped by the Dinesmore evaporite that is particularly rich in anhydrite, and often contains authigenic K-feldspar. The chemistry of dolomite and calcite from the two localities also overlaps. Silicate minerals are in low abundance within the analyzed Duperow samples, < 3 wt% on a normative basis, with quartz the only phase identifiable in x-ray diffraction patterns. The Midale Beds contain

  17. Supercritical CO2 impregnation of polyethylene components for medical purposes

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2007-01-01

    Full Text Available Modem hip and knee endoprosthesis are produced in titanium and to reduce the friction at the contact area polymer parts, mainly ultra-high molecular weight polyethylene (UHMW-PE, are installed. The polyethylene is impregnated with a-tocopherol (vitamin E before processing for remarkable decrease of oxidative degradation. Cross linked UHMW-PE offers much higher stability, but a-tocopherol cannot be added before processing, because a-tocopherol hinders the cross linking process accompanied by a heavy degradation of the vitamin. The impregnation of UHMW-PE with a-tocopherol has to be performed after the cross linking process and an accurate concentration has to be achieved over the cross section of the whole material. In the first tests UHMW-PE-cubes were stored in pure a-tocopherol under inert atmosphere at temperatures from 100 to 150 °C resulting in a high mass fraction of a-tocopherol in the edge zones and no constant concentration over the cross section. For better distribution and for regulating the mass fraction of a-tocopherol in the cross linked UHMW-PE material supercritical CO2 impregnation tests were investigated. Again UHMW-PE-cubes were impregnated in an autoclave with a-tocopherol dissolved in supercritical CO2 at different pressures and temperatures with variable impregnation times and vitamin E concentrations. Based on the excellent results of supercritical CO2 impregnation standard hip and knee cups were stabilized nearly homogeneously with varying mass fraction of a-tocopherol.

  18. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac

    2013-05-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  19. Potentiel des méthodes de séparation et stockage du CO2 dans la lutte contre l'effet de serreThe role of CO2 capture and sequestration in mitigation of climate change

    Science.gov (United States)

    Jean-Baptiste, Philippe; Ducroux, René

    2003-06-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2. Technical solutions exist to reduce CO 2 emission and stabilise atmospheric CO 2 concentration, including energy saving and energy efficiency, switch to lower carbon content fuels like natural gas and to energy sources that operate with zero CO 2 emissions such as renewable or nuclear energy, enhance the natural sinks for CO 2 (forests, soils, etc.), and last but not least, sequester CO 2 from fossil fuels combustion. The purpose of this paper is to provide an overview of the technology and cost for capture and storage of CO 2. Some of the factors that will influence application, including environmental impact, cost and efficiency, are also discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology; however, substantial R&D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to more than 30% of the global anthropogenic CO 2 emission, it represents a valuable tool in the battle against global warming. To cite this article: P. Jean-Baptiste, R. Ducroux, C. R. Geoscience 335 (2003).

  20. Coalfire related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.

    2008-06-11

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  1. Coalfires related CO2 emissions and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, P.K.

    2008-06-11

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  2. Coalfire related CO2 emissions and remote sensing

    International Nuclear Information System (INIS)

    Gangopadhyay, P.K.

    2008-01-01

    Subsurface and surface coalfires are a serious problem in many coal-producing countries. Combustion can occur within the coal seams (underground or surface), in piles of stored coal, or in spoil dumps at the surface. While consuming a non renewable energy source, coalfires promote several environmental problems. Among all GHGs that are emitted from coalfires, CO2 is the most significant because of its high quantity. In connection to this environmental problem, the core aim of the present research is to develop a hyperspectral remote sensing and radiative transfer based model that is able to estimate CO2 concentration (ppmv) from coalfires. Since 1960s remote sensing is being used as a tool to detect and monitoring coalfires. With time, remote sensing has proven a reliable tool to identify and monitor coalfires. In the present study multi-temporal, multi-sensor and multi-spectral thermal remote sensing data are being used to detect and monitor coalfires. Unlike the earlier studies, the present study explores the possibilities of satellite derived emissivity to detect and monitor coalfires. Two methods of emissivity extraction from satellite data were tested, namely NDVI (Normalized Difference Vegetation Index) derived and TES (Temperature emissivity separation) in two study areas situated in India and China and it was observed that the satellite derived emissivity offers a better kinetic surface temperature of the surface to understand the spread and extent of the coalfires more effectively. In order to reduce coalfire related GHG emissions and to achieve more effective fire fighting plans it is crucial to understand the dynamics of coalfire. Multitemporal spaceborne remote sensing data can be used to study the migration and expresses the results as vectors, indicating direction and speed of migration. The present study proposes a 2D model that recognizes an initiation point of coalfire from thermal remote sensing data and considers local geological settings to

  3. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu

    2013-09-01

    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  4. Geochemical Interaction of Middle Bakken Reservoir Rock and CO2 during CO2-Based Fracturing

    Science.gov (United States)

    Nicot, J. P.; Lu, J.; Mickler, P. J.; Ribeiro, L. H.; Darvari, R.

    2015-12-01

    This study was conducted to investigate the effects of geochemical interactions when CO2 is used to create the fractures necessary to produce hydrocarbons from low-permeability Middle Bakken sandstone. The primary objectives are to: (1) identify and understand the geochemical reactions related to CO2-based fracturing, and (2) assess potential changes of reservoir property. Three autoclave experiments were conducted at reservoir conditions exposing middle Bakken core fragments to supercritical CO2 (sc-CO2) only and to CO2-saturated synthetic brine. Ion-milled core samples were examined before and after the reaction experiments using scanning electron microscope, which enabled us to image the reaction surface in extreme details and unambiguously identify mineral dissolution and precipitation. The most significant changes in the reacted rock samples exposed to the CO2-saturated brine is dissolution of the carbonate minerals, particularly calcite which displays severely corrosion. Dolomite grains were corroded to a lesser degree. Quartz and feldspars remained intact and some pyrite framboids underwent slight dissolution. Additionally, small amount of calcite precipitation took place as indicated by numerous small calcite crystals formed at the reaction surface and in the pores. The aqueous solution composition changes confirm these petrographic observations with increase in Ca and Mg and associated minor elements and very slight increase in Fe and sulfate. When exposed to sc-CO2 only, changes observed include etching of calcite grain surface and precipitation of salt crystals (halite and anhydrite) due to evaporation of residual pore water into the sc-CO2 phase. Dolomite and feldspars remained intact and pyrite grains were slightly altered. Mercury intrusion capillary pressure tests on reacted and unreacted samples shows an increase in porosity when an aqueous phase is present but no overall porosity change caused by sc-CO2. It also suggests an increase in permeability

  5. National CO2 emissions trading in European perspective; Nationale CO2-emissiehandel in Europees perspectief

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    This report is the reaction of the Social and economic council (SER) in the Netherlands to the request of the Dutch Ministry of Housing, Spatial Planning en Environment (VROM) to formulate an advice on the final report of the Committee CO2 Trade (a.k.a the Vogtlander Committee). This Committee has drafted a proposal for a CO2 emission trade system in the Netherlands. The SER has also taken into account the proposal of the European Committee on a guideline for CO2 emission trade in the European Union (EU)

  6. Solubility of krypton in liquid CO2

    International Nuclear Information System (INIS)

    Notz, K.J.; Meservey, A.B.

    1976-06-01

    The solubility of krypton in liquid CO 2 was measured experimentally over essentially the entire liquid range of CO 2 , from -53 to 29 0 C. A tracer technique using 85 Kr was employed, and equilibrated gas-liquid samples were analyzed in situ with a collimated counter. Dilute concentrations of krypton were used, and the data are expressed as a distribution ratio, Y/sub Kr//X/sub Kr/, the log of which is nearly linear with respect to temperature from the lowest temperature to about 20 0 C, above which the values fall off rapidly toward a value of unity at the critical temperature. The numerical values obtained for the distribution ratio increase from 1.44 at 29 0 C to 29.4 at -53 0 C

  7. Toxic emissions and devalued CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    With reference to the paradigme shift regarding the formation of dioxins in municiplan solid waste incinerators experimental results are taken into account which lead to the suspicion that the same mechanism of de-novo-synthesis also applies to fireplace chimneys. This can explain the dioxin...... friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...... burning are characterised together with particle and PAH emissions. The positive treatment of wood stove-technology in the Danish strategy for sustainable development (draft 2007) is critically evaluated and approaches to better regulation are identified....

  8. A centrifuge CO2 pellet cleaning system

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.; Nelson, W.D.; Schechter, D.E.

    1993-01-01

    Centrifuge-based cryogenic pellet accelerator technology, originally developed at Oak Ridge National Laboratory (ORNL) for the purpose of refueling fusion reactors with high-speed pellets of frozen deuterium/tritium,is now being developed as a method of cleaning without the use of conventional solvents. In these applications large quantities of pellets made of frozen CO 2 or argon are accelerated in a high-speed rotor. The accelerated pellet stream is used to clean or etch surfaces. The advantage of this system is that the spent pellets and debris resulting from the cleaning process can be filtered leaving only the debris for disposal. This paper discusses the centrifuge CO 2 pellet cleaning system, the physics model of the pellet impacting the surface, the centrifuge apparatus, and some initial cleaning and etching tests

  9. Molecular simulations of CO2 at interfaces

    DEFF Research Database (Denmark)

    Silvestri, Alessandro

    trapping mechanisms that act over dierent time scales, where eectiveness is determined by phenomena that occur at the interfaces between CO2, pore uids and the pore surfaces. Solid theoretical understanding of the nanoscale interactions that result from the interplay of intermolecular and surface forces...... variety of conditions: pressure, temperature, pore solution salinity and various mineral surfaces. However, achieving representative subsurface conditions in experiments is challenging and reported data are aected by experimental uncertainties and sometimes are contradictory. Molecular modelling...... rock record and the formations are generally porous so their probable response to CO2 sequestration needs to be investigated. However, despite the large number of geologic sequestration publications on water{rock interactions over the last decade, studies on carbonate reservoirs remain scarce...

  10. Sustainable Process Networks for CO2 Conversion

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Kongpanna, P.; Pavarajam, V.

    According to various organizations, especially the Intergovernmental Panel on Climate Change, global warming is an ever-increasing threat to the environment and poses a problem if not addressed. As a result, efforts are being made across academic and industrial fields to find methods of reducing...... drawbacks to this geologic storage system: the CO2 is not eliminated, the implementation is limited due to natural phenomena, and the capturing methods are often expensive. Thus, it is desirable to develop an alternative strategy for reducing the CO2 emissions [2]. An additional process that reduces...... that are thermodynamically feasible, including the co-reactants, catalysts, operating conditions and reactions. Research has revealed that there are a variety of reactions that fulfill the aforementioned criteria. The products that are formed fall into categories: fuels, bulk chemicals and specialty chemicals. While fuels...

  11. Continuous CO2 extractor and methods

    Energy Technology Data Exchange (ETDEWEB)

    None listed

    2010-06-15

    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  12. Continuous CO2 extractor and methods

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  13. Throat gases against the CO2

    International Nuclear Information System (INIS)

    Michaut, C.

    2006-01-01

    The steel production needs carbon consumption and generates carbon dioxide, the main greenhouse gases. It represents about 6 % of the greenhouse gases emissions in the world. That is why the steel industry began last year a research program, Ideogaz, to reduce its CO 2 releases. The first results on the throat gases recovery seems very promising: it uses 25 % less of carbon. The author presents the program and the main technical aspects of the method. (A.L.B.)

  14. Panorama 2016 - Chemical recycling of CO2

    International Nuclear Information System (INIS)

    Forti, Laurent; Fosse, Florian

    2015-12-01

    The ongoing rise of atmospheric carbon dioxide concentration is a major environmental and societal concern. Among the potential solutions for reducing carbon emissions in the energy sector, the chemical recycling of CO 2 has received considerable attention. Conversion of carbon dioxide into other recoverable substances offers the benefit of reducing the carbon footprint of newly developed products and of shifting away from the use of fossil resources. Various methods to create a wide range of products are currently being studied. (authors)

  15. Influence of CO2 on the climate

    International Nuclear Information System (INIS)

    Junod, A.

    1989-01-01

    The earth's climate is subject to long and short term fluctuations. The recent ones are being caused by mankind. The most important result is the increase in the CO 2 -content of the atmosphere, caused by burning of fossil fuels. This leads to the so-called greenhouse effect. It is judged that the average temperature of the earth's surface will rise by 2 o C between the years 2030 and 2050

  16. CO2 capture takes its industrial turn

    International Nuclear Information System (INIS)

    Remoue, A.; Lutzky, A.

    2009-01-01

    The CO 2 capture and sequestration is entering the industrial era. The technologies are ready, the regulation is progressively put into action, the financing of demonstration facilities is unfreezing and companies are on the starting line from Canada to China, including the USA and Europe. The market takeoff is expected for 2015 but the competition is already hard between equipment manufacturers who wish to develop proprietary technologies. (J.S.)

  17. Aridity under conditions of increased CO2

    Science.gov (United States)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.

    2016-04-01

    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  18. Towards Overhauser DNP in supercritical CO(2).

    Science.gov (United States)

    van Meerten, S G J; Tayler, M C D; Kentgens, A P M; van Bentum, P J M

    2016-06-01

    Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for (1)H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in (1)H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4T on high pressure superheated water and model systems such as toluene in high pressure CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Development of longitudinally excited CO2 laser

    Science.gov (United States)

    Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.

    2018-05-01

    Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.

  20. Martian Gullies: Formation by CO2 Fluidification

    Science.gov (United States)

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    2006-12-01

    Some of the geomorphological features in Mars are the gullies. Some theories developed tried explain its origin, either by liquid water, liquid carbon dioxide or flows of dry granular material. We made a comparative analysis of the Martian gullies with the terrestrial ones. We propose that the mechanism of formation of the gullies is as follows: In winter CO2 snow mixed with sand falls in the terrain. In spring the CO2 snow sublimate and gaseous CO2 make fluid the sand which flows like liquid eroding the terrain and forming the gullies. By experimental work with dry granular material, we simulated the development of the Martian gullies injecting air in the granular material. We present the characteristics of some terrestrial gullies forms at cold environment, sited at Nevado de Toluca Volcano near Toluca City, México. We compare them with Martian gullies choose from four different areas, to target goal recognize or to distinguish, (to identify) possible processes evolved in its formation. Also, we measured the lengths of those Martian gullies and the range was from 24 m to 1775 meters. Finally, we present results of our experimental work at laboratory with dry granular material.

  1. Large temporal scale and capacity subsurface bulk energy storage with CO2

    Science.gov (United States)

    Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.

    2017-12-01

    Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.

  2. ULTimateCO2 - State of the art report. Dealing with uncertainty associated with long-term CO2 geological storage

    International Nuclear Information System (INIS)

    2014-01-01

    ULTimateCO2, a four-year collaborative project financed by the 7. Framework Programme and coordinated by BRGM, aims to shed more light on the long-term processes associated with the geological storage of CO 2 . ULTimateCO2 unites 12 partners (research institutes, universities, industrialists) and a varied panel of experts (NGOs, national authority representatives, IEAGHG,...). Based on a multidisciplinary approach, and bringing together laboratory experiments, numerical modelling and natural analogue field studies, ULTimateCO2 will increase our understanding of the long-term effects of CO 2 Capture and Storage (CCS) in terms of hydrodynamics, geochemistry, mechanics of the storage formations and their vicinity. The report contains the partners' pooled knowledge and provides a view of the current state-of-the-art for the issues addressed by this project: - The long-term reservoir trapping efficiency (WP3); - The long-term sealing integrity of faulted and fractured cap-rock (WP4); - The near-well leakage characterisation and chemical processes (WP5); - The long-term behavior of stored CO 2 looking at the basin scale (WP2); - Uncertainty assessment (WP6). Each chapter is divided into two sections: (i) a summary which explains in 'simple words' the main issues and objectives of the WP, and (ii) a current state of the art section which provides a more sound review on the specific studied processes. The aim is to provide answers to pertinent questions from a variety of users, particularly project owners, site operators and national authorities, about their exposure to uncertainty downstream of closure of a CO 2 geological storage site

  3. CO2 capture by gas hydrate crystallization: Application on the CO2-N2 mixture

    International Nuclear Information System (INIS)

    Bouchemoua, A.

    2012-01-01

    CO 2 capture and sequestration represent a major industrial and scientific challenge of this century. There are different methods of CO 2 separation and capture, such as solid adsorption, amines adsorption and cryogenic fractionation. Although these processes are well developed at industrial level, they are energy intensive. Hydrate formation method is a less energy intensive and has an interesting potential to separate carbon dioxide. Gas hydrates are Document crystalline compounds that consist of hydrogen bonded network of water molecules trapping a gas molecule. Gas hydrate formation is favored by high pressure and low temperature. This study was conducted as a part of the SECOHYA ANR Project. The objective is to study the thermodynamic and kinetic conditions of the process to capture CO 2 by gas hydrate crystallization. Firstly, we developed an experimental apparatus to carry out experiments to determine the thermodynamic and kinetic formation conditions of CO 2 -N 2 gas hydrate mixture in water as liquid phase. We showed that the operative pressure may be very important and the temperature very low. For the feasibility of the project, we used TBAB (Tetrabutylammonium Bromide) as thermodynamic additive in the liquid phase. The use of TBAB may reduce considerably the operative pressure. In the second part of this study, we presented a thermodynamic model, based on the van der Waals and Platteeuw model. This model allows the estimation of thermodynamic equilibrium conditions. Experimental equilibrium data of CO 2 -CH 4 and CO 2 -N 2 mixtures are presented and compared to theoretical results. (author)

  4. Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during ...

    African Journals Online (AJOL)

    Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during laparoscopic surgery: changes in pH, arterial partial Pressure of Carbon Dioxide (PaCo 2 ) and End Tidal Carbon Dioxide (EtCO 2 ) ... Respiratory adjustments were done for EtCO2 levels above 60mmHg or SPO2 below 92% or adverse haemodynamic changes.

  5. Characterization of CO2 leakage into the freshwater body

    DEFF Research Database (Denmark)

    Singh, Ashok; Delfs, Jens Olaf; Shao, H.

    2013-01-01

    urrent research into CO2 capture and storage is dominated by improving the CO2 storage capacity. In this context, risk related to CO2 leakage is an important issue which may cause environmental problems, particularly when freshwater resources nearby are intruded by the CO2 plume. In this work...

  6. The persistence of natural CO2 accumulations over millennial timescales: Integrating noble gas and reservoir data at Bravo Dome, NM

    Science.gov (United States)

    Akhbari, D.

    2017-12-01

    Bravo Dome, the largest CO2 reservoir in the US, is a hydrogeologically closed system that has stored a very large amount of CO2 on millennial time scales. The pre-production gas pressures in Bravo Dome indicate that the reservoir is highly under-pressured and is divided into separate pressure compartments that do not communicate hydrologically. Previous studies used the noble gas composition at Bravo Dome to constrain the amount of dissolved CO2 into the brine. This CO2 dissolution into brine plays an important role in the observed under-pressure at the reservoir. However, the dissolution rates and transport mechanisms remain unknown. In this study, we are looking into reservoir pressures and noble gas composition in the northeastern section of the reservoir to constrain timescales of CO2 dissolution. We are interested in northeastern part of the reservoir because the largest amount of CO2 was dissolved into brine in this section. Also, we specifically look into the evolution of the CO2/3He and 20Ne concentration during convective CO2 dissolution at Bravo Dome. 20Ne has atmospheric origin and is initially in the brine, while 3He and CO2 have magmatic sources and were introduced with the gas. CO2/3He decreases as more CO2 dissolves into brine, due to the higher solubility of CO2 compare to that of 3He. However, 20Ne concentration in the gas increases due to exsolution of 20Ne from brine into the gas phase. We present 2D numerical simulation that demonstrate the persistence of CO2 over 1Ma and reproduce the observed reservoir pressures and noble gas compositions. Our results indicate that convection is required to produce observed changes in gas composition. But diffusion makes a significant contribution to mass transport.

  7. Australia's CO2 geological storage potential and matching of emission sources to potential sinks

    International Nuclear Information System (INIS)

    Bradshaw, J.; Bradshaw, B.E.; Wilson, P.; Spencer, L.; Allinson, G.; Nguyen, V.

    2004-01-01

    Within the GEODISC program of the Australian Petroleum Cooperative Research Centre (APCRC), Geoscience Australia (GA) and the University of New South Wales (UNSW) have completed an analysis of the potential for the geological storage of CO 2 . The geological analysis assessed over 100 potential environmentally sustainable sites for CO 2 injection (ESSCIs) by applying a deterministic risk assessment based on the five factors of: storage capacity, injectivity potential, site details, containment and natural resources. Utilising a risked storage capacity suggests that at a regional scale Australia has a CO 2 storage potential in excess of 1600 years of current annual total net emissions. Whilst this estimate does give an idea of the enormous magnitude of the geological storage potential of CO 2 in Australia, it does not account for various factors that are evident in source to sink matching. If preferences due to source to sink matching are incorporated, and an assumption is made that some economic imperative will apply to encourage geological storage of CO 2 , then a more realistic analysis can be derived. In such a case, Australia may have the potential to store a maximum of 25% of our total annual net emissions, or approximately 100-115 Mt CO 2 per year. (author)

  8. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  9. TO STORES USERS

    CERN Multimedia

    SPL Division

    2001-01-01

    Stores users are informed that the Stores (Central, Emergency window, Raw materials, Chemical products and Prévessin Self service stores) will be closed on Friday, 7 December owing to migration of the Stores computers to Windows 2000. Thank you for your understanding.

  10. Transcriptome changes in apple peel tissues during CO2 injury?symptom development under controlled atmosphere storage regimens

    OpenAIRE

    Johnson, Franklin T; Zhu, Yanmin

    2015-01-01

    Apple (Malus ? domestica Borkh.) is one of the most widely cultivated tree crops, and fruit storability is vital to the profitability of the apple fruit industry. Fruit of many apple cultivars can be stored for an extended period due to the introduction of advanced storage technologies, such as controlled atmosphere (CA) and 1-methylcyclopropane (1-MCP). However, CA storage can cause external CO2 injury for some apple cultivars. The molecular changes associated with the development of CO2 inj...

  11. Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system

    Science.gov (United States)

    Elevated atmospheric carbon dioxide (CO2) can affect the quantity and quality of plant tissues which will impact carbon (C) cycling and storage in plant/soil systems and the release of CO2 back to the atmosphere. Research is needed to quantify the effects of elevated CO2 on soil CO2 efflux to predi...

  12. Non-Volcanic release of CO2 in Italy: quantification, conceptual models and gas hazard

    Science.gov (United States)

    Chiodini, G.; Cardellini, C.; Caliro, S.; Avino, R.

    2011-12-01

    define the zones which potentially can be affected by dangerous CO2 concentration at breathing height for humans. 4) Many evidences indicate that at depth, in the seismic zone of the Apennines, the gas can be stored in over-pressurized reservoirs. Such gas reservoirs have been taught to have played a major role in triggering the seismicity of the last two main crises occurred in the area (Colfiorito 1997 and L'Aquila 2009).

  13. Geochemical monitoring for detection of CO_{2} leakage from subsea storage sites

    Science.gov (United States)

    García-Ibáñez, Maribel I.; Omar, Abdirahman M.; Johannessen, Truls

    2017-04-01

    Carbon Capture and Storage (CCS) in subsea geological formations is a promising large-scale technology for mitigating the increases of carbon dioxide (CO2) in the atmosphere. However, detection and quantification of potential leakage of the stored CO2 remains as one of the main challenges of this technology. Geochemical monitoring of the water column is specially demanding because the leakage CO2 once in the seawater may be rapidly dispersed by dissolution, dilution and currents. In situ sensors capture CO2 leakage signal if they are deployed very close to the leakage point. For regions with vigorous mixing and/or deep water column, and for areas far away from the leakage point, a highly sensitive carbon tracer (Cseep tracer) was developed based on the back-calculation techniques used to estimate anthropogenic CO2 in the water column. Originally, the Cseep tracer was computed using accurate discrete measurements of total dissolved inorganic carbon (DIC) and total alkalinity (AT) in the Norwegian Sea to isolate the effect of natural submarine vents in the water column. In this work we assess the effect of measurement variables on the performance of the method by computing the Cseep tracer twice: first using DIC and AT, and second using partial pressure of CO2 (pCO2) and pH. The assessment was performed through the calculation of the signal to noise ratios (STNR). We found that the use of the Cseep tracer increases the STNR ten times compared to the raw measurement data, regardless of the variables used. Thus, while traditionally the pH-pCO2 pair generates the greatest uncertainties in the oceanic CO2 system, it seems that the Cseep technique is insensitive to that issue. On the contrary, the use of the pCO2-pH pair has the highest CO2 leakage detection and localization potential due to the fact that both pCO2 and pH can currently be measured at high frequency and in an autonomous mode.

  14. Development of a Method for Measuring Carbon Balance in Chemical Sequestration of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhongxian; Pan, Wei-Ping; Riley, John T.

    2006-09-09

    Anthropogenic CO2 released from fossil fuel combustion is a primary greenhouse gas which contributes to “global warming.” It is estimated that stationary power generation contributes over one-third of total CO2 emissions. Reducing CO2 in the atmosphere can be accomplished either by decreasing the rate at which CO2 is emitted into the atmosphere or by increasing the rate at which it is removed from it. Extensive research has been conducted on determining a fast and inexpensive method to sequester carbon dioxide. These methods can be classified into two categories, CO2 fixation by natural sink process for CO2, or direct CO2 sequestration by artificial processes. In direct sequestration, CO2 produced from sources such as coal-fired power plants, would be captured from the exhausted gases. CO2 from a combustion exhaust gas is absorbed with an aqueous ammonia solution through scrubbing. The captured CO2 is then used to synthesize ammonium bicarbonate (ABC or NH4HCO3), an economical source of nitrogen fertilizer. In this work, we studied the carbon distribution after fertilizer is synthesized from CO2. The synthesized fertilizer in laboratory is used as a “CO2 carrier” to “transport” CO2 from the atmosphere to crops. After biological assimilation and metabolism in crops treated with ABC, a considerable amount of the carbon source is absorbed by the plants with increased biomass production. The majority of the unused carbon source percolates into the soil as carbonates, such as calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). These carbonates are environmentally benign. As insoluble salts, they are found in normal rocks and can be stored safely and permanently in soil. This investigation mainly focuses on the carbon distribution after the synthesized fertilizer is applied to soil. Quantitative examination of carbon distribution in an ecosystem is a challenging task since the carbon in the soil may come from various sources. Therefore synthesized 14C

  15. Full Characterization of CO2-Oil Properties On-Chip: Solubility, Diffusivity, Extraction Pressure, Miscibility, and Contact Angle.

    Science.gov (United States)

    Sharbatian, Atena; Abedini, Ali; Qi, ZhenBang; Sinton, David

    2018-02-20

    Carbon capture, storage, and utilization technologies target a reduction in net CO 2 emissions to mitigate greenhouse gas effects. The largest such projects worldwide involve storing CO 2 through enhanced oil recovery-a technologically and economically feasible approach that combines both storage and oil recovery. Successful implementation relies on detailed measurements of CO 2 -oil properties at relevant reservoir conditions (P = 2.0-13.0 MPa and T = 23 and 50 °C). In this paper, we demonstrate a microfluidic method to quantify the comprehensive suite of mutual properties of a CO 2 and crude oil mixture including solubility, diffusivity, extraction pressure, minimum miscibility pressure (MMP), and contact angle. The time-lapse oil swelling/extraction in response to CO 2 exposure under stepwise increasing pressure was quantified via fluorescence microscopy, using the inherent fluorescence property of the oil. The CO 2 solubilities and diffusion coefficients were determined from the swelling process with measurements in strong agreement with previous results. The CO 2 -oil MMP was determined from the subsequent oil extraction process with measurements within 5% of previous values. In addition, the oil-CO 2 -silicon contact angle was measured throughout the process, with contact angle increasing with pressure. In contrast with conventional methods, which require days and ∼500 mL of fluid sample, the approach here provides a comprehensive suite of measurements, 100-fold faster with less than 1 μL of sample, and an opportunity to better inform large-scale CO 2 projects.

  16. Reconsideration of atmospheric CO2 lifetime: potential mechanism for explaining CO2 missing sink

    Science.gov (United States)

    Kikuchi, R.; Gorbacheva, T.; Gerardo, R.

    2009-04-01

    Carbon cycle data (Intergovernmental Panel on Climate Change 1996) indicate that fossil fuel use accounts for emissions to the atmosphere of 5.5±0.5 GtC (Gigatons of carbon) annually. Other important processes in the global CO2 budget are tropical deforestation, estimated to generate about 1.6±1.0 GtC/yr; absorption by the oceans, removing about 2.0±0.8 GtC/yr; and regrowth of northern forests, taking up about 0.5±0.5 GtC/yr. However, accurate measurements of CO2 show that the atmosphere is accumulating only about 3.3±0.2 GtC/yr. The imbalance of about 1.3±1.5 GtC/yr, termed the "missing sink", represents the difference between the estimated sources and the estimated sinks of CO2; that is, we do not know where all of the anthropogenic CO2 is going. Several potential mechanisms have been proposed to explain this missing carbon, such as CO2 fertilization, climate change, nitrogen deposition, land use change, forest regrowth et al. Considering the complexity of ecosystem, most of ecosystem model cannot handle all the potential mechanisms to reproduce the real world. It has been believed that the dominant sink mechanism is the fertilizing effects of increased CO2 concentrations in the atmosphere and the addition to soils of fixed nitrogen from fossil-fuel burning and agricultural fertilizers. However, a recent analysis of long-term observations of the change in biomass and growth rates suggests that such fertilization effects are much too small to explain more than a small fraction of the observed sink. In addition, long-term experiments in which small forest patches and other land ecosystems have been exposed to elevated CO2 levels for extended periods show a rapid decrease of the fertilization effect after an initial enhancement. We will explore this question of the missing sink in atmospheric CO2 residence time. Radioactive and stable carbon isotopes (13-C/12-C) show the real CO2 lifetime is about 5 years; i.e. CO2 is quickly taken out of the atmospheric

  17. Interactions between CO2, saline water and minerals during geological storage of CO2

    International Nuclear Information System (INIS)

    Hellevang, Helge

    2006-06-01

    The topic of this thesis is to gain a better understanding of interactions between injected CO 2 , aqueous solutions and formation mineralogies. The main focus is concerned with the potential role mineral reactions play in safe long term storage of CO 2 . The work is divided into an experimental part concentrated on the potential of dawsonite (NaAl(OH) 2 CO 3 ) as a permanent storage host of CO 2 , and the development of a new geochemical code ACCRETE that is coupled with the ATHENA multiphase flow simulator. The thesis is composed of two parts: (I) the first part introducing CO 2 storage, geochemical interactions and related work; and (II) the second part that consists of the papers. Part I is composed as follows: Chapter 2 gives a short introduction to geochemical reactions considered important during CO 2 storage, including a thermodynamic framework. Chapter 3 presents objectives of numerical work related to CO 2 -water-rock interactions including a discussion of factors that influence the outcome of numerical simulations. Chapter 4 presents the main results from paper A to E. Chapter 5 give some details about further research that we propose based on the present work and related work in the project. Several new activities have emerged from research on CO 2 -water-rock interaction during the project. Several of the proposed activities are already initiated. Papers A to F are then listed in Part II of the thesis after the citation list. The thesis presents the first data on the reaction kinetics of dawsonite at different pH (Paper A), and comprehensive numerical simulations, both batch- and large scale 3D reactive transport, that illustrate the role different carbonates have for safe storage of CO 2 in geological formations (Papers C to F). The role of dawsonite in CO 2 storage settings is treated throughout the study (Papers A to E) After the main part of the thesis (Part I and II), two appendices are included: Appendix A lists reactions that are included in the

  18. Stable isotope measurements of atmospheric CO2

    International Nuclear Information System (INIS)

    White, J.W.C.; Ferretti, D.F.; Vaughn, B.H.; Francey, R.J.; Allison, C.E.

    2002-01-01

    The measurement of stable carbon isotope ratios of atmospheric carbon dioxide, δ 13 CO 2 are useful for partitioning surface-atmospheric fluxes into terrestrial and oceanic components. δC 18 OO also has potential for segregating photosynthetic and respiratory fluxes in terrestrial ecosystems. Here we describe in detail the techniques for making these measurements. The primary challenge for all of the techniques used to measure isotopes of atmospheric CO 2 is to achieve acceptable accuracy and precision and to maintain them over the decades needed to observe carbon cycle variability. The keys to success such an approach are diligent intercalibrations of laboratories from around the world, as well as the use of multiple techniques such as dual inlet and GC-IRMS and the intercomparison of such measurements. We focus here on two laboratories, the Stable Isotope Lab at the Institute for Arctic and Alpine Research (INSTAAR) at the University of Colorado is described and the Commonwealth Scientific and Industrial Research Organisation - Atmospheric Research (CSIRO). Different approaches exist at other laboratories (e.g. programs operated by Scripps Institution of Oceanography (SIO) and The Center for Atmospheric and Oceanic Studies, Toboku University (TU)) however these are not discussed here. Finally, we also discuss the recently developed Gas Chromatography - Isotope Ratio Mass Spectrometry (GC-IRMS) technique which holds significant promise for measuring ultra-small samples of gas with good precision. (author)

  19. CO2 reduction through energy conservation

    International Nuclear Information System (INIS)

    1991-05-01

    A study was carried out of the potential to economically reduce carbon dioxide emissions through energy conservation in the petroleum and natural gas industry. The study examined current and projected emissions levels, cogeneration at gas plants, flaring, economics, regulation, reporting requirements, implementation, and research and development. Economically attractive energy conservation measures can reduce oil and gas industry, exclusive of Athabasca oil sands operations, CO 2 emissions by 6-7%. The energy conservation options identified range from field energy awareness committees through to equipment retrofits and replacement. At ca 3 million tonnes/y, these reductions will not offset the increases in oil and gas related CO 2 emissions anticipated by producers and Alberta government agencies. There will be increasing emphasis on in-situ bitumen production, more energy intensive light crude oil production and increasing natural gas sales, increasing energy inputs in excess of reductions. Cogeneration of electricity for utility company distribution and for internally required steam at gas plants and in-situ production sites is not economic due to low electricity prices. 8 tabs

  20. Global CO2 emissions from cement production

    Science.gov (United States)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  1. Public Acceptance for Geological CO2-Storage

    Science.gov (United States)

    Schilling, F.; Ossing, F.; Würdemann, H.; Co2SINK Team

    2009-04-01

    Public acceptance is one of the fundamental prerequisites for geological CO2 storage. In highly populated areas like central Europe, especially in the vicinity of metropolitan areas like Berlin, underground operations are in the focus of the people living next to the site, the media, and politics. To gain acceptance, all these groups - the people in the neighbourhood, journalists, and authorities - need to be confident of the security of the planned storage operation as well as the long term security of storage. A very important point is to show that the technical risks of CO2 storage can be managed with the help of a proper short and long term monitoring concept, as well as appropriate mitigation technologies e.g adequate abandonment procedures for leaking wells. To better explain the possible risks examples for leakage scenarios help the public to assess and to accept the technical risks of CO2 storage. At Ketzin we tried the following approach that can be summed up on the basis: Always tell the truth! This might be self-evident but it has to be stressed that credibility is of vital importance. Suspiciousness and distrust are best friends of fear. Undefined fear seems to be the major risk in public acceptance of geological CO2-storage. Misinformation and missing communication further enhance the denial of geological CO2 storage. When we started to plan and establish the Ketzin storage site, we ensured a forward directed communication. Offensive information activities, an information centre on site, active media politics and open information about the activities taking place are basics. Some of the measures were: - information of the competent authorities through meetings (mayor, governmental authorities) - information of the local public, e.g. hearings (while also inviting local, regional and nation wide media) - we always treated the local people and press first! - organizing of bigger events to inform the public on site, e.g. start of drilling activities (open

  2. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw.

    Science.gov (United States)

    Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo; Hutchings, Jack; Natali, Susan M; Pegoraro, Elaine; Salmon, Verity G; Schädel, Christina; Webb, Elizabeth E; Schuur, Edward A G

    2017-09-01

    Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO 2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (R eco ), gross primary productivity (GPP), and net summer CO 2 storage (NEE). Over 7 years R eco , GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, R eco , GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed R eco , GPP, and NEE. However R eco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher R eco in deeply thawed areas during summer months was balanced by GPP. Summer CO 2 flux across treatments fit a single quadratic relationship that captured the functional response of CO 2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO 2 flux: plant growth and water table dynamics. Nonsummer R eco models estimated that the area was an annual CO 2 source during all years of observation. Nonsummer CO 2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO 2 source. © 2017 John Wiley & Sons Ltd.

  3. Deglacial Western Equatorial Pacific pCO2 Reconstruction Using Boron Isotopes of Planktonic Foraminiferas

    Science.gov (United States)

    Kubota, K.; Yokoyama, Y.; Ishikawa, T.; Sagawa, T.; Ikehara, M.; Yamazaki, T.

    2017-12-01

    During the last deglaciation (ca. 19 - 11 ka), partial pressure of CO2 (pCO2) of the atmosphere increased by 80 μatm. Many paleoceanographers point out that the ocean had played an important role in atmospheric CO2 rise, since the ocean have 60 times larger capacity to store carbon compared to the atmosphere. However, evidence on where carbon was transferred from the ocean to the atmosphere is still lacking, hampering our understanding of global carbon cycles in glacial-interglacial timescales. Boron isotope of skeletons of marine calcifying organisms such as corals and foraminiferas can pin down where CO2 source/sink existed, because boron isotopes of marine calcium carbonates is dependent on seawater pH, from which pCO2 of the past seawater can be reconstructed. In previous studies using the boron isotope teqnique, Martinez-Boti et al. (2015, Nature) and Kubota et al. (2014, Scientific Reports) revealed that central and eastern parts of the equatorial Pacific acted as a CO2 source (i.e., CO2 emission) during the last deglaciation, suggesting the equatorial Pacific's contribution to atmospheric CO2 rise. However, some conflicting results have been confirmed in a marine sediment record from the western part of the equatorial Pacific (Palmer & Pearson, 2003, Science), making the conclusion elusive. In this presentation, we will show new results of Mg/Ca, oxygen isotope, and boron isotope measurements during the last 35 ka on two species of surface dwelling foraminiferas (Globigerinoides ruber and G. sacculifer) which was hand-picked separatedly from a well-dated marine sediment core recovered from the West Caroline Basin (KR05-15 PC01) (Yamazaki et al., 2008, GRL). From the new records, we will discuss how the equatorial Pacific behaved during the last deglaciation and how it related to the global carbon cycles.

  4. Modelling of CO2 pipelines in dynamic CCS systems

    Science.gov (United States)

    Nimtz, M.; Klatt, M.; Krautz, H. J.

    2012-04-01

    The growing rate of renewable energies contributing to the power supply in Germany is starting to influence conventional thermal power plants. As a particular example, the state of Brandenburg in the eastern part of Germany has an installed capacity of 4.4 GW wind power [DEWI 2011] and 6.1 GW fossil fueled large-scale power plants (including the site in Boxberg, north-east saxony) [Vattenfall 2011] respectively. This ratio is disadvantageous, as the local thermal power plants have to provide all the balancing power to control the load of the power grid in the region. As long as there are bottlenecks in the grid, preventing the extra load from wind energy to be transported as well as a lack of technologies to store electrical energy, almost all load changes have to be balanced by the large fossil fueled power plants. The ability to provide balancing power will also be an essential criterion for new large-scale CCS (carbon dioxide capture and storage) power plants to be permitted. But this of course will influence the overall performance of the power plant and the connected peripheral systems. It is obvious that the additional equipment to capture, transport and store the CO2 and all related extra process steps will lower the flexibility and the speed of load changes that can be applied to the CCS system if no special measures are applied. All changes in load that are demanded from the power grid will be transferred to the capture and transport system, finally resulting in changes in mass flow and pressure of the CO2. These changes will also influence the performance of the storage reservoir. The presentation at the GeoEn session at the EGU 2012 will cover a look at a CCS system consisting of a coal fired Oxyfuel power plant, a pipeline to transport the CO2 and a saline aquifer as a storage reservoir. It is obvious that all parts of this system will influence each other due to the direct connection via pipeline and the physical limitations in mass flow and pressure

  5. Field demonstration of CO2 leakage detection in potable aquifers with a pulselike CO2-release test.

    Science.gov (United States)

    Yang, Changbing; Hovorka, Susan D; Delgado-Alonso, Jesus; Mickler, Patrick J; Treviño, Ramón H; Phillips, Straun

    2014-12-02

    This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. Measurements of groundwater pH, alkalinity, DIC, and dissolved CO2 clearly deviated from their background values, showing responses to CO2 leakage. Dissolved CO2 observed in the tests was highly sensitive in comparison to groundwater pH, DIC, and alkalinity. Comparison of the pulselike CO2-release tests to other field tests suggests that pulselike CO2-release tests can provide reliable assessment of geochemical parameters indicative of CO2 leakage. Measurements by the fiber-optic CO2 sensor, showing obvious leakage signals, demonstrated the potential of real-time in situ monitoring of dissolved CO2 for leakage detection at a geologic carbon sequestration (GCS) site. Results of a two-dimensional reactive transport model reproduced the geochemical measurements and confirmed that the decrease in groundwater pH and the increases in DIC and dissolved CO2 observed in the pulselike CO2-release tests were caused by dissolution of CO2 whereas alkalinity was likely affected by carbonate dissolution.

  6. Response of atmospheric CO2 to changes in land use

    International Nuclear Information System (INIS)

    King, A.W.; Emanuel, W.R.; Post, W.M.

    1991-01-01

    This chapter examines how different histories of CO 2 release from past changes in land use influence the simulation of past and future changes in atmospheric CO 2 . The authors first simulate past change in atmospheric CO 2 using reconstructed histories of land-use CO 2 release from a historical-ecological model of land-use change and CO 2 release. They examine the impact of each history on the coincidence between simulated and observed atmospheric CO 2 . They then compare these CO 2 release histories, and their contribution to coincidence or noncoincidence of simulation and observation, with histories reconstructed by deconvolution of the atmospheric CO 2 record. They conclude by exploring the implications of these deconvolved reconstructions for the simulation of future changes in atmospheric CO 2

  7. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  8. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  9. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  10. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  11. Numerical Simulation of CO2 Flooding of Coalbed Methane Considering the Fluid-Solid Coupling Effect.

    Directory of Open Access Journals (Sweden)

    Jianjun Liu

    Full Text Available CO2 flooding of coalbed methane (CO2-ECBM not only stores CO2 underground and reduces greenhouse gas emissions but also enhances the gas production ratio. This coupled process involves multi-phase fluid flow and coal-rock deformation, as well as processes such as competitive gas adsorption and diffusion from the coal matrix into fractures. A dual-porosity medium that consists of a matrix and fractures was built to simulate the flooding process, and a mathematical model was used to consider the competitive adsorption, diffusion and seepage processes and the interaction between flow and deformation. Due to the effects of the initial pressure and the differences in pressure variation during the production process, permeability changes caused by matrix shrinkage were spatially variable in the reservoir. The maximum value of permeability appeared near the production well, and the degree of rebound decreased with increasing distance from the production well.

  12. Cover up this CO2, which I can't endure to look on

    International Nuclear Information System (INIS)

    Brillaud, Rafaele; Kiehl, Stephane

    2014-01-01

    This article addresses an experiment performed in Spain, in Hontomin near Burgos, where underground storage of CO 2 will be tested. The gas will be stored between 1 and 2 km deep. At such a depth, due to the pressure, gas properties are that of a gas as well as that of a liquid. A part of it will solve in water and another part will precipitate. Past experiments proved to be safe, with no leakage. However, this technique of CO 2 capture and storage is not risk-less at each step of the process, notably for capture by oxi-combustion and for transport in pipelines. Moreover, some questions remain for deep storage and more precisely about CO 2 behaviour, about underground water pollution, and about soil mechanics and seismic events. If some experiments demonstrated their profitability, people living in the neighbourhood are often hostile

  13. CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway

    International Nuclear Information System (INIS)

    Boee, Reidulv; Magnus, Christian; Osmundsen, Per Terje; Rindstad, Bjoern Ivar

    2002-01-01

    The GESTCO project comprises a study of the distribution and coincidence of thermal CO 2 emission sources and location/quality of geological storage capacity in Europe. Four of the most promising types of geological storage are being studied. 1. Onshore/offshore saline aquifers with or without lateral seal. 2. Low entalpy geothermal reservoirs. 3. Deep methane-bearing coal beds and abandoned coal and salt mines. 4. Exhausted or near exhausted hydrocarbon structures. In this report we present an inventory of CO 2 point sources in Norway (1999) and the results of the work within Study Area C: Deep saline aquifers offshore/near shore Northern and Central Norway. Also offshore/near shore Southern Norway has been included while the Barents Sea is not described in any detail. The most detailed studies are on the Tilje and Aare Formations on the Troendelag Platform off Mid-Norway and on the Sognefjord, Fensfjord and Krossfjord Formations, southeast of the Troll Field off Western Norway. The Tilje Formation has been chosen as one of the cases to be studied in greater detail (numerical modelling) in the project. This report shows that offshore Norway, there are concentrations of large CO 2 point sources in the Haltenbanken, the Viking Graben/Tampen Spur area, the Southern Viking Graben and the central Trough, while onshore Norway there are concentrations of point sources in the Oslofjord/Porsgrund area, along the coast of western Norway and in the Troendelag. A number of aquifers with large theoretical CO 2 storage potential are pointed out in the North Sea, the Norwegian Sea and in the Southern Barents Sea. The storage capacity in the depth interval 0.8 - 4 km below sea level is estimated to be ca. 13 Gt (13000000000 tonnes) CO 2 in geological traps (outside hydrocarbon fields), while the storage capacity in aquifers not confined to traps is estimated to be at least 280 Gt CO 2 . (Author)

  14. Demonstration of CO2 Conversion to Synthetic Transport Fuel at Flue Gas Concentrations

    Directory of Open Access Journals (Sweden)

    George R. M. Dowson

    2017-10-01

    Full Text Available A mixture of 1- and 2-butanol was produced using a stepwise synthesis starting with a methyl halide. The process included a carbon dioxide utilization step to produce an acetate salt which was then converted to the butanol isomers by Claisen condensation of the esterified acetate followed by hydrogenation of the resulting ethyl acetoacetate. Importantly, the CO2 utilization step uses dry, dilute carbon dioxide (12% CO2 in nitrogen similar to those found in post-combustion flue gases. The work has shown that the Grignard reagent has a slow rate of reaction with oxygen in comparison to carbon dioxide, meaning that the costly purification step usually associated with carbon capture technologies can be omitted using this direct capture-conversion technique. Butanol isomers are useful as direct drop-in replacement fuels for gasoline due to their high octane number, higher energy density, hydrophobicity, and low corrosivity in existing petrol engines. An energy analysis shows the process to be exothermic from methanol to butanol; however, energy is required to regenerate the active magnesium metal from the halide by-product. The methodology is important as it allows electrical energy, which is difficult to store using batteries over long periods of time, to be stored as a liquid fuel that fits entirely with the current liquid fuels infrastructure. This means that renewable, weather-dependent energy can be stored across seasons, for example, production in summer with consumption in winter. It also helps to avoid new fossil carbon entering the supply chain through the utilization of carbon dioxide that would otherwise be emitted. As methanol has also been shown to be commercially produced from CO2, this adds to the prospect of the general decarbonization of the transport fuels sector. Furthermore, as the conversion of CO2 to butanol requires significantly less hydrogen than CO2 to octanes, there is a potentially reduced burden on the so-called hydrogen

  15. Plasma catalytic process for CO2 methanation

    International Nuclear Information System (INIS)

    Nizio, Magdalena

    2016-01-01

    The limited resources of oil and natural gas, together with an increasing energy demand, forces us to seek more and more efficient and cleaner energy production alternatives. Hydrogen has been recently considered as a promising energy carrier. However, there are several inherent problems to the utilization of H 2 , from its transportation to its distribution. Transformation of the H 2 molecule by fixing into a carbon-containing compound, i.e. CH 4 , will offer the possibility of using the conventional transportation network. Indeed, the Sabatier reaction, which is highly exothermic, involves the reaction of carbon dioxide and hydrogen gas in order to produce methane and water. This process, called methanation, represents a feasible approach contributing to the reduction of the CO 2 emissions in our atmosphere, through a closed carbon cycle involving the valorization of CO 2 , i.e. from capture. However, below a temperature of 250 C, the conversion becomes practically close to 0 %, whereas at higher temperatures, i.e., (≥300 C), the co-existence of secondary reactions favours the formation of CO and H 2 . This is the reason why new catalysts and process conditions are continuously being investigated in order to maximize the methane selectivity at low reaction temperatures at atmospheric pressure. Therefore, by using catalysts combined to Dielectric Barrier Discharge plasmas (DBD), the activation of the methanation reaction can be enhanced and overcome the drawbacks of existing conventional processes. Several Ni-containing catalysts were prepared using various ceria-zirconia oxides as supports, with different Ce/Zr ratios. The results obtained in the adiabatic conditions at low temperatures (ranging between 100-150 C), in the presence of catalysts activated by plasma, are promising. Indeed, the conversion of CO 2 to CH 4 is about 85 % with a selectivity close to 100 %. The same conversion in the absence of the plasma activation of the catalyst is observed at 350 C

  16. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels

    2001-01-01

    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...... with all laser parameters fixed. The welds were quality assessed and hardness measured transversely to the welding direction in the top, middle and root of the seam. In the seams welded by laser alone, hardness values between 275 and 304 HV1 were measured, about the double of the base material, 150 HV1...

  17. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-01-01

    Efficient techniques for rapid tritium removal will be necessary for ITER to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:Yag laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 ms is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  18. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-10-01

    Efficient techniques for rapid tritium removal will be necessary for ITER (International Thermonuclear Experimental Reactor) to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:YAG laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 msec is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  19. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    , whereas in a normal cement plant, it is 0.9 kg/ kg cl. However the thermal energy demand in the integrated plant increases from 3.9 MJ/ kg cl to 5.6 MJ/ kg cl. But on the other side this additional energy spent can be recovered as a high quality heat to generate electricity. The potential to generate...... electricity depends on the scale of the plant, the bigger the production capacity of cement plant the better, with capacity higher than 3400 tons of clinker/day is required to produce captive electricity to meet the demand both from the cement plant operations and from the CO2 capture system operations....

  20. Smart Transportation CO2 Emission Reduction Strategies

    Science.gov (United States)

    Tarulescu, S.; Tarulescu, R.; Soica, A.; Leahu, C. I.

    2017-10-01

    Transport represents the sector with the fastest growing greenhouse gas emissions around the world. The main global objective is to reduce energy usage and associated greenhouse gas emissions from the transportation sector. For this study it was analyzed the road transportation system from Brasov Metropolitan area. The study was made for the transportation route that connects Ghimbav city to the main surrounding objectives. In this study ware considered four optimization measures: vehicle fleet renewal; building the detour belt for the city; road increasing the average travel speed; making bicycle lanes; and implementing an urban public transport system for Ghimbav. For each measure it was used a mathematical model to calculate the energy consumption and carbon emissions from the road transportation sector. After all four measures was analyzed is calculated the general energy consumption and CO2 reduction if this are applied from year 2017 to 2020.

  1. Power stabilized CO2 gas transport laser

    International Nuclear Information System (INIS)

    Foster, J.D.; Kirk, R.F.; Moreno, F.E.; Ahmed, S.A.

    1975-01-01

    The output power of a high power (1 kW or more) CO 2 gas transport laser is stabilized by flowing the gas mixture over copper plated baffles in the gas channel during operation of the laser. Several other metals may be used instead of copper, for example, nickel, manganese, palladium, platinum, silver and gold. The presence of copper in the laser gas circuit stabilizes output power by what is believed to be a compensation of the chemical changes in the gas due to the cracking action of the electrical discharge which has the effect of diminishing the capactiy of the carbon dioxide gas mixture to maintain the rated power output of the laser. (U.S.)

  2. CO2 laser-aided waste incineration

    International Nuclear Information System (INIS)

    Costes, J.R.; Guiberteau, P.; Caminat, P.; Bournot, P.

    1994-01-01

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg -h-1 using a 7 kW CO 2 laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs

  3. US calls for CO2 cut

    International Nuclear Information System (INIS)

    Roberts, M.

    1996-01-01

    The US Government has outraged energy-intensive industries by calling for an international agreement to reduce global emissions of carbon dioxide (CO 2 ) and other greenhouse gases. In a clear policy shift, the US--the world's largest emitter of greenhouse gases and not previously an advocate of curbing them--says it now intends to lead moves to prevent global warming. At last week's Second Conference of the Parties (COP-2) to the United Nations Framework Convention on Climate Change (FCCC), US Undersecretary for Global Affairs Timothy Wirth called for open-quotes an agreement that sets a realistic, verifiable, and binding medium-term emissions target.close quotes Individual countries should be free to choose how to meet targets, and the US favors market-based mechanisms, he says. open-quotes Climate change is a serious problem and will require sustained long-term investment to be addressed successfully,close quotes Wirth says

  4. Anterior capsulotomy using the CO2 laser

    Science.gov (United States)

    Barak, Adiel; Ma-Naim, Tova; Rosner, Mordechai; Eyal, Ophir; Belkin, Michael

    1998-06-01

    Continuous circular capsulorhexis (CCC) is the preferred technique for removal of the anterior capsule during cataract surgery due to this technique assuring accurate centration of the intraocular lens. During modern cataract surgery, especially with small or foldable intra ocular lenses, centration of the lens is obligatory. Radial tears at the margin of an anterior capsulotomy may be associated with the exit of at least one loop of an intraocular lens out of the capsular bag ('pea pod' effect) and its subsequent decentration. The anterior capsule is more likely to ream intact if the continuous circular capsulorhexis (CCC) technique is used. Although manual capsulorhexis is an ideal anterior capsulectomy technique for adults, many ophthalmologists are still uncomfortable with it and find it difficult to perform, especially in complicated cases such as these done behind small pupil, cataract extraction in children and pseudoexfoliation syndrome. We have developed a technique using a CO2 laser system for safe anterior capsulotomy and tested it in animal eyes.

  5. Experimental Investigations into CO2 Interactions with Injection Well Infrastructure for CO2 Storage

    Science.gov (United States)

    Syed, Amer; Shi, Ji-Quan; Durucan, Sevket; Nash, Graham; Korre, Anna

    2013-04-01

    Wellbore integrity is an essential requirement to ensure the success of a CO2 Storage project as leakage of CO2 from the injection or any other abandoned well in the storage complex, could not only severely impede the efficiency of CO2 injection and storage but also may result in potential adverse impact on the surrounding environment. Early research has revealed that in case of improper well completions and/or significant changes in operating bottomhole pressure and temperature could lead to the creation of microannulus at cement-casing interface which may constitute a preferential pathway for potential CO2 leakage during and post injection period. As a part of a European Commission funded CO2CARE project, the current research investigates the sealing behaviour of such microannulus at the cement-casing interface under simulated subsurface reservoir pressure and temperature conditions and uses the findings to develop a methodology to assess the overall integrity of CO2 storage. A full scale wellbore experimental test set up was constructed for use under elevated pressure and temperature conditions as encountered in typical CO2 storage sites. The wellbore cell consists of an assembly of concentric elements of full scale casing (Diameter= 0.1524m), cement sheath and an outer casing. The stainless steel outer ring is intended to simulate the stiffness offered by the reservoir rock to the displacement applied at the wellbore. The Central Loading Mechanism (CLM) consists of four case hardened shoes that can impart radial load onto the well casing. The radial movement of the shoes is powered through the synchronised movement of four precision jacks controlled hydraulically which could impart radial pressures up to 15 MPa. The cell body is a gas tight enclosure that houses the wellbore and the central loading mechanism. The setup is enclosed in a laboratory oven which acts both as temperature and safety enclosure. Prior to a test, cement mix is set between the casing and

  6. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    Science.gov (United States)

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  7. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    Science.gov (United States)

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic

  8. CO2 laser milling of hard tissue

    Science.gov (United States)

    Werner, Martin; Ivanenko, Mikhail; Harbecke, Daniela; Klasing, Manfred; Steigerwald, Hendrik; Hering, Peter

    2007-02-01

    Drilling of bone and tooth tissue belongs to recurrent medical procedures (screw- and pin-bores, bores for implant inserting, trepanation etc.). Small round bores can be in general quickly produced with mechanical drills. Problems arise however by angled drilling, by the necessity to fulfill the drilling without damaging of sensitive soft tissue beneath the bone, or by the attempt to mill precisely noncircular small cavities. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The "milling" is done with a CO2 laser (10.6 μm) with pulse duration of 50 - 100 μs, combined with a PC-controlled galvanic beam scanner and with a fine water-spray, which helps to avoid thermal side-effects. The damaging of underlying soft tissue can be prevented through control of the optical or acoustical ablation signal. The ablation of hard tissue is accompanied with a strong glowing, which is absent during the laser beam action on soft tissue. The acoustic signals from the diverse tissue types exhibit distinct differences in the spectral composition. Also computer image analysis could be a useful tool to control the operation. Laser "milling" of noncircular cavities with 1 - 4 mm width and about 10 mm depth is particularly interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser "milling" of the cavities without thermal damage and with minimal tapering. It included exploration of different filling patterns (concentric rings, crosshatch, parallel lines and their combinations), definition of maximal pulse duration, repetition rate and laser power, optimal position of the spray. The optimized results give evidences for the applicability of the CO2 laser for biologically tolerable "milling" of deep cavities in the hard tissue.

  9. Dynamics of soil CO2 efflux under varying atmospheric CO2 concentrations reveal dominance of slow processes.

    Science.gov (United States)

    Kim, Dohyoung; Oren, Ram; Clark, James S; Palmroth, Sari; Oishi, A Christopher; McCarthy, Heather R; Maier, Chris A; Johnsen, Kurt

    2017-09-01

    We evaluated the effect on soil CO 2 efflux (F CO 2 ) of sudden changes in photosynthetic rates by altering CO 2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO 2 (eCO 2 ) ranging 1.0-1.8 times ambient did not affect F CO 2 . F CO 2 did not decrease until 4 months after termination of the long-term eCO 2 treatment, longer than the 10 days observed for decrease of F CO 2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of F CO 2 following the initiation of eCO 2 . The reduction of F CO 2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and F CO 2 -temperature sensitivity. These asymmetric responses pose a tractable challenge to process-based models attempting to isolate the effect of individual processes on F CO2 . © 2017 John Wiley & Sons Ltd.

  10. Interface characteristics in Co2MnSi/Ag/Co2MnSi trilayer

    International Nuclear Information System (INIS)

    Li, Yang; Chen, Hong; Wang, Guangzhao; Yuan, Hongkuan

    2016-01-01

    Highlights: • Inferface DO 3 disorder is most favorable in Co 2 MnSi/Ag/Co 2 MnSi trilayer. • Interface itself and inferface DO 3 disorder destroy the half-metallicity of interface layers. • Magnetoresistance is reduced by the interface itself and interface disorder. • Magnetotransport coefficient is largely reduced by the interface itself and interface disorder. - Abstract: Interface characteristics of Co 2 MnSi/Ag/Co 2 MnSi trilayer have been investigated by means of first-principles. The most likely interface is formed by connecting MnSi-termination to the bridge site between two Ag atoms. As annealed at high temperature, the formation of interface DO 3 disorder is most energetically favorable. The spin polarization is reduced by both the interface itself and interface disorder due to the interface state occurs in the minority-spin gap. As a result, the magneto-resistance ratio has a sharp drop based on the estimation of a simplified modeling.

  11. CO2-ECBM and CO2 Sequestration in Polish Coal Seam – Experimental Study

    Directory of Open Access Journals (Sweden)

    Paweł Baran

    2014-01-01

    Originality/value: The results indicate successful sorption of carbon dioxide in each experiment. This provides the rationale to study the application of the coal tested to obtain methane genetic origin genetic methane with the use of the CO2 injection.

  12. DEPLETED HYDROCARBON RESERVOIRS AND CO2 INJECTION WELLS –CO2 LEAKAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2017-03-01

    Full Text Available Migration risk assessment of the injected CO2 is one of the fi rst and indispensable steps in determining locations for the implementation of projects for carbon dioxide permanent disposal in depleted hydrocarbon reservoirs. Within the phase of potential storage characterization and assessment, it is necessary to conduct a quantitative risk assessment, based on dynamic reservoir models that predict the behaviour of the injected CO2, which requires good knowledge of the reservoir conditions. A preliminary risk assessment proposed in this paper can be used to identify risks of CO2 leakage from the injection zone and through wells by quantifying hazard probability (likelihood and severity, in order to establish a risk-mitigation plan and to engage prevention programs. Here, the proposed risk assessment for the injection well is based on a quantitative risk matrix. The proposed assessment for the injection zone is based on methodology used to determine a reservoir probability in exploration and development of oil and gas (Probability of Success, abbr. POS, and modifi ed by taking into account hazards that may lead to CO2 leakage through the cap rock in the atmosphere or groundwater. Such an assessment can eliminate locations that do not meet the basic criteria in regard to short-term and long-term safety and the integrity of the site

  13. Faults as Windows to Monitor Gas Seepage: Application to CO2 Sequestration and CO2-EOR

    Directory of Open Access Journals (Sweden)

    Ronald W. Klusman

    2018-03-01

    Full Text Available Monitoring of potential gas seepage for CO2 sequestration and CO2-EOR (Enhanced Oil Recovery in geologic storage will involve geophysical and geochemical measurements of parameters at depth and at, or near the surface. The appropriate methods for MVA (Monitoring, Verification, Accounting are needed for both cost and technical effectiveness. This work provides an overview of some of the geochemical methods that have been demonstrated to be effective for an existing CO2-EOR (Rangely, CA, USA and a proposed project at Teapot Dome, WY, USA. Carbon dioxide and CH4 fluxes and shallow soil gas concentrations were measured, followed by nested completions of 10-m deep holes to obtain concentration gradients. The focus at Teapot Dome was the evaluation of faults as pathways for gas seepage in an under-pressured reservoir system. The measurements were supplemented by stable carbon and oxygen isotopic measurements, carbon-14, and limited use of inert gases. The work clearly demonstrates the superiority of CH4 over measurements of CO2 in early detection and quantification of gas seepage. Stable carbon isotopes, carbon-14, and inert gas measurements add to the verification of the deep source. A preliminary accounting at Rangely confirms the importance of CH4 measurements in the MVA application.

  14. SOLUBILITY OF ORGANIC BIOCIDES IN SUPERCRITICAL CO2 AND CO2+ COSOLVENT MIXTURES

    Science.gov (United States)

    Solubilities of four organic biocides in supercritical carbon dioxide (Sc-CO2) were measured using a dynamic flowr apparatus over a pressure range of 10 to 30 MPa and temperature of 35-80 degrees C. The biocides studied were: Amical-48 (diiodomethyl p-tolyl sulfone), chlorothalo...

  15. Enhanced transport phenomena in CO2 sequestration and CO2 EOR

    NARCIS (Netherlands)

    Farajzadeh, R.

    2009-01-01

    The results of this thesis give insight into the (mass)-transfer during flow of gases, especially CO2, in various gas-liquid systems. A number of experiments was performed to investigate the transport phenomena through interfaces with and without surfactant monolayers. The observed phenomena have

  16. An equivalence factor between CO2 avoided emissions and sequestration. Description and applications in forestry

    International Nuclear Information System (INIS)

    Costa, P.M.; Wilson, C.

    2000-01-01

    Concern about the issue of permanence and reversibility of the effects of carbon sequestration has led to the need to devise accounting methods that quantify the temporal value of storing carbon that has been actively sequestered or removed from the atmosphere, as compared to carbon stored as a result of activities taken to avoid emissions. This paper describes a method for accounting for the atmospheric effects of sequestration-based land-use projects in relation to the duration of carbon storage. Firstly, the time period over which sequestered carbon should be stored in order to counteract the radiative forcing effect of carbon emissions was calculated, based on the residence time and decay pattern of atmospheric CO2, its Absolute Global Warming Potential. This time period was called the equivalence time, and was calculated to be approximately 55 years. From this equivalence time, the effect of storage of 1 t CO2 for 1 year was derived, and found to be similar to preventing the effect of the emission of 0.0182 t CO2. Potential applications of this tonne.year figure, here called the equivalence factor, are then discussed in relation to the estimation of atmospheric benefits over time of sequestration-based land use projects. 15 refs

  17. Investigational research on CO2 isolation technology in fiscal 1995; 1995 nendo nisanka tanso no kakuri gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper studied present technical subjects and future study subjects of the CO2 isolation technology in order to clarify technical and social problems and the developmental subjects of the CO2 isolation technology and related technologies for separating/concentrating CO2 emitted in relation to quantity consumption of fossil fuel and storing it in ocean or underground. Main items for the study were: (1) investigational study of the technology of CO2 ocean storage, (2) investigational study of environmental effect assessment in storing CO2 in ocean, (3) investigational study of the technology of CO2 ocean storage, etc. Technologies required for the ocean isolation were arranged such as CO2 storage, injection, dispersion technique, CO2 behavior simulation, and the developmental subjects were extracted. Further, in the deep-sea bottom storage method, a simulation to calculate the range of PH effects was conducted presuming the specified amount of CO2 and applying known physical values, and evaluation of the CO2 ocean discharge/solution method was made. A method was also studied for experiments on water bacteria and benthos. 127 refs., 102 figs., 81 tabs.

  18. Decontamination of solid matrices using supercritical CO2: study of contaminant-additives-CO2

    International Nuclear Information System (INIS)

    Galy, J.

    2006-11-01

    This work deals with the decontamination of solid matrices by supercritical CO 2 and more particularly with the study of the interactions between the surfactants and the CO 2 in one part, and with the interactions between the contaminant and the surfactants in another part. The first part of this study has revealed the different interactions between the Pluronics molecules and the supercritical CO 2 . The diagrams graphs have shown that the pluronics (PE 6100, PE 8100 and PE 10100) present a solubility in the supercritical CO 2 low but sufficient (0.1% m/m at 25 MPa and 313 K) for the studied application: the treatment of weak quantities of cerium oxide (or plutonium). An empirical approach based on the evolutions of the slops value and of the origin ordinates of the PT diagrams has been carried out to simulate the phase diagrams PT of the Pluronics. A modeling based on the state equations 'SAFT' (Statistical Associating Fluid Theory) has been studied in order to confirm the experimental results of the disorder points and to understand the role of the different blocks 'PEO' and 'PPO' in the behaviour of Pluronics; this modeling confirms the evolution of the slopes value with the 'CO 2 -phily' of the system. The measure of the surface tension in terms of the Pluronics concentration (PE 6100, 81000 and 10100) has shown different behaviours. For the PE 6100, the surface tension decreases when the surfactant concentration increases (at constant pressure and temperature); on the other hand, for the PE 8100 a slop rupture appears and corresponds to the saturation of the interface water/CO 2 and allows then to determine the Interface Saturation Concentration (ISC). The ISC value (at constant pressure and temperature) increases with an increase of the 'CO 2 -phily'). The model hydrophilous medium being an approximation, it has been replaced by a solid polar phase of CeO 2 . A parallel has been established between the evolution of the surface tension between the water and

  19. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  20. Vertically averaged approaches for CO 2 migration with solubility trapping

    KAUST Repository

    Gasda, S. E.; Nordbotten, J. M.; Celia, M. A.

    2011-01-01

    The long-term storage security of injected carbon dioxide (CO2) is an essential component of geological carbon sequestration operations. In the postinjection phase, the mobile CO2 plume migrates in large part because of buoyancy forces, following

  1. Relationship between sea level and climate forcing by CO2 on geological timescales.

    Science.gov (United States)

    Foster, Gavin L; Rohling, Eelco J

    2013-01-22

    On 10(3)- to 10(6)-year timescales, global sea level is determined largely by the volume of ice stored on land, which in turn largely reflects the thermal state of the Earth system. Here we use observations from five well-studied time slices covering the last 40 My to identify a well-defined and clearly sigmoidal relationship between atmospheric CO(2) and sea level on geological (near-equilibrium) timescales. This strongly supports the dominant role of CO(2) in determining Earth's climate on these timescales and suggests that other variables that influence long-term global climate (e.g., topography, ocean circulation) play a secondary role. The relationship between CO(2) and sea level we describe portrays the "likely" (68% probability) long-term sea-level response after Earth system adjustment over many centuries. Because it appears largely independent of other boundary condition changes, it also may provide useful long-range predictions of future sea level. For instance, with CO(2) stabilized at 400-450 ppm (as required for the frequently quoted "acceptable warming" of 2 °C), or even at AD 2011 levels of 392 ppm, we infer a likely (68% confidence) long-term sea-level rise of more than 9 m above the present. Therefore, our results imply that to avoid significantly elevated sea level in the long term, atmospheric CO(2) should be reduced to levels similar to those of preindustrial times.

  2. Methods to Assess Geological CO2 Storage Capacity: Status and Best Practice

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    To understand the emission reduction potential of carbon capture and storage (CCS), decision makers need to understand the amount of CO2 that can be safely stored in the subsurface and the geographical distribution of storage resources. Estimates of storage resources need to be made using reliable and consistent methods. Previous estimates of CO2 storage potential for a range of countries and regions have been based on a variety of methodologies resulting in a correspondingly wide range of estimates. Consequently, there has been uncertainty about which of the methodologies were most appropriate in given settings, and whether the estimates produced by these methods were useful to policy makers trying to determine the appropriate role of CCS. In 2011, the IEA convened two workshops which brought together experts for six national surveys organisations to review CO2 storage assessment methodologies and make recommendations on how to harmonise CO2 storage estimates worldwide. This report presents the findings of these workshops and an internationally shared guideline for quantifying CO2 storage resources.

  3. NACS Store Planning Manual.

    Science.gov (United States)

    College Store Journal, 1979

    1979-01-01

    Topics discussed by the NACS Store Planning/Renovation Committees in this updated version of the college store renovation manual include: short- and long-range planning, financial considerations, professional planning assistance, the store's image and business character, location considerations, building requirements, space requirements, fixtures,…

  4. Reactive Multiphase behavior of CO2 in Saline Aquifers beneath the Colorado Plateau

    International Nuclear Information System (INIS)

    R. G. Allis; J. Moore; S. White

    2002-01-01

    Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region are natural laboratories for studying the factors that promote long-term storage of CO 2 . They also provide sites for storing additional CO 2 if it can be separated from the flue gases of coal-fired power plants in this part of the U.S.A. These natural reservoirs are developed primarily in sandstones and dolomites; shales, mudstones and anhydrite form seals. In many fields, stacked reservoirs are present, indicating that the gas has migrated up through the section. There are also geologically young travertine deposits at the surface, and CO 2 -charged groundwater and springs in the vicinity of known CO 2 occurrences. These near-surface geological and hydrological features also provide examples of the environmental effects of leakage of CO 2 from reservoirs, and justify further study. During reporting period covered here (the second quarter of Year 2 of the project, i.e. January 1-March 31, 2002), the main achievements were: (1) Field trips to the central Utah and eastern Arizona travertine areas to collect data and water samples to support study of surface CO 2 -rich fluid leakage in these two areas. (2) Partial completion of a manuscript on natural analogues CO 2 leakage from subsurface reservoirs. The remaining section on the chemistry of the fluids is in progress. (3) Improvements to CHEMTOUGH code to incorporate kinetic effects on reaction progress. (4) Submission of two abstracts (based on the above work) to the topical session at the upcoming GSA meeting in Denver titled ''Experimental, Field, and Modeling Studies of Geological Carbon Sequestration''. (5) Submission of paper to upcoming GGHT-6 conference in Kyoto. Co-PI S. White will attend this conference, and will also be involved in three other papers

  5. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.

    Science.gov (United States)

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank

    2015-06-01

    Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely

  6. [Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field].

    Science.gov (United States)

    Yu, Yong-xiang; Zhao, Cheng-yi; Jia, Hong-tao; Yu, Bo; Zhou, Tian-he; Yang, Yu-guang; Zhao, Hua

    2015-01-01

    A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.

  7. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan

    2010-01-01

    Injection of CO2 into depleted oil reservoirs is not only a traditional way to enhance oil recovery but also a relatively cheaper way to sequester CO2 underground since the increased oil production can offset some sequestration cost. CO2 injection process is often applied to water flooded...... simulations were made for seven oil samples within a wide range of temperature, pressure and salinity. The results were analyzed in terms of the change in oil recovery due to different phase equilibrium descriptions, the delay in breakthrough and the CO2 lost to the aqueous phase. The influence of different...

  8. CO2 in Alberta - a vision of the future

    International Nuclear Information System (INIS)

    Edwards, K.

    1999-01-01

    The potential to develop a province-wide infrastructure for carbon dioxide (CO 2 ) collection and transmission was discussed. The petroleum industry's original interest in CO 2 was its potential for enhanced oil recovery (EOR) for Alberta's depleted oil fields. However, new interest has stemmed from its perceived role in global climate change and the potentially negative business and economic implications of emitting CO 2 into the atmosphere. It was suggested that the development of a province wide infrastructure to collect CO 2 would address both interests. A simple screening of the reservoirs was carried out to determine if Alberta has the right oil reservoirs and sufficient CO 2 supplies to support a large-scale CO 2 infrastructure. The proposed infrastructure would consist of CO 2 supplies from electrical power generation plants, CO 2 trunklines, feeder pipelines to deliver CO 2 from the trunklines to the field and the oil reservoirs where the CO 2 would be injected. Such infrastructures already exist in Texas and Mexico where more than 1 billion scf per day of CO 2 is used for EOR. This study compared the factors leading to a large-scale CO 2 industry with factors in place during the 1970s and 1980s, when most of the hydrocarbon miscible floods were initiated in Alberta. It was concluded that the preliminary economics suggest that the concept has merit. 12 refs., 3 tabs., 9 figs

  9. CO2 hydrogenation to hydrocarbons over iron nanoparticles ...

    Indian Academy of Sciences (India)

    481–486. c Indian Academy of Sciences. CO2 ... degrees of CO2 conversion shows that reverse water gas shift equilibrium had been ... rise in CO2 emission.1 Additionally, depletion in crude .... detectors (FID) using argon as internal standard.

  10. Polyether based block copolymer membranes for CO2 separation

    NARCIS (Netherlands)

    Reijerkerk, Sander

    2010-01-01

    The work described in this thesis is dedicated to the development of polymeric membrane materials for the separation of CO2 from light gases, and in particular to the separation of CO2 from nitrogen as required in a post-combustion capture conguration for the separation of CO2 from flue gases. An

  11. Effect of CO2 supply strategy on specific energy consumption

    NARCIS (Netherlands)

    Zwart, de H.F.

    1998-01-01

    This paper studies the effect of CO2-dosing with exhaust gases on the efficiency of glasshouse tomato production. The paper shows that it can be recommended to ensure a continuing CO2 supply during the warm period. The discussion focuses on exhaust gases as a CO2 source, but the results also

  12. A model for estimating CO2 solubility in aqueous alkanolamines

    DEFF Research Database (Denmark)

    Gabrielsen, Jostein; Michelsen, Michael Locht; Stenby, Erling Halfdan

    2005-01-01

    of CO2 over an aqueous alkanolamine solution. Accurate values for the partial pressure of CO2 are obtained for a limited loading, temperature, and pressure range that is useful in modeling CO2 capture from coal-fired power plants. Heat of absorption values derived from the model agree with experimental...

  13. Detection Test for Leakage of CO2 into Sodium Loop

    International Nuclear Information System (INIS)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong

    2015-01-01

    This report is about the facility for the detection test for leakage of CO 2 into sodium loop. The facility for the detection test for leakage of CO 2 into sodium loop was introduced. The test will be carried out. Our experimental results are going to be expected to be used for approach methods to detect CO 2 leaking into sodium in heat exchangers. A sodium-and-carbon dioxide (Na-CO 2 ) heat exchanger is one of the key components for the supercritical CO 2 Brayton cycle power conversion system of sodium-cooled fast reactors (SFRs). A printed circuit heat exchanger (PCHE) is considered for the Na-CO 2 heat exchanger, which is known to have potential for reducing the volume occupied by the exchangers compared to traditional shell-and-tube heat exchangers. Among various issues about the Na- CO 2 exchanger, detection of CO 2 leaking into sodium in the heat exchanger is most important thing for its safe operation. It is known that reaction products from sodium and CO 2 such as sodium carbonate (Na 2 CO 3 ) and amorphous carbon are hardly soluble in sodium, which cause plug sodium channels. Detection technique for Na 2 CO 3 in sodium loop has not been developed yet. Therefore, detection of CO 2 and CO from reaction of sodium and CO 2 are proper to detect CO 2 leakage into sodium loop

  14. CO2 emission trade from a fiscal perspective

    International Nuclear Information System (INIS)

    Klaassen, F.A.H.; Derksen, R.T.; Keijel, J.J.C.

    2004-06-01

    The report gives answers to questions as 'are CO2 emission permits assets or supplies?'; how to deal with forward contracts and options in CO2 emission permits 'fiscal-wise'; and 'which are the consequences of CO2 emissions trade for the rebate of pre-taxes?' Als attention is paid to trading system for NOx emission [nl

  15. Armazenamento refrigerado de morango submetido a altas concentrações de CO2 Cold storage of strawberries under high CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Luis C Cunha Junior

    2012-12-01

    Full Text Available Temperatura de 0ºC associada a atmosferas com 12 a 20% de CO2 têm sido recomendadas como condição ideal para o armazenamento de morango. Entretanto, as redes de distribuição e comercialização de produtos hortícolas no Brasil geralmente não possuem cadeia de frio, ou a possuem em temperatura entre 10 e 15ºC. Este trabalho teve como objetivo avaliar a qualidade e conservação do morango 'Oso Grande' sob temperatura de 10ºC associada com altas concentrações de dióxido de carbono. Os morangos foram selecionados, resfriados e armazenados a 10ºC em mini-câmaras herméticas, onde foram aplicadas as distintas concentrações de CO2 (0,03, 10, 20, 40 e 80% combinadas com 20% de O2. Os morangos foram avaliados a cada 2 dias até se tornarem impróprios para o consumo. As concentrações de 20 e 40% de CO2 permitiram a conservação dos morangos por até 8 dias; já aqueles com 0,03% de CO2 duraram apenas 2 dias. Os morangos a 80% de CO2 mantiveram ótima aparência por 6 dias, porém foram considerados inadequados para o consumo por apresentarem elevados teores de acetaldeído (40,92 µg g-1 e de etanol (1.053 µg g-1, provenientes do processo fermentativo. A perda de massa fresca dos morangos foi inferior a 2%, demonstrando a eficiência da técnica utilizada para o controle da umidade relativa no armazenamento. Os frutos acondicionados com 0,03 e 80% de CO2 apresentaram a maior perda de firmeza, sendo que ao final do armazenamento esta foi de 40% em relação à firmeza inicial. Já os morangos armazenados com 20 e 40% de CO2 perderam apenas 28% da firmeza inicial. Apesar da diferença estatística na coloração externa do morango, essa foi visualmente imperceptível. Os morangos 'Oso Grande' armazenados a 10ºC sob atmosfera controlada com 40% de CO2 associado com 20% de O2 mantiveram suas características comerciais por 8 dias.Temperature of 0ºC associated to 12-20% CO2 has been recommended as the ideal conditions to store

  16. Gas-water-rock interactions induced by reservoir exploitation, CO2 sequestration, and other geological storage

    International Nuclear Information System (INIS)

    Lecourtier, J.

    2005-01-01

    Here is given a summary of the opening address of the IFP International Workshop: 'gas-water-rock interactions induced by reservoir exploitation, CO 2 sequestration, and other geological storage' (18-20 November 2003). 'This broad topic is of major interest to the exploitation of geological sites since gas-water-mineral interactions determine the physicochemical characteristics of these sites, the strategies to adopt to protect the environment, and finally, the operational costs. Modelling the phenomena is a prerequisite for the engineering of a geological storage, either for disposal efficiency or for risk assessment and environmental protection. During the various sessions, several papers focus on the great achievements that have been made in the last ten years in understanding and modelling the coupled reaction and transport processes occurring in geological systems, from borehole to reservoir scale. Remaining challenges such as the coupling of mechanical processes of deformation with chemical reactions, or the influence of microbiological environments on mineral reactions will also be discussed. A large part of the conference programme will address the problem of mitigating CO 2 emissions, one of the most important issues that our society must solve in the coming years. From both a technical and an economic point of view, CO 2 geological sequestration is the most realistic solution proposed by the experts today. The results of ongoing pilot operations conducted in Europe and in the United States are strongly encouraging, but geological storage will be developed on a large scale in the future only if it becomes possible to predict the long term behaviour of stored CO 2 underground. In order to reach this objective, numerous issues must be solved: - thermodynamics of CO 2 in brines; - mechanisms of CO 2 trapping inside the host rock; - geochemical modelling of CO 2 behaviour in various types of geological formations; - compatibility of CO 2 with oil-well cements

  17. Organic matter composition and substrate diversity under elevated CO2 in the Mojave Desert

    Science.gov (United States)

    Tfaily, M. M.; Hess, N. J.; Koyama, A.; Evans, R. D.

    2016-12-01

    Little is known about how rising atmospheric CO2 concentration will impact long-term plant biomass or the dynamics of soil organic matter (SOM) in arid ecosystems. In this study, we investigated the change in the molecular composition of SOM by high resolution mass spectrometry after 10 years exposure to elevated atmospheric CO2 concentrations at the Nevada Desert FACE Facility. Samples were collected from soil profiles from 0 to 1m in 0.2m increments under the dominant evergreen shrub (Larrea tridentata). The differences in the composition of SOM were more evident in soils close to the surface and consistent with higher bulk soil organic carbon (C) and total nitrogen (N) concentrations under elevated than ambient CO2, reflecting increased net productivity of shrubs under elevated CO2, which could be attributed to increased litter input from above-ground biomass and/or shallow roots, root exudation and/or microbial residues. This was further supported by the significant increase in the abundance of amino sugars-, protein- and carbohydrate-like compounds. These compounds are involved in diverse pathways ranging from sugars and amino-acid metabolism to lipid biosynthesis. This indicates increased activity and metabolism under elevated CO2 and suggests that elevated CO2 have altered microbial C use patterns, reflecting changes in the quality and quantity of soil C inputs. A significant increase in the mineral-bound soil organic C was also observed in the surface soils under elevated CO2. This was accompanied by increased microbial residues as identified by mass spectrometry that supports microbial lipid analysis, and reflecting accelerated microbial turnover under elevated CO2. Fungal neutral lipid fatty acids (NLFA) abundance doubled under elevated CO2. When provided with excess labile compounds, such as root exudates, and with limited supply of nutrients, fungi assimilate the excess labile C and store it as NLFA likely contributing to increased total N

  18. Advanced turbine/CO2 pellet accelerator

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.

    1994-01-01

    An advanced turbine/CO 2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory. The program, sponsored by Warner Robins Air Logistics Center, Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air sandblast pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies. Applications include removal of epoxy-based points from aircraft and the cleaning of surfaces contaminated with toxic, hazardous, or radioactive substances. The lack of a secondary contaminated waste stream is of great benefit

  19. Charcoal cuts the CO2-emissions

    International Nuclear Information System (INIS)

    Aakervik, Anne Lise.

    1999-01-01

    According to this article, bio carbon, or charcoal, may be the way out for the Norwegian processing industry in attempting to reduce the emission of carbon dioxide. Norwegian ferro-alloy plants emit 3 million ton carbon dioxide per year, which comes from the use of coal and coke as reducing agents in the smelting process. If the fraction of bio carbon is increased by 15%, the emission of CO 2 may be reduced by about 1/2 million tonne per year. But the price of charcoal is much greater than that of fix C from coal and coke. Research is in progress on trying to produce bio carbon cheaper. Charcoal can be produced from all types of forest by pyrolysis. Waste heat from the pyrolysis can be sold and used for district heating. The most expensive part in the use of bio carbon will be timber felling and transport to the log pile. Small-scale and large-scale tests will be made to see if it is possible to make adequate charcoal from subarctic timber

  20. A centrifuge CO2 pellet cleaning system

    Science.gov (United States)

    Foster, C. A.; Fisher, P. W.; Nelson, W. D.; Schechter, D. E.

    1995-01-01

    An advanced turbine/CO2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory (ORNL). The program, sponsored by Warner Robins Air Logistics Center (ALC), Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air 'sandblast' pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting and by combining the use of environmentally benign solvents with the pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies.

  1. CO2 Emission Reduction in Energy Sector

    International Nuclear Information System (INIS)

    Bole, A.; Sustersic, A.; Voncina, R.

    2013-01-01

    Due to human activities, concentrations of the greenhouse gases increase in the atmosphere much quicker than they naturally would. Today it is clear that climate change is the result of human activities. With the purpose of preventing, reducing and mitigating of climate change, the EU, whose member is also Slovenia, set ambitious goals. In order to keep rise of the global atmosphere temperature below 2 degrees of C, the European Council set an objective of reducing greenhouse gas emissions by 80 - 95 % by 2050 compared to 1990. It is important that every single individual is included in achieving of these goals. Certainly, the most important role is assumed by individual sectors especially Public Electricity and Heat Production sector as one of the greatest emitters of the greenhouse gases. As a possible solution of radical reduction of the greenhouse gases emission from mentioned sector Carbon Capture and Storage (CCS) technology is implemented. In the article the range of CO 2 reduction possibilities, technology demands and environmental side effects of CCS technology are described. Evaluation of CCS implementation possibilities in Slovenia is also included.(author)

  2. DF--CO2 transfer laser development

    International Nuclear Information System (INIS)

    Tregay, G.W.; Drexhage, M.G.; Wood, L.M.; Andrysiak, S.J.

    1975-01-01

    Power extraction and chemiluminescence experiments have been conducted in the large-scale DF-CO 2 transfer chemical laser (TCL) (IRIS-I and IRIS-II) facility at Bell Aerospace Company (BAC). The modular design of the device allowed testing to be conducted with both a supersonic nozzle bank and also in subsonic flow with sonic injection for the deuterium. Power levels of 15 kW at 10.6 μ were obtained in IRIS-I (subsonic) employing an unstable resonator with a 50 percent output coupling ratio and cavity pressure of 35 torr. For IRIS-II (supersonic) somewhat lower power was obtained. In both systems the fluorine dissociation (α = F/F + 2F 2 ) was less than 0.01. Chemiluminescent emission from HF and DF was monitored under zero-power conditions along an axis parallel to the laser-mirror axis. From the measured DF-concentration profiles it can be inferred that vibrationally excited DF is being produced throughout the cavity and, accordingly, the production of DF must be attributed largely to the chain reaction

  3. The Potential for Forestry to Reduce Net CO2 Emissions

    International Nuclear Information System (INIS)

    Eriksson, Erik

    2006-01-01

    . However, the trees have to be grown on good sites; otherwise long rotations could be better options for broad-leaved stands. In coniferous stands, a shortened rotation period resulted in lower carbon stocks than a prolonged rotation period, but the amount of residues that could substitute fossil fuel increased with a shorter rotation. However, annual rates of carbon accumulation in biomass might decline in both short- and long-rotation stands in the future. If so, carbon sequestration in biomass would not be the best option. In a long-term perspective, wood products could have high potential to reduce net CO 2 emissions, since wood can replace energy-intensive materials like cement, plastics and aluminium. Intensively managed forests (e.g. fertilized forests or shortened rotation lengths) could contribute more to reductions in CO 2 emissions than current forest management. Using forest products (i.e. wood products and biofuel) is probably more important than storing carbon in biomass and soil, but it is necessary to conserve the existing stocks. Intensive forest management and increased use of biomass may, however, conflict with environmental quality objectives

  4. El CO2 como disolvente y como reactivo

    OpenAIRE

    La Franca Pitarresi, Vincenzo Rosario

    2016-01-01

    Existen numerosas ventajas asociada con el uso de CO2 , tanto como disolvente que como reactivo, y todas se pueden resumir en cuatro categorías generales: beneficios ambiental, beneficios de salud y seguridad, beneficios en el procedimiento y beneficios químicos. Los procesos que implican el CO2 como disolvente no aumentaría las emisiones de CO2, más bien proporcionaría una oportunidad para el reciclaje de CO2 residual. Además, los esfuerzos para secuestrar el CO2 producido de los gases de co...

  5. Least cost planning for CO2-reduction strategies

    International Nuclear Information System (INIS)

    Seifritz, W.

    1990-01-01

    A first recommendation for the determination of the minimum costs for a carbon-dioxide reduction strategy is presented. For this, the tabulation of so-called, 'CO 2 -ranking-lists', containing the relationship between the costs of a distinct measure to avoid the emission of certain amount of CO 2 (in dollar/t CO 2 ) versus its potential (in t CO 2 /yr), is indispensable. Some basic aspects of this approach are discussed and a first guess of the costs of some measures to avoid CO 2 -emissions into the atmosphere is presented. (orig.) [de

  6. The effects of CO2-differentiated vehicle tax systems on car choice, CO2 emissions and tax revenues

    NARCIS (Netherlands)

    Kok, R.

    2011-01-01

    This paper assesses the impacts of a CO2-differentiated tax policy designed to influence car purchasing trends towards lower CO2 emitting vehicles in the Netherlands. Since 2009, gasoline and diesel cars up to 110 and 95 gram CO2 per km are exempted from the vehicle registration tax (VRT). In

  7. Modeling CO2 Storage in Fractured Reservoirs: Fracture-Matrix Interactions of Free-Phase and Dissolved CO2

    Science.gov (United States)

    Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.

    2017-12-01

    The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.

  8. CO2 niet meer dan genoeg: Teelt van Tomaat in 2012 bij Improvement Centre met lichtafhankelijk doseren van CO2

    NARCIS (Netherlands)

    Gelder, de A.; Warmenhoven, M.G.; Dieleman, J.A.; Klapwijk, P.; Baar, van P.H.

    2014-01-01

    Wageningen UR Glastuinbouw heeft met financiering van Kas als Energiebron en Samenwerken aan Vaardigheden onderzoek gedaan naar efficienter gebruik van CO2. In een kasproef bij GreenQ/Improvement Centre is een CO2 doseerstrategie getest, waarbij iets meer CO2 wordt gegeven dan er op basis van de

  9. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-01-01

    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  10. Next generation of CO2 enhanced water recovery with subsurface energy storage in China

    Science.gov (United States)

    Li, Qi; Kühn, Michael; Ma, Jianli; Niu, Zhiyong

    2017-04-01

    Carbon dioxide (CO2) utilization and storage (CCUS) is very popular in comparison with traditional CO2 capture and storage (CCS) in China. In particular, CO2 storage in deep saline aquifers with enhanced water recovery (CO2-EWR) [1] is gaining more and more attention as a cleaner production technology. The CO2-EWR was written into the "U.S.-China Joint Announcement on Climate Change" released November 11, 2014. "Both sides will work to manage climate change by demonstrating a new frontier for CO2 use through a carbon capture, use, and sequestration (CCUS) project that will capture and store CO2 while producing fresh water, thus demonstrating power generation as a net producer of water instead of a water consumer. This CCUS project with enhanced water recovery will eventually inject about 1.0 million tonnes of CO2 and create approximately 1.4 million cubic meters of freshwater per year." In this article, at first we reviewed the history of the CO2-EWR and addressed its current status in China. Then, we put forth a new generation of the CO2-EWR with emphasizing the collaborative solutions between carbon emission reductions and subsurface energy storage or renewable energy cycle [2]. Furthermore, we figured out the key challenging problems such as water-CCUS nexus when integrating the CO2-EWR with the coal chemical industry in the Junggar Basin, Xinjiang, China [3-5]. Finally, we addressed some crucial problems and strategic consideration of the CO2-EWR in China with focuses on its technical bottleneck, relative advantage, early opportunities, environmental synergies and other related issues. This research is not only very useful for the current development of CCUS in the relative "cold season" but also beneficial for the energy security and clean production in China. [1] Li Q, Wei Y-N, Liu G, Shi H (2015) CO2-EWR: a cleaner solution for coal chemical industry in China. Journal of Cleaner Production 103:330-337. doi:10.1016/j.jclepro.2014.09.073 [2] Streibel M

  11. Characterizing near-surface CO2 conditions before injection - Perspectives from a CCS project in the Illinois Basin, USA

    Science.gov (United States)

    Locke, R.A.; Krapac, I.G.; Lewicki, J.L.; Curtis-Robinson, E.

    2011-01-01

    The Midwest Geological Sequestration Consortium is conducting a large-scale carbon capture and storage (CCS) project in Decatur, Illinois, USA to demonstrate the ability of a deep saline formation to store one million tonnes of carbon dioxide (CO2) from an ethanol facility. Beginning in early 2011, CO2 will be injected at a rate of 1,000 tonnes/day for three years into the Mount Simon Sandstone at a depth of approximately 2,100 meters. An extensive Monitoring, Verification, and Accounting (MVA) program has been undertaken for the Illinois Basin Decatur Project (IBDP) and is focused on the 0.65 km2 project site. Goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. MVA efforts are being conducted pre-, during, and post- CO2 injection. Soil and net CO2 flux monitoring has been conducted for more than one year to characterize near-surface CO2 conditions. More than 2,200 soil CO2 flux measurements have been manually collected from a network of 118 soil rings since June 2009. Three ring types have been evaluated to determine which type may be the most effective in detecting potential CO 2 leakage. Bare soil, shallow-depth rings were driven 8 cm into the ground and were prepared to minimize surface vegetation in and near the rings. Bare soil, deep-depth rings were prepared similarly, but were driven 46 cm. Natural-vegetation, shallow-depth rings were driven 8 cm and are most representative of typical vegetation conditions. Bare-soil, shallow-depth rings had the smallest observed mean flux (1.78 ??mol m-2 s-1) versus natural-vegetation, shallow-depth rings (3.38 ??mol m-2 s-1). Current data suggest bare ring types would be more sensitive to small CO2 leak signatures than natural ring types because of higher signal to noise ratios. An eddy covariance (EC) system has been in use since June

  12. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2011-11-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  13. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, Reid B.; Schechter, David S.

    1999-10-15

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  14. CO2 reforming of methane: valorizing CO2 by means of Dielectric Barrier Discharge

    Science.gov (United States)

    Machrafi, H.; Cavadias, S.; Amouroux, J.

    2011-03-01

    The impact of pollution on the environment is causing several problems that are to be reduced as much as possible. One important example is the production of CO2 that is emitted by many transport and industrial applications. An interesting solution is to view CO2 as a source instead of a product that can be stocked. The case considered in this work is the CO2 reformation of methane producing hydrogen and CO. It is an endothermic reaction, for which the activition barrier needs to be overcome. The method of Dielectric Barrier Discharge can do this efficiently. The process relies on the collision of electrons, which are accelerated under an electrical field that is created in the discharge area. This leads to the formation of reactive species, which facilitate the abovementioned reaction. The determination of the electron density is performed by PLASIMO. The study is subsequently continued using the Reaction Engineering module in COMSOL (with an incorporated kinetic mechanism) in order to model the discharge phase. Then COMSOL (continuity and Navier-Stokes equations) is used to model the flow in the post-discharge phase. The results showed that both a 2D and 3D model can be used to model the chemical-plasma process. These methods need strongly reduced kinetic mechanism, which in some cases can cause loss of precision. It is also observed that the present experimental set-up that is modeled needs to be improved. A suggestion is made.

  15. CO2 recovery system using solar energy; Taiyo energy wo riyoshita CO2 bunri kaishu system

    Energy Technology Data Exchange (ETDEWEB)

    Hosho, F; Naito, H; Yugami, H; Arashi, H [Tohoku University, Sendai (Japan)

    1997-11-25

    As a part of studies on chemical absorption process with MEA (monoethanolamine) for CO2 recovery from boiler waste gas in thermal power plants, use of solar heat as MEA regenerating energy was studied. An integrated stationary evacuated concentrator (ISEC) effective as collector in a medium temperature range was used to realize a regenerating temperature range of 100-120degC. ISEC is featured by vacuum insulation, use of selective absorbing membranes for an absorber, a CPC (compound parabolic concentrator)-shaped reflection mirror, and high-efficiency. An MEA regenerator is composed of an ISEC and PG(propylene glycol)-MEA heat exchanger, and circulates PG as heat medium. Heat collection experiment was also made using water instead of MEA. Both batch and continuous systems could supply a heat quantity necessary for MEA regeneration. CO2 concentration in the top of the regenerator rapidly decreased with PG circulation regenerating MEA. As mol ratios of CO2/MEA were compared between before and after regeneration, a recovery rate was estimated to be 59.4% for the batch system. 8 figs., 4 tabs.

  16. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review

    Science.gov (United States)

    Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin

    2007-01-01

    Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...

  17. Economics show CO2 EOR potential in central Kansas

    Science.gov (United States)

    Dubois, M.K.; Byrnes, A.P.; Pancake, R.E.; Willhite, G.P.; Schoeling, L.G.

    2000-01-01

    Carbon dioxide (CO2) enhanced oil recovery (EOR) may be the key to recovering hundreds of millions of bbl of trapped oil from the mature fields in central Kansas. Preliminary economic analysis indicates that CO2 EOR should provide an internal rate of return (IRR) greater than 20%, before income tax, assuming oil sells for \\$20/bbl, CO2 costs \\$1/Mcf, and gross utilization is 10 Mcf of CO2/bbl of oil recovered. If the CO2 cost is reduced to \\$0.75/Mcf, an oil price of $17/bbl yields an IRR of 20%. Reservoir and economic modeling indicates that IRR is most sensitive to oil price and CO2 cost. A project requires a minimum recovery of 1,500 net bbl/acre (about 1 million net bbl/1-mile section) under a best-case scenario. Less important variables to the economics are capital costs and non-CO2 related lease operating expenses.

  18. Supercritical CO2 Compressor with Active Magnetic Bearing

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Cho, Seong Kuk; Lee, JeKyoung; Lee, Jeong Ik

    2016-01-01

    For the stable operation of the sCO 2 integral test facility SCIEL, KAERI prepared Active Magnetic Bearing sCO 2 compressor for the 70,000RPM operation. Power generation test with AMB compressor will be finished within first half year of 2016 under supercritical state. The principal advantages of the sCO 2 Cycle are high efficiency at moderate temperature range, compact components size, simple cycle configuration, and compatibility with various heat sources. The Supercritical CO 2 Brayton Cycle Integral Experiment Loop (SCIEL) has been installed in Korea Atomic Energy Research Institute (KAERI) to develop the base technologies for the sCO 2 cycle power generation system. The operation of the SCIEL has mainly focused on sCO 2 compressor development and establishing sCO 2 system control logic

  19. Modeling CO2-facilitated transport across a diethanolamine liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lihong Bao; Michael C. Trachtenberg [Carbozyme Inc., Monmouth Junction, NJ (United States)

    2005-12-15

    We compared experimental and model data for the facilitated transport of CO2 from a CO2-air mixture across an aqueous solution of diethanolamine (DEA) via a hollow fiber, contained liquid membrane (HFCLM) permeator. A two-step carbamate formation model was devised to analyze the data instead of the one-step mechanism used by previous investigators. The effects of DEA concentration, liquid membrane thickness and feed CO2 concentration were also studied. With a 20% (wt) DEA liquid membrane and feed of 15% CO2 in CO2-air mixture at atmosphere pressure, the permeance reached 1.51E-8 mol/m{sup 2} s Pa with a CO2/N2 selectivity of 115. Model predictions compared well with the experimental results at CO2 concentrations of industrial importance. Short-term stability of the HFCLM permeator performance was examined. The system was stable during 5-days of testing.

  20. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON THE RESPONSE OF PONDEROSA PINE TO OZONE: A SIMULATION ANALYSIS

    Science.gov (United States)

    Forests regulate numerous biogeochemical cycles, storing and cycling carbon, water, and nutrients, however, there is concern how climate change, elevated CO2 and tropospheric O3 will affect these processes. We investigated the potential impact of increased O3 in combination wit...

  1. Study of the hyperfine magnetic field at Ta181 site in the Heusler Co2 Sc Sn, Co2 Sc Ga and Co2 Hf Sn alloys

    International Nuclear Information System (INIS)

    Attili, R.N.

    1992-01-01

    The hyperfine magnetic fields acting on 181 Ta nuclei at the Sc and Hf sites have been measured in Heusler alloys Co 2 Sc Sn and Co 2 Sc Ga and Co 2 Hf Sn using the Time Differential Perturbed γ-γ Angular Correlation (TDPAC) technique. The measurements were carried out using an automatic spectrometer consisting of two Ba F 2 detectors and the conventional electronics. The magnitude of hyperfine magnetic field at 181 Ta was measured for all the alloys. The signs of the were determined in the cases of Co 2 Sc Sn and Co 2 Hf Sn alloys by performing the Perturbed Angular Correlation measurements with an external polarizing magnetic field of ≅ 5 k Gauss. The hyperfine magnetic fields obtained are -187,6± 3,3 and 90,0 ± 2,1 kOe measured at 77 K for Co 2 Sc Sn and Co 2 Sc Ga alloys respectively, and -342,4 ± 10,1 kOe measured at the room temperature for Co 2 Hf Sn alloy. These results are discussed and compared with the hyperfine magnetic field systematics in Co-based Heusler alloy. (author)

  2. State of Energy Consumption and CO2 Emission in Bangladesh

    International Nuclear Information System (INIS)

    Azad, Abul K.; Nashreen, S.W.; Sultana, J.

    2006-01-01

    Carbon dioxide (CO 2 ) is one of the most important gases in the atmosphere, and is necessary for sustaining life on Earth. It is also considered to be a major greenhouse gas contributing to global warming and climate change. In this article, energy consumption in Bangladesh is analyzed and estimates are made of CO 2 emission from combustion of fossil fuel (coal, gas, petroleum products) for the period 1977 to 1995. International Panel for Climate Change guidelines for national greenhouse gas inventories were used in estimating CO 2 emission. An analysis of energy data shows that the consumption of fossil fuels in Bangladesh is growing by more than 5% per year. The proportion of natural gas in total energy consumption is increasing, while that of petroleum products and coal is decreasing. The estimated total CO 2 release from all primary fossil fuels used in Bangladesh amounted to 5,072 Gg in 1977, and 14,423 Gg in 1995. The total amounts of CO 2 released from petroleum products, natural gas, and coal in the period 1977-1995 were 83,026 Gg (50% of CO 2 emission), 72,541 Gg (44% of CO 2 emission), and 9,545 Gg (6% CO 2 emission), respectively. A trend in CO 2 emission with projections to 2070 is generated. In 2070, total estimated CO 2 emission will be 293,260 Gg with a current growth rate of 6.34%/y. CO 2 emission from fossil fuels is increasing. Petroleum products contribute the majority of CO 2 emission load, and although the use of natural gas is increasing rapidly, its contribution to CO 2 emission is less than that of petroleum products. The use of coal as well as CO 2 emission from coal is expected to gradually decrease

  3. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2.

    Science.gov (United States)

    Favaro, Marco; Xiao, Hai; Cheng, Tao; Goddard, William A; Yano, Junko; Crumlin, Ethan J

    2017-06-27

    A national priority is to convert CO 2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO 2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO 2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO 2 in the presence of water as the first step toward CO 2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.

  4. A Multi-scale Approach for CO2 Accounting and Risk Analysis in CO2 Enhanced Oil Recovery Sites

    Science.gov (United States)

    Dai, Z.; Viswanathan, H. S.; Middleton, R. S.; Pan, F.; Ampomah, W.; Yang, C.; Jia, W.; Lee, S. Y.; McPherson, B. J. O. L.; Grigg, R.; White, M. D.

    2015-12-01

    Using carbon dioxide in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce carbon sequestration costs in the absence of greenhouse gas emissions policies that include incentives for carbon capture and storage. This study develops a multi-scale approach to perform CO2 accounting and risk analysis for understanding CO2 storage potential within an EOR environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and transport in the Marrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2 injection rate, CO2 first breakthrough time, CO2 production rate, cumulative net CO2 storage, cumulative oil and CH4 production, and water injection and production rates. A global sensitivity analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/CH4 recovery rates. The well spacing (the distance between the injection and production wells) and the sequence of alternating CO2 and water injection are the major operational parameters for designing an effective five-spot CO2-EOR pattern. The response surface analysis shows that net CO2 injection rate increases with the increasing reservoir thickness, permeability, and porosity. The oil/CH4 production rates are positively correlated to reservoir permeability, porosity and thickness, but negatively correlated to the initial water saturation. The mean and confidence intervals are estimated for quantifying the uncertainty ranges of the risk metrics. The results from this study provide useful insights for understanding the CO2 storage potential and the corresponding risks of commercial-scale CO2-EOR fields.

  5. Interpreting plant-sampled ¿14CO2 to study regional anthropogenic CO2 signals in Europe

    OpenAIRE

    Bozhinova, D.N.

    2015-01-01

    "Interpreting plant-sampled Δ14CO2 to study regional anthropogenic CO2 signals in Europe" Author: Denica Bozhinova This thesis investigates the quantitative interpretation of plant-sampled ∆14CO2 as an indicator of fossil fuel CO2 recently added to the atmosphere. We present a methodology to calculate the ∆14CO2 that has accumulated in a plant over its growing period, based on a modeling framework consisting of a plant growth model (SUCROS) and an atmospheric transport model (WRF-Chem). We ve...

  6. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation.

    Science.gov (United States)

    Gong, Fuyu; Liu, Guoxia; Zhai, Xiaoyun; Zhou, Jie; Cai, Zhen; Li, Yin

    2015-01-01

    Production of fuels from the abundant and wasteful CO2 is a promising approach to reduce carbon emission and consumption of fossil fuels. Autotrophic microbes naturally assimilate CO2 using energy from light, hydrogen, and/or sulfur. However, their slow growth rates call for investigation of the possibility of heterotrophic CO2 fixation. Although preliminary research has suggested that CO2 fixation in heterotrophic microbes is feasible after incorporation of a CO2-fixing bypass into the central carbon metabolic pathway, it remains unclear how much and how efficient that CO2 can be fixed by a heterotrophic microbe. A simple metabolic flux index was developed to indicate the relative strength of the CO2-fixation flux. When two sequential enzymes of the cyanobacterial Calvin cycle were incorporated into an E. coli strain, the flux of the CO2-fixing bypass pathway accounts for 13 % of that of the central carbon metabolic pathway. The value was increased to 17 % when the carbonic anhydrase involved in the cyanobacterial carbon concentrating mechanism was introduced, indicating that low intracellular CO2 concentration is one limiting factor for CO2 fixation in E. coli. The engineered CO2-fixing E. coli with carbonic anhydrase was able to fix CO2 at a rate of 19.6 mg CO2 L(-1) h(-1) or the specific rate of 22.5 mg CO2 g DCW(-1) h(-1). This CO2-fixation rate is comparable with the reported rates of 14 autotrophic cyanobacteria and algae (10.5-147.0 mg CO2 L(-1) h(-1) or the specific rates of 3.5-23.7 mg CO2 g DCW(-1) h(-1)). The ability of CO2 fixation was created and improved in E. coli by incorporating partial cyanobacterial Calvin cycle and carbon concentrating mechanism, respectively. Quantitative analysis revealed that the CO2-fixation rate of this strain is comparable with that of the autotrophic cyanobacteria and algae, demonstrating great potential of heterotrophic CO2 fixation.

  7. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes

    Science.gov (United States)

    Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen

    2017-01-01

    We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...

  8. Controle de Rhyzopertha dominica pela atmosfera controlada com CO2, em trigo Control of Rhyzopertha dominica using a controlled atmosphere with CO2, in wheat

    Directory of Open Access Journals (Sweden)

    Rogério Amaro Gonçalves

    2000-01-01

    Full Text Available A utilização de gases inertes como fumigantes no controle de pragas é uma alternativa ao uso de fosfina. O objetivo deste trabalho foi avaliar a eficiência de uma atmosfera com CO2 no controle de Rhyzoperta dominica (Fabr. (Coleoptera: Bostrichidae em grãos de trigo armazenado. O trabalho constou de cinco concentrações de CO2 (0, 30 , 40, 50 e 60%, completadas com N2, três períodos de exposição (5, 10, 15 dias, três populações de R. dominica (Fabr. (Coleoptera: Bostrichidae (Campo Mourão, PR, Sete Lagoas, MG e Santa Rosa, RS e sete fases de desenvolvimento do inseto (ovo, larva de 1º, 2º, 3º e 4º ínstar, pupa e adulto com três repetições. As diferentes fases da R. dominica foram acondicionadas em tecido organza e levadas para câmaras de expurgo de 200 litros com 75% deste volume repletos de grãos. As câmaras foram vedadas com borracha de silicone para garantir a hermeticidade. Após a vedação das câmaras injetavam-se os gases contendo diferentes teores de CO2. Os resultados mostraram que todos os teores de CO2 causaram 100% de mortalidade de adultos das três populações nos três períodos de exposição utilizados. Em pupas a mortalidade atingiu 100% no teor de 60% de CO2 para as três populações no período de 15 dias de exposição; porém, todos os teores de CO2 utilizados no período de 15 dias de exposição causaram 100% de mortalidade das pupas da população de Santa Rosa. Para o adequado controle de larvas de diferentes ínstares são necessários teores de CO2 iguais ou acima de 50%. Nos períodos de 10 e 15 dias de exposição, todos os teores de CO2 causaram 100% de mortalidade dos ovos das três populações avaliadas.Controlled atmosphere with inert gases offers an alternative to phosphine use to control stored grain pests. The objective of this research was to test a controlled atmosphere with CO2 to control Rhyzoperta dominica, (Fabr. (Coleoptera: Bostrichidae, an important pest of stored wheat

  9. Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil.

    Science.gov (United States)

    Bloemen, Jasper; Agneessens, Laura; Van Meulebroek, Lieven; Aubrey, Doug P; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2014-02-01

    There is recent clear evidence that an important fraction of root-respired CO2 is transported upward in the transpiration stream in tree stems rather than fluxing to the soil. In this study, we aimed to quantify the contribution of root-respired CO2 to both soil CO2 efflux and xylem CO2 transport by manipulating the autotrophic component of belowground respiration. We compared soil CO2 efflux and the flux of root-respired CO2 transported in the transpiration stream in girdled and nongirdled 9-yr-old oak trees (Quercus robur) to assess the impact of a change in the autotrophic component of belowground respiration on both CO2 fluxes. Stem girdling decreased xylem CO2 concentration, indicating that belowground respiration contributes to the aboveground transport of internal CO2 . Girdling also decreased soil CO2 efflux. These results confirmed that root respiration contributes to xylem CO2 transport and that failure to account for this flux results in inaccurate estimates of belowground respiration when efflux-based methods are used. This research adds to the growing body of evidence that efflux-based measurements of belowground respiration underestimate autotrophic contributions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Integrated Reservoir Modeling of CO2-EOR Performance and Storage Potential in the Farnsworth Field Unit, Texas.

    Science.gov (United States)

    Ampomah, W.; Balch, R. S.; Cather, M.; Dai, Z.

    2017-12-01

    We present a performance assessment methodology and storage potential for CO2 enhanced oil recovery (EOR) in partially depleted reservoirs. A three dimensional heterogeneous reservoir model was developed based on geological, geophysics and engineering data from Farnsworth field Unit (FWU). The model aided in improved characterization of prominent rock properties within the Pennsylvanian aged Morrow sandstone reservoir. Seismic attributes illuminated previously unknown faults and structural elements within the field. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). Datasets including net-to-gross ratio, volume of shale, permeability, and burial history were used to model initial fault transmissibility based on Sperivick model. An improved history match of primary and secondary recovery was performed to set the basis for a CO2 flood study. The performance of the current CO2 miscible flood patterns was subsequently calibrated to historical production and injection data. Several prediction models were constructed to study the effect of recycling, addition of wells and /or new patterns, water alternating gas (WAG) cycles and optimum amount of CO2 purchase on incremental oil production and CO2 storage in the FWU. The history matching study successfully validated the presence of the previously undetected faults within FWU that were seen in the seismic survey. The analysis of the various prediction scenarios showed that recycling a high percentage of produced gas, addition of new wells and a gradual reduction in CO2 purchase after several years of operation would be the best approach to ensure a high percentage of recoverable incremental oil and sequestration of anthropogenic CO2 within the Morrow reservoir. Larger percentage of stored CO2 were dissolved in residual oil and less amount existed as supercritical free CO2. The geomechanical analysis on the caprock proved to an

  11. Information for Stores Users

    CERN Multimedia

    Logistics Group

    2004-01-01

    As the FARNELL Catalogue CAPACITORS, RESISTORS and POTENTIOMETERS have now been integrated into the CERN Stores Catalogue (SCEM Groups 10 and 11) they can now be obtained via an EDH 'Material Request' like any other Stores item. N.B. The Farnell 'Order code' is one of the key-words that make it easier to find items in the Stores Catalogue. Logistics Group FI Department

  12. Your View or Mine: Spatially Quantifying CO2 Storage Risk from Various Stakeholder Perspectives

    Science.gov (United States)

    Bielicki, J. M.; Pollak, M.; Wilson, E.; Elliot, T. R.; Guo, B.; Nogues, J. P.; Peters, C. A.

    2011-12-01

    CO2 capture and storage involves injecting captured CO2 into geologic formations, such as deep saline aquifers. This injected CO2 is to be "stored" within the rock matrix for hundreds to thousands of years, but injected CO2, or the brine it displaces, may leak from the target reservoir. Such leakage could interfere with other subsurface activities-water production, energy production, energy storage, and waste disposal-or migrate to the surface. Each of these interferences will incur multiple costs to a variety of stakeholders. Even if injected or displaced fluids do not interfere with other subsurface activities or make their way to the surface, costs will be incurred to find and fix the leak. Consequently, the suitability of a site for CO2 storage must therefore include an assessment of the risk of leakage and interference with various other activities within a three-dimensional proximity of where CO2 is being injected. We present a spatial analysis of leakage and interference risk associated with injecting CO2 into a portion of the Mount Simon sandstone in the Michigan Basin. Risk is the probability of an outcome multiplied by the impact of that outcome (Ro=po*Io). An outcome is the result of the leakage (e.g., interference with oil production), and the impact is the cost associated with the outcome. Each outcome has costs that will vary by stakeholder. Our analysis presents CO2 storage risk for multiple outcomes in a spatially explicit manner that varies by stakeholder. We use the ELSA semi-analytical model for estimating CO2 and brine leakage from aquifers to determine plume and pressure front radii, and CO2 and brine leakage probabilities for the Mount Simon sandstone and multiple units above it. Results of ELSA simulations are incorporated into RISCS: the Risk Interference Subsurface CO2 Storage model. RISCS uses three-dimensional data on subsurface geology and the locations of wells and boreholes to spatially estimate risks associated with CO2 leakage from

  13. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-01-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  14. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-04-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  15. Distributed energy store railgun

    International Nuclear Information System (INIS)

    Marshall, R.A.

    1991-01-01

    This paper reports that when the limiting case of a distributed energy store railgun is analyzed, i.e., the case where the space between adjacent energy stores become indefinitely small, three important results are obtained. First, the shape of the current pulse delivered by each store is sinusoidal and an exponential tail. Second, the rail-to-rail voltage behind the rear-most active store approaches zero. Third, it is not possible to choose parameters in such a way that capacitor crowbars can be eliminated

  16. Enhancing CO2 Electroreduction with the Metal-Oxide Interface.

    Science.gov (United States)

    Gao, Dunfeng; Zhang, Yi; Zhou, Zhiwen; Cai, Fan; Zhao, Xinfei; Huang, Wugen; Li, Yangsheng; Zhu, Junfa; Liu, Ping; Yang, Fan; Wang, Guoxiong; Bao, Xinhe

    2017-04-26

    The electrochemical CO 2 reduction reaction (CO 2 RR) typically uses transition metals as the catalysts. To improve the efficiency, tremendous efforts have been dedicated to tuning the morphology, size, and structure of metal catalysts and employing electrolytes that enhance the adsorption of CO 2 . We report here a strategy to enhance CO 2 RR by constructing the metal-oxide interface. We demonstrate that Au-CeO x shows much higher activity and Faradaic efficiency than Au or CeO x alone for CO 2 RR. In situ scanning tunneling microscopy and synchrotron-radiation photoemission spectroscopy show that the Au-CeO x interface is dominant in enhancing CO 2 adsorption and activation, which can be further promoted by the presence of hydroxyl groups. Density functional theory calculations indicate that the Au-CeO x interface is the active site for CO 2 activation and the reduction to CO, where the synergy between Au and CeO x promotes the stability of key carboxyl intermediate (*COOH) and thus facilitates CO 2 RR. Similar interface-enhanced CO 2 RR is further observed on Ag-CeO x , demonstrating the generality of the strategy for enhancing CO 2 RR.

  17. CO2 impulse response curves for GWP calculations

    International Nuclear Information System (INIS)

    Jain, A.K.; Wuebbles, D.J.

    1993-01-01

    The primary purpose of Global Warming Potential (GWP) is to compare the effectiveness of emission strategies for various greenhouse gases to those for CO 2 , GWPs are quite sensitive to the amount of CO 2 . Unlike all other gases emitted in the atmosphere, CO 2 does not have a chemical or photochemical sink within the atmosphere. Removal of CO 2 is therefore dependent on exchanges with other carbon reservoirs, namely, ocean and terrestrial biosphere. The climatic-induced changes in ocean circulation or marine biological productivity could significantly alter the atmospheric CO 2 lifetime. Moreover, continuing forest destruction, nutrient limitations or temperature induced increases of respiration could also dramatically change the lifetime of CO 2 in the atmosphere. Determination of the current CO 2 sinks, and how these sinks are likely to change with increasing CO 2 emissions, is crucial to the calculations of GWPs. It is interesting to note that the impulse response function is sensitive to the initial state of the ocean-atmosphere system into which CO 2 is emitted. This is due to the fact that in our model the CO 2 flux from the atmosphere to the mixed layer is a nonlinear function of ocean surface total carbon

  18. Economic evaluation of CO2 pipeline transport in China

    International Nuclear Information System (INIS)

    Zhang Dongjie; Wang Zhe; Sun Jining; Zhang Lili; Li Zheng

    2012-01-01

    Highlights: ► We build a static hydrodynamic model of CO 2 pipeline for CCS application. ► We study the impact on pressure drop of pipeline by viscosity, density and elevation. ► We point out that density has a bigger impact on pressure drop than viscosity. ► We suggest dense phase transport is preferred than supercritical state. ► We present cost-optimal pipeline diameters for different flowrates and distances. - Abstract: Carbon capture and sequestration (CCS) is an important option for CO 2 mitigation and an optimized CO 2 pipeline transport system is necessary for large scale CCS implementation. In the present work, a hydrodynamic model for CO 2 pipeline transport was built up and the hydrodynamic performances of CO 2 pipeline as well as the impacts of multiple factors on pressure drop behavior along the pipeline were studied. Based on the model, an economic model was established to optimize the CO 2 pipeline transport system economically and to evaluate the unit transport cost of CO 2 pipeline in China. The hydrodynamic model results show that pipe diameter, soil temperature, and pipeline elevation change have significant influence on the pressure drop behavior of CO 2 in the pipeline. The design of pipeline system, including pipeline diameter and number of boosters etc., was optimized to achieve a lowest unit CO 2 transport cost. In regarding to the unit cost, when the transport flow rate and distance are between 1–5 MtCO 2 /year and 100–500 km, respectively, the unit CO 2 transport cost mainly lies between 0.1–0.6 RMB/(tCO 2 km) and electricity consumption cost of the pipeline inlet compressor was found to take more than 60% of the total cost. The present work provides reference for CO 2 transport pipeline design and for feasibility evaluation of potential CCS projects in China.

  19. Natural analogue study of CO2 storage monitoring using probability statistics of CO2-rich groundwater chemistry

    Science.gov (United States)

    Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.

    2016-12-01

    For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).

  20. Isotopic tracers of sources, wells and of CO2 reactivity in geological reservoirs

    International Nuclear Information System (INIS)

    Assayag, N.

    2006-12-01

    The aim of this research works consisted in studying the behaviour of the carbonate system (dissolved inorganic carbon: DIC) following a CO 2 injection (artificial or natural), in geological reservoirs. One part of the study consisted in improving an analytical protocol for the measurement of δ 13 C DIC and DIC, using a continuous flow mass spectrometer. As a first study, we have focused our attention on the Pavin Lake (Massif Central, France). Owing to its limnologic characteristics (meromictic lake) and a deep volcanic CO 2 contribution, it can be viewed as a natural analogue of reservoir storing important quantities of CO 2 in the bottom part. Isotopic measurements (δ 18 O, δ 13 C DIC) allowed to better constrain the dynamics of the lake (stratification, seasonal variations), the magnitudes of biological activities (photosynthesis, organic matter decay, methane oxidation, methano-genesis), carbon sources (magmatic, methano-genetic), and the hydrological budgets (sub-lacustrine inputs). The second study was conducted on the Lamont-Doherty test well site (NY, USA). It includes an instrumental borehole which cuts through most of the section of the Palisades sill and into the Newark Basin sediments. Single well push-pull tests were performed: a test solution containing conservative tracers and a reactive tracer (CO 2 ) was injected at a permeable depth interval located in basaltic and meta sedimentary rocks. After an incubation period, the test solution/groundwater mixture was extracted from the hydraulically isolated zone. Isotopic measurements (δ 18 O, δ 13 C DIC) confronted to chemical data (major elements) allowed to investigate the extent of in-situ CO 2 -water-rock interactions: essentially calcite dissolution and at a lesser extend silicate dissolution...and for one of the test, CO 2 degassing. (author)

  1. Mechanisms for chemostatic behavior in catchments: implications for CO2 consumption by mineral weathering

    Science.gov (United States)

    Clow, David W.; Mast, M. Alisa

    2010-01-01

    Concentrations of weathering products in streams often show relatively little variation compared to changes in discharge, both at event and annual scales. In this study, several hypothesized mechanisms for this “chemostatic behavior” were evaluated, and the potential for those mechanisms to influence relations between climate, weathering fluxes, and CO2 consumption via mineral weathering was assessed. Data from Loch Vale, an alpine catchment in the Colorado Rocky Mountains, indicates that cation exchange and seasonal precipitation and dissolution of amorphous or poorly crystalline aluminosilicates are important processes that help regulate solute concentrations in the stream; however, those processes have no direct effect on CO2 consumption in catchments. Hydrograph separation analyses indicate that old water stored in the subsurface over the winter accounts for about one-quarter of annual streamflow, and almost one-half of annual fluxes of Na and SiO2 in the stream; thus, flushing of old water by new water (snowmelt) is an important component of chemostatic behavior. Hydrologic flushing of subsurface materials further induces chemostatic behavior by reducing mineral saturation indices and increasing reactive mineral surface area, which stimulate mineral weathering rates. CO2 consumption by carbonic acid mediated mineral weathering was quantified using mass-balance calculations; results indicated that silicate mineral weathering was responsible for approximately two-thirds of annual CO2 consumption, and carbonate weathering was responsible for the remaining one-third. CO2 consumption was strongly dependent on annual precipitation and temperature; these relations were captured in a simple statistical model that accounted for 71% of the annual variation in CO2 consumption via mineral weathering in Loch Vale.

  2. Natural CO2 Analogs for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Scott H. Stevens; B. Scott Tye

    2005-07-31

    The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

  3. Sequestration of CO2 in salt caverns

    International Nuclear Information System (INIS)

    Dusseault, M.B.; Rothenburg, L.; Bachu, S.

    2002-01-01

    The greenhouse effect is thought to be greatly affected by anthropogenic and naturally generated gases, such as carbon dioxide. The reduction of greenhouse gas emissions in the atmosphere could be effected through the permanent storage of carbon dioxide in dissolved salt caverns. A large number of suitable salt deposits are located in Alberta, especially the Lotsberg Salt of east-central Alberta. A major advantage of this deposit is its proximity to present and future point sources of carbon dioxide associated with fossil fuel development projects. Using the perspective of the long term fate of the stored carbon dioxide, the authors presented the characteristics of the Lotsberg Salt and the overlying strata. A high level of security against leakage and migration of the gas back to the biosphere is ensured by several features discussed in the paper. The authors propose a procedure that would be applicable for the creation, testing, and filling of a salt cavern. Achieving a long term prediction of the behavior of the cavern during slow closure, coupled to the pressure and volume behavior of the gas within the cavern represents the critical factor. The authors came up with an acceptable prediction by using a semi-analytical model. The use of salt caverns for the permanent sequestration of carbon dioxide has not yet faced technical obstacles that would prevent it. The authors argue that sequestration of carbon dioxide in salt caverns represents an environmentally acceptable option in Alberta. 11 refs., 3 figs

  4. Effect of hybrid system battery performance on determining CO2 emissions of hybrid electric vehicles in real-world conditions

    International Nuclear Information System (INIS)

    Alvarez, Robert; Schlienger, Peter; Weilenmann, Martin

    2010-01-01

    Hybrid electric vehicles (HEVs) can potentially reduce vehicle CO 2 emissions by using recuperated kinetic vehicle energy stored as electric energy in a hybrid system battery (HSB). HSB performance affects the individual net HEV CO 2 emissions for a given driving pattern, which is considered to be equivalent to unchanged net energy content in the HSB. The present study investigates the influence of HSB performance on the statutory correction procedure used to determine HEV CO 2 emissions in Europe based on chassis dynamometer measurements with three identical in-use examples of a full HEV model featuring different mileages. Statutory and real-world driving cycles and full electric vehicle operation modes have been considered. The main observation is that the selected HEVs can only use 67-80% of the charge provided to the HSB, which distorts the outcomes of the statutory correction procedure that does not consider such irreversibility. CO 2 emissions corrected according to this procedure underestimate the true net CO 2 emissions of one HEV by approximately 13% in real-world urban driving. The correct CO 2 emissions are only reproduced when considering the HSB performance in this driving pattern. The statutory procedure for correcting HEV CO 2 emissions should, therefore, be adapted.

  5. CO2 removals and CO2 and non-CO2 trace gas emissions affected by human activity in the forests in the Republic of macedonia

    International Nuclear Information System (INIS)

    Grupche, Ljupcho; Lozanovski, Risto; Markovska, Natasha

    2001-01-01

    During 2000 and 2001 inventories of CO 2 removals and emissions caused by changes in forest and other woody biomass stocks, as well as the inventories of CO 2 and non-CO 2 trace gas emissions caused by forest conversions (accidental burning) were carried out. According to the forest area in ha, and depending on the differences between the annual biomass increment and annual biomass consumption, about 30-50% of total annual carbon uptake increment is released through the biomass consumption from stocks. 50-70% of the net annual carbon uptake converted to CO 2 identify the annual removals of this gas, which is on average 1805 Gg/yr, ranging between 1485 and 2243 Gg/yr. From 1990 to 1998 on average 4700 ha forest area (min. 110 ha in 1991, max. 14420 ha in 1993) was burned. Proportionally to the burned area, there was a release on average of 18.62 kt C annually (min. 0.42 kt C, max. 57.11 kt), related to 136.07 kt CO 2 on average (min. 1.5 kt CO 2 , max. 209.22 kt CO 2 ). (Original)

  6. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    Science.gov (United States)

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with

  7. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  8. Biofiksasi CO2 Oleh Mikroalga Chlamydomonas sp dalam Photobioreaktor Tubular

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2014-05-01

    Full Text Available Mikroalga memiliki potensi dalam membiofiksasi CO2 dan dapat dimanfaatkan untuk mengurangi kadar CO2 dalam gas pencemar. Pertumbuhan mikroalga sangat dipengaruhi oleh konsentrasi gas CO2 di dalam gas pencemar. Tujuan penelitian ini adalah untuk mengeetahui kemampuan mikroalga Chlamydomonas sp yang dikultivasi dalam photobioreaktor tubular dalam penyerapan gas CO2 serta untuk mengetahui konsentrasi maksimum gas CO2 dalam umpan untuk memproduksi biomasa mikroalga yang optimal. Percobaan dilakukan dnegan memvariasi laju alir dari 0.03 -0.071 L/menit dan konsentrasi CO2 dalam umpan 10-30%. Hasil penelitian menunjukkan bahwa biomasa mikroalga dapat diproduksi dengan maksimal dengan konsentrasi gas CO2 20% dengan laju alir 0.07 L/min. Semakin tinggi laju alir maka produksi biomasa alga semakin besar. Kecepatan pertumbuhan alga maksimum terjadi pada 0.31 /hari. Pada konsentrasi gas CO2 30%, terjadi substrate inhibition yang disebabkan carbon dalam bentuk ion bicarbonate tidak dapat dikonsumsi lagi di dalam kultur alga. Kata kunci : Mikroalga, chlamydomonas sp, biofiksasi CO2, biogas Abstract Microalgae have a potential for CO2 biofixation and therefore can be used to reduce the CO2 concentration in the gas pollutants. Moreover, microalgae growth is strongly affected by the concentration of CO2 in the exhaust gas pollutants. The objective of this research was to investigate the ability of microalgae Chlamydomonas sp which was cultivated in a tubular photobioreactor for CO2 absorption as well as to determine the maximum concentration of CO2 in the feed gas to obtain optimum microalgae biomass. The experiments were performed by varying the gas flow rate of 0.03 -0.071 L / min and the concentration of CO2 in the feed of 10-30%. The results showed that the maximum biomass of microalgae can be produced with CO2 concentration of 20% vol with a flow rate of 0.07 L / min. The result also showed that increasing the gas flow rate, the greater of the production of

  9. Vibrational dynamics of adsorbed CO2: Separability of the CO2 asymmetric stretching mode

    Czech Academy of Sciences Publication Activity Database

    Bludský, Ota; Nachtigall, Petr; Špirko, Vladimír

    2011-01-01

    Roč. 76, č. 6 (2011), s. 669-682 ISSN 0010-0765 R&D Projects: GA MŠk LC512; GA ČR GAP208/11/0436; GA MŠk(CZ) ME10032 Grant - others:GA MŠk(CZ) KONTAKT-II(LH)-CH022 Institutional research plan: CEZ:AV0Z40550506 Keywords : adsorption of CO2 * vibrational dynamics * DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.283, year: 2011

  10. Radon-calibrated emissions of CO2 from South Africa

    International Nuclear Information System (INIS)

    Gaudry, A.; Polian, G.; Ardouin, B.; Lambert, G.

    1990-01-01

    Atmospheric CO 2 and 222 Rn have been monitored at Amsterdam Island since 1980. Data were selected in order to eliminate any local influence. Typical CO 2 concentrations of the subantarctic marine atmosphere can be determined by selecting those values for which 222 Rn radioactivity was particularly low: less than 1 pCi m -3 . 222 Rn concentrations higher than 2 pCi m -3 are mainly due to injections into the subantarctic atmosphere from the continental source of South Africa. The passage of air masses under continental influence also shows typical CO 2 variations, well correlated with 222 Rn variations. From the knowledge of the global continental fluxes of 222 Rn, it has been possible to estimate CO 2 fluxes into the atmosphere from South Africa. The mean CO 2 flux corresponding to a 6-month period from May to October is about 5 millimole m -2 h -1 . Continental CO 2 emissions reach a maximum in August. (orig.)

  11. Financial development and sectoral CO2 emissions in Malaysia.

    Science.gov (United States)

    Maji, Ibrahim Kabiru; Habibullah, Muzafar Shah; Saari, Mohd Yusof

    2017-03-01

    The paper examines the impacts of financial development on sectoral carbon emissions (CO 2 ) for environmental quality in Malaysia. Since the financial sector is considered as one of the sectors that will contribute to Malaysian economy to become a developed country by 2020, we utilize a cointegration method to investigate how financial development affects sectoral CO 2 emissions. The long-run results reveal that financial development increases CO 2 emissions from the transportation and oil and gas sector and reduces CO 2 emissions from manufacturing and construction sectors. However, the elasticity of financial development is not significant in explaining CO 2 emissions from the agricultural sector. The results for short-run elasticities were also consistent with the long-run results. We conclude that generally, financial development increases CO 2 emissions and reduces environmental quality in Malaysia.

  12. CO2 measurements during transcranial Doppler examinations in headache patients

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg

    1994-01-01

    Transcranial Doppler (TCD) examinations are increasingly being used in studies of headache pathophysiology. Because blood velocity is highly dependent on PCO2, these parameters should be measured simultaneously. The most common way of performing measurements during TCD examinations is as end......-tidal pCO2 with a capnograph. When patients are nauseated and vomit, as in migraine, the mask or mouthpiece connected to the capnograph represents a problem. We therefore evaluated whether a transcutaneous pCO2 electrode was as useful as the capnograph for pCO2 measurements in TCD examinations. We...... conclude that this is not the case, and recommend capnographic end-tidal pCO2 measurements during TCD examinations. However, transcutaneous pCO2 measurements may represent a supplement to spot measurements of end-tidal pCO2 in stable conditions when long-term monitoring is needed, and the mask...

  13. CO2 emissions in the World in 2013

    International Nuclear Information System (INIS)

    Ecoiffier, Mathieu

    2015-12-01

    This publication presents and comments data of CO 2 emissions in the world and their evolution. It more particularly addresses CO 2 emissions due to energy combustion which represent more than 80 per cent of these emissions or 62 per cent of greenhouse gas emissions, and which increased in 2013 with respect to 2012 (+ 2.2 pc). The distribution of CO 2 emissions due to energy combustion in different continents and regions is indicated (levels in 1990, 2012 and 2013, evolutions). The decrease of the CO 2 emission intensity with respect to the GDP is briefly commented (evolution since 1970), as well as the level of CO 2 emissions per inhabitant in China with respect to that in the EU (evolutions since 1970). The evolution of CO 2 emissions is then analysed with respect to different determining parameters according to the Kaya equation (population, GDP, primary energy consumption and their evolution or relationship one to each other)

  14. Experimental Studies of CO2 Capturing from the Flue Gases

    Directory of Open Access Journals (Sweden)

    Ehsan Rahmandoost

    2014-10-01

    Full Text Available CO2 emissions from combustion flue gases have turned into a major factor in global warming. Post-combustion carbon capture (PCC from industrial utility flue gases by reactive absorption can substantially reduce the emissions of the greenhouse gas CO2. To test a new solvent (AIT600 for this purpose, a small pilot plant was used. This paper presents the results of studies on chemical methods of absorbing CO2 from flue gases with the new solvent, and evaluates the effects of operating conditions on CO2 absorption efficiency. CO2 removal rate of the AIT600 solvent was higher in comparison to the conventional monoethanolamine (MEA solvent. The optimized temperature of the absorber column was 60 °C for CO2 absorption in this pilot plant. The overall absorption rate (Φ and the volumetric overall mass transfer coefficient (KGaV were also investigated.

  15. New era for CO2 as a working fluid

    International Nuclear Information System (INIS)

    Stene, Joern

    2000-01-01

    During the past decade there has been extensive international activity to find acceptable alternatives to ozone-depleting CFC and HCFC substances that have been widely used as working fluids in refrigerating and heat pump plants. At present, the so-called natural working fluids constitute the most environmentally friendly alternative, and they include first of all ammonia, hydrocarbons and carbon dioxide (CO2). NTNU and SINTEF Energy Research, Norway, have been pioneers in the development of refrigerating and heat pump systems that use CO2 as a working fluid. The favourable technical and environmental properties of CO2 as well as the promising results have now led to considerable international interest in CO2 technology for refrigerating and heat pump applications. Two examples are international licensing for Norwegian CO2 technology and co-operation with Indonesia on CO2 for refrigeration

  16. Episodical CO2 emission during shoulder seasons in the arctic

    DEFF Research Database (Denmark)

    Friborg, Thomas; Elberling, Bo; Hansen, Birger

    soils. Our knowledge about the exchanges of CO2 and other trace gas fluxes in the arctic region has been constrained by the limited availability of measurements during the long winter season. For that reason only a small number of sites have been able to produce annual budgets of C exchange...... and the driving processes behind winter time exchange of CO2 are not fully understood. Here we present two very different examples of CO2 exchange from shoulder seasons in the Arctic. In an example from NE Greenland, eddy covariance measurements show that the snow cover has a significant effect on the release...... of CO2 during spring. The other example, from a study during late autumn and winter from high arctic Svalbard we found that episodical emissions of CO2 accounted for a significant part of the total CO2 emission form the site. The emission pattern could be associated with temperature variations...

  17. Recent enlightening strategies for co2 capture: a review

    Science.gov (United States)

    Yuan, Peng; Qiu, Ziyang; Liu, Jia

    2017-05-01

    The global climate change has seriously affected the survival and prosperity of mankind, where greenhouse effect owing to atmospheric carbon dioxide (CO2) enrichment is a great cause. Accordingly, a series of down-to-earth measures need to be implemented urgently to control the output of CO2. As CO2 capture appears as a core issue in developing low-carbon economy, this review provides a comprehensive introduction of recent CO2 capture technologies used in power plants or other industries. Strategies for CO2 capture, e.g. pre-combustion, post-combustion and oxyfuel combustion, are covered in this article. Another enlightening technology for CO2 capture based on fluidized beds is intensively discussed.

  18. Experimental and numerical study on the fracture of rocks during injection of CO2-saturated water

    Science.gov (United States)

    Li, Qi; Wu, Zhishen; Lei, Xing-Lin; Murakami, Yutaka; Satoh, Takashi

    2007-02-01

    Geological sequestration of CO2 into depleted hydrocarbon reserviors or saline aquifers presents the enormous potential to reduce greenhouse gas emission from fossil fuels. However, it may give rise to a complicated coupling physical and chemical process. One of the processes is the hydro-mechanical impact of CO2 injection. During the injection project, the increase of pore pressures of storing formations can induce the instability, which finally results in a catastrophic failure of disposal sites. This paper focuses mainly on the role of CO2-saturated water in the fracturing behavior of rocks. To investigate how much the dissolved CO2 can influence the pore pressure change of rocks, acoustic emission (AE) experiments were performed on sandstone and granite samples under triaxial conditions. The main innovation of this paper is to propose a time dependent porosity method to simulate the abrupt failure process, which is observed in the laboratory and induced by the pore pressure change due to the volume dilatancy of rocks, using a finite element scheme associated with two-phase characteristics. The results successfully explained the phenomena obtained in the physical experiments.

  19. CO2 Dissociation by Low Current Gliding Discharge in the Reverse Vortex Flow

    Science.gov (United States)

    Gutsol, Alexander

    2012-10-01

    If performed with high energy efficiency, plasma-chemical dissociation of carbon dioxide can be a way of converting and storing energy when there is an excess of electric energy, for example generated by solar elements of wind turbines. CO2 dissociation with efficiency of up to 90% was reported earlier for low pressure microwave discharge in supersonic flow. A new plasma-chemical system uses a low current gliding discharge in the reverse vortex flow of plasma gas. The system is a development of the Gliding Arc in Tornado reactor. The system was used to study dissociation of CO2 in wide ranges of the following experimental parameters: reactor pressure (15-150 kPa), discharge current (50-500 mA), gas flow rate (3-30 liters per minute), and electrode gap length (1-10 cm). Additionally, the effect of thermal energy recuperation on CO2 dissociation efficiency was tested. Plasma chemical efficiency of CO2 dissociation is very low (about 3%) in a short discharge at low pressures (about 15 kPa) when it is defined by electronic excitation. The highest efficiency (above 40%) was reached at pressures 50-70 kPa in a long discharge with thermal energy recuperation. It means that the process is controlled by thermal dissociation with subsequent effective quenching. Plasma chemical efficiency was determined from the data of chromatographic analysis and oscilloscope electric power integration, and also was checked calorimetrically by the thermal balance of the system.

  20. The Characteristics of Peats and Co2 Emission Due to Fire in Industrial Plant Forests

    Science.gov (United States)

    Ratnaningsih, Ambar Tri; Rayahu Prasytaningsih, Sri

    2017-12-01

    Riau Province has a high threat to forest fire in peat soils, especially in industrial forest areas. The impact of fires will produce carbon (CO2) emissions in the atmosphere. The magnitude of carbon losses from the burning of peatlands can be estimated by knowing the characteristics of the fire peat and estimating CO2 emissions produced. The objectives of the study are to find out the characteristics of fire-burning peat, and to estimate carbon storage and CO2 emissions. The location of the research is in the area of industrial forest plantations located in Bengkalis Regency, Riau Province. The method used to measure peat carbon is the method of lost in ignation. The results showed that the research location has a peat depth of 600-800 cm which is considered very deep. The Peat fiber content ranges from 38 to 75, classified as hemic peat. The average bulk density was 0.253 gram cm-3 (0.087-0,896 gram cm-3). The soil ash content is 2.24% and the stored peat carbon stock with 8 meter peat thickness is 10723,69 ton ha-1. Forest fire was predicted to burn peat to a depth of 100 cm and produced CO2 emissions of 6,355,809 tons ha-1.

  1. Simulation of CO2–water–rock interactions on geologic CO2 sequestration under geological conditions of China

    International Nuclear Information System (INIS)

    Wang, Tianye; Wang, Huaiyuan; Zhang, Fengjun; Xu, Tianfu

    2013-01-01

    Highlights: • We determined the feasibilities of geologic CO 2 sequestration in China. • We determined the formation of gibbsite suggested CO 2 can be captured by rocks. • We suggested the mechanisms of CO 2 –water–rock interactions. • We found the corrosion and dissolution of the rock increased as temperature rose. -- Abstract: The main purpose of this study focused on the feasibility of geologic CO 2 sequestration within the actual geological conditions of the first Carbon Capture and Storage (CCS) project in China. This study investigated CO 2 –water–rock interactions under simulated hydrothermal conditions via physicochemical analyses and scanning electron microscopy (SEM). Mass loss measurement and SEM showed that corrosion of feldspars, silica, and clay minerals increased with increasing temperature. Corrosion of sandstone samples in the CO 2 -containing fluid showed a positive correlation with temperature. During reaction at 70 °C, 85 °C, and 100 °C, gibbsite (an intermediate mineral product) formed on the sample surface. This demonstrated mineral capture of CO 2 and supported the feasibility of geologic CO 2 sequestration. Chemical analyses suggested a dissolution–reprecipitation mechanism underlying the CO 2 –water–rock interactions. The results of this study suggested that mineral dissolution, new mineral precipitation, and carbonic acid formation-dissociation are closely interrelated in CO 2 –water–rock interactions

  2. The CO2-tax and its ability to reduce CO2 emissions related to oil and gas production in Norway

    International Nuclear Information System (INIS)

    Roemo, F.; Lund, M.W.

    1994-01-01

    The primary ambition of the paper is to illustrate some relevant effects of the CO 2 -tax, and draw the line from company adaptation via national ambitions and goals to global emission consequences. The CO 2 -tax is a success for oil and gas production only to the extent that the CO 2 emission per produced unit oil/gas is reduced as a consequence of the tax. If not, the CO 2 -tax is a pure fiscal tax and has no qualitative impact on the CO 2 emissions. The reduction potential is then isolated to the fact that some marginal fields will not be developed, and the accelerated close down of fields in production. The paper indicates that a significant replacement of older gas turbines at a certain level of the CO 2 -tax could be profitable for the companies. This is dependent on change in turbine energy utilization, and the investment cost. The CO 2 -tax is a political success for the nation if it is a significant contributor to achieve national emission goals. Furthermore, is the CO 2 -tax an environmental success only to the extent it contributes to reductions in the CO 2 emissions globally. The paper indicates that there are possibilities for major suboptimal adaptations in connection with national CO 2 -taxation of the oil and gas production. 13 refs., 6 figs

  3. Transport Mechanisms for CO2-CH4 Exchange and Safe CO2 Storage in Hydrate-Bearing Sandstone

    Directory of Open Access Journals (Sweden)

    Knut Arne Birkedal

    2015-05-01

    Full Text Available CO2 injection in hydrate-bearing sediments induces methane (CH4 production while benefitting from CO2 storage, as demonstrated in both core and field scale studies. CH4 hydrates have been formed repeatedly in partially water saturated Bentheim sandstones. Magnetic Resonance Imaging (MRI and CH4 consumption from pump logs have been used to verify final CH4 hydrate saturation. Gas Chromatography (GC in combination with a Mass Flow Meter was used to quantify CH4 recovery during CO2 injection. The overall aim has been to study the impact of CO2 in fractured and non-fractured samples to determine the performance of CO2-induced CH4 hydrate production. Previous efforts focused on diffusion-driven exchange from a fracture volume. This approach was limited by gas dilution, where free and produced CH4 reduced the CO2 concentration and subsequent driving force for both diffusion and exchange. This limitation was targeted by performing experiments where CO2 was injected continuously into the spacer volume to maintain a high driving force. To evaluate the effect of diffusion length multi-fractured core samples were used, which demonstrated that length was not the dominating effect on core scale. An additional set of experiments is presented on non-fractured samples, where diffusion-limited transportation was assisted by continuous CO2 injection and CH4 displacement. Loss of permeability was addressed through binary gas (N2/CO2 injection, which regained injectivity and sustained CO2-CH4 exchange.

  4. Numerical Study on CO2-Brine-Rock Interaction of Enhanced Geothermal Systems with CO2 as Heat Transmission Fluid

    Directory of Open Access Journals (Sweden)

    Wan Yuyu

    2016-01-01

    Full Text Available Enhanced Geothermal Systems (EGS with CO2 instead of water as heat transmission fluid is an attractive concept for both geothermal resources development and CO2 geological sequestration. Previous studies show that CO2 has lots of favorable properties as heat transmission fluid and also can offer geologic storage of CO2 as an ancillary benefit. However, after CO2 injection into geological formations, chemical reaction between brine and rock can change chemical characteristics of saline and properties of rock such as porosity and permeability. Is this advantage or disadvantage for EGS operating? To answer this question, we have performed chemically reactive transport modeling to investigate fluid-rock interactions and CO2 mineral carbonation of Enhanced Geothermal Systems (EGS site at Desert Peak (Nevada operated with CO2. The simulation results show that (1 injection CO2 can create a core zone fulfilled with CO2 as main working domain for EGS, and (2 CO2 storage can induced self-enhancing alteration of EGS.

  5. Predicting Commissary Store Success

    Science.gov (United States)

    2014-12-01

    stores or if it is possible to predict that success. Multiple studies of private commercial grocery consumer preferences , habits and demographics have...appropriate number of competitors due to the nature of international cultures and consumer preferences . 2. Missing Data Four of the remaining stores

  6. Storing up trouble

    International Nuclear Information System (INIS)

    Townsley, M.

    1992-01-01

    Scottish Nuclear have applied for permission to build a temporary ground-level dry store for spent fuel at Torness. However, Nirex's failure to find a suitable site for a long-term repository could mean that the Torness store will be less temporary than planned. (author)

  7. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion

    Science.gov (United States)

    Saeki, Tazu; Patra, Prabir K.

    2017-12-01

    Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.

  8. THE INFLUENCE OF CO2 ON WELL CEMENT

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2010-12-01

    Full Text Available Carbon capture and storage is one way to reduce emissions of greenhouse gases in the atmosphere. Underground gas storage operations and CO2 sequestration in aquifers relay on both the proper wellbore construction and sealing properties of the cap rock. CO2 injection candidates may be new wells or old wells. In both cases, the long-term wellbore integrity (up to 1 000 years is one of the key performance criteria in the geological storage of CO2. The potential leakage paths are the migration CO2 along the wellbore due to poor cementation and flow through the cap rock. The permeability and integrity of the set cement will determine how effective it is in preventing the leakage. The integrity of the cap rock is assured by an adequate fracture gradient and by sufficient set cement around the casing across the cap rock and without a micro-annulus. CO2 storage in underground formations has revived the researc of long term influence of the injected CO2 on Portland cements and methods for improving the long term efficiency of the wellbore sealant. Some researchers predicted that set cement will fail when exposed to CO2 leading to potential leakage to the atmosphere or into underground formations that may contain potable water. Other researchers show set cement samples from 30 to 50 year-old wells (CO2 EOR projects that have maintained sealing integrity and prevented CO2 leakage, in spite of some degree of carbonation. One of reasons for the discrepancy between certain research lab tests and actual field performance measurements is the absence of standard protocol for CO2 resistance-testing devices, conditions, or procedures. This paper presents potential flow paths along the wellbore, CO2 behaviour under reservoir conditions, and geochemical alteration of hydrated Portland cement due to supercritical CO2 injection.

  9. CO2 emissions resulting from the energy use

    International Nuclear Information System (INIS)

    2004-01-01

    This document brings statistical data on the carbon dioxide emissions resulting from the energy use only. Tables and charts present data for the CO 2 emissions in France, in the world (2001-2002), in the OECD (2000-2002), the CO 2 emissions from electric power plants and refineries in France (1996-1999) and archives of statistics on CO 2 emissions. (A.L.B.)

  10. Corrosion studies on casing steel in CO2 storage environments

    NARCIS (Netherlands)

    Zhang, X.; Zevenbergen, J.F.; Benedictus, T.

    2013-01-01

    The corrosion behavior of casing steel N80 in brine plus CO2 was studied in autoclave to simulate the CO2 storage environment. The brine solution used in the study contained 130 g/l NaCl, 22.2 g/l CaCl2 and 4 g/l MgCl2. The CO2 was charged in the autoclave at different pressures (60, 80 and 100 bar)

  11. Holiday CO2: Inference from the Salt Lake City data

    Science.gov (United States)

    Ryoo, J.; Fung, I. Y.; Ehleringer, J. R.; Stephens, B. B.

    2013-12-01

    A network of high-frequency CO2 sensors has been established in Salt Lake City (SLC), Utah (http://co2.utah.edu/), and the annual/monthly pattern of CO2 variability is consistent with a priori estimates of CO2 fluxes (McKain et al., 2012). Here we ask if short-term changes in anthropogenic sources can be detected, and present a case study of Thanksgiving holiday, when traffic and energy use patterns are expected to be different from that during the rest of the month. CO2 mole fraction is much higher during the Thanksgiving holidays than the other days in November 2008 for all 5 sites in SLC, and a similar pattern is found in other years. Taking into account that the wind speed is relatively low in downtown SLC compared to the other SLC sites, the downtown site is further investigated to minimize the meteorological influence on CO2. In order to understand the relative contributions to the high level of CO2 during the Thanksgiving holidays, we carried out a multiple linear regression (MLR) analysis of the rate of CO2 change against various sources. Mobile CO2 sources are assumed to be proportional to local traffic data and residential CO2 sources are assumed to depend exponentially on temperature. Vulcan data were used to specify the other anthropogenic sources (commercial, industrial, nonroad, electricity, aircraft, and cement). The MLR analysis shows that during the Thanksgiving holidays CO2 contributions from residential and commercial CO2 are larger than that during the rest of November, and mobile sources represent only a relatively small contribution. The study demonstrates the feasibility of detecting changes in urban source contributions using high-frequency measurements in combination with daily PBL height and local traffic volume data.

  12. System-level modeling for geological storage of CO2

    OpenAIRE

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO2) from industrial sources into deep geological formations such as brine formations or depleted oil or gas reservoirs. Research has and is being conducted to improve understanding of factors affecting particular aspects of geological CO2 storage, such as performance, capacity, and health, safety and environmental (HSE) issues, as well as to lower the cost of CO2 capture and related p...

  13. Including dynamic CO2 intensity with demand response

    International Nuclear Information System (INIS)

    Stoll, Pia; Brandt, Nils; Nordström, Lars

    2014-01-01

    Hourly demand response tariffs with the intention of reducing or shifting loads during peak demand hours are being intensively discussed among policy-makers, researchers and executives of future electricity systems. Demand response rates have still low customer acceptance, apparently because the consumption habits requires stronger incentive to change than any proposed financial incentive. An hourly CO 2 intensity signal could give customers an extra environmental motivation to shift or reduce loads during peak hours, as it would enable co-optimisation of electricity consumption costs and carbon emissions reductions. In this study, we calculated the hourly dynamic CO 2 signal and applied the calculation to hourly electricity market data in Great Britain, Ontario and Sweden. This provided a novel understanding of the relationships between hourly electricity generation mix composition, electricity price and electricity mix CO 2 intensity. Load shifts from high-price hours resulted in carbon emission reductions for electricity generation mixes where price and CO 2 intensity were positively correlated. The reduction can be further improved if the shift is optimised using both price and CO 2 intensity. The analysis also indicated that an hourly CO 2 intensity signal can help avoid carbon emissions increases for mixes with a negative correlation between electricity price and CO 2 intensity. - Highlights: • We present a formula for calculating hybrid dynamic CO 2 intensity of electricity generation mixes. • We apply the dynamic CO 2 Intensity on hourly electricity market prices and generation units for Great Britain, Ontario and Sweden. • We calculate the spearman correlation between hourly electricity market price and dynamic CO 2 intensity for Great Britain, Ontario and Sweden. • We calculate carbon footprint of shifting 1 kWh load daily from on-peak hours to off-peak hours using the dynamic CO 2 intensity. • We conclude that using dynamic CO 2 intensity for

  14. Information for stores users

    CERN Multimedia

    Logistics Group - FI Department

    2005-01-01

    The Farnell catalogue can now be accessed from the Material Request form on EDH in addition to the CERN Stores catalogue. Users can order Farnell equipment as well as standard Stores equipment at the same time using a single document, the EDH Materials Request form. The Materials Request form offers users items from both the internal 'Stores' catalogue and the external 'Farnell' catalogue, all of which may be ordered on the same form. The system automatically forwards orders for standard Stores equipment to the CERN Stores and those for Farnell equipment to Farnell. The delivery time is 48 hours in both cases. Requests for materials are routed for approval in accordance with the standard EDH routing procedures. Logistics Group FI Department

  15. Numerical Simulations for Enhanced Methane Recovery from Gas Hydrate Accumulations by Utilizing CO2 Sequestration

    Science.gov (United States)

    Sridhara, Prathyusha

    transport properties with change in pressure and temperature due to the presence of the simple CO2-hydrate and mixed hydrates (mainly CH4-CO2 hydrate and CH4 -CO2-N2 hydrate) in the porous geologic media. These simulations on CO2/ CH4-CO2 hydrate reservoirs provided a basic insight to formulate and interpret a novel technological approach. This approach aims at prediction of enhanced gas production profiles from Class 2 hydrate accumulations by utilizing CO2 sequestration. The approach also offers a possibility to permanently store CO 2 in the geologic formation to a greater extent compared to a direct injection of CO2 into gas hydrate sediments. The production technique implies a three-stage approach using one vertical well design. In Stage I, the CO2 is injected into the underlying aquifer. In Stage II, the well is shut in and injected CO2 is allowed to be converted into immobile CO2 hydrate. Finally, during Stage III, decomposition of CH4 hydrate is induced by the depressurization method. The gas production potential is estimated over 15 years. The results reveal that methane production is increased together with simultaneous reduction of concomitant water production rate comparing to a conventional Class 2 reservoir production.

  16. Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir?

    Science.gov (United States)

    Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François

    2017-08-01

    Subduction of carbonated crust is widely believed to generate a flux of carbon into the base of the continental lithospheric mantle, which in turn is the likely source of widespread volcanic and non-volcanic CO2 degassing in active tectonic intracontinental settings such as rifts, continental margin arcs and back-arc domains. However, the magnitude of the carbon flux through the lithosphere and the budget of stored carbon held within the lithospheric reservoir are both poorly known. We provide new constraints on the CO2 budget of the lithospheric mantle below the Pannonian Basin (Central Europe) through the study of a suite of xenoliths from the Bakony-Balaton Highland Volcanic Field. Trails of secondary fluid inclusions, silicate melt inclusions, networks of melt veins, and melt pockets with large and abundant vesicles provide numerous lines of evidence that mantle metasomatism affected the lithosphere beneath this region. We obtain a quantitative estimate of the CO2 budget of the mantle below the Pannonian Basin using a combination of innovative analytical and modeling approaches: (1) synchrotron X-ray microtomography, (2) NanoSIMS, Raman spectroscopy and microthermometry, and (3) thermodynamic models (Rhyolite-MELTS). The three-dimensional volumes reconstructed from synchrotron X-ray microtomography allow us to quantify the proportions of all petrographic phases in the samples and to visualize their textural relationships. The concentration of CO2 in glass veins and pockets ranges from 0.27 to 0.96 wt.%, higher than in typical arc magmas (0-0.25 wt.% CO2), whereas the H2O concentration ranges from 0.54 to 4.25 wt.%, on the low end for estimated primitive arc magmas (1.9-6.3 wt.% H2O). Trapping pressures for vesicles were determined by comparing CO2 concentrations in glass to CO2 saturation as a function of pressure in silicate melts, suggesting pressures between 0.69 to 1.78 GPa. These values are generally higher than trapping pressures for fluid inclusions

  17. Trend of CO2 laser cutting; Saikin no CO2 laser setsudan

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T.; Sano, Y.; Nagahori, M. [Tanaka Engineering Works Ltd., Saitama (Japan)

    1998-08-01

    This paper describes CO2 laser cutting of medium thick plates. Carbon dioxide laser is mainly used for laser generators. The generation efficiency of CO2 laser is 5 to 15% which is higher than that of the other lasers. Ninety percent of the usage is for cutting, piercing and welding. Laser cutter having a separated generator with a power from 3 to 6 kW is often used for cutting medium thick plates. The recent trend of new cutting technology is introduced. When power is increased from 3 kW to 6 kW without using oxygen as assist gas, the cutting thickness of stainless steel plate increased into 1.5 times, and the cutting speed increased into 1.5 to 2 times. For the soft steel members with black coating in which the power-up effects have not been obtained, the cutting speed, quality of cutting surface and cutting stability were improved by introducing new technology. Piercing time has been reduced by developing a method by which pulse generation is changed during piercing and a method by which piercing is conducted by irradiating the maximum power of continuous generation. Cutting quality with high accuracy has been realized by developing light weight generator and high performance NC unit. 10 figs.

  18. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    Science.gov (United States)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  19. Predicting, monitoring and controlling geomechanical effects of CO2 injection

    International Nuclear Information System (INIS)

    Streit, J.E.; Siggins, A.F.

    2005-01-01

    A key objective of geological carbon dioxide (CO 2 ) storage in porous rock is long-term subsurface containment of CO 2 . Fault stability and maximum sustainable pore-fluid pressures should be estimated in geomechanical studies in order to avoid damage to reservoir seals and fault seals of storage sites during CO 2 injection. Such analyses rely on predicting the evolution of effective stresses in rocks and faults during CO 2 injection. However, geomechanical analyses frequently do not incorporate poroelastic behaviour of reservoir rock, as relevant poroelastic properties are rarely known. The knowledge of rock poroelastic properties would allow the use of seismic methods for the accurate measurement of the effective stress evolution during CO 2 injection. This paper discussed key geomechanical effects of CO 2 injection into porous rock, and in particular, focused on the effects that the poroelasticity of reservoir rocks and pore pressure/stress coupling have on effective stresses. Relevant geophysical monitoring techniques were also suggested. The paper also outlined how these techniques could be applied to measure stress changes related to poroelastic rock behaviour during CO 2 injection and to test the predictions of sustainable changes in effective stress in CO 2 storage sites. It was concluded that a combination of predictive geomechanical techniques and application of geophysical monitoring techniques is a valid new concept for controlling and monitoring the geomechanical effects of CO 2 storage. 36 refs., 5 figs

  20. Mapping inter-industrial CO2 flows within China

    DEFF Research Database (Denmark)

    Bai, Hongtao; Feng, Xiangyu; Hou, Huimin

    2018-01-01

    . As the largest emitter of CO2 in the world, China has a very comprehensive industrial system. In this study, we traced fuel-related CO2 flows between 30 Chinese industrial sectors in 2012 and explored the specificities of these flows on aggregate CO2 emission abatement for the entire economy. Previous studies...... of the large-scale infrastructure required to support rapid urbanization in China, exhibits the greatest transfer of embodied CO2 from energy suppliers and from the producers of energyintensive materials. Our sensitivity analysis indicates that the construction sector shows considerable carbon abatement...

  1. A CO2-strategy for BTC [Belgian Development Agency

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, J. [Prospect C and S, Brussels (Belgium); Hanekamp, E. [Partners for Innovation, Amsterdam (Netherlands)

    2008-09-15

    The CO2 footprint is determined the CO2 strategy is developed for the Belgian Technical Cooperation (BTC). BTC is the Belgian agency for development cooperation, and finances development projects in 23 partner countries. The CO2 footprint covered BTC's activities in 2007 in all their offices worldwide. Footprint and strategy were finalised and adopted by the Executive Board at the end of 2008. Meanwhile, the BTC began with the introduction of the proposed strategy. Partners for Innovation and Prospect were asked to support the introduction of the strategy and to determine the CO2 footprint of 2008.

  2. Future CO2 removal from pulp mills - Process integration consequences

    International Nuclear Information System (INIS)

    Hektor, Erik; Berntsson, Thore

    2007-01-01

    Earlier work has shown that capturing the CO 2 from flue gases in the recovery boiler at a pulp mill can be a cost-effective way of reducing mill CO 2 emissions. However, the CO 2 capture cost is very dependent on the fuel price. In this paper, the potential for reducing the need for external fuel and thereby the possibility to reduce the cost for capturing the CO 2 are investigated. The reduction is achieved by using thermal process integration. In alternative 1, the mill processes are integrated and a steam surplus made available for CO 2 capture, but still there is a need for external fuel. In alternative 2, the integration is taken one step further, the reboiler is fed with MP steam, and the heat of absorption from the absorption unit is used for generation of LP steam needed at the mill. The avoidance costs are in both cases lower than before the process integration. The avoidance cost in alternative 1 varies between 25.4 and 30.7 EUR/tonne CO 2 depending on the energy market parameters. For alternative 2, the cost varies between 22.5 and 27.2 EUR/tonne CO 2 . With tough CO 2 reduction targets and correspondingly high CO 2 emission costs, the annual earnings can be substantial, 18.6 MEUR with alternative 1 and 21.2 MEUR with alternative 2

  3. Reducing of CO2 emissions and its depositing into underground

    Directory of Open Access Journals (Sweden)

    Jaroslava Koudelková

    2005-11-01

    Full Text Available Increasing CO2 emissions caused especially by the combustion of fossil fuels rises a question of how this can be problem solved in the long term. There is several solutions which differ technically and financially. This paper deals with the CO2 capture from combustion processes or power plant processes, (CO2 can be captured from the flue gas, after combustion in oxygen and recirculated flue gas or from a synthesis gas before combustion. This paper presents possibilities of CO2 storagex captured in this way into underground (deep ocean, oil and gas fields, coal bed, aquifers.

  4. CO2 Sink/Source in the Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Two distinct CO2 sink/source characteristics appeared from the compiled observed data 1984-2013 in the tropical Indonesian seas. The western part persistently emits CO2 to the atmosphere, while the eastern is rather dynamic which emits and absorbs smaller amount of CO2 to and from atmosphere, respectively. The segregation is proximal to the virtual Wallace line, where in the continental shelf is located. Lower salinity and higher silicate condition in the western part influenced the higher pCO2 condition in Java Sea. Temperature is found to have a limited influence to control different characteristic in the west and east, but SST change of 2.0 0C during La Ninã condition effectively reduced the source amount of CO2 by 50% compared to Normal year condition. Yet, during La Ninã, higher wind speed increases CO2 flux twice compared to Normal year. In the continental shelf area where CO2 sink area is found, 29 years data showed that pCO2 trend is increasing ±0.6-3.8 μatm/year. From this study, the overall areas have a significant source of CO2 of approximately 10 - 24 μatm.

  5. CO2 emissions by the economic circuit in France

    International Nuclear Information System (INIS)

    Lenglart, F.; Lesieur, Ch.; Pasquier, J.L.

    2010-01-01

    Before commenting various statistical data on CO 2 emission in France, this report explains how these data have been established according to the 'Stiglitz' Commission recommendations, i.e. by integrating CO 2 emissions in the national accounts. While commenting the evolutions of CO 2 emissions in relationship with economic activity and giving table of world data, it outlines that France represents 3% of the World GDP, 1.3% of CO 2 emissions and 1% of the population. The relationship between standard of living and pollutant emissions are commented. As far as France is concerned and with a comparison with world data the shares of different sources of energy and of the different sectors in CO 2 emissions are indicated and commented. The report comments the influence of the domestic demand on foreign CO 2 emissions, the differences between households in terms of CO 2 emissions with respect to their revenues, the shares of household consumption and of CO 2 emissions among expense items, the influence of socio-professional, of age, and of household composition category on CO 2 emissions. Some methodological and computational aspects are given

  6. CO_2 valorization - Part. 2: chemical transformation ways

    International Nuclear Information System (INIS)

    Dumergues, Laurent

    2016-01-01

    Carbon dioxide (CO_2) can be used in many ways as a raw material or chemical reagent. The chemical conversion of CO_2 used as a feedstock is achievable by different techniques: mineralization, organic synthesis, hydrogenation, dry reforming, electrolysis, thermolysis, etc. The products obtained have applications as energy products, chemicals, building materials, etc. Choosing an appropriate CO_2 reuse technology will depend on technical and economic requirements (such as the CO_2 purity needed, technological maturity, cost-effectiveness, etc.) and also environmental and social criteria

  7. Efficient electrochemical CO2 conversion powered by renewable energy.

    Science.gov (United States)

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  8. Atmospheric CO2 Variability Observed From ASCENDS Flight Campaigns

    Science.gov (United States)

    Lin, Bing; Browell, Edward; Campbell, Joel; Choi, Yonghoon; Dobler, Jeremy; Fan, Tai-Fang; Harrison, F. Wallace; Kooi, Susan; Liu, Zhaoyan; Meadows, Byron; hide

    2015-01-01

    Significant atmospheric CO2 variations on various spatiotemporal scales were observed during ASCENDS flight campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200x300 sq km over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  9. Comparison of regional and ecosystem CO2 fluxes

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Søgaard, Henrik; Batchvarova, Ekaterina

    2009-01-01

    A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio-soundings......A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio...

  10. CO2 Emissions From Fuel Combustion. Highlights. 2013 Edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    In the lead-up to the UN climate negotiations in Warsaw, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process, the IEA is making available for free download the ''Highlights'' version of CO2 Emissions from Fuel Combustion now for sale on IEA Bookshop. This annual publication contains, for more than 140 countries and regions: estimates of CO2 emissions from 1971 to 2011; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; a decomposition of CO2 emissions into driving factors; and CO2emissions from international marine and aviation bunkers, key sources, and other relevant information. The nineteenth session of the Conference of the Parties to the Climate Change Convention (COP-19), in conjunction with the ninth meeting of the Parties to the Kyoto Protocol (CMP 9), met in Warsaw, Poland from 11 to 22 November 2013. This volume of ''Highlights'', drawn from the full-scale study, was specially designed for delegations and observers of the meeting in Warsaw.

  11. Decoupling of CO2-emissions from Energy Intensive Industries

    DEFF Research Database (Denmark)

    Andersen, M. S.; Enevoldsen, M. K.; Ryelund, A. V.

    and taxes on the trends in CO2 emissions on the basis of a novel method that relies on sector-specific energy prices. Whereas previous research has been unable to account for the implications of complex tax exemptions and price discounts, the present report bridges the gap and provides innovative estimates....... This finding suggests that price increases, whether induced by taxes or market fluctuations, can be effective in curbing CO2 emissions when they accurately reflect the CO2 burden. It also suggests that CO2-specific taxes on fuels are more effective than end-user electricity taxes which do not reflect actual...

  12. Underground storage touted as CO2 solution

    International Nuclear Information System (INIS)

    Kishewitsch, S.

    2000-01-01

    atmosphere does, therefore adding carbon dioxide to the sea from the combustion of fossil fuels would have a proportionately smaller effect. It is estimated that once stored in the deep ocean, carbon dioxide would not make its way back into the atmosphere for at least 400 to 500 years; at the very least, this delay would give us time to develop technology to deal with the problem as well as to develop different sources of energy. DOE claims that improved carbon dioxide sequestration technology to meet GHG reduction targets could result in cumulative savings to the U.S. economy of $ 2.7 trillion by 2050

  13. A CO2-storage supply curve for North America and its implications for the deployment of carbon dioxide capture and storage systems

    International Nuclear Information System (INIS)

    Dooley, J.J.; Bachu, S.; Gupta, N.; Gale, J.

    2005-01-01

    This paper presented a highly disaggregated estimate of carbon dioxide (CO 2 )-storage capacity of more than 330 onshore geological reservoirs across the United States and Canada. The demand placed upon these reservoirs by thousands of existing large anthropogenic CO 2 point sources was also reviewed based on a newly developed methodology for estimating the effective storage capacities of deep saline formations, depleted oil and gas reservoirs, and deep unmineable coal seams. This analysis was based on matching the identified point sources with candidate storage reservoirs. By incorporating the updated source and reservoir data into the Battelle CO 2 -GIS, a series of pairwise costs for transporting CO 2 from sites of anthropogenic CO 2 sources was calculated along with the net cost of storing it in each of the candidate reservoirs within a specified distance of the point source. Results indicate a large and variably distributed North American storage capacity of at least 3,800 gigatonnes of CO 2 , with deep saline formations accounting for most of this capacity. A geospatial and techno-economic database of 2,082 anthropogenic CO 2 point sources in North America, each with annual emissions greater than 100,000 tonnes of CO 2 , was also refined. Sensitivities examined for the CO 2 -storage cost curve focused on high/low oil and gas prices; the maximum allowed distance between source and reservoir; and, the infrastructure costs associated with CO 2 -driven hydrocarbon recovery. 20 refs., 5 figs

  14. Bottom-up comparisons of CO2 storage and costs in forestry and biomass energy projects

    International Nuclear Information System (INIS)

    Swisher, J.N.

    1993-01-01

    In order to include forestry and biomass energy projects in a possible CO 2 emission reduction regime, and to compare the costs of individual projects or national programs, it is necessary to determine the rate of equivalency between carbon in fossil fuel emissions and carbon stored in different types of forestry, biomass and renewable energy projects. This paper presents a comprehensive and consistent methodology to account for the costs and carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO 2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction

  15. Identifying Activity Descriptors for CO2 Electro-Reduction to Methanol on Rutile (110) Surfaces

    DEFF Research Database (Denmark)

    Bhowmik, Arghya; Hansen, Heine Anton; Vegge, Tejs

    2015-01-01

    Electrocatalytic reduction of CO2 to liquid fuels using energy from renewable sources has the potential to form the basis of a carbon neutral sustainable energy system, while integrating seamlessly in the established infrastructure1. Storing intermittent renewable energy in a chemical fuel...... towards electrocatalytic production of methanol. We would like to acknowledge the Lundbeck Foundation for financial support of this work. References: 1. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A.103,15729–35 (2006......., Ali, I., Jansen, M. & Omanovic, S. Electrochemical reduction of CO 2 in an aqueous electrolyte employing an iridium/ruthenium-oxide electrode. Can. J. Chem. Eng. (2014). doi:10.1002/cjce.22110 6. Nørskov, J. K. et al. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys...

  16. Subsurface oxide plays a critical role in CO_2 activation by Cu(111) surfaces to form chemisorbed CO_2 , the first step in reduction of CO_2

    OpenAIRE

    Favaro, Marco; Xiao, Hai; Cheng, Tao; Goddard, William A.; Yano, Junko; Crumlin, Ethan J.

    2017-01-01

    A national priority is to convert CO_2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO_2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide s...

  17. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2

    OpenAIRE

    Favaro, M; Xiao, H; Cheng, T; Goddard, WA; Crumlin, EJ

    2017-01-01

    A national priority is to convert CO2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide str...

  18. CO2 Capture Rate Sensitivity Versus Purchase of CO2 Quotas. Optimizing Investment Choice for Electricity Sector

    Directory of Open Access Journals (Sweden)

    Coussy Paula

    2014-09-01

    Full Text Available Carbon capture technology (and associated storage, applied to power plants, reduces atmospheric CO2 emissions. This article demonstrates that, in the particular case of the deployment phase of CO2 capture technology during which CO2 quota price may be low, capturing less than 90% of total CO2 emissions from power plants can be economically attractive. Indeed, for an electric power company capture technology is interesting, only if the discounted marginal cost of capture is lower than the discounted marginal cost of purchased quotas. When CO2 price is low, it is interesting to have flexibility and reduce the overall capture rate of the site, by stopping the capture system of one of the combustion trains if the site has multiple ones, or by adopting less than 90% CO2 capture rate.

  19. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  20. Directed technical change and the adoption of CO2 abatement technology. The case of CO2 capture and storage

    International Nuclear Information System (INIS)

    Otto, Vincent M.; Reilly, John

    2008-01-01

    This paper studies the cost-effectiveness of combining traditional environmental policy, such as CO 2 -trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO 2 abatement technology. For this purpose, we develop a dynamic general equilibrium model that captures empirical links between CO 2 emissions associated with energy use, directed technical change and the economy. We specify CO 2 capture and storage (CCS) as a discrete CO 2 abatement technology. We find that combining CO 2 -trading schemes with an adoption subsidy is the most effective instrument to induce adoption of the CCS technology. Such a subsidy directly improves the competitiveness of the CCS technology by compensating for its markup over the cost of conventional electricity. Yet, introducing R and D subsidies throughout the entire economy leads to faster adoption of the CCS technology as well and in addition can be cost-effective in achieving the abatement target. (author)

  1. Monotoring of CO2 Sequestration at Sleipner Using Full Waveform Inversion in Time-lapse Mode.

    Science.gov (United States)

    Gosselet, A.; Singh, S. C.

    2007-12-01

    It is now widely admitted that recent increase of CO2 in the atmosphere is due to human activities. The consecutive greenhouse effect is a major ecological concern. Geological storage is one proposed way to reduce atmosphere CO2 emissions. The Sleipner methane field, North Sea, is the very first site where CO2 has been injected back into a deep saline aquifer. In 1996, the Norwegian company Statoil and its partners began the production of the methane. The extracted methane contains a relatively high ratio of CO2, between 4% and 9%, that has to be reduced below 2.5% before delivering into the pipeline. An environmental tax introduced in Norway as early as 1991 prompted the company to store the separated CO2 instead of releasing it into the atmosphere as usually done. The CO2 is injected at the base of the Utsira sands. This water bearing formation lies at a depth between 800 and 1000m and is sealed by a thick shale layer. Seismic monitoring is a key tool in this strategy from a security standpoint and for sequestration optimization itself. Consequently, 3D seismic data were acquired before injection in 1994 and after injection in 1999, 2001, 2002, 2004 and 2006. Well-log revealed that the reservoir is crossed by thin shale layers that are 1 to 10m thick. CO2 rises up and is confined vertically by the shale layers, favouring horizontal gas migration and creating gas bearing thin beds. Seismic imaging of the gas pockets is therefore a challenging problem because large velocity variations occur on very short distance. Classical processing of time-lapse data consists in subtracting repeated survey seismic traces from the pre- injection baseline traces to exhibit changes within the reservoir. This approach remains qualitative, providing only the shape and extent of the gas cloud. Instead, we propose to compare elastic models of the subsurface computed through 2D full wave form inversion, an advanced seismic imaging technique. This method is based on the wave equation

  2. A possible CO2 conducting and concentrating mechanism in plant stomata SLAC1 channel.

    Directory of Open Access Journals (Sweden)

    Qi-Shi Du

    Full Text Available BACKGROUND: The plant SLAC1 is a slow anion channel in the membrane of stomatal guard cells, which controls the turgor pressure in the aperture-defining guard cells, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought, high levels of carbon dioxide, and bacterial invasion. Recent study demonstrated that bicarbonate is a small-molecule activator of SLAC1. Higher CO(2 and HCO(3(- concentration activates S-type anion channel currents in wild-type Arabidopsis guard cells. Based on the SLAC1 structure a theoretical model is derived to illustrate the activation of bicarbonate to SLAC1 channel. Meanwhile a possible CO(2 conducting and concentrating mechanism of the SLAC1 is proposed. METHODOLOGY: The homology structure of Arabidopsis thaliana SLAC1 (AtSLAC1 provides the structural basis for study of the conducting and concentrating mechanism of carbon dioxide in SLAC1 channels. The pK(a values of ionizable amino acid side chains in AtSLAC1 are calculated using software PROPKA3.0, and the concentration of CO(2 and anion HCO(3(- are computed based on the chemical equilibrium theory. CONCLUSIONS: The AtSLAC1 is modeled as a five-region channel with different pH values. The top and bottom layers of channel are the alkaline residue-dominated regions, and in the middle of channel there is the acidic region surrounding acidic residues His332. The CO(2 concentration is enhanced around 10(4 times by the pH difference between these regions, and CO(2 is stored in the hydrophobic region, which is a CO(2 pool. The pH driven CO(2 conduction from outside to inside balances the back electromotive force and maintain the influx of anions (e.g. Cl(- and NO(3(- from inside to outside. SLAC1 may be a pathway providing CO(2 for photosynthesis in the guard cells.

  3. Investigating CO2 Reservoirs at Gale Crater and Evidence for a Dense Early Atmosphere

    Science.gov (United States)

    Niles, P. B.; Archer, P. D.; Heil, E.; Eigenbrode, J.; McAdam, A.; Sutter, B.; Franz, H.; Navarro-Gonzalez, R.; Ming, D.; Mahaffy, P. R.; hide

    2015-01-01

    One of the most compelling features of the Gale landing site is its age. Based on crater counts, the formation of Gale crater is dated to be near the beginning of the Hesperian near the pivotal Hesperian/Noachian transition. This is a time period on Mars that is linked to increased fluvial activity through valley network formation and also marks a transition from higher erosion rates/clay mineral formation to lower erosion rates with mineralogies dominated by sulfate minerals. Results from the Curiosity mission have shown extensive evidence for fluvial activity within the crater suggesting that sediments on the floor of the crater and even sediments making up Mt. Sharp itself were the result of longstanding activity of liquid water. Warm/wet conditions on early Mars are likely due to a thicker atmosphere and increased abundance of greenhouse gases including the main component of the atmosphere, CO2. Carbon dioxide is minor component of the Earth's atmosphere yet plays a major role in surface water chemistry, weathering, and formation of secondary minerals. An ancient martian atmosphere was likely dominated by CO2 and any waters in equilibrium with this atmosphere would have different chemical characteristics. Studies have noted that high partial pressures of CO2 would result in increased carbonic acid formation and lowering of the pH so that carbonate minerals are not stable. However, if there were a dense CO2 atmosphere present at the Hesperian/Noachian transition, it would have to be stored in a carbon reservoir on the surface or lost to space. The Mt. Sharp sediments are potentially one of the best places on Mars to investigate these CO2 reservoirs as they are proposed to have formed in the early Hesperian, from an alkaline lake, and record the transition to an aeolian dominated regime near the top of the sequence. The total amount of CO2 in the Gale crater soils and sediments is significant but lower than expected if a thick atmosphere was present at the

  4. Comparison of Surface and Column Variations of CO2 Over Urban Areas for Future Active Remote CO2 Sensors

    Science.gov (United States)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan; Browell, Edward

    2015-01-01

    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. This campaign includes, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). Each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 km). In this study, surface (0 - 1 km) and column-averaged (0 - 3.5 km) CO2 mixing ratio values from the vertical soundings in the four geographically different urban areas are used to investigate the temporal and spatial variability of CO2 within the different urban atmospheric emission environments. Tracers such as CO, CH2O, NOx, and NMHCs are used to identify the source of CO2 variations in the urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-microns and 2.05-microns measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we investigate the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to the urban surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.

  5. Promoting Ethylene Selectivity from CO2 Electroreduction on CuO Supported onto CO2 Capture Materials.

    Science.gov (United States)

    Yang, Hui-Juan; Yang, Hong; Hong, Yu-Hao; Zhang, Peng-Yang; Wang, Tao; Chen, Li-Na; Zhang, Feng-Yang; Wu, Qi-Hui; Tian, Na; Zhou, Zhi-You; Sun, Shi-Gang

    2018-03-09

    Cu is a unique catalyst for CO 2 electroreduction, since it can catalyze CO 2 reduction to a series of hydrocarbons, alcohols, and carboxylic acids. Nevertheless, such Cu catalysts suffer from poor selectivity. High pressure of CO 2 is considered to facilitate the activity and selectivity of CO 2 reduction. Herein, a new strategy is presented for CO 2 reduction with improved C 2 H 4 selectivity on a Cu catalyst by using CO 2 capture materials as the support at ambient pressure. N-doped carbon (N x C) was synthesized through high-temperature carbonization of melamine and l-lysine. We observed that the CO 2 uptake capacity of N x C depends on both the microporous area and the content of pyridinic N species, which can be controlled by the carbonization temperature (600-800 °C). The as-prepared CuO/N x C catalysts exhibit a considerably higher C 2 H 4 faradaic efficiency (36 %) than CuO supported on XC-72 carbon black (19 %), or unsupported CuO (20 %). Moreover, there is a good linear relationship between the C 2 H 4 faradaic efficiency and CO 2 uptake capacity of the supports for CuO. The local high CO 2 concentration near Cu catalysts, created by CO 2 capture materials, was proposed to increase the coverage of CO intermediate, which is favorable for the coupling of two CO units in the formation of C 2 H 4 . This study demonstrates that pairing Cu catalysts with CO 2 capture supports is a promising approach for designing highly effective CO 2 reduction electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Intermediate-Scale Experimental Study to Improve Fundamental Understanding of Attenuation Capacity for Leaking CO2 in Heterogeneous Shallow Aquifers

    Science.gov (United States)

    Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; Illangasekare, Tissa H.

    2017-12-01

    To assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO2 leaks upward from a deep storage reservoir into the shallow subsurf